COMMONWEALTH OF MASSACHUSETTS
DEPARTMENT OF TRANSPORTATION
STANDARD SPECIFICATIONS

for Highways and Bridges

2020 Edition
TABLE OF CONTENTS

Division I: General Requirements and Covenants

Section **1.00**: Definition of Terms ... I.1
 Subsection 1.01: Definition of General Terms ... I.1
 Subsection 1.02: References, Abbreviations, Acronyms, Measurement Units and Symbols ... I.1
 Subsection 1.03: Defined Terms ... I.5

Section **2.00**: Proposal Requirements and Conditions I.11
 Subsection 2.01: Proposal Forms and Plans ... I.11
 Subsection 2.02: Interpretation of Basic Estimate of Quantities I.12
 Subsection 2.03: Examination of Plans, Specifications, Special Provisions, and Site of Work ... I.12
 Subsection 2.04: Preparation of Proposals ... I.12
 Subsection 2.05: Delivery of Proposals ... I.13
 Subsection 2.06: Proposal Guaranty Required ... I.13
 Subsection 2.07: Withdrawal of Proposals .. I.13
 Subsection 2.08: Public Opening of Proposals .. I.13
 Subsection 2.09: Rejection of Proposals .. I.14
 Subsection 2.10: Disqualification of Bidders .. I.14
 Subsection 2.11: Determination of Lowest Bid ... I.15
 Subsection 2.12: Material Guaranty ... I.15

Section **3.00**: Award and Execution of the Contract I.16
 Subsection 3.01: Consideration of Proposals ... I.16
 Subsection 3.02: Award of Contract .. I.16
 Subsection 3.03: Retention of Proposal Guaranty I.16
 Subsection 3.04: Contract Bonds Required ... I.17
 Subsection 3.05: Execution of Contract ... I.17
 Subsection 3.06: Failure to Execute Contract .. I.18

Section **4.00**: Scope of Work ... I.19
 Subsection 4.01: Intent of the Contract ... I.19
 Subsection 4.02: Alterations .. I.19
 Subsection 4.03: Extra Work .. I.20
 Subsection 4.04: Changed Conditions ... I.20
 Subsection 4.05: Validity of Extra Work .. I.22
 Subsection 4.06: Increased or Decreased Contract Quantities I.22
 Subsection 4.07: Maintenance of Detours ... I.23
 Subsection 4.08: Removal and Disposal of Structures and Obstructions I.24
 Subsection 4.09: Rights In the Use of Materials Found on the Work I.24
 Subsection 4.10: Final Cleaning Up .. I.24

Section **5.00**: Control of Work ... I.26
 Subsection 5.01: Authority of the Engineer .. I.26
Section 6.00: Control of Materials

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.01: Source of Supply and Quality</td>
<td>1.35</td>
</tr>
<tr>
<td>6.02: Samples and Tests</td>
<td>1.36</td>
</tr>
<tr>
<td>6.03: Delivery and Storage of Materials</td>
<td>1.37</td>
</tr>
<tr>
<td>6.04: Defective Materials</td>
<td>1.37</td>
</tr>
</tbody>
</table>

Section 7.00: Legal Relations and Responsibility to Public

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.01: Laws to be Observed</td>
<td>1.38</td>
</tr>
<tr>
<td>7.02: Pollution Prevention</td>
<td>1.41</td>
</tr>
<tr>
<td>7.03: Permits and Licenses</td>
<td>1.48</td>
</tr>
<tr>
<td>7.04: Motor Vehicles</td>
<td>1.48</td>
</tr>
<tr>
<td>7.05: Insurance Requirements</td>
<td>1.48</td>
</tr>
<tr>
<td>7.06: Patented Devices, Materials and Processes</td>
<td>1.51</td>
</tr>
<tr>
<td>7.07: Restoration of Surfaces Opened by Permit</td>
<td>1.51</td>
</tr>
<tr>
<td>7.08: Federal Participation (Applicable only to Contracts where the cost of any portion thereof is paid out of Federal Funds)</td>
<td>1.51</td>
</tr>
<tr>
<td>7.09: Public Safety and Convenience</td>
<td>1.52</td>
</tr>
<tr>
<td>7.10: Barricades and Warning Signs</td>
<td>1.54</td>
</tr>
<tr>
<td>7.11: Traffic Officers and Railroad Flagging Service</td>
<td>1.54</td>
</tr>
<tr>
<td>7.12: Use of Explosives</td>
<td>1.55</td>
</tr>
<tr>
<td>7.13: Protection and Restoration of Property</td>
<td>1.55</td>
</tr>
<tr>
<td>7.14: Responsibility for Damage Claims</td>
<td>1.57</td>
</tr>
<tr>
<td>7.15: Claims Against Contractors for Payment of Labor, Materials and Other Purposes</td>
<td>1.57</td>
</tr>
<tr>
<td>7.16: Claims of Contractor for Compensation</td>
<td>1.64</td>
</tr>
<tr>
<td>7.17: Traffic Accommodation</td>
<td>1.65</td>
</tr>
<tr>
<td>7.18: Contractor's Responsibility for the Work</td>
<td>1.66</td>
</tr>
<tr>
<td>7.19: Personal Liability of Public Officials</td>
<td>1.67</td>
</tr>
<tr>
<td>7.20: No Waiver of Legal Rights</td>
<td>1.67</td>
</tr>
<tr>
<td>7.21: Preference in Employment of Labor</td>
<td>1.68</td>
</tr>
<tr>
<td>7.22: Labor, Lodging, Board, Maximum Hours of Employment, Weekly Payment, Keeping of Payroll Records</td>
<td>1.68</td>
</tr>
<tr>
<td>7.23: Discovery of Unanticipated Archaeological and Skeletal Remains</td>
<td>1.69</td>
</tr>
</tbody>
</table>

Massachusetts Department of Transportation – Highway Division

Standard Specifications for Highways and Bridges

2020 Edition
Section 8.00: Prosecution and Progress ... I.70
 Subsection 8.01: Subletting or Assignment of Contract.............................. I.70
 Subsection 8.02: Schedule of Operations ... I.70
 Subsection 8.03: Prosecution of Work .. I.70
 Subsection 8.04: Removal or Demolition of Buildings and Land Takings I.71
 Subsection 8.05: Claim for Delay or Suspension of the Work I.72
 Subsection 8.06: Limitations of Operations .. I.72
 Subsection 8.07: Character of Workers, Methods and Equipment I.72
 Subsection 8.08: Preservation of Roadside Growth I.74
 Subsection 8.09: Delay and Suspension of Work ... I.74
 Subsection 8.10: Determination and Extension of Contract Time for Completion (Time Extensions) ... I.74
 Subsection 8.11: Failure to Complete Work on Time I.77
 Subsection 8.12: Default Termination .. I.78
 Subsection 8.13: Convenience Termination .. I.79

Section 9.00: Measurement and Payment ... I.82
 Subsection 9.01: Measurement of Quantities ... I.82
 Subsection 9.02: Scope of Payments ... I.83
 Subsection 9.03: Payment for Extra Work ... I.83
 Subsection 9.04: Partial Payments ... I.87
 Subsection 9.05: Final Acceptance and Final Payment I.89
 Subsection 9.06: Prompt Payment to Subcontractors I.89

Division II: Construction Details

Section 100: Earthwork, Grading, Demolition, Rodent Control and Borings II.1
 Subsection 101: Clearing and Grubbing ... II.1
 Subsection 112: Demolition of Buildings, Structures and Bridges ... II.5
 Subsection 119: Control of Rodents .. II.9
 Subsection 120: Excavation ... II.10
 Subsection 140: Excavation for Structures ... II.16
 Subsection 148: Dredging .. II.25
 Subsection 150: Embankment .. II.28
 Subsection 170: Grading ... II.37
 Subsection 190: Borings ... II.39

Section 200: Drainage ... II.55
 Subsection 201: Basins, Manholes and Inlets ... II.55
 Subsection 220: Adjustment, Rebuilding and Remodeling of Drainage Structures ... II.58
 Subsection 227: Drainage System Sediment ... II.61
 Subsection 230: Culverts, Storm Drains, and Sewar Pipes II.63
 Subsection 258: Stone for Pipe Ends ... II.68
 Subsection 259: Crushed Stone for Bleeders ... II.69
 Subsection 260: Subdrains .. II.70
 Subsection 270: Pipes Removed and Relaid or Stacked II.72
Subsection 280: Waterways..II.74

Section 300: Water Systems ...II.76
Subsection 301: Water Systems ..II.76

Section 400: Sub-Base, Base Courses, Shoulders, Pavements and BermsII.84
 Subsection 401: Gravel Sub-Base...II.84
 Subsection 402: Dense Graded Crushed Stone for Sub-Base ...II.85
 Subsection 403: Reclaimed Pavement for Base Course and/or Sub-BaseII.86
 Subsection 404: Reclaimed Pavement Borrow Material ...II.91
 Subsection 415: Pavement Milling ..II.92
 Subsection 420: Roadway Dust Control ..II.99
 Subsection 445: Shoulders ...II.103
 Subsection 450: Concrete Pavement ...II.105
 Subsection 460: Hot Mix Asphalt Pavement for Local Streets ..II.182
 Subsection 466: Stress Absorbing Membrane Interlayer ..II.226
 Subsection 468: Pea Stone Cover for Concrete Pavement ShouldersII.231
 Subsection 470: Hot Mix Asphalt Berm ..II.233
 Subsection 472: Concrete Barrier ..II.280
 Subsection 476: Concrete Pavement ...II.237
 Subsection 477: Milled Rumble Strips ...II.261
 Subsection 482: Sawcutting ...II.263
 Subsection 485: Granite Rubble Block Pavement ...II.264

Section 500: Curb and Edging ...II.267
 Subsection 501: Curb, Curb Inlets, Curb Corners and edging ..II.267
 Subsection 580: Curb or Edging Removed and Reset; Removed and Stacked or
 Removed and Discarded ...II.272

Section 600: Highway Guard, Fences and Walls ..II.276
 Subsection 601: Guardrail ...II.276
 Subsection 628: Permanent Impact Attenuators ..II.279
 Subsection 629: Concrete Barrier ..II.280
 Subsection 630: Maintenance of Highway Guard ...II.284
 Subsection 644: Chain Link Fences and Gates ..II.286
 Subsection 660: Metal Pipe Rail ...II.290
 Subsection 665: Fences and Gates Removed and Reset, and Removed and StackedII.291
 Subsection 670: Sedimentation Fence ..II.293
 Subsection 685: Stone Masonry Wall ..II.295
 Subsection 690: Walls Removed and Rebuilt ...II.297

Section 700: Incidental Work ...II.299
 Subsection 701: Cement Concrete Sidewalks, Wheelchair Ramps and DrivewaysII.299
 Subsection 702: Hot Mix Asphalt Sidewalks and Driveways ...II.302
 Subsection 710: Bounds ...II.315
 Subsection 715: Rural Mail boxes Removed and Reset ..II.317
Division III: Materials Specifications

Section M: Materials .. III.1
Section M1: Soils and Borrow Materials .. III.2
Section M2: Aggregates and Related Materials ... III.9
Section M3: Asphaltic Materials .. III.15
Section M4: Cement and Cement Concrete Materials ... III.43
Section M5: Pipe, Culvert Sections and Conduit ... III.73
Section M6: Roadside Development Materials ... III.78
Section M7: Paints, Protective Coatings and Pavement Markings III.87
Section M8: Metals and Related Materials ... III.94
Section M9: Miscellaneous Materials .. III.119

Appendix A: Amendments to Previous Versions
DIVISION I:
GENERAL REQUIREMENTS AND COVENANTS

Section 1.00: Definition of Terms
Section 2.00: Proposal Requirements and Conditions
Section 3.00: Award and Execution of the Contract
Section 4.00: Scope of Work
Section 5.00: Control of Work
Section 6.00: Control of Materials
Section 7.00: Legal Relations and Responsibility to Public
Section 8.00: Prosecution and Progress
Section 9.00: Measurement and Payment
SECTION 1.00: DEFINITION OF TERMS

Subsection 1.01: Definition of General Terms

In order to avoid cumbersome and confusing repetition of expressions in these specifications, it is provided that whenever anything is, or is to be done, if, as, or, when, or where "contemplated, required, determined, directed, specified, authorized, ordered, given, designated, indicated, considered necessary, deemed necessary, permitted, reserved, suspended, established, approval, approved, disapproved, acceptable, unacceptable, suitable, accepted, satisfactory, unsatisfactory, sufficient, insufficient, rejected, or condemned," it shall be understood as if the expression were followed by the words "by the Engineer" or "to the Engineer."

Wherever in these specifications or other contract documents the following terms or pronouns in place of them are used, the intent and meaning shall be interpreted as follows:

Subsection 1.02: References, Abbreviations, Acronyms, Measurement Units and Symbols

A. References

Section and Subsection titles and headings provide reference only, not interpretation. A cross-reference to a specific Subsection of these Specifications includes all general requirements of the Section of which the Subsection is a part.

Where codes, standards, requirements or publications of public or private bodies are referred to in the Contract Documents, references shall be understood to be to the latest revision in effect on the date of opening of bids, except where otherwise indicated. Words and abbreviations which have well-known technical or trade meanings are used in the Contract Documents in accordance with such recognized meanings.

B. Abbreviations and Acronyms

Wherever the following abbreviations and acronyms are used in these specifications or on the plans, they are to be construed as the same as the respective expressions represented:

- AAB Massachusetts Architectural Access Board
- AAP AASHTO Accreditation Program
- AASHTO American Association of State Highway and Transportation Officials
- ACI American Concrete Institute
- ADA Americans with Disabilities Act
- AISC American Institute of Steel Construction
- AISI American Iron and Steel Institute
- AMPT Asphalt Mixture Performance Tester
- ANSI American National Standards Institute
- ARGG Asphalt Rubber Gap Graded
- APA Asphalt Pavement Analyzer
- AQL Acceptable Quality Level
- ASA American Standards Association
- ASTM American Society of Testing and Materials
- ATSSA American Traffic Safety Services Association
- AWPA American Wood Preservers Association
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWWA</td>
<td>American Water Works Association</td>
</tr>
<tr>
<td>AWS</td>
<td>American Welding Society</td>
</tr>
<tr>
<td>BIN</td>
<td>Bridge Identification Number</td>
</tr>
<tr>
<td>BOL</td>
<td>Bill of Lading</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CFC</td>
<td>Contractor Field Completion</td>
</tr>
<tr>
<td>CMR</td>
<td>Code of Massachusetts Regulations</td>
</tr>
<tr>
<td>COA</td>
<td>Certificate of Analysis</td>
</tr>
<tr>
<td>COC</td>
<td>Certificate of Compliance</td>
</tr>
<tr>
<td>CPM</td>
<td>Critical Path Method</td>
</tr>
<tr>
<td>CQE</td>
<td>Contract Quantity Estimate</td>
</tr>
<tr>
<td>DCE</td>
<td>Diesel Construction Equipment</td>
</tr>
<tr>
<td>DEP</td>
<td>Commonwealth of Massachusetts Department of Environmental Protection</td>
</tr>
<tr>
<td>DO3</td>
<td>Diesel Oxidation Catalyst</td>
</tr>
<tr>
<td>DPF</td>
<td>Diesel Particulate Filter</td>
</tr>
<tr>
<td>DR</td>
<td>Deficiency Report</td>
</tr>
<tr>
<td>ECD</td>
<td>Emissions Control Device</td>
</tr>
<tr>
<td>EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>ESALS</td>
<td>Equivalent Single Axle Loads</td>
</tr>
<tr>
<td>EWO</td>
<td>Extra Work Order</td>
</tr>
<tr>
<td>FBU</td>
<td>Full Beneficial Use</td>
</tr>
<tr>
<td>FHWA</td>
<td>United States Department of Transportation Federal Highway Administration</td>
</tr>
<tr>
<td>FSS</td>
<td>United States General Service Administration Federal Specifications and Standards</td>
</tr>
<tr>
<td>HMA</td>
<td>Hot Mix Asphalt</td>
</tr>
<tr>
<td>IA</td>
<td>Independent Assurance</td>
</tr>
<tr>
<td>IES</td>
<td>Illumination Engineering Society</td>
</tr>
<tr>
<td>IMSA</td>
<td>International Municipal Signal Association</td>
</tr>
<tr>
<td>IRF</td>
<td>Inspection Report Form</td>
</tr>
<tr>
<td>ITE</td>
<td>Institute of Transportation Engineers</td>
</tr>
<tr>
<td>JMF</td>
<td>Job Mix Formula</td>
</tr>
<tr>
<td>LQP</td>
<td>Laboratory Qualification Program</td>
</tr>
<tr>
<td>LTMF</td>
<td>Lab Trial Mix Formula</td>
</tr>
<tr>
<td>MASH</td>
<td>AASHTO Manual for Assessing Safety Hardware</td>
</tr>
<tr>
<td>MEC</td>
<td>Massachusetts Electrical Code</td>
</tr>
<tr>
<td>MIL SPEC</td>
<td>Military Specifications</td>
</tr>
<tr>
<td>M.G.L</td>
<td>Massachusetts General Laws</td>
</tr>
<tr>
<td>MTV</td>
<td>Material Transfer Vehicle</td>
</tr>
<tr>
<td>MUTCD</td>
<td>Manual on Uniform Traffic Control Devices for Streets and Highways with the Massachusetts Amendments</td>
</tr>
<tr>
<td>NCHRP</td>
<td>National Cooperative Highway Research Program</td>
</tr>
<tr>
<td>NCR</td>
<td>Non-Conformance Report</td>
</tr>
<tr>
<td>NEC</td>
<td>National Electrical Code</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association</td>
</tr>
<tr>
<td>NEPCOAT</td>
<td>Northeast Protective Coating Committee</td>
</tr>
</tbody>
</table>
NETTCP Northeast Transportation Training and Certificate Program
NPCA National Precast Concrete Association
NSBA National Steel Bridge Alliance
NTP Notice to Proceed
NTPEP National Transportation Product Evaluation Program
OGFC Open-Graded Friction Course
OSHA Occupational Safety and Health Administration
PCI Precast/Prestressed Concrete Institute
PCS Primary Control Sieve
PGA Processed Glass Aggregate
PGAB Performance Graded Asphalt Binder
PPM Parts per Million
PSR Project Spending Report
PWL Percent Within Limits
QC Quality Control
QCML MassDOT Qualified Construction Materials List
QLA Quality Level Analysis
QSM Quality System Manual
QTCE MassDOT Qualified Traffic Control Equipment
RAP Reclaimed Asphalt Pavement
RAS Recycled Asphalt Shingles
RFI Request for Information
RMS MassDOT Research and Materials Section
SAE Society of Automotive Engineers
SQL Suspension Quality Level
SSPC Society for Protective Coatings
TEA Time Entitlement Analysis
TIFF Tagged Image File Format
TRF Test Report Form
TTCP Temporary Traffic Control Plan
UL Underwriters Laboratories
ULSD Ultra Low Sulfur Diesel
VECP Value Engineering Change Proposal
WMA Warm Mix Asphalt

C. Measurement Units and Symbols

These Specifications provide measurements in U.S. Customary Units and, where needed, in the International System of Units, abbreviated as SI and commonly referred to as the metric system. Where both units are listed, U.S. Customary Units appear first, followed by SI units in parentheses.

To specify sizes, dimensions, and similar properties, the Department may use symbols for units of measurement. These symbols are defined in Table 1.02-1.
Table 1.02-1: Measurement Symbols

<table>
<thead>
<tr>
<th>U.S. Customary Units</th>
<th>SI Units (Metric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>Unit Name</td>
</tr>
<tr>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>mil</td>
<td>mil (0.001 inch)</td>
</tr>
<tr>
<td>in.</td>
<td>inch</td>
</tr>
<tr>
<td>ft</td>
<td>foot</td>
</tr>
<tr>
<td>yd</td>
<td>yard</td>
</tr>
<tr>
<td>mi</td>
<td>mile</td>
</tr>
<tr>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>in.²</td>
<td>square inch</td>
</tr>
<tr>
<td>ft²</td>
<td>square foot</td>
</tr>
<tr>
<td>yd²</td>
<td>square yard</td>
</tr>
<tr>
<td>mi²</td>
<td>square mile</td>
</tr>
<tr>
<td>acre</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td></td>
</tr>
<tr>
<td>in.³</td>
<td>cubic inch</td>
</tr>
<tr>
<td>qt</td>
<td>quart</td>
</tr>
<tr>
<td>gal</td>
<td>gallon</td>
</tr>
<tr>
<td>ft³</td>
<td>cubic foot</td>
</tr>
<tr>
<td>yd³</td>
<td>cubic yard</td>
</tr>
<tr>
<td>MBF</td>
<td>thousand board feet</td>
</tr>
<tr>
<td>Weight (Mass)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>oz</td>
<td>ounce</td>
</tr>
<tr>
<td>lb</td>
<td>pound</td>
</tr>
<tr>
<td>ton</td>
<td>2,000 pounds</td>
</tr>
<tr>
<td>Force</td>
<td></td>
</tr>
<tr>
<td>lb</td>
<td>pound</td>
</tr>
<tr>
<td>kip</td>
<td>1,000 pounds</td>
</tr>
<tr>
<td>Pressure, Stress</td>
<td></td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>ksi</td>
<td>kips per square inch</td>
</tr>
<tr>
<td>psf</td>
<td>pounds per square foot</td>
</tr>
<tr>
<td>U.S. Customary Units</td>
<td>SI Units (Metric)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Symbol</td>
<td>Unit Name</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td></td>
</tr>
<tr>
<td>pcf</td>
<td>pounds per cubic foot</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td></td>
</tr>
<tr>
<td>ft-lb</td>
<td>foot-pound</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Illuminance</td>
<td></td>
</tr>
<tr>
<td>fc</td>
<td>foot candle</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Luminous Intensity</td>
<td></td>
</tr>
<tr>
<td>cd</td>
<td>candela</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Electric Potential</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>kV</td>
<td>kilovolt</td>
</tr>
<tr>
<td>VAC</td>
<td>voltage in alternating current</td>
</tr>
<tr>
<td>VDC</td>
<td>voltage in direct current</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Electric Current</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>ampere</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>d</td>
<td>day</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>°F</td>
<td>degree Fahrenheit</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td></td>
</tr>
<tr>
<td>mph</td>
<td>miles per hour</td>
</tr>
</tbody>
</table>

Subsection 1.03: Defined Terms

Advertisement........ The notice, as required by law, inviting bids (proposals) for work to be performed or materials to be furnished.

Alteration................. A change or substitution in the form, character, or detail of the work done or to be done within the original scope of the Contract at unit prices stated in the Contract, which alteration makes a change in the item originally
I.6 2020 Edition

contracted for or a substitution from that item to a similar item at the same unit price.

Award The acceptance by the Department of a bid (proposal) contemplating the execution and delivery of a contract.

Bid See Proposal.

Bid, Informal
as to form A bid which contains a minor deficiency or deviation from what is requested by the Department.

Bid, Informal
as to substance A bid which fails to comply with the requirements of the public bidding law.

Bidder (Proposer). Any individual, firm, partnership, corporation or joint venture submitting a Proposal for the work contemplated, acting directly or through a duly authorized representative.

Bridge The term “bridge” shall apply to any structure whether single or multiple span construction that spans a body of water, depression, highway or railway, and affords passage for pedestrians, or vehicles of all kinds, or any combination thereof having a total length of 20 feet or more.

In general, the “length” of a bridge is that distance measured horizontally along the centerline of roadway between extreme centerlines of bridge shoes or bearings, or when shoes or bearing are not used the distance between vertical faces of abutments, or spring lines of arches, or extreme ends of openings for multiple reinforced concrete boxes.

The “roadway width” of a bridge is the clear width measured at right angles to the longitudinal centerline of the bridge between the bottom of curbs or guard timbers or in the case of multiple height or curbs, between the bottom of the lower risers.

Commonwealth The Commonwealth of Massachusetts.

Contract The written agreement executed between the Party of the First Part and the Contractor setting forth the obligations of the Parties thereunder, including, but not limited to, the performance of the work, the furnishing of labor and materials, and the basis of payment.

The Contract includes the Notice to Contractors, proposal, contract form and contract bond, specifications, supplemental specifications, special provisions, general and detailed plans, any extra work orders and agreements that are required to complete the construction of the work in an acceptable manner, including authorized extensions thereof, all of which constitute one instrument.
Contractor The Party of the Second Part to the Contract, acting directly or through an authorized lawful agent or employee.

Contract Item (Pay Item) A specifically described unit of work for which a price is provided in the contract.

Contract Time The number of days allowed for the completion of the Contract. In case a calendar date of completion is shown in the Proposal in lieu of the number of days, the Contract shall be completed by that date.

Culvert A structure not classified as a bridge which provides an opening under the roadway.

Day Every day shown on the calendar, Sundays and Holidays included.

Department The Massachusetts Department of Transportation.

Differ substantially or materially When the character of the work encountered in exposing subsurface or latent physical conditions, while the work is in progress, is found to be essentially different in nature from that shown on the plans or indicated on the contract documents or from that ordinarily encountered and generally recognized as inherent in work of the character provided for in the plans and contract documents and are of such a nature as to cause an increase or decrease in the cost of performance of the work or a change in the construction methods required for the performance of the work, resulting in any increase or decrease in the cost of the work.

Engineer The Chief Engineer of the Department acting directly or through an authorized representative, such representative acting within the scope of the particular duties entrusted to them.

Extra Work Work which:

1. Was not originally anticipated and/or contained in the contract; and, therefore
2. Is determined by the Engineer to be necessary for the proper completion of the project; and
3. Bears a reasonable subsidiary relation to the full execution of the work originally described in the Contract.

Extra Work Order An order in writing issued by the Engineer to the Contractor prior to performing the work, setting forth the Extra Work to be done, the basis of payment and time adjustments, if any.

Interim Supplemental Specifications Additions and revisions to the Standard Specifications or Supplemental Specifications issued by the Department which amend portions of the
Standard or Supplemental Specifications in effect at the time the contract is awarded.

Invitation for Bids. The advertisement for Proposals for all work or materials on which bids are required. Such advertisement will indicate the approximate project value, category of work and location of the work to be done and the time and place of the opening of Proposals.

Latent Physical Conditions. Actual physical conditions at the site that were indiscernible; hidden; not visible or apparent, and which as a basis for a request for an equitable adjustment, differ substantially and materially from those shown on the plans or indicated in the contract documents.

Layout Plans. Plans showing layout (locations) lines, property lines, corner markers, names of property owners, access and nonaccess (if Limited Access Highway) points, and the location of bounds.

Location Lines. Lines indicating the limits of the Right-of-Way.

Material. Any substances specified for use in the construction of the project and its appurtenances.

Notice to Proceed. A written communication issued by the Department to the Contractor authorizing them to proceed with the work and establishing the date of commencement of the work.

Party of the First Part. In contracts with the Department, the Party of the First Part shall be the Department.

In contracts made by a municipality with a Contractor under the provisions of Chapter 90 of the General Laws the Party of the First Part shall be the municipality (town or city) by its duly authorized officials.

In contracts made by a municipality with another party the Party of the First Part shall be the municipality (town or city) by its duly authorized officials.

Pavement Structure. The combination of sub-base, base course and surface course placed on a subgrade to support the traffic load and distribute it to the subgrade.

Plans. Approved contract drawings, Department Standards, working drawings, supplemental drawings, Detail Sheets or exact reproductions thereof, which show the location, character, dimensions and details of the work to be done.
Massachusetts Department of Transportation – Highway Division
Standard Specifications for Highways and Bridges

Project
The specific section of highway together with all appurtenances and construction to be performed thereon under the contract.

Proposal
The written offer of the Bidder, on the prescribed form, to perform the work and to furnish the labor and materials at the prices quoted.

Proposal Form
The approved form on which the Department requires bids to be prepared and submitted for the work.

Reference
Where reference is made in the Contract Documents to Publications or Standards issued by Associations or Societies, the intent shall be to specify the current edition of such Publications or Standards in effect on the date of the contract advertisement, notwithstanding any reference to a particular date.

Right-of-Way
That area which has been laid out or acquired for highway purposes.

Slope
Unless otherwise indicated, the ratio of change in part(s) horizontal (H) to one part vertical (V).

Sieves
All sieves referred to in the Specifications shall be standard woven wire cloth sieves and shall conform to the requirements of ASTM E11.

Special Provisions
The special agreements and provisions prepared for proposed work on a specific project. These special provisions shall be included within the general term specifications and shall be made a part of the Contract with the express purpose that they shall prevail over all other specifications.

Specifications
The directions, provisions and requirements contained herein, designated as Standard Specifications, together with all written agreements made or to be made pertaining to the method and manner of performing the work, or the quantities and qualities of materials to be furnished under the Contract.

Subcontractor
An individual, firm, partnership or joint venture to whom the contractor with prior written approval of the Engineer sublets any part of the Contract.

Subbase
The layer of material placed on the subgrade as a foundation for roadway or sidewalk.

Subgrade
The plane at the bottom of the subbase.

Substantial Completion
Either that the work required by the contract has been completed except for work having a contract price of less than one percent of the then adjusted total contract sum, or substantially all of the work has been completed and opened to public use except for minor incomplete or unsatisfactory work items that do not materially impair the usefulness of the work required by the contract. Substantial completion shall be conclusively determined by the Engineer after inspection of the work.
Supplemental Specifications

Additions and revisions to the standard specifications that are issued prior to the opening of bids.

Unbalanced Bid

An unrealistic bid price which is abnormally high or abnormally low for an item of work and does not reflect the actual cost of performing such item of work.

Work

The furnishing of all labor, materials, equipment and other incidentals necessary for or convenient to the successful completion of the project and the carrying out of all the duties and obligations imposed by the contract. Work shall include in addition to work to be performed on the project location in the actual construction process, necessary shop plans, computations, ordering of materials and equipment, fabrication of material, parts and components, etc.
SECTION 2.00: PROPOSAL REQUIREMENTS AND CONDITIONS

Subsection 2.01: Proposal Forms and Plans

A. Prequalification Prior to Requesting Proposal Forms.

Subject to the requirements of M.G.L. Chapter 29, Section 8B, each prospective Bidder proposing to bid on any work, excepting the construction, reconstruction, repair or alteration of buildings, to be awarded by the Department or by a municipality under the provisions of M.G.L. Chapter 90, Section 34 must be prequalified in accordance with 720 CMR 5.00, “Prequalification of Contractors and Prospective Bidders for Statewide Engineering Field Survey Services”, if the amount of the proposal added to the value of the uncompleted work already under contract with the Department will aggregate $50,000 or more.

For work aggregating under $50,000, prequalification requirements shall be at the discretion of the Department.

Except for projects for which prequalification is not required under 720 CMR 5.04(2), proposals for a project shall be limited to those bidders who have been prequalified by the Prequalification Committee in the specified class of work on or before the time of bid opening.

B. Issuance of Proposal Forms and Plans.

All prospective Bidders who intend to bid on work to be awarded by the Department, may obtain the plans and specifications from the Department at the place specified in the Notice to Contractors.

For projects to be awarded under the provisions of M.G.L. Chapter 90, Section 34, bidders may obtain plans and specifications from the applicable municipality at the place specified in the Notice to Contractors.

Contractors intending to bid on any project must first obtain “Request for Proposal Forms” (R-109 Form), from the Prequalification Office, which form must be completed and submitted to the Director of Prequalification for approval. Upon approval, the official bidder shall be entitled to receive official proposal documents. Other interested parties may receive an informational copy of the plans and specifications.

Official proposal documents shall contain plans and specifications showing the location and description of the contemplated work; an itemized proposal form listing the estimates of the various quantities of work to be performed and materials to be furnished; the time in which the work must be completed; and also a Notice to Contractors and special provisions for the particular project.

The Department is not responsible for loss of or damage to the official proposal documents after they have been mailed or given to the bidder. If loss or damage occurs, the bidder may request another copy.

Modifications to any official proposal documents will be made through the Addendum process and posted on www.bidx.com and www.commbuys.com. The bidder shall take responsibility for incorporating the revised data into the proposal upon notification from the Department. The bidder must provide an e-mail address to the Department for receipt of addenda notification.
Subsection 2.02: Interpretation of Basic Estimate of Quantities

All bids will be compared on the estimate of quantities of work to be done, as shown in the Proposal.

The parties expressly agree that these quantities are being set forth as a basis for the comparison of bids only and the parties also expressly agree that the actual amount of work may not correspond therewith. The Department expressly reserves the right to adjust said quantities in accordance with actual conditions as found to exist during the course of work.

Bidders agree to submit their estimate upon the following express condition, which shall apply to and become part of every bid received: the work has been divided into items in order to enable the Bidder to bid on the different portions of the work in accordance with the Bidder’s estimate of their cost, so that in the event of an increase or decrease in the quantities of any particular item of work the actual quantities executed shall be paid in accordance with the contract.

An increase or decrease in the quantity for any item shall not be regarded as cause for an increase or decrease in the contract unit prices, nor in the time allowed for the completion of the work, except as provided in Subsection 4.06: Increased or Decreased Contract Quantities, Subsection 8.10: Determination and Extension of Contract Time for Completion (Time Extensions), and Subsection 9.03: Payment for Extra Work.

Subsection 2.03: Examination of Plans, Specifications, Special Provisions, and Site of Work

The Department will prepare plans and specifications giving directions which will enable any competent mechanic or contractor to carry them out. The Bidder is expected to examine carefully the site of the proposed work, the proposal, plans, specifications, supplemental specifications, special provisions, and contract forms, before submitting a Proposal. The submission of a bid shall be considered prima facie evidence that the Bidder has made such examination of the site of the proposed work, plans, proposal, etc., and is familiar with the conditions to be encountered in performing the work and as to the requirements of the plans, specifications, supplemental specifications, special provisions, and Contract.

Subsection 2.04: Preparation of Proposals

All bidders shall use Bid Express for submittal of bids. Bidders shall subscribe to the BidExpress on-line bidding exchange by following the instructions provided at www.bidx.com or by contacting:

Info Tech Inc.
5700 SW 34th Street, Suite 1235
Gainesville, FL 32608-5371
customer.support@bidx.com

In order to submit a bid, the Bidder shall have a digital identification (ID) issued by the Department on file with Info Tech Inc. and enabled by Info Tech Inc. This Digital ID represents the firm as an individual, partnership, corporation, limited liability company, or joint venture. By entering and submitting the Digital ID the authorized parties oblige the firm to the bid. Using this digital ID shall constitute the Bidder’s signature for proper execution of the Proposal.

Electronic bid files are provided through the Bid Express on-line bidding exchange at www.bidx.com. The bidder shall follow the on-line instructions and review the help screens.
provided to assure that the schedule of items is prepared properly. Bidders shall download and acknowledge any and all addenda files prior to submitting their final bid. Bids shall be submitted in accordance with the requirements of the Bid Express Web site.

At the designated time of the bid opening the Department will accept, as the official bid, the set of proposal forms generated from the electronic proposal file submitted by the bidder which includes the bid item sheets, bid bond submittal acknowledgement, addendum acknowledgement, and affidavit acknowledgement.

The Department will not be responsible for any communications or hardware breakdowns, transmission interruptions, delays, or any other problems that interfere with the receipt or withdrawal of proposals as required above either at the Bidder’s transmitting location, at the Department’s receiving location, or anywhere between these locations will not be considered grounds for a bid protest. The Department will not be held responsible if the bidder cannot complete and submit a bid due to failure or incomplete delivery of the files submitted via the Internet.

Subsection 2.05: Delivery of Proposals

The Bidder shall submit the proposal prior to the time set for opening of the bid.

Subsection 2.06: Proposal Guaranty Required

In order to insure the faithful fulfillment of its terms, each Proposal shall be accompanied by a bid deposit in the amount of 5 percent of the bid.

The bid deposit shall be a bid bond in a form satisfactory to the Department furnished by a surety company incorporated pursuant to Chapter 175, Section 105 of the General Laws or authorized to do business in the Commonwealth under Chapter 175, Section 106 of the General Laws and satisfactory to the Department; or cash; or a certified check drawn on a responsible bank or trust company (or a treasurer’s or cashier’s check issued by such bank or trust company), payable to the Massachusetts Department of Transportation.

Subsection 2.07: Withdrawal of Proposals

Prior to the designated bid opening time, the Bidder may electronically withdraw a proposal.

After the deadline for submitting bids, a bidder may submit a written request to withdraw its bid to the Department. The Department will only grant the request on a clear showing to the satisfaction of the Department that the bid amount resulted from bona fide clerical or mathematical error of a substantial nature or from other similar unforeseen circumstances. When the Department grants a request to withdraw a bid, the Department will return the bidder’s bid deposit.

Subsection 2.08: Public Opening of Proposals

The total price of each compliant proposal submitted by the deadline indicated in the Notice to Contractors, will be posted on www.bidx.com forthwith after the bid submission deadline. Bids may be examined on www.bidx.com or at MassDOT after the bid submission deadline and posting of the results on www.bidx.com.
Subsection 2.09: Rejection of Proposals

Proposals which fail to meet the requirements of Subsection 2.04: Preparation of Proposals, Subsection 2.05: Delivery of Proposals, and Subsection 2.06: Proposal Guaranty Required or which are incomplete, conditional or obscure, or which contain additions not called for, alterations or irregularities of any kind, or in which errors occur, or which contain abnormally high or abnormally low prices for any class or item of work, may be declared informal, provided however that the Department may, if it deems it to be in the public interest, waive any or all informalities as to form. Informalities as to substance, however, shall not be waived.

More than one Proposal from the same Bidder, whether or not the same or different names appear on the signature page, will not be considered. Reasonable proof for believing that any Bidder is so interested in more than one Proposal for the work contemplated will cause the rejection of all Proposals made by them directly or indirectly. Any Proposals will be rejected if there is reason for believing that collusion exist among the Bidders. (See Subsection 3.01: Consideration of Proposals.)

In accordance with 720 CMR 5.00, Proposals may also be rejected if:

(i) award of the contract would result in the Bidder exceeding the Aggregate Bonding Capacity established by its Surety Company, or the Bidder's Proposal exceeds its single project limit, or the Bidder was not prequalified in the specified class of work on or before the time of bid opening; or

(ii) the Bidder is presently debarred from performing work of any kind under the provisions of M.G.L., Chapter 29, Section 29F, or any other applicable debarment provisions of the Massachusetts General Laws or any rule or regulation promulgated thereunder; or

(iii) the Bidder is presently debarred from performing work of any kind under the laws of any state other than the Commonwealth of Massachusetts, or by any Federal agency or authority; or

(iv) there is substantial reason to believe that the condition of the Bidder's firm is less favorable than at the time of its last Application for Prequalification; or

(v) the Bidder does not have sufficient equipment, or sufficient assets to provide necessary equipment either through purchase or lease agreements; or

(vi) the Bidder’s performance on past or current work with the Department or other awarding authorities is or has been unsatisfactory; or

(vii) on current projects of the Department or other public authorities the Bidder frequently fails or has failed to pay its subcontractors or material suppliers in a timely manner, or that 5 or more subcontractors or material suppliers of the Contractor for a project currently under construction have filed demands for direct payment with the project’s awarding authority in accordance with M.G.L. Chapter 30, Section 39F; or

(viii) the Bidder is not otherwise an eligible and responsible Bidder capable of performing the work.

Subsection 2.10: Disqualification of Bidders

Bidders whose Proposals have been rejected because of evidence of collusion may be subject to debarment under applicable provisions of state and federal law.
Subsection 2.11: Determination of Lowest Bid

The lowest bid shall be determined by the Department on the basis of the total price for which the entire work will be performed, arrived at by a correct computation of all the items specified in the Proposal at their estimated quantities and the unit prices submitted therefor.

Subsection 2.12: Material Guaranty

Before any contract is awarded, the Bidder may be required to furnish without expense to the Department a complete statement of the origin, composition and manufacture of any or all materials proposed to be used in the construction of the work, together with samples, which may be subjected to the tests required by the Department to determine the quality and fitness of the material.
SECTION 3.00: AWARD AND EXECUTION OF THE CONTRACT

Subsection 3.01: Consideration of Proposals

The Department reserves the right to reject any and all bids, or any bid item, to advertise for new Proposals for the project, to waive technicalities, to waive informalities as to form, or to proceed to do the work otherwise, as may be deemed to be in the best interest of the Department.

Nothing herein shall be construed as depriving the Department of the right to reject any bid when such bid does not fully comply with the specifications for the project or the applicable public bidding laws or regulations, or the Contractor is otherwise not eligible or responsible to receive award of the contract.

A proposal will be considered irregular and will be rejected if it is determined that any of the unit prices are materially unbalanced to the detriment of the Department. The bidder will be required to justify in writing the price or prices bid for the work in question before the Department decides to award the contract or reject the bid.

Subsection 3.02: Award of Contract

Subject to the reservations in Subsection 3.01: Consideration of Proposals, the contract will be awarded to the lowest eligible and responsible Bidder.

It is anticipated that the Contract will be awarded within 30 days after the opening of bids, or, for projects requiring concurrence by the FHWA, or other Agencies, within 45 days after the opening of bids.

The successful bidder will be notified by mail or otherwise that their bid has been accepted and that they has been awarded the Contract.

No municipality may award a contract until the Department has determined that the bidder was prequalified in the specified class of work on or before the time of bid opening, and has not exceeded the Aggregate Bonding Capacity established by the bidder's surety company, and has, if applicable, a Single Project Limit in an amount equal to or in excess of the Proposal amount, and is otherwise in compliance with 720 CMR 5.00, “Prequalification of Contractors and Prospective Bidders for Statewide Engineering Field Survey Services.”

Subsection 3.03: Retention of Proposal Guaranty

The two lowest Bidders shall keep their bids open for at least 30 days after the opening of bids, or, for projects requiring concurrence by the FHWA, or other Agencies, for at least 45 days after the opening of bids. The Proposal guaranties of the two lowest Bidders will be retained until after execution of the Contract, prior to which, however, either Bidder may substitute a bid bond, cash or certified check (or cashier’s or treasurer’s check), all as described in Subsection 2.06: Proposal Guaranty Required, for the guaranty already deposited with the Supervisor of Fiscal Management of the Department. The Department will endeavor to return the Proposal guaranties of all Bidders other than the two lowest Bidders within three days after the opening of bids.

After the bid has been kept open for the required number of days the low Bidder may withdraw their bid and request the return of their proposal guaranty, in which case the guaranty of both the two lowest Bidders will be returned and the second lowest Bidder's Proposal shall not be
considered for award. After the bid has been kept open for the required number of days the second lowest Bidder may withdraw their bid and request the return of their proposal guaranty, in which case only the proposal guaranty of the second lowest Bidder will be returned.

Subsection 3.04: Contract Bonds Required

A Performance Bond in the full amount of the Contract will be required by the Department to ensure the faithful performance of the Contract and in accordance with Subsection 7.18: Contractor’s Responsibility for the Work.

A Payment Bond in an amount of the contract price will be required to be furnished by the Contractor to the Department as security for payment by the Contractor and Subcontractors for labor, materials, rental equipment and for such other purposes as are more specifically set forth in M.G.L. Chapter 149, Section 29 and Chapter 30, Section 39A and all amendments thereto.

The payment bond referred to in Chapter 149, Section 29 and Chapter 30, Section 39A is the sole security under said sections for payment by the Contractor and Subcontractor for labor performed or furnished and materials used or employed therein; said security to remain in force until the validity of all such claims shall be established and finally determined and if determined and established as valid, all such claims shall be paid by the surety.

The Performance Bond and the Payment Bond shall be in a form satisfactory to the Department, furnished by a surety company incorporated pursuant to Chapter 175, Section 105 of the General Laws or authorized to do business in the Commonwealth under Chapter 175, Section 106 of the General Laws and satisfactory to the awarding authority. The name of the agency or agent writing these bonds shall be identified with or on the bond.

All alterations, extensions of time, extra work and any other changes authorized under these specifications, or under any part of the Contract may be made by the Department. The Contractor shall be responsible for notifying the surety or sureties regarding changes to the Contract. The Contractor shall provide evidence of revised bond.

Where the Contract utilizes additional artisans, equipment rental, materials, engineering services and specialty services to complete work assignments approved by the Engineer, the Contractor is responsible for additional bond associated with the increased value of the Contract.

Subsection 3.05: Execution of Contract

The prepared contract forms, bond forms, certificate of insurance forms, and certification of construction equipment standard compliance form are available on www.bidx.com. The successful Bidder shall execute and deliver the contract and furnish the required forms and surety to the Department within 3 days after the date of the notice of award.

The contract shall be in writing and executed in duplicate, one kept by the Department and one delivered to the Contractor. When the awarding authority is a municipality it shall be executed in triplicate, one kept by the municipality, one delivered to the Department, and one delivered to the Contractor.
The date of the contract shall be the date of the Bidder's signature and shall be typed on all forms by the successful Bidder. The company's corporate seal should be affixed to both the contract and bonds.

The Contractor's board of directors vote will indicate who is authorized to sign and execute the contract and bonds and affix the corporate seal. The vote shall show that said vote is in full force and effect and has not been amended or rescinded. The vote of the board of directors should be dated the same date as indicated on the contract form and should bear the imprint of the company's corporate seal.

Subsection 3.06: Failure to Execute Contract

Should the successful bidder fail to execute the contract and furnish the bonds and certificate of insurance within the time stipulated, the Department may, at its option, determine that the Bidder has abandoned the Contract and thereupon the Proposal and acceptance shall be null and void. In accordance with M.G.L. Chapter 30, Section 39M, the guaranty accompanying the Proposal may be retained and collected by the Department as liquidated damages for the delay and expense caused by the abandonment of the Contract.
SECTION 4.00: SCOPE OF WORK

Subsection 4.01: Intent of the Contract

The intent of the Contract is to prescribe the complete work or improvement. The Contractor shall perform all the items of work stipulated in the Proposal in accordance with the lines, grades, typical cross sections and dimensions shown on the plans or supplemental plans, standards, or modifications of them as required by change conditions in the field, and as authorized or directed. The Contractor shall do all clearing and grubbing; make all excavations and embankments; do all shaping and surfacing; construct all drainage structures, bridges and other appurtenant structures, as indicated in the Contract; remove all obstructions from within the lines of the improvement; and shall do such additional, extra and incidental work as may be considered necessary to complete the work in a substantial and acceptable manner; and when it is so completed they shall leave the work in a neat and finished condition.

