

SUMMARY OF FINDINGS

Town of Deerfield, MA

Municipal Vulnerability Preparedness Project

April 2018

Town of Deerfield

with Conservation Works, LLC

under a Municipal Vulnerability Preparedness (MVP) grant from the Massachusetts Executive Office of Energy and Environmental Affairs

SUMMARY OF FINDINGS FOR TOWN OF DEERFIELD MUNICIPAL VULNERABILITY PREPAREDNESS

April 2018

Acknowledgements

This project was funded under a Municipal Vulnerability Preparedness grant from the Massachusetts Executive Office of Energy and Environmental Affairs.

Thanks to the following town officials for their leadership and guidance on this project:

- Carolyn Shores Ness, Chair, Deerfield Selectboard
- Wendy Foxmyn, Town Administrator

and to the following additional members of the Deerfield MVP Core Team:

- John Paciorek, Jr., Deerfield Police Chief
- Bill Swasey, Deerfield Fire Chief
- Kevin Scarborough, Deerfield DPW Superintendent
- Joe Rogers, Franklin Conservation District
- Steve Barrett, Deerfield Conservation Commission
- Kyle Scott, Building Commissioner

Report prepared for the Town of Deerfield by Conservation Works, LLC:

- Christopher Curtis, Project Coordinator
- Pete Westover
- Molly Hale

1) OVERVIEW

1a) Purpose of Grant

The Town of Deerfield applied for and received a Municipal Vulnerability Preparedness (MVP) grant from the Massachusetts Executive Office of Energy and Environmental Affairs (EOEEA) in 2017. The town applied for this grant to better prepare the community for climate change and to reduce vulnerability and increase resilience to climate related events, in particular flooding impacts from the Deerfield River.

The grant provided funding for a Community Resilience Building workshop, which was held on January 24, 2018.

The workshop's central objectives were to:

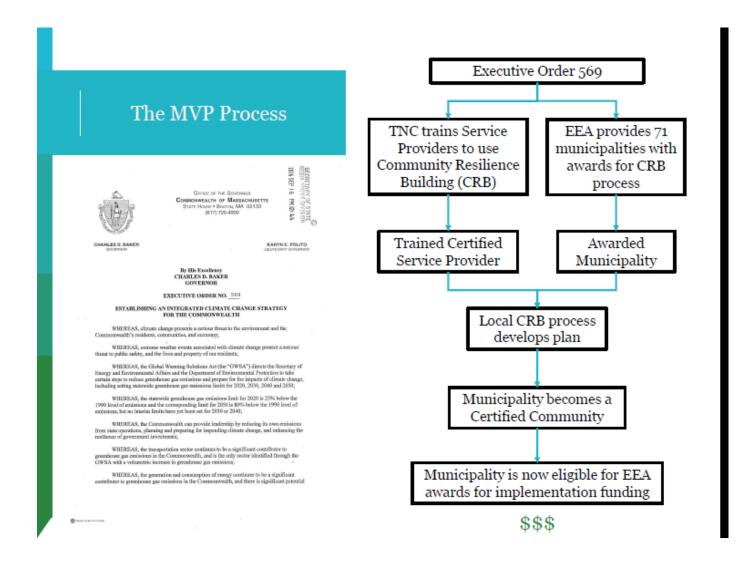
- Define top local natural and climate-related hazards of concern;
- Identify existing and future strengths and vulnerabilities;
- Develop prioritized actions for the community;
- Identify immediate opportunities to collaboratively advance actions to increase resilience.

1b) Municipal Vulnerability Preparedness (MVP) Program

The Massachusetts EOEEA established the MVP program to achieve several key goals:

- Increase capacity of municipalities and providers: Over 250 vendors were trained as state service providers;
- Mobilize: local knowledge, climate change data and existing plans to identify vulnerabilities and strengths and prioritize action steps;
- Incentivize: Designated communities will receive advanced standing in EEA grant programs;
- Mainstream: Incorporate climate change into existing municipal planning frameworks:
- National Model: The Nature Conservancy is looking to MVP as a national model and EOEEA is sharing this through the U.S. Climate Alliance.

In September 2016, Governor Charlie Baker signed Executive Order 569, instructing state government to provide assistance to cities and towns to complete climate change vulnerability assessments and resiliency planning.


The Municipal Vulnerability Preparedness grant program provides support for cities and towns in Massachusetts to begin the process of planning for resiliency. The state awards communities with funding to complete vulnerability assessments and develop action-oriented resiliency plans.

The program helps communities to:

- Define extreme weather and natural and climate related hazards
- Identify existing and future vulnerabilities and strengths
- Develop and prioritize actions for the community
- Identify opportunities to take action to reduce risk and build resilience

Communities who complete the MVP program become certified as an MVP community and are eligible for follow-up grant funding and other opportunities.

Figure 1. The MVP Process and Executive Order 569

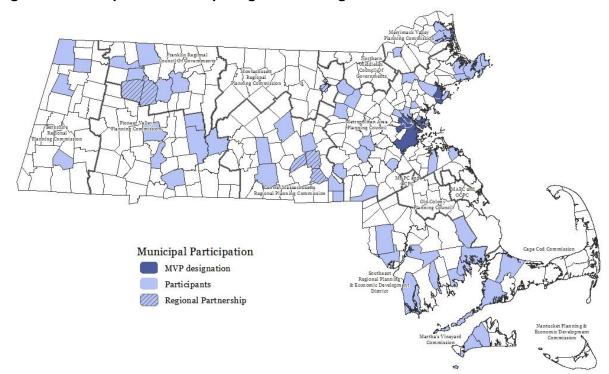


Figure 2. Municipalities Participating in MVP Program

2) COMMUNITY RESILIENCE BUILDING WORKSHOP

The Town of Deerfield held its Community Resilience Building workshop on Wednesday, January 24, 2018 at the Deerfield Town Offices. The workshop was sponsored by the Deerfield Selectboard, and had 53 invitees and a total of 27 participants (see Appendix D for full list).

The workshop was introduced by Carolyn Shores Ness, Chair of the Deerfield Selectboard, and coordinated by the town's MVP consultants, Conservation Works LLC.

The format of the workshop was as follows:

1) Workshop Group Discussions

Step #1: Identify Past, Current and Future Hazards (Large Group)

- What hazards have impacted your community in the past? Where, how often, and in what ways?
- What hazards are impacting your community currently? Where, how often, and in what ways?
- What effects will these hazards/changes have on your community in the future (5, 10, 25 years)?
- What is exposed to hazards and climate threats within your community?
- What have been the impacts to operations and budgets, planning and mitigation efforts?
- Other concerns or consideration related to impacts?

Step #2: Determine Top-priority Hazards (Small Teams)

 Which 4 hazards pose the greatest threat to the community currently and over the next decade, and against which the community should take action?

Step #3: Identify Infrastructural Vulnerabilities and Strengths (Small teams)

- List all infrastructural features: (housing, commercial buildings, roads, utilities) that could be affected by the top 4 hazards
- Describe locations by participatory mapping
- Identify ownership
- Identify each feature as a vulnerability or strength (or both): V or S

Step #4: Identify Societal Vulnerabilities and Strengths (Small teams)

- List all societal features: (health care services, hospitals, gas stations, supermarkets, shelters, public works centers, fire stations, senior centers or housing, data server facilities, pharmacies, churches, emergency response centers) that could be affected by the top 4 hazards
- Describe locations by participatory mapping
- Identify ownership
- Identify each feature as a vulnerability or strength (or both): V or S

Step #5: Identify Environmental Vulnerabilities and Strengths (Small teams)

- List all environmental features: (wetlands, floodplains, unstable slopes, open space, wildlife habitat areas and corridors) that could be affected by the top 4 hazards
- Describe locations by participatory mapping
- Identify ownership
- Identify each feature as a vulnerability or strength (or both): V or S

Step #6: Identify and Prioritize Community Actions (Small Teams)

- Identify and prioritize infrastructural actions. Examples: Floodproof wastewater plant; upgrade power transformers; adopt more stringent floodplain zoning
- Identify and prioritize societal actions. Examples: Evacuation drills; install signage for evacuation routes; extreme weather communications
- Identify and prioritize environmental actions. Examples: Protect wetlands, floodplains and riparian buffers; open space grants; remove high hazard dams

Step #7: Determine Overall Priority Actions (Large Team)

- Small teams report out on Risk Matrix outcomes (5-7 minutes per team)
- Reach large group agreement on highest priority actions (use small sticky dots for voting – 5 each)
- Further define urgency and timing

Route 2 damages from Tropical Storm Irene

3) CRB PROJECT TEAM AND WORKSHOP PARTICIPANTS

The Community Resilience Building project team for the Town of Deerfield includes the following town officials:

- Carolyn Shores Ness, Chair, Deerfield Selectboard
- Wendy Foxmyn, Deerfield Town Administrator
- John Paciorek, Jr., Deerfield Police Chief
- Bill Swasey, South Deerfield Fire District Chief
- Kevin Scarborough, Deerfield DPW Superintendent
- Joe Rogers, Franklin Conservation District
- Steve Barrett, Deerfield Conservation Commission
- Kyle Scott, Deerfield Building Commissioner

This group met prior to the workshop to discuss the town's previous hazard mitigation efforts and future needs, participated in the workshop, and will continue to guide the town's efforts to implement workshop recommendations going forward.

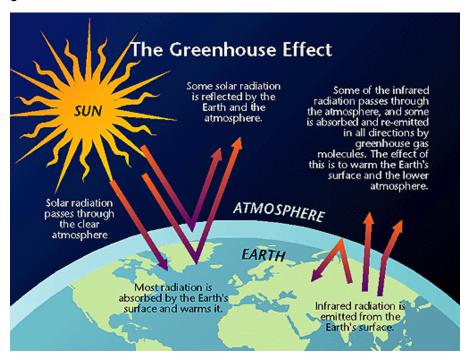
Workshop participants included:

- Carolyn Shores Ness, Chair, Deerfield Selectboard
- John Paciorek, Jr., Deerfield Police Chief
- Bill Swasey, South Deerfield Fire District Chief
- Kevin Scarborough, Deerfield DPW Superintendent
- Joe Rogers, Franklin Conservation District
- Kyle Scott, Building Commissioner
- Paul Chapley, Chapley Gardens

- Laurie Lankowski
- Rich Hubbard, Franklin Land Trust
- Tami Gaylor, Five College Realtors
- Brian Nartowicz, Deerfield Fire District, Water Superintendent
- Zachary Smith, Deerfield EMS Director
- Ken Cuddeback, Bement School
- Trevor McDaniel, Deerfield Selectboard
- Erin Rodgers
- Kimberly Noake MacPhee, Franklin Regional Council of Governments
- George Holmes
- Kathie Willliams, Richardson's Candy Kitchen
- Milton Chuck Williams, Deerfield Academy
- Laurie Boosahda, Frontier School
- Adam Sokoloski, Deerfield Police Department
- Josh Solomon, The Recorder
- Kip Komosa, Deerfield Selectboard and Planning Board

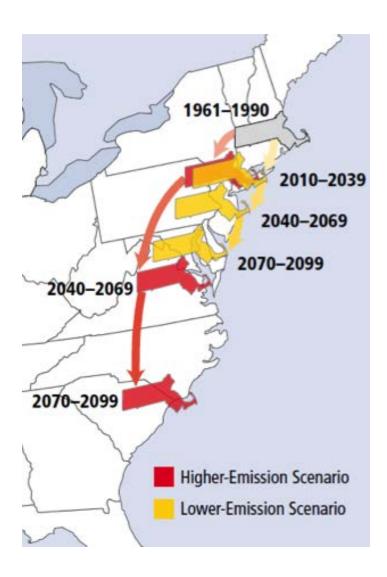
4) TOP HAZARDS AND VULNERABLE AREAS

4a) Climate Change is a Reality


In Massachusetts, and in Deerfield, the climate is already changing. Evidence of this change is shown in the following statistics:.

