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Abstract

The purpose of this study was to develop a fully empirically-based method for developing
Indices of Biotic Integrity (IBIs) that does not rely on expert opinion or the arbitrary designation of
reference sites and pilot its application in forested wetlands, coastal salt marshes and wadable
freshwater streams in Massachusetts. The method we developed involves: 1) using a suite of
regression models to estimate the abundance of each taxon across a gradient of stressor levels, 2)
using statistical calibration based on the fitted regression models and maximum likelihood methods
to predict the value of the stressor metric based on the abundance of the taxon at each site, 3)
selecting taxa in a forward stepwise procedure that conditionally improves the concordance between
the observed stressor value and the predicted value the most and a stopping rule for selecting taxa
based on a conditional alpha derived from comparison to pseudotaxa data, and 4) comparing the
coefficient of concordance for the final IBI to the expected distribution derived from randomly
permuted data.

Of the 164 separate IBIs we created for single taxonomic groups (and sampling methods) across
stressor metrics and ecological systems (Appendix C), 57 were deemed statistically and ecologically
reliable with cross-validated coefficient of concordance randing from 0.5 to 0.84. The IBIs for
wadable stream macroinvertebrates performed exceptionally well; eight of nine IBIs had coefficients
of concordance ranging from 0.59 to 0.84. The IBIs for forested wetlands also performed quite well;
48 of 120 IBIs across taxonomic groups (and sampling methods) and stressor metrics had
coefficients of concordances ranging from 0.5 to 0.79, with vascular plants outperforming
macroinvertbrates, diatoms, bryophytes and epiphytic macrolichens (in that order). The IBIs we
created for coastal salt marshes did not perform as well; only four of 35 IBIs across taxonomic
groups (and sampling methods) and stressor metrics had concordances = 0.5, but the poor
performance was likely due in part to the relatively low sample sizes. The strongest performing IBI
was based on the wetland buffer insults metric and macroinvertebrates (0.57).

Our IBI methodology has a number of distinct advantages over conventional methods related to
its completely objective procedure and the fact that it does not require reference sites. Moreover, we
built in several procedures to safeguard against model overfitting, and the method is quite flexible in
accomodating any taxa and stressor gradient in any ecological system and can include environmental
covariates to account for natural variability among sites. Lastly, we illustrate a novel application of
IBIs developed using our method to establish Continuous Aquatic Life Use (CALU) standards.



1. Introduction

Ecological indicators are often used to assess ecological condition in relation to human impacts
and to monitor the status and trends of ecosystems (Cairns et al. 1993, Niemi and McDonald 2004).
Despite the challenges associated with developing measures of ecological integrity (Dale and Beyeler
2003), given the expected continued increase in human population and accompanying land use
intensification, state and federal agencies and conservation organizations are increasingly relying on
the use of ecological indicators to inform planning, management (including regulation) and
restoration at multiple scales. Indices of biotic integrity (IBIs) are ecological indicators that were
introduced by James Karr and colleagues in the 1980s as a tool for quantifying changes in stream
health as a result of habitat degradation or flow alteration, in addition to chronically poor chemical
water quality (Karr 1981, Karr and Dudley 1981, Karr et al. 19806), but have since been extensively
developed for use in a wide variety of ecosystems using a wide variety of taxa (Simon 2003).

IBIs posit an identifiable and measurable relationship between the biotic community and one or
more anthropogentic stressors, and that once this relationship is established the biotic community
can be used to indicate the condition of the ecoystem with respect to anthropogenic stress.
However, because biota are affected by environmental conditions at multiple levels of biological
organization (from genes to communities) and since different stressors can have variable effects on
biota, response to changes in environmental conditions can be reflected at any of these levels and
perhaps simultaneously at multiple levels (Karr 1991). Because of this complexity, it is generally
deemed desirable to use a method of characterizing components of the biota that integrates and
composites multiple, quantitative descriptors or metrics (Schoolmaster et al. 2012). Accordingly,
Karr and colleagues (Karr 1981, Karr et al. 1986) developed the multimetric IBI approach that
combined a series of metrics (biological descriptors) to characterize biological condition with fish
assemblage data from streams of the Midwestern U.S.. Since then, there have been numerous
adaptations of the multimetric approach using various biological assemblages data and calibrated for
different geographic areas and ecosystem types, and it has been widely adopted by many federal and
state agencies in water resource management and regulatory programs (e.g., Barbour et al 1999).

There are numerous challenges to the development of IBIs and consequently there have been
many adaptations of the original approach to address some of these challenges (Beck and Hatch
2009). Despite substantial progress over the past three decades, there remains two inter-related,
overarching challenges to the development and use of IBIs that we sought to address in this study.
First, all IBIs are constructed from one or more biological descriptors or metrics. The derivation of
any one metric or suite of metrics is typically based on expert knowledge of the biotic community
and assumptions about how various taxa are expected to respond to anthropogenic stress. In other
wortds, the metrics are not empirically derived, but rather are constructed as hypotheses based on
expert opinion and then tested against real data (e.g., Mack 2007). Metrics that pass the empirical test
are retained and incorporated into IBIs, those that are not supported by the data are discarded
(Hering et al 2006). While there is nothing inherently wrong with this approach, we propose that it is
unnecessarily restrictive by constraining the IBIs to a limited set of a priori hypothesized
relationships and, moreover, relies too heavily on expert opinion when a fully empirical approach is
possible.

The second challenge pertains to the analytical method for confronting the metrics with data to
confirm and establish the stressor-response relationship. Most methods involve distinguishing a set
of reference sites (i.e., minimally disturbed) from one or more classes of stressed sites and then



identifying a suite of biotic metrics that effectively discrminate between or among them using
statistical methods such as discriminant analysis (e.g., Davies et al. 1993). Once established, the
discriminant function(s) can be used to predict the class a site belongs to based on the biotic metrics
measured at the site. An alternative approach, which is used in Oregon and extensively by the U.S.
Forest Service as well as in Great Britian and Australia, is based on an empirical discriminant
function model that predicts the biotic attributes that would be expected to occur at a site in the
absence of environmental stress and uses the deviation from expected as a measure of ecological
impairment (Wright et al. 1993, Norris 1996, Hawkins et al. 2000). Importantly, both approaches
require the a priori classification of training sites into discrete classes (e.g., reference versus stressed),
and thus pre-supposes that the stressor-response relationship is discrete and that the sites can be
placed into discrete classes prior to the statistical analysis, which typically requires some level of
expert assignment. While these approaches have proven useful, we question the validity of assuming
a discrete representation of the stressor-response relationship and the heavy reliance on expert
opinion (e.g., assigning sites to a reference class) to inform the statistical analysis.

To address these challenges, we sought to develop a fully empirically-based method for
developing IBIs that does not rely on expert opinion or the arbitrary designation of reference sites
and pilot its application in forested wetlands, coastal salt marshes and wadable freshwater streams in
Massachusetts.

2. Methods
2.1. Stressor metrics

As part of a broader long-term project known as the Conservation Assessment and
Prioritization System (CAPS), we developed a suite of GIS-based landscape metrics to serve as
indices of ecological integrity (UMassCAPS 2013). CAPS is based on a digital base map depicting
various classes of developed and undeveloped land and a number of auxiliary layers representing
anthropogenic alterations (such as road traffic and imperviousness) and ecological setting variables
(such as wetness and growing degree days) and involves computing a variety of landscape metrics to
evaluate ecological integrity for every point in the undeveloped landscape. A metric may, for
example, take into account how well a point in the landscape is connected to similar points, the
magnitude of natural habitat loss in the vicinity of a point, or the expected sediment or nutrient
loads to a point. Table 1 lists the suite of landscape metrics used in this study (i.e., those that we
deemed relevant to the integrity of forested wetlands, coastal salt marshes and wadable freshwater
streams) and a brief description of each is given in Appendix A. All of these metrics, hereafter
referred to as "stressor metrics", measure some aspect of the adverse impact of anthropogenic
activities on the integrity of ecological systems and are both intuitive (e.g.,. more pollution equals
lower ecological integrity) and founded, at least in concept, on basic ecological principles and
supported by scientific study. Note that while most of these metrics are positively associated with
stress (i.e., higher values indicate more stress), the three resiliency metrics are negatively associated
with stress. Moreover, we empirically validated many of these metrics using field-collected data. For
example, the metrics pertaining to water quality impacts (i.e., Watershed Road Sediments, Road Salt,
and Nutrient Enrichment) were significantly correlated with independent field data (unpublished
data).