The Contractor shall do all the work and furnish all the materials, tools and appliances, except as otherwise specified, necessary or proper for performing and completing the work required by the Contract, in the manner and within the time specified. The Contractor shall complete the entire work to the satisfaction of the Engineer, and in accordance with the specifications and drawings for the work at the prices agreed upon.

All the work, labor and materials to be done and furnished under the Contract shall be done and furnished pursuant to, and in conformity with the specifications and the drawings for the work, which said specifications and drawings shall form part of the Contract. Further the Contractor shall follow the directions of the Engineer as given from time to time during the progress of the work under the terms of the Contract.

The Contract shall include grading outside the right-of-way together with the work of loaming surfaces, constructing walks, driveways, drains, and other miscellaneous work as shown on the plans and as directed.

The Contract shall include technical submittals, schedule submittals, materials COCs, payroll records and any and all other documents required by the plans and specifications to support the physical work of the contract.

The Contract shall, at the discretion of the Party of the First Part, be extended when the safety and convenience of the public necessitates the construction of access roads or approaches to existing roadways or bridges and the nature of such additional work bears a reasonable subsidiary relation to the original Contract.

Subsection 4.02: Alterations

Should it be found desirable by the Engineer to make alterations in the form, character, or detail of any of the work done or to be done, the Engineer may order such alterations to be made, defining them in writing, supplemented by drawings when in the judgment of the Engineer it is necessary, and the alterations shall be made accordingly.

The Contractor shall accept as full compensation for work performed under an alteration order the contract unit prices stipulated in the Contract for the actual quantity of work performed in an acceptable manner.
Subsection 4.03: Extra Work

The Contractor shall do any work not herein otherwise provided for when and as ordered in writing by the Engineer, such written order to contain particular reference to this Subsection and to designate the work to be done as Extra Work.

Unless specifically noted in the Extra Work Order, Extra Work will not extend the time of completion of the Contract as stipulated in Subsection 8.10: Determination and Extension of Contract Time for Completion (Time Extensions).

The determination of the Engineer shall be final upon all questions concerning the amount and value of Extra Work (except as provided in Subsection 7.16: Claims of Contractor for Compensation).

Payment for extra work will be as provided in Subsection 9.03: Payment for Extra Work.

Subsection 4.04: Changed Conditions

In accordance with Chapter 30, Section 39N of the General Laws, as amended, the following paragraph is included in its entirety:

If, during the progress of the work, the Contractor or the awarding authority discovers that the actual subsurface or latent physical conditions encountered at the site differ substantially or materially from those shown on the plans or indicated in the contract documents either the Contractor or the contracting authority may request an equitable adjustment in the contract price of the Contract applying to work affected by the differing site conditions. A request for such an adjustment shall be in writing and shall be delivered by the party making such claim to the other party as soon as possible after such conditions are discovered. Upon receipt of such a claim from a Contractor, or upon its own initiative, the contracting authority shall make an investigation of such physical conditions, and, if they differ substantially or materially from those shown on the plans or indicated in the contract documents or from those ordinarily encountered and generally recognized as inherent in work of the character provided for in the plans and contract documents and are of such a nature as to cause an increase or decrease in the cost of performance of the work or a change in the construction methods required for the performance of the work which results in an increase or decrease in the cost of the work, the contracting authority shall make an equitable adjustment in the contract price and the Contract shall be modified in writing accordingly.

The filing, investigation and settlement of all claims made under said Chapter and Section shall be as follows:

(a) The Contractor shall promptly, and before such conditions are disturbed notify the Engineer in writing describing in full detail the subsurface or latent physical conditions at the site which they maintain differ substantially or materially from those shown on the plans or indicated in the contract documents. The Engineer shall promptly investigate the conditions and shall promptly prepare a written report of the findings, with a copy to the Contractor. If the Engineer finds that such conditions as have been described in detail by the Contractor do exist and in fact do so differ materially or substantially, an equitable adjustment shall be made and the Contract modified in writing accordingly. No such claim of the Contractor shall be allowed unless the Contractor has given the detailed notice specified, nor shall it be allowed if such conditions are disturbed prior to their investigation by the Engineer.
(b) No adjustment or allowance of any kind except as provided in Subsection 8.10:

Determination and Extension of Contract Time for Completion (Time Extensions) will be
made to the Contractor on account of any delay or suspension of work or any portion
thereof where the actual subsurface or latent physical conditions encountered at the site
differ substantially and materially from those shown on the plans or indicated in the
contract documents.

(c) No claim will be approved or any adjustment or allowance made on account of encountering
subsurface or latent physical conditions at the site that differ substantially and materially
from those shown on the plans or indicated in the contract documents unless such
conditions were in existence at the time of the award of the Contract.

(d) Any dispute concerning a question of fact under this Subsection which is not disposed of by
agreement shall be decided by the Chief Engineer.

(e) If as provided in (a) of this Subsection an equitable adjustment is to be made or
contemplated, the Contractor shall submit promptly in writing to the Engineer an itemized
statement of the details and amount of work together with their estimated costs for the
same and the Engineer shall require the Contractor to keep actual costs and certify the same
to the Department in writing.

If the Contractor and the Department fail to agree on an equitable adjustment to be made under this
Subsection, then the Contractor shall accept as full payment for the work in dispute an amount
equal to the following:

(1) The actual cost for direct labor, materials and use of equipment, plus 10 percent of this total
for overhead.

(2) Plus actual cost of Workmen's Compensation and Liability Insurance, Health, Welfare and
Pension benefits, Social Security deductions, Employment Security Benefits and such
additional fringe benefits which the Contractor is required to pay as a result of Union Labor
Agreements and/or is required by authorized governmental agencies.

(3) Plus 10 percent of the total of (1) and (2).

(4) Plus the estimated proportionate cost of surety bonds. For work performed by a
Subcontractor, the Contractor shall accept as full payment therefor an amount equal to the
actual cost to the Contractor of such work as determined by the Engineer plus 10 percent of
such cost.

No allowance shall be made for general superintendence and the use of small tools and manual
equipment.

The Contractor shall, when requested by the Engineer, furnish itemized statements of the cost of
the work ordered and give the Engineer access to all accounts, bills and vouchers relating thereto,
and unless the Contractor shall furnish all such itemized statements, access to all accounts, bills and
vouchers they shall not be entitled to payment for any items of extra work for which such
information is sought by the Engineer.

Pending final decision of any dispute hereunder unless otherwise ordered by the Chief Engineer,
the Contractor shall proceed diligently with the performance of the Contract and in accordance with
the Chief Engineer’s decision.

The Contract shall be considered modified in writing by the processing of an Extra Work Order.
The Contractor shall be estopped to rely on and deemed to waive under said Section 39N and this Subsection their right to have an equitable adjustment of a unit price bid by them which, in the opinion of the Chief Engineer, is an unrealistic unit price, abnormally low for the unit item priced and which does not reflect the actual cost of performing such unit item of work. It shall be the obligation of the Chief Engineer to notify the Contractor prior to award of the Contract of any unit price that has been determined to be abnormally low for the unit item priced and that the unrealistic low unit price not reflecting the actual cost of performing such unit item of work would bar the Contractor from an equitable adjustment under said Section 39N and this Subsection.

Any unit item price determined by the Chief Engineer to be an unrealistically high unit price not reflecting the actual cost of performing such unit item of work is subject to the provisions of said Section 39N and this Subsection.

The provisions of Section 39N of Chapter 30 of the General Laws, as amended, do not apply to construction contracts entered into on behalf of a municipality under the provisions of Section 34, Chapter 90 of the General Laws.

Subsection 4.05: Validity of Extra Work

The Engineer shall be authorized to issue Extra Work Orders for such additional work outside the scope of the original Contract as in their judgment is reasonably necessary for the satisfactory completion of the project provided that the work to be done under such an Extra Work Order, either standing alone or in conjunction with any previously authorized Extra Work Order, shall not result in a change of such magnitude as to be incompatible with the provisions of Chapter 149, Section 44J of the General Laws.

Subsection 4.06: Increased or Decreased Contract Quantities

The quantities contained in the Contract are set forth as a basis for the comparison of bids only and may not necessarily reflect the actual quantity of work to be performed. The Department reserves the right to increase, decrease or eliminate the quantity of any particular item of work.

Where the actual quantity of a pay item varies by more than 25 percent above or below the estimated quantity stated in the Contract, an equitable adjustment in the Contract Price for that pay item shall be negotiated upon demand of either party regardless of the cause of the variation in quantity.

No allowances will be made for loss of anticipated overhead costs or profits suffered or claimed by the Contractor resulting directly or indirectly from such increased, decreased or eliminated quantities or from unbalanced allocation among the contract items from any other cause. It is the intention of this provision to preserve the bid basis while limiting the Contractor's risk exposure to 25% of each bid quantity.

In the case of an overrun, the contractor will be compensated at the Contract Unit Price for a quantity up to 125% of the Contract quantity. The adjusted unit price shall only be applied to that quantity above 125% of the contract quantity.

Neither party shall be required to demonstrate any change in the cost to perform the work based solely on the overrun. The original Contract unit bid price shall have no bearing on determining the
adjusted unit price for an overrun. The adjusted unit price shall be based on the estimated cost of performing the added work over 125% of the bid quantity.

To assist the Engineer in the determination of an equitable adjustment for an overrun, the Contractor shall prepare a submission in the following manner and accept as full payment for work or materials an amount for an equitable adjustment in the Contract Price equal to the following:

1. The actual cost or a reasonable cost estimate for direct labor, material (less value of salvage, if any) and use of equipment, plus 10 percent of this total for overhead;
3. Plus 10 percent of the total of (1) and (2) for profit and other unallocated costs;
4. Plus the estimated proportionate cost of surety bonds.

No allowance shall be made for general superintendence and the use of small tools and manual equipment.

For work performed by a Subcontractor, the Contractor shall accept as full payment therefore an amount equal to the actual cost or the reasonable cost estimate to the Contractor of such work as determined by the Engineer, plus 10 percent of such cost. The Subcontractor is bound by the same criteria for the determination of an equitable adjustment as the Contractor.

In the case of an under-run, the unit price for the actual quantity installed, if less than 75% of the bid quantity, shall only be adjusted to account for documented increased unit costs that result solely from the decreased quantity. Actual cost to perform the under-run quantity of work shall not be used to determine payment for an under-run. The adjusted unit price for the under-run shall be the bid price plus the documented change in the unit cost of performing the work due solely to the decreased quantity. In no case shall the total payment for an under-run item exceed the total bid value for the item.

The Contractor is required to furnish itemized statements of cost and give the Department access to supporting records.

In the event that an adjusted unit price cannot be agreed upon within 30 days after being requested by either party, a unit price will be established that is deemed to be fair and equitable by the Engineer, whether higher or lower than the unit price bid. Payment will be made at that rate until agreement is reached or until the Contractor chooses to exercise their rights under Subsection 7.16: Claims of Contractor for Compensation.

Subsection 4.07: Maintenance of Detours

A. Where the Department authorizes or directs general traffic from a travelled way to be detoured over Town or City streets, the Department will be responsible for maintenance of such detours and placing them in the equivalent condition they were in prior to general traffic being detoured over same. The Contractor shall do all work required hereunder as directed by the Engineer.

Payment for such work shall be made as specified in Subsection 9.03: Payment for Extra Work.
B. Where a Contractor uses public roads or streets as haul roads, unless the road is properly posted for tonnage limitations, the Contractor has a legal right to use such roads or streets if their vehicles are properly registered.

C. Inferred or alleged overloading, causing either excessive weight beyond registered capacity, or spillage is a Police matter for the local authorities.

D. Where a Contractor uses a private way for hauling, it is a matter between the Contractor and the owners of the private way.

E. It shall be the Contractor's responsibility to ascertain whether haul routes are over accepted public or private ways prior to using same for hauling purposes and it is their further responsibility to ascertain if any have posted legal weight limitations or other restrictions and to abide by them.

Subsection 4.08: Removal and Disposal of Structures and Obstructions

Existing structures such as bridges, culverts or drainage pipes found within the location lines, which are to be replaced or rendered useless by new construction shall be removed by the Contractor at their own expense unless otherwise provided in these specifications or in the Special Provisions. When their location is such as not to interfere with the work, the removal shall not be done until the new structures replacing them are ready for traffic or other purpose for which the replaced structures are designed, or until the Engineer shall permit.

All material in the above mentioned types of existing structures requiring removal shall remain the property of the owner. The material shall be removed without damage, in sections which will permit easy handling and disposal, to locations within the limits of the project, and convenient for their subsequent removal by the owner, or as directed by the Engineer.

Unless otherwise provided the material from any existing structure may be used temporarily by the Contractor during construction. Such material shall not be cut, bent, broken or otherwise damaged. All discarded material, rubbish, or debris shall be removed from the work and disposed of as directed. No foreign material or debris shall be permitted to remain or move in a waterway.

Subsection 4.09: Rights In the Use of Materials Found on the Work

The Contractor, with the prior written approval of the Engineer, may take suitable ledge, gravel, sand, loam, clay or other material from within the location lines of the project under construction and use it on the same project for other purposes than for forming embankments. If such use necessitates securing additional material for forming embankments, the Contractor shall replace at their own expense material of a satisfactory quality (Subsection 120: Excavation). The Contractor shall not excavate or remove any material which is not within the excavation as indicated by the slope stakes and grade lines without written approval. No excavated material suitable for use shall be wasted unless otherwise directed.

Nothing in the Contract shall be construed as vesting in the Contractor any right of property in the materials used after they have been attached or affixed to the work or the soil; but all such materials shall, upon being so attached or affixed, become the property of the Party of the First Part.

Subsection 4.10: Final Cleaning Up

Upon completion of the work and before acceptance and final payment, the Contractor shall remove and dispose of in an approved manner, at their own expense, from the right-of-way, construction
site, dredging site and adjoining property; all temporary structures and all surplus materials and rubbish which the Contractor may have, accumulated during the prosecution of the work, and shall leave the areas in a neat and orderly condition.

No equipment or material shall be left within any of the aforementioned areas after acceptance of the Contract without the written permission of the Engineer. The Contractor shall not abandon any material at or near the site regardless of whether or not it has any value.
SECTION 5.00: CONTROL OF WORK

Subsection 5.01: Authority of the Engineer

The Engineer shall decide all questions which may arise as to the interpretation of the plans and
specifications, and they may alter, adjust and approve same when necessary; all questions which
may arise as to the quality, quantity, value and acceptability of materials furnished or to be
furnished and work performed or to be performed; all questions which may arise as to the progress
of the work and need for and manner of correcting same, and also the need for and terms of delays
and suspensions; all questions relating to the need for and terms of extra work; all questions
relating to the supervision, control and direction of work on the site and the use thereof; all
questions as to the acceptable fulfillment of the Contract on the part of the Contractor.

Subsection 5.02: Plans and Detail Drawings

Approved plans, profiles and sections on file in the office of the Department will show the location,
details and dimensions of the highway, bridges and other work contemplated, and all work shall be
in conformity therewith and with the specifications.

Contract drawings, supplemental plans and detail drawings designed by the Department are part of
the complete plans. Shop drawings, detail drawings, erection drawings, catalog cuts, temporary
structures and other plans designed and or submitted by the Contractor as required in the
Specifications shall, upon approval by the Engineer, become part of the complete set of plans.

Drawings or plans for which the Contractor is responsible for the design, such as for, but not limited
to, steel sheeting; cofferdams; sign, signal and lighting supports; temporary structures; temporary
traffic control plans, erection drawings; demolition drawings; and computations submitted by the
Contractor for approval shall bear the seal of a Professional Engineer of the appropriate discipline
registered in Massachusetts.

Approval of shop drawings by the Engineer does not relieve the Contractor of any responsibility
under the Contract for conformance to the applicable codes, standards, etc.; nor for errors in
dimensions, details or quantities; nor for compliance with the details of the original approved
design.

Structural steel shop drawings shall be prepared and presented in accordance with the
AASHTO/NSBA Steel Bridge Collaboration G1.3 Shop Detail Drawings Presentation Guidelines
Documentation with Sample Drawings. Structural steel shop drawings shall be reviewed and
approved in accordance with the AASHTO/NSBA Steel Bridge Collaboration G1.1 Shop Detail
Drawing Review/Approval Guidelines. If there are any conflicts between these guides and the
Standard Specifications, the Standard Specifications shall govern.

The Contractor shall not receive payment for, nor be allowed to install any item or materials which
require shop drawing approval until the shop drawings for that item have been approved by the
Engineer.

The title block of shop drawings shall include, at a minimum, the following information: fabricator’s
name and address; city(ies) or town(s) where the project is located; location(s) where the material
is to be used; MassDOT contract number; Federal aid project number, when applicable; MassDOT
Project Number; name of the general contractor; date of drawing and date of all revisions. The title
block for shop drawings of bridge projects shall also include: the bridge number and BIN; facility on
the bridge; the feature under the bridge.

The Contractor shall submit two sets of full-scale shop drawing prints to the Engineer for approval.
If corrections are required, one set of the marked-up drawings will be returned to the Contractor
for revision and subsequent resubmittal. The Engineer shall make all copies of the approved shop
drawings as indicated in Table 5.00-1: Number of Shop Drawing Sets Required of Subsection 5.02:
Plans and Detail Drawings and will distribute the drawings. No changes shall be made to the
approved drawings without the written consent of the Engineer.

Shop drawings for any fabricated steel or aluminum product will not be accepted from anyone
other than approved suppliers as noted in Subsection 6.01: Source of Supply and Quality.

Within 15 days after receipt of an approved shop drawing for any item, the Contractor shall provide
the Department written proof that the approved materials have been ordered.

The Contractor, upon approval of shop drawings shall submit to the Engineer a TIFF (tagged image
file format) file for each of the structural shop drawing sheets. Shop drawings that will require a
TIFF submission are those for all primary load carrying bridge members and all attachments to
them, such as bridge beams and diaphragms, and for structural reinforcing rebars. Depending upon
the bridge type, the construction documents may require TIFF submissions for additional bridge
components. The TIFF files shall be in black and white at a resolution of 300 dpi (dot per inch) and
group 4 or group 3 compression. Each TIFF file shall be named using the bridge BIN (Bridge
Identification Number), followed by up to eight-digit description such as STGIRDER, CONCBEAM,
TIMBSTRI, APPRSLAB, BRIDDECK, followed by a 3-digit sheet number. The sheet number in the
TIFF files name shall correspond to the sequential number of the shop drawings. A typical TIFF file
would be: 2ULSTGIRDER002. All TIFF files corresponding to the same shop drawings set shall be
grouped and saved under a separate folder. The folder shall be named using the BIN and
description combination. The TIFF files shall be created from the original stamped approved
drawings and shall be submitted to the Department on compact discs (CD's).

The contract prices shall include the cost of furnishing all detail drawings and the TIFF files on
compact discs (CD’s) and the Contractor will be allowed no extra compensation therefore. The
Engineer may withhold a portion of the payment until all required files have been received and
accepted.
Table 5.00-1: Number of Shop Drawing Sets Required

<table>
<thead>
<tr>
<th>Type of Submittal</th>
<th>Description</th>
<th>Number of Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shop Drawings</td>
<td>Traffic: Precast Concrete Units, Signs, Supports, Castings, Signal Mechanisms, Highway Lighting, etc.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Structural Steel; Metal Bridge Railings; Protective Screens; Metal Casting; Metal Plates and Machinery; Prestressed Concrete Structural Units; Noise Barrier; Elastomeric Bearings; Armored Strip Seal and Finger Joints</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Special Metal Pipes; Pipe Arches; Structural Plate Arches; Structural Pipes and Structural Plate Pipes</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Reinforcing Steel; Special Non-Traffic Precast Concrete Units (Pipes, Manholes, etc.)</td>
<td>6</td>
</tr>
<tr>
<td>Construction Procedures</td>
<td>Steel Beam Erection; Prestressed Concrete Beam Erection; Precast Concrete Arch / Frame Unit Erection; Bridge Demolition; Deck Removal and Shielding Design; Sheetings / Cofferdam Designs; Temporary Bridges; Beam or Pipe Jacking Procedure</td>
<td>6 (9 sets required when a railroad is involved)</td>
</tr>
<tr>
<td></td>
<td>Pile Driving (Wave Equation Method); Pile Load Tests; Embankment Settlement; Sign Supports / Strain Poles</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Pile Capacity (Under 50 Tons); Schedules and Construction Equipment</td>
<td>3</td>
</tr>
</tbody>
</table>

Subsection 5.03: Conformity with Plans and Specifications

Attention is directed to Chapter 30, Section 391 which provides that no willful and substantial deviation from plans and specifications shall be made unless authorized in writing by the awarding authority or by the Engineer in charge of the work who is duly authorized by the awarding authority to approve such deviation. This act further provides that in order to avoid delays in the prosecution of the work, such deviation may be authorized by a written order of the awarding authority, or such Engineer as is authorized to approve such deviation, and that within 30 days thereafter such written order shall be confirmed by a certificate of the awarding authority.

All work performed and all materials furnished shall be in reasonably close conformity with the lines, grades, cross sections, dimensions, details, gradations, physical and chemical characteristics of materials and other specific requirements of the Contract. Where the terms “in conformity with,” “in agreement with,” “in compliance with” or terms of like exactness occur in these specifications they shall be construed to mean “in reasonable close conformity with.”

Where definite tolerances are specified in the Contract, such tolerances shall fix the limits of reasonably close conformity. Where tolerances are not specified in the Contract, the Engineer will determine the limits of reasonably close conformity in each individual case and their decision shall be final and conclusive and mutually accepted by all parties.

In the event the Engineer finds the materials or the finished product in which the materials are used not within reasonably close conformity with the plans and specifications but that reasonably acceptable work has been produced, the Engineer shall then make a determination if the work shall be accepted and remain in place. In this event, the Engineer will document the basis of acceptance by contract modification which will provide for an appropriate adjustment in the contract price for
such work or materials as the Engineer deems necessary to conform to their determination based on engineering judgment, and in accordance with current construction practices.

In the event the Engineer finds the materials or the finished product in which the materials are used or the work performed are not in reasonably close conformity with the plans and specifications and have resulted in an inferior or unsatisfactory product, the work or materials shall be removed and replaced or otherwise corrected by and at the expense of the Contractor.

Deviations from the approved plans and working drawings, that may be required by the need of the construction, will be determined by the Engineer and authorized by them in writing.

Subsection 5.04: Order of Precedence

The Contract Amendments, Contract, Referenced Materials, and Supplementary Documents are all essential elements in defining the Work and a requirement occurring in one is as binding as though occurring in all. They are intended to be complementary and to describe and provide a complete scope of work. In the event of any conflict among the Contract Documents, the order of precedence shall be as set forth below:

1. Contract Amendments (e.g. Extra Work Orders and Time Extensions)
2. Contract (in the following order):
 a. Addenda including bid questions and responses
 b. Special Provisions, Detail Sheets and Permits
 c. Plans
 d. Interim Supplemental Specifications
 e. Supplemental Specifications
 f. Standard Specifications

In the event of conflicts, inconsistencies or discrepancies among the Contract Documents or within any of the Contract Documents, to the extent applicable, the better quality or greater quantity of work, or higher performance requirement shall be provided without change in the Contract Price.

In the event of any discrepancies in the dimensions shown on the contract plans, the order of precedence shall be as set forth below:

1. Dimensions shown on plans, unless obviously incorrect
2. Calculated dimensions
3. Scaled dimensions

Where codes, standards, requirements or publications of public or private bodies are referred to in the Contract Documents, references shall be understood to be to the latest revision in effect on the date of opening of bids, except where otherwise indicated. Words and abbreviations which have well-known technical or trade meanings are used in the Contract Documents in accordance with such recognized meanings.
The Contractor shall take no advantage of any apparent error or omission in the plans or specifications. In the event the Contractor discovers such an error or omission, the Contractor shall immediately notify the Engineer. The Engineer will then make such corrections and interpretations as may be deemed necessary for fulfilling the intent of the Contract.

Subsection 5.05: Cooperation by Contractor

The Contractor will be given three copies of full-size approved contract drawings, detail sheets and contract specifications (except Standard Specifications). The documents are to be picked up by the Contractor within 30 days of the Award of contract. Contractors requesting the documents after the 30-day period will be required to purchase the requested documents.

The Contractor shall purchase any required Standard Specifications from the Department. The Contractor may request and the Engineer may approve furnishing additional copies of contract drawings either full- or half-size at the Contractor’s expense. The Contractor shall have one copy of all such information and a copy of the Standard Specifications on the work site and available for reference at all times during the prosecution of the work. The Contractor shall have on the work at all times, as their agent, a competent superintendent or foreman capable of reading and thoroughly understanding the plans and specifications and thoroughly experienced in the type of work being performed, authorized to receive orders and to act for them.

Whenever the Contractor is not present on any part of the work, if it is necessary or desirable that directions be given, such directions or orders will be given by the Engineer, and they shall be received and executed by the foreman or superintendent who is in charge of the particular work with reference to which the orders are given.

The Contractor shall provide all reasonable facilities to enable the Engineer to make necessary measurements and to inspect the workmanship and materials entering into the work. The Contractor shall cooperate in the matter of setting and preserving stakes, bench marks, etc., for controlling the work.

The Contractor shall so carry on their work under the direction of the Engineer that Public Service Corporations, or Municipal Departments may enter on the work to make changes in their structures or to place new structures and connections therewith without interference, and the Contractor shall have no claim for, or on account of any delay which may be due to result from said work of Public Service Corporations or Municipal Departments. No allowance of any kind will be made except as provided in Subsection 8.10: Determination and Extension of Contract Time for Completion (Time Extensions). Nothing contained herein shall be construed to hold the Contractor responsible for any acts or omissions by such Public Service Corporations, Municipal Departments or their Contractors.

Subsection 5.06: Adjacent Contracts

The Department reserves the right at any time to contract for and perform other or additional work on or near the work covered by the Contract. The intent of this section is to provide for the cooperation of Contractors in cases where the Department deems it expedient or necessary and in the best interest of the Commonwealth to let a separate Contract for the performance of other work on or near the same project location as the work being performed under the Contract, but it is not intended to indicate any intention on the part of the Department to let a separate Contract for any work within the scope of or necessary for the successful completion of the Contract.
When separate Contracts are let within the limits of any one project (either prior to award of Contract, or as specified in project proposal, or as specified above), each Contractor shall conduct their work so as not to interfere with or hinder the progress or completion of the work being performed by other Contractors. Contractors working on the same project shall cooperate with each other as directed.

Each Contractor involved shall assume all liability, financial or otherwise, in connection with their Contract and shall protect and save harmless the Department from any and all damage or claims that may arise because of inconvenience, delay, or loss experienced by them because of the presence and operations of other Contractors working within the limits of the same project. No allowance of any kind will be made except as provided in Subsection 8.10: Determination and Extension of Contract Time for Completion (Time Extensions).

The Contractor shall arrange their work and shall place and dispose of the materials being used so as not to interfere with the operations of the other Contractors within the limits of the same project. The Contractor shall join their work with that of the others in an acceptable manner and shall perform it in proper sequence to that of the others.

Subsection 5.07: Construction Survey Control

The Department will furnish the following survey work:

A. Establishment of base lines or centerlines of construction for main roadways, ramps, service roads, side streets and other major dry land items. Reproduction of base lines and centerlines, or lines offset to them when roadway cuts and fills have been completed. Levels may be taken on the points marking these lines.

B. General bench mark control for the project.

C. Original grade stakes at 50’ intervals.

D. Preliminary and final surveys of pits (if borrow is paid by pit measure) and dredging areas, semifinal cross sections on ledge, peat, loam, etc.

E. Control for structures, which shall consist of range lines on centerline of bearings or centerline of piers, face of abutments and wingwalls, horizontal and vertical control for beam seats, along with bench marks close to structures for vertical control. Structures shall include but shall not be limited to bridges, culverts, dams, buildings and walls.

F. Control for alignment of curbing or edging on ramps and at other complicated locations.

G. Bound points and sideline stakes.

H. All necessary stakes for pipes and head walls, and establish all catch basin and manhole locations as to line and grade.

The Contractor shall employ qualified engineering personnel to insure adequate control and shall furnish and set stakes of the quality used by the Department for control staking. Rough stakes may be used to denote top and bottom of slopes, edge of pavement, gutter lines, etc.

The Contractor shall furnish and set, at their own expense, all remaining stakes (such as batter boards, slope stakes, pins, offset stakes, etc.) required for the construction operations and they shall be solely responsible for the accuracy of the line and grade of all features of their work.

The Contractor shall be held responsible for the preservation of all stakes and marks placed by the Engineer. If any of such stakes or marks are disturbed or destroyed by the Contractor the cost of
replacing them shall be deducted from the payment for the work as stipulated in Subsection 9.05: Final Acceptance and Final Payment.

Subsection 5.08: Authority and Duties of Engineer's Assistants

The Engineer may appoint such assistants and representatives as they desire and they shall be authorized to inspect work and materials, to give directions pertaining to the work or to the safety and convenience of the public, to approve or reject materials, to make measurements of quantities and to perform such other duties as may be designated by the Engineer.

In case of any dispute arising between the Contractor and the Engineer's assistants, as to materials furnished or the manner of performing the work, the Engineer's assistants shall have the authority to reject the materials or to suspend the work until the question at issue can be referred to and decided by the Engineer:

Engineer’s assistants are not authorized to revoke, alter, enlarge, relax or release any requirements of these specifications nor to issue instructions contrary to the plans and specifications.

In no case shall the Engineer's assistants act as foremen or perform other duties for the Contractor.

Subsection 5.09: Inspection of Work

All materials and each part or detail of the work shall be subject to inspection by the Engineer. The Engineer shall be allowed access to all parts of the work and shall be furnished with such information and assistance by the Contractor as is required to make a complete and detailed inspection, (such assistance may include furnishing labor, boats, tools, equipment, etc., at no expense to the Department).

If the Engineer so requests, the Contractor, at any time before acceptance of the work, shall remove or uncover such portions of the finished work as may be directed. After examination, the Contractor shall restore said portions of the work to the standard required by the specifications. Should the work thus exposed or examined prove acceptable, the uncovering, or removing, and the replacing of the covering or making good of the parts removed will be paid for as extra work; but should the work so exposed or examined prove unacceptable, the uncovering or removing and the replacing of the covering or making good of the parts removed, will be at the Contractor’s expense.

Any work done or materials used without authorization by the Engineer may be ordered removed and replaced at the Contractor's expense.

The Contractor shall furnish written information to the Engineer stating the original sources of supply of all materials manufactured away from the actual site of the work. In order to insure a proper time sequence for required inspection and approval this information shall be furnished at least two weeks (or as otherwise directed by the Engineer) in advance of the incorporation in the work of any such materials. The Department strongly encourages the use of recycled products. The Contractor must identify wherever recycled products are to be used.

For the purpose of observing work that affects their respective properties, inspectors for the municipalities, public agencies and the utility companies shall be permitted access to the work, but all official orders and directives to the Contractor will be issued by the Engineer.
Such inspection shall in no sense make any unit of government or political subdivision a party to this Contract and shall in no way interfere with the rights of either party hereunder.

The inspection of the work shall not relieve the Contractor of any of their obligations to fulfill the terms of the Contract as herein prescribed by the plans and specifications.

Failure to reject any defective work or materials shall not in any way prevent later rejection when such defect is discovered, nor obligate the Department to make final acceptance.

The Contractor shall give prior notice to the Engineer when work on the various items is to be performed by them or their Subcontractors. If work is suspended on any item, prior notice shall be given to the Engineer before resumption of such work. Except in case of an unforeseen emergency, neither the Contractor nor any Subcontractor shall perform any work requiring inspection at hours other than during the normal work day without prior approval of the Engineer.

Subsection 5.10: Removal of Defective or Unauthorized Work

All defective work shall be removed, repaired or made good, notwithstanding that such work has previously been inspected and approved or estimated for payment. If the work or any part thereof shall be found defective at any time before the final acceptance of the whole work, the Contractor shall at their own expense make good such defect in a satisfactory manner.

Any work done beyond the lines and grades shown on the plans or as given, except as herein provided, or any extra work done without authority, shall be considered as unauthorized and at the expense of the Contractor. Such work will not be measured nor compensation allowed therefor. Work so done may be ordered removed at the Contractor’s expense.

Upon failure of the Contractor to remove and satisfactorily dispose of any or all defective or unauthorized work, and to remedy the same before final acceptance, the Engineer may withhold the estimated costs therefor from any moneys due or to become due the Contractor until the work is corrected. Upon the further failure of the Contractor to remove and satisfactorily dispose of any or all defective or unauthorized work, and to remedy the same, the Engineer may cause such defective work to be remedied, removed and replaced; and such unauthorized work to be removed, and may deduct the costs therefor from any moneys due or to become due the Contractor.

Subsection 5.11: Final Acceptance

Upon due notice from the Contractor by certified mail of presumptive completion of the entire project, the Engineer will make an inspection. If all construction provided for and contemplated by the Contract is found completed to the Engineer’s satisfaction, that inspection shall constitute the final inspection and the Engineer shall in writing make acceptance of the physical work, which acceptance shall relieve the Contractor from further responsibility only with respect to the physical work. Subsequent to the final acceptance of the physical work and upon compliance with the terms of the Contract relating to submission of contractually required reports or other documents, the Engineer will recommend final acceptance of the Contract to the Board of Commissioners (see Subsection 9.05: Final Acceptance and Final Payment).

If the work or any part thereof is not acceptable to the Engineer at the time of the inspection, the Contractor will be notified in writing of the particular defects or parts to be remedied before final acceptance. If the Contractor has not arranged within a period of five days after the date of
transmittal of such notice of non-acceptability, to complete the work speedily as described by the
Engineer, the Engineer may without further notice and without in any way affecting the Contract
make such other arrangements as may be considered necessary to insure the satisfactory
completion of the project. The cost of so completing the work shall be deducted from any moneys
due or which may become due the Contractor under the Contract.

After the Contractor has finished installing the controller and all other associated traffic signal
control equipment and after the Contractor has set the signal equipment to operate as specified in
the contract documents, the fine tuning, adjusting and testing period shall begin. During this period,
the Contractor, under the direction of the Engineer and with the cooperation of the local community
representatives, if applicable, will make necessary adjustments and tests to ensure safe and
efficient operation of the equipment. This period shall not last for more than 30 days, and the
contract completion date has taken this testing period into consideration. No request for final
acceptance will be considered until successful completion of the testing period. The cost of
electrical energy consumed by the operation of traffic signals, highway lighting or other electrical
devices during the construction, fine tuning, adjustment and testing of the devices will be borne by
the owner of the existing device. In the case of an installation requiring a new electrical service, the
cost of electrical energy consumed will be borne by the Contractor until final acceptance.
SECTION 6.00: CONTROL OF MATERIALS

Subsection 6.01: Source of Supply and Quality

If the Engineer so desires, materials may be approved at the source of supply before delivery is started.

The Department reserves the right to require approval of the source of supply for any material to be incorporated into the work prior to delivery or manufacture.

The Engineer reserves the right to prohibit the use of materials, products or components which, in their opinion, may be supplied in a manner not reasonably consistent with contract requirements.

The determination of the Engineer shall be final upon all questions which pertain to supplier approval.

Fabricators of structural steel, miscellaneous steel and aluminum products, and producers of precast concrete and prestressed concrete must be on the Department’s approved fabricators list on the date the bids are opened. Only approved fabricators will be allowed to perform work for the Department.

The Contractor shall furnish all materials required for the work specified in the Contract and said materials shall meet the requirements of the specifications for the kind of work involving their use. For any materials named or described in these specifications, an approved equivalent to that named or described in the said specifications may be furnished.

Chapter 7, Section 22, Clause 17, of the General Laws, as amended, shall apply to the purchase by the Contractor of supplies and materials to be used in the execution of this Contract.

The rules referred to require a preference in the purchase of supplies and materials, other considerations being equal, in favor first, of supplies and materials manufactured and sold within the Commonwealth, and second, of supplies and materials manufactured and sold within the United States. On Federal Aid Projects the following shall also apply:

No requirements shall be imposed and no procedure shall be enforced by any State in connection with a project which may operate to require the use or provide a price differential in favor of articles or materials produced within the State, or otherwise to prohibit, restrict or discriminate against the use of articles or materials shipped from or prepared, made or produced in any State, territory or possession of the United States.

In Contracts requiring structural steel, the Contractor shall furnish approved erection procedures to the inspector of structural materials at the source of supply or site of fabrication. The inspector shall not stamp their approval or release material for shipment until such approved procedures are received.

Materials for permanent construction shall be new, shall conform to the requirements of these specifications, and shall be approved by the Engineer.

Materials for temporary structures or supports adjacent to traveled ways, the failure of which would compromise the safety of the public or the traveled ways, need not be new but the Contractor shall be required to submit certification by a Structural Professional Engineer that the
material meets the requirements for the intended use and shall be approved by the Engineer. Any fabrication shall conform to the requirements of these specifications.

These requirements shall not apply to gantry systems and supports as well as other mechanized systems.

If, after test(s), it is found that sources of supply which have been approved do not furnish a uniform product, or if the product from such source proves unacceptable at any time, the Contractor shall, at their own expense, take any and all steps necessary to furnish approved materials.

Where no inspection of materials is arranged for by the Department and before such materials are incorporated into the work, the Contractor shall submit to the Department for approval, three notarized copies of the Manufacturer’s or Supplier’s statement for each kind of material furnished, which shall certify compliance with the specifications and shall contain the following information:

1. Contract Number, City or Town, Name of Road and Federal Aid Number;
2. Name of the Contractor to which the material is supplied;
3. Kind of material supplied;
4. Quantity of material represented by the certificate;
5. Means of identifying the consignment, such as label, marking, seal number, etc.;
6. Date and method of shipment;
7. Statement to the effect that the material has been tested and found in conformity with the pertinent parts of the Contract;
8. Results of all required tests including the chemical analysis in the case of metal: or in lieu of furnishing the results a statement that results of all required tests pertinent to the certificate and not submitted shall be maintained available by the undersigned for a period of not less than three years from date of final acceptance or not less than three years from date of final payment to the State from Federal Funds (whichever period is the longest shall apply);
9. Signature of a person having legal authority to bind the supplier.

These COCs shall be delivered to the contract site at the same time that the materials are delivered and before such materials are incorporated into the work. Payment for the item in which the materials are incorporated may be withheld until these COCs are received in a form that meets the contract requirements.

If the Contractor has new materials purchased for use on a previous Department Contract which have never been used and which comply with the specifications, these materials may be furnished and used provided the Contractor submits their own sworn statement certifying that such materials were purchased for use on a previous Contract (naming and identifying such Contract) and that certificates of compliance were furnished for such materials on the previous Contract, to which reference can be made.

Any cost involved in furnishing the certificate shall be borne by the Contractor.

Subsection 6.02: Samples and Tests

The inspection and sampling of materials will be carried out, ordinarily, at the source or at the site of the Contract work in accordance with established policies and procedures of the Department; but
the Department will not assume any obligation for the inspection and sampling of materials at the source. The responsibility of incorporating satisfactory material in the work rests entirely with the Contractor, notwithstanding any prior inspection or test.

Tests of materials will be made by the Department or under its direction in accordance with the Standards of the test as designated. The Contractor or their suppliers shall furnish such facilities as the Engineer may require for collecting and forwarding samples, and shall not make use of, nor incorporate in the work, any material represented by the samples until the required tests have been made and the material accepted, unless otherwise directed. The Contractor in all cases shall furnish the required samples without charge.

Materials such as crushed stone, gravel borrow, ordinary borrow, etc., will be sampled at the source and approved for use. However, such preliminary approval by the Engineer does not relieve the Contractor of the responsibility for placing satisfactory material in the work as determined by subsequent samples taken at the source or on the project prior to the material being incorporated into the work and if the project samples test satisfactorily the material will be considered to meet the Contract requirements as to quality. If such sampling and testing reveal that the material is unsatisfactory it will then be the responsibility of the Contractor to remove it from the work or blend it with such other materials so that an acceptable material will be produced. The removal and blending of such material shall be done by the Contractor without additional compensation.

Subsection 6.03: Delivery and Storage of Materials

Materials and equipment shall be progressively delivered at the site so that there will be neither delay in the progress of the work nor an accumulation of materials that is not to be used within a reasonable time.

Materials shall be so stored as to assure the preservation of their quality and fitness for the work. Stored materials, even though approved before storage, may again be inspected prior to their use in the work. Stored materials shall be located so as to facilitate their prompt inspection. Approved portions of the right-of-way may be used for storage purposes and for the placing of the Contractor’s plant and equipment, but any additional space required therefor must be provided by the Contractor at their expense. Private property shall not be used for storage purposes without written permission of the owner or lessee, and if requested by the Engineer copies of such written permission shall be furnished to them. All storage sites shall be restored to their original condition by the Contractor at their expense. This shall not apply to the stripping and storing of topsoil, or to other materials salvaged from the work.

Subsection 6.04: Defective Materials

Materials not conforming to these specifications shall be rejected and removed from the work by the Contractor as directed. No rejected material, the defects of which have been subsequently corrected, shall be used except with the permission of the Engineer. Should the Contractor fail to remove non-conforming material within the time indicated in writing, the Engineer may withhold the estimated cost of the removal and replacement of the non-conforming material from any moneys due or to become due the Contractor. Upon further failure of the Contractor to remove and replace the nonconforming material, the Engineer shall have the authority to remove and replace the defective material, and the cost of such removal and replacement will be deducted from any moneys due or to become due the Contractor.
SECTION 7.00: LEGAL RELATIONS AND RESPONSIBILITY TO PUBLIC

Subsection 7.01: Laws to be Observed

A. General.

The Contractor shall keep itself fully informed of all state and national laws and municipal ordinances and regulations in any manner affecting those engaged or employed in the work, or the materials used in the work, or in any way affecting the conduct of the work, and of all orders and decrees of bodies or tribunals, having any jurisdiction or authority over the same. If any discrepancy or inconsistency is discovered in the Contract for the work in relation to any law, ordinance, regulation, order or decree; the Contractor shall forthwith report the same to the Engineer in writing. The Contractor shall at all times observe and comply with, and shall cause all their agents and employees to observe and comply with, all existing laws, ordinances, regulations, orders and decrees.

The Contractor, if a foreign corporation, (a corporation established, organized or chartered under laws other than those of the Commonwealth) shall comply with the provisions of Sections 3 and 5 of Chapter 181 of the General Laws as amended. Section 3 provides that the State Secretary shall be appointed for the service of legal process in the case of a foreign corporation doing business in this Commonwealth. Section 5 requires every such corporation to file with the said secretary copies of its charter, certificate of incorporation, a true copy of its bylaws and other information.

The Contractor shall file with the Department with each bid, a certificate from the State Secretary stating that such corporation has complied with Sections 3 and 5 of Chapter 181 and the date of such compliance.

Other out-of-state business organizations, such as individual proprietorship, partnership, etc. shall appoint an agent in this Commonwealth for the service of legal process and furnish a copy of such appointment to the State Secretary prior to the issuance of a Contract by the Department.

It shall be the responsibility of the Contractor to observe and practice to the fullest extent practicable controls, procedures and methods lending themselves to protection of the human and natural environment.

The Contractor shall not, otherwise than as provided by law for the proper discharge of official duty, directly or indirectly, give, offer or promise anything of value to any present or former state employee, for or because of any official act performed or to be performed by such employee or person selected to be such employee. The phrase “anything of value” as used herein means any item of value, including but not limited to invitations or tickets to sporting events, social gatherings, outings or parties, or the provision of meals or lodging, or the use of vehicles of any kind, and any other item or thing of monetary value. In the event that the Contractor breaches this provision, the Department may take action against the Contractor including but not limited to the following: (a) ordering the Contractor to cease the work or any part thereof, (b) termination of the contract, (c) requiring Contractor's sureties to complete the work, and (d) suspend or terminate the Contractor's prequalification status.
The Contractor shall at all times observe and comply with and shall cause all their agents and employees to observe and comply with all existing laws, ordinances, regulations, orders and decrees especially in their relationship to the protection of the total environment.

Executive Order 130 (Anti-Boycott Covenant)

The Contractor warrants, represents and agrees that during the time this contract is in effect, neither it nor any affiliated company, as hereafter defined, participates in or cooperates with an international boycott, as defined in Section 999 (b) (3) and (4) of the Internal Revenue Code of 1954, as amended, or engages in conduct declared to be unlawful by M.G.L. Chapter 151 E, Section 2. If there shall be a breach in the warranty, representation and agreement contained in this paragraph, then without limiting such other rights as it may have the Commonwealth shall be entitled to rescind this contract.

As used herein, an affiliated company shall be any business entity of which at least 51% of the ownership interests are directly or indirectly owned by the Contractor or by a person or persons or business entity or entities directly or indirectly owning at least 51% of the ownership interests of the Contractor, or which directly or indirectly owns at least 51% of the ownership interests of the Contractor.

Executive Order No. 195

In compliance with Executive Order No. 195 of the Governor of the Commonwealth, the Governor or their designee, the Secretary of Administration and Finance, and the State Auditor or their designee shall have the right at reasonable times and upon reasonable notice to examine the books, records and other compilations of data of the contractor which pertain to the performance of the provisions and requirements of this contract.

