

2020 SURFACE WATER MONITORING OVERVIEW

(CN 542.0)

Introduction

The Massachusetts Department of Environmental Protection (MassDEP) Watershed Planning Program (WPP) plans and implements surface water quality monitoring for the state to support various Clean Water Act (CWA) objectives, including reporting on the condition of waters of the state. This report provides a brief overview of the surface water quality monitoring performed in 2020. Information pertaining to the individual components of WPP's Surface Water Monitoring Program is presented at <u>https://www.mass.gov/service-details/water-quality-monitoring-program#1</u>.

The main programmatic objectives of the WPP surface water quality monitoring program are as follows:

- Collect chemical, physical, and biological data to assess the degree to which designated uses, such as aquatic life, primary and secondary contact recreation, fish consumption, and aesthetics, are supported in the waters of the Commonwealth;
- Collect data to support analysis and development of total maximum daily loads (TMDLs) and other plans to reduce pollutant loads to waters of the Commonwealth;
- Screen fish tissue in selected waterbodies for select contaminants (metals, PCBs and organochlorine pesticides) to support public health risk assessments;
- To the extent feasible, locate pollution sources and promote and facilitate timely correction;
- Identify and assess new and emerging water contaminants of concern;
- Collect water quality data to evaluate for trends in parameter concentrations and/or loads;
- Collect data to support the establishment or revision of surface water quality standards and policies; and
- Measure the effectiveness of water quality management projects or programs such as the effectiveness of implementing TMDLs or watershed-based plans.

Quality assurance is maintained for WPP's watershed monitoring program to ensure

implementation of an effective and efficient sampling design, to meet programmatic goals and to provide data meeting specific data quality objectives. The U.S. Environmental Protection Agency (USEPA) has approved a comprehensive Quality Assurance Program Plan (QAPP) that applies to the generation and use of surface water quality data by WPP for a five-year period (2020 – 2024). This five-year *program* QAPP is annually supplemented by project-specific Sampling and Analysis Plans (SAPs), which provide detailed information regarding individual project organization, tasks, background, sampling design and non-direct measurements. More information pertaining to the WPP's Quality Management Program and the 2020 – 2024 QAPP can be found at https://www.mass.gov/guides/water-quality-monitoring-quality-management-program.

The WPP had intended to initiate a new seven-year rotating watershed schedule for targeted assessment monitoring in 2020. However, the Covid-19 virus pandemic led to its postponement until 2021. A revised monitoring plan was developed that could be implemented while adhering to safety guidelines developed for WPP field and laboratory operations during the Covid-19 pandemic. The 2020 monitoring program primarily focused on: 1) Macroinvertebrate sampling to support ongoing biocriteria development activities; and 2) Monitoring of candidate streams for potential designation as cold water fishery resources in the surface water quality standards (SWQS). In addition to these 2020 monitoring activities, long-term monitoring activities aimed at assessing the impacts of road salt application on surface waters were also continued. These, as well as additional monitoring activities performed in 2020, are described in more detail below.

Monitoring Project Descriptions

Biocriteria Development Monitoring (Filling Data Gaps): The WPP is currently developing biocriteria (multimetric indices of biotic integrity) for streams using benthic macroinvertebrate communities. The implementation of biocriteria increases the accuracy and precision of aquatic life use assessments and improves water quality goal-setting processes. Multimetric indices were developed recently for two regions of Massachusetts: the "Western Highlands" and the "Central Hills". After completing the initial phases of the biocriteria development, it was apparent that gaps existed in the Massachusetts macroinvertebrate dataset that, if filled, would support efforts to refine and improve the accuracy of the biocriteria indices. Biocriteria development monitoring in 2020 focused on high-gradient streams in the "Western Highlands" with high levels of human disturbance. Existing human disturbance gradients were used to select approximately 85 candidate sites meeting the defined disturbance criteria. Macroinvertebrate samples were collected from a total of 71 of the selected sites between July 1 and September 30. Habitat assessments and field observations were also made at each site. Macroinvertebrate samples were delivered to a contractor for processing and taxonomic identifications. The data from this monitoring effort will be used to better characterize the macroinvertebrate communities in highly disturbed streams in the "Western Highlands" and to refine the calibration of the multimetric index for that region. In addition, the data will be used to assess the aquatic life use support status for the sampled streams. A complete list of the sites sampled in 2020 is presented in Appendix A.

Cold Water Fisheries Resource Assessments to Support Surface Water Quality Standards Designations: The WPP has developed protocols for designating cold water fisheries (CWF) in the SWQS. For a particular surface water or segment, fish population data can be used to support proposed Cold Water designation in the SWQS. Temperature and DO data can also be used in the absence of fish population data. Working primarily from the Division of Fisheries and Wildlife's (DFW) Cold Water Fisheries Resource (CFR) List, the WPP identified water bodies that may have been undesignated or under documented CWF as candidates for field verification in 2020. A total of 61 stream sites in northeastern and central Massachusetts were selected for assessment (see Appendix B). Sondes and data loggers were deployed for up to two months in July and August to obtain continuous temperature and dissolved oxygen data from each site. During that same time, and extending into mid-September, fish population assessments were performed once at each site. Streams that qualify as CWF will be designated as such in the next regulatory review of the SWQS.

Fish Toxics Monitoring: The Fish Toxics Monitoring Program is a cooperative effort between MassDEP (WPP and Office of Research and Standards), the Massachusetts Department of Public Health (DPH), and the Department of Fish and Game (DFG). The goal of this monitoring is to provide data for the assessment of the risk to human consumers associated with the consumption of freshwater fish, and most of the fish are collected from waters requested by the public. Fish sampling was performed at four sites in 2020 at the recommendation of the Interagency Fish Toxics Committee (Table 1). Edible fillets from fish collected at all four waterbodies were analyzed for the presence of mercury, arsenic, cadmium, and selenium. Samples from Bush Pond were also analyzed for PCB and organochlorine pesticides. If necessary, fish consumption advisories will be issued by DPH.