Temperature: has increased 2.9 degrees since 1895

Growing season: has increased 11 days since 1950


Sea level rise: 11 inches since 1922Strong storms: 55% increase since 1958

Multiple studies published in peer-reviewed scientific journals show that 97 percent or more of actively publishing climate scientists agree climate-warming trends over the past century are extremely likely due to human activities. This climate warming trend is related to the greenhouse effect, which is illustrated below:

Climate projections for Massachusetts indicate that warming will result in:

- By mid-century Massachusetts climate will be similar to northern Virginia
- By end of century like South Carolina as illustrated on the map below:

4b) Temperature Changes

Projected temperature changes for Massachusetts indicate the following changes in summer and winter temperatures:

- Summer is expected to see an increase in days over 90 °F. from a baseline of 6 days to 10-35 more days by mid-century, and 15-76 more days by end of the century;
- Winter will have 23-60 fewer days below freezing by the end of the century.

4c) Temperature Change Impacts

The impacts of rising temperatures will include:

- More heat in the summer will put larger cooling demands on aging systems, creating the potential for power outages;
- Urban residents— especially very young, ill, and elderly will face greater risks of serious heat-related illnesses;
- Rising winter temperatures will have economic impacts on winter recreation industry (e.g. skiing) and will result in increased insect pests.

Tornado damage in Monson, MA

4d) Rainfall Changes and Impacts

Along with rising temperatures, projections indicate major changes in rainfall trends and impacts, including:

- Frequency and severity of high-intensity rainfall events will trend upward
- Days with rainfall over 1" will increase from a baseline of 6 now, by 1-4 days by end of century
- More intense downpours often lead to inland flooding
- Winter precipitation increases, more in form of rain
- Summer precipitation decreases and could combine with higher temperatures to increase the frequency of episodic droughts
- Summer droughts are likely to increase in length from an average of 16 days, by 1-3 days
- Droughts will create challenges for local water supply by reducing surface water storage and the recharge of groundwater supplies

4e) Climate Projections for the Connecticut River Basin in Massachusetts

The Northeast Climate Science Center at UMass has prepared a set of detailed climate change projections, which are specific to each watershed area in Massachusetts. The Town of Deerfield is included within the Connecticut River Basin.

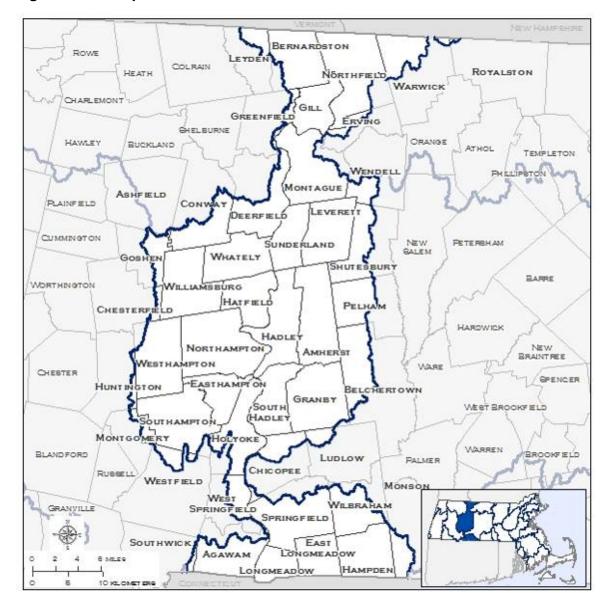


Figure 3. Municipalities Within the Connecticut River Basin

Key overall findings of this work include:

- Annual air temperatures in the Northeast have been warming at an average rate of 0.5°F per decade since 1970.
- Average annual temperatures for the CT River Basin will increase from baseline of 47°F by 3-7° by mid-century and by 4-11° by end of century

Findings specific to the Connecticut River Basin are summarized here:

Figure 4. Projected Temperature Changes in Connecticut River Basin

Connecticut	Connecticut Basin		Project 20	ed Cha	0 -	Project	d-Cent ted Ch 050s ('	ange in		cted Cl	hange in (°F)	End of Century Projected Change in 2090s (°F)		
	Annual	46.98	+2.18	to	+4.46	+3.00	to	+6.43	+3.57	to	+9.00	+4.04	to	+10.94
	Winter	25.01	+2.36	to	+5.37	+3.02	to	+7.99	+3.95	to	+9.54	+4.18	to	+10.83
Average Temperature	Spring	45.35	+1.51	to	+3.30	+2.26	to	+5.21	+2.76	to	+7.23	+3.11	to	+8.81
. cperatare	Summer	67.93	+2.19	to	+4.54	+3.05	to	+7.24	+3.44	to	+10.52	+3.91	to	+12.94
	Fall	49.24	+2.27	to	+5.23	+3.81	to	+6.81	+3.75	to	+9.57	+4.21	to	+11.69
	Annual	58.45	+2.03	to	+4.24	+2.65	to	+6.56	+3.18	to	+9.13	+3.63	to	+11.03
	Winter	35.23	+1.96	to	+4.66	+2.61	to	+7.11	+3.19	to	+8.53	+3.43	to	+9.63
Maximum Temperature	Spring	57.16	+1.38	to	+3.23	+2.13	to	+5.16	+2.66	to	+7.53	+3.17	to	+8.99
. cperatare	Summer	80.18	+1.89	to	+4.67	+2.75	to	+7.45	+3.25	to	+10.93	+3.76	to	+13.41
	Fall	60.8	+2.47	to	+5.04	+3.65	to	+7.16	+3.54	to	+9.91	+4.21	to	+12.20
	Annual	35.51	+2.38	to	+4.81	+3.35	to	+6.64	+3.93	to	+8.89	+4.37	to	+10.89
	Winter	14.8	+2.63	to	+6.03	+3.56	to	+8.76	+4.51	to	+10.54	+4.94	to	+11.83
Minimum Temperature	Spring	33.53	+1.62	to	+3.63	+2.38	to	+5.64	+2.96	to	+7.07	+3.29	to	+8.59
. c.i.peratare	Summer	55.67	+2.34	to	+4.62	+3.21	to	+7.33	+3.63	to	+10.13	+4.07	to	+12.49
	Fall	37.68	+1.97	to	+5.33	+3.58	to	+6.64	+3.82	to	+9.22	+4.21	to	+11.37

- The Connecticut River basin is expected to experience increased average temperatures throughout the 21st century. Maximum and minimum temperatures are also expected to increase throughout the end of the century. These increased temperature trends are expected for annual and seasonal projections.
- Seasonally, maximum summer and fall temperatures are expected to see the highest projected increase throughout the 21st century.
 - Summer mid-century increase of 2.8 °F to 7.5 °F (3-9% increase); end of century increase of 3.8 °F to 13.4 °F (5-17% increase).
 - Fall mid-century increase of 3.7°F to 7.2°F (6-12% increase); end of century increase by and 4.2 °F to 12.2 °F (7-20% increase).
- Seasonally, minimum winter and fall temperatures are expected to see increases throughout the 21st century.
 - Winter mid-century increase of 3.6 °F to 8.8 °F (24-59% increase); end of century increase by 4.9 °F to 11.8 °F (33-80% increase).
 - Fall mid-century of 3.6 °F to 6.6 °F (10-18% increase); end of century increase of 4.2°F to 11.4 °F (11-30% increase).

Figure 5. Projected Changes Hot Weather Days in Connecticut River Basin

Connecticut	Connecticut Basin		Projected Change in 2030s (Days)			Proje	id-Cent cted Ch 50s (D	ange in		ted Ch 70s (D	nange in ays)	End of Century Projected Change in 2090s (Days)		
	Annual	6.41	+6.36	to	+19.72	+9.87	to	+35.35	+11.98	to	+57.07	+14.50	to	+76.01
Days with Maximum	Winter	0.00	+0.00	to	+0.00	+0.00	to	+0.00	+0.00	to	+0.00	+0.00	to	+0.00
Temperature	Spring	0.39	+0.14	to	+0.91	+0.30	to	+1.76	+0.37	to	+3.31	+0.28	to	+5.00
Over 90°F	Summer	5.73	+5.53	to	+16.97	+8.31	to	+29.50	10.37	to	+46.30	+12.47	to	+60.30
	Fall	0.29	+0.44	to	+2.09	+0.51	to	+4.58	+0.61	to	+8.80	+1.02	to	+11.94
	Annual	0.46	+1.74	to	+7.34	+2.77	to	+16.31	+3.55	to	+32.96	+4.56	to	+49.67
Days with Maximum	Winter	0.00	+0.00	to	+0.00	+0.00	to	+0.00	+0.00	to	+0.00	+0.00	to	+0.00
Temperature	Spring	0.00	+0.00	to	+0.26	+0.02	to	+0.49	+0.04	to	+1.03	+0.03	to	+1.93
Over 95°F	Summer	0.45	+1.71	to	+6.53	+2.54	to	+14.84	+3.05	to	+28.97	+4.16	to	+43.03
	Fall	0.01	+0.06	to	+0.63	+0.09	to	+1.19	+0.13	to	+3.23	+0.20	to	+4.87
	Annual	0.00	+0.14	to	+1.54	+0.22	to	+4.35	+0.41	to	+11.64	+0.38	to	+23.33
Days with Maximum	Winter	0.00	+0.00	to	+0.00	+0.00	to	+0.00	+0.00	to	+0.00	+0.00	to	+0.00
Temperature	Spring	0.00	+0.00	to	+0.03	+0.00	to	+0.06	+0.00	to	+0.21	+0.00	to	+0.45
Over 100°F	Summer	0.00	+0.13	to	+1.45	+0.20	to	+4.17	+0.36	to	+10.72	+0.33	to	+21.46
	Fall	0.00	+0.00	to	+0.14	+0.00	to	+0.37	+0.01	to	+0.75	+0.00	to	+1.29

- Due to projected increases in average and maximum temperatures throughout the end
 of the century, the Connecticut River basin is also expected to experience an increase in
 very hot days.
 - Annually, the Connecticut River basin is expected to see days with daily maximum temperatures over 90 °F increase by 10 to 35 more days by midcentury, and 15 to 76 more days by the end of the century.
 - Seasonally, summer is expected to see an increase of 8 to 30 more days with daily maximums over 90 °F by mid-century.
 - By end of century, the Connecticut basin is expected to have 12 to 60 more days with daily maximums over 90 °F by mid-century.

