

Storage of Spent Nuclear Fuel at Pilgrim Nuclear **Power Station**

By:

Joy Russell V.P. Corporate Business Development & **Chief Communications Officer**

Holtec International November 28, 2018

Dr. Stefan Anton **V.P. Engineering & Licensing**

www.holtec.com Page

Topics

- **About Holtec International**
- History of Dry Storage at Pilgrim
- Nuclear Fuel and How it is Stored
- Holtec's HI-STORM 100 Systems Protection of Public Heath & Safety
- Safe and Low Dose Loading Process

About Holtec International

A vertically integrated turnkey supplier of goods and services to the power generation industry established in 1986

- Technical Innovation
- Protection of the Environment
- Financially strong with selffinanced R&D
- Impeccable Safety Record
- Ingrained Nuclear Safety Culture
- Robust Quality Assurance Program

Committed to the Nuclear Industry

Holtec's Manufacturing Capabilities Three Major U.S. Manufacturing Plants

1.4M ft² of Total Shop Space

Industry Acceptance of Holtec Systems

History of Dry Storage at Pilgrim

- 2009: The HI-STORM System was selected by Entergy after a lengthy bid evaluation process that determined it was the best available technology
- Today: There are 17 **HI-STORM Systems** successfully loaded and safely stored at Pilgrim (over 1,200 Holtec systems are safely in use around the globe)

HI-STORMs at Pilgrim

Pilgrim Nuclear Station

Independent Spent Fuel Storage Installation (ISFSI)

Nuclear Fuel & How it is Stored

Technology Overview

HI-STORM 100 System

- The HI-STORM System is the most robust system in the industry
 - ✓ The overpack consists of inner and outer steel shells where the space between is filled with concrete
 - ▼The overpack provides physical protection & radiation shielding

Side View of HI-STORM Overpacks being prepared for Transport

Concrete Poured at Plant Site

- External steel structure (no exposed concrete) ensures that the cask will not degrade under extreme environmental conditions
- No Rebar
 - ✓ So Easy to assemble
 - ✓ No cracking due to thermal expansion
 - ✓ No radiation streaming pathways
- Minimal maintenance
- Passive heat removal (natural convection)
- Requires no monitoring systems

HI-STORM 100 on-site at Pilgrim

- Steel exterior protects the cask against impacts
- **Qualified to Withstand a Variety of Missiles:**

HI-STORM has been analyzed to withstand the impact of a variety of missiles; typical missiles and their incident velocity are listed in the table below (excerpted from the HI-STORM 100 Final Safety Analysis Report (FSAR))

Table 2.2.5

TORNADO-GENERATED MISSILES

Missile Description	Mass (kg)	Velocity (mph)
Automobile	1800	126
Rigid solid steel cylinder (8 in. diameter)	125	126
Solid sphere (1 in. diameter)	0.22	126

- The robustness of the HI-STORM System has been thoroughly evaluated and confirmed by industry organizations and in a licensing proceeding before the NRC's Atomic Safety & Licensing Board
- The ruling of the Board concluded that the HI-STORM can withstand:
 - ✓ Earthquakes stronger than any experienced in the history of the continental U.S. Over five times stronger than Fukushima
 - ✓ Crashing of an F-16 fighter plane laden with fuel
 - ✓ Raging brush fire around the storage facility
- The Electric Power Research Institute (EPRI), report validated a direct hit by a Boeing 767 aircraft engine at 350 miles per hour does not result in a release of radioactive material

- Radiation dose from the HI-STORM systems at Pilgrim is anticipated to be less than 5 mrem/year
- This is the same exposure one would receive from a single roundtrip flight from NYC / Los Angeles
- The average annual radiation dose for an individual is 620 mrem

■ MPC: Multipurpose Canister

- ✓ Fully-welded, stainless steel, cylindrical vessel that permanently encloses the spent fuel assemblies for storage and transport
- ✓ The canister is licensed for storage and transport using specific overpacks during storage, onsite transfer, and offsite transport
- ✓ Designed and manufactured to the highest levels of nuclear safety standards

An MPC stored inside the HI-STORM Overpack

- The all-welded MPC boundary provides an impregnable barrier against radioactivity release to the environment
- No loaded canister of Holtec's (or any other) has ever leaked in long term storage
- In contrast, bolted metal casks that feature thick steel sections have occasionally leaked at their gasket (seal) locations

An MPC Lid

An Fuel Assembly Being Lowered into an MPC

- Tests performed on Holtec canisters at Diablo Canyon and Salem / Hope Creek
- Aging Management Plan is required by the NRC to monitor the condition of dry storage systems
- Manufacturing process reduces risk of Stress Corrosion Cracking
 - ✓ Reduced the amount of welding on the canister
 - ✓ Unique welding technique that minimizes the heat input
 - ✓ Designed and implemented fixtures to reduce the amount of handling of the canister

- Basket is entirely made of Metamic-HT
 - ✓ Metamic-HT has nearly ten times the conductivity of stainless steel and over three times that of steel
 - ✓ Allows the transfer of spent fuel into storage to be complete. within 3 years of the plant shut down

Dry Storage Loading Video at Plant Hatch

Questions