Watershed	Waterbody (Municipality)	Analytes
Housatonic	Plunkett Reservoir (Hinsdale)	Hg, As, Cd, Se
Housatonic	Ashmere Lake (Hinsdale)	Hg, As, Cd, Se
Charles	Bush Pond (Norfolk)	Hg, As, Cd, Se, PCB arochlors, organochlorine pesticides, % lipids
Islands	Hummock Pond (Nantucket)	Hg, As, Cd, Se

 Table 1. 2020 fish toxics monitoring sites.

Lake Monitoring in the Mystic River Watershed: In collaboration with the USEPA, the WPP established a monitoring program in 2019 at three nutrient-impaired lakes in the Mystic River Watershed to provide a more recent assessment of their designated use support status (i.e., *Aquatic Life, Recreational,* and *Aesthetic* uses) and to support the calibration of a Lake Loading Response Model (LLRM) as a step toward developing phosphorus TMDLs for these ponds. Horn Pond (Woburn), Spy Pond (Arlington) and Wedge Pond (Winchester) were originally scheduled to be sampled in 2020 but the surveys were postponed due to the Covid-19 pandemic. The work carried out in 2020 was a bathymetry survey of each pond. It is anticipated that water quality monitoring will resume at these three ponds in 2021.

Monitoring the Effects on Water Quality of Road-Salt Application: WPP continued to monitor seasonal chloride levels in selected waters at risk of contamination by chlorides originating from road salt application. Continuous conductivity loggers were deployed at twelve sites in the upper Blackstone River Watershed from November/December 2019 through September 2020 (Table 2). This monitoring also included the collection of chloride grab samples to continue to verify and fine-tune (as needed) the accuracy of the specific conductance-chloride regression model developed by WPP. Chloride data will also be used for assessment and may, in the future, support the development of TMDLs for waters impaired by chlorides.

Site ID	Waterbody Name (Municipality)	Latitude	Longitude
Bla01	Weasel Brook (Worcester)	42.30797	-71.80025
Bla02	Poor Farm Brook (Worcester)	42.30648	-71.76585
Bla03	Big Bummet Brook (Grafton)	42.23671	-71.70492
Bla04	Quinsigamond River (Grafton)	42.20836	-71.69757
Bla05	Blackstone River (Grafton)	42.17691	-71.68828
Bla06	Cold Spring Brook (Sutton)	42.17551	-71.72817
Bla07	Singletary Brook (Millbury)	42.18283	-71.76597
Bla08	Unnamed tributary to Indian Lake (Worcester)	42.30793	-71.81955
Bla09	Dark Brook I – Southeast (Auburn)	42.20398	-71.83572
Bla10	Unnamed tributary to Dark Brook (Auburn)	42.19019	-71.84583
Bla11	Dark Brook II - Northwest (Auburn)	42.20659	-71.85269
Bla12	Tatnuck Brook (Worcester)	42.26230	-71.84823

	Table 2.	2020 chloride and	conductivity	/ monitoring sites.
--	----------	-------------------	--------------	---------------------

Participation in the Northeast Regional Monitoring Network (RMN): In collaboration with its regional offices, states, tribes, and other entities, the USEPA has established Regional Monitoring Networks (RMNs). The goal of the RMNs is to help EPA and their partners collect current, baseline biological, thermal, and hydrologic data from freshwater wadeable streams. Over time, these data can help facilitate a better understanding of relationships between biological, thermal, and hydrologic data, ecosystem responses and recovery from extreme weather events, and effects of climate change and regional phenomena such as drought and pollutant/nutrient deposition on aquatic ecosystems.

As part of the Northeast RMN, MassDEP has established five sites in Massachusetts which have been designated for long-term monitoring for temperature regimes, flow characteristics, and stream macroinvertebrate communities (Table 3). Since 2012 MassDEP has been collecting air and water time-series temperature data, as well as annual macroinvertebrate kick-samples. Time-series streamflow data are obtained from Brown's and Parkers brooks by the Massachusetts Division of Ecological Restoration. Flow data are available for the other three streams from USGS gages located at or near the RMN sampling sites.

Site ID	Watershed	Waterbody	Description	Latitude	Longitude
CR01ACC	Deerfield	Cold River	Approximately 70 meters upstream/north of South County Road, Florida.	42.6669	-73.0302
HRCC	Farmington	Hubbard Brook	Approximately 245 meters upstream/northwest of West Hartland Road, Granville.	42.0654	-72.9675
BB01CC	Quinebaug	Browns Brook	Approximately 645 meters upstream from May Brook Road, Holland	42.0348	-72.1616
WSR01CC	Chicopee	West Branch Swift River	Approximately 195 meters upstream from Cooleyville Road Extension, Shutesbury	42.4647	-72.3845

 Table 3. Northeast Regional Monitoring Network (RMN) sites in Massachusetts

Table 3. Northeast Regional Monitoring Network (RMN) sites in Massachusetts

Site ID	Watershed	Waterbody	Description	Latitude	Longitude
PBCC	Chicopee	Unnamed, known as Parkers Brook	Approximately 160 meters west (downstream) of Coldbrook Road, Oakham (due south of Route 122)	42.3943	-72.0492

Field and Lab Support for the Assessment and Management of Cyanobacteria Blooms: MassDEP provided technical expertise and laboratory support for the investigation of potentially toxic algae (cyanobacteria) blooms. Staff biologists performed cyanobacteria counts and identifications on water samples to determine whether cell counts exceeded MassDPH advisory levels for recreational waters. Only two waterbodies were investigated in 2020 (see Table 4).

Table 4.Waterbodies for which MassDEP staff performed cyanobacteria cell counts (C) and
taxonomic identifications (ID) in 2020.