For each ecological system, we selected a suite of stressor metrics (Table 1) and computed their
values for every 30 m cell across Massachusetts, including each of the sites in this study. In addition



to the individual stressor metrics, we also computed a composite Index of Ecological Integrity (IEI)
by combining the scaled stressor metrics in a weighted linear equation for each ecological system.
Specifically, prior to combining the individual metrics, we rescaled each metric by percentiles for
each ecological system (across the state) so that the best 10% of forested wetlands have values
>0.90, for instance, and the best 25% have values >0.75, and so on. This was done to adjust for
differences in units of measurement among metrics and to account for differences in the range of
metric values for each ecological system. Next, expert teams assigned weights to each individual
metric to reflect the relative importance of each metric for each ecological system (Table 1) and we
then added them together to compute IEL Note, the expert opinion used here is distinct from the
use of expert opinion to create biotic metrics, which our method avoids. Also, like the three
resiliency metrics, IEI has a negative relationship with stress. For the sake of parsimony, we
developed IBIs for only a subset of the stressor metrics in coastal salt marshes and wadable
freshwater streams (Table 1).

2.2. Biotic data collection

We collected or compiled biotic data in three ecological systems: 1) forested wetlands, 2) coastal
salt marshes, and 3) wadable freshwater streams, using different methods at varying numbers of sites
(Table 2, Fig. 1). Detailed descriptions of the standard operating procedures are on file with the
Massachusetts Department of Environmental Protection (MassDEP) and a succinct description of
the data collection methods are included in Appendix A. Briefly, between 2008-2009 we sampled
vascular plants, bryophytes, epiphytic macrolichens, diatoms, and macroinvertebrates at 219 forested
wetland locations (hereafter referred to as 'sites’) distributed across the Chicopee River, Millers River
and Concord River watersheds representing a gradient in anthropogenic stress as indexed by IEIL
Similarly, between 2009-2011 we sampled vascular plants and macroinvertebrates at 130 coastal salt
marsh locations. Lastly, we used data from the Masschusetts Benthic Macroinvertebrate database
collected during 589 surveys at 490 wadable freshwater stream locations between 1983-2007. In all
cases, we computed a tally for each taxon at each site and treated it as a Binomial response with a
trial size equal to the total specimen count and/or as an unbounded Poisson response (with an
offset to account for sampling effort), as appropriate, in the statistical models described below.

2.3. IBI development

Given that there is no single way to quantify anthropogenic impacts to ecological systems, and
that we expect the biotic community to respond differently to different anthropogenic stressors,
rather than develop a single IBI for each ecological system, we developed separate IBIs for each
major taxonomic group (e.g., vascular plants, macroinvertebrates) and stressor metric in each
ecological system. The development of separate IBIs for each taxonomic group reflects a practical
concern over the comparative costs and benefits of collecting and identifying different taxa. Having
separate IBIs for different taxonomic groups and stressor metrics also affords us great flexibility in
using the observed biotic condition to indicate the nature of the stressor(s) affecting the system; in
other words, determining which stressor is affecting which taxa. Given the number of IBIs we
developed, it is not practical to present specific details on the development of each IBI. Instead, here
we present the basic analytical method common to the development of all the IBIs and illustrate the
approach with a single example.

Step 1. Taxonomic data summary



The first step involved summarizing the species abundance data at each site. For each site, we
created counts of each taxon's abundance at each taxonomic level, including Species, Genus, Family,
Order, Class and Phylum. This means that an individual in a sample identified to Species was
counted again at the Genus level and, depending on the taxonomic group, the Family, Order, Class
and Phylum levels as well. If an individual was only identified to Order, then it was only counted at
the Order or higher level. We treated the abundance of each taxon at each taxonomic level as a
separate dependent variable in the regression models below, and treated abundance as a Binomial
response with a trial size equal to the total specimen count and/or as an unbounded Poisson
response (with an offset to account for sampling effort), as appropriate. As one of several measures
to safeguard against model overfitting, given the generally large number of taxa relative to the
number of sites, we dropped all taxa that were observed at fewer than 10 sites.

Step 2. Regression

The second step was to fit individual responses for each taxon. Specifically, we modeled the
relationship between each taxon (dependent variable) and each stressor metric (independent
variable) with two functional forms and eight error models. The three-parameter logistic function
(Equation 1) allowed for threshold responses of taxa to the gradient (note, the third parameter
allows the upper asymptote to exceed one) while the constrained quadratic exponential (Equation 2)
allowed for Gaussian and exponential responses to the gradient.
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where 5, = the abundance of a taxon at the i site, x; = the value of the stressor metric at the i" site,
error; = the error associated with the prediction at the i" site, and 4,4, and ¢ are parameters to be
estimated. Note, in Equation 2 we constrained ¢ to always be negative to prevent U-shaped
distributions (i.e., where abudance peaks at low and high levels of the metric and is lowest in the
middle), which we deemed ecologically implausible. Depending on the values of the parameters a, &,
and ¢, these two functional forms can take on a wide variety of shapes, including monotonically
increasing or decreasing, unimodal and sigmoidal curves, that represent plausible alternatives for
how species' might respond to anthropogenic stressor gradients.

We modeled the error associated with unbounded count data with the Poisson and Negative
Binomial distributions and for proportional response data (i.e., when the count observed was out of
maximum possible count given by the sampling design) we used the Binomial and Beta-Binomial
distributions along with the Poisson and Negative Binomial distributions. We surmised that the
latter two distributions were suitable for the proportional response data because the taxa tallies
remained small relative to the trial size (maximum count). In addition, we included zero-inflated
versions (Zuur et al 2009) of each of these distributions. We included all these models to make sure
that we had an error model in the mix that approximated the true error distribution for each taxon.
The zero-inflated models added a parameter to each model that allowed zeros to be modeled
separately, helping to model taxa that occur infrequently and consequently have more zeros than
otherwise expected by the distributions. With four to eight suitable error models and two functional



forms, we had 8-16 alternative models for each taxon. However, we dropped any model from
turther consideration if any of the following conditions were met: 1) the model failed to fit; 2) the
delta AIC of the model was greater than 10; or 3) the fit predicted negative abundance (unrealistic)
or abundance that was more than twice the maximum observed in the training data (these were
often fits that behaved strangely at extreme values of the independent variable). For all retained
models, we used AIC model weights to estimate the relative quality of each of the models based on
how many parameters they had and how well they fit the data (Burnham and Anderson 2002). Note,
we did not average these models at this step, but left that for the next step associated with statistical
calibration, as described below.

Lastly, the Binomial and Beta-Binomial models include a parameter for trial size and thus
instrinsically provide a means to account for varying sampling effort among sites, where the effort is
equal to the total number of specimens counted. For example, in the wadable stream surveys, some
sites were surveyed multiple times. We combined the counts across surveys and adjusted the trial
size accordingly to account for the increased sampling effort. The Poisson and Negative Binomial
models, on the other hand, do not contain a built-in mechanism to account for varying sampling
effort. Therefore, we included an offset term in the model equal to the sampling effort so that the
predicted abundance of a taxon was equal to the expected count per unit of sampling effort. For
example, the macroinvertebrate pitfall samples in forested wetlands produced unbounded counts
(suitable for Poisson and Negative Binomial error models), but the number of effective pitfalls
varied among sites due to varying degrees of flooding during the sampling period. We included the
number of unflooded pitfalls at a site as an offset in the model.

Step 3: Statistical calibration

The third step involved the procedure known as statistical calibration (Jongman et al. 1995).
Calibration involves using the estimated parameters (4, b, and ¢) from the regression in step 2 and the
observed value of the dependent variable (y), and estimating the value of the independent variable
(x) -- essentially, regression in reverse. Specifically, we used the fitted models from step 2 to predict
the log-likelihood of different values of the stressor metric at each site based on the abundance of
taxa. The result is a log-likelihood curve that indicates the relative probability of the stressor metric
being any particular value given the observed abundance of the taxon at a particular site. We
generated log-likelihood curves for each site from the 8-16 different statistical models and then
averaged them based on the AIC weights to make a single log-likelihood curve for each site and
taxon.

As a second safegaurd against model overfitting, we performed steps 2 and 3 on 20 cross-
validation groups; in each group a different 5% of the sites was omitted and thus withheld from the
model fitting process in step 2. In step 3, the stressor metric value of each site was then predicted
for each taxon based on the models from which the site was omitted. In this manner, no site was
simultaneously used for both model fitting (in step 2) and model prediction (in step 3). Note, while
we used the 20-fold cross-validation procedure to build and evaluate IBI performance, the final IBI
for field application was constructed using the full dataset (i.e., without cross-validation).

Step 4: Taxa selection

The fourth step involved selecting the group of taxa that produce the most accurate predictions.
Specifically, we added together the log-likelihood curves of individual taxa from step 3 to make a



prediction for the site based on multiple taxa; the value of the stressor metric with the maximum
log-likelihood was the predicted metric value for the site. We compared the performance of two
different procedures for selecting taxa before selecting a preferred method.