Figure 6. Projected Changes in Cold Weather Days in Connecticut River Basin

Connecticut	Connecticut Basin		Projected Change in 2030s (Days)			Projec	d-Cen ted Ch 50s (D	ange in		ted Ch 70s (D	ange in	End of Century Projected Change in 2090s (Days)		
	Annual	11.33	-4.01	to	-7.02	-4.88	to	-8.3	-5.42	to	-8.76	-5.53	to	-9.57
Days with Minimum	Winter	11	-3.84	to	-6.82	-4.67	to	-7.96	-5.11	to	-8.52	-5.33	to	-9.1
Temperature	Spring	0.38	-0.08	to	-0.44	-0.12	to	-0.44	-0.18	to	-0.49	-0.18	to	-0.55
Below 0°F	Summer	0.00	-0.00	to	-0.00	-0.00	to	-0.00	-0.00	to	-0.00	-0.00	to	-0.00
	Fall	0.01	-0.02	to	-0.00	-0.02	to	-0.00	-0.02	to	-0.00	-0.02	to	-0.00
	Annual	158.63	-10.58	to	-28.13	-18.57	to	-37.28	-22.18	to	-50.76	-22.88	to	-59.79
Days with Minimum	Winter	85.33	-1.15	to	-5.9	-2.37	to	-8.5	-3.50	to	-15.82	-4.26	to	-19.49
Temperature	Spring	41.52	-3.47	to	-9.56	-6.03	to	-13.97	-6.70	to	-17.87	-8.82	to	-19.42
Below 32°F	Summer	0.02	-0.01	to	-0.17	-0.01	to	-0.27	-0.01	to	-0.23	-0.01	to	-0.26
	Fall	31.7	-4.87	to	-12.57	-9.60	to	-15.50	-8.89	to	-19.96	-9.36	to	-22.29

- Due to projected increases in average and minimum temperatures throughout the end of the century, the Connecticut River basin is expected to experience a decrease in days with daily minimum temperatures below 32 °F and 0 °F.
- Seasonally, winter, spring and fall are expected to see the largest decreases in days with daily minimum temperatures below 32 °F.
 - Winter is expected to have 2 to 9 fewer days by mid-century, and 4 to 19 fewer by end of century.
 - Spring is expected to have 6 to 14 fewer days by mid-century, and 9 to 19 fewer by end of century.
 - Fall is expected to have 10 to 16 fewer days by mid-century, and 9 to 22 fewer days by end of century.

Figure 7. Projected Changes in Degree Days in Connecticut River Basin

Connecticut B	Connecticut Basin			l Chan	ge in 2030s Days)	Projected	id-Cent	, ge in 2050s		ge in 2070s Days)	End of Century Projected Change in 2090s (Degree-Days)			
	Annual	7038.04	-579.08	to	-1220.89	-807.65	to	-1696.71	-932.31	to	-2213.81	-1061.27	to	-2563.22
Heating Degree-	Winter	3617.34	-196.64	to	-492.19	-267.53	to	-731.67	-348.79	to	-867.16	-385.45	to	-997.60
Days	Spring	1827.32	-122.30	to	-279.16	-188.81	to	-436.93	-225.95	to	-566.74	-272.18	to	-666.52
(Base 65°F)	Summer	127	-45.72	to	-80.45	-63.18	to	-101.77	-66.76	to	-116.60	-72.74	to	-119.29
	Fall	1471.22	-176.19	to	-404.39	-298.62	to	-486.71	-283.22	to	-674.74	-306.64	to	-768.06
	Annual	459.27	+200.92	to	+430.52	+272.64	to	+749.47	+326.52	to	+1142.40	+379.72	to	+1504.58
Cooling	Winter	nan	-0.39	to	+2.36	+0.05	to	+6.58	-0.14	to	+3.38	-0.29	to	+7.15
Degree-Days (Base 65°F)	Spring	20.23	+10.02	to	+28.89	+17.52	to	+55.39	+21.11	to	+92.67	+20.81	to	+121.55
(base 05 1)	Summer	396.24	+162.41	to	+335.42	+204.13	to	+564.51	+235.28	to	+853.52	+270.64	to	+1075.43
	Fall	37.72	+25.68	to	+84.68	+40.57	to	+136.51	+49.64	to	+225.83	+63.95	to	+304.46
	Annual	2348.43	+392.37	to	+801.41	+536.06	to	+1252.31	+652.08	to	+1894.77	+739.11	to	+2379.52
Growing Degree-	Winter	3.8	-0.26	to	+8.95	+0.09	to	+9.32	+0.51	to	+14.24	+1.70	to	+19.27
Days (Base 50°F)	Spring	278.98	+59.68	to	+130.77	+91.58	to	+225.48	+117.65	to	+331.37	+117.61	to	+434.70
	Summer	1649.87	+201.11	to	+416.74	+279.05	to	+664.79	+315.32	to	+966.48	+358.57	to	+1190.01
	Fall	403.13	+105.14	to	+284.19	+169.55	to	+395.11	+166.52	to	+591.21	+211.39	to	+734.09

Note: Degree day is a measurement designed to quantify the demand for energy needed to heat or cool a building.

- Due to projected increases in average, maximum, and minimum temperatures throughout the end of the century, the Connecticut basin is expected to experience a decrease in heating degree-days, and increases in both cooling degree-days and growing (agricultural) degree-days.
- Seasonally, winter historically exhibits the highest number of heating degree-days and is
 expected to see the largest decrease of any season, but spring and fall are also
 expected to see significant change.
 - The winter season is expected to see a decrease of 7-20% (268-732 degree-days) by mid-century, and a decrease of 11-28% (385-998 degree-days) by the end of century.
 - The spring season is expected to decrease in heating degree-days by 10-24% (189-437 degree-days) by mid-century, and by 15-36% (272-667 degree-days) by the end of century.
 - The fall season is expected to have decreases in heating degree-days by 20-33% (299-487 degree-days) by mid-century, and by and 21-52% (307-768 degree-days) by the end of century.
- Conversely, due to projected increasing temperatures, summer cooling degree-days are expected to increase by 52-142% (204-565 degree-days) by mid-century, and by 68-271% (271-1075 degree-days) by end of century.

- Seasonally, summer historically exhibits the highest number of growing degree-days and
 is expected to see the largest decrease of any season, but the shoulder seasons of
 spring and fall are also expected to see an increase in growing degree-days.
 - The summer season is projected to increase by 17-40% (279-665 degree-days)
 by mid-century, and by 22-72% (359-1190 degree-days) by end of century.
 - Spring is expected to see an increase by 33-81% (92-225 degree-days) by midcentury and 42-156% (118-435 degree-days) by end of century.
 - Fall is expected to see an increase by 42-98% (170-395 degree-days) by midcentury and 52-182% (211-734 degree-days) by end of century.

Figure 8. Projected Change in High Precipitation Days in Connecticut River Basin

Connecticut Ba	sin	Observed Baseline 1971-2000 (Days)	Project 203	U	Mid-Century Projected Change in 2050s (Days)			-	ed Ch	ange in ays)	End of Century Projected Change in 2090s (Days)			
	Annual	6.5	+0.05	to	+2.22	+0.52	to	+3.15	+0.80	to	+2.82	+0.67	to	+4.35
Days with	Winter	1.04	-0.04	to	+0.74	+0.05	to	+1.01	+0.06	to	+1.30	+0.22	to	+1.64
Precipitation Over 1"	Spring	1.56	-0.08	to	+0.62	+0.08	to	+0.81	+0.17	to	+1.20	+0.21	to	+1.62
_	Summer	1.98	-0.37	to	+0.57	-0.19	to	+0.97	-0.34	to	+0.66	-0.38	to	+0.74
	Fall 1.89		-0.28	to	+0.70	-0.17	to	+0.82	-0.27	to	+1.00	-0.40	to	+1.17
	Annual	0.55	-0.05	to	+0.40	-0.01	to	+0.39	+0.00	to	+0.45	+0.04	to	+0.58
Days with	Winter	0.03	-0.02	to	+0.05	-0.02	to	+0.07	-0.01	to	+0.08	-0.01	to	+0.09
Precipitation Over 2"	Spring	0.1	-0.03	to	+0.10	-0.03	to	+0.09	-0.02	to	+0.17	+0.00	to	+0.25
_	Summer	0.26	-0.06	to	+0.16	-0.07	to	+0.17	-0.06	to	+0.17	-0.09	to	+0.19
	Fall	0.16	-0.06	to	+0.17	-0.06	to	+0.16	-0.04	to	+0.18	-0.05	to	+0.19
	Annual	0.00	-0.03	to	+0.03	-0.02	to	+0.03	-0.01	to	+0.05	-0.01	to	+0.05
Days with	Winter	0.00	+0.00	to	+0.00	+0.00	to	+0.00	+0.00	to	+0.00	+0.00	to	+0.00
Precipitation Over	Spring	0.00	+0.00	to	+0.00	+0.00	to	+0.00	+0.00	to	+0.00	+0.00	to	+0.00
••	Summer	0.00	-0.02	to	+0.02	-0.02	to	+0.02	-0.02	to	+0.03	-0.02	to	+0.03
	Fall	0.00	-0.02	to	+0.03	-0.01	to	+0.03	-0.01	to	+0.04	-0.01	to	+0.04

- The projections for expected number of days receiving precipitation over one inch are variable for the Connecticut basin, fluctuating between loss and gain of days.
 - Seasonally, the winter season is generally expected to see the highest projected increase.
 - The winter season is expected to see an increase in days with precipitation over one inch of 0-1 days by mid-century, and of 0-2 days by the end of century.
 - The spring season is expected to see an increase in days with precipitation over one inch of 0-1 days by mid-century, and of 0-2 days by the end of century.