Waterbody	Municipality	Number of sampling events	Sample Processing
East Monponsett Pond	Halifax/Hanson	9	C, ID
West Monponsett Pond	Halifax/Hanson	2	C, ID

Assessment Monitoring of the Merrimack River Mainstem and Tidal Reaches: Working collaboratively with MassDEP, the USGS performed water quality surveys of the mainstem and tidal reaches of the Merrimack River in Massachusetts to fill data gaps and support water quality assessment and management decision-making. Data will be used to complete updated assessments for four freshwater and two tidal river assessment units (AU) and to evaluate locations in the Merrimack River estuary for potential longer-term seasonal deployment of continuous water quality monitoring equipment. Water samples were collected monthly from May through September at 13 monitoring sites and analyzed for nutrients and chlorophyll-a. During each sampling event, vertical profile data were obtained at 0.5 m increments at each site using multiprobe sensors that recorded depth, temperature, pH, specific conductance, dissolved oxygen, turbidity, salinity and chlorophyll relative fluorescence. Finally, sensor arrays were configured to measure dissolved oxygen and temperature near the surface and bottom at 15-minute intervals. Sampling site locations and variables measured for this monitoring effort are summarized in tables 5 and 6, respectively.

Table 5. Description of sites and corresponding assessment units (AU) surveyed as part of the MassDEP/USGS collaborative monitoring program for the mainstem and tidal reaches of the Merrimack River in Massachusetts.

USGS ID	Site Description	MassDEP AU
010965305	Merrimack River near Tyngsborough Bridge, Tyngsborough	MA84A-01
01096568	Merrimack River at Lowell Motor Boat Club, Lowell	MA84A-01
010965985	Merrimack River near Aiken Street Bridge, Lowell	MA84A-02
01100220	Merrimack River near power lines, Methuen	MA84A-03
01100475	Merrimack River at Bashara Boat House, Lawrence	MA84A-03
01100671	Merrimack River downstream Stanley Island, Haverhill	MA84A-04

Table 5. Description of sites and corresponding assessment units (AU) surveyed as part of the MassDEP/USGS collaborative monitoring program for the mainstem and tidal reaches of the Merrimack River in Massachusetts.

01100806	Merrimack River near power lines, Merrimac	MA84A-05
01100823	Merrimack River at Goodwin Creek Marina, Amesbury	MA84A-06
01100871	Merrimack River at Bridge Marina, Salisbury	MA84A-06
01100873	Merrimack River estuary near Buoy 16, Newburyport	MA84A-06
01100874	Merrimack River estuary near Lunt Rock, Salisbury*	MA84A-06
01100875	Merrimack River estuary near Salisbury Beach State Park*	MA84A-06
01100877	Merrimack River estuary near Plum Island, Newburyport*	MA84A-06

*Continuous temperature and dissolved oxygen sensor arrays were not deployed at these sites.

Table 6. Sampling frequency of water quality variables measured as part of the MassDEP/USGS collaborative monitoring program for the mainstem and tidal reaches of the Merrimack River in Massachusetts.

Sample Type	Variable	Sample Frequency
	Vertical depth profiles (sensor depth, temperature, pH, specific conductance, dissolved oxygen, turbidity, salinity and chlorophyll relative fluorescence)	Monthly (May - September)
Discrete	Nutrients [Ammonia-nitrogen, Nitrate+Nitrite nitrogen, Nitrite- nitrogen, Total particulate nitrogen, Total nitrogen (filtered), Total phosphorus (filtered and unfiltered), Orthophosphate]	Monthly (May - September)
	Total particulate carbon	Monthly (May - September)
	Chlorophyll a	Monthly (May - September)
One-month	Dissolved oxygen	Twice
Continuous	Temperature	Twice
(surface and	Barometric pressure (estuarine sites)	Twice
bottom)	Specific conductance	Twice

Monitoring to Estimate Contaminant Loadings: Massachusetts' long-term monitoring strategy identifies, as one of its key monitoring objectives, monitoring to support the development, implementation and evaluation of pollution control strategies, and indicates that "limited fixed-site monitoring may be required to quantify pollutant loadings." In 2017-2018 the USGS installed a flow monitoring station in the Connecticut River near Northfield, MA (USGS Station 01161280) and initiated weekly water-quality sampling to provide data for the estimation of nutrient loads entering Massachusetts from upstream sources. In addition, the water-quality sampling frequency was increased to weekly at the USGS monitoring station in the Connecticut River at Thompsonville CT (USGS Station 01184000) to refine estimates of nutrient loads leaving Massachusetts. Funded collaboratively by the Springfield Water and Sewer Commission, MassDEP, and USGS, this monitoring study will increase understanding of the nutrient contributions from Massachusetts to Long Island Sound. Additionally, since 2018, MassDEP has been collaborating with USGS and funding water-quality sampling at existing USGS flow gage stations located near the confluence of each of the Deerfield, Millers, Chicopee and Westfield rivers with the Connecticut River. Monitoring these locations will assist in prioritizing areas for nitrogen load reductions and making informed nutrient management decisions.

MassDEP has also been collaborating with USGS and funding water-quality sampling in the Taunton River Watershed (at existing USGS flow gage stations in the Taunton, Threemile, Mill, and Segreganset rivers) to quantify nutrient loadings to the lower Taunton River and Mount Hope Bay (see **Monitoring Water Quality in Mount Hope Bay** below). Finally, plans are in development to initiate a sampling network in 2021 to estimate contaminant loadings in the Merrimack River Watershed to inform updated water quality assessments and to support future calibration and verification of simulation models to be used in TMDL development.

