TABLE OF CONTENTS

1. Executive Summary .. 1
2. Chlamydia .. 3
3. Gonorrhea .. 6
4. Syphilis .. 9
5. HIV/AIDS .. 13
6. Viral Hepatitis – Hepatitis B ... 19
7. Viral Hepatitis – Hepatitis C ... 22
8. Specific Populations – Adolescents and Young Adults .. 25
9. Specific Populations – Women and Infants .. 31
10. Specific Populations – Racial/Ethnic Minorities ... 37
11. Specific Populations – Men Who Have Sex with Men ... 39
12. Strengths and Limitations of Data .. 44
13. Interpreting HIV/AIDS, STD, and Viral Hepatitis Data .. 45
14. HIV/AIDS, STD, and Viral Hepatitis Case Classifications .. 47
15. HIV/AIDS, STD, and Viral Hepatitis Program Staff Contact Information 54
16. HIV/AIDS, STD, and Viral Hepatitis Resources .. 55
Executive Summary 2015

The annual publication of the Integrated HIV/AIDS, STD, and Viral Hepatitis Surveillance Report provides data on the diseases reported to the Bureau of Infectious Disease and Laboratory Sciences by healthcare providers and laboratories per regulation (105 CMR 300.000). This report focuses on a subset of these diseases:

- Chlamydia
- Gonorrhea
- Hepatitis B
- Hepatitis C
- HIV/AIDS
- Syphilis

The intended audience for this annual surveillance report includes the clinicians and the laboratory professionals who report cases, as well as the community organizations, local public health departments, advocates, policymakers, and researchers who are interested in the health of Massachusetts residents.

Key highlights in 2015

Chlamydia, gonorrhea, and syphilis:

- Chlamydia continues to be the most commonly reported infectious disease, with approximately 24,000 cases reported annually since 2012.
- Gonorrhea is now clearly disproportionally reported in men among whom rates have doubled over the last decade.
- The incidence rate of infectious syphilis (primary, secondary, and early latent syphilis) has increased 31% to a ten year high of 11.7 per 100,000 in 2015. Syphilis continues to disproportionally affect men, reflecting the ongoing syphilis epidemic in men who have sex with men.
- Young adults have the highest rates of chlamydia, gonorrhea, and syphilis, compared to other age groups.

HIV/AIDS: 1

- The number of HIV infection diagnoses decreased by 31% from 2005 (N=913) to 2014 (N=629). Due to improved survival and lower rates of death, the number of persons known to be living with HIV/AIDS in Massachusetts increased 26% between 2005 (N=15,666) and 2014 (N=19,747).
- Black (non-Hispanic) and Hispanic/Latino residents had significantly higher rates of HIV infection diagnoses compared to white (non-Hispanic) residents. This was most notable in women, as 78% of women newly diagnosed between 2012 and 2014 were black (non-Hispanic) or Hispanic/Latina.
- Male-to-male sex remained the single most frequently reported exposure mode among newly diagnosed cases of HIV infection, and represented 61% of newly diagnosed cases among men during 2012 to 2014.

1 Due to the extensive follow up required to verify date of diagnosis, all HIV/AIDS data reflect HIV infection diagnosed through 2014.
Hepatitis B and C:

- Reported confirmed cases of chronic hepatitis B continued to decline, due in large part to near-universal immunization of children in the United States.
- An average of over 8,500 confirmed and probable hepatitis C cases were reported in each of the past nine years (2007 to 2015).
- There continued to be an increase of hepatitis C cases reported among adolescents and young adults, reflecting ongoing transmission among young people injecting opioids.
CHLAMYDIA

- 23,913 cases of chlamydia were reported in Massachusetts in 2015 - making it the most frequently reported infection in the Commonwealth.
- The total number of reported chlamydia cases increased by 57% from 15,268 in 2006 to 23,913 in 2015.
- In 2015, the chlamydia incidence rate among women (442.9 per 100,000) was nearly twice as high as the rate among men (255.5 per 100,000).
The five jurisdictions with the highest chlamydia incidence rates were Provincetown, Lawrence, Springfield, Boston, and Brockton.

In 2015, the statewide chlamydia incidence rate of 352.0 per 100,000 population was lower than the national rate of 478.8 per 100,000.\(^2\)

Massachusetts ranked ninth lowest in chlamydia incidence among the 50 states.\(^2\)

CHLAMYDIA

- The chlamydia incidence rate remained highest among adolescents and young adults.
- In 2015, the chlamydia incidence rate among young adults (ages 20–24) was nearly six times higher than the statewide rate in all ages (1,933.0 compared to 352.0 per 100,000).
- The rate among adolescents (ages 15–19) was over three times higher than the statewide rate in all ages (1,150.1 compared to 352.0 per 100,000).

Additional information about chlamydia and other STDs is available online at www.mass.gov/dph/cdc/std.
• 3,688 gonorrhea cases were reported in 2015.
• The total number of reported gonorrhea cases increased by 52% from 2,428 in 2006 to 3,688 in 2015.
• Between 2006 and 2015, the gonorrhea incidence rate reported among men doubled (from 39.5 per 100,000 to 81.3 per 100,000). The gonorrhea incidence rate among men is now nearly three times higher than the rate among women (28.8 per 100,000).
• Incident gonorrhea was clustered in urban areas in 2015.

• The five cities with the highest rates were Provincetown, Boston, Brockton, Cambridge, and Somerville.

• The statewide incidence rate of 54.3 per 100,000 was about half the national rate of 123.9 per 100,000.²

• Massachusetts ranked ninth lowest in gonorrhea incidence rate among the 50 states.²

• The gonorrhea incidence rate remained highest among young adults.
• In 2015, the gonorrhea incidence rate among young adults (ages 20–24) was four times the statewide incidence rate in all ages (211.9 compared to 54.3 per 100,000).
• The rate among young adults (ages 25–29) was three times higher than the statewide rate in all ages (178.2 compared to 54.3 per 100,000).