Figure 9. Projected Changes in Total Precipitation in Connecticut River Basin

Connecticut Basin		Observed Baseline 1971-2000 (Inches)		nange in ches)	Proje		ntury Change in nches)		ted Ch Os (Inc	nange in ches)	End of Century Projected Change in 2090s (Inches)			
	Annual	46.39	-0.40	to	+4.99	+1.25	to	+6.22	+1.95	to	+7.26	+1.68	to	+8.30
	Winter	10.34	-0.39	to	+2.08	+0.07	to	+2.59	+0.30	to	+3.03	+0.73	to	+3.87
Total Precipitation	Spring	12.12	-0.05	to	+2.09	+0.32	to	+2.13	+0.57	to	+2.80	+0.45	to	+2.87
	Summer	11.98	-0.37	to	+1.76	-0.17	to	+2.13	-0.34	to	+1.85	-1.03	to	+1.90
	Fall	11.94	-1.20	to	+1.48	-1.26	to	+1.65	-1.50	to	+1.78	-1.73	to	+1.49

- Similar to projections for number of days receiving precipitation over a specified threshold, seasonal projections for total precipitation are also variable for the Connecticut River basin.
 - The winter season is expected to experience the greatest change with an increase of 1-25% by mid-century, and of 7-37% by end of century.
 - Projections for the summer and fall seasons are more variable, and could see either a drop or increase in total precipitation throughout the 21st century.
 - The summer season projections for the Connecticut River basin could see a decrease of 0.2 to an increase of 2.1 inches by mid-century (decrease of 1% to increase of 18%), and a decrease of 1.0 to an increase of 1.9 inches by the end of the century (decrease of 9% to increase of 16%).
 - The fall season projections for the Connecticut River basin could see a decrease of 1.3 to an increase of 1.7 inches by mid-century (decrease of 11% to increase of 14% and a decrease of 1.7 to an increase of 1.5 inches by the end of the century (decrease of 14% to increase of 12%).

Figure 10. Projected Changes in Dry Days in Connecticut River Basin

Connecticut Basin		Observed Baseline 1971-2000 (Days)		ange in	Proje	/lid-Cer ected C 050s ([hange in	•	ted Ch	nange in Pays)	End of Century Projected Change in 2090s (Days)			
	Annual	16.41	-0.18	to	+1.34	-0.42	to	+1.75	-0.73	to	+2.26	-0.35	to	+2.44
	Winter	11.4	-0.77	to	+1.14	-0.57	to	+1.30	-0.80	to	+1.18	-1.21	to	+1.47
Consecutive Dry Days	Spring	11.95	-1.05	to	+0.50	-0.91	to	+1.05	-1.24	to	+1.13	-1.24	to	+0.76
	Summer	11.57	-0.70	to	+1.46	-0.61	to	+1.07	-0.91	to	+1.61	-1.37	to	+1.87
	Fall	12.03	-0.12	to	+1.72	-0.21	to	+2.35	-0.61	to	+2.61	-0.13	to	+2.78

- Annual and seasonal projections for consecutive dry days, or for a given period, the largest number of consecutive days with precipitation less than 1 mm (~0.04 inches), are variable throughout the 21st century.
 - Seasonally, the fall and summer seasons are expected to continue to experience the highest number of consecutive dry days.

 The fall season is expected to experience an increase of 0-3 days in consecutive dry days by the end of the century.

5) SUMMARY OF PREVIOUS DEERFIELD HAZARD MITIGATION WORK

The Town of Deerfield has completed several previous projects that have helped with preparations for this Municipal Vulnerability Preparedness project. This work is summarized below.

5a) Deerfield Multi-Hazard Mitigation Plan

In 2014, the Town completed a Multi-Hazard Mitigation (MHM) Plan, coordinated by the Deerfield Local Multi-hazard Mitigation Planning Committee.

This MHM Plan identified the key natural hazards which are the most important concerns in Deerfield:

- Floods
- Severe winter storms
- Hurricanes and tropical storms
- Tornados, microbursts, thunderstorms
- Wildfires and brushfires
- Dam failures
- Earthquakes
- Landslides
- Ice jams

5b) Major Flood Years and Disasters in Franklin County

Since 1993, the most significant flood years in Franklin County have included:

- 2011- 8 events \$22.3m in property damages, including Tropical Storm Irene
- 2005 5 events \$11.4 m in property damage, including Tropical Storm Tammy
- 1996 11 events \$1.8m in damages

Flooding in Deerfield from Tropical Storm Irene

5c) Presidential Disaster Declarations

Between the years 1993 and 2013, there have been twelve Presidential Disaster Declarations in Franklin County, shown below with the amount of federal aid to Franklin County:

- March 1993 Blizzard, record snowfall \$1.2 million in federal aid
- January 1996 Blizzard \$16.1 million in federal aid
- March 2001 Snowstorm \$21 million in federal aid
- February 2003 Snowstorm \$28 million in federal aid
- December 2003 Snowstorm \$35.6 million in federal aid
- January 2005 Snowstorm \$ 49.9 million in federal aid
- December 2008 Winter storm \$66. million in federal aid
- December 2008 Severe storm & flood \$ 32 million in federal aid
- January 2011 Winter storm \$1 million in federal aid
- August 2011 Tropical Storm Irene \$26.6 million in federal aid
- October 2011 –Severe winter storm \$71.9 million in federal aid
- February 2013 Winter storm and flood \$16.4 million in federal aid

Winter storm damage

Damage to State Route 2 in Franklin County after Tropical Storm Irene

5d) Impacts from Tropical Storm Irene

On August 28, 2011, Tropical Storm Irene, a weakened hurricane, crossed through New England, dumping 10-15" of rain on southern Vermont and western Massachusetts. In the resulting flooding, the Deerfield River crested at 23.7', the highest recorded flow since 1955. Over 700,000 customers lost power in Massachusetts alone, and there was one flooding fatality on the Deerfield River.

Flooding spread across roads and farms along the Deerfield River and in the Old Deerfield area, impacting many properties, including:

- Deerfield Academy
- Historic Deerfield
- Bement School
- Routes 5/10
- Stillwater Bridge
- I-91 Bridge
- Mill Village Road
- Multiple farms

Overall, there were \$23 million in damage in Franklin County alone due to this storm.

Repairing damages from Tropical Storm Irene at Stillwater in Deerfield

Flooding of Deerfield farmland from Tropical Storm Irene

5e) Hurricanes to Make Landfall in New England

Since 1900, there have been eight hurricanes that have made landfall in New England, including hurricanes in the following years:

- 1904
- 1938
- 1954
- 1955
- 1960
- 1976
- 1985: Hurricane Gloria
- 1991: Hurricane Bob \$5.5 m in property & crop damage in Franklin County

Note: This list does not include tropical storms such as Tropical Storm Irene (2011), which inflicted major damage.

Flooded farmland in 2011's Tropical Storm Irene

5f) Tornados

There have been four recorded tornados in Franklin County in the last 15 years. They include:

- 7-3-97: Heath \$50k in property damages
 7 -3-97: Charlemont \$50k in property damages
 7-1-06: Wendell \$250k in property damages
 2-25-17: Conway an EF1 tornado severely damaged 12 homes and a church

Tornado damage to Conway church

Microburst on Mount Tom

2011 Tornado in Westfield, Springfield, Monson: \$24 m in damages

5g) Other Hazards

The Deerfield Multi-Hazard Plan identified and quantified a series of other natural hazards to the town, including:

Thunderstorm, High Wind or Lightning Events:

- 11 events in or near Deerfield since 1993;
- \$50k in damages in 2005 lightning storm.

Wildfires:

- Franklin County is at low risk, except for drought years;
- 26 brushfires in Deerfield from 2004-2010.

Earthquakes:

- Ten earthquakes in Northeast 1924-2007 of magnitude 4.7 or more, but none centered in Massachusetts;
- A fault line runs through Franklin County east of Deerfield.

Landslides:

- The Connecticut River Valley has a moderate landslide incidence rating;
- In March, 2011 Greenfield experienced a landslide.
- In November, 2011, Deerfield had a significant landslide in the Wapping Road area, which caused

Ice Jams:

- There are documented ice jam occurrences in the Deerfield River: 1947, 1957, 1959. Dam Failures:
 - There are six major dams of concern to Deerfield:
 - Somerset, Harriman, Sherman, Fife Brook and Bear Swamp Dams on the Deerfield River;
 - Moore Dam on the Connecticut River.
 - Catastrophic failure of any of these dams would result in cascading dam failures;
 - Harriman failure would reach Deerfield in 4 hours;
 - Evacuations would be needed at Deerfield Academy and Bement School;
 - Roads inundated would include Routes 5/10 and Old Main Street.

Flooding in Shelburne Falls, 2011

Flooding in Old Deerfield, 2011

5h) Vulnerability Assessment

The Deerfield Multi-Hazard Plan assessed the town's vulnerability to natural hazards and had these key findings:

- 24 dwellings are located in Deerfield's flood hazard area
- 1358 elderly and low income persons are exposed to multi-hazard events
- These significant structures are located in the floodplain: Historic Deerfield, Frontier Regional School, Old Deerfield Wastewater Treatment Plant, Deerfield Academy, Bement School
- Average annual property damages in Franklin County by storm type are:

• Severe winter storms: \$4.1m

Hurricanes: \$1.3mTornados: \$14kThunderstorms: \$79k

Lightning: \$34k

• Floods: data not available

Flooding on Deerfield River in Shelburne Falls, MA, 2011

5g) Recommended Strategies in Deerfield Multi-Hazard Mitigation Plan

The Deerfield MHM Plan recommended a series of mitigation strategies to address the impacts of severe weather and climate change, including:

- Improve Floodplain zoning
- Develop annual program to improve household disaster preparedness
- Update FEMA floodplain maps
- Utility undergrounding program for Routes 5/10
- Stabilize riverbanks
- Remove debris from culverts and drainage structures
- Identify and evaluate beaver dams and risks

6) PREVIOUS WORK: TOWN and REGIONAL CLIMATE AND HAZARD PLANNING

6a) Deerfield Mitigation Work Completed To Date

The Town of Deerfield has completed several recent projects to mitigate the impacts of flooding and severe weather events, including:

- Mill Village Road restoration, 2009-10: total cost of \$800,000
- Old Deerfield Wastewater Plant, 2006: total cost of \$926,000
- Open bottom culvert, 2011-12: total cost of \$120,000

Flood damages at Old Deerfield wastewater treatment plant, 2011

Flooding near Old Deerfield, 2011

6b) River Smart Communities Recommendations

The Town of Deerfield participated in a state grant funded project, titled "River Smart Communities". The final report for this project included the following recommendations:

- Develop fluvial hazard assessments to map risk of erosion or deposition
- Upgrade vulnerable stream crossings to reduce future damage
- Mitigate flood hazards through planning and land use
- Move threatened buildings and infrastructure
- Restore floodplains and riparian buffers
- Floodplain zoning

Aerial photo of Deerfield River flooding, Deerfield, MA, 2011

6c) Pioneer Valley Climate Action Plan

The Pioneer Valley Planning Commission completed a regional plan, titled the "Pioneer Valley Climate Action Plan" in 2016, which included a number of recommendations that are relevant to the Town of Deerfield.