Monitoring Water Quality in Mount Hope Bay: MassDEP maintains two YSI marine water quality monitoring buoys in the Massachusetts portion of Mount Hope Bay (MHB) that are part of the more extensive Narragansett Bay Fixed-Site Monitoring Network (NBFSMN) currently administered by the Rhode Island Department of Environmental Management (RIDEM) and the University of Rhode Island Graduate School of Oceanography (URI). Data from the MHB buoys are helping to define ambient water quality conditions for dissolved oxygen, nitrate-nitrogen, algal abundance, temperature, and other parameters. Specifically, the data may be used to assess trends over time, identify impaired waters, assess the effectiveness of management decisions (i.e., wastewater treatment facilities (WWTF) upgrades, TMDL efforts, and stormwater management), and support refinement, calibration, and validation of water quality models. During the deployment of the buoys (May-November) grab water samples were collected for chemical analysis every two weeks at each buoy location within one meter of the deployed sensors. Instantaneous grab sample data will be compared to corresponding sensor data to validate the accuracy of sensor measurements. MassDEP's long-term plan for the buoys is to continue collecting continuous, real-time data seasonally in coastal systems to address data gaps and aid management decisions.

Massachusetts Coastal Condition Assessment (MCCA): The EPA encourages states to adopt networks of randomly selected sampling sites that will allow for statistically unbiased assessments that can be applied at larger scales (e.g., statewide). During 2011 – 2015 the WPP surface water monitoring program carried out probabilistic monitoring and assessment surveys of Massachusetts' shallow streams. This was followed by a statistically-valid (probabilistic) sampling program for Massachusetts' lakes and ponds from 2016 – 2018. In 2019, a probabilistic monitoring network was designed with the overall goal of providing an unbiased assessment of the condition of Massachusetts coastal and estuarine waters. Known as the Massachusetts Coastal Condition Assessment, or MCCA, this network was designed to obtain the data needed to assess a waterbody's level of attainment of a single designated use: "suitable habitat for Fish, other Aquatic Life and Wildlife" (i.e., Aquatic Life). The random sampling design allows for the determination, with a known statistical confidence, of the percentage of coastal waters that are supporting and not supporting this use. Additionally, the MCCA will establish a baseline to measure trends in conditions through future surveys.

The MCCA is administered collaboratively by the Massachusetts Department of Environmental Protection (MassDEP) and the Massachusetts Bays National Estuary Partnership (MassBays). MassBays serves as the field project lead to manage the collection and analysis of field samples and data for the MCCA. A total of 90 coastal and estuarine sites will be monitored from 2020 – 2023.

Field surveys began in 2020 with a pilot study consisting of 15 sampling sites (Table 7). A contractor was selected to perform sample collection and record ambient data at each site once per month from June through September. During each sampling event field crews recorded ambient environment conditions, collected water column profile data, and collected water samples from each site. Sediment samples for chemical analyses and the assessment of the

benthic infauna community were collected once at each site. The presence/absence of eelgrass was surveyed once in July at all 15 stations. Water quality and ecological variables measured at each MCCA monitoring site are listed along with their sampling frequencies in Table 8.

sile map.			
Site ID	General Location	Latitude	Longitude
<u>MAP2E-015</u>	Nahant Bay	42.445780	-70.930086
<u>MAP2E-019</u>	Salem Sound	42.532229	-70.795811
<u>MAP2E-023</u>	Nahant Bay	42.433383	-70.909717
<u>MAP2E-028</u>	Magnolia Point	42.572127	-70.712727
<u>MAP2E-030</u>	Salem Sound	42.535147	-70.894588
MAP2E-093	Plymouth Bay	41.936000	-70.550864
<u>MAP2E-097</u>	Plymouth Bay	41.946614	-70.609555
<u>MAP2E-101</u>	Plymouth Bay	41.980740	-70.605467
<u>MAP2E-105</u>	Duxbury Bay	42.039644	-70.649977
<u>MAP2E-113</u>	Plymouth Bay	42.000959	-70.616377
<u>MAP2E-186</u>	Wild Harbor	41.637399	-70.650415
<u>MAP2E-190</u>	Sippican Harbor	41.668567	-70.728566
<u>MAP2E-194</u>	Wareham River	41.741721	-70.701577
<u>MAP2E-202</u>	Phinney Harbor	41.709491	-70.629730
MAP2E-206	Aucoot Cove	41.672874	-70.758260

Table 7. Location of coastal and estuarine sampling sites included in the 2020 MCCA Pilot Study. Ctrl+Click on the Site ID to follow link to site map.

Table 8. Sampling frequency of water quality and ecological variables measured at each of fifteen coastal and estuarine sites during the 2020 MCCA Pilot Study.

Medium	Variable	Sample Frequency
	Vertical profile (Temperature, Salinity, Dissolved oxygen, pH,	Monthly
	Turbidity)	(June, July, August)
	Light attenuation/PAR	Monthly
		(June, July, August)
Water	Water clarity/Secchi depth	Monthly
Water		(June, July, August)
	Nutrients (Total phosphorus, Orthophosphate, Total nitrogen,	Monthly
	Dissolved inorganic nitrogen, Total Kjeldahl nitrogen)	(June, July, August)
	Chlorophyll a	Monthly
		(June, July, August)
	Grain size	Once (July)
Sediment	Total organic carbon	Once (July)
	Chemistry (metals, mercury, PAHs, PCBs, organochlorine pesticides)	Once (July)
	Toxicity (estuarine amphipod, Leptocheirus plumulosus)	Once (July)
Piologiaal	Benthic macroinvertebrates	Once (August)
Biological	Submerged aquatic vegetation	Once (July)

Pleasant Bay TMDL Effectiveness Monitoring Study: MassDEP retained a contractor to carry out benthic invertebrate sampling in Pleasant Bay (Brewster/Chatham/Harwich/Orleans) in September 2020 as part of a post-TMDL assessment of the ecological health of the bay. The data will be used to re-evaluate habitat conditions after TMDL implementation activities including wastewater treatment system upgrades and sewer system construction which resulted in the reduction of nitrogen loading in the watershed. The monitoring study was designed to verify that the 2018 Marine Benthic Monitoring Guidance documents developed by MassDEP will produce quality benthic data that 1) will allow coastal communities to assess current embayment health, 2) are comparable between assessments and embayments, and 3) will aid in future management decisions. The sampling plan included 34 benthic grab sampling locations, sediment grain size analysis, total organic carbon, digital video and photographs of the bottom, and water quality measurement profiles (water temperature, DO, salinity, and pH).