B. Air Pollution Control.

The Contractor shall comply with the provisions of Chapter 111, as amended, of the General Laws of the Commonwealth, pertaining to and establishing the Air Pollution Control Districts in the Commonwealth. The burning of trees, brush, etc. will not be permitted. The Contractor shall provide other satisfactory, approved methods of disposal without additional compensation.

C. Prevention of Water Pollution (See Subsection 7.02: Pollution Prevention).

Attention of the Contractor’s directed to Section 42 of the Massachusetts Clean Waters Act (Chapter 21 of the General Laws as amended).

D. Plant Pest Control.

All soil moving equipment operating in regulated areas in Massachusetts will be subject to plant quarantine regulations. In general, these regulations require the thorough cleaning of soil from equipment by the Contractor before such equipment is moved from regulated areas within
Massachusetts to uninfested areas either within or without the Commonwealth. The cost of such cleaning shall be included in the contract prices and shall not be in addition thereto.

Complete information may be obtained from the Massachusetts Department of Agriculture, Plant Pest Control Division, 100 Cambridge Street, Boston. For interstate movement of soil moving equipment, the following should be contacted:

U.S. Department of Agriculture
Plant Pest Control Division
424 Trapelo Road
Waltham, Massachusetts 02154

E. Invasive Plants.

The Contractor shall ensure that no invasive plant species, as defined and listed by the Massachusetts Invasive Plant Advisory Group, are introduced or spread within or outside the site by construction activities either by improperly cleaned construction equipment or importation of infected materials such as borrow, compost, nursery stock, seed, or hay bales. Corrective measures, if necessary, shall be made by the Contractor as directed by the Engineer. The Contractor shall be solely responsible for all costs associated with ensuring that invasive species are not introduced or spread by construction activities and for all corrective measures required for as long as necessary to eliminate the introduced invasive plant species and prevent reestablishment of same.

F. AAB Tolerances.

All construction elements associated with sidewalks, walkways, wheelchair ramps and curb cuts are controlled by 521 CMR.

The Contractor is ultimately responsible for constructing all project elements in strict compliance with the current AAB/ADA rules, regulations and standards.

The AAB Rules and Regulations specify maximum slopes and minimum dimensions required for construction acceptance. There is no tolerance allowed for slopes greater than the maximum slope nor for dimensions less than the minimum dimensions.

G. Buy America Provisions.

On Federally-aid projects the Buy America Federal Regulation (23 CFR 635.410) requires that all manufacturing processes for steel and iron to be permanently incorporated in Federal-Aid Highway Construction Projects must occur in the United States. Foreign steel and iron can be used if the cost of the materials does not exceed 0.1% of the total Contract cost or $2,500, whichever is greater. The action of applying a coating to a covered material (i.e., steel and iron) is deemed a manufacturing process subject to Buy America. Coating includes epoxy coating, galvanizing, painting and any other coating that protects or enhances the value of a material subject to requirements of Buy America.

On Federally-aid projects the work shall comply with the Cargo Preference Act of 1954 and implementing regulations (46 CFR Part 381).
The contractor agrees:

1. To utilize privately owned United States-flag commercial vessels to ship at least 50 percent of the gross tonnage (computed separately for dry bulk carriers, dry cargo liners, and tankers) involved, whenever shipping any equipment, material or commodities pursuant to this contract, to the extent such vessels are available at fair and reasonable rates for United States-flag commercial vessels.

2. To furnish within 20 days following the date of loading for shipments originating within the United States or within 30 working days following the date of loading for shipments originating outside the United States, a legible copy of a rated, 'on-board' commercial ocean bill-of-lading in English for each shipment of cargo described in paragraph (1) of this section to both the Contracting Officer (through the prime contractor in the case of subcontractor bills-of-lading) and to the Division of National Cargo, Office of Market Development, Maritime Administration, Washington, DC 20590.

3. To insert the substance of the provisions of this clause in all subcontracts issued pursuant to this contract.

Subsection 7.02: Pollution Prevention

I. Air Pollution Prevention.

A. Diesel Construction Equipment.

The Massachusetts Department of Transportation is a participant in the MassCleanDiesel Program established by the DEP and the purpose of this specification is to achieve documentable diesel emission reductions that result in beneficial air quality improvements to construction workers and the general public through the retrofit of diesel-powered non-road construction equipment.

The Contractor shall certify that all Contractor and Sub-Contractor diesel-powered non-road construction equipment and vehicles greater than 50 brake horsepower (hp) that will be utilized in performance of the work under this contract (hereinafter “Diesel Construction Equipment” or “DCE”) have:

1. engines that meet the EPA particulate matter (PM) Tier emission standards in effect for non-road diesel engines for the applicable engine power group; or

2. emission control technology verified by EPA or CARB for use with “non-road engines;” or

3. emission control technology verified by EPA or CARB for use with “on-road engines” provided that such equipment is operated with diesel fuel that has no more than 15 ppm sulfur content (i.e., ULSD fuel); or

4. emission control technology certified by manufacturers to meet or exceed emission reductions provided by either "on-road" or “non-road” emission control technology verified by EPA or CARB.

Emission control devices, such as oxidation catalysts or particulate filters, shall be installed on the exhaust system side of the diesel combustion engine equipment. The Contractor is responsible to insure that the emissions control technology is operated, maintained, and serviced as recommended by the manufacturer.

See Exemptions below regarding the use of rental equipment.
See Compliance section regarding minimum emission reductions that must be provided by non-verified EPA or CARB emission control devices.

For the latest up-to-date list of EPA-verified technologies, see:
For the latest up-to-date list of CARB verified technologies, see:
 http://www.arb.ca.gov/diesel/verdev/vt/cvt.htm

Exemptions

A. Rented diesel equipment greater than 50 brake hp that will be used on site for 30 days or less over the life of the project (i.e., 30 days cumulative) are exempt from this specification. However, if the rented equipment will be used more than 30 cumulative days, then the equipment must comply with this specification. In either case, rental equipment must be included as part of the detailed records of DCE under Submittals and Reporting. **Note:** Any contractor owned equipment that are more than 50 brake hp that are used on site for 30 cumulative days or less over the life of the project, are not exempt from complying with this specification.

B. Large cranes (such as Sky cranes or Link Belt cranes) which are responsible for critical lift operations are exempt from installing Retrofit Emission Control Devices if they adversely affect equipment operation. Technical justification must be submitted to the Engineer for approval to document the impact on operations.

C. The Engineer may create an exemption when there is a compelling emergency need to use diesel vehicles or engines that do not meet the contract conditions for emission controls. Examples include the need for rescue vehicles or other equipment to prevent or remedy harm to human beings or additional equipment required to address a catastrophic emergency such as structure collapse or imminent collapse. Once the emergency is controlled, such non-compliant equipment must be removed from the project. Meeting contract deadlines will not be considered a compelling emergency.

D. Diesel-powered non-road construction equipment greater than 50 brake horsepower need not be equipped with either EPA of CARB verified emission control technology if the non-road construction equipment diesel engine is certified to meet the EPA particulate matter (PM) Tier emission standards in effect for non-road diesel engines for the applicable engine power group. **Note:** If emissions from the DCE at the start of the project meets the most current EPA PM emissions standards in effect at the time, but are superseded by newer Tier emission standards (i.e., Tier 3 emission standards replaced by Tier 4 emission standards), then the superseded DCE must be retrofitted prior to the end of the contract with emission control technology per Section (2).

E. If an additional DCE (greater than 50 brake hp), or permanent replacement is brought on site after work has commenced, the Contractor has 15 calendar days from the time the DCE is brought on site, to install emission control technology per this specification (unless the DCE has an engine that meets the EPA particulate matter (PM) Tier emission standards in effect for non-road diesel engines for the applicable engine power group).

Submittals and Reporting

The Contractor shall fill out and return the following forms within 14 days of the date of contract Award:
Certification of Construction Equipment Standard Compliance Form
Diesel Equipment Data Sheet

These forms are available on the MassDOT website at www.mass.gov/massdot/highway/

Should the successful bidder fail to execute the said form, MassDOT may, at its option, determine the Contractor has abandoned the Contract and shall take action in accordance with Subsection 3.06: Failure to Execute Contract.

The Diesel Equipment Data Sheet is a certified list of all DCE to be utilized on the project and provide the following information for each DCE in tabular form:

- Contractor/subcontractor name.
- Identify if owned/rented equipment.
- Equipment type.
- Equipment make, model and VIN.
- Engine model, year of manufacture and HP rating.
- Type of fuel used.
- Emission Control Device (ECD) type (DOC or DPF).
- ECD manufacturer, make and model.
- ECD EPA/CARB Verification Number or ECD performance certification provided by manufacturer(s) that the DOC or DPF meets or exceeds emission reductions when compared to an EPA or CARB verified device.
- ECD installation date.

For each piece of DCE, the Contractor shall also submit digital color pictures showing the machine and the MassDOT-issued compliance label (with inspection tag number).

The Contractor and subcontractor shall maintain detailed records of all DCE used on the project, including the duration times the DCE is used on the project site. Records shall be available for inspection by MassDOT. The Engineer shall be immediately notified of any new DCE brought into the project.

Compliance

A. All DCE that are not exempt, must comply with these provisions whenever they are present on the project site. If a non-verified EPA or CARB emissions control device is used for compliance with this specification, then the device must provide the following minimum emission reductions:

| Table 7.02-1: Minimum Emission Reductions for Non-Verified Emissions Control Devices |
|---------------------------------|-------------------------------------|
| Diesel Oxidation Catalysts | Diesel Particulate Filters |
| Particulate Matter: 20% | Particulate Matter: 85% |
| Carbon Monoxide: 40% | |
| Volatile Organic Compounds: 50% | |

Note: If emission reductions for a non-verified ECD appear to be questionable as determined by MassDOT, the Contractor shall provide all supporting emission test data, including test procedures, as requested by MassDOT for the ECD. If emission reductions
cannot be substantiated by supporting test data, then the ECD in question must be replaced with a different ECD.

B. Upon confirming that the Diesel Construction Equipment meets the EPA particulate matter (PM) Tier emission standards in effect for non-road diesel engines for the applicable engine power group or has the requisite pollution control technology installed, MassDOT will issue a non-transferable compliance label that will assign a compliance tracking number to the DCE.

C. All DCE subject to this Specification shall display the compliance label in a visible location.

D. When leased or rented equipment which has been retrofitted by the Contractor is returned to the rental company, the Contractor will remove the Compliance label and return the label to the Engineer.

E. Use of a DCE which has been issued a compliance label and which is found without the device is a breach of this contract and will be subject to a stipulated penalty of $2,500 per day. See Non-compliance section below.

F. If an emission control device which was purchased and/or utilized on or after March 1, 2005 and was in compliance with the MassDOT diesel retrofit requirements in place between March 1, 2005 and the issuance of this specification, the retrofit device will be considered in compliance with this specification. Note: If a retrofit device (i.e., DOC or DPF) used between March 1, 2005 and issuance of this specification does not have a performance certificate which shows the pollutant emission reductions being provided by the retrofit device meets or exceeds emission reductions provided by either an EPA or CARB verified “on-road” or “non-road” emission control device, then the device will be considered non-compliant with this specification.

Non-compliance

All DCE may be inspected by the Engineer or designated agent without prior notice to the Contractor. If any DCE is found to be in non-compliance, the Contractor must either remove the DCE from the project or retrofit it within 15 calendar days. Failure to comply will subject the Contractor to an Environmental Deficiency Deduction described below. A Notice of Non-Compliance will be issued by the Engineer or their agent at the time the noncompliance is identified.

If the Contractor fails to take corrective action within 15 calendar days of issuance of the Notice of Non-Compliance, a daily monetary deficiency deduction will be imposed for each calendar day the deficiency continues. The deduction will be $2,500 per calendar day for each piece of DCE determined to be in non-compliance. The deficiency deduction is irrevocable and shall not be reimbursed. Pay estimates will be held and no payments made until all equipment is brought into compliance.

Costs

All costs associated with the installation of emission control technology are the responsibility of the Contractor and shall be considered incidental to the cost of the project. No additional compensation is provided. In addition, all DCE greater than 50 brake hp shall comply with the requirements of this
specification at the start of work commencing on site. The Contractor’s compliance with this specification shall not be grounds for claims.

B. Construction Dust Control.

The Contractor shall comply with the provisions of the Massachusetts Department of Environmental Protection Code of Massachusetts Regulations (CMR) Regulations 310 CMR 7.09 “Dust, Odor, Construction and Demolition.”

The Contractor is responsible for control of dust at all times, 24 hours per day, 7 days per week. The Contractor shall treat soil at the site, haul roads, stockpiled materials and other areas disturbed by the operations with dust suppressors or other means to control dust. Dry power brooming will not be permitted. The Contractor shall use vacuuming, wet sweeping, regenerative air sweeping, or wet power broom sweeping. The use of sandblasting and compressed air will be permitted only with acceptable dust controls in place. Only wet cutting of concrete block, concrete and asphalt will be permitted.

Trucks and equipment leaving the site and entering public streets shall be cleaned of mud and dirt adhering to the vehicle body and wheels. Trucks and equipment arriving at and leaving the site with materials shall be loaded in a manner that will prevent the dropping of materials or debris on the streets. The contractor shall secure and cover transport equipment and loose materials to ensure that materials do not become airborne during transit. Material with high water content shall not be allowed to leak from truck cargo areas during transport over streets. Spills of materials in public areas shall be removed immediately without additional compensation.

C. Vehicle Engine Anti-Idling.

The Contractor is responsible for control of unnecessary engine idling at all times, 24 hours per day, 7 days per week.

Contractor shall perform all Work specified under this Section in compliance with the provisions of the Massachusetts DEP Code of Massachusetts Regulations (CMR) 310 CMR 7.11 “Transportation Media.”

The engines to all equipment and vehicles on or adjacent to the work site that are not being actively used in excess of five minutes shall be turned-off. Equipment and vehicles exempt from the five-minute anti-idling requirement include: cranes involved with critical lift operations, equipment and vehicles being serviced, vehicles engaged in the delivery or acceptance of equipment or material, and vehicles engaged in an operation which engine power is necessary for an associated power need.

D. Construction Noise Control.

The Contractor shall comply with the provisions of the Massachusetts DEP Code of Massachusetts Regulations (CMR) 310CMR 7.10 “Noise.”

Contractors and sub-contractors owning, leasing, or controlling equipment that is a source of sound shall not willfully, negligently, or through failure to provide necessary equipment, service, or maintenance, cause, allow, or permit excessive noise emissions.
All construction related activities which characteristically emit sound as well as construction and demolition equipment, should be fitted with and/or accommodated with equipment and/or material to suppress sound as necessary, or be operated in a manner so as to suppress sound.

II. Water Pollution Requirements.

A. General.

The Contractor shall exercise every reasonable precaution to prevent or minimize the silting of rivers, streams or water impoundments during actual construction and periods when the work may be temporarily suspended. Similar precautionary measures shall be taken with respect to temporary roads and access roads to borrow pits. This work shall also consist of temporary control measures ordered by the Engineer during the life of the Contract to control water pollution, through the use of berms, dikes, dams, sediment basins, crushed stone, gravel, mulches, grasses, waterways, and other erosion control devices or methods.

The temporary pollution control provisions contained herein shall be coordinated with the permanent erosion control features specified elsewhere in the Contract to the extent practical to assure economical, effective and continuous erosion control throughout the construction and post-construction period.

B. Schedule of Work.

At the preconstruction conference, the Contractor shall submit for acceptance and approval their procedure for the accomplishment of temporary erosion control work, and their schedule for the accomplishment of permanent erosion control work for all applicable phases of construction.

Since circumstances may require that certain pollution control work be done as promptly as possible, the Contractor’s procedure must indicate his ability with men, equipment and material to take the necessary action.

C. Borrow Pits, Haul Roads and Disposal Areas.

Prior to entering or constructing haul roads or opening any borrow pit or waste disposal area, the Contractor shall submit their work plan for erosion control of such roads, pits or disposal areas. No work shall be started until the erosion control program and methods of operation have been accepted and are approved by the Engineer.

Wherever practicable so to do, unless objection thereto is made by the borrow pit owner, the Contractor shall save sufficient good topsoil from the excavated area and use it in establishing a vegetative cover which will blend the pit area into the surrounding landscape when the work on the project is completed. Vegetative cover will be similarly established in areas where waste material is placed. (See also 150.21: Borrow Pit Restrictions).

D. Construction Requirements.

The Engineer has the authority to limit the surface area of erodible earth material exposed by clearing and grubbing or excavation, borrow and fill operations and to direct the Contractor to provide immediate permanent or temporary pollution control measures to prevent contamination of adjacent streams or other watercourses, lakes, ponds or areas of water impoundment. Such work may involve the construction of temporary berms, dikes, dams, sediment basins, waterways, and
use of temporary mulches, seeding or other control devices or methods as necessary to control erosion. All slopes shall be seeded and mulched as the earthwork proceeds to the extent considered desirable as practicable.

Where erosion is likely to be a problem, clearing and grubbing operations should be so scheduled and performed that grading operations and permanent erosion control features can follow immediately thereafter if the project conditions permit; otherwise temporary erosion control measures will be required between successive construction stages.

The Engineer will limit the area of excavation, borrow and embankment operations in progress commensurate with the Contractor’s capability in keeping the finish grading, mulching, seeding and other such permanent pollution control measures current in accordance with the accepted schedule. Should seasonal limitations make such coordination unrealistic, temporary erosion control measures shall be taken immediately to the extent feasible and justified.

If, in the judgment of the Engineer, the surface area of erodible earth material exposed has the potential for causing water pollution, the Engineer shall direct the Contractor to cease the applicable operations until satisfactory temporary or permanent erosion control measures are taken. In the event of conflict between these requirements and pollution control laws, rules or regulations of other federal or State or local agencies, the more restrictive laws, rules or regulations shall apply.

The Contractor will be required to incorporate all permanent erosion control features into the project at the earliest practicable time, as outlined in their accepted schedule. Temporary pollution control measures will be used to correct conditions that develop during construction that were not foreseen during the design stage; that are needed prior to installation of permanent pollution control features; or that are needed temporarily to control erosion that develops during normal construction practices, but are not associated with permanent control features on the project.

The Contractor shall take reasonable precaution to prevent grass and brush fires within the work site thereby eliminating further sources of erosion due to burned over areas.

E. Work in or Near Streams, Rivers and Impoundments.

The fording of streams with equipment shall be kept to a minimum. Where frequent stream crossings are contemplated and where fording might create sediment detrimental to fish, wildlife, water supplies or irrigation systems, temporary bridges or culverts shall be installed, the cost of which shall be absorbed by the Contractor.

Unless otherwise approved in writing by the Engineer, construction operations in rivers, streams and impoundments shall be restricted to those areas where channel changes are shown on the plans and to those areas which must be entered for the construction of temporary or permanent structures. Rivers, streams and impoundments shall be promptly cleared of all falsework, piling, debris, or other obstructions placed therein or caused by the construction operations.

Excavation from the roadway, channel changes, cofferdams, etc., shall not be deposited in or so near to rivers, streams, or impoundments that it will be washed away by high water or runoff.
When the Contractor uses water from natural sources for any of their operations, intake methods shall be such as to avoid contaminating the source of supply and maintain adequate downstream flow when the source is a stream.

Pollutants such as chemicals, fuels, lubricants, bitumens, raw sewage and other harmful waste shall not be discharged into or alongside of rivers, streams, impoundments or into natural or man-made channels leading thereto.

The Contractor shall provide and maintain in a neat sanitary condition such accommodations for use of their employees as may be necessary to comply with the requirements of the Department of Public Health, local health officials or other authorities having jurisdiction.

Subsection 7.03: Permits and Licenses

The Contractor shall procure all required permits and licenses, pay all charges, fees and taxes and shall give all notices necessary and incidental to the due and lawful prosecution of the work. The cost thereof shall be included in the prices bid for the various items listed in the Proposal. Copies of all required permits and licenses shall be filed with the Engineer prior to the beginning of work.

The Contractor's attention is directed to the provisions of General Laws, Chapter 90, Section 9 as amended, in which it is provided that earth-moving motor vehicles which exceed certain dimensions or weight limits as specified in said Act, and which are used exclusively for building, repair and maintenance of highways, may be operated without registration for a distance not exceeding 300 yd on any way adjacent to any highway or toll road being constructed, relocated or improved provided a permit, authorizing such use, to be issued by the Commissioner of Public Works or by the Board or officer having charge of such way, has been procured by the Contractor.

Subsection 7.04: Motor Vehicles

All motor vehicles (except vehicles used solely for transporting employees to and from the project) and trailers used wholly or in part within the Commonwealth by the Contractor or any Subcontractor, or by any person directly or indirectly employed by them in the execution of the Contract, shall be registered in the Commonwealth of Massachusetts and bear Massachusetts registration plates except as stipulated in Subsection 7.03: Permits and Licenses.

Motor vehicles used solely for transporting employee(s) to and from the project shall be registered as required under General Laws, Chapter 90, Section 3, as amended.

No vehicle shall be driven on any way, as defined in Section I of Chapter 90 of the General Laws, unless such vehicle is constructed or loaded so as to prevent any of its load from dropping, sifting, leaking, or otherwise escaping therefrom, except that sand may be dropped for the purpose of securing traction or water or other substance may be sprinkled on such a way in cleaning or maintaining the same. (General Laws, Chapter 85, Section 30, as amended.)

Subsection 7.05: Insurance Requirements

A. Workmen's Compensation Insurance.

The Contractor, before commencing performance of the work required to be done under the Contract, shall provide for the payment of the compensation provided by Massachusetts General
Laws, Chapter 152, as amended, to all persons to be employed by them in connection with the said performance, and they shall continue in full force and effect throughout the period required for the completion of the improvement such insurance as may be required under said chapter. The persons for whom compensation is to be provided by such insurance shall include those reserve or special police officers employed by the Contractor for the purpose of directing or maintaining traffic or other similar purposes within the site of the improvement and paid directly by them for such services; they shall not include, however, any regular police officers employed for said purpose.

Failure to provide and continue in force such insurance as aforesaid shall be deemed a material breach of the Contract and shall operate as an immediate termination thereof.

Such insurance shall not be canceled or otherwise terminated until ten days after written notice of cancellation or termination is given by the party proposing cancellation to the other party or until notice has been received that the employer has secured insurance from another insurance company or has otherwise insured the payment of compensation provided for by M.G.L. Chapter 152 as amended. Notice of cancellation sent to the party proposing cancellation by registered mail, postage prepaid, with a return receipt of the addressee requested, shall be sufficient notice. An affidavit of any officer, agent or employee of the insurer or of the insured, as the case may be, duly authorized for the purpose, that they have so sent such notice addressed as aforesaid, shall be prima facie evidence of the sending thereof as aforesaid. This section shall apply to the legal representatives, trustee in bankruptcy, receiver, assignee, trustee and the successor in interest of any such Contractor.

The aforesaid insurance except that required for traffic officers, shall be taken out and maintained with no compensation therefor other than that provided by the contract unit prices.

B. Public Liability Insurance.

The Contractor shall take out and maintain insurance of the following kinds and amounts in addition to any other kinds or bonds required under other provisions of the Contract, with no compensation therefor other than that provided by the contract unit prices.

1. **Contractor’s Public Liability and Property Damage Liability Insurance.**

 The Contractor shall furnish evidence to the Department that, with respect to the operations the Contractor performs, the Contractor carries regular Contractors’ Public Liability Insurance providing for a limit of not less than $1,000,000 for all damages arising out of bodily injuries to or death of one person, and subject to that limit for each person, a total limit of $2,000,000 for all damages arising out of bodily injuries to or death of two or more persons in any one accident, and regular Contractor’s Property Damage Liability Insurance providing for a limit of not less than $1,000,000 for all damages arising out of injury to or destruction of property in any one accident, and subject to that limit per accident, a total or aggregate limit of $2,000,000 for all damages arising out of injury to or destruction of property during the policy period.

2. **Contractor’s Protective Public Liability and Property Damage Liability Insurance.**

 The Contractor shall furnish evidence to the Department that, with respect to the operations performed for them by Subcontractors, the Contractor carries on their own behalf regular Contractor’s Protective Public Liability Insurance providing for a limit of not less than $1,000,000 for all damages arising out of bodily injuries to or death of one person, and subject to that limit for
each person, a total limit of $2,000,000 for all damages arising out of bodily injuries to or death of two or more persons in any one accident, and regular Contractor’s Protective Property Damage Liability Insurance providing for a limit of not less than $1,000,000 for all damages arising out of injury to or destruction of property in any one accident and, subject to that limit per accident a total or aggregate limit of $2,000,000 for all damages arising out of injury or destruction of property during the policy period.

In addition to the above, the Contractor shall furnish evidence to the Department that, with respect to the operation the Contractor or any of their Subcontractors perform, the Contractor has provided for and on behalf of the Railroad Company affected by this Contract Regular Protective Liability Insurance providing for a limit of not less than the amount named in the Special Provisions for all damages arising out of bodily injuries to or death of one person, and subject to that limit for each person, a total limit of the amount named in the Special Provisions for all damages arising out of bodily injuries to or death of two or more persons in any one accident, and Regular Protective Property Damage Liability Insurance for a limit of not less than the amount named in the Special Provisions for all damages arising out of injury to or destruction of property in any one accident and, subject to that limit per accident, a total or aggregate limit of the amount named in the Special Provisions for all damages arising out of injury to or destruction of property during the policy period.

In addition to the above, when items for asbestos testing or removal are contained in the bid items for the project, the Contractor shall furnish evidence to the Department that, with respect to the work the Contractor or any of their Subcontractors perform, the Contractor carries on behalf of itself Asbestos Liability Insurance providing for a limit of not less than $1,000,000 for all damages arising out of bodily injuries to or death of one person, and subject to that limit for each person, a total or aggregate limit of $2,000,000 for all damages arising out of bodily injuries to or death of two or more persons in any one asbestos related incident.

C. General.

1. The insurance requirements hereinbefore stipulated shall cover all damage to property whether above or below the ground, shall apply to the entire project, except that such insurance as may be required for the protection of a railroad shall apply only to that portion of the project which is in the immediate vicinity of the railroad property.

2. All insurance policies shall contain suitable stipulations providing for blasting operations if and when required.

3. If any part of the work is sublet, similar insurance to that required of the Contractor shall be provided by or in behalf of the Subcontractors to cover their operations, in accordance with the hereinbefore provisions of “A. Compensation Insurance,” and “B.1, Contractor’s Public Liability and Property Damage Liability Insurance,” with the same minimum limits as required of the Contractor, or such lower minimum limits as the Engineer may approve.

4. All insurance required of the Contractor shall be carried until all work required to be performed under the terms of the Contract or Subcontracts has been satisfactorily completed. In the case of the Contractor, this shall be evidenced by the written acceptance of the physical work by the Chief Engineer.
5. Before the commencement of the performance of the Contract or of any Subcontract the Contractor shall furnish the Department two complete copies of the policies they have provided for and in behalf of the Railroad and they shall file with the Department suitable insurer's certifications showing, for each policy of all required insurance, the following: the name and address of the insurer and of the insured, the policy period, the details of coverage including limits of liability, the rates and cost of such insurance, and a statement that each policy is endorsed to provide that the insurance company shall notify all insured parties and the Department by registered mail at least 30 days in advance of termination or any change in the policy.

6. Insurers shall be licensed and registered in accordance with Massachusetts General Laws. Policies shall indemnify against loss with no deductible amount. Policies shall not contain any provision for Contractor self-insurance.

Subsection 7.06: Patented Devices, Materials and Processes.

It is mutually understood and agreed that, without exception, contract prices are to include all royalties and costs arising from patents, trademarks and copyrights in any way involved in the work. It is the intent that whenever the contractor is required or desires to use any design, device, material or process covered by letters patent or copyright, the right for such use shall be provided for by suitable legal agreement with the patentee or owners. A copy of this agreement shall be filed with the Engineer; however, whether or not such agreement is made or filed as noted, the contractor and the surety in all cases shall indemnify and save harmless the Department from any and all claims for infringement by reason of the use of any such patented design, device, material or process to be involved under the contract. The Contractor and the surety shall indemnify the Department for any cost, expenses and damages which it may be obliged to pay, by reason of any such infringement, at any time during the prosecution or after the completion of the work.

Subsection 7.07: Restoration of Surfaces Opened by Permit

The Contractor shall not allow any party to make an opening in the highway for any purpose except upon the direction of the Engineer and the presentation of a duly authorized permit. The holder of such a permit shall be considered in the same class as a Contractor on an adjacent project, and the provisions of Subsection 5.05: Cooperation by Contractor and Subsection 5.06: Adjacent Contracts shall apply.

Subsection 7.08: Federal Participation (Applicable only to Contracts where the cost of any portion thereof is paid out of Federal Funds).

Attention is directed to the provisions of the Federal Highway Act of November 9, 1921 (42 U.S. Statutes at large, page 212) as modified and as extended, and 72 U.S. Statutes at large 885, U.S. Code Title 23, and any other provisions of law, or amendments thereto, whereby such Federal Participation is authorized, and any regulations properly and lawfully promulgated thereunder, under which the United States shall aid the individual states in the construction of highways. When the United States Government is to pay any portion of the cost of the project the above act of Congress provides that the construction work and labor in each State shall be done in accordance with the laws of that state and applicable Federal Laws. The work embraced in this Contract will therefore be subject to such inspection by the Federal Highway Administration as may be necessary to meet the above requirements. Such inspection shall however, in no sense make the United States
Government a party to this Contract, and will in no way interfere with the rights of either party hereunder.

Subsection 7.09: Public Safety and Convenience

The Contractor shall at all times, until written acceptance of the physical work by the Chief Engineer, be responsible for the protection of the work and shall take all precautions for preventing injuries to persons or damage to property on or about the project. If the Contractor constructs temporary bridges or provides temporary crossings of streams, their responsibility for accidents shall include the roadway and sidewalk approaches as well as the structures of such crossings.

Where the Contract involves dredging, excavation or other construction work in navigable waters, the work shall be so conducted as to cause no unnecessary obstruction to the free passage of vessels.

The decision for routing traffic through or around the work and provisions for the control of same will be made by the Engineer. Whenever it is deemed advisable, special detours will be provided for truck or bus traffic. On major projects and projects in urban areas traffic patterns and schedules will be studied in the design stage and included in the Special Provisions.

Subject to the approval of the Engineer, the Contractor shall schedule the temporary or permanent closing of highways to travel only after consultation with the Police Chief and Fire Chief of the municipality or municipalities concerned. The temporary closing of highways shall be kept to a minimum.

The Contractor shall provide to the Engineer and to the police and fire departments of each affected municipality a contact list of contractor personnel who can be notified in the event of an emergency. The list shall have the names and telephone numbers of personnel available 24 hours a day, 7 days a week for the duration of the field work. The list shall be kept current, and shall include secondary contacts as needed to ensure that an authorized person is available at all times to mobilize crews as required to respond to emergencies. If contacted directly by emergency response personnel, the Contractor shall immediately notify the Engineer.

When a road or portion thereof is under construction and is closed to through traffic and when detours around the work are provided on existing city or town ways, the Contractor shall maintain such city or town ways as required in Subsection 4.07: Maintenance of Detours and be compensated as specified in Subsection 4.07: Maintenance of Detours.

The safety and convenience of the travelling public takes precedence over the convenience of the Contractor.

Where the construction impacts the traveled way, traffic flow shall be maintained in accordance with the approved traffic management plan.

At any time during operations when a traffic delay occurs resulting in conditions which, as determined by the Engineer, significantly impede traffic or create a hazard to public safety, the Engineer will suspend the work and order the roadway opened to full available capacity. The Contractor shall immediately cease operations affecting traffic and provide a safe travel way.
No additional compensation will be paid for suspending the work. The sole allowance for any such suspension is an extension of time as provided by Subsection 8.10: Determination and Extension of Contract Time for Completion (Time Extensions).

If significant, unexpected traffic delays are recurring, the Contractor may be required to modify the work hours and the traffic management plan.

When grading operations are in progress, each level of excavation or fill shall be graded as near as practicable to an even surface so as to provide a satisfactory passageway for the use of traffic.

The Contractor shall maintain all temporary roadways in a manner which will provide reasonably safe and convenient travel. When temporary roadways outside the project limits are abandoned, the surfaces shall be removed and all fill graded to a smooth, neat, natural appearance, free from water pockets and as directed by the Engineer.

Abandoned temporary or existing roads beyond the limits of the main roadway slopes, but within the project limits, shall be excavated, graded, loamed and seeded as directed to present a neat, natural appearance and provide for proper drainage. Compensation for this work will be included under the respective items of work involved.

Snow removal on detours or present traveled ways will not be required of the Contractor.

The Contractor, as directed, shall at all times so conduct the work that the abutters shall have reasonable access to their property. When public or private property is isolated by the closure of a road, the Contractor shall be responsible for providing such reasonably safe means of access to a public way as the Engineer deems essential and the Contractor shall be compensated for all such work directed by the Engineer at the contract unit prices for the type of work and materials involved. When it is necessary to leave materials and equipment upon the highway they shall be placed so as to cause the least possible obstruction to drainage, pedestrians and other travel.

When the work in any way affects the operation, management, maintenance, business or traffic on any railroad, such work shall be carried on in a manner satisfactory to the said railroad; but all orders, directions or instructions to the Contractor relative to work under the Contract will be issued only by the Engineer of the Department. The Contractor shall use all possible vigilance in order effectively to guard against all accidents or damages on the railroad due to their work, and the Contractor shall at all times during the progress of the work so manage and execute the same as to cause the least possible interference with the operation, management, business or traffic of the railroad.

Work is restricted to a normal 8-hour day, 5-day week, with the Prime Contractor and all Subcontractors working on the same shift. No work shall be done on Saturdays, Sundays, holidays, or the day before or after a holiday without prior approval of the Engineer.

Trenches shall not be opened in traveled ways until all materials and equipment required for the work are at the site and available for immediate use. When work is not in progress trenches in areas subject to public travel shall be covered with steel plates capable of safely sustaining an HS20 Loading with 33% impact. The work at each trench shall be practically continuous, with the placing of conduit and piping, backfilling and patching of the surface closely following each preceding operation.
At the end of each working day where trenches in areas of public travel are covered with steel plates, each edge of such plates shall either be beveled or protected by a ramp with a slope of 2 ft horizontally to 1 in. vertically. Temporary patching material for the ramps shall meet the requirements of Section 472 Hot Mix Asphalt for Miscellaneous Work. The cost of necessary patching materials, and their maintenance and removal, will be considered incidental to the item involved, with no separate payment.

Pending installation of castings, all structures in travel ways or deemed hazardous by the Engineer shall be protected with suitable covers (steel plates or equal) capable of withstanding a 36.5-ton truckload with impact. The cost of covers or plates will be considered incidental to the item involved with no separate payment.

Subsection 7.10: Barricades and Warning Signs

The Department may furnish, erect and maintain regulatory, warning and guide signs, traffic control signals, markings, safety lighting and any other traffic devices as it deems necessary for the safe flow of traffic during construction.

Highways wholly or partly closed to traffic shall be protected by suitable barricades, barrier fences, traffic signs and other traffic devices, furnished and erected by the Contractor at locations shown on the plans, or as directed, and the Contractor shall be compensated therefor in accordance with the contract unit prices for the items of work involved.

The Contractor shall, at their own expense, provide and erect, acceptable or as directed, barricades, barrier fences, traffic signs, and all other traffic devices, not covered in their Contract as a payment item, to protect the work from traffic, pedestrians, or animals. The Contractor shall at its own expense provide sufficient temporary lighting such as flares, lanterns, or other approved illuminated traffic signs and devices, not covered in their Contract as a payment item, to afford adequate protection to the travelling public. The Contractor shall also at their own expense furnish a sufficient number of watchmen at all times to protect the work.

All barricades, barrier fences, traffic signs and other traffic devices must conform with the Department's Manual on Uniform Traffic Control Devices.

The Contractor shall be held responsible for all damage to the work due to any failure of barricades, barriers, warning signs or lights to properly protect the work from traffic, pedestrians or other causes.

Subsection 7.11: Traffic Officers and Railroad Flagging Service

The Contractor shall provide such police officers as the Engineer deems necessary for the direction and control of traffic within the site. Such officers shall wear regulation policemen's uniforms and reflectorized safety vests meeting the requirements of ANSI 107, Class 3. They may be reserve, special, or regular officers not subject to the control of the Contractor.

Compensation for the services of said police officers will be paid by the Contractor to their employers, subject to all rules and regulations, ordinances, or by-laws in effect in the city or town in which the work is being performed. The Department shall pay the same hourly rate as the municipality in which they are working pays its police for similar work on the municipality's projects as set by the municipality's collective bargaining agreement. The Department shall not pay
any administrative charges charged by the municipality in association with the police costs. The Department will pay the Contractor for all police officers approved by the Department. Within two weeks from the issuance of payment by the Department for police costs, the Contractor shall submit proof that payment has been made to the police department. Failure of the Contractor to provide proof of payment within the two-week period will result in the following: (a) the removal of the prior payment from the subsequent estimate; and (b) all future payments will be made on a reimbursement basis, based upon the receipt of a cancelled check.

If any of the work required to be done by the Contractor may obstruct the tracks of a railroad or in any way endanger the operation of its trains, and the services of a flagger or flaggers or other railroad employees are required by the Chief Engineer of the railroad company and personnel are assigned by that Chief Engineer for the protection of the property and traffic of the Railroad against hazards, the cost of all such flagging services will be paid by the Contractor to their employers, subject to the rules and regulations of the railroad company. The Department will only pay the Contractor for the costs of flaggers in the same manner as described above for police officers. The Department shall not pay any administrative charges associated with the costs of flaggers charged by the railroad nor shall the Department pay charges for debit accounts if such accounts are required by the railroad.

Subsection 7.12: Use of Explosives

When the use of explosives is necessary for the prosecution of the work, the Contractor shall exercise the utmost care not to endanger life and property including new work and whenever directed, the number and size of the charges shall be reduced. The Contractor shall be responsible for all damage resulting from the use of explosives. All explosives shall be stored in a secure manner in conformance with all the State laws and regulations, as well as any local requirements; and all such storage places shall be marked “Dangerous – Explosives.”

The Contractor shall be required to conform to the regulations of the Massachusetts Department of Public Safety concerning storage, handling and use of explosives.

Prior to start of the blasting, the Contractor shall give at least a 24-hour notice and a schedule of their operations thereof to the operating official, company, or companies, leasing, owning or responsible for pipes, conduits, poles, wires, railroad tracks, or any other public or private utility which may be endangered by the blasting in order that a representative of said owner or lessee may be present at the site. The Contractor shall take proper precaution to prevent injury to said properties during all blasting operations.

Subsection 7.13: Protection and Restoration of Property

The Contractor shall, at their own expense, preserve and protect from injury all property either public or private along and adjacent to the proposed work, and they shall be responsible for and repair at their own expense any and all damage and injury thereto, arising out of or in consequence of any act of omission, neglect or misconduct in the execution of the work, or in consequence of the non-execution thereof by the Contractor or their employees or Subcontractors in the performance of the work covered by the Contract prior to completion and acceptance thereof. The Contractor shall exercise special care during their operations to avoid injury to underground structures such as water or gas mains, pipes, conduits, manholes, catch basins, etc.
The Contractor shall maintain all drainage systems in the project areas to provide continual drainage of the travelways and construction area. All pipes and structures installed as part of this Contract shall be left in a clean and operable condition at the completion of the work.

Written notice shall be given by the Contractor to all public service corporations or officials owning or having charge of public or private utilities of their intention to commence operations affecting such utilities at least 48 hours (exclusive of Saturdays, Sundays and legal holidays) in advance of the start of such operations in accordance with Chapter 82, Section 40 of the General Laws, as amended, and the Contractor shall at the same time file a copy of said notice with the Engineer.

Although the plans may indicate the approximate location of existing subsurface utilities in the vicinity of the work, the accuracy and completeness of the information is not guaranteed by the Department. The Contractor shall notify Massachusetts DIG SAFE and procure a Dig Safe Number for each location prior to disturbing existing ground in any way. Contact the Dig Safe Call Center by dialing 811 or 1-888-344-7233 or online at www.digsafe.com. The Contractor shall make an investigation in order to assure that no damage to existing structures, drainage lines, traffic signal conduits, etcetera, will occur. Live services shall not be interrupted until new services have been provided. All abandoned services shall be plugged or otherwise made secure.

The Contractor shall receive no extra compensation for such work unless said compensation is authorized in writing by the Engineer, as specified under Subsection 4.03: Extra Work for Extra Work, (except test pits as directed to be made in order to locate existing underground structures).

If the Contractor wishes to have any utilities temporarily relocated for their convenience other than contemplated by the Department, they shall make the necessary arrangement with the owners and make reimbursement for the cost thereof at their own expense.

Land monuments and property marks shall be carefully protected and if necessary to remove the same, the Contractor shall do so only at the Engineer’s direction and after an authorized agent has witnessed or otherwise referenced their location. The Contractor shall not injure or remove trees or shrubs without proper authority. Insofar as possible the Contractor shall confine their movements and operations to the area within the limits of the location and the area outside the scope of the work shall not be disturbed except as directed.

The Contractor’s attention is directed to Chapter 231 of the Acts of 1977 which stipulates that, surveyors of highways, road commissioners, or any other person; agency, or authority responsible for road or highway repairs shall notify the Massachusetts Bay Transportation Authority not later than forty-eight hours prior to the repair, construction or reconstruction of any road or highway used by said Authority in the operation of regular route service if such repairs, construction or reconstruction shall prohibit the operation of regular route service by the Authority over such road or highway.

The Contractor shall adhere to all requirements established by Occupational Safety and Health Administration and take all necessary precautions for the protection of personnel and equipment. The bidders attention is directed to the Code of Federal Regulations Part 1926 - Safety and Health Regulations for Construction, Subpart CC, 1926.1408 Power line safety (up to 350 kV)--equipment operations which establishes the minimum clearance between the lines and any part of the crane or load. If the voltage is unknown the minimum clearance is 20 ft. If the line is known to be rated 50 KV or below the minimum clearance is 10 ft. For higher voltages consult the above referenced...
subsection. For protection of personnel and equipment, the Contractor should be aware of this regulation especially during paving operations using dump trucks.

Subsection 7.14: Responsibility for Damage Claims

The Contractor shall indemnify, defend, and save harmless the Commonwealth, the Department, the Municipality, and all of its offices, agents, and employees from and against all claims, damages, losses, and expenses, including attorney's fees, for or on account of any injuries to persons or damages to property arising out of or in consequence of the acts of the Contractor in the performance of the work covered under the contract or failure to comply with the terms and conditions of said contract, and is caused in whole or in part by any negligent act or omission of the Contractor, any subcontractor, anyone indirectly employed by any of them or anyone for whose acts any of them may be liable, regardless of whether or not it is caused in part by a party indemnified hereunder.

The Contractor will be held responsible for any and all claims for damage to underground structures such as, but not restricted to, water or gas mains, pipes, conduits, manholes or catch basins, due to their operation or to the operations of any of their Subcontractors.

The Contractor's attention is directed to the provisions of General Laws, Chapter 30, Section 39H as amended. In accordance therewith, the Commonwealth agrees to indemnify the Contractor against loss by reason of the liability to pay damages to others for entry upon any land included within the boundaries of the area within which the work is to be performed as set forth in the construction Contract and the plans and specifications applying to such Contract or any approved changes thereof or for damage sustained upon any lands adjoining said land by reason of the flowage or drainage of water thereto or therefrom. In any case wherein such damages result from the failure of the Commonwealth to take an interest or easement in such adjoining area, provided that the Commonwealth acting by an authorized representative thereof has issued a notice in writing to the Contractor prior to the making of an entry upon such premises directing or permitting them to proceed with their Contract and to make such entry upon the premises for the purpose of performing the work required by said Contract, or any approved alteration thereof, and provided, further, that the Contractor has given notice in writing to the contracting authority within 15 days after receiving notice of any claim to come in and settle the same and upon the commencement of any action against them to come in and defend said action, but in no event shall any such damage claim be compromised or adjusted without the written consent of the Commonwealth. The provisions of this section shall in no way relieve the Contractor from any liability for damage to property of others caused by their negligence or that of their employees nor shall they be construed to require the Commonwealth to indemnify the Contractor against any loss resulting from such acts of negligence.

Subsection 7.15: Claims Against Contractors for Payment of Labor, Materials and Other Purposes

The Contractor shall pay all bills for labor, materials, rental of equipment and for such other purposes as are more specially set forth in Chapter 149, Section 29 and Chapter 30, Section 39A, General Laws, and all amendments thereto. It is understood that the Payment Bond required by Subsection 3.04, Paragraph B, is the sole security for petitions brought pursuant to said sections. The Contractor and Party of the First Part shall also comply with the provisions of Chapter 30, Section 39F and G.
Chapter 149, Section 29, of the General Laws as amended reads as follows: Officers or agents contracting in behalf of the Commonwealth or in behalf of any county, city, town, district or other political subdivision of the Commonwealth or other public instrumentality for the construction, reconstruction, alteration, remodeling, repair or demolition of public buildings or other public works when the amount of the Contract in the case of the Commonwealth is more than five thousand dollars, and in any other case is more than two thousand dollars, shall obtain security by bond in an amount not less than one half of the total contract price, for payment by the Contractor and Subcontractors for labor performed or furnished and materials used or employed therein, including lumber so employed which is not incorporated therein and is not wholly or necessarily consumed or made so worthless as to lose its identity, but only to the extent of its purchase price less its fair salvage value, and including also any material specially fabricated at the order of the Contractor or Subcontractor for use as a component part of said public building or other public work so as to be unsuitable for use elsewhere, even though such material has not been delivered and incorporated into the public building or public work, but only to the extent of its purchase price less its fair salvage value and only to the extent that such specially fabricated material is in conformity with the Contract, plans and specifications or any changes therein duly made; for payment of transportation charges for materials used or employed therein which are consigned to the Contractor or to a Subcontractor who has a direct contractual relationship with the Contractor; for payment by such Contractor and Subcontractors of any sums due for the rental or hire of vehicles, steam shovels, rollers propelled by steam or other power, concrete mixers, tools and other appliances and equipment employed in such construction, reconstruction, alteration, remodeling, repair or demolition; for payment of transportation charges directly related to such rental or hire; and for payment by such Contractor and Subcontractors of any sums due trustees or other persons authorized to collect such payments from the Contractor or Subcontractors, based upon the labor performed or furnished as aforesaid, for health and welfare plans, supplementary unemployment benefit plans and other fringe benefits which are payable in cash and provided for in collective bargaining agreements between organized labor and the Contractor or Subcontractors; provided, that any such trustees or other persons authorized to collect such payments for health and welfare plans, supplementary unemployment benefit plans and other fringe benefits shall, subject to the following provisions, be entitled to the benefit of the security only in an amount based upon labor performed or furnished as aforesaid for a maximum of two hundred and forty consecutive calendar days.