The PVPC plan recommends Municipal Strategies in three broad categories:

- Mitigation strategies: to reduce greenhouse gas emissions
- Adaptation strategies: to prepare for climate change impacts
- Energy Conservation & Clean Energy strategies: to achieve greater energy efficiency

Municipal Mitigation Strategies - Recommended municipal strategies to reduce carbon emissions:

- Zoning for compact development, solar access
- Municipal Climate Action policy statements
- Green Communities designation: energy efficiency and development of renewables
- Reduce methane emissions from landfills
- Fuel efficient municipal vehicle fleets
- LED traffic signals and lights

Adaptation Strategies - Recommended municipal strategies to prepare for climate change impacts:

- Replace under-performing culverts and bridges
- Formalize emergency water supply interconnections
- Prepare water supply system for extreme droughts including repairing leaks and installing water efficient fixtures
- Update FEMA flood maps
- Storm-proof critical infrastructure: energy, electrical, water, wastewater, roads, dams, flood dikes
- Assist populations vulnerable to severe weather events
- Conduct dam inspection, removal and repair
- Move powerlines underground
- Establish extreme weather warning system

Energy and Conservation Strategies - Recommended municipal strategies to achieve greater energy efficiency:

- Streamline solar and wind zoning
- Participate in Solarize Mass program, reduces solar costs to homeowners
- Conduct energy assessments and upgrade efficiency in municipal buildings
- Assist homeowners in completing Mass Save energy audits and improvements

Solar Array

Flood damages to roads from Tropical Storm Irene

Deerfield River flooding near Shelburne Falls, MA, 2011

7) TOP PRIORITY HAZARDS FOR DEERFIELD

The Deerfield Community Resilience Building (CRB) workshop identified four top priority hazards for the town, based on the information presented above, and the input of workshop participants. The top four priority hazards include:

- tornados and windstorms:
- hurricanes and tropical storms;
- floods and dam failures; and,
- severe winter storm and ice storms.

This ranking was based primarily on the frequency, severity, and extent of damage from previous storm or weather events, as described in the preceding sections of this report. Deerfield was heavily impacted by flooding from Tropical Storm Irene in 2011, so this hazard was a particularly important issue for the town.

Tornado in downtown Springfield

8) CURRENT STRENGTHS AND VULNERABILITIES

The Deerfield Community Resilience Building (CRB) workshop identified the town's key strengths, assets and vulnerabilities in relation to top priority hazards. Some features were identified as both strengths and vulnerabilities. Full copies of the CRB Risk Matrix are included in Appendix C. The strengths and vulnerabilities identified are also summarized here.

8a) Strengths/Assets

Key strengths and assets in natural hazard preparedness, hazard impact mitigation, and climate change mitigation were identified by CRB workshop participants in Deerfield, and included:

- Sugarloaf State Park and Connecticut River Greenway State Park These parks protect Connecticut River floodplain lands and other environmentally sensitive areas.
- Deerfield Water Protection Zoning District This overlay zone protects land in the reservoir watershed from development.
- Agricultural Preservation Restrictions APRs are important land protection tools that permanently protect farmland in floodplains from development. This tool needs to be used more expansively, particularly along the Deerfield River in Old Deerfield and West Deerfield:
- Creating Resilient Communities Group This committee helps to coordinate the efforts
 of 20 communities along the Deerfield River using a watershed-based approach to
 protect flood storage areas, particularly along tributaries like the North and South Rivers.
- Solar Arrays Locally generated solar power mitigates greenhouse gas emissions by providing renewable energy.
- UMass Farm This farm helps protect the Connecticut River floodplain from development.
- Fuller Swamp This wetland area serves as an important flood storage area.
- Franklin Medical Center Located in Greenfield, this medical center should be used to
 establish a center for special medical needs and could promote better communication
 between town Fire Departments and emergency medical services.
- Franklin Regional Transit Authority Also located in Greenfield, this public transit agency is an asset for evacuation.
- Emergency Shelters -Shelter sites are an asset in storm events, and are established at Frontier Regional High School, Deerfield Elementary School and South Deerfield Fire Department.
- Flood Storage Areas There are substantial natural flood storage areas along the
 Deerfield River, including farmlands, Deerfield Academy playing fields, and floodplain
 areas in upstream communities. There is a need for an multi-community effort to protect
 these areas, through agreements with neighboring communities, and use of tools like
 APR and NRCS farmer floodplain agreements and payments.
- Joint Pioneer Valley Mosquito Control District This regional initiative to reduce mosquitoes and habitat can also provide joint benefits of improving flood drainage in swampy areas.
- CodeRED or Reverse 911 Deerfield has in place a contract with the Emergency
 Communications Network to deliver Emergency Notification Messages through the
 CodeRED high-speed notification system, which provides town officials with the ability to
 quickly deliver messages to targeted areas of town or town-wide about emergencies,
 including weather events. There is a need to expand this system to include more
 residents and more cell numbers.
- Frontier Community Access Television (Cable TV) Another asset in delivering messages about weather events.

- Faith Community Can be a helpful partner in providing shelters or other support in weather disasters.
- Fire, Ambulance, DPW Garage: These can provide emergency shelter and support emergency communications.

8b) Vulnerabilities

Key vulnerabilities in hazard preparedness and impact mitigation that were identified by CRB workshop participants in Deerfield included:

- Deerfield Water and Wastewater Treatment Plants These plants need bank stabilization and armament, flood proofing of emergency generators and buildings, and installation of emergency generators where they are not installed.
- Great Hydro Dams Upstream on Deerfield River There is a need for an emergency communications plan to give towns better notification of pre-storm dam releases or dam failures. There should be penalties and liability for failure of Great Hydro to adequately notify towns.
- Culverts There is a need to replace culverts on Route 5/10, Wapping Road, Mill Village Road North, and Broughams Pond Road with open bottom culverts.
- Vulnerable Neighborhoods There are several flood-prone neighborhoods, including Old Deerfield and the Bloody Brook area, as well as elderly housing that greater need for flood warnings and flood prevention.
- Businesses with Hazardous Chemicals Businesses such as Pelican Products, Crop Production Services, Trew Stone and Yankee Candle that handle larger quantities of hazardous chemicals should continue pro-active training for disasters.
- Private and Public Schools The many schools in Deerfield, including private schools like Bement, Eaglebrook and Deerfield Academy, should create contingency and evacuation plans, and should be considered for use as shelters and emergency supplies stock points.
- Gas Stations There are concerns about release of hazardous chemicals in floods or severe weather.
- Melnik Farm Methane Digester There are concerns about release of hazardous chemicals in floods or severe weather.
- Municipal Water Supply Wells The town wells, under districts jurisdiction, are located close to rivers, are vulnerable to flooding, and need emergency generators.
- Stillwater Bridge This bridge over the Deerfield River is vulnerable to flood damages.
- Old Deerfield village including museums and schools The village is close to the Deerfield River and experiences periodic flooding when the river overflows.
- Septic Systems in homes near Old Deerfield Some septic systems near Richardson's Candy Kitchen (Routes 5/10) are impacted by flooding.
- East Deerfield Railyard Located along the Connecticut River near the mouth of the Deerfield River, this railyard has hazardous materials subject to flooding impacts.
- Buildings Subject to Flooding in Bloody Brook Drainage This drainage is impacted by chronic flooding of buildings. Better FEMA flood maps are needed to require floodproofing of buildings in construction.

- Evacuation and Emergency Communications Plan Deerfield needs more robust, up-todate evacuation plans, and needs a central communication system on road flooding.
- Deerfield and Connecticut Riverbanks, Bloody Brook The banks of the Deerfield River were reduced in elevation due to Hurricane Irene flooding, and there is a need to reinforce and restore riverbanks and to restrict vehicles from driving to the river and eroding banks.
- Farmland and Farming Practices Flooding and runoff cause farm pollutants such as fertilizers to be washed into the river. There is a need to promote more no till agriculture to reduce phosphorus and nitrogen pollution.
- Small Dam There is a small, unnamed privately owned dam that needs removal in town.
- Power Lines The town should work with utilities to move power lines underground, starting in priority areas like the Route 5/10 corridor. A tree management plan is needed along powerlines.
- Roads in Floodplain -: There is a need to protect flood-prone roadways, including Routes 5/10, Mill Village Road and Stillwater Road, by replacing culverts, raising riverbanks, and raising the level of roadways.
- FEMA Floodplain Maps The town's federal floodplain maps are badly outdated, and need to be updated using LiDAR technology and climate change data.
- Flood-prone Structures Structures in floodplains that have been subject to repeated flooding need to be relocated.
- Beaver Dams These need regular monitoring of their condition, to predict possible downstream flooding in case of failure.

8c) Combined Strengths and Vulnerabilities

Some features were identified by CRB workshop participants in Deerfield as both strengths and vulnerabilities, and these included:

- East Deerfield Railyard/ Amtrak Rail Line There is a danger of chemical explosions at the railyard where hazardous chemicals are stored in a flood zone. The Amtrak line is a potential evacuation route.
- Trees Trees are an asset in that they reduce greenhouse gases and provide shade, but also can be a hazard in storms. There is a need for a DEP-approved tree stockpile site in town, possibly on private farmland or in the Montague Plains.
- I-91 Bridge, Stillwater Bridge, Routes 5/10 These are important parts of transportation infrastructure and evacuation routes. But they were severely impacted during Hurricane Irene, and monitoring of flood/tree debris is needed, as well as setting emergency protocols for evacuation route alternatives in case of flooding or damage.
- Private and Public Schools These include Bement, Eaglebrook, Frontier, Deerfield
 Academy and Deerfield Elementary. They can provide shelter in emergencies. There is
 a need for better communications with Great Hydro, notification of dam releases or
 failures, as well as evacuation planning and drills at schools for dam failures.
- Senior Center and Town Halls They can provide shelter in emergencies, but are also vulnerable to flooding.

Floodplain and Riparian Areas - These are vulnerable assets that need protection. There
is a need to protect Deerfield River farmland, using NRCS farmer floodplain payments
and APR restrictions. There is a need to re-establish pre-Tropical Storm Irene
riverbanks and improve floodplain mapping and zoning.

9) CURRENT CONCERNS, CHALLENGES AND RECOMMENDATIONS FOR TOP PRIORITY HAZARDS

In preparing the CRB Risk Matrix, workshop participants in Deerfield identified current concerns and challenges presented by top priority hazards. These were then prioritized into a list of the top ten recommendations to improve resilience for the Town of Deerfield.

9a) Top Recommendations to Improve Resilience

The South Deerfield CRB workshop reached a consensus on its top-ranked recommendations to improve resilience, shown below in order of priority:

- 1) Replace Culverts The town has prioritized culvert replacement at four locations:
 - Route 5 (near Richardson's Candy Kitchen);
 - Wapping Road (north of Greenough Crossing Road);
 - Broughams Pond Road (west of intersection with Old Ferry Road); and
 - Mill Village Road (south of intersection with Log Plain Road).

In designing the replacement culverts, consideration should be given to open bottom culverts to improve flow and fish/wildlife passage.