PFAS Sampling in Rivers and Streams in Massachusetts: Through a joint-funded project with MassDEP, USGS performed water sampling for the analysis of twenty-four (24) individual per- and polyfluoroalkyl substances (PFAS) at 64 river sites in Massachusetts. Samples were collected upstream and downstream from the effluent discharges of 25 municipal or institutional wastewater treatment facilities and from 15 additional stream locations, including sites downstream of industrial or populated areas, as well as sites in less developed watersheds where sources of PFAS were unlikely to be present. To minimize the potential effects from stormwater runoff, sample collection targeted base-flow (dry-weather, low-flow) conditions. The study comprised three rounds of sample collection yielding approximately 192 environmental samples and 50 QC samples (blanks and replicates). Monitoring sites are presented in Appendix C.

Summary

This document presents a brief overview of the surface water monitoring performed by the WPP in 2020. Several laboratories and contractors process and analyze the water and biological samples collected. The WPP will continue to work with these laboratories to receive the data and complete a rigorous data validation process to ensure that the prescribed data quality objectives are met. Final data will be published on MassDEP's website. Planning is currently underway for monitoring in 2021.

Appendices

Appendix A. This table presents the 71 stream sites sampled in 2020 by personnel of MassDEP's Watershed Planning Program in an effort to expand the dataset on macroinvertebrate communities occurring at highly disturbed streams in the "Western Highlands" region of Massachusetts. Ctrl+Click on the Site ID to follow link to site map.

Site ID	Waterbody Name	Watershed	Town	Latitude	Longitude
WH006	MBr. Westfield River	Westfield	Huntington	42.25952	-72.87692
WH007	Kinderhook Creek	Hudson	Hancock	42.53896	-73.33335
WH014	NBr. Manhan River	Connecticut	Westhampton	42.29980	-72.74344
WH017	Town Brook	Housatonic	Lanesborough	42.52846	-73.23374
WH019	Wahconah Falls Brook	Housatonic	Dalton	42.48544	-73.13995
WH020	Wahconah Falls Brook	Housatonic	Dalton	42.48612	-73.13700
WH021	Daniels Brook	Housatonic	Pittsfield	42.49002	-73.27497
WH022	Wahconah Falls Brook	Housatonic	Dalton	42.48481	-73.14801
WH024	Onota Brook	Housatonic	Pittsfield	42.46445	-73.25494
WH025	EBr. Housatonic River	Housatonic	Pittsfield	42.46801	-73.20036
WH026	EBR. Housatonic River	Housatonic	Dalton	42.46874	-73.18213
WH027	Barton Brook	Housatonic	Pittsfield	42.46355	-73.19819
WH032	SWBr. Housatonic River	Housatonic	Pittsfield	42.44115	-73.29898
WH033	Jacoby Brook	Housatonic	Pittsfield	42.43969	-73.30244
WH034	SWBr. Housatonic River	Housatonic	Pittsfield	42.43973	-73.29343
WH035	WBr. Housatonic River	Housatonic	Pittsfield	42.44614	-73.26206
WH036	WBr. Housatonic River	Housatonic	Pittsfield	42.45148	-73.26239
WH037	WBr. Housatonic River	Housatonic	Pittsfield	42.44115	-73.26013
WH038	SWBr. Housatonic River	Housatonic	Pittsfield	42.44013	-73.27120
WH039	SWBr. Housatonic River	Housatonic	Pittsfield	42.44177	-73.27824
WH040	SWBr. Housatonic River	Housatonic	Pittsfield	42.43478	-73.30530
WH047	Cone Brook	Housatonic	West Stockbridge	42.34831	-73.36513
WH049	Larrywaug Brook	Housatonic	Stockbridge	42.31372	-73.33185
WH050	Goose Pond Brook	Housatonic	Lee	42.29402	-73.23964
WH056	Green River	Housatonic	Great Barrington	42.19072	-73.39965
WH057	Green River	Housatonic	Great Barrington	42.17855	-73.37814
WH058	Green River	Housatonic	Great Barrington	42.16376	-73.36525
WH061	Konkapot River	Housatonic	Sheffield	42.05408	-73.33427
WH064	Konkapot River	Housatonic	New Marlborough	42.07602	-73.28281
WH065	WBr. Housatonic River	Housatonic	Pittsfield	42.46396	-73.25323
WH066	WBr. Housatonic River	Housatonic	Pittsfield	42.46668	-73.25056
WH067	WBr. Housatonic River	Housatonic	Pittsfield	42.46930	-73.24925
WH068	WBr. Housatonic River	Housatonic	Pittsfield	42.47441	-73.24602
WH069	WBr. Housatonic River	Housatonic	Pittsfield	42.48250	-73.24689
WH070	EBr. Housatonic River	Housatonic	Pittsfield	42.43706	-73.24775

Appendix A. This table presents the 71 stream sites sampled in 2020 by personnel of MassDEP's Watershed Planning Program in an effort to expand the dataset on macroinvertebrate communities occurring at highly disturbed streams in the "Western Highlands" region of Massachusetts. Ctrl+Click on the Site ID to follow link to site map.