In order to obtain the benefit of such bond for any amount claimed, due and unpaid at any time, any claimant having a contractual relationship with the Contractor principal furnishing the bond, who has not been paid in full or any amount claimed due for the labor, materials, equipment, appliances or transportation included in the paragraph (1) coverage within sixty-five days after the due date for same, shall have the right to enforce any such claim (a) by filing a petition in equity within one year after the day on which such claimant last performed the labor or furnished the labor, materials, equipment, appliances or transportation included in the claim and (b) by prosecuting the claim thereafter by trial in the superior court to final adjudication and execution for the sums justly due the claimant as provided in this section.

Any claimant having a contractual relationship with a Subcontractor performing labor or both performing labor and furnishing materials pursuant to a Contract with the general Contractor but no contractual relationship with the Contractor principal furnishing the bond shall have the right to enforce any such claim as provided in subparagraphs (a) and (b) of paragraph (2) only if such
claimant gives written notice to the Contractor principal within sixty-five days after the day on which the claimant last performed the labor or furnished the labor, materials, equipment, appliances or transportation included in the paragraphs (1) coverage, stating with substantial accuracy the amount claimed, the name of the party for whom such labor was performed or such labor, materials, equipment, appliances or transportation were furnished; provided, that any such claimant shall have the right to enforce any part of a claim covering specially fabricated material included in the paragraph (1) coverage only if such claimant has given the Contractor principal written notice of the placement of the order and the amount thereof not later than twenty days after receiving the final approval in writing for the use of the material. The notices provided for in this paragraph (3) shall be served by mailing the same by registered or certified mail postage prepaid in an envelope addressed to the Contractor principal at any place at which the Contractor principal maintains an office or conducts their business, or at the Contractor principal's residence, or in any manner in which civil process may be served.

Upon motion of any party, the court shall advance for speedy trial a petition to enforce a claim pursuant to this section. Sections fifty-nine and fifty-nine B of Chapter two hundred thirty-one shall apply to petitions to enforce claims pursuant to this section. The court shall enter an interlocutory decree upon which execution shall issue for any part of a claim found due pursuant to said Sections fifty-nine or fifty-nine B and shall, upon motion of any party, advance for speedy trial the petition to enforce the remainder of the claim. Any party aggrieved by such interlocutory decree shall have the right to appeal therefrom as from a final decree. The court shall not consolidate for trial the petition of any claimant under this section with the petition of one or more other claimants on the same bond, unless the court finds that a substantial portion of the evidence of the same events during the course of construction (other than the fact that the claims sought to be consolidated arise under the same general Contract) is applicable to the petitions sought to be consolidated, and that such consolidation will prevent unnecessary duplication of evidence.

The court shall not dismiss any petition on the ground that it was filed before the sixty-fifth day after the day the claimant last performed the labor or furnished the labor, materials, equipment, appliances or transportation included in the claim, nor shall the court dismiss any petition on the ground that a claim involves more than one Contract with the same party and that the one year period has elapsed as to any one Contract; provided, that the court shall not enter a decree upon any claim or part thereof prior to the seventieth day after the day the claimant last performed the labor or furnished the labor, materials, equipment, appliances or transportation included in the claim.

A decree in favor of any claimant under this section shall include reasonable legal fees based upon the time spent and the results accomplished as approved by the court and such legal fees shall not in any event be less than published rate of any recommended fee schedule of a state-wide bar association or of a bar association in which the office of counsel for claimant is located, whichever is higher.

Any person employing persons on any public works hereinbefore referred to shall post conspicuously, at such place or places as will provide reasonable opportunity for all employees to read the same, a correct copy of this section. The Department shall enforce this paragraph. (Refers to the Department of Labor and Industries).
In conformity with the requirements of Chapter 30, Section 39F of the General Laws, as amended, the following is quoted from Chapter 30, Section 39F.

“(1) Every contract awarded pursuant to sections forty-four A to L, inclusive, of chapter one hundred and forty-nine shall contain the following subparagraphs (a) through (z) and every contract awarded pursuant to section thirty-nine M of chapter thirty shall contain the following subparagraphs (a) through (h) and in each case those subparagraphs shall be binding between the general contractor and each subcontractor.

“(a) Forthwith after the general contractor receives payment on account of a periodic estimate, the general contractor shall pay to each subcontractor the amount paid for the labor performed and the materials furnished by that subcontractor, less any amount specified in any court proceedings barring such payment and also less any amount claimed due from the subcontractor by the general contractor.

“(b) Not later than the sixty-fifth day after each subcontractor substantially completes his work in accordance with the plans and specifications, the entire balance due under the subcontract less amounts retained by the awarding authority as the estimated cost of completing the incomplete and unsatisfactory items of work, shall be due the subcontractor; and the awarding authority shall pay that amount to the general contractor. The general contractor shall forthwith pay to the subcontractor the full amount received from the awarding authority less any amount specified in any court proceedings barring such payment and also less any amount claimed due from the subcontractor by the general contractor.

“(c) Each payment made by the awarding authority to the general contractor pursuant to subparagraphs (a) and (b) of this paragraph for the labor performed and the materials furnished by a subcontractor shall be made to the general contractor for the account of that subcontractor; and the awarding authority shall take reasonable steps to compel the general contractor to make each such payment to each such subcontractor. If the awarding authority has received a demand for direct payment from a subcontractor for any amount which has already been included in a payment to the general contractor or which is to be included in a payment to the general contractor for payment to the subcontractor as provided in subparagraphs (a) and (b), the awarding authority shall act upon the demand as provided in this section.

“(d) If, within seventy days after the subcontractor has substantially completed the subcontract work, the subcontractor has not received from the general contractor the balance due under the subcontract including any amount due for extra labor and materials furnished to the general contractor, less any amount retained by the awarding authority as the estimated cost of completing the incomplete and unsatisfactory items of work, the subcontractor may demand direct payment of that balance from the awarding authority. The demand shall be by a sworn statement delivered to or sent by certified mail to the awarding authority, and a copy shall be delivered to or sent by certified mail to the general contractor at the same time. The demand shall contain a detailed breakdown of the balance due under the subcontract and also a statement of the status of completion of the subcontract work. Any demand made after substantial completion of the subcontract work shall be valid even if delivered or mailed prior to the seventieth day after the subcontractor
has substantially completed the subcontract work. Within ten days after the subcontractor has delivered or so mailed the demand to the awarding authority and delivered or so mailed a copy to the general contractor, the general contractor may reply to the demand. The reply shall be by a sworn statement delivered to or sent by certified mail to the awarding authority and a copy shall be delivered to or sent by certified mail to the subcontractor at the same time. The reply shall contain a detailed breakdown of the balance due under the subcontract including any amount due for extra labor and materials furnished to the general contractor and of the amount due for each claim made by the general contractor against the subcontractor.

“(e) Within fifteen days after receipt of the demand by the awarding authority, but in no event prior to the seventieth day after substantial completion of the subcontract work, the awarding authority shall make direct payment to the subcontractor of the balance due under the subcontract including any amount due for extra labor and materials furnished to the general contractor, less any amount (i) retained by the awarding authority as the estimated cost of completing the incomplete or unsatisfactory items of work, (ii) specified in any court proceedings barring such payment, or (iii) disputed by the general contractor in the sworn reply; provided that the awarding authority shall not deduct from a direct payment any amount as provided in part (iii) if the reply is not sworn to, or for which the sworn reply does not contain the detailed breakdown required by subparagraph (d). The awarding authority shall make further direct payments to the subcontractor forthwith after the removal of the basis for deductions from direct payments made as provided in parts (i) and (ii) of this subparagraph.

“(f) The awarding authority shall forthwith deposit the amount deducted from a direct payment as provided in part (iii) of subparagraph (e) in an interest-bearing joint account in the names of the general contractor and the subcontractor in a bank in Massachusetts selected by the awarding authority or agreed upon by the general contractor and the subcontractor and shall notify the general contractor and the subcontractor of the date of the deposit and the bank receiving the deposit. The bank shall pay the amount in the account including accrued interest, as provided in an agreement between the general contractor and the subcontractor or as determined by decree of a court of competent jurisdiction.

“(g) All direct payments and all deductions from demands for direct payments deposited in an interest bearing account or accounts in a bank pursuant to subparagraph (f) shall be made out of amounts payable to the general contractor at the time of receipt of a demand for direct payment from a subcontractor and out of amounts which later become payable to the general contractor and in the order of receipt of such demands from subcontractors. All direct payments shall discharge the obligation of the awarding authority to the general contractor to the extent of such payment.

“(h) The awarding authority shall deduct from payments to a general contractor amounts which together with the deposits in interest-bearing accounts pursuant to subparagraph (f) are sufficient to satisfy all unpaid balances of demands for direct payment received from subcontractors. All such amounts shall be earmarked for such direct payments, and the subcontractors shall have a right in such deductions prior to any claims against such amounts by creditors of the general contractor.
“(i) If the subcontractor does not receive payment as provided in subparagraph (a) or if the general contractor does not submit a periodic estimate for the value of the labor or materials performed or furnished by the subcontractor and the subcontractor does not receive payment for same when due less the deductions provided for in subparagraph (a), the subcontractor may demand direct payment by following the procedure in subparagraph (d) and the general contractor may file a sworn reply as provided in that same subparagraph. A demand made after the first day of the month following that for which the subcontractor performed or furnished the labor and materials for which the subcontractor seeks payment shall be valid even if delivered or mailed prior to the time payment was due on a periodic estimate from the general contractor. Thereafter the awarding authority shall proceed as provided in subparagraph (e), (f), (g), and (h).”

Chapter 30, Section 39G, of the General Laws, as amended, reads as follows:

“Upon substantial completion of the work required by a contract with the Commonwealth, or any agency or political subdivision thereof, for the construction, reconstruction, alteration, remodeling, repair or improvement of public ways, including bridges and other highway structures, sewers and water mains, airports and other public works, the contractor shall present in writing to the awarding authority its certification that the work has been substantially completed. Within twenty-one days thereafter, the awarding authority shall present to the contractor either a written declaration that the work has been substantially completed or an itemized list of incomplete or unsatisfactory work items required by the contract sufficient to demonstrate that the work has not been substantially completed. The awarding authority may include with such list a notice setting forth a reasonable time, which shall not in any event be prior to the contract completion date, within which the contractor must achieve substantial completion of the work. In the event that the awarding authority fails to respond, by presentation of a written declaration or itemized list as aforesaid, to the contractor’s certification within the twenty-one day period, the contractor’s certification shall take effect as the awarding authority’s declaration that the work has been substantially completed.

“Within sixty-five days after the effective date of a declaration of a substantial completion, the awarding authority shall prepare and forthwith send to the contractor for acceptance a substantial completion estimate for the quantity and price of the work done and all but one percent retainage on that work, including the quantity, price and all but 10% retainage for the undisputed part of each work item and extra work item in dispute but excluding the disputed part thereof, less the estimate cost of completing all incomplete and unsatisfactory work items and less the total periodic payments made to date for the work. The awarding authority also shall deduct from the substantial completion estimate an amount equal to the sum of all demands for direct payment filed by subcontractors and not yet paid to subcontractors or deposited in joint accounts pursuant to section thirty-nine F, but no contract subject to said section thirty-nine F shall contain any other provision authorizing the awarding authority to deduct any amount by virtue of claims asserted against the contract by subcontractors, material suppliers or others.

“If the awarding authority fails to prepare and send to the contractor any substantial completion estimate required by this section on or before the date hereinabove set forth, the awarding authority shall pay to the contractor interest on the amount which would have
been due to the contractor pursuant to such substantial completion estimate at the rate of three percentage points above the rediscount rate then charged by the Federal Reserve Bank of Boston from such date to the date on which the awarding authority sends that substantial completion estimate to the contractor for acceptance or to the date of payment therefor, whichever occurs first. The awarding authority shall include the amount of such interest in the substantial completion estimate.

“Within fifteen days after the effective date of the declaration of substantial completion, the awarding authority shall send to the contractor by certified mail, return receipt requested, a complete list of all incomplete or unsatisfactory work items, and, unless delayed by causes beyond his control, the contractor shall complete all such work items within forty-five days after the receipt of such list or before the then contract completion date, whichever is later. If the contractor fails to complete such work within such time, the awarding authority may, subsequent to seven days' written notice to the contractor by certified mail, return receipt requested, terminate the contract and complete the incomplete or unsatisfactory work items and charge the cost of same to the contractor.

“Within thirty days after receipt by the awarding authority of a notice from the contractor stating that all of the work required by the contract has been completed, the awarding authority shall prepare and forthwith send to the contractor for acceptance a final estimate for the quantity and price of the work done and all retainage on that work less all payments made to date, unless the awarding authority’s inspection shows that work items required by the contract remain incomplete or unsatisfactory, or that documentation required by the contract has not been completed. If the awarding authority fails to prepare and send to the contractor the final estimate within thirty days after receipt of notice of completion, the awarding authority shall pay to the contractor interest on the amount which would have been due to the contractor pursuant to such final estimate at the rate hereinabove provided from the thirtieth day after such completion until the date on which the awarding authority sends the final estimate to the contractor for acceptance or the date of payment therefor, whichever occurs first, provided that the awarding authority’s inspection shows that no work items required by the contract remain incomplete or unsatisfactory. Interest shall not be paid hereunder on amounts for which interest is required to be paid in connection with the substantial completion estimate as hereinabove provided. The awarding authority shall include the amount of the interest required to be paid hereunder in the final estimate.

“The awarding authority shall pay the amount due pursuant to any periodic, substantial completion or final estimate within thirty-five days after receipt of written acceptance for such estimate from the contractor and shall pay interest on the amount due pursuant to such estimate at the rate herein above provided from that thirty-fifth day to the date of payment. In the case of periodic payments, the contracting authority may deduct from its payment a retention based on its estimate of the fair value of its claims against the contractor, a retention for direct payments to subcontractors based on demands for same in accordance with the provisions of section thirty-nine F, and a retention to secure satisfactory performance of the contractual work not exceeding five per cent of the approved amount of any periodic payment, and the same right to retention shall apply to bonded subcontractors entitled to direct payment under section thirty-nine F of chapter
thirty; provided, that a five per cent value of all items that are planted in the ground shall be deducted from the periodic payments until final acceptance.

“No periodic, substantial completion or final estimate or acceptance or payment thereof shall bar a contractor from reserving all rights to dispute the quantity and amount of, or the failure of the awarding authority to approve a quantity and amount of, all or part of any work item or extra work item.

“Substantial completion, for the purposes of this section, shall mean either that the work required by the contract has been completed except for work having a contract price of less than one per cent of the then adjusted total contract price, or substantially all of the work has been completed and opened to public use except for minor incomplete or unsatisfactory work items that do not materially impair the usefulness of the work required by the contract.”

Subsection 7.16: Claims of Contractor for Compensation

No person or corporation, other than the signer of the Contract as Contractor, now has any interest hereunder, and no claim shall be made or be valid; and neither Party of the First Part nor any member, agent or employee thereof, shall be liable for, or be held to pay, any money except as provided in Subsection 4.02: Alterations, Subsection 4.03: Extra Work, Subsection 4.04: Changed Conditions, Subsection 4.06: Increased or Decreased Contract Quantities, and Subsection 9.02: Scope of Payments of these Specifications and Clause 3 of the Contract.

All claims of the Contractor for compensation other than as provided for in the Contract on account of any act of omission or commission by the Party of the First Part or its agents must be made in writing to the Engineer within one week after the beginning of any work or the sustaining of any damage on account of such act, such written statement to contain a description of the nature of the work performed or damage sustained; and the Contractor shall, on or before the 15th day of the month succeeding that in which such work is performed or damage sustained, file with the Engineer an itemized statement of the details and amount of such work or damage and unless such statement shall be made as required, the Contractor’s claim for compensation shall be forfeited and invalidated, and they shall not be entitled to payment on account of any such work or damage. Such notice by the Contractor and the keeping of costs by the Engineer shall not in any way be construed as providing the validity of the claim. The provisions of this paragraph shall not apply to changes in quantities as provided under Subsection 4.06: Increased or Decreased Contract Quantities or to Extra Work ordered by the Engineer in writing.

On the basis of information provided in writing by their own employees, servants, or agents the Contractor will be required to certify, in writing, that the work for which they are claiming payment, other than as provided for in the Contract, is work actually performed, and the costs as shown are the amounts legally due for performing such work for which payment is claimed.

The Engineer shall determine all questions as to the amount and value of such work, and the fact and extent of such damage and shall so notify the Contractor in writing of their determination. Such determination of the Engineer may be appealed to the Board of Contract Appeals in accordance with General Law, Chapter 16, Section 5b, as amended.

The appeal shall set forth the contract number, city or town project is in, the name and address of the Contractor, the amount of the claim (and breakdown of how amount was computed), a clear
concise statement of the specific determination from which appeal is taken, including the reasons for appealing the determination and shall be signed by the Contractor.

The Commission Secretary shall record the date and time any such appeal is received, and shall keep the appeal on record. The Commission Secretary shall forward a copy of the appeal to the Hearing Examiner who shall set the matter down for hearing in accordance with rules adopted by the Commission.

Interest on judgments for contractor claims filed with the Superior Court of Massachusetts shall be calculated pursuant to the provisions of M.G.L. c. 231, §6 I from the date of the breach or demand. If the date of the breach or demand is not established, such interest shall be calculated from the date of the commencement of the action.

The acceptance by the Contractor of the final payment made under the provisions of Subsection 9.05: Final Acceptance and Final Payment shall operate as and shall be a release to the Party of the First Part and every member, agent and employee thereof, from all claim and liability to the Contractor for anything done or furnished for, or relating to, the work, or for any act or neglect of the Party of the First Part or of any person relating to or affecting the work, except the claim against the Party of the First Part for the remainder, if any there be, of the amounts kept or retained as provided in Subsection 7.15: Claims Against Contractors for Payment of Labor, Materials and Other Purposes. For claims for extensions of time see Subsection 8.10: Determination and Extension of Contract Time for Completion (Time Extensions).

Subsection 7.17: Traffic Accommodation

Any portion of the work which is in an acceptable condition for travel may be opened for traffic as directed in writing by the Engineer, but such opening for traffic shall not be construed as an acceptance of the work or part thereof, nor shall it act as a waiver of any of the provisions of these specifications or of the Contract; provided, however, that on such portions of the project as are opened for use of traffic, the Contractor shall not be required to assume any expense entailed in maintaining the roadway for traffic. The Party of the First Part will be responsible for maintenance and any damage to the work caused solely by traffic on any portion of the project which has been opened to public travel as stipulated above, and it may order the Contractor to repair or replace such damage, whereupon the Contractor shall make such repairs at contract unit prices so far as the same are applicable, or as Extra Work under the provisions of Subsection 4.03: Extra Work if there are no applicable items in the Contract. Any damage to the highway not attributable to traffic which might occur on such section, shall be repaired by the Contractor at their expense.

No hauling or other traffic shall be permitted over any portions of the work unless so authorized by the Engineer.

If the Contractor is dilatory in completing shoulders, drainage structures or other features of the work, the Engineer may order all or a portion of the project open to traffic, but in such event the Contractor shall not be relieved of their liability and responsibility during the period the work is so opened prior to final acceptance. The Contractor shall conduct the remainder of their construction operations so as to cause the least obstruction to traffic.

Where the new construction coincides with the present traveled way, the Engineer may order the installation of various items of work for safety and convenience of the public due to the highway being open to traffic. The Party of the First Part will be responsible for damage to the following
items of work caused solely by traffic on any portion of the project which is open to public travel and on which these items of work have been ordered to be installed and partial acceptance made thereof by the Engineer under the terms and conditions started below.

1. Guard Rail
2. Metal Bridge Railing
3. Traffic Signal Systems
4. Highway Lighting
5. Traffic Attenuators
6. Traffic Signs

If the person or persons causing the damage has been identified, the Contractor shall be responsible for recovering the cost of such repair or replacement from that person or their insurance company. No additional unit price or extra work payment will be made by the Party of the First Part unless the Contractor has been unable to recover the full repair of replacement cost from said person or their insurance company. The Party of the First Part may order the Contractor to repair or replace such damage, whereupon the Contractor shall make such repairs at contract unit prices so far as the same are applicable or as Extra Work under the provisions of Subsection 4.03: Extra Work if there are no applicable items of work in the Contract. Any damage not attributable to traffic which might occur on such traveled way shall be repaired by the Contractor at their own expense.

Subsection 7.18: Contractor’s Responsibility for the Work

Until written acceptance of the physical work by the Chief Engineer, the Contractor shall assume full charge and care thereof and the Contractor shall take every necessary precaution against injury or damage to the work by action of the elements, or from any cause whatever, whether arising from the execution or the non-execution of the Contract, and especially when blasting is to be done.

The Contractor shall bear all losses resulting to them on account of the amount or the character of the work or because the nature of the land in or on which the work is done is different from what was estimated or expected, or on account of the weather elements or other causes (except as stated in Subsection 4.04: Changed Conditions).

The Contractor shall rebuild, repair, restore and make good all injuries or damages to any portion of the work occasioned by any of the above causes before the completion and written acceptance of the physical work, and shall bear the expense thereof, except damage to the work due to war, whether or not declared, civil war, insurrection, rebellion or revolution, or to any act or condition incident to any of the foregoing, to “Acts of God” (limited to hurricane, tornado, cyclone and earthquake as classified by the United States Weather Bureau for the particular locality and for the particular season of the year, and in addition thereto, damages resulting directly from flooding from any of the aforementioned “Acts of God”). The repair of such damages shall be done by the Contractor and paid for at the respective contract unit prices for the quantity and items of work involved. In any case in which the estimate for replacing such work or repairing such damage caused by war, whether or not declared, civil war, insurrection, rebellion or revolution, or to any act or condition incident to the foregoing, or an “Act of God” combined with any previously authorized Extra Work results in a change of such magnitude as to be incompatible with competitive bid status, the Department reserves the right to terminate the Contract and to call for new bids and award a new Contract for such work. In the event any Contract is terminated for such reason the Department shall pay the Contractor such sum as may be due for work performed up to the date of
the “Act of God”, or of damage directly due to war, whether or not declared, civil war, insurrection, rebellion or revolution, or to any act or condition incident to any of the foregoing and shall also take over and pay for any material stored at site of the work provided said material was intended to be and could have been incorporated into the work; the Department shall also take over and pay for any material which was being especially fabricated for incorporation into the work, provided, however, that as a condition precedent to the Department’s liability for such material, the Contractor is legally liable therefor and the material was intended to be and could have incorporated in the work.

Issuance of an estimate on any part of the work done shall not be construed as final acceptance of any work completed up to that time.

Should the Contractor fail to take prompt action whenever conditions make it necessary, the Party of the First Part shall make emergency repairs or cause the same to be made, with the stipulation that the costs for such repairs shall be charged against the Contractor and deducted from moneys due them.

In case of suspension of work from any cause whatsoever, the Contractor shall be responsible for the project and shall take such precautions as may be necessary to prevent damage to the project, provide for normal drainage and shall erect any necessary temporary structures, signs, or other facilities at their expense. During such period of suspension of work, the Contractor shall properly and continuously maintain in an acceptable growing condition all living material in newly established plantings, seedings, and soddings furnished under their Contract, and shall take adequate precautions to protect new tree growth and other important vegetative growth against injury.

Subsection 7.19: Personal Liability of Public Officials

In carrying out any of the provisions of these specifications, or in exercising any power or authority granted to them by or within the scope of the Contract, there shall be no liability upon the Commissioner, Engineer, or their authorized representatives, either personally or as officials of the Commonwealth, it being understood that in all such matters they act solely as agents and representatives of the Commonwealth.

Subsection 7.20: No Waiver of Legal Rights

The Party of the First Part shall not be precluded or estopped by any measurement, estimate, or certificate made either before or after the physical completion and final acceptance of the work and payment therefor, from showing the true amount and character of the work performed and materials furnished by the Contractor, nor from showing that any such measurement, estimate or certificate is untrue or is incorrectly made, nor that the work or materials do not in fact conform to the Contract. The Department shall not be precluded or estopped, notwithstanding any such measurement, estimate, or certificate and payment in accordance therewith, from recovering from the Contractor or their sureties, or both, such damage as it may sustain by reason of their failure to comply with the terms of the Contract. Neither the acceptance by the Department, or any representative of the Department, nor any payment for any acceptance of the whole or any part of the work, nor any extension of time, nor any possession taken by the Department, shall operate as a waiver of any portion of the Contract or of any power herein reserved, or of any right to damages. A waiver of any breach of the Contract shall not be held to be a waiver of any other or subsequent
breach. Any remedy provided in the Contract shall be taken and construed as cumulative, that is, in addition to each and every other remedy herein provided; and the Party of the First Part shall also be entitled as of right to a writ of injunction against any breach of the provisions of the Contract.

Subsection 7.21: Preference in Employment of Labor

In the employment of mechanics, teamsters, chauffeurs and laborers in the construction of public works by the Commonwealth, or by a county, town or district, or by persons contracting or subcontracting for such work, preference shall first be given to citizens of the Commonwealth who have been residents of the Commonwealth for at least six months at the commencement of their employment and who are veterans as defined in General Laws, Chapter 4, Section 7, Clause 43, as amended and who are qualified to perform the work to which the employment relates; and secondly to citizens of the Commonwealth, generally who have been residents of the Commonwealth for at least six months at the commencement of their employment, and if they cannot be obtained in sufficient numbers, then to citizens of the United States, and every Contract for such work shall contain a provision to this effect. Each county, town or district in the construction of public works, or persons contracting or subcontracting for such works shall give preference to veterans and citizens who are residents of such county, town or district. The Contractor’s attention is hereby directed to said Section 26 of Chapter 149 of the General Laws, as amended.

The requirements in the above paragraph do not apply to any project or part thereof, financed in whole or in part with Federal Funds.

Subsection 7.22: Labor, Lodging, Board, Maximum Hours of Employment, Weekly Payment, Keeping of Payroll Records

Every employee in public work shall lodge, board and trade where and with whom they elect; and no person or their agents or employees under Contract with the Commonwealth, a county, city or town, or with a department, board, commission or officer acting therefor, for the doing of public work, shall directly or indirectly require as a condition of employment therein, that the employee shall lodge, board or trade at a particular place or with a particular person (Chapter 149, Section 25 of the General Laws).

No laborer, workman, mechanic, foreman or inspector working within this Commonwealth, in the employ of the Contractor, Subcontractor or other person doing or contracting to do the whole or a part of the work contemplated by this Contract, shall be required or permitted to work more than eight hours in any one day or more than 48 hours in any one week, or more than six days in any one week, except in cases of emergency, or in case any town subject to Section 31 of Chapter 149 of the General Laws is a party to such a Contract, more than eight hours in any one day, except as aforesaid. The Department or the Contractor or any Subcontractor may employ laborers, workmen, mechanics, foreman and inspectors for more than eight hours in any one day in the work to be done or under Contract when, in the opinion of the Commissioner of Labor and Industries, public necessity so requires. (Chapter 149, Section 34 of the General Laws, as amended).

Attention of Bidders is called to Section I 48 of Chapter 149 of the General Laws and amendments thereof requiring the weekly payment of employees.

Upon request of the Engineer or the Massachusetts Department of Labor and Industries, the Contractor shall furnish certified copies of any or all payrolls for the Contract, showing the name,
address, and occupational classification of each employee on said works, and the hours worked by, and the wages paid to each such employee. Such payroll shall also include the rates paid for rented trucks or rental equipment of any kind used on the work. This requirement shall also apply to the work or any Subcontractor, having a Subcontract for any of the work performed on the project. Such records shall be kept in such manner as the Commissioner of Labor and Industries shall prescribe, and shall be open to inspection by the Engineer or any authorized representative of the Department of Labor and Industries at any reasonable time and as often as may be necessary.

In the case the work covered by this Contract is financed from Federal Funds, the above provisions relative to the hours of employment shall be subject to such revision and amendment as are required by the Rules and Regulations controlling the expenditures of such Federal Funds.

Subsection 7.23: Discovery of Unanticipated Archaeological and Skeletal Remains

Should any archaeological remains be encountered during any phase of construction, the Contractor shall immediately cease all construction activities in the discovery area, secure the area and notify the Engineer. The Engineer shall immediately notify the MassDOT Environmental Services Section in Boston Headquarters Office. The MassDOT Archaeologist shall inspect the remains and their context in order to evaluate the discovery.

In the event a potentially significant archaeological find is encountered, as determined by the MassDOT Archaeologist, the Contractor shall carefully protect the discovery area by placing snow fencing and/or flagging (with an approximately 30-ft buffer zone) around the find(s). The MassDOT Archaeologist shall notify the Federal Highway Administration (if the project is federally funded), the Massachusetts State Archaeologist, the Massachusetts State Historic Preservation Officer/Executive Director of the Massachusetts Historical Commission and other relevant parties (the Massachusetts Commission on Indian Affairs, Tribal Historic Preservation Officers) of the discovery and serve as the liaison on all subsequent actions. Outside the protected discovery area, construction work may continue. Construction may not resume in the discovery area until the MassDOT Archaeologist has secured all necessary regulatory approvals and given the approval to continue to the Engineer.

If skeletal remains are discovered during construction, the Contractor shall immediately cease all work in the discovery area, secure and protect the area and notify the Engineer as stipulated above. The Engineer shall immediately contact the State Medical Examiner, the police and the MassDOT Archaeologist. If the skeletal remains prove to be human and more than 100 years old, as determined by the State Medical Examiner, the MassDOT Archaeologist shall consult with the Massachusetts State Archaeologist and other relevant parties pursuant to all procedures and protocols under the Massachusetts Unmarked Burial Law (M.G.L. Chapter 38, Section 6; M.G.L. Chapter 9, Section 26A and 27C; and M.G.L. Chapter 7, Section 38A) and Section 106 of the National Historic Preservation Act as amended, and its implementing regulations for emergency situations and post-review discoveries [36 CFR 800.12(b)(2) or 36 CFR 800.13(b)].
SECTION 8.00: PROSECUTION AND PROGRESS

Subsection 8.01: Subletting or Assignment of Contract

The Contractor shall not sublet, sell, transfer, assign, or otherwise dispose of the Contract or any portion thereof, or of their right, title, or interest therein, without written consent of the Engineer. In case such consent is given, the Contractor will be permitted to sublet a portion thereof, but shall perform with their own organization, work amounting to not less than 50 percent of the original total Contract price, except that any items designated in the Contract as “specialty items” may be performed by Subcontract and the cost of any such specialty items so performed by Subcontracts may be deducted from the total cost computing the amount of work required to be performed by the Contractor with their own organization. No Subcontractors, or transfer of Contract, shall in any case release the Contractor of their liability under the Contract and Bonds.

The Contractor shall notify the Engineer, as soon as practicable after execution of the Contract, the name and address of each Subcontractor they intend to employ, the portion of the work which the Subcontractor is to do, and such other information the Engineer may require in order to ascertain whether the Subcontractor is reliable and able to perform the work. The Contractor shall not withhold retainage on any subcontract.

The Contractor shall direct the attention of their Subcontractors to the requirements of:

1. Subsection 7.05: Insurance Requirements regarding insurances, and also the Minimum Wage Rates and Health and Welfare and Pensions Fund Contributions as determined by the Commission of Labor and Industries of the Common-wealth and also to the provisions of Subsection 7.21: Preference in Employment of Labor and Subsection 7.22: Labor, Lodging, Board, Maximum Hours of Employment, Weekly Payment, Keeping of Payroll Records, and
2. Chapter 30, General Laws, Section 39L states: “The Commonwealth and every county, city, town, district, board, commission or other public body which, as the awarding authority, requests proposals, bids or sub-bids for any work in the construction, reconstruction, alteration, remodeling, repair or demolition of any public building or other public works (1) shall not enter into a Contract for the work with, and shall not approve as a Subcontractor furnishing labor and materials for a part of the work, a foreign corporation which has not filed with the awarding authority a certificate of the state secretary stating that such corporation has complied with requirements of section 15.03 of subdivision A of Part 15 of chapter 156D and the date of compliance, and further has filed all annual reports required by section 16.22 of subdivision B of Part 16 of said chapter 156D."

The Contractor shall also direct the attention of their Subcontractors and of all suppliers of material to the requirements of Subsection 5.09: Inspection of Work regarding the facilities for the Engineer’s inspectors.

Subsection 8.02: Schedule of Operations

The Contractor shall submit, to and for the comments of the Engineer, a schedule of operations within ten days after the mailing of the executed Contract to the Contractor. The schedule shall show the proposed methods of construction and sequence of work and the time the Contractor proposes to complete the various items of work within the time specified in the Contract.
If the Contractor's operations are materially affected by changes in the plans or in the quantity of the work, or if they have failed to comply with the submitted and reviewed schedule, the Contractor shall submit a revised schedule if requested by the Engineer within seven days after the date of the Engineer's request. This revised schedule shall show how the Contractor proposes to prosecute the balance of the work, so as to complete the work within the time specified in the Contract.

Subsection 8.03: Prosecution of Work

The Contractor shall commence work within 15 days after the mailing of the executed Contract to the Contractor unless otherwise ordered in writing by the Engineer, and the Contractor shall thereafter prosecute the work at such places and in such order as the Engineer may from time to time prescribe.

Should the prosecution of the work for any reason be discontinued, the Contractor shall notify the Engineer at least 24 hours in advance of resuming operations.

The contract work shall be expedited when the Engineer determines that the safety and/or the convenience of the public necessitates an earlier completion date for the performance of the work contained in the contract.

Compensation for expediting the work shall be based on the actual added cost of direct labor as applied to the overtime labor cost only. The contractor shall accept as full compensation for the actual added cost of expediting the contract work the following:

(a) The added overtime premium portion of the direct labor costs (the premium labor cost less [minus] the regular time labor cost);
(b) Plus the actual cost for payroll taxes associated with (a) above.
(c) Plus an overhead additive of 10% of the total of (a) and (b) above for related overhead.
(d) Plus any proportionate added cost for surety bond.

For work performed by a Subcontractor, the Contractor shall accept as full payment thereof an amount equal to the added cost to the Subcontractor as determined above, plus 10% of such cost.

No allowance shall be made for general superintendence as such costs shall be considered reimbursed under the overhead additive applied to direct labor. No allowance shall be made for any additional equipment, equipment operating costs, or the use of small tools and manual equipment.

Subsection 8.04: Removal or Demolition of Buildings and Land Takings

When the removal or demolition of buildings within highway location is done under other and separate Contracts the provisions of Subsection 5.06: Adjacent Contracts shall apply and it is expressly agreed between the parties that the Party of the First Part shall not be held liable for any expense to the Contractor on account of any delay or interference with their work due to removal or demolition of the buildings or on account of any failure to remove or demolish any building or because of failure to make necessary land takings, and it is further expressly agreed that no allowance of any kind will be made except as provided in Subsection 8.05: Claim for Delay or Suspension of the Work or Subsection 8.10: Determination and Extension of Contract Time for Completion (Time Extensions).
Subsection 8.05: Claim for Delay or Suspension of the Work

The Contractor hereby agrees that they shall have no claim for damages of any kind on account of any delay in commencement of the work or any delay or suspension of any portion thereof, except as hereinafter provided.

Provided, however, that if the Commission in their judgment shall determine that the performance of all or any major portion of the work is suspended, delayed, or interrupted for an unreasonable period of time by an act of the Department in the administration of the Contract, or by the Department’s failure to act as required by the Contract within the time specified in the Contract (or if no time is specified, within a reasonable time) and without the fault or negligence of the Contractor, an adjustment shall be made by the Department for any increase in the actual cost of performance of the Contract (excluding profit and overhead) necessarily caused by the period of such suspension, delay or interruption. No adjustment shall be made if the performance by the Contractor would have been prevented by other causes even if the work had not been so suspended, delayed, or interrupted by the department.

No claims shall be allowed under this Subsection for the Department's failure to act as required by the Contract within the time specified in the Contract (or if no time is specified, within a reasonable time) for any cost incurred more than two weeks before the Contractor shall have notified the Department in writing of their claim due to the Department’s failure to act.

The contractor shall submit in writing not later than 30 days after the termination of such suspension, delay or interruption the amount of the claim and breakdown of how the amount was computed in accordance with Subsection 9.03: Payment for Extra Work, Part B, except no allowance for overhead and profit shall be allowed.

Any dispute concerning whether the delay or suspension is unreasonable or any other question of fact arising under this paragraph shall be determined by the Commission, and such determination and decision, in case any question shall arise, shall be a condition precedent to the right of the Contractor to receive any money hereunder.

The Contractor further agrees that the sole allowance for any such delay or suspension, other than as provided above, is an extension of time as provided in Subsection 8.10: Determination and Extension of Contract Time for Completion (Time Extensions).

Subsection 8.06: Limitations of Operations

The Contractor shall conduct the work at all times in such a manner and in such sequence as will assure the least interference with traffic and abutters. The Contractor shall have due regard to the location of detours and to the provisions for handling traffic. The Contractor shall not open up work to the prejudice or detriment of work already started.

Subsection 8.07: Character of Workers, Methods and Equipment

The Contractor shall at all times employ sufficient labor and equipment for prosecuting the several classes of work to full completion in the manner and time required by these specifications.

All workers shall have sufficient skill and experience to perform properly the work assigned to them. Workers engaged in special work or skilled work shall have sufficient experience in such
work and in the operation of the equipment required to perform all work properly and satisfactorily.

The Contractor is responsible to ensure that all personnel, including all subcontractors, working on the project are issued and are wearing all necessary personal protective safety equipment while working within the project limits. This equipment shall include, as a minimum, a hardhat and a safety vest, regardless of the type of work being performed, and shall include floatation vests for work over or around water. Hardhats shall have a minimum rating meeting ANSI Type I Class E or G and be capable of taking a 40-lb impact; vests shall be a minimum of ANSI/ISEA 107- Class 2. The Contractor shall furnish such hardhats and vests and maintain a sufficient supply of such at the work site for the Contractor’s personnel assigned to the project as well as those visiting the work site. Personal protective safety equipment for Roadway Traffic Flaggers is specified in 850.41: Roadway Flagger.

Any person employed by the Contractor or by any Subcontractor who, in the Engineer’s judgment, does not perform their work in a proper and skilled manner or is intemperate or disorderly or otherwise unsatisfactory or not employed in accordance with the provisions of Subsection 7.21: Preference in Employment of Labor, shall at the written request of the Engineer, be removed forthwith by the Contractor or Subcontractor employing such person, and shall not be employed again in any portion of the work without the approval of the Engineer.

Should the Contractor fail to take the necessary action to remove such person or persons as required above, or fail to furnish suitable and sufficient personnel for the proper prosecution of the work, the Engineer may suspend the work by written notice until such orders are complied with.

All equipment which is proposed to be used on the work shall be of sufficient size and in such mechanical condition as to meet requirements of the work and to produce a satisfactory quality of work. Equipment used on any portion of the project shall be such that no injury to the roadway, adjacent property, or other highways will result from its use.

When the methods and equipment to be used by the Contractor in accomplishing the construction are not prescribed in the Contract, the Contractor is free to use any methods or equipment that they demonstrate to the satisfaction of the Engineer which will accomplish the contract work in conformity with the requirements of the Contract.

When the Contract specifies the methods and equipment by which the construction be performed, such methods and equipment shall be used unless others are authorized by the Engineer, in writing. If the Contractor desires to use a method or type of equipment other than that specified in the Contract, they may request authority from the Engineer to do so. The request shall be in writing and shall include a full description of the methods and equipment proposed to be used and an explanation of the reasons for desiring to make the change. If approval is given, it shall be in writing and it will be on the condition that the Contractor will be fully responsible for producing construction work in conformity with contract requirements. If after trial use of the substituted methods or equipment, the Engineer determines that the work produced does not meet contract requirements, the Contractor shall discontinue the use of the substitute method or equipment and shall complete the remaining construction with the specified methods and equipment. The Contractor shall remove the deficient work and replace it with work of specified quality, or take such other corrective action as the Engineer may direct. No changes will be made in basis of
payment for the construction items involved nor in contract time as a result of authorizing a change in methods or equipment under these provisions.

Subsection 8.08: Preservation of Roadside Growth

In general, the Contractor shall take special precautions at all times to protect and preserve natural surroundings and roadside growth either within or adjacent to the location from damage or injury due to their operations. The Contractor shall not, except by written permission of the Engineer, remove, destroy, or trim such roadside trees or shrubs.

Any trees or landscape features carelessly scarred or damaged by the Contractor's operations shall be removed and replaced or neatly trimmed and restored as nearly as possible to the original condition as required by the Engineer. In general the Contractor shall be responsible for all damage to roadside growth due to their operations and shall, without compensation, satisfactorily repair or replace all such damage.

All scars on trees shall be painted as soon as possible with an approved tree paint.

Subsection 8.09: Delay and Suspension of Work

The Engineer shall have the authority to delay the commencement of the work and delay or suspend any portion thereof; for such period or periods as they may deem necessary because of conditions beyond the control of the Commonwealth, or the Contractor; or beyond the control of the Commonwealth and the Contractor; for the failure of the Contractor to correct conditions unsafe for the general public; for failure to carry out provisions of the Contract; for failure to carry out orders; for causes and conditions considered unsuitable for the prosecution of the work; for acts of third persons not a party to the Contract; or for any other cause, condition, or reason deemed to be in the public interest.

Upon receipt of written order of the Engineer, the Contractor shall immediately delay the commencement of the work or delay or suspend any portion thereof in accordance with said order. No work shall be suspended or delayed without the prior written approval or order of the Engineer. The work shall be resumed when conditions so warrant or deficiencies have been corrected and the conditions of the Contract satisfied as ordered or approved in writing by the Engineer. The Contractor’s attention is also directed to the requirements of Subsection 7.09: Public Safety and Convenience and Subsection 7.18: Contractor’s Responsibility for the Work which shall govern during any period of temporary or partial suspension of work.

Subsection 8.10: Determination and Extension of Contract Time for Completion (Time Extensions)

A. General

It is an essential part of all contracts that contractors shall perform the Work fully, entirely and in an acceptable manner within the contract duration.

The contract duration is based upon the requirements of public convenience and the assumption that the Contractor will prosecute the Work efficiently and with the least possible delay, in accordance with the maximum allowable working time, as specified in the Contract.
The contract duration has been carefully considered and has been established for reasons of importance to the Department. The contract duration will be enforced and it is understood that the Contractor accepted this concept at the time of the submission of the bid. The timing of the Notice to Proceed (NTP) has been taken into account in the determination of the contract duration and the timing of the issuance of the NTP shall not, by itself, be a reason for a time extension.

An extension of contract time will be granted only if entitlement to a time extension has been clearly demonstrated to the satisfaction of the Engineer by a documented time entitlement analysis (TEA), performed in accordance with the requirements of Subsection 8.02: Schedule of Operations.

B. Requests for Additional Contract Time (Time Extension)

In response to a request for a time extension, an extension of contract time may be granted for demonstrated delays resulting from only one, or, in the case of concurrent delays, a combination of the following causes:

1. Extra Work

Each extra work order (EWO) proposal shall include an evaluation of the impact of the EWO on contract time, expressed in calendar days. If there is no impact to the contract time as a result of the EWO, the EWO shall indicate this by stating that zero calendar days of additional time is being requested. The need for a time extension as a result of the EWO must be clearly demonstrated by a documented TEA performed by the Contractor in accordance with the requirements of Subsection 8.02: Schedule of Operations. A documented preliminary TEA supporting the EWO proposal shall be submitted to the Engineer as part of the EWO proposal. Also see Subsection 4.03: Extra Work and Subsection 4.05: Validity of Extra Work.

2. Department-Caused Delays

If any part of the Work is delayed or suspended by the Department, the Contractor will be granted a time extension to complete the Work or any portion of the Work only if entitlement to this time extension has been clearly demonstrated by a documented time entitlement analysis. Department-caused delays shall not include delays to or suspensions of the Work that result from the fault or negligence of the Contractor. Also see Subsection 8.05: Claim for Delay or Suspension of the Work.

3. Increased Quantities

Increased quantities of work may be considered as the basis for a time extension only if the requirements of Subsection 4.06: Increased or Decreased Contract Quantities are met. The time allowed for performance of the Work will be increased based on increased quantities only if entitlement to this time extension has been clearly demonstrated by a documented time entitlement analysis. A decrease in quantities shall also require a time entitlement analysis to determine if a deduction of contract time is warranted.