Additional information about gonorrhea and other STDs is available online at www.mass.gov/dph/cdc/std.
SYPHILIS

- 792 infectious syphilis (primary, secondary, and early latent) cases were reported in 2015.

- The total number of reported infectious syphilis cases in 2015 (N=792) was nearly four times the number reported in 2006 (N=219).

- Between 2006 and 2015, the syphilis incidence rate reported among men more than tripled (from 6.4 to 22.4 per 100,000). The syphilis incidence rate among men is now 14 times higher than the rate among women (1.6 per 100,000).
- The highest syphilis incidence rates were in Suffolk (40.0 per 100,000) and Hampden (17.0 per 100,000) counties.

- The statewide infectious syphilis incidence rate increased from 3.4 per 100,000 in 2006 to a ten-year high of 11.7 per 100,000 in 2015.

- Massachusetts ranked 17th in primary and secondary syphilis incidence rate among the 50 states.²

SYPHILIS

In 2015, the infectious syphilis rate was highest among individuals aged 20 to 24 years, closely followed by individuals 25 to 29 years, and 30 to 39 years.

In 2015, the infectious syphilis incidence rates among individuals aged 20 to 24 years, 25 to 29 years, and 30 to 39 years were all approximately double the overall statewide incidence rate in all ages (28.3, 25.7, and 24.5, respectively, compared to 11.7 per 100,000).
In 2015, the infectious syphilis incidence rate was four times higher in the Hispanic/Latino population (28.7 cases per 100,000) and three times higher in the black (non-Hispanic) population (23.1 cases per 100,000) compared to the white (non-Hispanic) population (7.8 cases per 100,000).

Additional information about infectious syphilis is available online at www.mass.gov/dph/cdc/std.
• The number of people known to be living with HIV infection in Massachusetts increased by 26% from 15,666 on December 31, 2005 to 19,747 on December 31, 2014.
In 2014, there were 629 HIV infections diagnosed and 231 deaths among people reported with HIV infection in Massachusetts.

The number of HIV infection diagnoses decreased by 31% from 2005 (N=913) to 2014 (N=629).

The number of deaths among people reported with HIV/AIDS also decreased by 31% from 333 in 2005 to a new low of 231 deaths in 2014.
Of the 351 cities and towns in Massachusetts, 195 (56%) had at least one reported HIV infection diagnosis from 2012 to 2014.

The majority of HIV infection diagnoses were reported in people living in large urban areas.

Of those cities and towns where HIV infections were diagnosed within the three-year period 2012 to 2014, the majority (77%) had rates under ten per 100,000 population.

Provincetown was the only locality with a rate of over 100 per 100,000 during this time period.

Other areas of higher incidence rates were clustered in and around major cities such as Boston, Worcester, and Springfield.
From 2012 to 2014, of the 2,027 HIV infections newly diagnosed in Massachusetts, 1,510 (74%) were in men and 517 (26%) were in women.

Among men, the largest proportion of newly diagnosed HIV infections were in white (non-Hispanic) men, whereas among women the majority of newly diagnosed HIV infections were in black (non-Hispanic) women.

With age-adjusted average annual rates of HIV diagnosis during 2012 to 2014 of 48.5 and 31.3 cases per 100,000 population, black (non-Hispanic) and Hispanic/Latino individuals were diagnosed at rates 10 and 7 times that of white (non-Hispanic) individuals (4.8 per 100,000), respectively.

Among women, the level of disparity was more pronounced: the age-adjusted average annual rate of HIV diagnosis during 2012 to 2014 among black (non-Hispanic) women (40.9 per 100,000) was 33 times, and among Hispanic/Latina women (15.2 per 100,000) was 12 times that of white (non-Hispanic) women (1.2 per 100,000).
From 2012 to 2014, the primary risk reported for newly diagnosed HIV infection in Massachusetts was male-to-male sex (45%). A significant proportion of diagnoses were reported with No Identified Risk (25%).

3 The category of presumed heterosexual is used exclusively for women, to define HIV exposure mode in cases when sex with men is the only reported risk factor for HIV infection.
Since the mid-1990’s, Massachusetts has experienced a dramatic reduction in mother-to-child transmission of HIV infection due to high rates of antiretroviral treatment in HIV+ women, and progress in HIV screening during pregnancy.

From 2005 to 2014, the number of HIV-infected newborns remained between zero and five cases annually, with two cases identified in 2014.

Additional information about HIV/AIDS is available online through the MDPH HIV/AIDS Epidemiologic Profile at www.mass.gov/dph/cdc/aids.
In 2015, 471 confirmed chronic hepatitis B virus (HBV) cases were reported. An additional 1,380 probable HBV cases were reported for a total of 1,851 confirmed and probable HBV cases.
The incidence rate of confirmed and probable chronic HBV cases among men decreased from 37.3 per 100,000 in 2007 to 31.4 per 100,000 in 2015. The chronic HBV incidence rate among women decreased from 27.7 per 100,000 in 2007 to 22.9 per 100,000 in 2015.
In 2015, there were 26 confirmed acute and 93 suspect acute HBV cases for a total of 119 acute cases.
The annual number of confirmed and probable hepatitis C cases reported in Massachusetts since 2007 remained high with about 8,000 to 9,000 probable and confirmed cases reported each year.

There were 5,845 confirmed and 3,267 probable hepatitis C cases reported to MDPH in 2015, for a total of 9,112.
• In 2007, reported cases of hepatitis C were distributed in a curve with two age peaks, with the lower peak at age 28 years and the higher peak at age 49 years.
• In 2015, the reported cases were again distributed in a bi-modal curve, but with the higher peak at age 25 years and the lower peak at age 57 years.
Fifty-three percent of confirmed and probable hepatitis C cases less than 30 years of age were men, and 47% were women.