Site ID	Waterbody Name	Watershed	Town	Latitude	Longitude
WH071	EBr. Housatonic River	Housatonic	Pittsfield	42.44077	-73.24808
WH072	EBr. Housatonic River	Housatonic	Pittsfield	42.44270	-73.24646
WH077	Housatonic River	Housatonic	Lee	42.31370	-73.24689
WH078	Housatonic River	Housatonic	Lee	42.32296	-73.24216
WH079	Housatonic River	Housatonic	Lee	42.29378	-73.24161
WH080	Housatonic River	Housatonic	Lee	42.30338	-73.25068
WH081	Housatonic River	Housatonic	Lee	42.28337	-73.24086
WH082	Willow Brook	Housatonic	Lee	42.28337	-73.24729
WH084	Seekonk Brook	Housatonic	Great Barrington	42.21348	-73.39197
WH088	Onota Brook	Housatonic	Pittsfield	42.46968	-73.25650
WH089	SWBr. Housatonic River	Housatonic	Pittsfield	42.43994	-73.28895
WH091	Glen Brook	Deerfield	Leyden	42.67868	-72.62892
WH093	Hinsdale Brook	Deerfield	Shelburne	42.63169	-72.65607
WH095	Clesson Brook	Deerfield	Buckland	42.60170	-72.77793
WH096	Dragon Brook	Deerfield	Shelburne	42.57791	-72.68462
WH097	UBr. Clesson Brook	Deerfield	Ashfield	42.55487	-72.80962
WH098	South River	Deerfield	Ashfield	42.51072	-72.77398
WH100	South River	Deerfield	Conway	42.51623	-72.74638
WH103	Hemlock Brook	Hudson	Williamstown	42.72550	-73.20740
WH104	Hoosic River	Hudson	Williamstown	42.72871	-73.20692
WH105	Hoosic River	Hudson	Williamstown	42.73027	-73.21564
WH106	Hemlock Brook	Hudson	Williamstown	42.71939	-73.20967
WH109	Hoosic River	Hudson	North Adams	42.70404	-73.17363
WH110	Hoosic River	Hudson	North Adams	42.69984	-73.16141
WH111	Paull Brook	Hudson	Williamstown	42.70385	-73.17689
WH112	Green River	Hudson	Williamstown	42.67436	-73.23235
WH113	WBr. Green River	Hudson	Williamstown	42.66013	-73.24149
WH115	Hoosic River	Hudson	Adams	42.63996	-73.10859
WH119	Green River	Hudson	Williamstown	42.71029	-73.19413
WH120	Green River	Hudson	Williamstown	42.70560	-73.19925
WH121	Green River	Hudson	Williamstown	42.69107	-73.20127
WH122	Hoosic River	Hudson	North Adams	42.70298	-73.12374
WH123	Sweet Brook	Hudson	Williamstown	42.68585	-73.23118
WH124	Unnamed Tributary	Hudson	Adams	42.60745	-73.12563
WH125	EBr. Housatonic River	Housatonic	Hinsdale	42.44764	-73.13050
<u>WH200</u>	Hoosic River	Hudson	North Adams	42.69678	-73.14003

Appendix B. This table presents the 61 stream sites sampled in 2020 by personnel of MassDEP's Watershed Planning Program in an effort to verify cold water fisheries (CWF) for designation in the Massachusetts Surface Water Quality Standards (SWQS).

Waterbody Name	Watershed	Latitude	Longitude
Fox Brook	Blackstone	42.02820	-71.54040
Round Top Brook	Blackstone	42.00792	-71.70506
Emerson Brook	Blackstone	42.04626	-71.63013
Rock Meadow Brook	Blackstone	42.09246	-71.59144
Miscoe Brook (1)	Blackstone	42.12288	-71.59914
Miscoe Brook (2)	Blackstone	42.22538	-71.65267
Steamburg Brook	Blackstone	42.10853	-71.69456
UNT to Wellman Brook	Blackstone	42.07256	-71.70276
Axtell Brook	Blackstone	42.22356	-71.68764
Coal Mine Brook	Blackstone	42.29070	-71.76730
Poor Farm Brook	Blackstone	42.30650	-71.76600
Sewall Brook	Blackstone	42.32472	-71.74141
Tatnuck Brook	Blackstone	42.26072	-71.84794
Silver Spring Brook	Blackstone	42.30550	-71.87770
Mill Brook	Boston Harbor	42.18920	-71.24016
Purgatory Brook	Boston Harbor	42.20928	-71.18480
Dix Brook	Charles	42.06030	-71.42140
Seaverns Brook	Charles	42.34154	-71.26663
Cherry Brook	Charles	42.38896	-71.29708
Fuller Brook	Chicopee	42.16320	-72.53470
UNT to Higher Brook	Chicopee	42.18858	-72.45233
Broad Brook (2)	Chicopee	42.21049	-72.40260
Blodgett Mill Brook	Chicopee	42.17390	-72.25330
O'Neil Brook	Chicopee	42.22285	-72.22523
Meadow Brook	Chicopee	42.28937	-72.12806
Sucker Brook (2)	Chicopee	42.29793	-72.11710
Sevenmile River	Chicopee	42.26514	-72.00530
Cranberry River	Chicopee	42.21653	-72.00015
Turkey Hill Brook	Chicopee	42.27080	-71.98280
Fivemile River	Chicopee	42.33886	-72.03408
Maynard Brook	Chicopee	42.33175	-72.05032
Murdock Brook	Chicopee	42.21659	-72.37554
Chaffee Brook	Chicopee	42.33666	-72.36874
UNT to Quabbin (Dickey Brook)	Chicopee	42.44412	-72.37156
Prescott Brook	Chicopee	42.36452	-72.32489
Giles Brook	Chicopee	42.50354	-72.31803

Appendix B. This table presents the 61 stream sites sampled in 2020 by personnel of MassDEP's Watershed Planning Program in an effort to verify cold water fisheries (CWF) for designation in the Massachusetts Surface Water Quality Standards (SWQS).