Method 1.--In this method, we used a s#gpwise procedure to select the taxa, starting with the taxon
that, by itself, produced the most accurate stressor metric (cross-validated) prediction based on the
coefficient of concordance (Lin 1989, 2000) and then incrementally added the taxon that increased
the concordance correlation coefficient of the (cross-validated) prediction the most; i.e. the
conditional improvement in concordance. The concordance coefficient measures the agreement
between the observed value of the stressor metric and our predicted value; a perfect concordance
correlation of one occurs when the points fall on a perfect diagonal line with an intercept of zero
and slope of one. Note, while the final IBI for field application was constructed using the full dataset
(i.e., without cross-validation) for model fitting and calibration, the taxa were always selected based
on the cross-validation procedure to avoid the erroneous selection of taxa overfit to the dataset.
Unless otherwise noted, we report the cross-validated coefficient of concordance.

One of the challenges we faced was determining when to stop in the forward stepwise taxon
selection process. As a third hedge against model overfitting and as a means of determining how
many taxa to retain in the final IBI, we tested the significance of each taxon’s fit against pseudotaxa,
as follows. We created 1,000 pseudotaxa by permuting the data from the original taxa. For each
pseudotaxa, we performed the same model fitting (step 2) and calibration (step 3) as the real taxas.
Then during taxon selection (step 4), we compared each selected taxon’s improvement in fit (i.e.,
concordance correlation) to the improvement in fit garnered by each of the 1,000 pseudotaxa to
estimate the significance of the improvement in fit of each taxon. We used this significance test to
decide how many taxa to include in the final prediction set; we included all taxa in the stepwise
process up until the first taxon that didn’t produce a significant increase in prediction accuracy,
where significance was evaluated at both the 0.05 and 0.1 alpha levels. Lastly, for comparative
purposes, we also continued the stepwise selection process until the maximum concordance was
realized.

Method 2.--In this method, we used the marginal significance of each taxon based on the comparison
to the 1,000 pseudotaxa, as described above. Specifically, for each taxon we computed the (cross-
validated) coefficient of concordance and compared it to the distribution of concordances of the
pseudotaxa (i.e., the distribution of expected concordances by chance alone). We computed a p-
value for each taxon by determining the proportion of the pseudotaxa distribution of concordances
greater than or equal to the observed concordance for each taxon. We included all (marginally)
significant taxa in the IBI, where significance was evaluated at both the 0.05 and 0.1 alpha levels.
Note, in this method we simply included all taxa with significant marginal concordances; whereas in
the previous method we included taxa in a stepwise process based on their conditional improvement
in concordance.

A major challenge faced with either taxa selection method is determining which taxa to include
in the pool available for selection. Because we fit models to many different taxa (e.g., vascular plants
and macroinvertebrates) depending on the ecological system, and at multiple taxonomic levels, we
had many options. While our approach is amenable to the selection of any available taxa at any
taxonomic level, for practical reasons we opted to create a limited set of IBIs as follows. First, we
created separate IBIs for select combinations of stressor metrics and major taxonomic groups in
each ecological system (Tables 1-2), for a total of 132 different IBIs. Within each major taxonomic



group, we selected from taxa at all taxonomic levels from Species to Phylum. Thus, an individual
Species was available for selection as a unique Species and as member of its Genus, Family, Order
and Phylum, and it was possible for all five taxa to be selected in the final IBI. In addition, for
macroinvertebrates, we created separate IBIs for each unique sampling method (Table 2), but then
also created an overall macroinvertebreate IBI by selecting taxa from all available methods. Second,
we created a mechanism for combining any combination of the previous individual taxa IBIs into
composite multi-taxa IBIs for the corresponding stressor metrics and ecological system. In other
words, based on the preferred taxa selection method (see results), we first built IBIs for each
taxonomic group and stressor metric for each ecological system. Then, we combined the selected
taxa from each taxonomic group into a composite, multi-taxa IBI for each stressor metric and
ecological system. To illustrate this capacity, we created a composite IBI for the Index of Ecological
Integrity (IEI) metric in forested wetlands by adding together the log-likelihood curves of the
individual taxa that comprised the corresponding IBIs derived from vascular plants, bryophytes,
epiphytic macrolichens, diatoms and macroinvertebrates to make a prediction for the site; the value
of the stressor metric with the maximum log-likelihood was the predicted metric value for the site.
Note, this is not the same as conducting a stepwise selection of taxa across taxonomic groups, which
is an alternative but computationally more expensive process given the number of combinations of
taxonomic groups, stressor metrics and ecological systems. However, for comparative purposes, we
also conducted a full stepwise selection of taxa across all taxonomic groups to create an IBI for the
IEI metric in forested wetlands.

Step 5: Randomization testing

The fifth step and a final hedge against model overfitting involved repeating steps 1-4 on
randomly shuffled data to compute the concordance correlation coefficient expected by chance
alone. Specifically, we randomly shuffled the value of the stressor metric among sites and repeated
the entire modeling process to the point of calculating the concordance correlation, and did this 10
times to generate a permutation distribution of concordance correlations under the null hypothesis
of no real relationship between the biota and the stressor metric. We interpreted a difference
between the orginal concordance and the range of permuted concordances as evidence of real
predictive ability of the IBI. Ultimately, we dropped all IBIs with observed concordances below the
predicted maximum for randomly shuffled data.

Step 6: Pseundo-validation

Lastly, one of the insurmountable challanges facing the development of any IBI is the problem
of circularity in the specification of both a stressor metric and one or more biotic metrics, leading to
the inability to validate the IBI. Briefly, to develop an IBI we must first create a stressor metric so as
to determine which species are sensitive to that measure of stress. But how can we create a stressor
metric unless we already know that species are in fact sensitive to it, since if species are not sensitive
to the metric we can hardly call it a stressor? In other words, a stressor metric is a pre-requisite to
the development of an IBI, but an IBI is pre-requisite to the development of a biologically relevant
stressor metric. This dilemma confronts all IBIs and is heretofore been given little attention in the
IBI literature. A consequence of this dilemma is that it is not possible to truly validate any IBI, and
our IBI approach is no exception. Indeed, our IBIs are constructed to maximally predict our
constructed stressor metrics. Consequently, a strong concordance between our IBI and our stressor
metric simply means that the biotic community exhibits structure in relation to the metric; it does
not validate the IBI or the stressor metric. Given this dilema, we are forced to assume that our



stressor metrics, as quantified, do in fact represent ecologically important stressor gradients, and to
assess the merit of our stressor metrics, we are constrained to compare them to other independent
published biotic metrics or IBIs, despite the circularity inherent in each of them. Our hope is that
consensus among many independent biotic metrics and/or IBIs provides some assurance that our
IBIs and stressor metrics are meaningful.

In an effort to pseudo-validate our IBIs and stressor metrics, we compared them to a variety of
independently-derived, published biotic descriptors or metrics (hereafter referred to as "p-metrics")
that are currently in use by a variety of state agencies (including Massachusetts) to assess the
condition of rivers and streams. These p-metrics are typically combined to form multimetric IBIs,
but the procedures for doing so involve explicit comparison between reference and stressed sites
which is not consistent with our continuous perspective on the stressor-response relationship. Thus,
we used the raw p-metrics themselves as the basis for comparison to our IBIs and stressor metrics.
Specifically, we used data on aquatic macroinvertebrates from the wadable streams surveys to
calculate 31 p-metrics (Appendix C). Recall that some sites were surveyed more than once. For our
purposes, we calculated the p-metric for each survey separately and then averaged the scores for
each site. In all cases, when numbers of taxa were part of a p-metric, we calculated for each survey
the minimum number of distinct taxa guaranteed to be present based on the macroinvertebrates
identified in that survey. Given that individuals were identified to different taxonomic levels, we
counted every taxa present in a survey as long as there were no other taxa identified in the survey
within the same taxonomic group. For example, if a survey at a site contained Hydropsychidae
(Family) and Hydropsyche morose (a Species within the same Family) then Hydropsychidae was not
included in the taxa count for that site because that Family was already represented in that survey.

We used two statistical methods to evaluate how the p-metrics related to each other and our
IBIs and stressor metrics. First, we calculated simple (Pearson's product-moment) pairwise
correlations among the p-metrics and our stressor metrics. For our IBIs, we calculated the
correlation with each of the p-metrics. For each p-metric, we calculated the mean absolute
correlation with each of the other p-metrics, the correlation with our IEI stressor metric, and the
maximum correlation with any of our individual stressor metrics. Second, given the high correlations
among the p-metrics, we conducted a principal components analysis (PCA) on the p-metrics and
generated an ordination plot based on the first two principal component axes to show how the p-
metrics related to each other and our stressor metrics.