The majority of new hepatitis C infections in persons less than 30 years of age were attributable to blood exposure in the context of injection drug use.

Sixty percent of confirmed and probable hepatitis C cases 30 years of age and older were men, and 40% were women.
SPECIFIC POPULATIONS: ADOLESCENTS & YOUNG ADULTS

- In 2015, in Massachusetts, 62% of chlamydia cases and 41% of gonorrhea cases were reported among adolescents and young adults aged 15–24 years.
 - Nationally in 2015, 64% of chlamydia cases and 50% of gonorrhea cases were reported among adolescents and young adults aged 15–24 years.\(^4\)

During 2012 to 2014, 15% of HIV infection diagnoses were reported among adolescents and young adults aged 15–24 years.
The racial/ethnic distribution of adolescents and young adults (aged 15–24 years) diagnosed with HIV infection was: white (non-Hispanic) (33%), black (non-Hispanic) (29%), Hispanic/Latino (27%), and other (4%).
During 2012 to 2014, the primary exposure mode for HIV infection in adolescents and young adults was male-to-male sex (62%), followed by presumed heterosexual sex (11%), heterosexual sex (5%), MSM/IDU (2%), and injection drug use (2%). Sixteen percent of adolescents and young adults were reported with no identified risk (NIR) for HIV exposure.
The age distribution of hepatitis C virus (HCV) cases reported in Massachusetts changed between 2002 and 2015 with a significant increase in cases among young persons who inject drugs.

In 2002, reported HCV cases were distributed in a curve with one age peak at 45 years.

By 2008, the development of a second epidemic among younger persons became apparent, as reported cases were distributed in a bi-modal curve with one peak at 26 years of age and a second peak at 55 years.

In 2015, the HCV cases among young persons who inject drugs outnumbered newly reported cases in the older age cohort.

The proportion of cases among young women (aged 15–24 years) was higher in 2015 (52%, N=453/876) and 2008 (52%, N=366/704) compared to 2002 (46%, N=206/446).

The risk for hepatitis C is injection drug use. Thus far, a similar epidemic of HIV infection in this population has not been identified, most likely because of low prevalence of HIV infection in young people who use drugs. However, introduction of HIV infection in injecting drug using networks could lead to increased incidence of HIV infection in this population.
Reported Sexual Behaviors Among Massachusetts High School Students, 2007–2015¹

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ever having sexual intercourse</td>
<td>44</td>
<td>46</td>
<td>42</td>
<td>38</td>
<td>36</td>
</tr>
<tr>
<td>Having sexual intercourse before age 13</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Having had sexual intercourse with 4+ partners during their life</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Ever injecting an illegal drug</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Using a condom at last sexual intercourse</td>
<td>61</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>63</td>
</tr>
<tr>
<td>Ever being taught about HIV/AIDS in school</td>
<td>89</td>
<td>87</td>
<td>84</td>
<td>85</td>
<td>80</td>
</tr>
</tbody>
</table>

¹ Unweighted sample size by year: 2007 (N=3,131), 2009 (N=2,707), 2011 (N=2,729), 2013 (N=2,718), 2015 (N=5,738)

Data Source: Massachusetts Department of Elementary and Secondary Education, Massachusetts Youth Risk Behavior Survey

- The Massachusetts Youth Risk Behavior Survey (MYRBS) is performed biennially among a sample of ninth to twelfth grade students.
- Three indicators of high risk youth sexual behavior (ever having sexual intercourse, having sexual intercourse before age 13 years, having had sexual intercourse with four or more partners during their life) reached their lowest levels in 2015 (36%, 3%, and 8%, respectively).
- Lifetime injection drug use remained at a low of 1% in 2015.
- One protective correlate of sexual behavior, ever being taught about HIV/AIDS in school, declined to a low of 80% in 2015.
- Using a condom at last sexual intercourse increased to 63% in 2015.
Unlike gonorrhea, chlamydia infection in Massachusetts is more commonly diagnosed and reported in women. Routine screening for chlamydia infection is recommended for sexually active women age 24 years and younger and in older women who are at increased risk for infection by the U.S. Preventive Services Task Force (USPSTF).5

From 2006 to 2012, the number of chlamydia cases reported in women increased by 50% (from 11,052 to 16,599), then decreased by 7% in 2015 (to 15,434).

The number of chlamydia cases reported among men doubled from 2006 (N=4,195) to 2015 (N=8,388). Routine screening is not currently recommended by the USPSTF for all sexually active men.

5 Published Recommendations. U.S. Preventive Services Task Force. https://www.uspreventiveservicestaskforce.org/BrowseRec/Index/browse-recommendations
In 2015, 65% of reported chlamydia cases were among women (N=15,434) and 35% were among men (N=8,388).

In 2015, 27% of reported gonorrhea cases were among women (N=1,002) and 73% were among men (N=2,699).
Chlamydia and Gonorrhea Screening:

Since 1997, the Division of STD Prevention has partnered with other agencies to reduce infertility and other health consequences of chlamydia and gonorrhea infection through screening and treatment of women who are at higher risk for infection.