4. Delays Not Caused by Contractor Fault or Negligence

When delays occur due to reasonable causes beyond the control and without the fault or negligence of the Contractor, including, but not restricted to: “Acts of God”; war, whether or not declared, civil war, insurrection, rebellion or revolution, or to any act or condition incident to any of the foregoing; acts of the Government; acts of the State or any political subdivision thereof; acts of other contracting parties over whose acts the Contractor has no control; fires; floods; epidemics;
abnormal tides (not including Spring tides); severe coastal storms accompanied by high winds or abnormal tides; freezing of streams and harbors; abnormal time of Winter freezing or Spring thawing; interference from recreational boat traffic; use of beaches and recreational facilities for recreational purposes during the Summer season; abnormal ship docking and berthing; unanticipated use of wharves and storage sheds; strikes, except those caused by improper acts or omissions of the Contractor; extraordinary delays in delivery of materials caused by strikes, lockouts, wrecks, and/or freight embargoes; a time extension will be granted only if entitlement to a time extension has been clearly demonstrated by a documented time entitlement analysis.

An "Act of God" as used in this subsection is construed to mean an earthquake, flood, cyclone, hurricane, tornado, or other cataclysmic phenomenon of nature beyond the power of the Contractor to foresee and/or make preparations against. Additional consideration may be given to severe, abnormal flooding in local rivers and streams that has been reported as such by the National Weather Service. Rain, wind, snow, and/or other natural phenomena of normal intensity, based on National Weather Service reports, for the particular locality and for the particular season of the year in which the Work is being prosecuted, shall not be construed as an "Act of God" and no time extension will be granted for the delays resulting therefrom.

Within the scope of acts of the Government, consideration will be given to properly documented evidence that the Contractor has been delayed in obtaining any material or class of labor because of any assignment of preference ratings by the Federal Government or its agencies to defense contracts of any type.

5. Delays Caused by Public Service Corporations, Municipal Departments or Other Third Parties

If any part of the Work is delayed by public service corporations, municipal departments or other third parties, a time extension will be granted only if entitlement to a time extension has been clearly demonstrated by a documented time entitlement analysis. Also see Subsection 5.05: Cooperation by Contractor, Subsection 5.06: Adjacent Contracts, and Subsection 8.04: Removal or Demolition of Buildings and Land Takings.

C. Time Extension Determination

1. When the Contractor submits a request for a time extension, placing the Department on notice of a delay due to any of the causes listed in Subsection 8.10: Determination and Extension of Contract Time for Completion (Time Extensions), Part B, it shall be submitted in writing to the Engineer within 15 calendar days after the start of the delay. No time extension will be granted if a request for a time extension is not filed within 15 calendar days after the start of the delay.

A documented preliminary TEA supporting the request for a time extension and meeting the requirements of Subsection 8.02: Schedule of Operations shall be submitted to the Engineer no later than 30 calendar days after the start of the delay. A documented final TEA shall be submitted to the Engineer no later than 15 calendar days after the end of the delay. During the time between the preliminary and final TEA, the delay shall be documented in contract progress schedules submitted in accordance with the requirements of Subsection 8.02: Schedule of Operations.

2. No time extension will be granted for any delay or any suspension of the Work due to the fault of the Contractor.
3. No time extension will be granted if the request for a time extension is based on any claim that the originally established contract duration was inadequate.

4. Time extensions will only be granted for delays, including concurrent delays, to activities affecting contract milestones, the contract completion date and/or other critical path activities as demonstrated to the satisfaction of the Engineer by a detailed time entitlement analysis that clearly states the number of calendar days of extra time being requested.

5. The probable slowdown or curtailment of work during inclement weather and winter months has been taken into consideration in determining the contract duration and therefore no time extension will be granted, except as defined in Subsection 8.10: Determination and Extension of Contract Time for Completion (Time Extensions) Paragraph B.4.

6. Any work restriction related to weather, permit conditions, community accommodation, traffic or any other restriction specified in the Contract or reasonably expected for the particular locality and for the particular season of the year in which the Work is being prosecuted must be considered in the analysis of each individual time extension and shall not be considered, in itself, justification for an extension of time.

7. Any time entitlement analysis prepared for the purpose of requesting a time extension shall clearly indicate any proposed overtime hours or additional shifts that are incorporated in the schedule. The Engineer shall have final approval over the use of overtime hours and additional shifts and shall have the right to require that overtime hours and/or additional shifts be used to minimize the duration of time extensions if it is determined to be in best interest of the Department to do so.

D. Disputes

Any dispute regarding whether or not a time entitlement analysis demonstrates entitlement to a time extension, the number of days granted in a time extension or any other question of fact arising under this subsection shall be determined by the Engineer.

The Contractor may dispute a determination by the Engineer by filing a claim notice within 14 calendar days after the Contractor’s request for additional time has been denied or if the Contractor does not accept the number of days granted in a time extension. The Contractor’s claim notice shall include a time entitlement analysis that sufficiently explains the basis of the time-related claim. Failure to submit the required time entitlement analysis with the claim notice shall result in denial of the Contractor’s claim.

Subsection 8.11: Failure to Complete Work on Time

On or before the date stated in the proposal for completion or the date to which the time of completion shall have been extended under the provisions of Subsection 8.10 the whole work shall have been performed in accordance with the terms of the Contract. The time in which the various portions and the whole of the Contract are to be performed and the work is to be completed is an essential part of the Contract.

In case the work embraced in the contract shall not have been physically completed by the time stipulated therein (according to the foregoing requirements) the Contractor shall pay to the Department a designated sum per day for the entire period of overrun in accordance with the following Schedule of Liquidated Damages. In the event the Contract has been substantially completed and the project opened for traffic as directed in writing by the Engineer, but physical
completion of the work is subject to delay because of minor uncompleted items which do not impair the usefulness of the project, the designated sum per day shall be \(\frac{1}{2} \) the charges shown. In addition to the daily charge, the Contractor shall pay without reimbursement the entire cost of all traffic officers, railroad flagmen and inspectors the Engineer or the Chief Engineer of the railroad determines to be necessary during the period of overrun of time.

In the event the physical work embraced in the Contract has been completed and accepted in writing by the Chief Engineer but there remains to be submitted to the Department by the Contractor any reports or other documents in accordance with the provisions of the Contract, the Contract shall not be considered satisfactorily completed within the meaning of Section 39G of Chapter 30 of the General Laws until the receipt of such reports or documents by the Department, but the designated sum per day during this interval shall be zero.

Whatever sum of money may become due and payable to the Party of the First Part by the Contractor under this Subsection may be retained out of money belonging to the Contractor in the hands and possession of the Party of the First Part. It is agreed that this Subsection shall be construed and treated by the parties to the Contract not as imposing a penalty upon said Contractor for failing fully to complete said work as agreed on or before the time specified in the Proposal, but as liquidated damages to compensate said Party of the First Part for all additional costs incurred by said Party because of the failure of the Contractor fully to complete said work on or before the date of completion specified in the Proposal.

Permitting the Contractor to continue and finish the work or any part of it after the time fixed for its completion, or after the date to which the time for completion may have been extended, shall in nowise operate as a waiver on the party of the Party of the First Part of any of its rights under the Contract.

Table 8.11-1: Schedule of Liquidated Damages

<table>
<thead>
<tr>
<th>Project Value</th>
<th>Liquidated Damages (per Day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to $100,000</td>
<td>$575.00</td>
</tr>
<tr>
<td>$100,000 to $500,000</td>
<td>$850.00</td>
</tr>
<tr>
<td>$500,000 to $1,000,000</td>
<td>$975.00</td>
</tr>
<tr>
<td>$1,000,000 to $2,000,000</td>
<td>$1,250.00</td>
</tr>
<tr>
<td>$2,000,000 to $3,000,000</td>
<td>$1,550.00</td>
</tr>
<tr>
<td>$3,000,000 to $4,000,000</td>
<td>$1,800.00</td>
</tr>
<tr>
<td>$4,000,000 to $5,000,000</td>
<td>$2,200.00</td>
</tr>
<tr>
<td>$5,000,000 to $10,000,000</td>
<td>$2,400.00</td>
</tr>
<tr>
<td>$10,000,000 to $15,000,000</td>
<td>$2,700.00</td>
</tr>
<tr>
<td>Over $15,000,000</td>
<td>$3,500.00</td>
</tr>
</tbody>
</table>

Subsection 8.12: Default Termination

If the Contractor shall be adjudged a bankrupt, or if the Contractor shall make a general assignment for the benefit of their creditors, or if a receiver of their property shall be appointed, or if the work to be done under the Contract shall be abandoned, or if the Contract or any part thereof shall be
sublet without the previous written consent of the Party of the First Part, or if the Contract or any claim thereunder shall be assigned by the Contractor otherwise than as herein specified, or if at any time in the Engineer's judgment and the Engineer so certifies in writing to the Party of the First Part that the work, or any part thereof, is unnecessarily or unreasonably delayed, or that the Contractor has violated any of the provisions of the Contract, the Party of the First Part may notify the Contractor to discontinue all work, or any part thereof. Such notice shall be given to the Contractor in writing and thereupon the Contractor shall discontinue such work or such part thereof, as the Party of the First Part may designate, and the Party of the First Part shall require the surety or sureties to complete the Contract.

If the Engineer shall certify that the rate of progress is not satisfactory, the Party of the First Part may instead of notifying the Contractor to discontinue all work or any part thereof, notify them from time to time to increase the force, equipment and plant, or any of them, employed on the whole or any part of the work, stating the amount of increase required to insure the proper completion of the work. The Contractor shall provide and maintain, at no additional cost to the Department, any lights necessary to protect the work or the traveling public, for the safety of their construction forces and to insure the proper construction, inspection and prosecution of the work (See Subsection 7.09: Public Safety and Convenience and Subsection 7.10: Barricades and Warning Signs). Unless the Contractor shall, within five days after any such notice, increase their force, equipment and plant to the extent required therein, and maintain and employ the same from day to day until the completion of the work or such part thereof or until the conditions as to the rate of progress shall, in the Engineer's judgment, be fulfilled, the Party of the First Part may employ and direct the labors of such additional force, equipment and plant as may, in the Engineer's judgment, be necessary to insure the completion of the work or such part thereof within the time specified, or at the earliest possible date thereafter, and charge the expense thereof to the Contractor. Neither the notice from the Party of the First Part to the Contractor, to increase their force, equipment or plant, nor the employment of additional force, equipment or plant by the Party of the First Part shall be held to prevent a subsequent notice from the Party of the First Part to them to discontinue work under the provisions of the preceding portion of this article.

All expenses charged under this article shall be deducted and paid by the Party of the First Part out of any moneys then due or to become due the Contractor under the Contract, or any part thereof, and in such accounting the Party of the First Part shall not be held to obtain the lowest figures for the work of completing the Contract or any part thereof, or for insuring its proper completion, but all sums actually paid therefor shall be charged to the Contractor. In case the expenses so charged are less than the sum which would have been payable under the Contract if the same had been completed by the Contractor, the Contractor shall be entitled to receive the difference; and in case such expenses shall exceed the said sum, the Contractor shall pay the amount of the excess to the Party of the First Part. upon completion of the work without further demand being made therefor.

Subsection 8.13: Convenience Termination

If the Department determines that it is in the public interest to do so, it may notify the Contractor to discontinue all work, or any part thereof. Such notice shall be given to the Contractor in writing and thereupon the Contractor shall discontinue such work, or such part thereof, as the Department may designate.
If the Department notifies the Contractor to discontinue all work, or any part thereof, the Department shall pay and the Contractor shall accept, as full payment for all work and materials provided, a sum agreed to by the Contractor and the Department. If a sum cannot be agreed upon, the Contractor shall accept the sum of A. for the completed work, plus B. and C. for other costs, determined as follows:

A. For all completed work for which there are unit prices provided in the contract.

The original contract unit prices.

B. For Construction Related Costs.

(1) The actual costs for direct labor (direct labor costs shall include the actual salary costs of laborers, equipment operators, truck drivers, steel workers and other trades persons up to and including working foremen. The costs of general superintendence shall be considered included in field and/or home office overhead.), materials (less salvage value, if any) and use of equipment (determined in accordance with Subsection 9.03 of the Standard Specifications), plus 10% of this total for overhead (the 10% additive is inclusive of both field and home office overhead); and

(2) The actual cost for Salary Related Costs such as Worker’s Compensation and Liability Insurance, Health, Welfare and Pension benefits, Social Security deductions, and Employment Security Benefits; and

(3) 10% of the total of (1) and (2) for profit; and

(4) The estimated proportionate cost of surety bonds; and

(5) The actual cost to the Contractor for work performed by a subcontractor, plus 10% of such cost.

No allowance shall be made for general superintendence and the use of small tools and manual equipment. General superintendence is that next level above the working foreman. The costs of general superintendence as well as use of small tools and manual equipment shall be considered included in field and/or home office overhead.

C. For Discontinuance Costs.

The reasonable and necessary costs of storage, transportation and other costs incurred for the preservation, protection or disposition of the discontinued work which are pre-approved by the Department to be determined as follows:

(1) The actual costs for direct labor (Direct labor costs shall include the actual salary costs of laborers, equipment operators, truck drivers, steel workers and other trades persons up to and including working foremen. The costs of general superintendence shall be considered included in field and/or home office overhead.), materials (less salvage value, if any) and use of equipment (determined in accordance with Subsection 9.03: Payment for Extra Work of the Standard Specifications), plus 10% of this total for overhead (the 10% additive is inclusive of both field and home office overhead); and

No allowance shall be made for general superintendence and the use of small tools and manual equipment. General superintendence is that next level above the working foreman. The costs of general superintendence as well as use of small tools and manual equipment shall be considered included in field and/or home office overhead.

The reasonable and necessary legal costs of work discontinuance, plus an additive of 10% for overhead (the additive is inclusive of both field and home office overhead), is allowable. The legal costs for litigation and/or negotiation purposes with the Department in settlement of said discontinuances are not allowable.

Any other reasonable and necessary costs for discontinuance that are pre-approved by the Department, plus an additive of 10% for overhead (the additive is inclusive of both field and home office overhead).

When requested by the Department, the Contractor shall furnish itemized statements of the cost of the work performed and shall give the Department (and/or the Department's Auditors) access to any and all financial and/or project records and documents, relating thereto. Unless the Contractor, when requested to do so, furnishes such itemized statements and access to any and all financial and/or project records and documents, the Contractor shall not be entitled to payment for the work for which such information is sought by the Department.

The Contractor shall not be paid and the Contractor shall not have any claim for loss of anticipated profits or for any costs or profit in addition to those stipulated above; for loss of expected reimbursement or for any increased expenses resulting directly or indirectly from the discontinuance of any or all work or from unbalanced allocation, among the contract items, of overhead expense on the part of the bidder and subsequent loss of expected reimbursement therefor or any other cause.

The Contractor shall incorporate the provisions of this section as provisions in its contracts with each of their subcontractors.

The authority of the Department under this section shall be in addition to the authority of the Engineer under other sections of these specifications.
SECTION 9.00: MEASUREMENT AND PAYMENT

Subsection 9.01: Measurement of Quantities

The quantities of the various items of work performed shall be determined for purposes of payment by the Engineer and by the Contractor for the purposes of certification(s) of work performed that are generally required by law and specifically by the provision hereof.

Upon the completion of the work and before final payment is made the Engineer will make final measurement to determine the quantities of the various items of work performed, as the basis for final settlement. All measurements shall be made according to the United States standard units of measurement.

The method of measurement and computations to be used in determination of quantities of material furnished and of work performed under the Contracts shall be selected by the Engineer.

Unless otherwise specified, longitudinal measurements for area computations will be made horizontally, and no deductions will be made for individual fixtures having an area of 9 ft² or less. Unless otherwise specified, transverse measurements for area computations will be the neat dimensions shown on the plans or ordered in writing by the Engineer.

Structures will be measured according to neat lines shown on the plans or as altered to fit field conditions.

All items which are measured by the foot, such as pipe, culverts, guardrail, underdrains, etc., will be measured parallel to the base or foundation upon which such structures are placed, unless otherwise shown on the plans.

In computing volumes of excavation the average end area method or other methods acceptable to the Engineer will be used.

When the term “gage” refers to the measurement of wire, it will mean the wire gage specified in the AASHTO M 32M/M 32.

All materials which are specified for measurement by weight shall be weighed on standard scales furnished by and at the expense of the Contractor. Such scales shall be sealed at the expense of the Contractor as often as is necessary to insure their accuracy. A sworn weigher to be compensated by the Contractor shall weigh all materials required to be weighed as above provided. The weighing of such materials may be witnessed by the Engineer. If materials are shipped by rail or trucks, the car weights or quarry weights may be accepted, but scales shall be used as above, if so directed. Weight slips shall be provided for each shipment of material weighed. Each weight slip shall be signed by the sworn weigher. The weight slips shall be counter-signed on delivery by the Engineer and no weight slip not so countersigned shall be included for payment under the Contract.

When requested by the Contractor and approved by the Engineer in writing, material specified to be measured by the cubic yard may be weighed and such weights will be converted to cubic yards for payment purposes. Factors for conversion from weight measurement to volume measurement will be determined by the Engineer and shall be agreed to by the Contractor before such method of measurement of pay quantity is used.
The term "lump sum" when used as a unit of payment will mean complete payment for the work described in the Contract.

When a complete structure or structural unit (in effect, "lump sum" work) is specified as the unit of measurement, the unit will be construed to include all necessary fittings and accessories.

When standard manufactured items are specified such as fence, wire, plates, rolled shapes, pipe conduit, etc., and these items are identified by gage, unit weight, section dimensions, etc., such identification will be considered to be nominal weight or dimensions. Unless more stringently controlled by tolerances in cited specifications, manufacturing tolerances established by the industries involved will be accepted.

Subsection 9.02: Scope of Payments

The Party of the First Part will pay and the Contractor shall receive and accept the compensation as herein provided, in full payment for furnishing all materials, labor, tools and equipment and for performing all work contemplated and embraced under the Contract, and for providing all required submittals, reports, Certificates of Compliance (COCs) and any other paperwork or supporting documentation required by the plans and specifications, also for all loss or damage arising out of the nature of the work, or from the action of the elements (except as specified in Subsection 7.18), or from any unforeseen difficulties or obstructions which may arise or be encountered during the prosecution of the work (except as set forth in Subsection 4.04) until its final approval by the Party of the First Part, and for all risks of every description connected with the prosecution of the work, also for all expenses incurred by or in suspension or discontinuance of the said prosecution of the work as herein specified, and for any infringement of patent, trademark or copyright, and for completing the work in an acceptable manner according to the plans and specifications.

The payment of any current estimate shall in no way constitute an acknowledgement of the acceptance of the work or in no way or degree prejudice or affect the obligation of the Contractor, at their own cost and expense, to repair, correct, renew or replace any defects and imperfections in the construction of, or in the strength of, or quality of materials used in or about the construction of the work under Contract and its appurtenances, as well as all damages due or attributable to such defects: which defects, imperfections or damages shall have been discovered on or before the final inspection and acceptance of the work.

The Engineer shall be the sole judge of such defects, imperfections, or damages and the Contractor shall be liable to the Party of the First Part for failure to correct the same as provided herein, (Also see Subsection 7.20: No Waiver of Legal Rights).

Subsection 9.03: Payment for Extra Work

A. Payment for work for which there is a unit price provided for in the Contract.

Where the Contract contains a unit price for work and the Engineer orders Extra Work for work of the same kind as other work contained in the Contract and is performed under similar physical conditions, the Contractor shall accept full and final payment at the Contract unit prices for the accepted quantities of Extra Work done.

No allowance will be made for any increased expenses or any damages whatsoever.
B. Payment for work or materials for which no price is contained in the Contract.

If the Engineer directs, the Contractor shall submit promptly in writing to the Engineer an offer to do the required work on a lump sum or unit price basis, as specified by the Engineer. The stated price, either lump sum or unit price, shall be divided so as to show that it is the sum of:

1. The estimated cost of direct labor, materials, and the use of equipment, plus 10 percent of this total for overhead;
2. Plus the actual cost of Worker’s Compensation and Liability Insurance, Health, Welfare and Pension benefits, Social Security deductions, Employment Security Benefits, and such additional fringe benefits which the Contractor is required to pay as a result of Union Labor Agreements and/or is required by authorized governmental agencies;
3. Plus subcontractor or a Public or Private Utility costs;
4. Plus 10 percent of the total of (1), (2) and (3);
5. Plus the estimated proportionate cost of surety bonds.

Unless an agreed lump sum and/or unit price is obtained from above and is so stated in the Extra Work Order the Contractor shall accept as full payment for work or materials for which no price agreement is contained in the Contract an amount equal to the following:

1. The actual cost for direct labor, material (less value of salvage, if any) and use of equipment, plus 10 percent of this total for overhead;
3. Plus subcontractor or a Public or Private Utility costs;
4. Plus 10 percent of the total of (1), (2) and (3);
5. Plus the estimated proportionate cost of surety bonds.

Costs incurred for traffic police, railroad flagging and permits will be reimbursed without markup for overhead or profit.

No allowance shall be made for general superintendence and the use of small tools and manual equipment.

The Contractor shall, when requested by the Engineer, furnish itemized statements of the cost of the work ordered and give the Engineer access to all accounts, bills and vouchers relating thereto, and unless the Contractor shall furnish such itemized statements, access to all accounts, bills and vouchers, the Contractor shall not be entitled to payment for any items of extra work for which such information is sought by the Engineer.

C. Equipment Rates.

In the event there arises the need for determination of costs of use of equipment as part of “actual costs” or “cost of performance” or “damages” under Subsection 4.04: Changed Conditions, Subsection 7.16: Claims of Contractor for Compensation, Subsection 8.05: Claim for Delay or Suspension of the Work, Subsection 9.02: Scope of Payments, and/or Subsection 9.03: Payment for Extra Work, or under M.G.L. Chapter 30, such costs for use of equipment shall be established in accordance with the following:
(1) "Construction equipment" as used herein means equipment in sound workable condition, either owned or controlled by the Contractor or the Subcontractor at any tier, or obtained from a commercial rental source, and furnished for use under the contract.

(2) Allowable hourly ownership and operating costs for contractor-owned or subcontractor-owned equipment shall be determined as follows:

(a) Actual cost data from the Contractor's accounting and operating records shall be used whenever such data can be determined for hourly ownership and operating costs for each piece of equipment, or groups of similar serial or series equipment. Actual costs shall be limited to booked costs of the annual accounting period or periods during which the equipment was utilized on the Contract, and will not include estimated costs not recorded and identifiable in the Contractor's formal accounting records. The Contractor shall afford Department auditors full access to all accounting, equipment usage, and other records necessary for development or confirmation of actual hourly cost rates for each piece of equipment, or groups of similar serial or series equipment. The Contractor's refusal to give such full access shall invalidate any request or claim for payment of the equipment costs. When costs cannot be determined from the Contractor's records, hourly equipment cost rates may be determined under (b) and (c) below.

(b) When the Department ascertains that it is not practicable to determine actual equipment cost rates from the Contractor's records, hourly equipment cost rates for equipment owned by the Contractor may be determined by the use of rate schedules (with adjustments) supplied by EquipmentWatch Cost Recovery™. The Contractor shall provide to the Department, in a format prescribed by the Department, sufficient descriptive ownership and operating records and documentation for each piece of equipment subject to the extra work so that the equipment rates may be determined and adjusted as follows:

(1) Hourly equipment rates shall be the FHWA rate supplied by EquipmentWatch adjusted by application of the Rate Adjustment Tables (for machine age adjustment) plus adjustments to eliminate equipment overhead (indirect ownership) plus regional adjustments (the weekly, hourly and daily rates listed in EquipmentWatch will not be used). This rate shall be defined as 'Adjusted FHWA Rate.'

(2) Equipment standby rates shall be the 'Adjusted FHWA Rate' as described in (1) above, minus the operating rate and reduced by 50%. Standby rates shall not include operating rates: Equipment standby rate = (Adjusted FHWA Rate – Estimated Operating Rate)/2

The number of equipment hours to be paid for under the extra work or force account work shall be the number of hours that the equipment is actually used on a specific extra work or force account activity.
The current version of EquipmentWatch will be used in establishing equipment rates. The version applicable to specific extra work or force account work will be the version in effect as of the first day that work is performed on that force account work and that rate shall apply throughout the period during which the force account work is being performed.

In all cases, the Department reserves the right to utilize equipment rates based upon the contractor’s actual equipment ownership costs, other equipment rate books and guides (i.e. Construction Equipment Ownership and Operating Expense Schedule, Region One published by the Army Corps of Engineer’s) or hybrid rates determined to be reasonable by the Department.

(c) In those cases where a 10 percent additive for overhead and profit is to be superimposed on the equipment costs as provided in Subsection 4.04: Changed Conditions, and Subsection 9.03: Payment for Extra Work, Part B, equipment cost rates determined under (a) and (b) above shall exclude any overhead costs such as equipment insurance, licenses, or taxes. The 10 percent additive shall compensate the Contractor for all overhead costs, including equipment overhead, general superintendence, small tools, manual equipment, field overhead, and central office overhead. Where the 10 percent overhead additive is not applicable, overhead items clearly related to equipment, (equipment insurance, licenses, taxes), shall be included in the equipment rates; provided, however, that such costs shall be identified and eliminated from any other direct or indirect costs or damages payable by the Department under the Contract. No element of profit shall be allowable in equipment cost rates for Contractor-owned equipment; it being understood that a 10 percent profit additive will be superimposed upon equipment costs when called for by the Contract.

(3) Reasonable hourly costs of renting equipment are allowable subject to the Contractor producing adequate records supporting actual costs incurred, provided further that:

(a) Costs such as fuel, lubricants, and minor or running repairs incident to operating such rented equipment that are not included in the rental rate are allowable.

(b) Costs incidental to major repair and overhaul of rental equipment are not allowed.

(c) Charges for equipment leased or rented from any division, subsidiary organization under common control, or business under common ownership, ordinarily will be reimbursable to the extent that they do not exceed the actual costs of ownership and operating costs determined as in (2), above. Rental cost of equipment leased or rented from any division, subsidiary, affiliate of the Contractor under common control, or business under common ownership, that has an established practice of renting out the same or similar equipment to unaffiliated parties, shall be allowed at rates higher than actual ownership and operating costs, provided that the Contractor furnishes the Department adequate documentation, including the rental
and usage records for the same or similar equipment items, demonstrating a reasonable likelihood that the equipment would have been rented out if not used on this Contract, and that the rental rates charged are consistent with rates charged to unaffiliated parties and going market rates. Rental costs under a sale and leaseback arrangement will be allowable only up to the amount the Contractor would be allowed if the Contractor retained title.

(4) Equipment cost rates determined in (2) and (3) shall be exclusive of labor cost of equipment operators. Such costs shall be reimbursable subject to the Contractor producing adequate payroll and other records sufficient for determination of hours, pay rates, and reimbursable fringe costs as defined in Subsection 4.04: Changed Conditions and above.

(5) Except in cases of unit price or lump sum extra work orders approved by the Department before the work is done, actual reimbursable hours of equipment usage and operator time must be adequately documented by the Department force account records or Contractor field and office records maintained during performance of the work in a manner acceptable to the Department. Failure of the Contractor to so maintain time records which adequately segregate added equipment hours caused by extra work required by the Department, or caused by other Department actions cited in the Contractor’s claim for damages, from other equipment time worked on the Contract, when maintenance of such records would have been feasible, shall constitute a cardinal omission of the Contractor, invalidating any claim for equipment cost reimbursement.

The above provisions constitute an advanced agreement made in general conformance with intent of Federal Acquisition Regulation 31.105, paragraph (d)(1), said intent being to maximize clarity of understanding and minimize possible disputes with respect to determination of reimbursable actual equipment costs under this Contract.

Subsection 9.04: Partial Payments

The Engineer shall biweekly make an estimate of the total amount of the work completed from one estimate to the next. The Department may reduce payment on any or all individual pay items to account for the estimated value of documented incomplete or non-conforming work related to that pay item, including, in addition to the physical work, any submittals, Certificates of Compliance (COCs), reports or other paperwork required to support the work of the item. The Party of the First Part shall retain from said estimates an amount sufficient to cover claims which it may have against the Contractor and claims filed pursuant to Chapter 149, Section 29 and Chapter 30, Section 39A and F of the General Laws. The Party of the First Part shall pay biweekly to the Contractor while carrying on the work the balance not retained as hereinbefore provided. No such estimates or payment shall be required to be made when, in the Engineer’s judgment, the work is not proceeding in accordance with the provisions of the Contract, or when in their judgment the total value of the work completed since the last estimate amounts to less than $1,000.00.

There will be no retainage held from partial payments.

Upon presentation by the Contractor of certified copies of paid invoices, the Party of the First Part may include in the estimate, advance payments for acceptable reinforcing steel, structural steel, stone, piles, culvert pipe or other non-perishable materials purchased expressly for the work and
delivered on the work or in approved storage places at the site, but which materials are not considered as erected or complete in place under the items of the Contract, and for which partial payment as specified above would not be made until such materials and items were erected or complete in place.

If it is impossible due to lack of area on the site or other valid reason, the Contractor may request in writing permission from the Engineer to store materials off the site and still have the materials paid as material on hand and the Engineer may approve payment. This request will state the reason for the request, location of proposed storage site, methods that will be employed to insure that materials is properly protected and the material will be used on the particular project, and any other information as may be deemed necessary in order to evaluate the request. No advance payment for material stored off the site will be made until written approval of the Engineer has been obtained. The amount to be included in the estimate will be determined by the Engineer up to a maximum of 100% of the value of the materials as shown by the certified copies of paid invoices. Payment will not be approved when the invoice value of such materials as determined by the Engineer, amounts to less than $1,000.

Deductions at rates and in amounts which are equal to the payments will be made from estimates as the materials are incorporated in the work.

Payment for the materials, as aforesaid, shall not in itself constitute acceptance and any materials which do not conform to the specifications for same shall be rejected in accordance with the stipulation of Subsection 6.04: Defective Materials.

Payment for structural steel and aluminum, specifically purchased and received by fabricators for incorporation into a Department project may be requested by the Contractor and included in the current estimates in an amount not to exceed 50 percent of the contract price. Certified paid invoices and material certifications must be submitted by the contractor to the Department with the request for payment. The invoices must clearly identify the Department project for which the material is intended along with the material type and quantity. When payment is made, the raw material becomes the property of the Commonwealth of Massachusetts. A document transferring ownership of the raw material to the Commonwealth shall be submitted to the Department immediately after payment is made. Such payment shall in no way release the Contractor from their responsibility for condition, protection and, in case of loss, replacement of such materials or from any liability resulting in any manner from the presence of such materials wherever they may be stored. Any material not conforming to the specifications shall be rejected in accordance with the stipulation of Subsection 6.04: Defective Materials.

In instances where the raw material is not in the process of fabrication, the material shall be segregated from other material, designated as "Property of the Commonwealth of Massachusetts", and clearly marked to identify the project into which the material will be incorporated.

All material shall be inspected at the fabricator’s plant by a representative of the Department prior to the submittal of invoices to ensure that all material has been received and is properly stored and segregated.

For any item for which the payment is made on a lump sum basis, (except lump sum Bridge Structures) and for which payment may be allowed if the Contractor requests partial payment on such an item, the Contractor shall submit for approval by the Engineer, a schedule of the quantities
and unit prices for the major components of the item. Each component part shall be considered as including all its concomitance so that the total cost listed for the components is the contract cost for the item. The approval of the schedule by the Engineer shall not be considered as a guarantee to the Contractor that the quantities shown on the schedule are the approximate quantities actually included in the lump sum item.

The schedule is only for the purpose of estimating partial payments, and it shall not affect the contract terms in any way.

The Contractor will be required to certify, in writing, that the work for which they are being paid on the estimate in question has in fact been done.

Subsection 9.05: Final Acceptance and Final Payment

When in the opinion of the Chief Engineer the Contract has been satisfactorily completed and final acceptance has been voted by the Board of Commissioners, the Department Secretary shall inform the Contractor in writing of the date of such acceptance, upon which date the Contractor’s responsibility shall cease except as provided in their bond and as provided in Subsection 7.20: No Waiver of Legal Rights.

The Engineer shall, as soon as practicable after the physical completion of the Contract, make a final estimate of the amount of work done thereunder and the value of such work. Within 65 days from and after the date the work has been accepted by the Board, the Party of the First shall forward to the Contractor a copy of the final estimate or semifinal estimate as stipulated in Chapter 30, Section 39G of the General laws, as amended together with an agreement form for their acceptance. After such acceptance has been filed with the Supervisor of Fiscal Management of the Department payments of the entire sum will be made, so found to be due thereunder after deducting therefrom all previous payments and all amounts to be kept and all amounts to be retained under the provisions of the Contract. All prior partial estimates and payments shall be subject to correction in the final estimate and payment. If the Contractor has not filed valid (as determined by the Engineer) written reasons for not accepting the final estimate within three months from the date the final estimate is forwarded to the Contractor, the final estimate will be considered acceptable to the Contractor and payment of the final estimate made.

The acceptance by the Contractor of the final payment shall operate as and shall be a release to the Party of the First Part and every member, agent and employee thereof, from all claims by the Contractor for anything done or furnished for, or relating to the work or for any act or neglect of the Party of the First Part or of any person relating to or affecting the work, except the claim against the Party of the First Part for the remainder if any there be, of the amounts kept or retained as provided in Subsection 7.15: Claims Against Contractors for Payment of Labor, Materials and Other Purposes.

Subsection 9.06: Prompt Payment to Subcontractors

Contractors are required to promptly pay Subcontractors under this Contract within 10 business days from the receipt of each payment the Contractor receives from the Department. Failure to comply with this requirement may result in the withholding of payment to the Contractor until such time as all payments due under this provision have been received by the Subcontractor(s) and referral to the Prequalification Committee for action which may affect the Contractor’s prequalification status.
DIVISION II:
CONSTRUCTION DETAILS

Section 100: Earthwork, Grading, Demolition, Rodent Control and Borings
Section 200: Drainage
Section 300: Water Systems
Section 400: Sub-Base, Base Courses, Shoulders, Pavements and Berms
Section 500: Curb and Edging
Section 600: Highway Guard, Fences and Walls
Section 700: Incidental Work
Section 800: Traffic Control Devices
Section 900: Structures
SECTION 100: EARTHWORK, GRADING, DEMOLITION, RODENT CONTROL AND BORINGS

SUBSECTION 101: CLEARING AND GRUBBING

DESCRIPTION

101.20: General
This work shall consist of clearing, grubbing, cutting, removal and disposal of all vegetation and debris from areas as shown on the plans or designated by the Engineer. The work shall also include the preservation from injury or defacement of all vegetation and objects designated by the Engineer to remain.

CONSTRUCTION METHODS

101.60: General
The burning of trees, brush, stumps, etcetera, will not be permitted. The Contractor shall provide other satisfactory methods of disposal without additional compensation.

The Contractor shall obtain written permission of the Engineer before storing debris within the Right-of-Way. Any clearing operations beyond the limits set by the Engineer shall be done with the approval of the Engineer and at the Contractor’s expense. All such areas shall be restored to a condition acceptable to the Engineer including necessary mulching, seeding, and planting without additional compensation.

The Engineer shall be provided with notarized copies of agreements between the Contractor and owners of land used as disposal or storage areas.

When fencing is installed outside normal clearing areas, every reasonable effort shall be made to preserve trees or shrubs whose removal is not essential to the installation of the fencing.

Acceptable material obtained on the project may be used to produce wood chip mulch. The Contractor shall use an approved chipper and ¼-in. knife setting as described under M6.04.3: Wood Chip Mulch. Material obtained from Elm trees shall not be accepted for use.

Wood chips produced on the project shall be stockpiled within the location and used where and as directed.

Except for materials used for making wood chip mulch, the Contractor shall make all arrangements and negotiations necessary for the satisfactory disposal of trees, shrubs, stumps, roots, dead wood and other litter, in areas outside the Right-of-Way and in such manner that no condition or accumulation of material shall be permitted to disfigure or mar the finished landscape.

101.61: Clearing and Grubbing
The stumps of all trees, brush and major roots shall be grubbed and removed in all excavation areas and under all embankments where the original ground level is within 3 ft of the subgrade or slope of embankments.
All trees, stumps, and brush shall be cut off within 6 in. of the ground in embankment areas where the original ground level is more than 3 ft below the subgrade or slope of embankments.

Trees and shrubs that are specifically designated by the Engineer not to be cut, removed, destroyed or trimmed shall be saved from harm and injury.

All damage done to trees by the Contractor’s operation and all branches of trees extending within the roadway shall be trimmed as directed to provide the minimum vertical clearance including selective trimming of such trees as directed.

101.62: Tree Trimming and Selective Clearing and Thinning

A. General.

The work under this item shall consist of the removal of hazardous growth and dead, dying or diseased plant material; the removal of groups and individual plants which interfere with the growth of more desirable types of trees and the clearing away of lesser growth that may obscure outstanding trees, tree groups, or scenic views. Any part of tree trunks or base of plant material located on the Location Lines shall be considered within the State Highway Limits.

Densely wooded areas shall be thinned to provide space for healthy growth by eliminating thinner, weaker trees and the reduction of number of varieties.

The desired appearance to be attained in certain areas of heavy growth may require three or more operations. First, the obvious dead, dying and diseased trees and undergrowth shall be cut and cleared out of the area. This work includes removal of any previously fallen trees, branches, uprooted stumps and other debris as directed. Next, the area is to be thinned out, as directed, by removing the less desirable trees and brush which interfere with the growth of the better plant material. Finally, clear out lesser growth which may obscure outstanding trees, tree groups or scenic views.

Tree up-branching and shaping under this item will be restricted to trees which have limbs and branches restricting sight distance, extending over roadways, shoulders, turn outs, etc. Up-branching or trimming will be required to produce the minimum vertical clearance directed by the Engineer.

B. Prosecution of Work.

(Supplementing Subsection 8.03: Prosecution of Work)

All trimming and pruning shall conform to ANSI A300 For Tree Care Operations - Tree, Shrub, and Other Woody Plant Management - Standard Practices.

Recognized tree surgery practices include among many others, the fact that all limbs and branches which require removal and all stubs regardless of age must be cut flush either to a union with the next larger sound limb or branch or flush to the trunk of the tree.

The cutting shall be performed by arborists with the ISA Tree Worker Climber Specialist certification. Care shall be exercised by the Contractor to prevent injury to trees and shrubs designed to be preserved. Any injury to limbs, bark or roots of such plants shall be repaired by the Contractor, as directed, or the plants replaced without additional compensation for such repair or replacement. Injury to limbs, bark or roots of such plants shall be repaired or the plants replaced by
the Contractor, at the discretion of the Engineer, without additional compensation for such repair or replacement.

C. Cutting and Treatment of Stumps and Stubble.

Standing trees, undesirable brush and existing stumps to be removed shall be cut flush with the ground and a 2-in. tolerance permitted and the resulting stumps or stubble.

The Contractor shall use all necessary precautions to prevent injury to crops or damage to other desirable growth on private abutting property, as well as to those within the Right-of-Way, and shall assume full responsibility for any damage.

D. Disposal of Cuttings.

The Contractor may dispose of cut material by processing into a wood chip mulch as described in M6.04.3: Wood Chip Mulch and spreading uniformly throughout the cleared and thinned areas as directed by the Engineer.

101.63: Disposition of Trees, Stumps and Brush

All trees, tree stumps, including trunk base, root flare and attached root mass and brush to be cleared shall be subject to the regulations and requirements of state and local authorities governing the disposal of such materials. Trees, stumps and brush shall be chipped to 1-in. maximum chip dimension and spread to a depth not to exceed 4 in., in a location approved by the Engineer, at no additional compensation.

The trees, stumps and brush including cuttings, shall not be stored on site for more than 24 hours unless chipped.

If the existing ground in the area is disturbed by any of the work or equipment, the Contractor shall rough-grade and loam and seed if necessary the disturbed areas without additional compensation.

The Contractor shall be responsible for ensuring that any and all plant pests on site shall not be carried off site and shall be either destroyed or otherwise contained on site. Plant pests shall include invasive plants, noxious weeds, insect pests, and plant diseases (including infected plant tissue). Method of destruction or containment shall be approved by the Engineer. If invasive or contaminated material cannot be either destroyed or contained on site, contractor shall submit plans for disposal for approval by the Engineer. For current list of plant pests and applicable management procedures see the following on-line references:

Invasive Plants: http://www.massnrc.org/mipag/docs/MIPAG_FINDINGS_FINAL_042005.pdf
Plant Pests: http://www.massnrc.org/pests/factsheets.htm#commodity

COMPENSATION

101.80: Method of Measurement

Both Clearing and Clearing and Grubbing shall be measured by the horizontal plane area and will be the number of acres within the limiting stations of the project and/or as designated by the Engineer and the outside limits of measurement shall extend to a point 5 ft beyond the top or bottom of slopes, excluding existing roadway and shoulder surfaces, streams or bodies of water.
Areas outside of the limits specified above, when cleared and grubbed in connection with the construction of fences and noise barriers shall be computed on the basis of a 10-ft width multiplied by the total length installed, and when done in connection with excavating ditches or trenches the width shall be limited to 5 ft beyond the outer edges of the excavation.

Measurement of selective clearing and thinning will be based on the actual number of acres which receive the required attention. Approximate locations will be shown on the plans or detail sheets and as designated in the field by the Engineer.

Trees and stumps, regardless of size, that fall within an area to be cleared and grubbed or selectively cleared and thinned shall not be measured separately for payment.

Only trees that have a shortest diameter of at least 9 in. and less than 2 ft shall be included in Item 103. Trees Removed (Diameter Under 2 feet). Only trees that have a shortest diameter of 2 ft or more shall be included in the Item 104. Trees Removed (Diameter 2 feet and Over).

Tree trimming shall be measured along the length of the tree trimming operation. Sections along the length of the tree trimming operation where no trees are required to be trimmed for a length of 30 ft or more shall be subtracted from the total length of the tree trimming operation.

The item of Stumps Removed shall include the removal and satisfactory disposal of all tree stumps which remain in their original position and measure 9 in. or more in shortest diameter at the cutoff point, where the trees have been previously removed by others. A stump shall not be construed as a tree under these specifications unless the trunk extends over 6 ft above the average ground.

Trees or stumps to be removed which have the shortest diameter specified for payment will be measured in place by the following procedure:

Where the tree consists of a single trunk extending more than a 3 ft vertical height above the average natural ground line, the shortest diameter shall be measured at the 3-ft level above the average elevation of the original ground.

Any tree whose main trunk separates into multiple trunks or which has limbs or branches growing out from the main trunk below the 3-ft level defined hereinbefore shall have its shortest diameter measured at the lowest point on the main trunk where multiple growth or branching out begins.

The shortest diameter of a stump shall be measured at the cutoff except that where multiple growth begins below cutoff, the shortest diameter shall be measured at the main trunk where multiple growth begins.

Measurement for payment under the respective items shall be such that any individual growth to be classed as a tree stump shall be measured in a manner to limit payment to one single tree or stump at each particular location of the individual growth. When multiple trunks with a common root system are separated at ground level each separate trunk shall be considered as an individual growth under these specifications.

The quantity of trees or stumps to be paid for will be the number actually removed by the Contractor in the completed and accepted work as determined by count.
101.81: Basis of Payment

Clearing and Grubbing will be paid at the contract unit price per acre and shall include the removal of all brush, trees, stumps and roots within the designated area. No separate payment will be made for any individual trees or stumps removed within the area.

Clearing will be paid at the contract unit price per acre and shall include the removal of all brush undergrowth and trees, within the designated area. No separate payment will be made for any individual trees removed within the area.

Selective Clearing and Thinning will be paid at the contract unit price per acre and shall include the removal of all trees as directed, brush, dead, dying and diseased trees, previously fallen trees, branches, uprooted stumps and other debris within the designated area. No separate payment will be made for any individual trees or stumps removed within the area.

When clearing or clearing and grubbing work is not included in the proposal as a payment item, payment for any such work will be included in the excavation or borrow items.

Individual trees to be removed will be paid for at the contract unit price per each and shall include the stump and major root systems. Only trees having a shortest diameter of 9 in. and over as defined in 101.80: Method of Measurement shall be measured for payment.

Tree Trimming will be paid for at the contract unit price per foot.

Stumps to be removed, as defined in 101.80: Method of Measurement, will be paid at the contract unit price per each and shall include the major root system.

The contract unit price shall include the cost of all arrangements and methods required to protect from harm all existing overhead or underground installations.

No payment shall be allowed for preparation and spreading of wood chips.

101.82: Payment Items

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Clearing and Grubbing</td>
<td>Acre</td>
</tr>
<tr>
<td>101.1</td>
<td>Clearing</td>
<td>Acre</td>
</tr>
<tr>
<td>102</td>
<td>Selective Clearing and Thinning</td>
<td>Acre</td>
</tr>
<tr>
<td>102.1</td>
<td>Tree Trimming</td>
<td>Foot</td>
</tr>
<tr>
<td>103</td>
<td>Tree Removed (Diameter Under 2 feet)</td>
<td>Each</td>
</tr>
<tr>
<td>104</td>
<td>Tree Removed (Diameter 2 feet and Over)</td>
<td>Each</td>
</tr>
<tr>
<td>105</td>
<td>Stump Removed</td>
<td>Each</td>
</tr>
</tbody>
</table>

SUBSECTION 112: DEMOLITION OF BUILDINGS, STRUCTURES AND BRIDGES

DESCRIPTION

112.20: General

The work to be done consists of demolishing completely such buildings and structures as are listed in the Proposal.
Said demolishing of the buildings shall be done on the site. Buildings as such shall not be removed intact from the site by the Contractor nor shall they be sold to others for such removal.

“Buildings” or “Structures” shall be considered interchangeable terms within the scope of these Specifications.

The Contractor shall not proceed with the demolition of any building or structure unless and until they receive written approval.

Structures which must be removed, and which are not listed in the Proposal will be removed by others at the direction of the Department. The Contractor’s attention is directed to the relevant provisions of Subsection 8.04: Removal or Demolition of Buildings and Land Takings, Subsection 8.08: Preservation of Roadside Growth, and Subsection 9.05: Final Acceptance and Final Payment, wherein it is stipulated that the Contractor shall have no claim for damages for any delay in the prosecution of the work under any of these items, or for the omission of any one or more of the items scheduled in the Proposal.