			1
Manning Brook	Chicopee	42.51855	-72.31728
East Branch Swift River	Chicopee	42.43775	-72.20826
UNT to East Branch Swift River	Chicopee	42.45200	-72.16650
(McManus Brook)			
Muddy Brook	Chicopee	42.35630	-72.23090
Danforth Brook (2)	Chicopee	42.31551	-72.20667
Fish Brook	Chicopee	42.31604	-72.18082
Moose Brook	Chicopee	42.41375	-72.14289
Pratt Brook	Chicopee	42.37749	-72.10762
Burrow Brook	Chicopee	42.37476	-72.08738
Natty Pond Brook	Chicopee	42.45145	-72.02946
East Branch Ware River	Chicopee	42.41615	-72.00791
UNT to East Branch Ware River	Chicopee	42.44674	-71.93977
Run Brook	Concord	42.38603	-71.43967
Dugan Brook	Concord	42.44790	-71.37850
Wickett Brook	Millers	42.55699	-72.42509
Shingle Swamp Brook	Millers	42.55640	-72.30080
Lawrence Brook	Millers	42.68350	-72.17190
Rich Brook	Millers	42.62957	-72.16371
Thousand Acre Brook	Millers	42.60698	-72.16342
Chickering Brook	Millers	42.55493	-72.12750
Bailey Brook	Millers	42.58925	-72.03684
Asnebumskit Brook	Nashua	42.35240	-71.89120
Pearl Hill Brook	Nashua	42.58519	-71.77108
Baker Brook	Nashua	42.56351	-71.76140
Catacoonamug Brook	Nashua	42.56710	-71.69660
	•		

Appendix C. This table presents the 64 stream sites sampled in 2020 by USGS for the analysis of twenty-four (24) individual per- and polyfluoroalkyl substances (PFAS). Forty-eight sites were upstream (US) and downstream (DS) from the effluent discharges of 25 municipal or institutional wastewater treatment facilities. The remaining 15 stream locations were downstream of industrial or populated areas, or in less developed watersheds where sources of PFAS were unlikely to occur.

Site Description	Latitude	Longitude	Notes
NASHUA RIVER NEAR AYER, MA	42.578192	-71.609675	DS Ayer WWTP
NASHUA RIVER NEAR MCPHERSON ROAD,			
SHIRLEY, MA	42.555192	-71.611008	US Ayer WWTP
CONCORD RIVER AT LOWELL, MA	42.627758	-71.298014	DS Billerica WWTP
CONCORD R POLLAND ST	42.585019	-71.287164	US Billerica WWTP
BLACKSTONE RIVER NEAR MILLBURY, MA	42.207148	-71.781649	DS UBWPAD ¹
BLACKSTONE RIVER RT 146 AT WORCESTER, MA	42.227852	-71.787653	US UBWPAD ¹
TOWN RIVER AT HAYWARD ST NEAR			DS Bridgewater
BRIDGEWATER, MA	41.997539	-70.953676	WWTP
			US Bridgewater
TOWN RIVER AT BRIDGEWATER, MA	41.996954	-70.972360	WWTP
SALISBURY PLAIN R NR MATFIELD ST E	42.038123	-70.983998	US Brockton WWTP
BRIDGEWATER, MA SALISBURY PLAIN R AT SARGENT'S WAY,	42.038123	-70.983998	DS Brockton
BROCKTON, MA	42.053631	-71.009803	WWTP
CHARLES RIVER NEAR MILLIS, MA	42.133426	-71.362015	DS CRPCD ²
CHARLES RIVER AT MEDWAY, MA	42.139862	-71.389883	US CRPCD ²
			DS MWRA-Clinton
NASHUA RIVER AT ROUTE 110, CLINTON, MA	42.432696	-71.680058	WWTP
NASHUA RIVER 0.4 MI UPSTREAM RT 110 AT			US MWRA-Clinton
CLINTON, MA	42.429702	-71.679566	WWTP
CONCORD R RT225 CARLISLE-BEDFORD, MA	42.509168	-71.314030	DS Concord WWTP
CONCORD RIVER NEAR LOWELL ROAD,			
CONCORD, MA	42.466479	-71.355662	US Concord WWTP
NORTH NASHUA RIVER AT NORTH LEOMINSTER,		74 746060	DS East Fitchburg
MA NORTH NASHUA R NR LANDIES LN, E.	42.54155	-71.746063	WWTP US East Fitchburg
FITCHBURG, MA	42.549508	-71.750858	WWTP
			DS Pittsfield
HOUSATONIC RIVER AT NEW LENOX, MA	42.39399	-73.240415	WWTF ³
ASSABET RIVER AT ROUTE 62, HUDSON, MA	42.404409	-71.525970	DS Hudson WWTP
ASSABET RIVER AT COX ST NEAR HUDSON, MA	42.39981547	-71.54589859	US Hudson WWTP
MERRIMACK RIVER NEAR HAVERHILL, MA	42.7704833	-71.0869111	DS GLSD ⁴ WWTP
MERRIMACK RIVER AT LAWRENCE, MA	42.7048333	-71.15313889	US GLSD ⁴ WWTP
			DS Leominster
NORTH NASHUA RIVER AT LEOMINSTER, MA	42.52592408	-71.7367379	WWTP
NORTH NASHUA RIVER AT MECHANIC ST,			US Leominster
LEOMINSTER, MA	42.51961667	-71.72733889	WWTP

Appendix C. This table presents the 64 stream sites sampled in 2020 by USGS for the analysis of twenty-four (24) individual per- and polyfluoroalkyl substances (PFAS). Forty-eight sites were upstream (US) and downstream (DS) from the effluent discharges of 25 municipal or institutional wastewater treatment facilities. The remaining 15 stream locations were downstream of industrial or populated areas, or in less developed watersheds where sources of PFAS were unlikely to occur.