- In 2015, 7,740 specimens collected from women under age 26 years of age were tested for chlamydia and gonorrhea infection, with 7.4% and 0.6% positivity, respectively, at the Massachusetts State Public Health Laboratory. Test results from selected sites have yielded the following:

<table>
<thead>
<tr>
<th>Site Type</th>
<th>Number tested</th>
<th>Percent positive for chlamydia</th>
<th>Percent positive for gonorrhea</th>
</tr>
</thead>
<tbody>
<tr>
<td>School-Based Health Centers</td>
<td>1,158</td>
<td>7.8%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Correctional Facilities</td>
<td>450</td>
<td>9.1%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Family Planning Clinics</td>
<td>1,765</td>
<td>6.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Hospital Based Clinic</td>
<td>399</td>
<td>7.3%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Expanded STD Screening Sites*</td>
<td>3,965</td>
<td>7.4%</td>
<td>0.6%</td>
</tr>
</tbody>
</table>

Data Source: MDPH Bureau of Infectious Disease and Laboratory Sciences

*Includes women under age 26 years, tested at Prevention, Integrated Counseling, Screening, and Referral sites under former IPP funding now known as Safety Net Services.
Congenital Syphilis Prevention:

- In 2015, there were 4 reported cases of congenital syphilis\(^6\) in Massachusetts and the congenital syphilis rate was 5.6 cases per 100,000 live births.
- The recent subtle increase in reported congenital syphilis cases parallels increases in infectious syphilis being reported in reproductive aged women (15–49 years) in Massachusetts.
- This also mirrors national trends, where after a period of decline from 2008 to 2012, congenital syphilis rates increased by 48% between 2012 and 2015 (from 8.4 to 12.4 cases per 100,000 live births).\(^7\)
- The few cases of congenital syphilis occurring in Massachusetts were born to women with little or no prenatal care or women who were not known to be at high risk for syphilis infection and therefore did not receive repeat syphilis screening in the third trimester or at delivery.

\(^6\) A condition caused by infection in utero with *Treponema pallidum*. A wide spectrum of severity exists, from inapparent infection to severe cases that are clinically apparent at birth. For more information see http://www.cdc.gov/std/stats/congenitalsyphilisdef-rev-jan-2015.pdf

During 2012 to 2014, presumed heterosexual sex (53%) was the predominant exposure mode for women diagnosed with HIV infection in Massachusetts, followed by heterosexual sex (18%), injection drug use (8%), and other exposure modes (1%). Nineteen percent of women were reported with no identified risk for HIV exposure.
During 2012 to 2014, 49% of women diagnosed with HIV infection were born outside of the U.S. For men diagnosed with HIV infection during 2012 to 2014, only 30% were born outside of the U.S.

Women born outside the United States and recently diagnosed with HIV infection in Massachusetts, were primarily from sub-Saharan Africa (46%), the Caribbean Basin (36%), and Central or South America (11%).
In 2015, black (non-Hispanic) and Hispanic/Latino individuals represented 7% and 11% of the total Massachusetts population and 14% and 27% of infectious syphilis cases (with known race/ethnicity), respectively.

During 2012 to 2014, black (non-Hispanic) and Hispanic/Latino individuals represented 30% and 29% of individuals diagnosed with HIV infection in Massachusetts, respectively.
• In Massachusetts, in 2015, the age-adjusted HIV infection prevalence rate among the black (non-Hispanic) population (1,512 per 100,000) was 11 times greater, and among the Hispanic/Latino population (1,059 per 100,000) was eight times greater than among the white (non-Hispanic) population (140 per 100,000).
Of the 792 infectious syphilis cases reported in 2015, 607 (77%) were in men who reported having sex with men (MSM).

The proportion of infectious syphilis cases reported among MSM was above 65% from 2006 to 2015.

From 2006 to 2015, the number of reported infectious syphilis cases among MSM more than tripled, from 157 to 607.
The racial/ethnic distribution of infectious syphilis cases reported in 2015 among MSM was: white (non-Hispanic) (47%), Hispanic/Latino (25%), black (non-Hispanic) (11%), and other (9%). An additional 8% of cases were reported with unknown race/ethnicity.
In 2015, 42% (N=252) of infectious syphilis cases among men reporting sex with men, also reported that they were co-infected with HIV.
During 2012 to 2014, male-to-male sex was the predominant exposure mode (61%) for men diagnosed with HIV infection in Massachusetts. Twenty-seven percent of men were reported with no identified risk for HIV exposure.
Among men, the proportion of HIV infection diagnoses with male-to-male sex as the reported mode of exposure increased from 53% in 2005 to 61% in 2014. During the same time period, the proportion with injection drug use as the reported mode of exposure decreased from 14% to 3%.
Strengths and Limitations of Data

<table>
<thead>
<tr>
<th>Description</th>
<th>HIV/AIDS Case Data</th>
<th>STD Case Data</th>
<th>Viral Hepatitis Case Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>• Collected by MDPH Bureau of Infectious Disease and Laboratory Sciences</td>
<td>• Includes individuals first reported as living in MA.</td>
<td>• Includes individuals first reported as living in MA.</td>
</tr>
<tr>
<td></td>
<td>• Reportable statewide.</td>
<td>• All clinical laboratories in MA report electronically resulting in more complete and timely reporting of disease.</td>
<td>• All clinical laboratories in MA report electronically resulting in more complete and timely reporting of disease.</td>
</tr>
<tr>
<td></td>
<td>• All laboratories and healthcare providers are required by law to report.</td>
<td>• Includes individuals first reported as living in MA.</td>
<td>• Includes individuals first reported as living in MA.</td>
</tr>
<tr>
<td></td>
<td>• Includes individuals first diagnosed with HIV infection in MA.</td>
<td>• All clinical laboratories in MA report electronically resulting in more complete and timely reporting of disease.</td>
<td>• Includes individuals first reported as living in MA.</td>
</tr>
</tbody>
</table>

Strengths	• Completeness of race/ethnicity data is high.	• All clinical laboratories in MA report electronically resulting in more complete and timely reporting of disease.	• All clinical laboratories in MA report electronically resulting in more complete and timely reporting of disease.
	• All clinical laboratories in MA report electronically resulting in more complete and timely reporting of disease.	• Most infectious syphilis cases agree to interview, resulting in reasonably complete race/ethnicity and sex of sex partner data.	• Race/ethnicity data are incomplete.
	• Data are estimated to be 99% complete.	• Race/ethnicity data are incomplete for gonorrhea and chlamydia cases.	• Race/ethnicity data are incomplete.
		• Sex of sex partner is not routinely collected for gonorrhea and chlamydia cases.	• Risk history data are not collected on chronic HBV cases.
		• Bias is introduced for some STDs, such as chlamydia infection, where screening of asymptomatic persons occurs more frequently in women than in men.	