The Department may withdraw from the Contract any or all of the structures which are scheduled for demolishing and for which items are included in the Proposal, and the Contractor shall, in this case, have no redress against the Department for any loss in anticipated profits. The Contractor’s attention is further directed to the probability that delay may be encountered in the prosecution of demolition or removal work and that as stipulated in said Subsection 8.04: Removal or Demolition of Buildings and Land Takings and Subsection 8.05: Claim for Delay or Suspension of the Work, the Contractor shall have no claim for damages for any delay in the prosecution of work hereunder, except as provided.

The Contractor shall be solely responsible for making all necessary arrangements and for performing any necessary work to the satisfaction of the Utility Companies and Municipal Departments involved in connection with the discontinuance or interruption of all public utilities or services, such as gas, water, sewer, electricity, and telephone, which will be affected by the work to be done under the Removal items specified in the Proposal.

CONSTRUCTION METHODS

112.60: Demolition of Buildings and Structures

Each item for demolition includes the demolition of the building or buildings as identified and described under the particular item listed in the Proposal, and the satisfactory disposal of the buildings and all contents therein. Basements shall be completely cleaned of all unsuitable materials and debris, all partition walls, and supports for the appurtenances to the buildings.

The foundation walls of the structures shall be broken down to a depth of not less than 1 ft below the existing ground level.

Cellar floors shall be broken into pieces having an area not more than 4 ft² with well-defined cracks through the full depth of the floor.

Holes having an area of not less than 1 ft² shall be made through the floor at intervals of not more than 10 ft lengthwise and crosswise, to provide vertical drainage.
Buildings without basements or cellars having concrete or masonry floors or slabs at ground level, when demolished, shall be removed to the ground floor grade. The floor or slab shall be removed and the area graded as directed.

All fences, debris, etc., on the parcel on which the building that is demolished is located shall be removed and the parcel left in a reasonably neat and safe condition.

In case the building to be removed is served by a septic tank or cesspool, or underground fuel tanks, such structure or structures and appurtenant pipes shall be broken down or removed and all resulting cavities satisfactorily filled with selected excavated material placed in 1-ft layers and thoroughly compacted. If directed, the Contractor shall remove the contents of said structures prior to disturbing them, and the disposal thereof shall conform to the requirements of the local Board of Health. Underground fuel tanks and contents shall become the property of the Contractor and shall be carefully handled and removed and immediately disposed of in compliance with applicable safety and pollution control regulations.

The Department assumes no responsibility for any changes in the condition of the buildings, or for loss of fixtures, or equipment at any time.

All materials resulting from the demolition of the buildings shall become the property of the Contractor and they shall dispose the same outside and away from the site, except all acceptable solid fill shall be used in filling cellar holes before borrow is used. Solid fill shall consist of noncombustible material, such as brick, stone and plaster (but not wood lath) and shall contain no piece larger than \(\frac{1}{2} \text{ yd}^3 \) in volume, or greater than 3 ft in dimension. All materials which consist of hazardous substances such as lead paint, asbestos, petroleum products, etcetera, shall be disposed of in accordance with state and federal environmental regulations. Acceptable materials from removal may be placed no higher than 1 ft below existing grade. All pipes and other conduits encountered and to be abandoned on account of the demolition shall be plugged with brick and mortar. Drainage structures shall be removed completely and the cavity completely filled with selected excavated material or borrow in 18-in. layers and thoroughly compacted.

A minimum depth of at least 1 ft of ordinary borrow shall be used as a cover and shall be reasonably leveled. The areas adjacent to the site of the removal shall be left in a neat and safe condition satisfactory to the Engineer. Upon completion of the work, all cellar holes shall be filled to the grade of adjacent ground in the manner specified hereinabove.

The Contractor shall protect all buildings which adjoin a structure to be demolished and shall leave the same in a permanently safe and satisfactory condition.

In accordance with the provisions of Subsection 7.10: Barricades and Warning Signs, Contractor shall erect suitable fences around unfilled basements and other dangerous locations created by their work, during demolition and prior to filling of cellar holes or cavities. All costs in connection with such fences shall be included in the contract price for the appropriate demolition item.

112.61: Demolition of Bridges

The Contractor shall not disturb any utility or property carrying water, gas, telephone, electric or similar service across the bridge unless they are permitted to do so by the Engineer.
If the Contractor is directed to make any repairs or to do any maintenance work on the present superstructure or bridge supports during the period it is open for public travel, the Contractor shall do the directed work in accordance with the provisions of Subsection 4.03: Extra Work.

The Contractor shall assume responsibility for the maintenance and safety of the present superstructure or bridge immediately on notice to them that the Engineer has closed the bridge to the public.

Where the bridge to be removed is over a railroad all work of removing the bridge superstructure and bridge supports shall be done at such times and in such manner as will cause the least possible interference with the operation, management, business or traffic of the railroad.

Demolition of Present Superstructure.

All materials in or on the superstructure of the present bridge, its supporting beams and braces, shall be satisfactorily removed. Such material as the present owner desires which are specified in the Special Provisions shall be stacked near the site as directed and convenient for removal by owner. The material that the present owner does not specify shall become the property of the Contractor.

Demolition of Present Bridge.

The work under this item shall include the removal and satisfactory disposal of the entire superstructure, as specified above, and the removal and satisfactory disposal of the substructure to the extent that the slopes in the abutment area will match the slopes of the adjacent embankment. Materials resulting from removal may be used as embankment materials on the project, if approved by the Engineer, without any additional compensation to the Contractor.

Stone, concrete masonry or other support shall be removed so that none of it will come within 2 ft of the finished slopes or within 3 ft of the roadway surface, and the remaining space shall then be backfilled.

When the bridge to be removed is over water, all parts of piers or other supports in the water shall be removed to the elevation of the bed of the stream or other body of water or as indicated on the plans or in the Special Provisions.

COMPENSATION

112.80: Method of Measurement

Ordinary borrow shall be measured as described under 150.80: Method of Measurement.

112.81: Basis of Payment

The work will be paid for at the contract lump sum price under the respective item for the particular building, structure or bridge designated to be demolished as set forth in the Proposal, which price shall include full compensation for all the work prescribed herein, except furnishing and placing ordinary borrow for cover where required.
SUBSECTION 119: CONTROL OF RODENTS

DESCRIPTION

119.20: General

The work to be done consists of the control (extermination) of rodents, prior to the demolition of buildings, in dump areas, landfills or other areas so designated by the Engineer.

119.60: Control (Extermination)

This work shall consist of two phases as follows:

1. Initial Treatment.

This phase shall start immediately after execution of the Contract and shall be applied in all buildings to be razed and to all other buildings and areas within the limits of construction where, in the Engineer’s judgement, rodents have gathered or may gather during the construction period. A toxic material consisting of zinc phosphide pre-packaged acute toxicants or another acute anti-coagulant which has been approved by the Massachusetts Department of Agricultural Resources, Pesticide Board, with a suitable bait shall be used. The treated bait shall be placed in all structures to be demolished so as to attract the greatest possible number of rodents; and in accordance with best practice.

One week (more or less, as directed) after the “Initial Treatment,” the Contractor shall start a program of maintenance to rid the structures and adjacent areas within the limits of this Contract of any remaining rodents, their carcasses, and to prevent their migration to other adjacent areas. The toxicant should be an acute anti-coagulant pre-mixed bait and used in accordance with the labeled and regulatory laws.

All visible carcasses of rodents shall be removed and disposed satisfactorily.

The toxic bait shall be renewed semi-monthly or as directed, throughout said maintenance period until the structures have been demolished and the cellar holes have been filled to the extent required.

All extermination operations shall be in accordance with the rules and regulations of the Municipality and State Health Departments.
II.10 2020 Edition

COMPENSATION

119.81: Basis of Payment
The work will be paid for at the contract lump sum price.

119.82: Payment Items

119. Rodent Control .. Lump Sum

SUBSECTION 120: EXCAVATION

DESCRIPTION

120.20: General
This work shall consist of excavation, disposal or compaction of all materials not being removed under some other item which is encountered within the limits of the Contract in accordance with the specifications and in close conformity with the lines, grades, thicknesses and cross sections shown on the plans or established by the Engineer. All excavation will be classified as “Earth Excavation,” “Class A Rock Excavation,” “Muck Excavation,” “Topsoil Excavated and Stacked,” “Hot Mix Asphalt Excavation by Cold Planer,” and “Unclassified Excavation,” as hereafter described.

Materials from all classes of excavation which are unsuitable, and any surplus of suitable materials remaining after completing the formation of embankments, shoulders, approaches, widening of roadway or embankment slopes as directed or backfilling, will be known as waste and shall be disposed of by the Contractor outside the Right-of-Way at their responsibility and expense, unless otherwise directed. Waste material shall not be disposed of in the flood channel areas of any stream.

Existing concrete foundations, if not interfering with the proposed construction, may be abandoned in place with approval of the Engineer. Foundations under the roadway surface shall be removed to a depth of 3 ft below finished grade. Foundations outside of the roadway surface shall be removed to a depth of 1 ft below the proposed finished grade.

120.21: Earth Excavation
Earth Excavation shall consist of all excavation not included as Class A Rock Excavation or excavation which is otherwise classified and paid for.

Unless otherwise provided for in the Contract, Earth Excavation shall also include as incidental to the general work the removal and disposal of abandoned junk cars, trash, signs, fences, guardrail, guide posts, hot mix asphalt berms and debris of every nature.

120.22: Class A Rock Excavation
When encountered within the limits of roadway or channel excavation unless otherwise provided for in the Proposal.
Class A Rock Excavation shall consist of:

1. Igneous, metamorphic and sedimentary rock which cannot be excavated without blasting or the use of rippers.
2. All rock, stone, parts of stone, brick or cement concrete pavement, parts of cemented stone walls or masonry structures measuring 1 yd³ or more that require blasting for removal.

120.23: Muck Excavation

Muck excavation shall consist of the removal and disposal of saturated or unsaturated mixtures of soils and organic matter not suitable for foundation material regardless of moisture content.

120.24: Topsoil Excavated and Stacked

The work to be done under this item consists of excavating topsoil from certain locations listed on the details sheets and where directed, to the depths shown on the cross sections, or as directed, and stacking the topsoil in accordance with the provisions of 120.65: Topsoil Excavated and Stacked.

120.26: Unclassified Excavation

This work shall consist of all earth excavation as specified in 120.21: Earth Excavation, rock excavation as specified in 120.22: Class A Rock Excavation, and all other excavation not provided elsewhere in the contract.

CONSTRUCTION METHODS

120.60: General

A. Sequence of Operations

When required, the Contractor shall so prosecute their work that traffic will be maintained over and through the work with a maximum of safety and convenience in accordance with the provisions of Subsection 7.09: Public Safety and Convenience.

The sequence of all excavation operations, earth or rock, shall be such as to insure the most efficient utilization of excavated materials into embankments (as specified in Subsection 150: Embankment) and the use of a minimum amount of borrow. When the plans require excavation in areas in close proximity to existing roads, structures and utilities it shall be the responsibility of the Contractor at their expense to construct suitable drainage ditches or use other satisfactory means and methods to protect and maintain the stability of such roads, and structures located immediately adjacent to but outside the limits of excavation.

The Contractor's attention is directed to the requirements of the Prevention of Water Pollution and Erosion. The Contractor shall prosecute the work as to prevent the ponding of water. Each lift of excavation shall be visibly crowned to allow drainage of surface and rain water.

B. Disposal of Excavated Materials.

All suitable materials obtained from the excavation or from the removal of present structures shall be used either in the formation of embankments, shoulders, slopes, loam or clay hardening, etc., or for backfill under, over, or around structures, pipe culverts or drains and at such other places as directed and the material shall be placed and compacted in a manner conforming to the
specifications for the particular type of work required without additional compensation. It shall be the Contractor’s responsibility to obtain from the Engineer approval for the use and placing of various materials encountered in excavation.

It shall be the Contractor’s responsibility to dispose of material designated as unsuitable and any excavated material which is not required, except as noted in Paragraph C of this subsection, outside of the Right-of-Way in such a manner as not to obstruct streams or otherwise impair the drainage, appearance, safety or efficiency of any structure or any other part of the road.

No materials from the excavation, nor from construction, shall be deposited in flood plains nor within 100 ft of any body of water without compliance under provisions of Chapter 131, Section 40 of the Massachusetts Wetlands Protection Act. Notification to the Engineer, in writing, will be required wherein such filling has been authorized by the local Conservation Commission.

No excavated material shall be placed outside of and adjacent to the Right-of-Way without the written approval of the Engineer. The Contractor shall certify that they have proper releases from property owners within 500 ft of Right-of-Way which is used as disposal areas for unsuitable material.

The Contractor shall construct sod or other adequate retaining banks around perimeters of the disposal areas outside the project to protect existing roads, stream channels, and adjoining properties (including underground water supplies) against the spread of, or contamination by, the excavated material. Stream channels and ditches within and adjacent to the project shall be maintained as at present or as specifically altered by the design of the project.

All waste areas shall be thoroughly stabilized by means of drains, proper grading, mulching, loaming and seeding as required to promote vegetation and to insure the areas will not be subject to erosion.

C. Grading Outside of the Location.

Where directed, earth, loam, or borrow of the kind required shall be used for grading outside of the Right-Of-Way and the surface shall be raked, smoothed and rolled. Excavation shall be made as directed on slopes or surfaces outside of and adjoining the location.

When temporary or existing roads are abandoned within the limits of highway work and beyond the limits of the main roadway slopes, their surfaces shall be removed and graded and loamed for a neat and natural appearance for proper drainage of surface water, as directed.

120.61: Earth Excavation

This work shall be performed in the manner specified in 120.60: General and 170.60: General.

120.62: Class A Rock Excavation

Class A Rock Excavation shall be performed in accordance with the requirements specified in 120.60: General, with the following additional requirements:

The Contractor shall prosecute their work so that all rock available for disposal in embankments shall be removed previous to the final embankment formation. Rock shall be partially or completely stripped of overburden, as directed, before removal operations are begun. Loose or shattered fragments of rock which may be a hazard to traffic shall be removed from the slopes.
120.63: Presplitting Rock

Presplitting shall be required in rock cuts 10 ft or more in vertical height where designed slope is 1 horizontal to 4 vertical or steeper. Rock cuts more than 25 ft in vertical height may be presplit in stages (lifts) at the option of the Contractor, provided that no stage shall be less than 10 ft in depth and further provided that no payment will be made for additional excavated quantities caused by offsetting presplitting holes beyond the specified face in the top on successive stages. Presplitting holes in successive stages shall be offset not more than 2 ft inside of the previously presplit face.

Prior to the blasting of any rock for removal, the Contractor shall presplit the rock along the designated cut face by the method hereinafter described to produce a uniform plane of rupture, so that the resulting face will not be affected by subsequent fragmentation blasting and excavation operations.

The Contractor shall adjust their blasting operations according to the characteristics and structure of the rock formation to obtain the required slope without fracturing the rock beyond the presplit face.

The sequence of operations shall be as follows, unless otherwise directed:

1. Remove all overburden soil within the areas of proposed fragmentation blasting to expose the rock surface.
2. Drill 2.5- or 3-in. nominal diameter holes not more than 3 ft on centers along the top of the proposed slope line and at the required inclination, to the full depth of the cut or to a predetermined stage (lift) elevation. Presplit holes shall deviate not more than 0.5-ft at any point from the plane of specified slope, nor more than 1 ft at any point from a vertical plane through the top of the hole and normal to the plane of slope.
3. Fragmentation blast holes shall be positioned so that no portion of any blast hole shall be within 4 ft of the designated presplit face, unless otherwise permitted by the Engineer.
 The plane of presplining slope as originally drilled shall not be penetrated by subsequent fragmentation blast holes.
4. The Contractor shall inspect and test each hole to determine the possible presence of any obstruction before placing the charge. No loading shall be permitted until the hole is clear of all obstructions. Precautions shall be used in placing the charge to prevent caving-in of material from the wall of the hole.
5. Cartridge explosives prepared and packaged by explosive manufacturing firms and approved by the Engineer shall be used in presplitting holes except, with prior permission of the Engineer, either of the following charges may be used as an alternative provided the results are satisfactory:
 (a) Continuous column commercial explosives manufactured especially for presplitting.
 (b) Multiple strands of high-strength (175-200 grains of explosive per foot) detonating fuse taped together at 4- to 6-ft intervals.
6. The spacing of the dynamite charge in each hole shall be accomplished by securely taping (or attaching by other approved means) each piece of dynamite to the detonating fuse at the selected intervals or by deck loading. If the latter method is used, the
dynamite must be in intimate contact with the detonating fuse to assure detonation of all charges.

7. All space in each hole not occupied with the explosive charge shall be filled with \(\frac{3}{8}\)-in. crushed stone meeting the requirements of Subsection M2.01.6. No other material or type of stemming will be permitted.

8. The detonation of presplit charges shall precede the detonation of adjacent fragmentation charges within the section by a minimum of 25-milliseconds.

120.64: Muck Excavation

The work of muck excavation shall be performed in accordance with the requirements of 120.60: General with the following additional requirements:

Muck shall be excavated to the estimated widths and depths shown on the plans and/or so as to completely remove the muck. Where a proposed bridge or other structure comes within the limits of muck excavation, that portion of the excavation within the limits of the proposed structure will be paid for as Muck Excavation.

120.65: Topsoil Excavated and Stacked

This work shall consist of removing topsoil and stacking it where and as directed in accordance with the relevant requirements of Subsection 120: Excavation and Subsection 751: Loam Borrow and Topsoil Rehandled and Spread.

Such of the topsoil as will be selected, after testing by Department of material obtained from test pits, shall be stacked neatly outside the limits of the proposed slopes within the Right-of-way or such material may be temporarily stacked by the Contractor outside the Right-of-Way for their own convenience, with the approval of the Engineer, in which case the Contractor shall be responsible for all arrangements and negotiations. If the material stacked outside the Right-of-Way is not available when needed for use on the project, the Contractor will furnish at their expense an equal volume of equal material.

If the temporary storage areas outside the Right-of-Way require clearing and grubbing, the Contractor shall do such work without additional compensation.

Storage areas shall be cleared, grubbed and rough graded so that maximum amount of stacked material will be available for reuse.

The Contractor shall take reasonable care to avoid leaving any unsightly condition and to avoid unnecessary damage or injury to natural surroundings and roadside growth. The landscape shall be left in a satisfactory, neat and trim condition upon completion of the work.

120.67: Unclassified Excavation

This work shall consist of the excavation, removal and satisfactory disposal, in accordance with the relevant provisions of 120.60: General of all materials listed under Subsection 120: Excavation necessary for the construction of the proposed work as shown on the Plans or as directed, except those materials for which payment is specified under other items of the Contract.
COMPENSATION

120.80: Method of Measurement

All classes of excavation except topsoil will be measured in their original position by the cross-section method except where such measurement is impracticable the volume shall be measured by such other methods as the Engineer may determine.

In any case, payments will be made only for excavation to lines and grades as indicated on the plans or as directed.

Pay limits for rock excavation actually removed will be as follows:

1. For side slopes:
 (a) In excavation for side slopes up to a limit of 24 in. beyond and parallel to slope lines either shown on the plans or ordered in writing by the Engineer.
 (b) No allowance will be made for rock excavation beyond these specified lines in side slopes except that if ordinary borrow is required for the work and excess rock excavation is used in embankments such rock will be paid for as ordinary borrow.
2. Rock Excavation in curb and edging trenches not already paid for in previous rock excavation will be paid up to a width of 18 in., providing rock extends to that width.
3. For area between side slopes:
 (a) In excavation to subgrade an allowance of a depth of 6 in. below subgrade lines.
 (b) In any other rock excavation an allowance of a depth of 6 in. below lines of proposed excavation.

Boulders which are to be included in the item for rock excavation will be measured at the point of removal.

Presplitting of rock will be measured by the square yard of exposed rock face, measured from the top of exposed rock to the bottom of the Class A Rock Excavation at the presplit face, as directed.

Topsoil excavation will be measured in its original position by measuring the surface area of topsoil to be removed and measuring the depth to be removed by test pits prior to removal, or by the cross-section method as determined by the Engineer.

120.81: Basis of Payment

All classes of excavation will be paid for at the contract unit price per yard of the particular type of excavation as defined hereinbefore.

In Contracts where ordinary borrow is required, excavated material taken by the Contractor with the prior written permission of the Engineer, and used on the project for purposes other than for forming embankments will be paid for at the contract price for the purpose of which it is used, in addition to the payment to be made for excavation, provided that any additional filling material made necessary by such use shall be replaced except Pavement Milling.

The amount of borrow to be replaced shall be as follows:

1. If Class A Rock Excavation is used in revetment, the revetment shall be measured in its final position, and this computed quantity shall be divided by 1.20 and the resulting quantity shall be the amount of borrow to be replaced.
2. If Earth Excavation is used for gravel borrow, special borrow, etc., the amount of gravel borrow, special borrow, etc., as computed (including any percentage added to in place measurement) shall be the amount of borrow to be replaced.

Payment shall be made only for the purpose the borrow was used until such time as replacement borrow is supplied, at which time an equal volume of excavation will be paid for.

In Contracts where excavated materials are used as described in the paragraph above and no additional filling material is required, the following will govern:

1. Material such as gravel, sand, special borrow, or impervious soil borrow obtained in excavation and used as gravel, sand borrow, special borrow or impervious soil borrow will be paid for only at the contract price for the purpose used.
2. Topsoil obtained in excavation and stacked for future use on the project will be paid for at the contract unit price for the item of Topsoil Excavated and Stacked (which price will include excavating for test pits required), but if such future use necessitates rehandling and spreading, payment will also be made at the contract unit price for Topsoil Rehandled and Spread.
3. No deduction from the item of Class A Rock Excavation will be made on account of the use of boulders or rock fragments in masonry or in revetment.

Presplitting of rock will be paid for at the contract unit price per square yard of exposed presplit rock face.

Pavement Milling will be paid for at the contract unit price per square yard and shall include temporary illumination.

120.82: Payment Items

120. Earth Excavation .. Cubic Yard
120.1 Unclassified Excavation ... Cubic Yard
121. Class A Rock Excavation .. Cubic Yard
122. Presplitting Rock .. Square Yard
123. Muck Excavation .. Cubic Yard
125. Topsoil Excavated and Stacked .. Cubic Yard

SUBSECTION 140: EXCAVATION FOR STRUCTURES

DESCRIPTION

140.20: General

Excavation for foundations of bridges, culverts, pipe drains, masonry walls, other structures and test pit excavation to determine the location of underground utilities shall be made to the depth and lines indicated on the plans or established by the Engineer.
140.21: Bridge Excavation

Bridge excavation shall include excavation required for construction of bridges, culverts having a clear square span of 8 ft or more, end walls and wingwalls that are a part of these structures and major wall structures as designated in the Contract Documents.

The excavation shall include the removal and satisfactory disposal of materials including piles, sheeting and timbers encountered in these constructions.

In areas where unsuitable material is removed and backfilled under Item 123. Muck Excavation, the excavation of the backfill shall be included under bridge excavation.

All other material encountered in the above noted construction, except that classified as Class B Rock Excavation and Muck Excavation as defined in these specifications, will be classified as Earth Excavation.

140.22: Class A Trench Excavation

Unless otherwise shown on the plans, Class A Trench Excavation shall include the removal and satisfactory disposal of all materials, except Class B Rock Excavation that are encountered in the construction or demolition of masonry culverts and other structures having a clear square span of less than 8 ft, masonry inlets, culvert ends, masonry walls, revetment, test pits, paved waterways, construction of drains for slope or subgrade stabilization and in the construction, widening, straightening or deepening of drainage ditches and water courses in connection with pipes or structures having a clear span of less than 8 ft.

Test pits to locate underground services shall be excavated where directed and will be classed as Class A Trench Excavation. The Contractor shall take special care during this excavation to avoid damage to any underground structures or utilities. When necessary the Contractor shall cooperate with representatives of public service companies in order to avoid damage to their structures by permitting them to erect suitable supports, props, shoring or other means of protection.

140.23: Class B Trench Excavation

Class B Trench Excavation shall include the removal and satisfactory disposal of all materials, except Class B Rock Excavation, encountered in the construction of drainage and water pipes greater than the 5-ft maximum depth specified in Section 200: Drainage.

Trench excavation for pipe laying in roadway cuts shall include only that portion of the trench which is below the roadway excavation except where the Engineer orders in writing, that the trench excavation and its backfill shall be completed before the roadway excavation is begun.

140.24: Channel Excavation

Channel Excavation shall include the removal and satisfactory disposal of all materials other than those classified as Bridge Excavation, Trench Excavation, Muck Excavation or Rock Excavation when encountered in the excavation for streams or rivers or excavation on new locations for same in connection with drainage structures having a clear span of 8 ft or more.
140.25: Class B Rock Excavation

This item shall include the removal and satisfactory disposal when encountered in the excavation for drainage structures, fences, highway guard, posts, bounds, pipes, ducts, walls, open trenches and bridge structures of:

(A) Boulders measuring 1 yd³ or more and all solid rock that requires blasting or breaking by hand power tools (such as jackhammers etc.) prior to removal.

(B) Masonry removed from the walls, covers and other portions of existing drainage structures, also plain and reinforced concrete pavements, and masonry removed from bridge substructures.

Removal operations shall be so prosecuted that no damage will be caused to adjacent structures or property.

140.26: Drainage Structures Abandoned or Removed

The work shall consist of the removal and stacking of iron castings. The plugging of inlets and outlets and the filling of all drainage structures designated to be abandoned and the removal of all masonry and filling the cavity of the drainage structures designated to be removed.

140.27: Test Pits for Exploration

Test pits shall be excavated where and as directed by the Engineer. The contractor shall take special care during the excavation to avoid damage to any existing structure or conduit. Hand excavation may be required to ensure no damage to surrounding utilities.

CONSTRUCTION METHODS

140.60: General

A. Sequence of Operations.

The Contractor shall prosecute their work so as to conform to the requirements of 120.60: General, Part A.

B. Disposal of Excavated Materials.

The Contractor shall prosecute their work so as to conform to the requirements of 120.60: General, Part B.

C. Cofferdams.

Cofferdams for foundation construction shall be carried to adequate depths and heights, shall be safely designed and as watertight as necessary for the proper performance of the work which must be done inside them. Sheeting shall be driven to a sufficient depth below the proposed foundation grade to permit reasonable change in depth of the proposed foundation to a maximum of 2 ft except where solid rock is encountered. The interior dimensions shall be sufficient for the unobstructed and satisfactory completion of such construction work as pile driving, form building, inspection and pumping. Cofferdams which become tilted or are displaced during the process of building the substructure shall be righted, reset or enlarged as may be necessary to provide the necessary
clearances and this shall be at the sole expense of the Contractor. Cofferdams shall be unwatered and the proposed masonry footings placed in the dry.

Cofferdams shall be constructed so as to protect masonry against damage from a sudden rising of water and to prevent damage to the foundation by erosion. No part of the cofferdam shall be left in such a way as to extend into the substructure masonry, without written permission of the Engineer.

Upon request, the Contractor shall submit plans to the Engineer, for the Engineer’s information, showing the Contractor’s proposed method of cofferdam construction prior to the start of such construction. The furnishing of such plans and methods shall not serve to relieve the Contractor of any of their responsibility for the safety of the work or the responsibility for the successful completion of the project.

Where the plans indicate construction of a tremie concrete seal below the footing or if in the Engineer’s opinion a tremie seal is necessary, the Engineer may require the placing of underwater concrete of such dimensions as necessary to safely dewater the foundations and place the footing concrete in the dry.

All tremie concrete seals shall be placed as shown on the plans or as directed by the Engineer.

Before placing the underwater concrete, the inside walls of the cofferdam shall be thoroughly cleaned and the walls made sufficiently tight to reduce the flow or current of water to less than 10 ft per minute. The elevation of the water inside the cofferdam shall be controlled during the placing and curing of the concrete. Concrete shall not be placed in water having a temperature below 35°F. No pumping of water shall be permitted while concrete is being placed nor until the concrete has cured a minimum of 24 hours. Once concreting has started the tremie shall not be moved laterally through the deposited concrete. When necessary to move the tremie it shall be lifted out of the concrete and moved to the new position. Unless otherwise directed by the Engineer, spacing of the tremies shall be at the Contractor’s option.

After each excavation is completed, the Contractor shall notify the Engineer and no constructions shall be started until the Engineer has approved the depth of the excavation and the character of the foundation material.

Unless otherwise provided, all parts of the cofferdams shall be removed after the completion of the substructure, care being taken not to disturb or otherwise injure the finished masonry.

Sheet piling used in the construction of cofferdams may be left in place at the option of the Contractor, provided it is cut off at an elevation as may be directed by the Engineer, and the cutoff portions are removed from the site.

D. Excavation for Stepped Footings.

Where the footings for bridges are shown stepped, the Contractor shall sheet and shore the existing ground so that adjacent sections of the footings will rest on undisturbed ground according to the pattern shown on the plans. The sheeting shall be strong enough to support the earth along the designated lines, tight enough to restrain the fines in the concrete, and shall be left in place to the extent required to hold the concrete that is to be placed against it. Before the concrete is placed, the sheeting shall be cut so that none of the sheeting will extend into the concrete. Shoring and bracing
shall be removed. If rock is encountered, it shall be stepped to the pattern shown and sheeting will not be required.

E. Water Control in Foundation Area.

When concrete for the foundations of a structure is to be placed in the dry, the Contractor shall use such equipment and perform their operations in such a manner that boiling or other disturbances of the ground in the foundation area will be prevented and shall keep the area being excavated dry by such means that will prevent the entering of water through or from the adjacent ground, if such entering water could affect the stability of the foundation material or the adjacent ground or the foundations.

No surface pumping will be allowed. Water shall be controlled by means of properly screened sumps or well points. If sumps are used, they shall be installed at strategic locations but not closer than 5 ft from the nearest edge of the footing.

The contractor shall provide temporary diversion channels, excavations, embankments, sheeting, drains, flumes, well point unwatering systems, pumps, or other effective procedures or structures together with all labor, materials and equipment necessary for unwatering the foundation areas. Such work shall be subject to the approval of the Engineer, but such approval will not relieve Contractor of responsibility for the adequacy of construction, maintenance, operation and safety of the water control system. Upon completion of the work all temporary embankments and structures shall be removed from the site. All temporary excavations shall be backfilled in accordance with the applicable provisions of Subsection 150: Embankment for forming embankments or as directed.

F. Shoring and Bracing of Trenches.

Shoring and bracing of trenches and other excavations shall be in accordance with all OSHA requirements.

G. Excavation.

Trenches for pipes, structural pipes, arches, and pipe arches shall be excavated to the required line and grade and of sufficient width to permit thorough tamping of backfill material under the haunches. Soft or unsuitable material existing below the required bedding grade shall be removed as directed and replaced with sand, gravel, crushed stone or other suitable material and thoroughly compacted. Rock or boulders shall be removed below the bedding grade as specified in 140.25: Class B Rock Excavation.

All materials excavated from pipe trenches and subdrain trenches and not used in the backfill of the trench will be used as part of the embankment, when deemed suitable for this purpose by the Engineer, and no deduction will be made from the in-place measurement of the embankment.

If cross pipes, conduits, drains or other unforeseen obstacles are encountered during the excavation, the proposed line and grade of the pipe may be altered, but only as directed by the Engineer.

When pipes, structural pipes, arches and pipe arches are to be installed in new embankments, the Contractor shall first construct and compact the embankment to an elevation at least 2 ft above the proposed flow line.
When culverts, storm drains or sewer pipes are to be installed in roadway areas on traveled ways, the edges of the trench through the pavement shall be cut to a neat line, using an approved pavement breaker or power saw.

140.61: Channel Excavation

The excavation shall be made and the bank sloped as shown on the plans or as directed.

Unless otherwise directed, the banks outside of the limits of a bridge structure shall be cut to a 2 to 1 slope. Within the limits of the bridge structure, the banks shall be cut to the slope required for revetment.

No waste or surplus excavation shall be left within 5 ft from the edge of the ditch or channel. Any such surplus or waste material shall be spread in a thin, uniform layer. All ditches and channels constructed on the project shall be maintained to the required cross section and shall be kept free from debris until final acceptance.

140.62: Class B Rock Excavation

If a rock is encountered in a location such that it may be used as a part of a base, footing, wing, or abutment of any structure, it shall not be removed. The surface of all rock or other hard material upon which masonry is to be placed shall be freed from all loose fragments, cleaned and cut to a firm surface. The surface shall be level, stepped or serrated, as directed by the Engineer.

All structures shall be founded on uniform bearing materials. If rock is encountered at portions of the bottom of the foundation for bridges, box culverts, structural plate pipe, structural plate pipe arches and end walls and wingwalls that are a part of these structures, the rock shall be removed to a minimum depth of 1 ft below the bottom of foundation for a depth of fill on the structure up to 25 ft. For fills over 25 ft the depth of excavation shall be increased 1 in. for every additional 2 ft of fill. The excavation shall be backfilled with gravel borrow and compacted. Payment for such excavation will be made under the item for Class B Rock Excavation. Where wingwalls are not integral with the bridge or culvert the overdepth excavation will not be required.

140.63: Drainage Structures Abandoned or Removed

The present castings shall be carefully removed. They shall be satisfactorily stored and protected until they are required for use or until they are removed from the project by the owners.

Inlets and outlets of structures to be abandoned shall be plugged with masonry. The masonry plug shall conform to the requirements of Subsection 270: Pipes Removed and Relaid or Stacked. Upper portions of the masonry shall be removed to a depth of 3 ft below the finished grade at the location designated by the Engineer, and the structures shall be completely filled with selected excavated material placed in 6-in. layers and thoroughly compacted.

The existing masonry of structures to be removed shall be completely removed.

The cavity shall be completely filled with selected excavated materials placed in 6-in. layers and thoroughly compacted.
COMPENSATION

140.80: Method of Measurement

All classes of excavation for structures will be measured in their original position by the cross-section method except that where such measurement is impracticable the volume shall be measured by such other methods as the Engineer may determine. In calculating excavation for structures the sides of the excavation will be considered vertical.

Bridge Excavation shall be measured as follows:

Unless otherwise shown on the plan the quantity of excavation shall be computed within the following limits:

Horizontally

To vertical planes 12 in. outside of and parallel to the neat lines of masonry bases or footings.

To vertical planes 18 in. outside of and parallel to the inside walls of structural plate pipes and arches (spans 8 ft or more and without masonry footings) at their widest dimensions.

To vertical limits of crushed stone or gravel borrow for bridge foundation as shown on the plans.

Vertically

From the bottom of the earth excavation limits of proposed roadway and/or design slopes carried through the structure location or existing ground surface, whichever is lower, to the bottom of the required excavation as determined by the Engineer.

In areas where unsuitable material is removed and backfilled under Item 123. Muck Excavation, excavation of the backfill will be measured horizontally and vertically as above except the upper limit of excavation shall be 2 ft above the swamp or 2 ft above any water that is present, whichever is higher.

Where masonry is ordered removed from existing substructures, only the actual quantity ordered removed shall be measured for payment.

Excavation made outside the lines prescribed for payment will be considered as made for the Contractor’s convenience and will not be included for payment under any item of excavation, nor will the refilling of any such area be included under any item of filling material.

Class A Trench Excavation shall be measured as follows:

For masonry culverts (having a clear square span of less than 8 ft), inlets and walls, a width of 1 ft outside the base of the masonry section shown on the plans and to the depth required. Trench excavation for walls in cuts shall include only that portion below the elevation of the subgrade adjacent to the wall. For walls where an embankment is proposed, trench excavation shall be only that portion between the existing ground and the bottom of the foundation. All other Class A Trench Excavation will be measured according to the amount of materials removed to the lines and grades shown on the plans or as directed.

Class B Trench Excavation shall be measured as follows:
For pipe culverts, drains and water pipes the depth of excavation shall be measured from the bottom of the pipe barrel to the bottom of the roadway excavation or existing ground, whichever is lower, as determined above the center line of the pipe, less 5 ft. The width of excavation shall be 3 ft greater than the rated inside diameter of the pipe up to a point 5 ft above the bottom of the pipe barrel and a width above that point equivalent to the base width plus an allowance for 1 to 1 slopes on the sides of the trench for the measured depth described above. The allowance for 1 to 1 slopes will be included regardless of the actual slope excavated or whether sheeting or shoring is used that is not included for payment under Subsection 950: Sheeting. The sides of the trench excavation will be considered vertical when sheeting is used and paid for separately under Subsection 950: Sheeting and the width shall be 3 ft greater than the inside diameter of the pipe. If necessary to obtain a satisfactory foundation for pipe culverts, drains and water mains, trenches, shall be excavated deeper than normally required for bedding the pipe and such excavation below the barrel of the pipe will be measured for payment under this item. The width of trench shall be 3 ft greater than the rated inside diameter of the pipe and the depth shall be the actual depth as directed by the Engineer.

Class B Rock Excavation shall be measured as follows:

Pay limit for rock excavation actually removed in all masonry culverts, walls and bridges, will be up to a limit of 1 ft outside of the foundation. This rock excavation in cuts shall include only that portion below the limits of payment of Roadway Earth Excavation or Class A Rock Excavation and in embankment only that portion below the surface of the existing ground.

Pay limit for rock actually excavated in pipe trenches will be made to a width of 2 ft greater than the rated inside diameter of the pipe barrel, providing rock extends to that width. The maximum depth of rock to be paid for shall be equal to the difference in depth between the top of the original rock in the trench and a line 12 in. below the bottom of the outside of the pipe barrel. No part of any rock remaining in the trench shall come within 6 in. of any portion of the pipe. Rock actually excavated in the construction of catch basins, manholes, and leaching basins will be calculated on a basis of 1 ft outside of the outer walls and 6 in. below the bottom of the structure. Rock excavation in subdrain trenches will be measured as specified above for pipe trenches.

Rock excavation in post and bound holes not already paid for in previous rock excavation shall be based on an area 2 ft² multiplied by the depth of rock encountered in the post or bound hole required plus 6 in.

Rock excavation in channel excavation will be measured as specified in 120.22: Class A Rock Excavation.

The unit of measurement for drainage structure abandoned or removed will be each structure abandoned for each structure removed, complete.

Test Pit for Exploration will be measured as the actual volume removed to the limits established by the Engineer.

140.81: Basis of Payment

Excavation for structures will be paid for at the contract unit price per cubic yard under the item for the particular type of excavation encountered.
The unit price per cubic yard shall include all backfilling when the materials are obtained from excavation, all clearing and grubbing (except as may be otherwise provided on the plans or in the Specifications), all excavations for the structure formation of embankments, disposal of surplus material, and the furnishing of all equipment, tools, labor and work incidental thereto.

If cofferdams, sheeting, shoring, bracing, unwatering system or other method of control for excavation are not specific items in the Contract, no allowance in addition to the prices bid for any items in the Contract will be made for such controls, or for labor, equipment or materials required. If any change in depth of foundation greater than 2 ft or in other dimensions of the foundation is directed by the Engineer after the controls have been provided, and if such change is greater than can be accommodated by the controls as constructed by the Contractor with the approval of the Engineer, then any changes made as directed by the Engineer will be paid for in accordance with the Contract provisions for Extra Work. Excavation, borrow, concrete or other items of work done within the controlled area will be paid for only at the contract prices for these items unless the operations require different or additional equipment or labor in addition to or different from that required for the original design of the control. If such different or additional equipment or labor is required to perform the operation for the pay unit of an item the additional costs will be paid for under Extra Work. Where salvage of material is involved in the additional work, the value of the salvage shall be deducted from the additional payment.

Backfilling when not obtained from excavation will be paid for at the contract unit price for the kind of material used.

Bridge Excavation will be paid for at the contract unit price per cubic yard under Item 140. Bridge Excavation. Bridge excavation within a cofferdam and included in the Proposal as a separate pay item will be paid under Item 140.1. Bridge Excavation within Cofferdam. All other excavation encountered in the construction of bridges, culverts (spans 8 ft or more) and major wall structures, not otherwise defined in these specifications will be classified and paid for as Earth Excavation.

Class A Trench Excavation will be paid for at the contract unit price per cubic yard of Class A Trench Excavation except that where the depth is greater than 8 ft, that excavation below the 8-ft depth will be paid for at a price per cubic yard equal to 1.5 times the price bid per cubic yard for Class A Trench Excavation with the exception that no addition to unit bid price will be allowed for excavation of open ditches that may exceed 8 ft in depth for excavation required for the construction of revetment regardless of the depth.

Test Pit for Exploration shall be paid for at the contract unit price per cubic yard which price shall include excavation (including hand excavation) backfilling and compaction.

Class B Trench Excavation will be paid for at the contract unit price per cubic yard for Class B Trench Excavation.

Channel excavation (except rock) will be paid for at the contract unit price per cubic yard of Channel Excavation which price shall include full compensation for all handling, stacking or rehandling or excavated material.

Where channel excavation is made adjacent to a bridge or other structure the limits of pavement for channel excavation begin at the outer limits of payment for excavation for bridge or other structure.
Excavation for the placing of riprap in channel excavation areas where required will be included under the item of Channel Excavation.

Rock excavation (except in channel excavation) will be paid for at the contract unit price per cubic yard of Class B Rock Excavation. Class B Rock excavated within a cofferdam (constructed of lumber, wood or steel sheeting) will be paid for at 3 times the contract unit price per cubic yard of Class B Rock Excavation.

Rock excavation in channel excavation will be paid for at the contract unit price per cubic yard of Class A Rock Excavation.

Drainage Structures Abandoned and Drainage Structures Removed will be paid for at the contract unit price each. Masonry plugs shall be incidental to the work.

140.82: Payment Items

140. Bridge Excavation .. Cubic Yard
140.1 Bridge Excavation within Cofferdam ... Cubic Yard
141. Class A Trench Excavation ... Cubic Yard
141.1 Test Pit for Exploration ... Cubic Yard
142. Class B Trench Excavation ... Cubic Yard
143. Channel Excavation ... Cubic Yard
144. Class B Rock Excavation .. Cubic Yard
145. Drainage Structure Abandoned ... Each
146. Drainage Structure Removed .. Each

SUBSECTION 148: DREDGING

DESCRIPTION

148.20: General

Dredging shall consist of the removal and disposal of all materials within the limits shown on the plan, or as laid out in the field. Materials shall be removed to the depths shown on the plan. All dredged material will be classified as “Material, Dredged and Disposed,” “Rock, Removed from Dredged Area and Disposed,” and “Ledge, Removed from Dredged Area and Disposed.”

The Contractor's attention is directed to the requirements of Section 7.00: Legal Relations and Responsibility to Public concerning Prevention of Water Pollution and Erosion.

148.21: Material, Dredged and Disposed

Material, Dredged and Disposed, shall consist of all material removed from the dredging area and placed in scows and disposed of where and as directed in the Special Provisions; not included are Rocks, Removed from Dredged Area and Disposed, and Ledge, Removed from Dredged Area and Disposed.
148.22: Material, Dredged and Disposed: Hydraulic Method

Material, Dredged and Disposed (Hydraulic Method), shall consist of all material removed from the dredging area and disposed of by Hydraulic dredging methods where and as described in the Special Provisions; not included are Rocks, Removed from Dredged Area and Disposed, and Ledge, Removed from Dredged Area and Disposed.

148.23: Rocks, Removed from Dredged Area and Disposed

Rocks in excess of 1 yd3 in volume, and less than 5 yd3 in volume, which are entirely removed from the dredged areas and deposited at a location approved by the Engineer, will be paid for under this item. No compensation will be made for rocks which are lowered so that they are below the depths of the proposed work.

148.24: Ledge, Removed from Dredged Area and Disposed

Ledge or Rocks (including masonry) in excess of 5 yd3 in volume encountered within the dredging limits shall be removed and disposed of, upon the direction of the Engineer.

148.25: Mobilization and Demobilization

Mobilization and Demobilization shall consist of the mobilization of all the Contractor’s dredging plant, including tugs, scows, pipe lines, pontoons, and all equipment at the site of the work prepared to commence dredging operations and upon completion of dredging operations the demobilization and removal of all aforesaid plant and equipment.

CONSTRUCTION METHODS

148.60: General

The material shall be removed by dredging plant and equipment either by the Hydraulic Method or by placing the material in scows and disposing of it outside of the dredging areas. The method(s) to be used will be specified in the Special Provisions.

If no area for the disposal of material is stated in the Special Provisions, it shall be the Contractor’s responsibility for the negotiations necessary to furnish all required areas for disposal of material.

In the dredging and disposal of dredged material, the Contractor will be required to observe all laws of the United States, all requirements of the U.S. Corps of Engineers and all local or state authorities in relation thereto. The Contractor’s attention is directed to the fact that material disposal of below mean high water requires a permit from the U.S. Corps of Engineers and a license from the Commonwealth.

The areas shown on the plans, or as laid out in the field, shall be dredged so that they shall have throughout upon completion of the work the specified depths over their whole extent as shown on the plans, with the banks at the sides sloped at an angle of approximately 1 vertical to 3 horizontal, unless otherwise shown on the plan. The Contractor shall make the bottom of the dredged areas as smooth and level as possible to or slightly below the required depths.

The Contractor shall exercise extreme caution in any location in which the dredging operations are in close proximity to structures. The Contractor shall bear full responsibility for damage of any
nature to structures caused by dredging beyond the limits shown on the plan or as laid out in the field and such damage shall be satisfactorily remedied at the sole expense of the Contractor.

The Contractor shall conduct their dredging and disposal operations so as to cause a minimum of interference with navigation.