Site Description	Latitude	Longitude	Notes
MERRIMACK R AT ABE BASHARA BOAT HOUSE			DS Gr. Lowell
LAWRENCE, MA	42.69291666	-71.17661111	WWTP
MERRIMACK RIVER BL CONCORD RIVER AT			US Gr. Lowell
LOWELL, MA	42.64592464	-71.2983937	WWTP
			DS Marlborough
SEWAGE BROOK NEAR MARLBOROUGH, MA	42.350888	-71.490878	Easterly WWTP
			US Marlborough
WARD BROOK NEAR MARLBOROUGH, MA	42.35203856	-71.4947859	Easterly WWTP
			DS Marlborough
ASSABET RIVER, DS MARLBOROUGH WWTP	42.34520556	-71.6142667	Westerly WWTP
ASSABET RIVER AT BOUNDARY ST. NR			US Marlborough
NORTHBOROUGH, MA	42.3414824	-71.6159002	Westerly WWTP
			DS Maynard
ASSABET R POWDERMILL RD ACTON, MA	42.440688	-71.429196	WWTP
			US Maynard
ASSABET RIVER AT MAYNARD, MA	42.432038	-71.4497848	WWTP
SAWMILL BROOK AT ROUTE 28, BRIDGEWATER,			DS MCI
MA	41.948906	-70.968574	Bridgewater
SAWMILL BROOK AT CONANT ST			US MCI
BRIDGEWATER, MA	41.94901944	-70.9683361	Bridgewater
ASSABET RIVER AT RT 2 NEAR CONCORD, MA	42.466253	-71.390669	DS MCI Concord
ASSABET RIVER AT MAIN ST NEAR CONCORD,			
MA	42.456557	-71.389955	US MCI Concord
THREEMILE RIVER AT NORTON AVE, TAUNTON,			DS MFNRWD ⁵
MA	41.933303	-71.154267	WWTP
			US MFNRWD ⁵
THREEMILE RIVER AT CRANE ST, TAUNTON, MA	41.946758	-71.160412	WWTP
NEMASKET RIVER AT PLYMOUTH ST,			DS Middleborough
MIDDLEBOROUGH, MA	41.921878	-70.923362	WWTP
NEMASKET R AT OLIVER MILL PARK,			US Middleborough
MIDDLEBOROUGH, MA	41.907009	-70.913628	WWTP
CHARLES RIVER AT MELLON STREET, MILFORD,			
МА	42.116912	-71.501376	DS Milford WWTP
CHARLES RIVER AT MILFORD SEWER PLANT,			
MILFORD, MA	42.119908	-71.507000	US Milford WWTP
NASHUA RIVER DS PEPPERELL WWTF,			DS Pepperell
PEPPERELL, MA	42.67585556	-71.55976389	WWTP
NASHUA RIVER US PEPPERELL WWTF,			US Pepperell
PEPPERELL, MA	42.672973	-71.563149	WWTP
TAUNTON RIVER DS WWTF, TAUNTON, MA	41.8715611	-71.1025556	DS Taunton WWTP

Appendix C. This table presents the 64 stream sites sampled in 2020 by USGS for the analysis of twenty-four (24) individual per- and polyfluoroalkyl substances (PFAS). Forty-eight sites were upstream (US) and downstream (DS) from the effluent discharges of 25 municipal or institutional wastewater treatment facilities. The remaining 15 stream locations were downstream of industrial or populated areas, or in less developed watersheds where sources of PFAS were unlikely to occur.

Site Description	Latitude	Longitude	Notes
TAUNTON RIVER US WWTF, TAUNTON, MA	41.87751389	-71.0934333	US Taunton WWTP
ASSABET RIVER DS FROM WESTBOROUGH WTP			DS Westborough
AT ROUTE 9	42.2833333	-71.6386111	WWTP
			US Westborough
ASSABET RIVER NEAR WESTBOROUGH, MA	42.2795385	-71.63812279	WWTP
BASHBISH BROOK NEAR MT. WASHINGTON, MA	42.106819	-73.482548	
CHICOPEE RIVER AT INDIAN ORCHARD, MA	42.160549	-72.510558	
COLD RIVER NEAR CHARLEMONT, MA	42.636282	-72.934349	
DEERFIELD R, STILLWATER BR, AT WEST DEERFIELD, MA	42.526753	-72.632589	
WEST BRANCH FARMINGTON RIVER NEAR NEW			
BOSTON, MA	42.078861	-73.072883	
GREEN RIVER NEAR GREENFIELD, MA	42.645778	-72.619166	
HOOSIC RIVER AT WILLIAMSTOWN, MA	42.702957	-73.167689	
HOOSIC RIVER NEAR GROVE STREET, ADAMS, MA	42.600574	-73.138151	
HOUSATONIC RIVER NEAR GREAT BARRINGTON, MA	42.23191667	-73.3546667	
MILLERS RIVER AT BRIDGE STREET, MILLERS FALLS, MA	42.580185	-72.496861	
SHAWSHEEN RIVER AT BRIDGE STREET NR			
TEWKSBURY, MA	42.5946527	-71.1952	
STILLWATER RIVER AT WEST STERLING, MA	42.44675787	-71.818128	
WARE RIVER NEAR PALMER, MA.	42.20461944	-72.3186111	
WESTFIELD RIVER AT HUNTINGTON, MA	42.2256454	-72.8706533	
WESTFIELD RIVER AT BRIDGE ST AT NORTH AGAWAM, MA	42.09944444	-72.6363056	

Notes:

¹Upper Blackstone Pollution Abatement District

²Charles River Pollution Control District

³No upstream site for Pittsfield WWTP

⁴Greater Lawrence Sanitary District

⁵Mansfield/Foxborough/Norton Regional Wastewater District