Limitations	• Due to extensive follow up conducted to verify accurate date of diagnosis, annual incidence data are released a year after the close of the year. For example, 2016 HIV diagnoses through December 31, 2016 will be released on January 1, 2018.	• Race/ethnicity data are incomplete for gonorrhea and chlamydia cases.	• Race/ethnicity data are incomplete.
		• Sex of sex partner is not routinely collected for gonorrhea and chlamydia cases.	• Risk history data are not collected on chronic HBV cases.
		• Bias is introduced for some STDs, such as chlamydia infection, where screening of asymptomatic persons occurs more frequently in women than in men.	

Massachusetts Youth Risk Behavior Survey

Description	The Massachusetts Youth Risk Behavior Survey (MYRBS) is conducted every two years through a collaborative effort between the Massachusetts Department of Elementary and Secondary Education (ESE) and Department of Public Health (DPH) to monitor health indicators, behaviors, and risk factors contributing to the leading causes of morbidity, mortality, and social and academic problems among adolescents.
Strengths	A two-stage sampling method is used to produce representative samples of students in grades 9 – 12. Response rates are high.
Limitations	All data collected for the MYRBS and the MYHS are based on self-report from students. Self-reported data may be subject to error for several reasons, including inaccurate recall of events.
Interpreting HIV/AIDS, STD, and Viral Hepatitis Data

Hepatitis B surveillance data reported are current as of August 17, 2016, hepatitis C data are as of August 19, 2016 and November 15, 2016, HIV/AIDS data are as of March 1, 2016 and STD data are as of October 4, 2016. All data are subject to change.

I. HIV/AIDS Exposure Mode Definitions

The HIV/AIDS exposure mode indicates the most probable risk behavior associated with HIV infection. Assignment of exposure mode is done in accordance with Centers for Disease Control and Prevention (CDC) guidelines when multiple exposure modes are reported. Following is a description of the exposure mode categories:

- **MSM (Male to Male Sex):** Includes males who report sexual contact with other males, and males who report sexual contact with both males and females. Please note the acronym MSM is also used to refer to “men who have sex with men”.

- **IDU (Injection Drug Use):** Cases in persons who report injection drug use.

- **MSM/IDU:** Cases in males who report both injection drug use and sexual contact with other males.

- **Heterosexual Sex:** Cases in persons who report specific heterosexual sex with a person with, or at increased risk for, HIV infection (e.g. an injection drug user). The sub-categories for this mode of transmission are listed below.
 - **Heterosexual Sex w/ an Injection Drug User**
 - **Heterosexual Sex w/ a person w/ HIV infection or AIDS**
 - **Heterosexual Sex w/ Bisexual male**
 - **Other Heterosexual Sex:** Includes all other sub-categories of risk, such as heterosexual contact with a person infected through a blood transfusion.

- **Presumed Heterosexual:** Cases among females who report heterosexual sex but do not report any other personal risk or any knowledge of specific risk in their male sex partners. As of January 1, 2011, males who were previously grouped in this category are categorized as No Identified Risk. Presumed heterosexual is an exposure mode category used by the Massachusetts HIV/AIDS Surveillance Program. The CDC categorizes these cases as No Identified Risk.

- **Pediatric:** Infection before the age of 13 years, including mother to child transmission through pregnancy, childbirth or breastfeeding and blood transfusions to children.

- **NIR (No Identified Risk):** Cases in persons with no reported history of exposure to HIV through any of the listed exposure categories. Follow-up is conducted to determine risk for those cases that are initially reported without a risk identified. Includes cases among males who were previously categorized in Massachusetts as Presumed Heterosexual.

II. References to Newly Diagnosed HIV Infections

Due to the extensive follow up required to verify accurate date of diagnosis, all HIV/AIDS data reflect HIV infections diagnosed through 2014. Newly diagnosed HIV infections/cases include all persons diagnosed with HIV from 2012 to 2014, including those who were concurrently or subsequently diagnosed with AIDS. All HIV data are presented by the year of diagnosis, not the year of report.
III. Race/Ethnicity of STD and HIV/AIDS Cases
Race/ethnicity references to white residents and black residents represent persons who are white non-Hispanic and black non-Hispanic, respectively. All references to Hispanic/Latino for race/ethnicity represent persons of Hispanic/Latino heritage regardless of race.

IV. STD Case Reports and Analyses
All information on STD cases reflect year of report and all incidence calculations represent crude rates. The source of denominators for calculating rate trends was: Intercensal Estimates of the Resident Population by Sex and Age for Massachusetts: April 1, 2000 to July 1, 2010 (ST-EST00INT-02-25); Source: U.S. Census Bureau, Population Division; Release Date: October 2012 and Estimates of the Resident Population by Sex, Race, and Hispanic Origin for the United States, States, and Counties: April 1, 2010 to July 1, 2015, Source: U.S. Census Bureau, Population Division; Release Date: June 2016. The source of denominators for calculating rate maps was the 2010 US Census. The distribution of STD cases in incidence rate calculations with unknown values for race/ethnicity has changed compared to previous reports. Cases with unknown values are now redistributed proportionally based on the distribution of cases with known values. Due to this change, STD incidence rates by race/ethnicity are slightly higher for all years than previously reported.