3. Results
3.1 Taxonomic summary

The number of taxa within the major taxonomic groups in each ecological system varied widely
(Table 2). The high taxonomic diversity in forested wetlands (842 taxa) was dominated by vascular
plants (379 taxa), followed by macroinvertebrates (161 taxa), diatoms (157 taxa), bryophytes (113
taxa) and epiphytic lichens (32 taxa). Taxonomic diversity in salt marshes was much less overall (137
taxa) and was richer in macroinvertebrates (106 taxa) than vascular plants (31 taxa). Taxonomic
diversity in wadable streams was intermediate (321 taxa), but it was comprised entirely of
macroinvertebrates, making it exceptionally diverse in that taxonomic group.

3.2 Regression (model fitting)



All of the alternative statistical models (8-16 variations, depending on taxa) received some AIC
model weight for at least some taxa and, in general, were very consistent in the fitted relationships,
suggesting that the results were somewhat robust to the choice of statistical model. Nevertheless, the
models receiving the greatest weights varied considerably among taxa, suggesting the importance of
considering a wide range of alternative models. For example, in forested wetlands the relationship
between Urticales (Order of vascular plants) abundance and IEI was best described by the
constrained quadratic exponential function with beta-binomial errors (cg.3p.bb), representing 58%
of the model weight, followed equally by the constrained quadratic exponential function with zero-
inflated binomial errors (cg.3p.ze) and the logistic function with zero-inflated binomial errors
(Ig.3p.ze), each representing an additional 21% of the model weight (Fig. 2a). All three models
indicated higher abundance at lower values of IEI (i.e., sites with low ecological integrity). In
contrast, the relationship between Trientalis borealis (starflower) abundance and IEI was best
described by the constrained quadratic exponential function with binomial errors (cg.3p.bi) and
Poisson errors (cg.3p.po), representing 33% and 21% of the model weight, respectively, followed
equally by the constrained quadratic exponential function with zero-inflated beta-binomial errors
(cg.3p.zb) and the logistic function with zero-inflated beta-binomial erros (Ig.3p.zb), each
representing an additional 12% of the model weight (Fig. 2b). All nine models receiving some
weight indicated higher abundance of the taxon at higher values of IEIL. Overall, most taxa had at
least three different models receiving some weight, and in many cases most of the model variants
received at least some weight.

3.3 Calibration and taxon selection

Based on the fitted regression models, we were able to compute the log-likelihood of any value
of each stressor metric based on the abundance of each taxon using the statistical calibration
procedure. To illustrate this approach, we generated log-likelihood curves for a range of abundances
for each vascular plant taxon for the IEI metric in forested wetlands. For example, for the Urticales
taxon the log-likelhood curve increased with increasing IEI when abundance was 0; i.e., if Urticales
was absent from a site there was an increasing log-likelihood of an increasing value of IEI, resulting
in a maximum likelihood estimate of 1.0 for IEI (Fig. 3a). Conversely, the presence of Urticales on
a site indicated that IEI was likely to be low, and the greater the abundance the more likely it was
that the plot had a lower IEI value. If the abundance was 1, the maximum likelihood estimate of IEI
was approximately 0.4; however, as abundance increased the maximum likelihood of IEI went to 0.
Note, in this case, the difference in log-likelihoods between any particular values of IEI was <2.5, so
the strength of evidence in favor of any single value of IEI was relatively weak. In contrast, the
absence of Trientalis borealis suggested a relatively low value of IEI (although the strength of
evidence was weak), and as abundance increased there was an increasingly strong suggestion of a
relatively high value of IEI, peaking at 1.0 (Fig. 3b). In this case, the difference in log-likelithoods
between any particular values of IEI was quite large, so the strength of evidence in favor of any
single value of IEI was relatively strong.

Ultimately, we combined the log-likelihood calibration curves from several taxa (see below) to
make a maximum likelihood prediction of the stressor metric value at each site. For example, based
on the observed abundances of 44 different vascular plant species at site 771_T053, we added up the
log-likelihood curves to produce an overall log-likelihood curve for the site (Fig. 4a). In this case,
the maximum likelihood prediction of IEI (0.57) was very close to the observed value of IEI (0.55).
Similarly, the maximum likelihood prediction of IEI at site M162-A010 was relatively close to the
observed value (1.0 versus 0.88, respectively)(Fig. 4b). Across all sites we used the coefficient of



concordance between the observed and predicted values of the stressor metric as a measure of IBI
performance. A high concordance indicated that we were able to effectively predict the value of the
stressor metric based on the taxa abundance data. For example, the maximum concordance for
vascular plants and IEI was 0.79 (Fig. 5).

Not surprisingly, IBI performance, as judged by the (cross-validated) coefficient of concordance,
varied depending on the method of taxa selection. In general, selection of taxa based on their
conditional significance (in forward stepwise selection) performed better than selecting taxa based
on their marginal significance. For example, the vascular plant IBI for the IEI metric in forested
wetlands achieved a concordance of approximately 0.62 when it included all taxa that had a marginal
significance (based on comparison to pseudotaxa) of either 0.05 or 0.1 (Table 3). The concordance
increased to 0.76 and 0.79 based on the forward stepwise procedure that incrementally added taxa
based on their conditional significance (i.e., the improvement in concordance compared to the
expected improvement based on chance alone) at an alpha of 0.05 and 0.1, respectively. Note, in this
case the maximum concordance possible from the stepwise procedure (0.79) was the same as
stopping selection of taxa at an alpha of 0.1. We anticipated that the stepwise procedure for taxa
selection would outperform the marginal selection process in terms of absolute concordance
because of overfitting, and thus we speculated that the increased concordance with the stepwise
procedure might actually be spurious. Consequently, we compared the observed concordances to
the expected distribution of concordances from each method applied to randomized data, and
interpreted the difference between observed concordance and the maximum concordance from
randomized data as a more robust measure of IBI performance. In general, the increase in absolute
concordance from the stepwise procedure more than offset the expected increase in concordance
due to chance alone (Table 3), and thus we concluded that the stepwise procedure based on an
alpha cutoff of 0.1 was the "best" method for generating the IBIs. Moreover, across the vatious
IBIs, we determined that the maximum concordance to be expected by chance alone (i.e., from
randomized data) was roughly 0.5, although it was generally much less. Therefore, we conservatively
concluded that any IBI with an observed concordance of <0.5 was potentially spurious or too weak
to be considered meaningful.

The complete stepwise process of taxa selection for the vascular plants IBI for the IEI metric in
forested wetlands is shown in figure 6a and reveals three important points. First, concordance
increased as taxa were added to the IBI, reached a peak, and then declined as more and more taxa
were added to the IBI. The decrease in concordance beyond a threshold number of taxa (i.c., at
maximum concordance) illustrates that adding uninformative species is detrimental to the prediction
and that adding more and more species leads to overfitting. In particular, as more and more species
are added to the IBI, it would seem intuitive that it should perform better and better, but in fact it
becomes too well fit to the training data and as a result performs increasingly poorly when applied to
the hold-out cross-validation data. Second, concordance increased rapidly at first as more species
were added to the IBI, but then slowed until the maximum concordance was reached. The
"shoulder" of this curve reveals the ideal number of taxa that achieves both high concordance and
parsimony in the number of taxa in the IBI (Fig. 6b). While there are undoubtedly other methods
of identifying the shoulder, we found that stopping the selection process at a conditional alpha of
0.1 achieved the goal of high concordance, parsimony in the number of taxa, and at least a partial
guarantee that the final concordance was not spurious. Lastly, the final IBI for vascular plants and
the IEI metric contained 25 Species, 11 Genera, 5 Families and 3 Orders, indicating the importance
of considering taxa at multiple taxonomic levels.



The performance of each IBI varied markedly across taxonomic groups, stressor metrics and
ecological systems (see Appendix D for the complete set of results). For example, concordance for
the IEI metric in forested wetlands varied across major taxonomic groups from 0.57 (epiphytic
macrolichens) to 0.79 (vascular plants), indicating that some taxonomic groups were better
indicators of this composite stressor gradient than others (Table 4). However, some of the
improvement in performance was explainable by increased taxonomic richness; specifically, the
greater the taxonomic richness, the more likely it was to find a better performing combination of
taxa (Fig. 7). Similarly, concordance for a single taxonomic group varied across stressor metrics
within an ecological system and indicated varying sensitivity to different stressor gradients. For
example, concordance for the vascular plant IBIs in forested wetlands varied across stressor metrics
from 0.53 (Microclimate alterations) to 0.79 (IEI)(Table 5).