- 2) Develop an Emergency Action Plan (EAP) An EAP is needed to address better communications and evacuation planning for potential dam failures or releases from upstream Deerfield River dams, in cooperation with Great River Hydro. Improve communications between Great River Hydro and towns regarding pre-storm dam releases and impending dam failures. Great River Hydro should set up a better communications system and coordinate evacuation drills. The Town has concerns about Harriman Dam releases, including erosion and riparian buffer damages.
- 3) Protect Flood Storage Areas Use a watershed approach in working with upstream communities and improving participation in the state's Agricultural Preservation Restriction (APR) program in town. Farmland that is located in Deerfield's 100-year floodplain is likely eligible for funding through the APR Program, provided it is primarily comprised of "prime" and "state important" soils.

The primary land conservation target areas in Deerfield's flood zone where much land conservation work remains to be done are:

- the north and south meadows of Old Deerfield;
- along the Deerfield River in west Deerfield;
- some farmland conservation opportunities also exist in the Bloody Brook watershed.

Deerfield should protect riverfront buffer areas, and ensure flood access to the floodplain, with the goal of decreasing the velocity of floods. A key issue in land conservation in floodplain areas is finding development value that can be purchased. Provided that a landowner can prove appraised value, development rights can be purchased on farm or open space parcels.

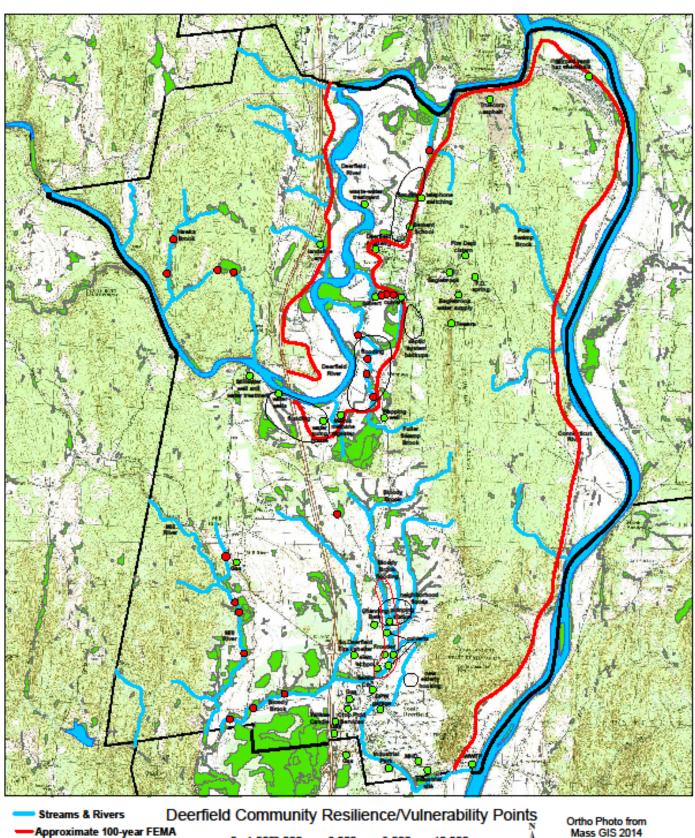
The best options for sources of funding are:

- APR Program;
- other state funding sources (e.g. MA Fish and Game) aimed at land conservation for such things as wildlife;
- Community Preservation Act funds, which can also be an effective local match for state grants;
- private fundraising;
- Commonwealth Conservation Land Tax Credit, through which the state will grant
 a tax credit (not a classic tax credit; in this case the state hands over a check) to
 a landowner who donates or bargain sales an interest in their land (fee, CR or
 APR) to a qualified entity (i.e. land trust, town, state) of 50% of the appraised
 donative value of the interest or \$75,000, whichever is less. Such a donation
 may also qualify a landowner for a federal tax deduction.

These programs need to be promoted in Deerfield, and landowners educated on the benefits.

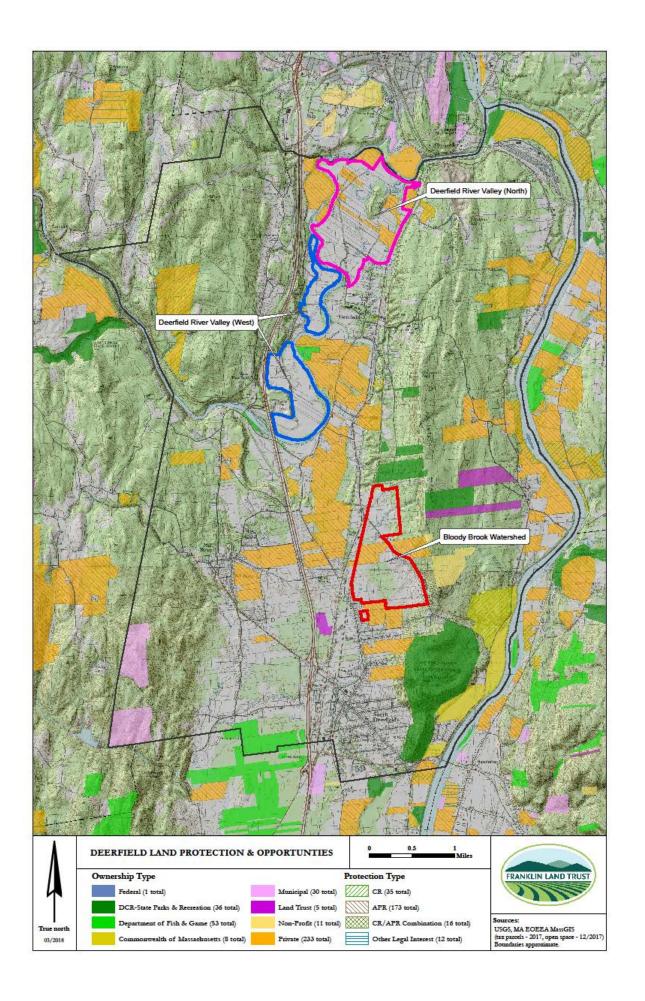
- 4) **Establish and Implement a Mosquito Control District -** This regional initiative to reduce mosquitoes and habitat can provide joint benefits of improving flood drainage in swampy areas, including removal of debris and silt from drainage ditches and facilities in many areas of town.
- 5) Improve and Increase Participation in the Reverse 911 Warning System Deerfield has in place a contract with the Emergency Communications Network to deliver Emergency Notification Messages through the CodeRED high-speed notification system, which provides town officials with the ability to quickly deliver messages to targeted areas of town or town-wide about emergencies, including weather events. There is a need to expand this system to include more residents, businesses and more cell numbers.
- 6) Advance and Coordinate Emergency and Evacuation Plans Between the town and private schools, such as Bement School, Deerfield Academy and Eaglebrook. This is of particular concern in relation to the upstream Deerfield River dams, such as the Harriman and Somerset Dams in Vermont, which could be subject to pre-storm releases or cascading failures. There is a need for better communication and notification protocol with Great Hydro, the dam operator, and for penalties or liability for failure of Great Hydro to notify the town of releases or dam failures. There is a need for evacuation planning and regular drills in the private schools.
- 7) **Implement No Till Farming** Throughout town to reduce agricultural non-point pollutant runoff to waterways and reduce climate impacts.
- 8) Carry Out a Utility Undergrounding and Tree Management Program to Bury Power Lines Work with Eversource on a phased undergrounding program for electric lines, focusing first on the Route 5 corridor.
- 9) Petition FEMA to Update the Town's Floodplain Maps FEMA has indicated that Deerfield's floodplain maps will be updated soon. The town should request that FEMA use the latest LiDAR technology and climate data in this map update. This request should be made through Congressional representatives and in concert with other western Massachusetts communities. Updated floodplain maps can also be used to support improved floodplain zoning.
- 10) **Floodproof the Town's Wastewater and Water Treatment Plants** Armoring these plants, in particular generators, against flood damages and providing emergency generators if not already in place.

9b) Summary of Next Steps for MVP Project


The Town of Deerfield leadership has agreed on the following short-term action steps to move this MVP project into the implementation phase:

- Finalize final report and seek formal MVP community designation from EOEEA. This
 is the top priority task for remaining funding and includes preparation of a summary of the
 workshop and its recommended strategies.
- Pursue funding opportunities for culvert replacement. The best option may be DER's Culvert Replacement Municipal Assistance grant program, launched last year. DER released a Pre-RFR announcement for the FY19 CRMA grant round in February. While Deerfield was not able to apply in FY19, efforts should be made to be ready to submit in FY20

Other options may include, pending funding availability:


- MEMA Hazard Mitigation program
- MEMA Pre-disaster Mitigation grants
- Update floodplain zoning. Several town plans have recommended the adoption of stronger zoning controls to restrict development in the floodplain area. This task will involve drafting of recommended zoning bylaw improvements and, if time permits, working with the Planning Board toward adoption.
- 4. Request update of FEMA flood maps for Deerfield. Seek help from FEMA in using LiDAR technology to update 100-year floodplain maps to reflect more recent storm data and climate change projections. This task will involve working with Congressional representatives to seek funding support, and surrounding communities to collaborate on the request.

APPENDIX A. MAP OF WORKSHOP RESULTS and MAP OF DEERFIELD LAND PROTECTION OPPORTUNITIES

Streams & Rivers Deerfield Community Resilience/Vulnerability Points

Approximate 100-year FEMA
Flood Plain Boundary
Facilities & Vulnerability Points
Beaver dams DEP Wetlands

APPENDIX B. NEWS COVERAGE OF WORKSHOP

Deerfield
climate change
workshop urges
need to prepare
for disaster

By JOSHUA SOLOMON For the Gazette

SOUTH DEERFIELD—To stay ahead of severe weather and natural disasters like Hurricane Irene, Deerfield taxpayers need to raise money, town leaders have been told.

Responding to federal policy changes since President Donald Trump took office, Select Board Chairwoman Carolyn Shores Ness said the town needs to actively invest in preparing — as opposed to reacting to — storms and more subtle threats like the advance of insect-borne diseases.

"At the local level, we're really stressed out," with the effects of climate change and how to pay for rising costs, with likely less federal funding in the future, Ness said to a group gathered Wednesday at the Deerfield Municipal Vulnerability Preparedness Workshop. The meeting was held to increase the chances of getting state money for natural disasters and severe weather. The workshop was run by Ness and representatives from the Massachusetts consulting firm, Conservation Works

Deerfield residents will likely be asked at this year's annual Town Meeting to approve \$25,000 to \$50,000 to ward repairing and replacing the culverts on Greenfield Road from Richardson's Candy Kitchen to the Deerfield River, an area that was flooded during Irene, Ness said.

The project will cost a total of \$1.3 million, Ness estimates, which she hopes can be paid through several sources. She does not expect it to fall solely on residents.

Taxpayers will also be asked to join the Pioneer Valley Mosquito District, she said. Deerfield is spearheading the regional partnership to combat mosquito-borne illnesses as the insects work their way north with climate change.

"We're moving from recovery to preparing," Ness said.
"This is what we're trying to do today with these accelerating changes in the climate, which will cost us more in the future; we're doing financial reciliorar."