V. Cell suppression methodology:
Values less than five are suppressed for denominator populations less than 50,000 or for unknown values. Additional values may be suppressed to prevent back calculation.
HIV/AIDS, STD, and Viral Hepatitis Case Classifications (in the time period of the data in this report)

HIV INFECTION

Clinical description: HIV (human immunodeficiency virus) is a retrovirus with two serologically and geographically distinct species: HIV-1 and HIV-2. It is spread via person-to-person transmission through: sexual contact, the use of HIV-contaminated needles and syringes, vertical transmission from mother to infant, or the transfusion of contaminated blood or its components. HIV attacks the body’s immune system, making the person more likely to get infections or infection-related cancers. These opportunistic infections or cancers take advantage of the weakened immune system and signal that the person has AIDS (acquired immunodeficiency syndrome), the advanced stage of HIV infection.

Case Classification

Confirmed: Positive HIV-1, Positive HIV-2, or Positive (Undifferentiated) HIV result from a differentiating immunoassay, Western Blot, IFA, or culture; Positive/Detected Qualitative HIV NAT (DNA or RNA); Quantitative HIV NAT (detectable viral load assay) or physician verified diagnosis.

STD

Chlamydia trachomatis, Infection (Revised 6/09)

Clinical description: Infection with Chlamydia trachomatis may result in urethritis, epididymitis, cervicitis, acute salpingitis, or other syndromes when sexually transmitted; however, the infection is often asymptomatic in women. Perinatal infections may result in inclusion conjunctivitis and pneumonia in newborns. Other syndromes caused by C. trachomatis include lymphogranuloma venereum (see Lymphogranuloma Venereum) and trachoma.

Laboratory criteria for diagnosis
• Isolation of C. trachomatis by culture or
• Demonstration of C. trachomatis in a clinical specimen by detection of antigen or nucleic acid

Case classification

Confirmed: a case that is laboratory confirmed
Gonorrhea (effective January 1, 2014)

Clinical description: A sexually transmitted infection commonly manifested by urethritis, cervicitis, proctitis, salpingitis, or pharyngitis. Infection may be asymptomatic.

Laboratory Criteria for Diagnosis
• Observation of gram-negative intracellular diplococci in a urethral smear obtained from a male or an endocervical smear obtained from a female, or
• Isolation of typical gram-negative, oxidase-positive diplococci by culture (presumptive Neisseria gonorrhoeae) from a clinical specimen, or
• Demonstration of N. gonorrhoeae in a clinical specimen by detection of antigen or nucleic acid

Case Classification
Probable: demonstration of gram-negative intracellular diplococci in a urethral smear obtained from a male or an endocervical smear obtained from a female.
Confirmed: a person with laboratory isolation of typical gram-negative, oxidase-positive diplococci by culture (presumptive Neisseria gonorrhoeae) from a clinical specimen, or demonstration of N. gonorrhoeae in a clinical specimen by detection of antigen or detection of nucleic acid via nucleic acid amplification (e.g., PCR) or hybridization with a nucleic acid probe.

Syphilis (effective Jan 1, 2014)

Syphilis is a complex sexually transmitted infection that has a highly variable clinical course. Adherence to the following surveillance case definitions will facilitate understanding the epidemiology of this disease across the U.S.

Syphilis, primary

Clinical description: A stage of infection with Treponema pallidum characterized by one or more ulcerative lesions (e.g. chancre), which might differ considerably in clinical appearance.

Laboratory criteria for diagnosis:
Demonstration of T. pallidum in clinical specimens by darkfield microscopy, or by polymerase chain reaction (PCR) or equivalent direct molecular methods.

Case classification
Probable: a case that meets the clinical description of primary syphilis with a reactive serologic test (nontreponemal: Venereal Disease Research Laboratory [VDRL], rapid plasma reagin [RPR], or equivalent serologic methods; treponemal: fluorescent treponemal antibody absorbed [FTA-ABS], T. pallidum particle agglutination [TP-PA], enzyme immunoassay [EIA], chemiluminescence immunoassay [CIA], or equivalent serologic methods).8

Confirmed: a case that meets the clinical description of primary syphilis that is laboratory confirmed

8 These treponemal tests supersede older testing technologies, including microhemagglutination assay for antibody to T. pallidum [MHA-TP].
Syphilis, secondary

Clinical description: A stage of infection caused by *T. pallidum* characterized by localized or diffuse mucocutaneous lesions (e.g., rash — such as non-pruritic macular, maculopapular, papular, or pustular lesions), often with generalized lymphadenopathy. Other symptoms can include mucous patches, condyloma lata, and alopecia. The primary ulcerative lesion may still be present. Because of the wide array of symptoms possibly indicating secondary syphilis, serologic tests for syphilis and a thorough sexual history and physical examination are crucial to determining if a case should be classified as secondary syphilis.

Laboratory criteria for diagnosis:
- Demonstration of *T. pallidum* in clinical specimens by darkfield microscopy, or by polymerase chain reaction (PCR) or equivalent direct molecular methods

Case classification

Probable: a case that meets the clinical description of secondary syphilis with a nontreponemal (VDRL, RPR, or equivalent serologic methods) titer ≥4 AND a reactive treponemal test (FTA-ABS, TP-PA, EIA, CIA, or equivalent serologic methods).

Confirmed: a case that meets the clinical description of secondary syphilis (with at least one sign or symptom) that is laboratory confirmed.

Syphilis, early latent

Clinical description: A subcategory of latent syphilis (a stage of infection caused by *T. pallidum* in which organisms persist in the body of the infected person without causing symptoms or signs) when initial infection has occurred within the previous 12 months.