The Contractor shall furnish regularly to inspectors on board the dredge or other craft upon which they are employed, when transportation ashore is impracticable, a suitable room for office and sleeping purposes. The room shall be properly heated, ventilated and lighted and shall have a desk which can be locked, a comfortable bed and chair for each Inspector, and washing conveniences. If such quarters and conveniences are not provided, or the work is so located that transportation ashore can be furnished without interference with the work, the Contractor shall provide the Inspector with transportation to and from such points ashore as the Engineer may from time to time, designate.

If the Contractor maintains on their work an establishment for the subsistence of their own employees, the Contractor shall furnish to Inspectors and survey parties when employed on the work, meals of satisfactory quality.

Each Bidder shall state in their Proposal whether the plant the Bidder proposed to use on the work has facilities for furnishing the meals and accommodations required.

The entire cost to the Contractor for furnishing, equipping and maintaining the foregoing accommodations, providing transportation ashore, and furnishing meals, shall be included in the price bid for dredging.

COMPENSATION

148.80: Method of Measurement

The amount of material dredged and disposed of will be determined by preliminary and final cross sections taken by the Engineer in the dredging area. If this method is impracticable, the Engineer will determine the method of measurement.

If the alternate method of measurement is by measuring the dredging materials in the scows in which it is placed for disposal, such actual scow quantities as determined by the measurements shall be divided by 1.15 to compensate for bulking or swelling. The quotient for this division shall then be the quantity to be paid for.

The quantity of materials shown in the Proposal has been computed to the payment limits.

The Engineer may take additional soundings before the work is started, which soundings shall be the preliminary soundings for payment purposes.

Pay limits for material actually dredged and disposed will be as follows:

A. Bottom – Depth up to and including 24 ft below mean low water plus 1 ft below the required depths. Depths more than 24 ft below mean low water plus 2 ft below the required depths.

B. Side slopes shall be as shown on the plans.
Rocks. Removed from Dredged areas and Disposed will be determined by measurement made by the Engineer.

Ledge. Removed from Dredged Areas and Disposed will be determined by preliminary and final cross sections taken by the Engineer in the dredging area. The overlying material shall be removed prior to the Engineer taking preliminary cross sections. If this method of measurement is impracticable, the Engineer will determine the method of measurement.

Mobilization and Demobilization will be paid for at the contract lump sum price. The Contractor will be paid sixty percent of the lump sum price upon completion of their mobilization at the work site. The remaining forty percent will be included in the final payment for work under the Contract.

148.81: Basis of Payment

All classes of dredged material will be paid for at the contract unit price per cubic yard for the particular type of material removed and disposed as defined hereinafter.

148.82: Payment Items

148. Dredging and Disposing of Material..Cubic Yard
148.1 Dredging and Disposing of Material (Hydraulic Method).................................Cubic Yard
148.2 Removal and Disposal of Rock from Dredged Areas.................................Cubic Yard
148.3 Removal and Disposal of Ledge from Dredged Areas.................................Cubic Yard
148.4 Dredging, Mobilization and Demobilization...Lump Sum

SUBSECTION 150: EMBANKMENT

DESCRIPTION

150.20: General

Construction of all embankment fill shall be done in accordance with the relevant provisions of Subsection 120: Excavation, Subsection 150: Embankment, and Subsection 170: Grading, and in accordance with the procedures described herein.

This work comprises the formation of embankments with suitable material obtained from excavation and borrow, thoroughly compacted to produce a stabilized embankment. The work shall be performed in accordance with the lines and grades shown on the plans as directed.

Material available from widened cuts outside the slopes as indicated on the plans or as ordered by the Engineer may be used in embankments or elsewhere upon written request by the Contractor and subsequent written approval by the Engineer. The Engineer shall determine the suitability of any excavation material for incorporation in the embankment.

If the Contractor desires to waste excavated material and provide borrow to replace it for their own convenience, they may do so only after obtaining the written approval of the Engineer and after satisfactory arrangements have been made for the measurements and disposal of the material.

When it is determined by the Engineer that there is not sufficient material available either from excavation within the Right-of-Way or the slope lines of the section under Contract for the
formation of embankments, roadbeds in cut sections, foundations, shoulders, or backfill the Contractor shall obtain such additional material as may be necessary from outside the location, and this material will be borrow material.

150.21: Borrow Pit Restrictions

With the exception of commercial borrow pits, the location, material removal operation and final shaping and finishing of borrow pits, regardless of location, must conform with all local and State regulations, and for the purpose of preventing water pollution shall be subject to approval by the Engineer prior to use, during the material removal operation and upon completion. Borrow pits shall be so graded and finished after material removal is completed that there can be no reasonable possibility of a safety hazard nor ponding of water nor water pollution caused by later erosion of the pit.

Borrow pits located adjacent to the Right-of-Way shall be finished by extending the slope of the cross section to a berm to be constructed or left within the Right-of-Way at the side line. The berm shall be a minimum of 5 ft high and 2 ft wide across the top with natural slopes in both directions, or as otherwise directed. The floor of the pit shall slope away from the location line at a minimum rate of 0.5 in. per ft for at least 50 ft.

Portions of borrow pits (within 500 ft of the project or any other highway location line) which may be noticeable from a travelled way, residence or place of business, shall be neatly trimmed and left in a condition satisfactory to the Engineer. Particular attention shall be given to make the slopes harmonize with the general appearance of the adjacent landscape, provided however, that no slope shall be steep enough to constitute a public menace. No unsightly accumulation of material shall be permitted which may in any manner deface the finished landscape.

The cost for the final shaping and finishing of borrow pits shall be included in the contract unit price of the type of borrow furnished with no additional compensation.

MATERIALS

150.40: General

All embankment material, whether coming from excavation or borrow shall consist of solid, sound mineral aggregate. It shall be free from deleterious, organic, elastic or foreign matter and shall be adequately graded for satisfactory compaction into a stabilized soil structure.

The material will be classified into particular groups according to AASHTO M 145.
All borrow material to be furnished shall meet the requirements specified in the following Subsections of Division III, Materials:

- Ordinary Borrow: M1.01.0
- Gravel Borrow: M1.03.0
- Sand Borrow: M1.04.0 Type b
- Gravel Borrow for Bridge Foundation: M1.03.0 Type a
- Special Borrow: M1.02.0
- Impervious Soil Borrow: M1.08.0
- Reclaimed Pavement Borrow Material: M1.09.0
- Crushed Stone: M2.01.0

Reclaimed Pavement Borrow Material meeting M1.09.0: Reclaimed Pavement Borrow Material may be substituted with approval of the Engineer for Ordinary Borrow, Special Borrow or Gravel Borrow. Reclaimed pavement borrow, if substituted, shall only be used under pavement areas and sidewalks.

CONSTRUCTION METHODS

150.60: General

Prior to starting work, the Contractor shall obtain approval for the compaction equipment to be used. Unless otherwise required in the Special Provisions, each layer of embankment material shall be thoroughly compacted with power rollers or tamping rollers. Other equipment or equivalent compactive capacity may be used subject to trial on the project and approval by the Engineer. Compacting equipment will not be used for any other purpose during compaction operations.

The use of tractors, trucks, scrapers or other equipment designed primarily for purposes other than compaction and being used for purposes other than solely compaction will not be considered as compaction equipment, but traffic of such vehicles shall be distributed over this fill in such a manner as to take advantage of the additional compaction afforded thereby.

Sufficient levelling and compacting equipment shall be provided to do the work of spreading and compacting the material promptly after it has been deposited. When, in the Engineer's judgment, such equipment is inadequate to spread and compact the material properly, the Contractor shall reduce the rate of excavation and placing of the fill to a rate not to exceed the capacity of the leveling and compacting equipment or employ additional equipment.

The Contractor shall plan their grading operation to use all rock possible from all excavation either as backfill in excavated muck areas or in areas of greatest depth.

Before placing of any fill, the areas under embankments shall be cleared, grubbed, and stripped as specified in Subsection 101: Clearing and Grubbing and Subsection 120: Excavation.

Frozen material shall not be placed on embankments nor shall embankment be placed on material frozen to a depth of over 3 in. If during the construction of an embankment, the top layer becomes frozen to a depth of over 3 in., the frozen material shall be removed before a succeeding layer is placed on the embankment. This work shall be performed at no additional expense to the Department.
Frozen excavated material which will be suitable when dry shall be allowed to thaw and dry and then be placed in the embankment. No compensation will be allowed for the storing and rehandling of these materials.

Embankments shall be formed by placing successive layers of material uniformly distributed and compacted over the full width of the cross section unless otherwise directed. Stumps, rubbish, sod, frozen or other unsuitable materials shall not be incorporated in the embankment.

The Contractor shall prosecute his work so that no damage will occur to drainage pipe lines or masonry or brick structures (See 150.64: Backfilling for Structures and Pipes).

150.61: Preparation of Foundation Areas

The foundation areas shall be cleared, grubbed and stripped as required, and all soft, spongy or other material unsuitable for embankment foundation shall be removed. When, in the Engineer’s judgment, there is reasonable doubt as to the suitability of the existing material for embankment foundation, no further work shall be performed in the area in question until the material is tested and approved for use or remedial methods are ordered by the Engineer.

Embankment areas 3 ft or less in height from the subgrade to the existing ground shall be rough graded and compacted to not less than 95 percent of the maximum dry density of the material as determined by the AASHTO Standard Method of Test T 99, Method C at optimum moisture content, as determined by the Engineer, without additional compensation before placing any fill. If the material retained on the #4 sieves is 50% or more of the total sample this test shall not apply and the material shall be compacted to the satisfaction of the Engineer.

For embankments greater in height than 3 ft below the proposed subgrade to existing ground no additional embankment foundation area preparation will be required, provided the material within the area is suitable for the purpose.

Regardless of the height of fill, where embankment is to be placed against existing earth slopes steeper than 3 to 1, the slope shall be broken up into steps of random width as the fill is placed in order to provide a suitable bond between the existing ground and the new embankment. Both the material cut out and the bottom of the area cut into shall be compacted along with and to the same degree as the material being placed in the embankment without additional compensation for excavation, benching or compacting.

Where foundations for bridges, culverts (span 8 ft or more) and major wall structures are to be founded on the embankment, the embankment to the extent shown on the plans shall be constructed of Gravel Borrow for Bridge Foundations and/or Crushed Stone for Bridge Foundations.

At the sites of footings for abutments, piers or other structures having pile foundations, the material shall be placed in embankment prior to driving piles and shall be of a quality and grading that will not obstruct driving of the piles.

Where foundations for structures are to be supported on newly formed embankments and where flying wingwalls are to be constructed, the embankment shall be placed to an elevation of at least 2 ft above the bottom of the proposed foundation or flying wingwalls and thoroughly and satisfactorily compacted.
After the above work is completed the material within the area of the proposed foundation or flying wing-walls will be excavated to the grade of the bottom of the concrete. Excavation of this compacted fill will be paid for under the item of Bridge Excavation as stipulated in 140.21: Bridge Excavation.

150.62: Embankment Construction with Materials Other Than Rock

Embankment construction with materials other than rock shall not be placed from December 1 to April 1, except with written permission of and under such special conditions and restrictions as may be imposed by the Engineer.

Embankment 10 ft or more in height from the elevation of the subgrade to the original ground elevation shall be constructed to the elevation of the proposed subgrade and then allowed to settle for 60 days (or such other period as the Engineer shall direct in writing) before the pavement structure is constructed thereon. If the condition of the subgrade is suitable, not frozen or muddy and is shaped, compacted and fine graded within the tolerance provided in the Specification, the Contractor may apply and the Engineer may approve the placing but not the fine grading of the subbase prior to the termination of the 60 day waiting period.

Earth embankment shall be placed and compacted in uniform layers not exceeding 12 in. in depth, loose measurement; each layer of material shall be spread on the entire width of the embankment and levelled off by approved equipment.

The embankment materials shall be compacted to not less than 95% of the maximum dry density of the embankment material as determined by AASHTO Standard Method of Test T 99, Method C. If required, a correction for oversized particles shall be in accordance with Annex A of AASHTO T 99. If the material retained on the ¾-in. sieve is 30% or more of the total sample, this test shall not apply and the material shall be compacted to the target density. The target density shall be established by determining the number of passes of a roller required to produce a constant and uniform density, after conducting a series of tests using either AASHTO T 310, In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth), or AASHTO T 191, Density of Soil In-Place by the Sand-Cone Method. The Contractor shall, without additional compensation, employ whatever measures may be necessary to adjust the natural water content of the suitable embankment material to permit the placement and compaction as hereinbefore specified.

Each lift of compacted materials shall be visibly crowned to allow drainage of surface and rain waters off the surface of the embankment. No stones larger than 3 in. shall be used to fill where piles are to be driven. Embankment constructed in basement areas of demolished buildings and other areas restricting the use of power rollers, etc., shall be compacted by mechanical tamping with approved power tools.

If the natural-in-place moisture of the excavated material makes it impractical to compact the soil, the Contractor shall dry the soil by diskng, harrowing, blading, rotary mixing or by other approved means, or compaction of the layer of wet material may be deferred until the layer has dried so that it can be properly compacted. If these above methods do not produce the desired results, or when in the judgment of the Engineer, excess moisture resulting from climatic conditions beyond the control of the Contractor is considered to have affected adversely the stability of the previously placed and satisfactorily compacted embankment materials, the Engineer may direct the placement
of single layers of “Special Borrow” to act as stabilizing drainage layers. When so ordered by the Engineer, the Contractor shall place a layer of “Special Borrow” having a depth of not more than 12 in. in thickness, loose measure. Such materials shall be placed completely over the entire width between the limits designated by the Engineer and shall be compacted as hereinafter specified before the succeeding layer of suitable embankment materials from the roadway excavation is placed.

The work may be ordered suspended if the weather and climactic conditions are such that the embankment and excavation cannot be performed in accordance with the specifications. No additional compensation will be allowed to the Contractor for such suspension of work. If the work is ordered suspended due to weather or other climatic conditions not under the control of the Contractor, an extension of time may be granted to the Contractor by the Engineer.

150.63: Rock in Embankment

Where rock is used in embankments the materials shall be carefully spread so that all large stones shall be well distributed and the interstices of each layer shall be practically filled with smaller stones and suitable material from excavation or borrow to form a solid and dense layer of embankment. No rock in excess of 6 in. in its largest dimension shall be incorporated in the top 2-ft layer of embankment immediately below the subgrade. The maximum size of boulders or ledge fragments used in embankments shall be such that they can be incorporated into layers not exceeding 3 ft in depth. Any stones or fragmented material too large to be placed in 3-ft layers shall be broken down by blasting or other means to appropriate size.

Rock in fills shall not be placed adjacent to masonry or brick structures or to any pipe lines. At bridge abutments rock fill shall not be placed within 20 ft of the parapet.

150.64: Backfilling for Structures and Pipes

A. General.

All backfilling shall consist of suitable materials uniformly distributed and thoroughly compacted. When suitable backfilling materials cannot be obtained from excavation, the material shall consist of satisfactory borrow.

When directed, mechanical tampers shall be used in compacting backfill for trenches, and in hard to reach areas around masonry.

No backfill whatever shall be placed on or against structures, pipes, or other masonry, until permitted by the Engineer. It shall be formed of successive layers not more than 6 in. in depth, uniformly distributed and each layer thoroughly compacted.

B. Structures.

The backfill in back of abutments and wingwalls of bridges shall consist of gravel. The gravel shall meet the specifications of M1.03.0: Gravel Borrow, Type b. Measurement of “Gravel Borrow” under this work will not include any filling made beyond a vertical plane 1 ft outside the footings except as directed.

Whenever backfill is placed in back of or over arches, culverts or rigid frames, the fill shall be first placed midway between the ends of the structure. The remainder of the fill shall then be placed to
equal depths on both sides of the structure, working equally both ways from the center of the structure toward the ends. This procedure shall continue up to the bottom of the subbase of the roadway.

C. Pipes.

No load greater than 8 tons shall be moved over any pipe until a fully compacted backfill of at least 2 ft has been placed over the top of the pipe. This minimum will be increased to 3.5 ft for a 40,000 lb single wheel load and to 4 ft for a 60,000 lb single wheel load. The required fully compacted backfill cover shall be placed a minimum of 50 ft on both sides of the pipe crossing. However, compliance with this requirement is not to be construed as relieving the Contractor of any responsibility concerning damage to the pipe.

Material used for backfilling to a point 2 ft over the pipe shall contain no stones larger than 3 in. in greatest dimension, except material used to backfill corrugated plastic pipe shall consist of gravel borrow meeting the requirements of M1.03.0: Gravel Borrow, Type d, to a depth of 2 ft over the top of pipe.

Backfill below the haunches shall be placed in 6-in. layers and compacted simultaneously on both sides of the pipe with railroad tampers or approved mechanical rammers which shall not come in contact with the pipe. Backfill above the haunches shall be placed in 6-in. layers and compacted as directed. Backfill material shall be moist prior to and during compaction.

Backfilling for structural plate pipe, pipe-arches and arches shall be placed evenly on both sides of the structure in layers not exceeding 6 in. in depth. Backfilling shall be placed uniformly on both sides of pipe. The fill material shall be thoroughly tamped around the pipe or pipe-arch, between the pipe or pipe-arch and the sides of the trench, or for a minimum distance each side of the pipe or pipe-arch equal to the diameter or span of the structure.

In all cases the filling material shall be thoroughly tamped. Puddling or jetting the backfill will not be permitted, except with written approval of the Engineer.

150.65: Backfilling Muck Excavation Areas

Backfilling after muck is removed shall consist of rock fragments, boulders up to 2 yd3 in size, if available, or selected clean granular material not more than 15% of which pass through a #200 sieve as determined by AASHTO T 11. The backfill shall be obtained from suitable excavation on the project, or from Special Borrow under Item 150.1. When rock is used as backfill, granular material meeting the specifications described above shall also be provided and used with the rock backfill. The volume of the granular material shall be sufficient to fill all voids and interstices of the rock backfill.

Where directed, backfilling shall be placed immediately after the muck has been excavated in order that any remaining soft material may be pushed ahead of the backfill and readily removed.

The backfill shall be placed at least 2 ft above the top of the swamp area or at least 2 ft above the level of any water that is present whichever will give the highest elevation of backfill.

The surface of the embankment shall be kept free of unsuitable material. No muck or unsuitable material shall be entrapped by any successive deposits of fill.
150.66: Gravel Borrow for Bridge Foundations

The gravel shall be placed on firm material free from standing water and thoroughly compacted in layers not exceeding 12 in. in depth, loose measurement, in accordance with the provisions of 150.62: Embankment Construction with Materials Other Than Rock to a minimum total depth of 2 ft, except the compacted gravel as tested in the field shall be not less than 95% of the laboratory maximum dry density as determined by AASHTO T 180 Method D. If required, a correction for oversized particles shall be in accordance with Annex A of AASHTO T 180.

In areas where it is not practicable to compact the gravel for bridge foundations by rollers or other rolling moving equipment the compaction shall be accomplished by means of mechanical or pneumatic tampers.

Compaction of the gravel and any adjoining embankment material shall be done simultaneously so that the respective materials will be confined substantially to the indicated lines.

150.67: Crushed Stone for Bridge Foundation

Crushed stone shall be furnished and placed where shown on the plans and where directed by the Engineer.

In no case shall crushed stone be placed on other than firm material.

The crushed stone shall be placed to an elevation 1 ft above ground water level or lowered water level.

The entire mass of crushed stone shall be compacted into place by overlapping coverage by pneumatic tired earth rollers having 4 wheels abreast and loaded, vibratory plate type compactors, vibratory rollers or by other means that shall achieve equivalent compaction and are approved by the Engineer.

The compaction operation shall be continued until there is no moving stone directly ahead of the wheels of the moving machine.

150.68: Crushed Stone

Crushed stone shall meet the Division III Materials specification for the intended application as follows:

- Noise Barrier ... M2.01.2
- Pipe bedding ... M2.01.4
- Revetment foundations ... M2.01.2

The minimum total depth of crushed stone to be placed under this item of work shall be 6 in. No compaction will be required for depth up to 1 ft. For any depth over 1 ft, the crushed stone shall be placed and compacted in layers not to exceed 6 in. Compaction will be accomplished by means of mechanical or pneumatic tampers. Compaction effects shall continue until the stones are firmly interlocked and the surface is unyielding.
COMPENSATION

150.80: Method of Measurement

All borrow with the exception of sand borrow and crushed stone will be measured in place. When this method of measurement is impracticable and the Engineer, prior to the start of construction, so directs and the Contractor agrees in writing, borrow, with the exception of sand borrow and crushed stone, will be measured in its original position in the pit after stripping by the cross-section method.

When ordinary borrow is paid for as measured in place, it shall be measured from existing or compacted old ground surface to the lines and grades applicable to embankment as shown on the plans or as directed.

The volume of ordinary and special borrow when in place measure is necessary, shall be determined as follows:

1. Measure the total volume of embankment in place;
2. Add 12.5 percent of this quantity (for compaction);
3. Deduct the total volume of all suitable materials available for embankments, including rock excavation; except that excavated under 140.60: General;
4. Deduct an additional 25 percent of the volume of rock excavation.

When not measured in its original position in the pit by the cross-section method, gravel borrow used in subbase, gravel for base course, gravel for surfacing, gravel for bridge foundations and gravel for backfilling around structures and pipes, will be paid for as measured in place plus 15%.

When not measured in its original position in the pit by cross section method gravel borrow used in slope stabilization and other miscellaneous uses will be paid as measured in place plus 12.5%.

If material that is measured in place is taken from a cross sectioned pit, the amount of material to be deducted from the cross-section pit quantity shall be equal to the material measured in place plus any allowable percent added to the in-place measurement.

Sand borrow will be measured by the cubic yard by load measurement. The quantity shall be the volume of the load, as measured, divided by 1.15.

If stone screenings are used the volume shall be obtained from its weight using 2,700 lb as the weight of 1 yd3 of stone screenings.

Crushed stone complete in place will be measured by the ton.

The weight slips shall be countersigned on delivery by the Engineer, and no weight slip not so countersigned shall be included for any payment under the Contract.

No overhaul allowance will be made for any kind of borrow.

150.81: Basis of Payment

Payment for the formation of embankments as specified will be included in the items of excavation or borrow. Excavated material used with the permission of the Engineer for other than the formation of embankments will be paid for as specified in 120.81: Basis of Payment and such
payment shall include full compensation for the formation of the required embankments. The contact unit prices for the aforesaid items shall constitute full compensation for the satisfactory performance and completion of the entire work.

Borrow will be paid for at the contract unit price per cubic yard, complete in place, which shall include such test pits and borings necessary to procure samples to establish the suitability of the materials and all required stripping operations.

Crushed stone will be paid for at the contract unit price per ton, complete in place.

150.82: Payment Items

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>150. Ordinary Borrow</td>
<td>Cubic Yard</td>
</tr>
<tr>
<td>150.1 Special Borrow</td>
<td>Cubic Yard</td>
</tr>
<tr>
<td>151. Gravel Borrow</td>
<td>Cubic Yard</td>
</tr>
<tr>
<td>151.01 Gravel Borrow – Type c</td>
<td>Cubic Yard</td>
</tr>
<tr>
<td>151.1 Gravel Borrow for Bridge Foundation</td>
<td>Cubic Yard</td>
</tr>
<tr>
<td>151.2 Gravel Borrow for Backfilling Structures</td>
<td>Cubic Yard</td>
</tr>
<tr>
<td>154. Sand Borrow</td>
<td>Cubic Yard</td>
</tr>
<tr>
<td>156. Crushed Stone</td>
<td>Ton</td>
</tr>
</tbody>
</table>

SUBSECTION 170: GRADING

DESCRIPTION

170.20: General

The shaping, trimming, compacting and finishing of the subgrade, the grading and finishing of all unpaved shoulders and slopes and the preparation of all areas for topsoil, loam, riprap or slope paving as shown on the plans or as directed, shall be constructed in accordance with these specifications and in close conformance with the lines, grades and typical cross sections shown on the plans or established by the Engineer.

CONSTRUCTION METHODS

170.60: General

All soft or spongy material below the subgrade shall be removed to a depth to be determined by the Engineer and backfilled with satisfactory material.

All material within a depth of 2 ft below the subgrade in embankment areas shall conform to the requirements of M1.02.0: Special Borrow for Special Borrow Material except that it shall contain no stone larger than 6 in. in its greatest dimension and shall be placed and compacted in layers not exceeding 8 in. in depth, compacted measurement.

In cut sections (excluding rock excavation) where existing soil within a depth of 2 ft below the subgrade, after testing, is found to comply with the requirements of M1.02.0: Special Borrow for Special Borrow Material, it shall not be excavated.
In cut sections (excluding rock excavation) where the existing soil within a depth of 2 ft below the subgrade, after testing for gradation requirements, is found to have greater than 14% material passing the no. 200 sieve, the material shall be excavated.

The replacing material shall conform to the requirements of M1.02.0: Special Borrow for Special Borrow Material, except that it shall contain no stone larger than 6 in. in its greatest dimension and shall be placed in layers not exceeding 8 in. in depth, compacted measurement.

In the areas described above where Special Borrow is to be used, the plane of the base upon which the material is to be placed shall be compacted and graded until the surface is smooth, without additional compensation. A tolerance of 1 in. above or below the proposed grade will be allowed, provided that this 1 in. above or below grade is not maintained for a distance longer than 50 ft and that the required crown is maintained.

In areas where the contract specifies the use of gravel borrow for subbase and the existing material, after testing, is found to comply with the requirements of M1.03.0: Gravel Borrow, the material shall remain in place if directed by the Engineer.

170.61: Fine Grading and Compacting

The subgrade shall be shaped to a true surface conforming to the proposed cross section of the highway and compacted in accordance with the provisions of 150.60: General and 150.62: Embankment Construction with Materials Other Than Rock. All depressions and high spots shall be filled with suitable material or removed, and such areas again compacted until the surface is smooth and satisfactorily compacted. A tolerance of ½ in. above or below the finished subgrade will be allowed provided that this ½ in. above or below grade is not maintained for a distance longer than 50 ft and that the required crown is maintained in the subgrade. Any portion of the subgrade which is not accessible to a roller shall be thoroughly compacted with the mechanical tampers or by other adequate methods approved as satisfactory by the Engineer.

COMPENSATION

170.80 Method of Measurement

The grading and compaction of the subgrade will be measured by the square yard. Grading and finishing for the entire project will include all grading work not included under Item 170. Fine Grading and Compacting – Subgrade Area.

170.81: Basis of Payment

Payment for the shaping and compacting of the subgrade shall be included in Item 170. Fine Grading and Compacting – Subgrade Area. The removal and disposal of material below subgrade will be paid for at the contract unit price per cubic yard for the appropriate excavation items in Subsection 120: Excavation.

Grading and finishing other than subgrade areas or existing gravel areas to remain in place will be included in the price of the other respective items of work involved.

In areas where Special Borrow is required as stipulated in 170.60: General, the material shall be paid for as Special Borrow. The provisions of 120.81: Basis of Payment shall apply when the Special Borrow is obtained from excavation.
In areas where Gravel Borrow material is required as stipulated in 170.60: General, the material shall be paid for as Gravel Borrow.

170.82: Payment Items

170. Fine Grading and Compacting – Subgrade Areas..Square Yard

SUBSECTION 190: BORINGS

DESCRIPTION

190.20: General

This work shall consist of making soil-test borings, obtaining and preserving acceptable samples, preparing a report of the results obtained and delivery of the report and samples.

The Engineer will establish the location and provide the ground surface elevation for each boring. No change in boring locations shall be made unless prior consent of the Engineer is obtained. The Contractor shall complete the borings to the specified highest bottom elevations or as directed. The actual location at which each boring is made shall be shown on the plans and the actual starting grade shown on the boring log.

The Contractor shall confine their operation as closely as possible to each location where work is to be performed. The Contractor shall take precautions necessary to prevent damage to existing structures and conduits both above and below ground, and to lawns, walks and pavements.

When the work at each borehole is completed, the hole shall be adequately blocked and solidly filled to a depth of at least 5 ft in a manner to preclude any possibility of injury to man or animal, or damage to property. Special Provisions for backfilling boreholes on railroad property may also be employed in accordance with railroad requirements.

Boreholes within the limits of travel ways, shoulders, sidewalks and paved areas shall be backfilled and compacted with granular materials and brought to the grade of the adjacent surface with a minimum of 6” of hot mix asphalt or cement concrete, whichever is applicable.

The Department reserves the right, at any time during the life of the Contract, to determine the order in which remaining borings are to be taken and reserves the right to eliminate borings from, or to add borings to those shown on the plans and the right to increase or decrease the depth of any and/or all borings.

The Contractor shall be responsible for any claims resulting from damage to underground pipes, conduits, and structures. It is suggested that possible damage to such utilities can be minimized or eliminated by hand augering the first several ft of each borehole. The Contractor’s attention is called to Subsection 7.13: Protection and Restoration of Property regarding Protection and Restoration of Property.

190.21: Borings, Samples and Reports

All Borings including Trial Borings, Auger Borings, Wellpoints, Probes and Test Pits shall require boring logs and/or records. Three copies of the final boring logs, one vellum and 2 paper copies,
and 2 diskettes of the electronic files in AutoCAD® compatible format shall be submitted to the MassDOT Geotechnical Engineer within 10 calendar days after completion of the last boring at each site. Abbreviations shall not be used on the final printed logs.

Boring samples, packaged, packed and labeled as required and described hereinafter under each type of boring and sample, shall be delivered at the time the boring logs are submitted, transportation prepaid, to the MassDOT Geotechnical Engineer.

A supply of Boring Record Cards for Department projects may be obtained upon request from the MassDOT Geotechnical Engineer to be glued on both ends of each cardboard sample box.

Where Borings are specified, a legible copy of the Driller’s field log shall be forwarded to the MassDOT Geotechnical Engineer the day after the Boring work at each site is completed.

The original drillers field log (copy) will be submitted to the MassDOT Geotechnical Engineer with the Driller’s field description unaltered. Should the Contractor’s Office Engineer or Geologist after review find it necessary to change a description it shall be done on a separate copy of the field log, dated, signed, and clipped to the original Driller’s log. Copies of these logs shall be sent to the MassDOT Geotechnical Engineer no later than one day after the completion of each borehole.

190.22: Supervision

The work shall be performed under the supervision of the authorized representative of the Engineer. No subsurface exploratory work shall be done in the absence of the Engineer.

The Contractor shall furnish the means and the men required to transport safely the Engineer to and from high ground and the position of borings located on water, in a swamp, or other surface conditions over which it is impossible or difficult to travel on foot.

The Contractor shall notify the Engineer not less than 48 hours in advance of when they intend to commence work at a particular job site or when they intend to increase or decrease the number of rigs on a project in order that the Engineer may have time to provide a proper number of inspectors for the project.

190.23: Driller Qualification

The driller of each boring crew shall be responsible for determining changes in the soil. The driller shall be experienced in detecting variations in the soil by changes in the feel and sound of the hollow rod to which the bit is attached. The driller shall also be competent to classify the recovered soil samples in accordance with the Department’s Visual Identification of Soils Table (copies may be obtained from the Engineer).

Before beginning on the Department’s work, the Contractor shall certify in writing to the Engineer, the name of each driller they propose to use. The driller shall be qualified as acceptable to the Engineer by exhibiting satisfactory abilities using the methods defined herein.

Once qualified a driller need not be requalified for subsequent projects, although approval must be obtained for their employment on each Contract. The Engineer reserves the right to determine the acceptability of the driller at any time during the prosecution of the work. The Contractor shall designate a field supervisor on each Project.
DRILLING METHODS

190.60: General

A. Starting Boring

Every boring shall start as a Drive Sample Boring, except Hollow Stem Auger, Auger, Undisturbed Sample Preparatory, and Vane Shear Test Preparatory Borings.

Where the resistance to penetration with earth boring tools, as defined herein by “Practical Refusal” (Paragraph F.), is encountered above the specified highest bottom elevation, the borehole nevertheless shall be made to said elevation. Should bedrock be encountered above the specified highest bottom elevation, the borehole shall be continued as a rock core boring for 10 ft. unless otherwise directed.

B. Casing

Casing shall be of a size that will permit the specified soil sample or rock core to be obtained, or groundwater observation well to be installed, or to allow for telescoping and spinning of casing. All pieces of casing and wash-pipe shall be equal in length. Casing may be driven into the ground only so far as is necessary to keep the wall of the borehole in place and then open hole techniques may be employed. However if the Contractor so elects, casing may be used throughout the borehole as required. Casing for rock core borings shall be sealed on bedrock to prevent loose material from entering the hole and to prevent the loss of drilling fluid return, regardless of the type or types of material encountered. Except for the first piece, when starting each borehole, the bottom of the casing should not be advanced below the bottom of the borehole that has been made with a chopping or drilling bit without the approval of the Engineer.

C. Making the Borehole

Independent of whether casing or open hole techniques are employed, the borehole shall be started and made by loosening the soil with a bit attached to the lower end of a hollow rod and given a chopping motion with a clockwise twist at the bottom of each stroke. An auger, either hand or power driven, a well-drill or a rotary drill shall not be used for advancing the borehole in less than “Dense” or “Very Dense” or “Practical Refusal” soil. However, when casing is used a rotary bit may be used to clean the casing. A sampler shall not be used instead of a chopping or drilling bit for making a borehole. To make a borehole through “Dense,” “Very Dense” or “Practical Refusal” soil, boulders, rockfill or other similar material the Contractor may employ whatever method they choose, including roller bits, telescoping and spinning of a casing without endangering life and property or affecting the purpose for which the boring is being made. The Contractor shall not use a backhoe or other earth moving equipment without the express approval of the Engineer to start a boring. The soil thus loosened shall be borne to the surface in a liquid which is forced down through the hollow rod, out through the discharge ports in the bit, and up the annular space between the hollow rod and the wall of the borehole and/or casing. Except when preparing the borehole for special sampling, the discharge ports shall direct the flow downward. The returning liquid shall be discharged into a settling basin and shall be reused (recirculated) to form a native mud. Water alone, for transporting the loosened soil, shall not be used except at the very beginning of each borehole. If a contractor elects to use open hole techniques, an effective mud for the purpose of transporting out the loosened soil and for stabilizing the wall and bottom of the borehole may be manufactured by adding a fat clay or bentonite, or one of its derivatives, in sufficient amount, to the
native mud. When making boreholes in very porous material, the Contractor may, with the prior consent of the Engineer, drive casing to seal the wall of the borehole. The volume of mud to be calculated at any time shall be no more than is necessary to transport the loosened soil, but in no event more than 10 gal per minute when making the borehole in 2.5-in. casing. No rig shall be removed from its position above the borehole nor shall the casing be pulled from the hole until the inspector has been shown a copy of the field log for that hole and has approved the removal of the rig and/or of the casing.

D. Changes in Soil

At each change in soil, as detected by the driller with intervals not to exceed those as stated under Item 190.61, the drilling operation shall cease and the borehole conditioned for sampling by slowing the pump, raising the bit off the bottom and circulating the liquid to remove from suspension large particles which might become settled solids and thus a part of the sample. The bit on the bottom end of the hollow rod shall then be replaced with a 1 ⅜-in. inside diameter split-tube sampler which shall be entered into the undisturbed soil at the bottom of the borehole for the sample.

E. Obstructions

Should an obstruction be encountered in a drive sample boring, the Engineer may require the Contractor to make additional borings at locations to be determined by the Engineer to attempt to pass the obstruction and complete the boring. “Practical Refusal,” boulders, hard material or rock fill will not be considered an obstruction. Final determination when and if an obstruction is encountered shall be made by the Engineer. Borings terminating on obstructions shall be considered trial borings and paid as a drive sample boring.

F. “Practical Refusal”

The term “Practical Refusal” shall mean failure of the sampler to penetrate at least 12 in., when driven 120 blows using a 140-lb weight free-falling 30 in. In each case the Engineer by observation shall determine that a Practical Refusal actually has been encountered. A Practical Refusal will not be accepted as the termination of a borehole above the highest bottom elevation as specified on the plans stated elsewhere.

190.61: Drive Sample Borings

Control Borings and Complementary Borings, when required for design and/or construction purposes, shall be started as drive sample borings and compensated for as hereinafter provided. Control Borings should be completed and boring reports on same submitted as specified under 190.21: Borings, Samples and Reports before any Complementary Borings are started. All, some, or none of the Complementary Borings may be required, depending on analysis of the Control Boring Data.

A sample shall be obtained at the beginning of each borehole and at each change in:

- Soil
- Consistency of a plastic stratum
- Density of a granular stratum
In addition to the above, samples shall be taken so that no sampling interval exceeds 5 ft in a continuous stratum. However, the sampling procedure of obtaining a sample at each change as specified will take precedent.

In addition to taking the samples as mentioned, a sample shall also be obtained at specific elevations for certain borings when shown on the boring plans. These samples from certain elevations shall be placed in as many 4-oz jars as necessary to accommodate the contents of the entire sample recovered from the split spoon sampler and all jars shall be properly labeled and preserved as specified in the Standard Specifications. If a sample is lost during the recovery, then the borehole shall be sampled again to recover a suitable sample at the specific elevation (or as close to it as possible) as given on the plans for certain borings. An acceptable minimum size sample shall be at least 6 in. in length. This requirement shall not apply if bedrock is encountered above the specified elevation.

A sampler of the size and type specified in 190.60: General, Paragraph D shall be driven to obtain the sample. Between each blow of the drive-weight, the sampler shall be turned clockwise at least one-quarter of a revolution to keep it free.

In no event will washed, bucketed, or bobbed samples be accepted.

Before sampling, the driller shall mark the drill rods in three successive 6-in. increments so that the advance of the sampler under the impact of the hammer can be easily observed for each 6-in. increment.

During the sampling operation, the driller of the boring crew shall count and record the number of blows required to affect each 6-in. increment of penetration or fraction thereof for a distance of 18 in. using a 140-lb weight free-falling 30 in.

The number of blows required to affect each 6 in. of penetration or fraction thereof for a distance of 18 in. shall be recorded on the field log and final log.

The first 6 in. shall be considered to be the seating drive. The summation of the number of blows for the second and third 6-in. increment of penetration shall be the penetration resistance (N).

The blow counts shall be shown on the final boring log as recorded in 6-in. increments or fraction thereof, if the sampler fails to penetrate the 6 in., with the corresponding sample depth.

The borehole shall be kept completely full of drilling liquid during the sampling and recovery operation.

Each sample, immediately upon its recovery, shall be placed, (not jammed) in a 4-oz glass jar. Sample jars shall be of the same diameter for their full length and shall have screw tops fitted with gaskets. Samples of cohesive soils shall be struck even with the top of the jar. Jars containing samples shall be stored in a cool, damp place, free from exposure to frost or excessive heat. Each jar shall be properly labeled, and its lid marked to identify its contained sample. The labeling shall be typewritten and the label glued to the side of the jar.
These labels shall show the following information in a neat, legible manner:

- Name and address of boring contractor.
- Date the boring was made.
- Location and name of project.
- Number of each boring as shown on the boring plans and log.
- Number of the sample as shown on the boring log.
- Depth at which the sample was obtained.
- Number of blows required to drive the sampler 1 ft, using a 140-pound weight free-falling 30 in.
- Brief description of the classification of the material composing the sample.

All jars shall be packed one tier in clean, unused, substantial, partitioned paperboard cartons. Each carton shall contain exactly 24 jars. If the number of jars containing soil samples is less than 24, the remaining spaces in the carton shall be filled with empty jars.

In each carton the jars shall be arranged in successive order as the samples were obtained from each bore-hole, starting in the upper left-hand corner, which shall be clearly identified with a felt tip marker on the outside, then moving from the top to the bottom of each succeeding row until all compartments have been filled. Jars left over to complete a borehole shall be similarly arranged, starting in the next numbered carton. Cartons shall be numbered successively on both ends with a felt tip marker. On both ends of each carton shall be glued a typewritten paper label, containing in the same format the information required on the boring Record Cards, which fully describes its contents.

Each driller shall sign only the notes for the borings they have made. These notes shall be preserved by the Contractor for future reference. The Inspector shall sign the field copy of the notes also.

At the completion of the boring work, the Contractor shall prepare a boring report containing a graphic representation (or log) of the results obtained. The log for each boring shall be a continuous vertical column, without discontinuity or offset and plotted to not less than $\frac{1}{8}$ of an inch per foot. The logs for all borings for each structure or construction unit shall be plotted to the same scale, on a type of transparent paper such as onion skin 8.5 in. wide and not less than 11 in. long; and contain one log per sheet.

The boring report shall contain the following minimum information and be typewritten:

1. Date, location and name of project.
2. Boring number or other designation.
3. Survey station and offset.
4. Starting grade of each boring (to be supplied by the Engineer).
5. Depth and a brief, proper classification by visual and manual inspection of each type of material including rock successively encountered in each borehole. Granular soils shall be classified by apparent grain size and state of denseness; clay soils by color and state of consistency, either as hard, medium or soft, and silts as organic or inorganic all in accordance with the Department's Visual Identification of Soils Table. Abbreviations shall not be used on the final typewritten log.
The resistance offered to penetration of the sampler, when sampling each stratum of soil, as represented by the number of blows required to drive the specified sampler 1 ft, or the designated fraction or multiple thereof, with a 140-lb weight free falling 30 in.

Special Note “CHANGED LOCATION” shall be made on each boring log to indicate any field change from survey layout, and an explanation of the reason for the change.

Distance below starting grade to the surface of water in the borehole at its completion and at other times (if any) as required in the Special Provisions, and any unusual behavior of ground-water observed during the boring operation.

Every unusual condition noted during the entire operation. When boulders or cobbles are encountered the driller shall note this on the log and how the boring was made through the boulders or cobbles.

Below each boring log shall be noted the hour and date of start and completion, the actual hours worked to complete the borehole and the name of the driller and inspector.

190.62: Hollow Stem Auger Borings

This type of Boring, when specified by the Engineer will be made in accordance with the specification and the special provisions of the Contract. When Hollow Stem Augers are used the type samplers specified under 190.60: General, Paragraph D, shall be used. A center rod, plug, and pilot bit will be in place unless otherwise directed while advancing the hole by rotation but to a depth no greater than the sampling interval. The center rod, plug, and pilot bit shall be removed and the sample obtained by driving the sampler 18 in. into the undisturbed material below the bottom of the auger. When sampling below the water table, the Hollow Stem Auger shall be kept full of water or drilling fluid unless otherwise directed. The auger flights shall be 5 ft in length and the maximum sampling interval shall not be greater than 5 ft.

However, the sampling procedure of obtaining a sample at each change shall take precedence as specified in 190.61: Drive Sample Borings. If the hollow stem auger encounters cobbles, boulders or similar material and fails to penetrate the material after an attempt has been made, then the Engineer may direct the contractor to make the boring by other methods such as a drive sample boring. However, the Engineer will decide when and if this procedure will be employed. Logs, samples and other pertinent information will be as specified in Subsection 190: Borings contained herein.

190.63: Core Borings

This type of boring is made after the casing has been sealed on bedrock to prevent loose material from entering the hole and to prevent the loss of drilling fluid return, regardless of the type or types of material encountered. Core Borings into bedrock shall be accomplished by the diamond bit, rotary drilling method. The minimum distance of coring into bedrock shall be 10 ft. The minimum diameter of acceptable core shall be 1 \(\frac{3}{8}\) in. Where rock cores are required, the coring shall be done with a Double Tube Core Barrel in runs of 5 ft or less.

Every effort and precaution shall be made by the Contractor to insure the best possible recovery and preservation of the rock cores.

Should the recovered length of core be less than 75% of the depth cored, the Contractor shall adopt measures as may be necessary to improve the percentage of recovery.
Measures to improve recovery may include changes in:

1. Type of diamond bit.
2. Rate of feed.
3. Speed of rotation.
4. Volume of cooling water.
5. Style of core barrel.
6. Depth of coring for each removal of core.
8. Type of machine.

All recovered cores, including fragments, shall be carefully handled to avoid breakage. They shall be placed in wooden boxes furnished by the Contractor. Boxes shall be in accordance with details furnished by the Department.

Cores shall be placed in the box in consecutive order as they are removed from the core barrel. The trough containing each core shall be fully identified and marked to show the top and bottom of the core.

Upon completion of each core boring all information obtained, including a brief description of the rock type, length or run, length recovered, percentage recovered, coring time, type of barrel used, etc., shall be added to the log of the corresponding boring. The boxed cores and completed logs shall be delivered to the Engineer, as required under 190.21: Borings, Samples and Reports. All lengths and percentages recovered shall be verified by the Inspector.

190.64: Thin-Wall Steel Tube Drive Samples

Where organic and inorganic clay or other soils are encountered while making a borehole, the Engineer may require the Contractor to obtain thin-wall steel tube drive samples. The tube shall not be less than 2 in. in diameter nor less than 18 in. long and need not be sharpened. The diameter of the thin-wall tube shall be specified in the special provisions. Making the borehole shall follow the procedure outlined under 190.60: General, Paragraph C. The steel tube shall be driven its full length into the material to be sampled. The loaded steel tube shall be sealed, marked for identification and handled in the manner described under 190.66: Undisturbed Samples.

190.65: Undisturbed Sample Preparatory Borings

The results of Drive Sample borings will determine whether Undisturbed Samples are required and the elevations at which they can be obtained.

The applicable parts of 190.60: General, Paragraph C, shall be followed in making this type of boring. The volume of mud circulated shall be increased just enough to transport the loosened soil from the borehole. The last 2 ft of borehole above the elevation at which an undisturbed sample is to be obtained shall be made with a bit built to deflect the flow of mud from a downward direction. Final preparation of the borehole to the top of each undisturbed sample shall be accomplished with a properly constructed and operated clean-out auger. The borehole shall be free of soil panicles, soil shavings and settled solids to the surface of undisturbed soil and shall be full of mud to the overflow nipple at the top of the casing.
(1) Drilling Procedure.

"Open hole" techniques may be allowed for advancement of the borehole. When casing is used the diameter shall be at least 1 in. larger than the diameter of the undisturbed sample called for.