3.4 Multi-taxa IBIs

The multi-taxa IBI we constructed for forested wetlands based on merging the separate
taxonomic group IBIs into a single composite IBI had a (cross-validated) concordance of 0.81,
which was only marginally improved over the single best taxonomic group IBI concordance of 0.79
for vascular plants (Table 4). However, the improvement over chance was considerably greater for
the multi-taxa IBI (0.71 versus 0.48), indicating that it was stastically more robust. Not surprisingly,
the multi-taxa IBI based on the full stepwise selection of taxa across all taxonomic groups produced
a much higher concordance (0.89; Table 4), but it came at the cost of a much higher expected
concordance by chance alone (0.23 difference between observed and maximum random
concordance), making it much less statistically reliable than the merged multi-taxa IBI.
Consequently, for the final IBIs for field application, we opted to use the merge procedure for
combining the separate taxonomic group IBIs into composite multi-taxa IBIs. Results of the multi-
taxa IBIs for all stressor metrics based on both the merge procedure and the full stepwise procedure
are included in Appendix D.

3.5 Pseudo-validation

All but one of the IBIs we created for macroinvertebrates in wadable streams had relatively high
correlation with at least some of the published biotic metrics (p-metrics), and 15 of the 31 p-metrics
had correlations >0.5 with one or more of our IBIs (Table 6). The three p-metrics that were most
correlated to our IBIs, on average, were the Average Tolerance Value, EPT Taxa Richness, and %
Sensitive Individuals. The watershed habitat loss IBI and the Average Tolerance Value metric had a
correlation of 0.83, the highest correlation between any of our IBlIs and the p-metrics.

The mean absolute correlation between our IEI stressor metric and the p-metrics was 0.35,
although it ranged as high as 0.63, and was comparable to the mean absolute correlation among p-
metrics of 0.37 (Table 7). The p-metrics that were most strongly correlated with IEI (>0.50) were
% Sensitive Individuals, EPT Taxa Richness, Average Tolerance Value, Beck's Index,
Ephemeroptera taxa richness, % Sensitive EPT Individuals, non-Chironomidae and Oligochaeta
taxa richness, and Hilsenhoff's Biotic Index. P-metrics with high correlation to IEI also tended to
have high average correlations with the other p-metrics, and p-metrics with low correlations to IEI
also tended to have low correlations with other p-metrics. The strongest correlations between p-
metrics and our stressor metrics were with IEI and Watershed Imperviousness; 25 of 31 p-metrics
had their strongest correlation with our Watershed Imperviousness metric.



The first two axes of the PCA explained 41 and 16% of the variation (collectively 57%); the
remaining axes each explained less than 9% of the variation. With few exceptions, p-metrics that
indicate high habitat quality fell out positively on the first PCA axis and were correlated strongly
with our two connectedness metrics and the IEI metric, while the p-metrics that indicate degraded
habitat had negative scores on the first axis and were correlated with rest of our stressor metrics
(Fig. 8). The two p-metrics that weighed most heavily on the negative end of the second axis
(n.diptera and pct.chiromidae) both indicate poor-quality habitat while the three that scored highest
on this axis all indicate good habitat quality (ept.chiro.stand, ept.chiro.ratio, and
ept.chiro.abun.stand), and all five of these biotic metrics use Chironomidae as part of their
calculation. However, there were other p-metrics not based on Chironomidae (n.gc, n.taxa, and
pct.ept.abund) that were weakly associated with this axis. The two stressor metrics most strongly
associated with the second axes were Aquatic Connectedness and Watershed Dam Intensity; both of
these metrics reflect the disruption of aquatic connectivity.

4. Discussion
4.1 IBI performance

Of the 164 separate IBIs we created for single taxonomic groups (and sampling methods) across
stressor metrics and ecological systems (Appendix D), 57 were deemed statistically and ecologically
reliable based on having a (cross-validated) coefficient of concordance =0.5. This finding is
somewhat remarkable given the inherently noisy relationships between taxa abundances and
measured landscape-level stressor gradients based on GIS data. Moreover, we suspect that larger
sample sizes in coastal salt marshes and forested wetlands would have allowed us to create many
additional reliable IBIs. Of particular interest was the performance of the IBIs based on the
composite Index of Ecological Integrity (IEI) across taxonomic groups and ecological systems. Due
to its integrative nature, this multi-metric stressor index is being used by state and federal agencies
and other conservation organizations in a wide variety of applications ranging from land aquistion
prioritization to environmental impact assessment (UMassCAPS 2013), and thus it is useful to know
how well it also performs as the basis for an IBI. The IBIs based on IEI had (cross-validated)
coefficients of concordance that ranged from 0.4 for vascular plants in salt marshes to 0.79 for
vascular plants in forested wetlands (Appendix D). In forested wetlands, IEI was the single best
metric (or second best for bryophytes) among the 15 evaluated for all five major taxonomic groups,
with coefficients of concordance ranging from 0.57 to 0.79. In salt marshes, IEI was the first or
second best metric for the two major taxonomic groups sampled (macroinvertebrates and vascular
plants, respectively), but with coefficients of concordance =0.53. And in wadable streams, IEI was
the third best metric for the one taxonomic group sampled (macroinvertebrates), but with a
relatively high coefficient of concordance of 0.78.

The IBIs we created for wadable stream macroinvertebrates performed exceptionally well. Only
one of the nine IBIs we created was deemed unreliable (Watershed Dam Intensity), with a (cross-
validated) coefficient of concordance of 0.42; the remaining eight IBIs had coefficients of
concordance ranging from 0.59 to as high as 0.84 (Watershed Imperviousness). The strong
performance of these IBIs was not too surprising given the plethora of published IBIs for stream
macroinvetebrates and our relatively large sample size (n=490) and taxonomic richness (294 taxa),
but it nonetheless provided strong confirmation of our methodology for creating IBIs. In addition,
it was the one opportunity we had to pseudo-validate our IBIs. As noted previously, it is not
possible to truly validate any IBI. However, we were able to pseudo-validate our IBIs for



macroinvertebrates in wadable streams by comparing them to 31 independently developed and
published biotic metrics (Appendix C). Overall, the published biotic metrics corroborated the
validity of our stressor metrics and the IBIs we derived from them. This was evident in both the
correlations in Tables 6 and 7 and the alignhment of the stressor metrics with the first principal
component in the PCA (Fig. 8). The one stressor metric that did not align strongly with the first
principal component was Watershed Dam Intensity (damint); however, it was skewed by a few
extreme values; sites in which small watersheds contain relatively large dams. The weighting of each
biotic metric on the first principal component almost perfectly indicates whether the metric is an
indicator of good or bad habitat quality, and suggests that the first principal component is reflecting
habitat quality. That our IEI and individual stressor metrics also weighed strongly on this principal
component is a good indication that our metrics correspond with habitat quality as measured by the
suite of independently-derived biotic metrics.

The IBIs we created for forested wetlands also performed quite well, with (cross-validated)
coefficients of concordance across stressor metrics as high as 0.79. Of the 120 IBIs across
taxonomic groups (and sampling methods) and stressor metrics in forested wetlands, 48 were
deemed reliable with coefficients of concordance =0.5. Of particular interest was the finding that the
strongest performing taxa across stressor metrics was vascular plants, followed closely by
macroinvertebrates and diatoms (Table 4). Given the logistical ease of sampling and identifying
vascular plants in the field compared to the other taxa, this has major implications for the practical
application of bioassements in forested wetlands. The use of IBIs based on vascular plants does
require a skilled botonist, but the work can be completed in the field without additional costs
associated with laboratory analysis. Diatoms can be easily sampled in the field by minimally trained
technicians, but the samples must be sent to a certified lab for identification at additional cost. By
comparison, macroinvertebrates are difficult to sample in the field, generally requiring the use of
traps and/or collection devices and multiple visits to a site, and also require having specimens
identified by highly skilled taxonomists, often at considerable cost.

The IBIs we created for coastal salt marshes did not perform as well as in the other ecological
systems; of the 35 IBIs across taxonomic groups (and sampling methods) and stressor metrics, only
four were deemed reliable with (cross-validated) coefficient of concordances 0.5 (Appendix D).
The Wetland Buffer Insults metric for macroinvertebrates had the highest concordance at 0.57,
followed by the IEI metric, Similarity and Connectedness metrics for macroinvertebrates at 0.53,
0.52 and 0.50, respectively. We suspect that the poor performance was partially due to the relatively
low sample sizes, but it may also reflect the complex dynamic nature of tidally influenced systems
that make it more difficult to measure anthropogenic stressors.

It is worth noting that in both forested wetlands and salt marshes any single macroinvertebrate
sampling method alone did not produce many usable IBIs, but the combined methods did. For
example, in forested wetlands the (cross-validated) concordance for the IBI derived for the IEI
metric was 0.58 for pitfall traps, 0.45 for emergence traps, and 0.36 for earthworms, but it increased
to 0.71 for the combined methods, and this was despite having fewer sites (n=171) and fewer taxa
(161, due to fewer sites) to select from in the combined methods than in just the pitfall traps (206
sites and 174 taxa). Among the three macroinvertebrate sampling methods, pitfall traps were
considerably more productive in terms of taxonomic richness than both emergence traps and
earthworm sampling, and thus not surprisingly it was the only method that by itself produced usable
IBIs.