Case classification

Probable: A person with no clinical signs or symptoms of syphilis who has one of the following:

- No past diagnosis of syphilis, AND a reactive nontreponemal test (e.g., VDRL, RPR, or equivalent serologic methods), AND a reactive treponemal test (e.g., FTA-ABS, TP-PA, EIA, CIA, or equivalent serologic methods),

OR

- A current nontreponemal test titer demonstrating fourfold or greater increase from the last nontreponemal test titer.

AND

Evidence of having acquired the infection within the previous 12 months based on one or more of the following criteria:
Documented seroconversion or fourfold or greater increase in titer of a nontreponemal test during the previous 12 months

Documented seroconversion of a treponemal test during the previous 12 months

A history of symptoms consistent with primary or secondary syphilis during the previous 12 months

A history of sexual exposure to a partner within the previous 12 months who had primary, secondary, or early latent syphilis (documented independently as duration < 12 months)

Only sexual contact was within the last 12 months (sexual debut)

There is no confirmed case classification for early latent syphilis.

Viral Hepatitis

Hepatitis is inflammation of the liver. It can impair vital liver functions such as processing nutrients, filtering the blood and fighting infection. Viral hepatitis is inflammation of the liver caused by infection with a virus. In Massachusetts, the most common types of viral hepatitis are hepatitis A, hepatitis B and hepatitis C. Hepatitis can also result from heavy alcohol use, toxins, some medications, and certain medical conditions.

Chronic HBV

Confirmed:

- IgM antibodies to hepatitis B core antigen (IgM anti-HBc) negative

AND

- A positive result on one of the following tests: hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), or nucleic acid test for hepatitis B virus DNA (including qualitative, quantitative and genotype testing),

OR

- HBsAg positive or nucleic acid test for hepatitis B virus DNA (including qualitative, quantitative and genotype testing), or HBeAg positive two times at least 6 months apart (Any combination of these tests performed 6 months apart is acceptable.)
Probable:
A case with a single HBsAg positive or HBV DNA positive (including qualitative, quantitative and genotype testing), or HBeAg positive lab result when no IgM anti-HBc results are available

Acute HBV infection
Clinical Presentation: An acute illness with a discrete onset of symptoms consistent with acute viral hepatitis (e.g., fever, headache, malaise, anorexia, nausea, vomiting, diarrhea, and abdominal pain) and either a) jaundice or b) elevated serum alanine aminotransferase levels > 100 IU/L

Confirmed:
Clinically compatible case* not known to have chronic hepatitis B and

HBsAg positive

AND

IgM antibody to hepatitis B core antigen (IgM anti– HBc) positive, if done *

A documented negative hepatitis B surface antigen (HBsAg) laboratory test result within 6 months prior to a positive test (either HBsAg, Hepatitis B “e” antigen (HBeAg), or hepatitis B virus nucleic acid testing (HBV NAT) including genotype) result does NOT require an acute clinical presentation to meet the surveillance case definition.

Suspect:
Positive IgM antibody to hepatitis B core antigen (IgM anti-HBc) that does not meet the clinical definition

Note that the year into which a case is categorized is based upon the case’s “Event Date”, which is assigned by the following case characteristics, in decreasing order of specificity, dependent on availability of information: symptom onset date, specimen collection date, diagnosis date, or case report date

Past or Present HCV Infection Newly Reported to MDPH

Confirmed:
One or more of the following criteria (except in persons less than 18 months of age, for whom only criteria 3 would meet the case classification criteria):

Antibodies to hepatitis C virus (anti-HCV) screening-test-positive with a signal to cut-off ratio predictive of a true positive as determined for the particular assay as defined by CDC

OR

Hepatitis C Virus Recombinant Immunoblot Assay (HCV RIBA) positive

OR
Nucleic Acid Test (NAT) for HCV RNA positive (including qualitative, quantitative, or genotype)

Probable:
Rapid HCV antibody positive test

OR

Anti-HCV screening-test-positive that has not been verified by a more specific assay or has unknown signal to cut-off ratio (regardless of ALT results and acute hepatitis C status)

Acute HCV Infection

Confirmed:
Clinically compatible presentation* not known to have chronic HCV with 1 or more of the following:

Anti-HCV screening-test-positive with a signal to cut-off ratio predictive of a true positive as determined for the particular assay as defined by CDC

OR

HCV RIBA positive

OR

NAT for HCV RNA positive (including qualitative, quantitative, or genotype)

AND

if done meets the following two criteria†:

IgM anti-HAV negative AND
IgM anti-HBV negative

* - A documented negative HCV antibody laboratory result followed within 6 months by a positive test result (as described above) does NOT require an acute clinical presentation to meet the confirmed case definition

† - From 2007-2013, cases meeting the acute case definition but missing a negative HAV & HBV result were classified as Suspect. The case definition change in 2013 eliminated this requirement.

Suspect:

A documented negative HCV antibody laboratory test result followed within 6-12 months by a positive test result (as described above) does NOT require an acute clinical presentation to meet the suspect case definition.