In attendance were many local stakeholders, including members of law enforcement and public works, Select Board members, representatives from the Franklin Land Trust, Historic Deerfield, Deerfield Academy, Bement School and the Franklin Regional Council of Governments.

The group agreed on five priorities for the town, part of the requirements for state funding:

■ Upgrading and replacing the culverts from Richardson's Candy Kitchen down to the river.

■ Developing an emergency communication plan with the owners of the regional dams on the Deerfield River following a changeover in ownership in recent years.

■ Updated floodplain maps portraying conditions post-Hurricane Irene.

Debris management-approved site in Deerfield.

■ Two-part priority in regards to drainage. One aspect supports the Natural Resources Conservation Service's no tilling plan, which helps pay for equipment for farmers to avoid tilling. The other would be joining the Pioneer Valley Mosquito District.

These five priorities will now be a part of Deerfield's application to become one of the first in the state to be approved for "Municipal Vulnerability Preparedness," or MVP, which would qualify the town for state money for projects concerning the environment.

"It's not new information for us as a Select Board. What's really great is it's been educating the community members and it's been crystalizing in our mind what are the top priorities," Ness said.

Receiving state money through this program will be one way Deerfield can circumvent a lack of potential federal funding for natural disasters and weather-related emergen-

It can also speed up the process of receiving funding in general, since at times towns can see a lag in response.

The process to become a certified "MVP" by the state will be ongoing and Ness said there isn't a timeline at the moment, but she felt confident that the state funding would be there, regardless of what happens on the federal level.

EDITORIAL (from The Recorder and re-printed in the Daily Hampshire Gazette)

Deerfield leaders looking forward and build on past lessons of Irene

When Tropical Storm Irene hovered over western Massachusetts in 2011, the deluge caused the Deerfield River to jump its banks like never before in recent memory, stripping acres of rich topsoil from adjacent farm fields, leaving behind silt and sand. Nearly seven years later, many people, especially those in charge of our federal government, have stuck their heads in the sand, denying the impacts of severe weather that the world's experts say global warming promises to send our way again. Think globally and act locally, we are told, and Deerfield officials should be credited for doing just that.

To stay ahead of severe weather and natural disasters like Hurricane Irene, the Deerfield Selectboard is pushing to spend local tax money on some flooding resiliency measures. Selectboard Chairwoman Carolyn Shores Ness says the town needs to actively invest in preparing for — as opposed to reacting to — storms and more subtle threats like the advance of insect-borne diseases that seem headed this way with the subtle rise in global temperatures. "At the local level, we're really stressed out," with the effects of climate change and how to pay for rising costs, with likely less federal funding in the future," Ness told a recent Municipal Vulnerability Preparedness Workshop aimed at getting state money for natural disasters and severe weather.

Deerfield residents will likely be asked at this year's annual town meeting to approve \$25,000 to \$50,000 toward repairing and replacing culverts on Greenfield Road from Richardson's Candy Kitchen to the Deerfield River, an area that was flooded during Irene. The project will cost a total of \$1.3 million, Ness estimates, which she hopes can be paid through several sources. She does not expect it to fall solely on local taxpayers.

Town meeting voters will also be asked to join the Pioneer Valley Mosquito District. Deerfield is spearheading the regional partnership to combat mosquito-borne illnesses as the insects work their way north with climate change.

"We're moving from recovery to preparing," Ness said, arguing such action is practicing "financial resiliency."

The plan also calls for developing an emergency communication plan with the owners of the regional dams on the Deerfield River; updated floodplain maps portraying conditions post-Hurricane Irene.

These priorities will now be a part of Deerfield's application to become one of the first in the state to be approved for "Municipal Vulnerability Preparedness," which would qualify the town for state money for projects concerning the environment.

Receiving state money through this program will be one way Deerfield can circumvent a lack of potential federal funding for natural disasters and weather-related emergencies.

Shores Ness and her fellow Selectboard members deserve credit for anticipating local impacts of global warning, and deserve taxpayer support at town meeting.

APPENDIX C. INVITEES for MUNICIPAL VULNERABILITY WORKSHOP IN DEERFIELD

NAME	CORE TEAM	AFFILIATION	ADDRESS	EMAIL
Carolyn Shores Ness	Х	Deerfield Selectboard		csness@town.deerfield.ma.us
Wendy Foxmyn	Х	Deerfield Town Administrator		townadmin@town.deerfield.ma.us
Trevor McDaniel		Deerfield Selectboard		tmcdaniel@town.deerfield.ma.us
Dick Calisewski	Х	Deerfield Health Agent		rcalisewski@town.deerfield.ma.us
Chris Curtis				chcurtis89@gmail.com
Pete Westover				westover03@comcast.net
Molly Hale				
Laurie McComb		Deerfield Police/Amherst Fire		ljlankowski@yahoo.com
Rich Hubbard		Franklin Land Trust	679 Mohawk Trail Shelburne, MA	rkhubbard@verizon.net
John Paciorek, Jr.	Х	Deerfield Police Chief		jpaciorek@police.deerfield.ma.us
Bill Swasey	Х	Deerfield Fire Chief		wswasey@southdeerfieldfire.org
Keith Milne - No		Deerfield WWTP		kmilne@town.deerfield.ma.us
Kevin Scarborough	Х	Deerfield DPW Superintendent		kscarborough@town.deerfield.ma.us
Darius Modestow		Frontier Regional High School	113 North Main Street South Deerfield, MA 01373	Darius.Modestow@frsu38.org
Joe Rogers Deb Shriver - No	Х	Franklin Conservation District	8 Pocumtuck Drive S Deerfield, MA 01373	geojoerogers@yahoo.com debbieshriver@gmail.com
Katherine Williams		Richardson's Candy Kitchen	500 Greenfield Road P.O. Box 338 Deerfield, MA 01342	rck@richardsonscandy.com
Nancy Sadoski		Old Deerfield Country Store	480 Greenfield Road Deerfield, MA 01342	USPS 1/10/18
Tim Neumann		Pocumtuck Valley Memorial Association	P.O. Box 428 10 Memorial Street Deerfield, MA 01342-0428	pvmaoffice@deerfield.history.museum
M.A. Swedlund - No	Х	Franklin County Solid Waste Management District Commission	542 River Road Deerfield, MA 01342	maswedlund@comcast.net

Christopher Wilson,		Bement School	94 Old Main Street	cwilson@bement.org
Head of School			P.O. Box 8	
11000 01 0011001			Deerfield, MA 01342	
Keith Finan - No		Deerfield Academy	P.O. Box 87	kfinan@deerfield.edu
		,	Deerfield, MA 01342	
Chuck Williams		Deerfield Acadmey		cwilliams@deerfield.edu
(until 2:30)		·		
Rachel Blain (until		Eaglebrook School	261 Pine Nook Road	rblain@eaglebrook.org
lunch)			Deerfield, MA 01342	
Chip Williams		Williams Farm	477B Greenfield Road	williamsfarmsugarhouse@gmail.com
			Deerfield, MA 01342	chipwilliams.farm@gmail.com
Jay Savage		Savage Farm	128 Lower Road	Jsavage35@comcast.net
			Deerfield, MA 01342	info@savagefarms.com
Skip Yazwinski		Yazwinskis' Farm	109 Main Street	syazwinski@gmail.com
			Deerfield, MA 01342	
Peter Melnik		Melnik Farm	188 Mill Village Road	melnikfarm@comcast.net
			Deerfield, MA 01342	
		Dept. of Environmental	136 Damon Road	
		Conservation, Sugarloaf S.P.	Northampton, MA 01060	
Kim Snyder		Historic Deerfield	84B Old Main Street	ksnyder@historic-deerfield.org
			Deerfield, MA 01342	
Lynn Rose - No		former Planning Board	3 McClelland Farm Road	lynnfaith@comast.net
			Deerfield, MA 01342	
Zach Smith		South County EMS Director		zsmith@town.deerfield.ma.us
Steve Barrett	X	Deerfield Conservation Commission	124 North Main Street	Barrett127@aol.com
			South Deerfield, MA 01373	
Mark Wightman		developer	7 Oak Knoll Drive	Maw10@comcast.net
			South Deerfield, MA 01373	
Kyle Scott	Х	Building Commissioner		kscott@town.deerfield.ma.us
Scott Jackson		UMass	328 Holdsworth Hall, UMass,	sjackson@umass.edu
			Amherst, MA 01003	
Ken Cuddeback		Bement School Business Manager		kcuddeback@bement.org
John Waite		Deerfield Planning Board	Keets Rd., Deerfield, MA	johnw@fccdc.org

Tom Clark	Deerfield Agricultural Commission	312 Upper Road	clarkdalefarms@comcast.net		
		Deerfield, MA 01342			
Paul and Stacy	Chapley Gardens	397 Greenfield Road	USPS 1/10/18		
Chapley		Deerfield, MA 01342			
Jaap Molenaar	Pioneer Gardens		jaap@pioneergardens.com		
Daren Melnik	Old Deerfield Fire District		DMelnikTrucking@verizon.net		
Laurie Boosahda	Frontier Regional School	193A Main Street South Deerfield, MA 01373	laurieboosahda@hotmail.com		
Andy Fisk - No	Connecticut River Conservancy	15 Bank Row Greenfield, MA 01301	Afisk@ctriver.org		
Scott Hall	Great Hydro		shall@greatriverhydro.com		
Rita Thibodeau	NRCS		Rita.thibodeau@ma.usda.gov		
Vince Snyder	NRCS		Vince.snyder@ma.usda.gov		
Tami Gaylor	Five College Realtors	11 Jackson Road South Deerfield, MA 01373	USPS 1/10/18		
Louis Misiun - No	Deerfield Conservation Commission	49 River Road South Deerfield, MA 01373	USPS 1/10/18		
Brian Dejnak – No	Deerfield Conservation Commission		bdejnak@comcast.net		
Skip Olmstead - No	Deerfield Finance Committee		skipolmstead@verizon.net		
Dan Nietsche	FRCOG Emergency Preparedness	210 Upper Road Deerfield, MA 01342	USPS 1/10/18		
Brian Nartowicz	Deerfield Water Superintendent		deerfieldfire@crocker.com		
	MassDOT				
Max Antes - No	Planning Board		maxantes@comcast.net		
Bruce St. Peters - No	Finance Committee		brucestp100@yahoo.com		
Erin Rodgers, Ph.D.	Western New England Project Coordinator	Trout Unlimited Brattleboro, VT	Erin.Rodgers@tu.org		
Kimberly Noake MacPhee, P.G., CFM	FRCOG Land Use & Natural Resources Planning Program Manager	Franklin Regional Council of Governments 12 Olive Street, Suite 2	KMacPhee@frcog.org		
	anager	Greenfield, MA 01301			

APPENDIX D. WORKHOP ATTENDEES LIST

SIGN IN SHEET Deerfield Municipal Vulnerability Preparedness Workshop (Please print legibly)