4.2 IBI methodology

In this study, we developed a new and powerful method for constructing and evaluating IBIs
and demonstrated its application in three different ecological systems using a wide variety of
taxonomic groups and stressor metrics. The most notable advantages of this method are that it is
fully empirically-based and that there is no need to designate reference sites or 'minimally' disturbed
sites. The empirical basis to our method means that there is no a priori subjectivity or expert opinion
required to construct the IBI, which is a common limitation of most other methods. In our method,
each taxon is given an equal opportunity to be selected for the IBI and its final selection is based
entirely on its statistical performance in the context of the other taxa, not on an a priori
hypothesized relationship to the stressor. In addition, most other methods require the designation of
reference sites that have been 'minimally' disturbed (Stoddard et al. 2006). However, in
contemporary landscapes it is impossible to find true (i.e., pristine) reference sites, and the
designation of 'minimally' distutbed requires the specification of an arbitrary threshold of what
constitutes 'minimal’. In reality, stressors operate as gradients, whereby sites fall out on a continuum
of stressor levels. In our approach, it is not necessary, or even considered meaningful, to group sites
into reference versus stressed. Rather, the stressor-biotic response relationship is treated as a
continuous function.

A major concern of an empirical approach such as ours is the potential for model overfitting. In
particular, given a large enough variety and number of taxa, it is relatively easy to construct a
statistical model that performs exceptionally well on the dataset itself, but then fails to provide any
real predictive accuracy when applied to new data. Consequently, we took several steps to safeguard
against overfitting. First, we filtered the taxonomic data to eliminate taxa that occurred at <10sites,
because we deemed they were insufficiently sampled and thus did not have a reliable ecological
signal in the dataset. Second, we used a 20-fold cross-validation procedure during the model fitting
and calibration phases, and thus the stepwise taxa selection process involved selecting taxa that
offered the greatest increase in the cross-validated coefficient of concordance. This helped to ensure
that species were selected that offered honest predictive value. Third, to ensure that the selected taxa
did not have spurious predictive value, we evaluated each taxon during the stepwise selection
process against pseudotaxa (i.e., randomly permuted species data) and stopped the selection process
when the conditional improvement in concordance was insignificant (i.e., alpha >0.1). Lastly, as a
final hedge against overfitting, we compared the observed coefficient of concordance of the final
IBI against the expected range of concordances for randomly permuted data, and retained only IBIs
with concordances greater than the maximum concordance expected for randomized data. In
combination, we believe that these safeguards ensure that the final IBIs are statistically robust.

In addition to the overfitting safeguards above, our modeling approach has a number of
distinctive features that make it an extremely flexible method for developing IBIs. First, we
confronted the biological data with up to 16 alternative statistical models to account for model
uncertainty. The constrained quadratic exponential and three-parameter logistic functions can fit a
wide variety of functional forms that we deemed ecologically plausible, and the suite of error models
we used (binomial, bet-binomial, Poisson, negative binomial, and the zero-inflated versions of these)
are appropriate for the most common sampling designs used to inventory biota. Of course, the suite
of statistical models can easily be expanded to include other forms as appropriate. Our evidence
suggests that no one model form is sufficient for handling the variety of ecological relationships to
be expected among diverse taxa and stressor gradients. Consequently, we used a model averaging



approach based on model AIC weights to accommodate model uncertainty (Burnham and Anderson
2002).

Second, our modeling approach can be extended to include additional independent covariates to
account for natural environmental variation among sites. Variation from natural environmental
differences or fluctations over time can be a source of greater variation in the biotic community than
that due to anthropogenic stress, causing unpredictable index responses (Wilcox et al. 2002).
However, we reasoned that natural environmental variation among sites was a source of "noise" in
the data rather than being confounded with the anthropogenic stressor gradient, and thus would act
primarily to weaken the stressor-response signal but not lead to spurious results. Nevertheless,
during preliminary analyses, in addition to the simple regression models containing a single
independent variable (i.e., stressor metric), we also fit models with an additional independent
covariate representing an ecological settings variable (e.g., spring hydroperiod in forested wetlands,
calcium content in wadable streams). However, we later decided to omit these results due to
concerns over model overfitting. In particular, given the form of the statistical models, each
additional covariate involved estimating a minimum of three additional model parameters.
Consequently, our taxon sufficiency filter of being present at =10 sites had to be doubled, which
dramatically reduced the number of taxa available for constructing the IBIs given our sample sizes.
We deemed the loss of taxonomic richness more important than the increase in model complexity.
However, the modeling approach lends itself well to the inclusion of such environmental covariates
so long as the sample size and species abundance data are sufficient to support it.

Third, our modeling approach can be used to develop IBIs in any ecological system with any
single or mixed taxa at any taxonomic level. A strength of our method is its complete flexibility to
work with any taxonomic data at any level in any ecological system. Of course, the greater the
number and diversity of taxa, the greater the likelihood is of constructing a statistically and
ecologically robust IBI (Fig. 7). Using our method it is possible to consider the tradeoffs between
increased predictive power of the IBI (i.e., greater coefficient of concordance) and increased cost
(logistical and financial) associated with sampling and identifying certain taxonomic groups. Another
strength of our method is the ability to use abundance data at any taxonomic level. In the IBIs we
created, higher taxonomic levels, in particular, Family and Order, were frequently selected for the
final IBI. Higher-level taxonomic identification can often be done by minimally trained technicians
and thus is generally much less costly than identifying specimens to the Species level.

4.3 IBI application: Continuous Aquatic Life Use standards (CALU)

Several states in the U.S., including Massachusetts, have implemented wetland and aquatic
monitoring and assessment programs using a hierarchical approach as recommended by the U.S.
Environmental Protection Agency (USEPA 2003 and 2006). This approach incorporates a three-
tiered approach for assessing ecosystem condition: Level 1 is a landscape assessment that commonly
incorporates GIS-based measures; Level 2 is a site-level assessment that commonly incorporates a
rapid field assessment and relies on the use of simple field indicators; and Level 3 is an intensive site
-level assessment that incorporates quantitative measures of condition and often relies on the use of
IBIs. The broad suite of anthropogenic stressor metrics that we developed and evaluated in this
study function as a Level 1 assessment and the IBIs we created function as a Level 3 assessment. We
propose to use the stressor metrics and the corresponding IBIs together in a novel manner as
described next.



Pursuant to the U.S. Clean Water Act of 1972 (33 U.S.C. 1251 et seq.) the EPA gives States and
Territories the primary responsibility for implementing programs to protect and restore water
quality, including monitoring and assessing the nation’s waters (including wetlands) and reporting on
their quality. EPA is encouraging states to describe in their water monitoring strategy their current
accomplishments and strategy for wetland monitoring and assessment and to apply that strategy to
help achieve the goal of increasing the quality and quantity of the Nation’s wetlands. For the
purpose of water quality assessment, the Biological Condition Gradient (BCG) concept was
developed to provide a conceptual basis for understanding biological condition and developing
numeric criteria for aquatic life use (USEPA 2005, Davies and Jackson 2006). The BCG is a
comprehensive model that describes the relationship between biological condition and stressors in
the surrounding environment along a disturbance gradient. EPA has suggested that states consider
designating Tiers corresponding to various levels of biological condition based on the BCG model.
This is referred to as the Tiered Aquatic Life Use (TALU) approach. Many IBIs are developed using
reference sites and impacted sites but not the full disturbance gradient. Tiers are essentially a means
for dealing with uncertainty when IBIs are not developed as dose-dependent relationships between
biological condition and stressors. When IBIs are developed to correspond to a continuous stressor
gradient (consistent with the BCG concept), as in our study, then it is no longer necessary to have
tiered criteria tied to specific classes.

We propose an approach for the assessment of wetland and water quality condition as it pertains
to aquatic life use that is consistent with TALU but eliminates the need to develop tiers. We call this
approach CALU for Continuous Aquatic Life Use standards. Because both the stressor metrics and
the corresponding IBIs yield scores that are continuous throughout their range and on the same
scale, it is not necessary to create tiers or classes for wetlands and water bodies in order to have
meaningful criteria for aquatic life use. The CALU approach is based on the relationship between
the stressor metric (representing the constraints on biological condition due to the nature of the
surrounding landscape) and the corresponding IBI, which represents the actual condition of a site
based on biological assessments conducted in the field. The CALU relationship is expressed
graphically by the concordance between the observed stressor metric and the predicted metric
(which is the IBI)(Fig. 5). By defining an acceptable range of variability around this relationship it is
possible to assess biological condition (a range of acceptable IBI scores) based on a site’s particular
landscape context (stressor metric score). For example, in figure 5 we depicted an arbitrary 80-
percentile range of variability about the expected IBI value. Specifically, across sites we computed
the deviation in the predicted value of the stressor metric, based on the observed biological
condition (or y-axis score, which is the IBI score), from the observed value of the stressor metric (x-
axis score), which is also the expected value of the IBI (the diagonal line). Next, we computed the
10™ and 90" percentiles of these deviations and plotted them as the range of acceptable variation in
IBI scores (dotted lines).