Low level viremia (<100,000 IU/mL) not known to have chronic HCV
Note that the year into which a case is categorized is based upon the case’s “Event Date”, which is assigned by the following case characteristics, in decreasing order of specificity, dependent on availability of information: symptom onset date, specimen collection date, diagnosis date, or case report date.
HIV/AIDS, STD and Viral Hepatitis Program Staff Contact Information

<table>
<thead>
<tr>
<th>Topic</th>
<th>Contact</th>
<th>E-Mail</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division of STD Prevention & HIV/AIDS Surveillance, and Ratelle STD/HIV Prevention Training Center</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Policy Development and Administration</td>
<td>Kathleen Roosevelt (Director, STD Prevention Division)</td>
<td>Kathleen.roosevelt@state.ma.us</td>
<td>617-983-6941</td>
</tr>
<tr>
<td>Sylvie Ratelle STD/HIV Prevention Training Center</td>
<td>Katherine Hsu (Medical Director)</td>
<td>Katherine.Hsu@state.ma.us</td>
<td>617-983-6948</td>
</tr>
<tr>
<td></td>
<td>Janine Dyer (Deputy Director)</td>
<td>Janine.Dyer@state.ma.us</td>
<td>617-983-6964</td>
</tr>
<tr>
<td>STD/HIV/AIDS Surveillance and Epidemiology</td>
<td>Betsey John (Director, HIV/AIDS and STD Surveillance)</td>
<td>Betsey.John@state.ma.us</td>
<td>617-983-6570</td>
</tr>
<tr>
<td>STD Clinical Services</td>
<td>Katherine Hsu (Medical Director)</td>
<td>Katherine.Hsu@state.ma.us</td>
<td>617-983-6948</td>
</tr>
<tr>
<td></td>
<td>Barbara Coughlin (Public Health Nurse)</td>
<td>Barbara.Coughlin@state.ma.us</td>
<td>413-586-7525</td>
</tr>
<tr>
<td>STD Disease Intervention Field Services and STD Partner Notification</td>
<td>David Goudreau (Field Operations Manager)</td>
<td>David.Goudreau@state.ma.us</td>
<td>617-983-6835</td>
</tr>
<tr>
<td></td>
<td>Christopher Borger (Field Operations Manager)</td>
<td>Chris.Borger@state.ma.us</td>
<td>617-983-6930</td>
</tr>
<tr>
<td>STD Health Education, Training, and Prevention</td>
<td>Brenda Hernandez (Special Projects Coordinator)</td>
<td>Brenda.Hernandez@state.ma.us</td>
<td>617-983-6943</td>
</tr>
<tr>
<td>Office of HIV/AIDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV/AIDS Resource Allocation, Policy, and Programs</td>
<td>Dawn Fukuda (Director, Office of HIV/AIDS)</td>
<td>Dawn.Fukuda@state.ma.us</td>
<td>617-624-5303</td>
</tr>
<tr>
<td>Health Promotion and Disease Prevention Services</td>
<td>Linda Goldman, (Director of Health Promotion and Disease Prevention)</td>
<td>Linda.Goldman@state.ma.us</td>
<td>617-624-5347</td>
</tr>
<tr>
<td>Behavioral Health and Community Engagement</td>
<td>Barry Callis (Director of Behavioral Health and Infectious Disease Prevention)</td>
<td>Barry.Callis@state.ma.us</td>
<td>617-624-5316</td>
</tr>
<tr>
<td>Viral Hepatitis Program</td>
<td>Shauna Onofrey (Viral Hepatitis Surveillance Coordinator)</td>
<td>Shauna.Onofrey@state.ma.us</td>
<td>617-983-6776</td>
</tr>
<tr>
<td></td>
<td>Susan Soliva (Epidemiologist)</td>
<td>Susan.Soliva@state.ma.us</td>
<td>617-983-6883</td>
</tr>
</tbody>
</table>
HIV/AIDS, STD, and Viral Hepatitis Resources

Training
Professional training to community based organizations, local public health departments, and medical providers can be requested and is free of charge.

<table>
<thead>
<tr>
<th>Type of Training</th>
<th>Contact Information and Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV/AIDS Provider Trainings</td>
<td>617-624-5338 www.mass.gov/dph/aids</td>
</tr>
<tr>
<td>STD Diagnosis, Treatment, and Management</td>
<td>617-983-6945 www.RatellePTC.org</td>
</tr>
</tbody>
</table>

Material and Clinical Toolkits
Health education materials and clinical toolkits can be requested free of charge.

<table>
<thead>
<tr>
<th>Type of Material</th>
<th>Contact Information and Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD, and HIV Posters and Brochures</td>
<td>617-983-6800 https://massclearinghouse.ehs.state.ma.us/</td>
</tr>
<tr>
<td>STD Diagnosis, Treatment, and Management Toolkits</td>
<td>617-983-9645 www.RatellePTC.org</td>
</tr>
</tbody>
</table>

MDPH and MDPH Funded Websites

<table>
<thead>
<tr>
<th>Website</th>
<th>Website Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division of STD Prevention</td>
<td>www.mass.gov/dph/cdc/std</td>
</tr>
<tr>
<td>HIV/AIDS Bureau</td>
<td>www.mass.gov/dph/aids</td>
</tr>
<tr>
<td>HIV/AIDS Surveillance</td>
<td>www.mass.gov/dph/cdc/aids</td>
</tr>
<tr>
<td>Viral Hepatitis Program</td>
<td>www.mass.gov/hepc</td>
</tr>
<tr>
<td>Sylvie Ratelle STD/HIV Prevention Training Center</td>
<td>www.RatellePTC.org</td>
</tr>
</tbody>
</table>

National Websites

<table>
<thead>
<tr>
<th>Website</th>
<th>Website Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center for Disease Control and Prevention</td>
<td>www.cdc.gov</td>
</tr>
<tr>
<td>Division of STD Prevention</td>
<td>www.cdc.gov/std</td>
</tr>
<tr>
<td>Division of HIV/AIDS Prevention</td>
<td>www.cdc.gov/hiv</td>
</tr>
<tr>
<td>Division of Viral Hepatitis</td>
<td>www.cdc.gov/hepatitis</td>
</tr>
<tr>
<td>National Network of STD/HIV Prevention Training Centers</td>
<td>www.nnptc.org</td>
</tr>
<tr>
<td>CDC funded viral hepatitis online training</td>
<td>http://depts.washington.edu/hepstudy/</td>
</tr>
</tbody>
</table>