Paul Chapler	Address 425 Grzenfuld	Email RJ	Phone 4133351692
Laurie McComb	20 King Philip Ave	Glankowski Qyahoo.	con 413-255-685
Rich Hubbard	Franklin Land Tr	ort rhhubbande Verizo	. net 413/625-9151
TAMI GAYLOR		EM TAMI e REALTORGAYKOR, C	
BrianNARtowing	180 Stillwalez Rul		
ZACHARY SMITH	8 Coway St	DEED FIRE CHOCKES	1 muchs 665-1400 x
KEURN Scarbora 1 8	conuny ST KSCA	borough a Town & PEERfreide A	MAOUS
William Swam	34 ConsuSold ld	Kuddeback & bement o	AdSor.org
Kenluddeback	Hostage Boad	Kcuddeback@hement.o	ca 413 747061
Step Olystel	455 fillyila Rel	Skipp Msterl Queviza	n. Net 413-665.24
John PACIORETE J	8 Conway St 5DH	1 APACIOREKE policedan	Puld mA. 05 413265-26
Molly Hale	96 Dalest Florence	Molly Donservation	works He. com 585-07
Rete Westover		tely westover 03(a) com	
Chris Curtis		erfield chartis89@gma	

SIGN IN SHEET Deerfield Municipal Vulnerability Preparedness Workshop (Please print legibly)

M	Address	Email		Phone
Name	Address		1	
Trevor McDanie	1 Scherman Dr. S. Deerti	eld. Trevorid, McDent	(c) egnal. Con	1-413-575-0871
Evin Rodgers	SS Kipling Rd Brutt. V	T evodger : etv.	org	603-852-8110
Kimberly Marthe	e 12 Olive Street, Gr	eentield kmacphee	@ Freeg. org	413-774-3167X
George Holmes	84B Old Main Str	Deerfield gholmes@	historic deertield	.org 775-7181
Carolyn Shore	s Ness 10 Old Albany R	destill acornhil	Harm Chotmail.	om 774-5824
Kuthie Willia	ins 500 Greenfield	1 Rd rckeric	hardenscandy so	m 772-0443
Milton W	Mians. Deale	WA Cabany CW.	liams a hoostall.	edu 774-570
Laurie Bo	Osahda 193 N.Ma	Ein SDfld. laurie	boosahda@hotm	nail.com
Joe Roges	34 Nes 7 H.M	Re, Williamshis ge	ejoerdgers @ yahoo.	com 218-2959
AdaM Sat	Polos Ki & ronway	ST S. Dufile	asoKolaskie police	e. dee f. Ich. me 413 45-21
Josh So	Ioman 14 Hay	e St Greefield	J Solomon @ reco	wdes.com 772-026
Kep Komos	A , 304 Greenfield	d Rd Deer Outd	Kkomes 4@ Town, I	Deally 13-775-3165
Kill 5	of Buildis	y Inspector		
		<i>y</i>		

APPENDIX E. CRB RISK MATRIX WORKSHEETS

Community Resilience Building Risk Matrix

www.CommunityResilienceBuilding.org

				Top Priority Hazards	s (tornado, floods, wildf	ire, hurricanes, earthq	uake, drought, sea lev		
H-M-L priority for action over the Short or Long term (and Ongoing) V = Vulnerability S = Strength			Tornado/	Hurricane/ Tropical	Floods/ Dam	Severe Winter	Priority	Time Short Long	
Features	Location	Ownership	V or S	Windstorms	Storms	Failure	Storms/ Ice Storms	<u>H</u> - <u>M</u> - <u>L</u>	Ongoing
Infrastructural					I.				<u> </u>
Deerfield Water and Wastewater Treatment plants	See map	Deerfield F.D.,	v	Bank stabilization/ arman	nent, floodproof generator	s &plant		М	S
Great Hydro Dams upstream on Deerfield River	See map	Great Hydro	v	Emergency communication	n plan, notification of dam	releases, pre-storm dam	releases, penalties/liabi	М	S
I-91 Bridge, Stillwater Bridge, Routes 5 and 10	See map	Public	V/S	Monitor tree conditions, se	et emergency protocols fo	r re-routes		Н	S
Communication towers, powerlines	See map	Verizon, Warne	V/S	Bury power lines where p	ossible, Update technology	to prevent tower collap	se	М	L
Schools: Frontier, Bement, Deerfield Academy, Eaglebrook	See map	Public, private	V/S	Better communications w	/Great Hydro, notification	of dam releases, evac pla	n/drill for dam failures	Н	S
Culverts: Wapping Rd, Rte 5, Mill Village N,Broughtons Por	See map	Public	v	Replacement with open bo	ottom culverts			Н	S
Societal		•							
Vulnerable neighborhoods: floodprone areas, elderly hou	See map	Private	V	Reverse 911 warning: incr	rease recruitment, include	cellphone users. Outreac	th to millenials	М	L
Businesses with hazardous chemicals (Pelican, Yankee Can	See map	Private	V	Continue pro-active disast	er training			M	0
Senior Center, Town Halls	See map	Public	V/S	Plan for use as shelters in	extreme weather events			М	0
Private and public schools	See map	Public, private	V	Make contingency and eva	cuation plans, use for shel	ters and stock points for	emergency supplies	Н	S
Gas stations, Melnik farm methane digester,	See map	Private	V	Concerns about release of	pollutants in severe weat	her		M	L
Solar arrays	See map	Public, private	S	Reduces greenhouse gas e	emissions			M	0
Environmental									
Sugarloaf State Park, Connecticut River Greenway	See map	Public	S	Protects sensitive environ	mental areas			L	0
Floodplain and riparian areas	See map	Private	S/V	NRCS farmer floodplain pa	ayments, re-establish pre-I	rene riverbanks, improv	e flood maps & zoning	Н	S
Water Protection Zoning District	See map	Private	S	Protects sensitive environ	mental areas			L	0
Agricultural Preservation Restrictions (in floodplain)	See map	Private	S	Protect key flood storage	areas, including Deerfield	Academy, Old Deerfield, V	West Deerfield	Н	S
Umass Farm; Fuller Swamp	See map	Public, private	S	Protects sensitive environ	mental areas			М	М
Creating Resilient Communities Group	See map	Public	S	Helps coordinate 20 comm	nunities, watershed approa	ach to protect flood stora	age, North & South River	Н	0

Community Resilience Building Risk Matrix

www.CommunityResilienceBuilding.org

				Top Priority Hazards	(tornado, floods, wildf	ire, hurricanes, earthq	uake, drought, sea lev		
<u>H-M-L</u> priority for action over the <u>S</u> hort or <u>L</u> ong term (and <u>O</u> ngoing) <u>V</u> = Vulnerability <u>S</u> = Strength			Tornado/	Hurricane/ Tropical	Floods/ Dam	Severe Winter	Priority	Time	
Features	Location	Ownership	V or S	Windstorms	Storms	Failure	Storms/ Ice Storms	<u>H</u> - <u>M</u> - <u>L</u>	<u>S</u> hort <u>L</u> ong <u>O</u> ngoing
Infrastructural	Location	ownership	1015						1
Municipal water wells	See map	Town	v	Vulnerable to flooding, ne	eed emergency generators			М	L
Stillwater Bridge	See map	Town	v	Vulnerable to flood damag	ge			L	L
Old Deerfield including museum, schools	See map	Public, private	v	Periodic flooding when De	erfield River overflows			М	L
Septic systems in homes near Richardsons	See map	Private	v	Periodic flooding of septic	systems			М	L
East Deerfield Railroad Yard	See map	Private	v	Possibility of flooding of h	nazardous materials			L	L
Buildings in Bloody Brook drainage	See map	Private	v	Need better FEMA maps a	nd Floodplain zoning to re	quire floodproofing in c	onstruction	M	L
Societal		!	•						•
Franklin Medical Center	Greenfield	Private	S	Establish shelter for specia	al medical needs, better co	mmunication between F	ire Dept and EMTs	L	L
Franklin Regional Transit Authority	Greenfield	Public	S	Asset for evacuation				L	0
Emergency shelters: Frontier, Deerfield Elementary, SDFI	See map	Town	S	Identify emergency shelter	rs, send to adjacent comm	unities, stock points for ϵ	mergency supplies	M	М
Evacuation and Emergency Communications Plan	n.a.	n.a.	v	Need robust, up-to-date ev	vacuation plans. Need cent	ral communication on ro	ad flooding.	Н	S
CodeRED emergency communications	Town	Public	S	Expand enfrollment, to inc	clude cell phone numbers			М	0
Cable TV station, Faith community	Town	Public, private	S	Good options for informat	ion dissemination			M	0
Environmental									
Flood storage areas	See map	misc.	S	NRCS farmer floodplain pa	ayments/agreements esp i	n upstream towns, prote	ct Deerfield Acad storag	Н	М
Deerfield Riverbanks, CT River, Bloody Brook	See map	misc.	v	Riverbanks reduced in ele	vation due to Irene, reinfo	rce & restore riverbanks	s, restrict driving to river	Н	М
Beaver dams	See map	n.a.	V/S	Regular monitoring for co	ndition to predict possible	downstream flooding in	case of failure	М	М
Trees	n.a.	misc.	V/S	Need for DEP-approved st	ockpile site, debris manag	ement, possibly Montagu	ne Plains or private farm	L	L
Farmland and farming practices	n.a.	Farmers	v	No till agriculture to avoid	phosphorus & nitrogen p	ollution,		Н	L
Joint Mosquito Control District and wetland maintenance		mis.	S	Can help to improve flood	drainage as well			Н	М

Community Resilience Building Risk Matrix

www.CommunityResilienceBuilding.org

Top Priority Hazards (tornado, floods, wildfire, hurricanes, earthquake, drought, sea level rise, heat wave, etc.) <u>H-M-L</u> priority for action over the <u>S</u>hort or <u>L</u>ong term (and <u>O</u>ngoing) Priority | Time $\underline{\mathbf{V}}$ = Vulnerability $\underline{\mathbf{S}}$ = Strength Tornado/ Hurricane/Tropical Floods/Dam Severe Winter Short Long Windstorms Storms Failure Storms/ Ice Storms <u>H</u> - <u>M</u> - <u>L</u> $\underline{\mathbf{0}}$ ngoing Location Ownership V or S Features Infrastructural Railyard with hazardous chemicals, Amtrak railline See map Private V/S Plan for danger of chemical explosions due to severe weather, Use of Amtrak line for emergencies Fire/ambulance station, DPW garage, Water Dept Public, private V/S Strength for shelter, emergency communications 0 See map Small dam See map Private Needs removal L Private Move key lines underground, establish tree management plan along powerlines Power lines along all roads Public Roads: Rte 5/10; Mill Village Rd; Stilwater Rd See map Replace culverts, raise riverbanks, raise level of roadways Н M Societal Public FEMA Floodplain Maps townwide V/S Need to be updated using LiDar technology and climate change projections Н S Floodprone Structures Private Need to be relocated M L See map **Environmental**