The CALU approach provides a rigorous and quantitative system for assessing condition for
aquatic life use that avoids the undesirable effect of cutting up a continuous environmental gradient
into discrete classes or tiers. A site’s biological condition (based on the IBI) relative to its landscape
context (based on the stressor metric) can be assessed by noting its position relative to the diagonal
on the concordance plot (Fig. 5). Sites between the dotted lines (i.e., within the acceptable natural
range of variability) would be considered to meet standards. Sites that are above the highest dotted
line (90™ percentile) would exceed expectations. Those falling below the lowest dotted line (10™
percentile) would be flagged as potentially degraded. Improvement at a site over time could be
measured by documenting upward movement of a site relative to the solid diagonal line. In addition,



sites could be flagged as potentially degraded based on a single IBI, for example sites falling below
the 10" percential line in figure 5, or sites could be flagged as potentially degraded only if they fall
below the 10" percential across say three or more major taxonomic groups. For example, in figure 5
sites were assigned a point size and gray-scale intensity based on the proportion of major taxonomic
group IBIs in which they fell below the acceptable natural range of variation.

The CALU approach also provides a method for identifying high-value sites that could be
targeted for increased protection [Note: all sites are targeted for anti-degradation]. For example, sites
that have an IEI score between say 0.6 and 1.0 and a corresponding IBI score above the acceptable
natural range of variabilty have both a landscape context conducive to the maintenance of high
ecological integrity and a current condition that is exemplary. The designation of "exemplary" could
be assigned to sites based solely on the IBI score associated with the composite IEI metric for a
single taxonomic group, as in figure 5. Alternatively, the designation could be based on
consideration of "exemplary" scores across major taxonomic groups. For example, sites could be
deemed exemplary if, and only if, they have scores above the acceptable natural range of variability
for at least three of the major taxonomic groups. Certain standards could apply to these high-valued
sites, such as no discharge or increased buffer zone protection. This standard would be applicable to
maintaining and improving the designated use of “Fish, Other Aquatic Life and Wildlife.”

Lastly, the CALU approach also provides a mechanism for evaluating mitigation success. There
is a critical need to establish measures of success for mitigation areas (i.e. replacement or restoration)
and to provide monitoring and follow up to ensure success. For example, where either on-site or
off-site wetland replication or restoration is proposed, an evaluation of the landscape context (e.g.,
IEI score) for the mitigation site could be used to establish a target for aquatic life use (IBI score)
after a reasonable number of years. Annual or bi-annual monitoring of replicated or restored
wetlands using the appropriate IBIs could be used to track progress toward meeting the CALU
target -- an IBI score within the acceptable natural range of variation for the site's stressor metric
score. In addition, where a permit is issued for work in or near a site under an assumption of no
adverse impacts (e.g., groundwater withdrawal permits), monitoring using the appropriate IBIs could
be used to determine whether those activities actually result in degradation of the biological integrity
of the site -- moving the IBI score below the acceptable natural range of variation for the site's
stressor metric score.

5. Conclusions

We developed and demonstrated a method for developing IBIs that does not rely on expert
opinion or hypothesized relationships between anthropogenic stressors and biotic condition, but
rather derives the stressor-response relationship empirically from the patterns in the data. In this
regard, this method is unbiased and objective and makes the maximum use of the data collected to
establish the stressor-response relationship. Moreover, our method does not rely on the designation
of reference sites, which invariably requires a subjective and often arbitrary determination of what
constitutes a reference condition. Instead, our method treats the stressor gradient as continuous and
ranging from the least stressed to most stressed conditions within the landscape extent under
consideration. Despite these strengths, our method is not without practical limitations. Many state
agencies interested in developing IBIs do not possess the statistical modeling expertise required to
implement our approach. In addition, our method requires relatively large sample sizes in order to
derive IBIs that are ecologically and statistically robust. Moreover, given the empirical basis of the
approach, it requires the collection of biological samples for the particular landscape extent intended



for the IBI application; it is unclear whether IBIs developed in one landscape can be extrapolated to
another, but it seems unlikely. Lastly, while this method was shown to be effective in our study
landscape of Massachusetts, it requires replication in other landscapes to confirm its general utility.
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Table 1. Ecological integrity models for three focal ecological systems. Metrics measure the level of
anthropogenic stressor to each site and are arbitrarily grouped into broad classes for organizational
purposes. See Appendix A for a description of each metric. The Index of Ecological Integrity (IEI)
for each ecological system is a weighted combination of stressor metrics selected and weighted by
expert teams. Weights shown here are the percent contribution of each metric to each community
(rounded to the nearest whole percent), thus columns sum to 100. The asterisk next to a weight
indicates that we developed an IBI for this particular metric and ecological system.

Ecological System

Forested Salt Wadable

Metric group Metric name wetland marsh stream
development & habitat loss 9% 12% 10*
roads
(watershed) habitat loss 4 0 9%
wetland buffer insults 4* o* 0
road traffic 9* 5 5
mowing & plowing 4 3 5
microclimate alterations 4% 0 5
pollution (watershed) road salt 4 0 0
(watershed) road sediment 4% 0 5%
(watershed) nutrient enrichment 4% 0 5%
biotic alterations domestic predators 0 5 0
edge predators 4% 5 5
non-native invasive plants 9% 0 0
non-native invasive earthworms 4% 0 0
hydrological (watershed) imperviousness 0 0 10*
alterations
(watershed) dam intensity 0 0 7*
coastal alterations salt marsh ditching 0 15% 0
tidal restrictions 0 18* 0
resiliency connectedness 17* 18* 7*

aquatic connectedness 2% 0 22%



similarity O* 14*




Table 2. Number of sites (N) and number of taxa sampled by ecological system and taxonomic
group between 1984-2011 in Massachustts (Fig. 1) for the purpose of developing Indices of Biotic
Integrity (IBIs). Note, the number of taxa include the number of separate taxa across taxonomic
levels from Species to Phylum that were considered in the development of the IBI.

Ecological System

Forested wetland Salt marsh Wadable streams

Taxonomic group N Taxa N Taxa N Taxa
vascular plants 214 379 130 38 -- -
bryophytes 211 113 - - - -
epiphytic macrolichens 214 32 -- - - -
diatoms 205 157 - - - -
macroinvertebrates 171 161 123 107 490 294
emergence traps 179 36 -- - - -

pitfall traps 206 174 - - - -

earthwornis 214 6 -- - - -

gradrats - -- 130 37 - _

D-net sweeps - - 127 42 - _

auger - - 126 29 - -

kick nets -- - - - 490 204

total 219 842 130 137 490 294




Table 3. Comparison of the observed (cross-validated) coefficient of concordance (i.e., the

correlation between observed and predicted stressor metric) and the minimum, mean and maximum
concordances for 10 random runs, as well as the difference between the observed concordance and

the maximum random concordance, for the vascular plant Index of Biotic Integrity (IBI) based on
the Index of Ecological Integrity (IEI) stressor metric for forested wetlands in Massachustts.
Richness is the number of taxa in the final IBI; taxa were selected using five methods: 1) forward

stepwise selection until the maximum concordance (step(max)), 2) forward stepwise selection until a

conditional alpha=0.1 (step(0.1), 3) forward stepwise selection until a conditional alpha=0.05

(step(0.05), 4) selecting all taxa with a marginal alpha<0.1 (margin(0.1), and 5) selecting all taxa with

a marginal alpha<0.05 (margin(0.05).

Random runs

Observed
Method Richness  concordance Min Mean Max Difference
step(max) 76 0.79 0.28 0.39 0.48 0.32
step(0.1) 44 0.79 0.06 0.21 0.31 0.48
step(0.05) 17 0.76 0.13 0.32 0.47 0.29
margin(0.1) 240 0.62 0.13 0.18 0.23 0.39
margin(0.05) 219 0.63 0.00 0.16 0.23 0.40




Table 4. Comparison of the observed (cross-validated) coefficient of concordance (i.e., the
correlation between observed and predicted stressor metric) and the minimum, mean and maximum
concordances for 10 random runs, as well as the difference between the observed concordance and
the maximum random concordance, for the Indices of Biotic Integrity (IBIs) for the major
taxonomic groups separately and combined based on the Index of Ecological Integrity (IEI) stressor
metric for forested wetlands in Massachustts. Richness is the number of taxa in the final I1BI; taxa
were selected based on forward stepwise selection until a conditional alpha >0.1. The "All taxa -
merged" represents an IBI constructed by merging the separate taxonomic group IBIs into a single
composite IBI; the "All taxa - stepwise” represents an IBI constructed by forward stepwise selection
of taxa across all taxonomic groups until a conditional alpha>0.1.

Random runs

Observed
Taxonmic group Richness  concordance Min Mean Max Difference
vascular plants 44 0.79 0.06 0.21 0.31 0.48
macroinvertebrates 46 0.71 0.15 0.31 0.51 0.21
diatoms 17 0.68 0.21 0.29 0.36 0.32
bryophytes 11 0.01 0.19 0.24 0.33 0.28
Efiﬁfg;c‘ilem 4 0.57 0.08 0.16 0.30 0.27
all taxa - merged 122 0.81 0.00 0.01 0.10 0.71

all taxa - stepwise 80 0.89 0.36 0.53 0.66 0.23




Table 5. Comparison of the observed (cross-validated) coefficient of concordance (i.e., the
correlation between observed and predicted stressor metric) and the minimum, mean and maximum
concordances for 10 random runs, as well as the difference between the observed concordance and
the maximum random concordance, for the Indices of Biotic Integrity (IBIs) for vascular plants
based on 15 different stressor metrics (see Appendix A) for forested wetlands in Massachustts.
Richness is the number of taxa in the final IBI; taxa were selected based on forward stepwise
selection until a conditional alpha>0.1.

Random runs

Observed
Stressor metric Richness concordance Min Mean Max Difference
index of ecological 44 079 006 0.21 031 0.48
integrity (TEI) ' ' ' ' .
connectedness 36 0.78 0.13 0.23 0.40 0.39
(watershed)
nutrient 56 0.78 0.16 0.26 0.32 0.46
enrichment
(watershed) habitat 38 078 013 023 035 0.43
o . . . . .
similarity 106 0.77 0.18 0.27 0.37 0.40
non-native
invasive 52 0.75 0.08 0.26 0.36 0.39
earthworms
(watershed) road 42 0.73 0.19 0.25 0.37 0.36
sediment
non-native 62 0.73 0.02 0.24 0.40 0.33
invasive plants
edge predators 80 0.70 0.19 0.26 0.38 0.31
habitat loss 42 0.69 0.18 0.30 0.38 0.31
g;”ljte“hed) road 67 0.66 0.22 0.30 0.40 0.26
aquatic 87 0.66 0.16 0.41 0.61 0.05

connectedness



road traffic

wetland buffer
insults

microclimate
alterations

63

93

73

0.66

0.54

0.53

0.09

0.21

0.27

0.28

0.32

0.40

0.35

0.40

0.58

0.31

0.13

-0.05




Table 6. Correlations between Indices of Biotic Integrity (IBIs) derived in this study and 31
published biotic descriptors or metrics used in IBIs (see Appendix C for description of published
biotic metrics) applied to the Massachusetts wadable stream macroinvertebrate data. Stream
macroinvertebrate IBIs from this study were developed for the stressor metrics listed in Table 1

(and described in Appendix B) for wadable streams. The rows are ordered such that higher mean

absolute correlations appear first.

Stream macroinvertbrate IBI (this sudy)

g . g

g g E

= ae)} g » |8}

e a & » g A )

" £ 8 g . g < 9 g

g =] T g T3 T S S

— D] O = O (] o D] B (&)

5 ¢ ¢S $E FE £% S 9

= o o & g5 88 3 & c =

= = = = '—g = g = g = O g 2.

Published IBI = T =z 2% 2§ 28 B2 Q <
mean.tolval -0.76  0.77 0.83 0.82 0.73 0.79 -0.07 -0.63 -0.29
ept 0.75 -0.66 -0.78 -0.77 -0.69 -0.74 012 056 0.56
pct.sensative.abun 0.77 -0.72 -0.68 -0.69 -0.61 -0.62 0.17 0.72 0.29
hilsenhoff.bi -0.69  0.67 0.76 0.74 0.66 0.71 -0.1 -0.61 -0.23
becks.i 0.75 -0.69 -0.66 -0.66 -0.58 -0.59 0.17 0.73 0.2
pct.sensitive.ept.abun 0.66 -0.62 -0.71 -0.68 -0.62 -0.66 0.15 0.54 0.39
Nn.n0.co 0.65 -0.59 -0.68 -0.68 -0.61 -0.67 013 0.53 043
ptv.0.t0.5.9 0.63 -0.7 -0.74 -0.73 -0.64 -0.71 0.06 053 0.19
n.ephemeroptera 0.63 -049 -0.68 -0.67 -0.62 -0.65 0.12 039 0.66
pct.non.insect -0.61 0.6 0.64 0.63 0.53 0.57 -0.07 -044 -0.37
dom.3.family.abun -0.6 0.54 0.6 0.59 0.54 0.57 -0.16 -0.53 -0.34
diversity.family 0.58 -0.54 -0.6 -0.59 -0.53 -0.57 0.17 0.51 0.33
pct.ephemeroptera 0.52 -0.43 -0.63 -0.6 -0.56 -0.59 0.1 0.29  0.55
pct.shellfish -0.56 0.5 0.58 0.56 0.5 049 -0.13 -0.41 -0.36
n.taxa 0.52 -042 -051 -0.52 -0.46 -0.5  0.11 0.4 045



n.trichoptera
ept.chiro.stand
n.scraper
ept.chiro.ratio

n.gc

diversity.order
pct.ept.abun
dom.3.order.abun
pct.abun.oligochaeta
pct.chironomidae
n.diptera
ept.chiro.abun.stand
pct.tanytarsini

shredders

scraper.to.filter.collector

.ratio

pct.scraper.abun

colummn mean absolute value

0.46

0.42

0.35

0.41

0.4

0.33

0.26

-0.28

-0.28

-0.15

0.25

0.11

-0.11

0.19

-0.07

-0.01

0.44

-0.46

-0.44

-0.35

-0.4

-0.31

-0.35

-0.23

0.31

0.28

0.19

-0.15

-0.12

0.11

-0.08

0.05

-0.04

0.41

-0.55

-0.54

-0.45

0.44

-0.37

-0.37

-0.41

0.3

0.33

0.25

-0.19

-0.27

0.19

-0.07

0.1

-0.05

0.48

-0.54

-0.52

-0.44

-0.42

-0.39

0.4

-0.34

0.33

0.33

0.24

-0.2

-0.24

0.16

-0.08

0.09

-0.07

0.47

-0.46

-0.49

-0.4

-0.39

-0.33

-0.33

-0.34

0.27

0.27

0.26

-0.16

-0.22

0.2

-0.09

0.07

-0.05

0.43

-0.53

-0.53

-0.45

-0.38

-0.36

-0.37

-0.38

0.29

0.31

0.29

-0.18

-0.28

0.18

-0.02

0.05

-0.11

0.46

0.09

0.09

0.12

0.16

0.11

0.11

0.03

-0.06

0.06

-0.06

0.02

0.03

-0.05

0.12

-0.05

0.1

0.32

0.33

0.25

0.36

0.33

0.35

0.15

-0.32

-0.23

-0.16

0.17

0.05

-0.11

0.16

-0.03

0.36

0.36

0.17

0.32

0.13

0.35

0.11

0.15

-0.03

-0.1

0.05

0.32

0.05

0.03

0.25

-0.08

-0.01

0.26




Table 7. Correlations between 31 published biotic descriptors or metrics (Appendix C) and the
Index of Ecological Integrity (IEI), among the published biotic metrics, and between published
biotic metrics and the best stressor metric from this study (Appendix B) applied to the
Massachusetts wadable stream macroinvertebrate data. Published biotic metrics are listed in
order of their correlation with IEI (higher correlations first).

Mean absolute Correlation

correlation with  Best with best

Published biotic Correlation other published stressor stressor
metric Association' with IEI biotic metrics metric’ metric'
pct.sensative.abun pos 0.63 0.43 ieis 0.63
ept pos 0.61 0.53 imperv -0.66
becks.i pos 0.60 0.40 ieis 0.60
n.ephemeroptera pos 0.53 0.46 imperv -0.61
pct.sensitive.ept.abun pos 0.52 0.48 imperv -0.60
N.no.co pos 0.52 0.52  imperv -0.60
ptv.0.t0.5.9 pos 0.49 0.49  imperv -0.04
diversity.family pos 0.47 0.49  imperv -0.54
pct.ephemeroptera pos 0.45 0.41 imperv -0.55
n.taxa pos 0.41 0.41 imperv -0.46