Independent of the hole advancement technique (casing or open hole) selected, heavyweight drilling fluid with a unit weight between 75 to 95 pcf will be required. The unit weight employed will be selected by the Engineer or their representative in the field, based on hole depth and soil characteristics. The purpose of the drilling fluid is to maintain hole stability and minimize sample disturbance.

(2) Drilling Fluid.

Drilling Fluid shall be produced using clean water and bentonite or one of its derivatives. The drilling fluid shall be mixed to a uniform consistency acceptable to the Engineer. A drilling fluid net weight of 75 to 95 pcf (as determined by the Engineer) shall be obtained and thereafter maintained during execution of the borings, from which undisturbed samples are obtained. The borehole shall be filled with drilling fluid; the fluid level shall be maintained above the ground or water surface at all times until the last sample is taken from the drill hole.

(3) Drill Rods.

Drill rods provided for drilling, washing, and sampling within the borehole shall be of such a size that sufficient fluid flow (as determined by the Engineer) can be delivered to the bottom of the hole to permit complete flushing of soil when drilling at maximum depth. Drill rod fittings shall be provided to permit attachment of the drill rods to the thin wall tube sampler.

(4) Pump.

The Contractor shall furnish a suitable pump capable of pumping and recirculating the weighted drilling fluid used for the depth and diameter of boring required.

The use of casing for Undisturbed Sample Preparatory Boring shall follow the procedure outlined under 190.60: General, Paragraph B. The casing shall have a nominal diameter at least 1 in. larger than that of the undisturbed sample called for in the Special Provisions. Drive Samples shall be obtained as directed by the Engineer.

Immediately after recovery of an undisturbed sample, as described in under 190.66: Undisturbed Samples, the Inspector will examine the ends of the tube for adequacy and condition of the sample. If unacceptable, the borehole shall be re-prepared and additional samples taken until a satisfactory recovery is made.

190.66: Undisturbed Samples

Undisturbed samples shall be obtained with a stationary piston, thin-wall, steel tube sampler operated by a separate piston rod (actuating rod) and a sampler head with an appropriate spring and piston rod cone check. The diameter of the undisturbed samples shall be as specified in the Special Provisions. The sampler must be kept in perfect mechanical condition and operated at all times in a manner that will produce acceptable undisturbed samples.

The Osterberg method for obtaining an undisturbed sample may be substituted for the stationary piston method, if approved by the Engineer.
The seamless steel tube shall have a wall thickness not greater than #16 gauge. It shall be of a proper length to produce a net sample 24 in. long. Its bottom edge shall be drawn and reamed knife-sharp to an internal diameter approximately 1.75% less than the inside diameter of the tube. The tube shall be free of all scale or other deleterious material and may have a coat of thin enamel paint, lacquer, teflon, or other similar material. Just before being lowered to sample, the inside of the tube shall be wiped dry. Tubes with rusted surfaces shall not be used.

After being fully assembled and lowered to sampling position, the sampler shall be entered into the undisturbed soil by a rapid, continuous movement, without rotation.

A rest period of not less than 15 minutes shall be allowed for the sample to develop friction on the inside of the tube. The loaded tube shall then be rotated by turning the top of the drill-rod. A direct, slow and steady pull, accompanied by rotation, shall remove the loaded tube from the soil. Raising the tube to the surface shall be done without quick starts, sudden stops or vibrations. The borehole is to be kept full of mud during the entire recovery operation.

To free the loaded tube from the sampler-head, without damaging the sample, the vacuum breaker shall be opened. Immediately after the tube is freed, its end shall be inspected and if found satisfactory shall be sealed against loss of moisture.

The top and bottom of the tube shall be sealed with molten beeswax or a microcrystalline petroleum wax heated to a temperature not higher than its melting point. The total thickness of seal shall be approximately ¾ in. Any space remaining at either end shall be filled to within ¾ in. of the end of the tube with firmly pressed damp sand. Sealing wax shall then be poured flush with the end of the tube, which shall be covered with several layers of electrician’s tape.

A paper label, on which is recorded in ink all pertinent information as required in 190.61: Drive Sample Borings relating to the contained sample, shall be glued to the tube. The same data shall be printed directly on the tube with a felt-tip marker of a contrasting color.

The loaded tubes shall be packed in well-built wooden boxes at the sampling site. Each box shall contain no more than one 5-in. nor more than two 3-in. or four 2-in. tubes. Each tube shall be surrounded by at least 2 in. of resilient packing. A record of its contents shall be marked on the lid of each box with a felt-tip marker. The boxes shall be delivered at the completion of each borehole as directed in writing by the Engineer.

An acceptable undisturbed sample for laboratory tests shall, when split in two longitudinally and partially dried, disclose no observable distortions in its stratifications and/or shear planes that can be reasonably attributed to the sampling and handling operations. The Engineer may direct the Contractor to alter the cutting edge clearance of the sampling tube.

Where undisturbed samples are to be taken over water (tidal or otherwise), the Contractor shall have the necessary equipment to properly obtain an undisturbed sample on water and have the necessary devices to stabilize the barge or raft while making an undisturbed sample.

190.67: Vane Shear Test Preparatory Borings

The borehole shall be made under applicable parts of 190.60: General, Paragraph C and 190.65: Undisturbed Sample Preparatory Borings to a point 4 ft above the elevation at which a vane shear test is to be made. The next 2 ft of borehole shall be made with a bit built to deflect the flow of mud
from a downward direction. By means of a clean-out auger built for the purpose, all soil and
shavings shall be removed to an elevation 1 ft above the position of the top of the vane tool during
the test. Drive samples shall be obtained as directed by the Engineer.

190.68: Vane Shear Test

The in-place shear strengths of cohesive soils shall be measured by means of field vane shear tests. The Contractor shall have the required vanes as specified in the contract.

The penetrating edge of the vane blade shall be sharpened having an included angle of 90°. A ball bearing casing guide shall be attached to the drill rods 2 ft above the vane and additional ball bearing casing guides shall be provided for each 20 ft of drill rods required thereafter. All drill rods shall be made up tightly. The vane shall be pushed into the soil below the bottom of the hole in a manner that will prevent rotation during insertion. The bottom of the vane shall be inserted 18 in. into the undisturbed soil at the bottom of the hole.

After insertion, the drill rods shall be clamped securely to a thrust type ball bearing reacting against the casing, this bearing should support the entire weight of the vane and rods during test. A rotation of the vane shall be accomplished by means of a mechanical gear driven mechanism which shall produce a uniform rate of rotation of about 1° every 10 seconds (6° per minute). Accurately calibrated torque mechanism or proving rings with maximum readings of ft-lb shall be provided to measure the applied torque. Equipment shall be acceptable to the Engineer and in good working order. Torque wrenches will not be allowed. Calibration of Vane Shear Equipment by an acceptable organization capable and specializing in this work will be required. If said equipment has been calibrated and checked within the last 6 months by a recognized laboratory no additional calibration will be necessary. Certificate of Proof will be required.

A friction check will be run prior to each test when directed by the Engineer.

One man shall rotate the vane while the Engineer observes the torque gauge. Special attention shall be given to determine the maximum torque registered.

Following the determination of the maximum torque the remolded shear strength shall be determined in the same manner after rapidly rotating the drill rods about 12 revolutions. The determination of the remolded strength should be started immediately after completion of the rapid rotation and in all cases within one minute after the remolded process.

During the tests, readings of time, applied torque and angular rotation should be recorded at 15-second intervals unless otherwise directed until the maximum torque is achieved. The maximum torque in ft-lb, the time and angle of rotation measured from the start of the test to the development of maximum torque shall also be recorded. A complete description of the apparatus and detailed dimensions of the vane shear tool shall be submitted with the test report.

Completion of the procedure described above including determination of the remolded shear strength shall constitute one field vane shear test for payment purposes.

If the Contractor is unable to push or drive the vane into the soil below the bottom of the hole after lowering the drill rods and vane to the required depth or if they are unable to rotate the vane to determine the maximum torque due to the stiffness of the soils or due to an obstruction,
compensation will be considered included in the Unit Bid Price per foot for Vane Shear Test Preparatory Boring and no further compensation will be made.

190.69: Auger Borings

Auger borings shall be made where directed to obtain large volume soil samples for laboratory testing. The borings shall be made to depths required by the Engineer, with an earth auger not less than 4 in. in diameter, either manually or power operated. The auger section shall not exceed 5 ft in length and shall be removed from the auger hole each time its hollows have become filled with soil.

190.70: Auger Boring Samples

Large volume soil samples for laboratory testing shall be obtained from auger borings. Each sample shall weigh at least 50 lb and shall be preserved in an approved container. The number of samples required at each borehole shall be determined by the Engineer.

The container for each sample shall have positive identification of the contents, either by typewritten glued-on label, by wired-on tag or by felt-tip marker. The following information shall be shown:

1. Name and address of boring contractor.
2. Date sample was taken.
3. Location and name of project.
4. Location of auger borehole by station and offset or identifying number of auger borehole, if so identified on plan.
5. Depth below ground surface at which sample was obtained.

190.71: Ground Water Observation Wellpoints

Type I

A 2.5-in. minimum diameter hole shall be advanced by the Contractor by whatever method they choose to the elevation specified regardless of type of material encountered such as boulders, “Practical Refusal” material, rock fill, etc., with the exception of bedrock. When the bottom of the hole has reached the elevation specified for the tip of the well point, it shall be purged to its full depth with clean water.

The wellpoint shall have ample clearance so that it may be lowered freely in the borehole. The screen shall be 60 mesh unless otherwise stated. The minimum dimension of the wellpoint shall be 1.25 in. x 24 in.. The riser, rigidly fastened to the well point, shall be 1.25-in. galvanized pipe. A galvanized pipe plug or a cap with a vent hole shall be furnished to close the top of the riser. After the well point has been lowered to the specified elevation, the annular space between the well point and riser pipe and the 2.5-in. casing shall be filled with clean, dry sand, unless otherwise directed. This sand shall be retained on a 50 mesh and shall pass a 30 mesh sieve. It shall be poured in slowly to fill the annular space as the casing is pulled.

During the pulling of the casing the wellpoint shall not be raised from its original position.

At completion, the top of the riser pipe shall be closed wrench tight with a vented pipe plug or cap.
Type II

Ground Water Observation Wellpoints Type II may be installed in a completed borehole after all samples and information have been obtained from these holes. Prior to placing the wellpoint, these holes shall be purged to their full depth with clean water. Where the bottom of the borehole is lower than the highest bottom elevation of the wellpoint, that portion of the borehole below the bottom of the wellpoint, shall be backfilled with a clean dry sand to the elevation of the bottom of the wellpoint unless otherwise directed. If the bottom of the casing is below the highest bottom elevation of the wellpoint when the sand has reached the elevation of the bottom of the casing, the backfilling and pulling of casing shall be carried out simultaneously to the highest bottom elevation of wellpoint and continued as directed for Type I Groundwater Observation Wellpoints unless otherwise directed.

Backfilling of boreholes below bottom of well point, where required shall be included in the cost of Ground Water Observation Wellpoints Type II. Where bedrock is encountered the diameter of the borehole and rock core shall be large enough to accommodate a wellpoint and riser pipe.

Type III

Ground Water Observation Wellpoints Type III wellpipe and screen shall be installed as described in these specifications for Type I Ground Water Observation Wellpoints, except that the wellpipe and screen used shall be 2-in. PVC schedule 40 threaded flush joint well pipe and wellscreen. Wellscreen slot width shall be 0.010 in. A suitable threaded plug shall be installed at the bottom of the wellscreen. A suitable vented thread cap shall also be installed at the top of the well pipe when requested by the engineer. No cementing will be allowed. The length of the wellscreen for each Type III Ground water Observation Wellpoint will be designated on the plan by the Engineer. Separate payment will be made for the wellpipe used and the wellscreen used.

The hole made shall be of sufficient diameter to accommodate the wellpipe and screen.

Type IV

Ground Water Observation Wellpoint Type IV wellpipe and wellscreen may be installed in a completed borehole after all samples and information have been obtained from these holes. The method of installation shall be the same as described in these specifications for Type II Ground Water Observation Wellpoints except that the well pipe and screen used shall be 2-in. PVC schedule 40 threaded flush joint wellpipe and wellscreen. Wellscreen slot width shall be 0.010 in. A suitable threaded plug shall be installed at the bottom of the wellscreen. A suitable vented threaded cap shall be installed at the top of the well when requested by the Engineer. No cementing will be allowed. The length of the wellscreen for each Type IV well will be designated on the plan by the Engineer.

The borehole shall be of sufficient diameter to accommodate the wellpipe and screen. If bedrock is encountered the borehole shall be large enough to accommodate the wellpipe and screen.

When directed by the Engineer, sand may be omitted on all types of well installation.

190.72: Mobilization and Dismantling of Boring Equipment

This work shall include the furnishing at the site of all men and equipment necessary to properly complete the work detailed in the Proposal, including the moving of men and equipment from one
project site to another and the restoration of each site after the boring equipment has been removed. It shall also include all special tools and equipment necessary to perform the work in or on water and in other places not readily accessible.

190.73: Test Pits

Dimensions of Test Pits will be such that a 50-lb sample can be obtained at depths specified. The pit can be dug by hand or machine at locations as directed by the Engineer. In no case will the depth of pit be more than 12 ft. Test Pits shall be properly sheeted to protect the workers as required in 140.60: General, Paragraph F, and shall be large enough to allow the inspection of soil conditions and/or the procurement of 50-lb bag samples. (Maximum number not to exceed 3).

Each sample shall weigh at least 50 lb and shall be preserved in a suitable and approved container. The container for each sample shall have positive identification of contents either by typewritten glued on label, by wired on tag or by felt-tip marker. The label shall be covered completely with a transparent material such as tape, plastic, etc.

The following information shall be shown:

1. Name and Address of Boring Contractor.
2. Date Sample was taken.
3. Location and name of Project.
4. Location of Test Pit by Station and Offset or Identifying No. if so identified on plan.
5. Depth below ground surface at which the sample was obtained.

When the test pit is complete and required samples taken and approved by the Engineer, it shall be backfilled and compacted in an approved manner so as not to cause a hazardous condition.

Test Pits Through Pavements

When test pits are required where the Contractor must break through pavements, they shall make as small a test pit as possible. After the Contractor obtains the proper number of samples required, they shall backfill the test pit with suitable material, compact it in accordance with the Specifications. The test pit then shall be brought to the proper grade with the last 6 in. being hot mix asphalt or cement concrete whichever is applicable. The cost of patching where required shall be included in the cost of the test pit.

Test pits made through pavements shall be cut on a neat line by a jack hammer, saw or other mechanical means. The cost of cutting the pavement on a neat line by jack hammer, saw or other mechanical means and patching the pavements as required shall be included in the unit bid price for test pits made through pavements.

COMPENSATION

190.80: Method of Measurement

Drive Sample Borings and Hollow Stem Auger Borings when completed as such, will be measured by the foot of borehole made in original and trial borings below the ground surface, regardless of the type of materials encountered, such as boulders, “Practical Refusal” material, rockfill, etc. with the exception of bedrock.
Core Borings will be measured by the foot cored into bedrock.

Undisturbed Sample Preparatory Borings and Vane Shear Test Preparatory Borings will be measured by the foot of borehole made below the ground surface to the lowest undisturbed sample made or Vane Shear Test performed.

Thin-wall Steel Tube Drive Samples, Undisturbed Samples, Auger Boring Samples and Vane Shear Tests will be measured for each acceptable sample recovered or test made.

Auger Borings will be measured by the foot of borehole made below the ground surface.

Ground Water Observation Wellpoints Type I and Type II will be measured by the foot from the tip of the wellpoint to the top of the riser pipe, but not more than 2 ft above the ground surface regard-less of the type of materials encountered such as boulders, “Practical Refusal” material, rockfill, etc., with the exception of bedrock.

Ground Water Observation Wellpoints Type III and IV wellpoint will be measured by foot from the top of the wellscreen to the top of the riser pipe but no more than 2 ft above the ground surface regardless of the type of materials encountered such as “Practical Refusal,” Boulders, Rock Fill, etc., with the exception of bedrock. Ground Water Observation Wellpoints Type III and IV wellscreen will be measured by the foot from the bottom of the wellscreen to the top of the wellscreen or the actual length used regardless of the type of materials encountered such as Boulders, “Practical Refusal,” Rock Fill, etc., with the exception of bedrock.

Test Pits will be measured by each Test Pit made.

190.81: Basis of Payment

Drive Sample Borings, Hollow Stem Auger Borings, Core Borings, Undisturbed Sample Preparatory Borings and Vane Shear Test Preparatory Borings will be paid at the contract unit price per foot for the kind of boring completed as required; payment to include installation of casing as required, including telescoping and spinning of casing when necessary, recovered cores and drive samples. Payment for Undisturbed Preparatory and/or Vane Shear Test Preparatory will only be made to the lowest undisturbed sample made or to the last Vane Shear Test performed. If the boring is continued beyond this point it shall be paid as a Drive Sample boring or other type for the remainder of the borehole or as specified in the Special Provisions.

When borings are located on the water, payment shall be made at the contract unit price per foot for the type of boring made only for the depth of hole below the river, lake, stream, etc., bottom.

Auger Borings will be paid at the contract unit price per foot completed as required.

The cost of any materials required to restore the site to its original condition will be included in the unit price of the item.

Ground Water Observation Wellpoints Type I and Type II will be paid at the contract unit price per foot which shall include full compensation for a log and all materials left in place.

Ground Water Observation Wellpoints Type III and IV wellpipe and wellscreen will be paid at the contract unit bid price per foot which shall include full compensation for a log and all materials left in place.
Thin-Wall Steel Tube Drive Samples, Undisturbed Samples, Auger Boring Samples and Vane Shear Tests will be paid for at the contract unit price for each acceptable sample or test completed as required.

Mobilization and Dismantling of boring equipment will be paid for at the contract lump sum price for Item 193.

Test Pits will be paid at the contract unit price for each test pit actually dug. The contract unit price shall include all labor, equipment, supplies, tools and incidentals required to dig the test pits. The cost for any material to restore the site to its original condition and cutting through pavements will be included in the Item. The Unit Bid Price shall also include the cost of obtaining 50-lb bag samples (maximum number of 3) as directed and all other incidental work thereto, including a log.

190.82: Payment Items

191. Drive Sample Boring ... Foot
191.10 Hollow Stem Auger Boring ... Foot
191.11 Core Boring .. Foot
191.2 Undisturbed Sample Prep. Boring .. Foot
191.21 Undisturbed Sample ... Each
191.3 Vane Shear Test Prep. Boring ... Foot
191.31 Vane Shear Test ... Each
191.4 Auger Boring ... Foot
191.41 Auger Boring Sample .. Each
191.5 Thin Wall Steel Tube Drive Sample Each
191.6 Test Pit .. Each
191.61 Test Pits Through Pavements ... Each
192. Ground Water Observation Wellpoint Type I Foot
192.1 Ground Water Observation Wellpoint Type II Foot
192.2 Ground Water Observation Wellpoint Type III – Solid Pipe Foot
192.21 Ground Water Observation Wellpoint Type III – Wellscreen .. Foot
192.3 Ground Water Observation Wellpoint Type IV – Solid Pipe Foot
192.31 Ground Water Observation Wellpoint Type IV – Wellscreen .. Foot
193. Mobilization and Dismantling of Boring Equipment Lump Sum
SECTION 200: DRAINAGE

SUBSECTION 201: BASINS, MANHOLES AND INLETS

DESCRIPTION

201.20: General
This work shall consist of the construction of manholes, inlets and basins in accordance with the specifications, and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

201.40: General
Concrete for these structures shall meet the requirements of Subsection 901: Cement Concrete. Other materials shall meet the requirements specified in the following Subsections of Division III, Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay Brick</td>
<td>M4.05.2</td>
</tr>
<tr>
<td>Cement Concrete Blocks</td>
<td>M4.05.1</td>
</tr>
<tr>
<td>Precast Drainage Structures</td>
<td>M4.02.16</td>
</tr>
<tr>
<td>Cement Mortar</td>
<td>M4.02.15</td>
</tr>
<tr>
<td>Reinforcing Bars</td>
<td>M8.01.1</td>
</tr>
<tr>
<td>Iron Castings</td>
<td>M8.03.0</td>
</tr>
<tr>
<td>Steel Castings</td>
<td>M8.03.2</td>
</tr>
<tr>
<td>Dry Stone Masonry</td>
<td>M9.04.9</td>
</tr>
</tbody>
</table>

CONSTRUCTION METHODS

201.60: General
Basins, manholes and inlets shall be built to the lines, grades, dimensions and design shown on the plans and as directed with the necessary frames, gratings, covers, hoods, etc., and in accordance with these specifications. Basins and inlet grates other than Cascade type may be Type A-1 or A-3, but only one type may be used throughout the project.

Sanitary Sewer Manholes shall be constructed according to the specifications of the Municipality as designated in the Contract.

201.61: Excavation
Excavation shall conform to the applicable portions of Subsection 140: Excavation for Structures.

201.62: Laying Brick and Blocks
Brick and concrete blocks shall be soaked in water before laying. All joints in brick structures shall be thoroughly flushed full of mortar and no joint on the inside face shall be greater than \(\frac{1}{8} \) in. After
the bricks are laid, the joints shall be pointed on the outside. As brick walls are laid up, the outside
of the structure shall be plastered with ½-in. thick mortar coat. As circular concrete block walls are
laid-up the horizontal joints and keyways shall be flushed full with mortar. As rectangular blocks
are laid up all horizontal and vertical joints shall be flushed full with mortar. Plastering of the
outside of block structures will not be required. The joints in precast units shall be wetted and
completely mortared immediately prior to settling a section. No structure shall be backfilled until
all mortar has completely set. When the floors of structures are made of concrete sectional plates
the opening in the floor shall be filled with brick chips and mortar, cement concrete, or left open, as
directed.

201.63: Placing Castings

Frame castings for basins, manholes and inlets shall be set in full mortar beds true to the lines and
grades as directed.

Where directed the castings shall be temporarily set at such grades as to provide drainage during
the construction.

The castings of structures located within the pavement area shall not be completely set to the
established grade until the bottom course of pavement has been laid.

The final setting of all other castings shall be performed at the proper stage of construction as
directed.

Cement concrete collars shall be placed around the castings after the final setting as shown on the
plans and as directed.

Hoods shall be installed in catch basins only when required by Special Provisions.

201.64: Weep Holes

Two weep holes shall be built into the walls of all new basins, precast units and in Types C, CF, D
and DF drop inlets as shown on the plans. Each weep hole shall consist of a section of 4-in. pipe or
equivalent opening to carry water through the wall of the structure.

The ends of the pipe, if used, shall be saw cut and left flush with the walls of the structure.

The outside end of the pipe or opening shall be covered with a ¼-in. mesh galvanized wire screen
23 gauge satisfactorily fastened against the wall. The drain to the weep hole shall be excavated and
backfilled with 2 ft³ crushed stone conforming to Section M2: Aggregates and Related Materials. The
stone shall be placed against and over the end of the pipe or opening to prevent the entrance of the
finer filling material. Only one type of weep hole shall be used throughout the project.

201.65: Backfilling

Backfilling requirements shall conform to the Provisions of 120.60: General, Paragraph B, 150.60:
General, and 150.64: Backfilling for Structures and Pipes.
COMPENSATION

201.80: Method of Measurement

Measurement for catch basins, leaching basins, manholes and drop inlets (Types C and D), will be based on a standard unit having a depth of 6.5 ft; for drop inlets (Types A and B) having a depth of 4 ft-10 in., as measured vertically at the center of the structure from the top of the grating or cover to the top of the floor in the case of basins and inlets and the invert in the case of manholes. When the measured depth exceeds the standard unit, the number of units paid for will be in the proportion of the measured depth to the standard depth down to 9 ft. Basins, manholes, or drop inlets having a depth less than this standard unit will be counted as one unit. Each gutter inlet shall be counted as one unit. Measurement for manholes more than 9 ft down to a depth of 14 ft will be based on a standard unit depth of 9 ft as measured vertically at the center of the structure from the top of the cover to the invert. Measurement for manholes more than 14 ft down to a depth of 18 ft will be based on a standard unit depth of 14 ft as measured vertically at the center of the structure from the top of the cover to the invert.

When items for Manholes (9 to 14 ft Depth) or Manholes (14 to 18 ft Depth) do not appear in the Proposal the standard unit of depth for all structures shall be 6.5 ft.

Special manholes will be measured as complete units regardless of depth.

Frames and grates or covers will be measured by each complete unit furnished and delivered to the site.

201.81: Basis of Payment

The accepted quantities of manholes, inlets and basins will be paid for at the contract unit price each, complete in place, which shall include crushed stone for weep holes and installation of the frame and grate or cover.

Payment for the concrete collars shall be included in the contract unit price of the structure involved.

Extra depth excavation below the proposed bottom of structure to obtain a stable foundation will be paid for as Class B Trench Excavation.

When directed, the castings of drainage structures on roadways opened to traffic will be set to a temporary grade, and the unit will be considered complete in place and paid for at the contract unit price for the type of structure involved. At such time as the casting or structure and casting is adjusted to final grade the work shall be done and payment made under the provisions of Subsection 220: Adjustment, Rebuilding and Remodeling of Drainage Structures.

If the material for backfill is obtained from borrow it will be paid for at the contract unit price per cubic yard or ton for the kind of borrow required.

Frames and grates or covers will be paid for at the contract unit price each under the items for furnishing and delivering new frames and grates or covers.

Hoods shall be paid at the contract unit price each and shall include furnishing and installation of the hood.
201.82: Payment Items

201. Catch Basin ... Each
202. Manhole ... Each
202.2 Manhole (9 to 14 Foot Depth) .. Each
202.3 Manhole (14 to 18 Foot Depth) .. Each
203. Special Manhole .. Each
204. Gutter Inlet .. Each
205. Leaching Basin .. Each
206. Drop Inlet, Type A .. Each
206.1 Drop Inlet, Type AF ... Each
207. Drop Inlet, Type B .. Each
207.1 Drop Inlet, Type BF ... Each
208. Drop Inlet, Type C .. Each
208.1 Drop Inlet, Type CF ... Each
209. Drop Inlet, Type D .. Each
209.1 Drop Inlet, Type DF ... Each
220. Drainage Structure Adjusted ... Each
221. Frame and Cover .. Each
222. Frame and Grate - MassDOT Bar Type .. Each
222.1 Frame and Grate - MassDOT Cascade Type .. Each
222.2 Frame and Grate - MassDOT Drop Inlet ... Each
222.3 Frame and Grate (or Cover) Municipal Standard ... Each
224.* ___ Inch Hood .. Each

*Pipe or appurtenance size will be included as part of the item number to differentiate between the sizes.

SUBSECTION 220: ADJUSTMENT, REBUILDING AND REMODELING OF DRAINAGE STRUCTURES

DESCRIPTION

220.20: General

The work shall consist of rebuilding, removing, replacing, discarding and adjusting the masonry and castings of present structures, as required, to conform to newly proposed line and grade changes; to change in type of structure, or changes in type of castings; all in accordance with these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

220.40: Materials

Such materials as will be required shall conform to 201.40: General.
220.60: General

When the line or grade or both the line and grade of the structure changes by 6 in. or less, the structure shall be adjusted to line and grade. The masonry shall be removed to such depth as directed by the Engineer and new masonry shall be constructed to conform to the proposed design and in conformity with the requirements of the applicable parts of Subsection 201: Basins, Manholes and Inlets.

When the line or grade or both the line and grade of the structure changes by more than 6 in. the structure shall be remodeled. The sloped masonry and the vertical masonry shall be removed to such depths as directed by the Engineer and new masonry shall be constructed to conform to the proposed design and in conformity with the requirements of the applicable parts of Subsection 201: Basins, Manholes and Inlets.

When a change in type of structure is required, as converting a basin to a manhole, the masonry shall be removed to such a depth as directed by the Engineer and new masonry, including a brick invert, shall be constructed to conform to the proposed design.

When in the judgment of the Engineer the masonry shows deterioration, the structure shall be rebuilt. The casting and deteriorated masonry shall be removed in a neat manner until a clean sound base is obtained upon which concrete blocks and clay bricks may be set to rebuild the structure. Gravel borrow shall be furnished for backfill where required when excavated material is unsuitable. The casting shall be set to line and grade with a concrete collar and surfaced with a minimum of 3 in. of hot mix asphalt.

Frames and grates (or covers) determined to be unsatisfactory for reuse shall become the property of the Contractor and shall be removed and discarded. All frames and grates or covers designated to be discarded shall be carefully removed, transported and discarded in accordance with all applicable regulations.

The new masonry construction, replacing of castings, highly early strength concrete collars, backfilling around structures and other incidental work shall be as specified in Subsection 201: Basins, Manholes and Inlets.

220.61: Protection of Work

The Contractor will be held responsible for the protection of the castings. Any frames, grates, or covers damaged in any manner during the progress of the construction shall be replaced with new castings by the Contractor, at their expense.

Prior to the actual removal of the present castings a count will be made and recorded of all castings which are in satisfactory condition for reuse. The Contractor shall supply the number of castings recorded in the initial count, when they are required for reuse or when they are to be removed from the project by the Owner.
COMPENSATION

220.80: Method of Measurement

Drainage Structure Adjusted will be measured in place by the unit each, complete and approved.

Drainage Structure Remodeled will be measured in place by the unit each, complete and approved.

Drainage Structure Changed in Type will be measured in place by the unit each, complete and approved.

Drainage Structure Rebuilt shall be measured by the average height in feet, vertically to the nearest \(\frac{1}{12}\) ft, from the bottom of rebuilt masonry to the bottom of the casting. The removal and resetting of the casting shall be incidental to the work.

Frame and Grate (or Cover) Removed and Discarded shall be measured by each unit of frame and grate or frame and cover removed and discarded.

Table 220.80-1 summarizes the items utilized on common types of work.

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Item Description / Pay Unit</th>
<th>Items necessary to Build a new Drainage Structure</th>
<th>Items necessary to Adjust a Structure (6 in. or less)</th>
<th>Items necessary to Rebuild a Structure</th>
<th>Items necessary to do a Structure Change-in Type</th>
<th>Items necessary to Remodel a Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>201 / 202</td>
<td>Catch Basin or Manhole / Ea</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222.1, 221. 222.</td>
<td>Frame and Grate or Cover / Ea</td>
<td>Yes</td>
<td>If required</td>
<td>If required</td>
<td>Yes</td>
<td>If required</td>
</tr>
<tr>
<td>224.*</td>
<td>Hood / Ea</td>
<td>If required</td>
<td>If required</td>
<td>If required</td>
<td>If required</td>
<td>If required</td>
</tr>
<tr>
<td>220</td>
<td>Drainage Structure Adjusted / Ea</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>220.2</td>
<td>Rebuild / Foot</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>220.3</td>
<td>Change-in-Type / Ea</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>220.5</td>
<td>Remodel / Ea</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

220.81: Basis of Payment

Drainage Structure Adjusted will be paid for at the contract unit price each.

Drainage Structure Change in Type will be paid for at the contract unit price each.
Drainage Structure Remodeled will be paid for at the contract unit price each.

Drainage Structure Rebuilt will be paid for at the contract unit price per foot.

The work of removing, adjusting and resetting the casting and installation of new castings shall be incidental to the pay items for adjust, rebuild, remodel, or change in type of the structure.

Frames and grates or covers furnished and delivered to the site will be paid for under the provisions of Subsection 201: Basins, Manholes and Inlets.

Frame and Grate (or Cover) Removed and Discarded shall include all labor, equipment and transportation necessary to remove and discard the materials to the satisfaction of the Engineer.

Furnishing new hoods shall be paid for at the contract price each under the items for ___ Inch Hood.

220.82: Payment Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>Drainage Structure Adjusted</td>
<td>Each</td>
</tr>
<tr>
<td>220.2</td>
<td>Drainage Structure Rebuilt</td>
<td>Foot</td>
</tr>
<tr>
<td>220.3</td>
<td>Drainage Structure Change in Type</td>
<td>Each</td>
</tr>
<tr>
<td>220.5</td>
<td>Drainage Structure Remodeled</td>
<td>Each</td>
</tr>
<tr>
<td>220.7</td>
<td>Sanitary Structures Adjusted</td>
<td>Each</td>
</tr>
<tr>
<td>221</td>
<td>Frame and Cover</td>
<td>Each</td>
</tr>
<tr>
<td>222</td>
<td>Frame and Grate – MassDOT Bar Type</td>
<td>Each</td>
</tr>
<tr>
<td>222.1</td>
<td>Frame and Grate – MassDOT Cascade Type</td>
<td>Each</td>
</tr>
<tr>
<td>222.2</td>
<td>Frame and Grate – MassDOT Drop Inlet</td>
<td>Each</td>
</tr>
<tr>
<td>222.3</td>
<td>Frame and Grate (or Cover) Municipal Standard</td>
<td>Each</td>
</tr>
<tr>
<td>223.2</td>
<td>Frame and Grate (or Cover) Removed and Discarded</td>
<td>Each</td>
</tr>
<tr>
<td>224.</td>
<td>___ Inch Hood</td>
<td>Each</td>
</tr>
</tbody>
</table>

*Pipe or appurtenance size will be included as part of the item number to differentiate between the sizes.

SUBSECTION 227: DRAINAGE SYSTEM SEDIMENT

DESCRIPTION

227.10: General

The work shall consist of removal and disposal of accumulated sediment, which may contain refuse and other debris, from designated drainage systems, including: drainage structures, pipes, the gutter mouth of curb inlets, and as directed by the Engineer.

CONSTRUCTION METHODS

227.21: Regulatory Requirements

Drainage system sediment is classified as a solid waste by the DEP and must be handled and disposed in accordance with Solid Waste Management Regulations 310 CMR 19.000, as well as all other applicable DEP policies and guidance.
Sediment must arrive at the disposal facility sufficiently dry since DEP regulations prohibit landfills from accepting materials that contain free draining liquids. A permitted solid waste disposal facility may require characterization of the material prior to accepting it for disposal at the facility. The Contractor shall provide copies of all material shipping records to the Engineer.

227.23: Prosecution of Work

No casting shall be removed until immediately preceding the work and shall be replaced immediately after the cleaning of the drainage structure and/or pipes is completed. Open catch basins shall not be left unattended. The Contractor shall properly secure the grate locking device after cleaning.

The Contractor shall protect the cast iron hood of drainage structures so equipped, during the sediment removal process. Equipment used to collect drainage system sediment shall be capable of decanting free flowing liquids back into the drainage system. Conditions such as location, extraordinary shape due to conduits or public utility pipes, or off pavement work, may require hand work. Drainage system sediment shall be transported to a disposal facility in trucks that will not spill the material along the roadway. Any sediment falling on the roadway shall be removed by the Contractor at their own expense.

COMPENSATION

227.30: Method of Measurement

Sediment removed from drainage structures will be measured by the cubic yard after decanting.

Sediment removed from drainage pipes will be measured by the foot of drainage pipe, regardless of the diameter of pipe from which material is removed.

227.31: Basis of Payment

Removal and disposal of drainage structure sediment will be paid for at the contract unit price per cubic yard.

Removal and disposal of drainage pipe sediment will be paid for at the contract unit price per foot, regardless of the volume of sediment removed.

The price of these items shall include all labor, equipment, approvals, permits, testing, transportation, disposal and all other incidentals necessary to complete the work.

227.31: Payment Items

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>227.3</td>
<td>Removal of Drainage Structure Sediment</td>
<td>Cubic Yard</td>
</tr>
<tr>
<td>227.31</td>
<td>Removal of Drainage Pipe Sediment</td>
<td>Foot</td>
</tr>
</tbody>
</table>
SUBSECTION 230: CULVERTS, STORM DRAINS, AND SEWAR PIPES

DESCRIPTION OF WORK

230.20: General
This work shall consist of the construction of culvert storm drains, sewer pipes, hereinafter referred to as “Pipe” and flared end sections for Reinforced Concrete or Metal Pipe, in accordance with these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

230.40: General
Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

- Corrugated Metal Pipe ... M5.03.0
- Corrugated Metal Pipe-Arch ... M5.04.0
- Smooth Steel Liner Helically Corrugated Shell Metal Pipe ... M5.04.3
- Reinforced Concrete Pipe ... M5.02.1
- Ductile Iron Pipe .. M5.05.3
- Structural Plate for Pipe and Pipe-Arch ... M5.04.2
- Jointing Materials For Pipe .. M9.10.0
- Mortar for Pipe Joints ... M4.02.15
- Reinforced Concrete Pipe. Flared Ends .. M5.02.2
- Metal End Sections .. M5.03.6
- Polymeric Precoated Corrugated Metal Pipe ... M5.03.8
- Corrugated Plastic (Polyethylene) Pipe ... M5.03.10
- Corrugated Plastic Flared Ends .. M5.03.10

CONSTRUCTION METHODS

230.60: General
Excavation and backfill shall conform to the applicable portions of Subsection 140: Excavation for Structures and Subsection 150: Embankment.

230.61: Bedding Pipes
The bedding for the pipe shall be shaped to conform reasonably close to the lower 10% of the pipe and recesses excavated for bells of bell and spigot pipes.

All pipe shall be laid to the specified line and grade, with a firm bearing throughout each length and with bell ends uphill.

230.62: Pipe Joints
The joints of concrete pipe shall be formed by caulking a gasket of jute or oakum into the bell and then filling the remainder of the joint with cement mortar. The invert shall be kept smooth and free
of any obstructions. In the case of concrete pipe the surfaces to be joined shall be thoroughly
cleaned and wetted with water before the joint is made. Corrugated metal pipe and corrugated
plastic (polyethylene) pipe shall be firmly joined with an approved coupling.

When rubber type ring gaskets are used the pipe ends shall be designed so that the gasket will be
confined on all sides and will not support the weight of the pipe. Regardless of the type of joint used
the interior surfaces of abutting pipes shall form a smooth grade when pipe laying is completed.

Where water tight joints are required, concrete pipe shall be joined using flexible water tight
rubber gaskets conforming to ASTM C443. Any alternative joint design must be pre-approved by
the Engineer.

In designated areas, as directed, certain joints may be left open to allow for entrance of
underground water into the pipe line.

230.63: Structural Plate Pipe and Pipe-Arch

A. Excavation.

(See 140.60: General)

B. Bedding.

The pipe or pipe-arch structure shall be placed on a prepared foundation carefully shaped to fit the
lower plate or plates of the structure so that the flow line will conform to the required grade.

The arch structure shall be placed on a foundation as shown on the plans. Each side of the arch shall
rest on a galvanized channel, as detailed on the plans, securely embedded in the substructure.

C. Erections.

The plates for the structure shall be assembled according to the manufacturer’s assembly
instructions. Pipe or pipe-arch structures may be assembled in their final location or adjacent to it,
and then placed on the prepared foundation as a complete unit. Arches shall be erected in place
upon the prepared substructure. When completed, all bolts shall be effectively tightened.

D. Elongation of Pipe.

All pipe shall be fabricated elliptically so as to increase the vertical diameter 5% and decrease the
horizontal diameter 5%. These dimensions shall be subject to manufacturing tolerances.

E. Coating.

The entire outside surface and the inside bottom half of the pipes and the entire outside and inside
of the bottom and corner plates of pipe arches shall be covered with a coat of bituminous material
conforming to Subsection M7.04.01.

When the structure is erected in the final location, the bottom of all plates that are to be in contact
with the ground shall be coated and allowed to dry before they are placed in the structure.

For arches, the entire outside surface shall be covered with one coat of bituminous material as
specified above. The metal bearing channel shall be filled with an approved asphalt filler to the level
of the concrete after erection of the arch and before backfilling is started.
F. Backfilling.

Backfilling requirements shall conform to the provisions of 120.60: General, Paragraph B, 150.60: General, and 150.64: Backfilling for Structures and Pipes.

G. Flared End Sections.

The unit shall be accurately aligned on a prepared bed on the existing ground, or if so directed by the Engineer, on compacted gravel fill.

230.64: Field Testing of Corrugated Plastic Pipe

Installed pipe shall be tested to ensure the maximum vertical deflection of the thermoplastic pipe does not exceed 5% of its base inside diameter. The base inside diameter is defined as the specified nominal diameter minus the AASHTO allowable inside diameter tolerance of 1.5% but not more than ½ in.

A minimum of 20% of the total length of each size of Corrugated Plastic Pipe installed on the project shall be tested. Only mandrel testing shall be used for pipe sizes of 24 in. or less. For pipe sizes greater than 24 in., the Contractor shall have the option to video inspect, and (1) use a mandrel test if a deflection is noted or (2) hand measure, for pipes with a diameter greater than 36 in., to the requirements listed below. Runs of pipe to be tested shall be selected by the Engineer. The failure of any tested pipe shall subject all Corrugated Plastic Pipe of every size to 100% testing, at the discretion of the Engineer.

Deflection tests shall be performed by the Contractor under the direction of the Engineer not sooner than 30 days after completion of installation and compaction of backfill. The pipe shall be cleaned and inspected for offsets and obstructions prior to testing.

Mandrel Test:

- Shall be used for all pipes up to 24 in. nominal inside diameter.
- The mandrel shall be pulled through the pipe by hand to ensure that maximum allowable deflections have not been exceeded.
- The mandrel diameter shall be verified and approved by the Engineer prior to use.
- Use of an unapproved mandrel will invalidate the test.
- If the mandrel fails to pass through the pipe, the pipe will be deemed to be over-deflected.
- The mandrel shall be a rigid device, with odd numbered-legs (9 legs minimum) having an effective length not less than its nominal diameter.
- The mandrel shall be fabricated of steel with pulling rings at each end.
- The mandrel shall be stamped or engraved on some segment other than a runner indicating the nominal size, and mandrel OD.

Video Inspection:

- May be used to determine if a deflection is evident in pipes with a nominal inside diameter greater than 24 in.
- Verification of the actual deflection limits must be accomplished using the mandrel test method or the hand measurement method.
- Provide and use a mobile color video camera and light source to inspect pipes.
• The video camera must be able to be moved inside the pipe barrel and be controlled remotely by the inspector.
• The video camera must have a remote monitor and a recording apparatus to view and record the condition of the installed pipes.
• A copy of the pipe inspection video recording, in an approved format, shall be provided to the Engineer.

Hand Measurement:

• Measure manually any deflections of pipe larger than 36 in. nominal inside diameter.
• Must be done in the presence of the Engineer.

The minimum diameters, based on approximately 95% of base inside diameter at any point along the full length, are as follows:

Table 230.64-1: Maximum Allowable Vertical Deflection of Corrugated Plastic Pipe

<table>
<thead>
<tr>
<th>Nominal Size (in.)</th>
<th>Allowable Deflection Diameter (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>11.2</td>
</tr>
<tr>
<td>15</td>
<td>14.0</td>
</tr>
<tr>
<td>18</td>
<td>16.8</td>
</tr>
<tr>
<td>24</td>
<td>22.4</td>
</tr>
<tr>
<td>30</td>
<td>28.0</td>
</tr>
<tr>
<td>36</td>
<td>33.7</td>
</tr>
<tr>
<td>42</td>
<td>39.4</td>
</tr>
<tr>
<td>48</td>
<td>45.1</td>
</tr>
<tr>
<td>60</td>
<td>56.5</td>
</tr>
</tbody>
</table>

Any pipe deflected beyond acceptable limits shall be uncovered. If not damaged, as determined by the Engineer, the pipe may be reinstalled. Damaged pipe shall not be reinstalled and shall be removed from the work site. No other method or process to reduce or correct deflection shall be acceptable.

230.65: Strutting of Pipe

Strutting shall be used as required to ensure the integrity of the pipe and all costs associated are incidental to the item.

COMPENSATION

230.80: Method of Measurement

Pipes shall be measured in place and the quantity to be paid for shall be the length actually constructed as directed within the limits specified below.

For measurement purposes the end of pipe in closed structures shall be considered at the inside face of the wall and at masonry headwalls it shall be considered to be at the face of the headwall.
Pipe bends for Corrugated Metal pipe shall be in accordance with the standard drawings and the length of pipe sections containing bends shall be measured along the centerline and shall be paid for as straight sections of pipe.

Reinforced Concrete Pipe Flared Ends and Metal End Sections will be measured in place by the unit each, complete and approved.

Trench excavation in excess of 5 ft and rock excavation shall be measured as specified in 140.80: Method of Measurement for Class B Trench Excavation and Class B Rock Excavation respectively.

Structural plate pipe or pipe arches shall be measured in place and the quantity to be paid for shall be the length actually constructed as directed and to the following limits:

For structural plate pipe the length shall be the average of the top and bottom center line length; for pipe arches, the bottom center line length; and for arches, the average of the springing line lengths.

Trench Excavation in excess of 5 ft and Rock Excavation for structural plate pipe, arches and pipe arches shall be measured in accordance with the relevant provisions of 140.80: Method of Measurement for Class B Trench Excavation and Class B Rock Excavation.

Corrugated Plastic Pipe includes testing and all other incidentals necessary to complete the work. All costs incurred by the Contractor attributable to testing and corrective action, including any delays, shall be borne by the Contractor at no cost to the Department.

230.81: Basis of Payment

Pipe culverts, pipe drains and pipe sewers will be paid for at the contract unit price per lineal foot of the kind of pipe required, installed and complete in place. Corrugated plastic pipe shall include Gravel Borrow Type d backfill material.

Reinforced Concrete Pipe Flared Ends and Metal End Sections will be paid for at the contract unit price each for the size and kind of pipe end specified.

Trench excavation for pipe culverts, pipe drains, pipe sewers, structural plate pipe arches and pipe arches greater than a depth of 5 ft and rock excavation will be paid for as specified in 140.81: Basis of Payment for Class B Trench Excavation and Class B Rock Excavation. No payment for trench excavation for pipes will be made within the limits of 1 ft outside the base section of catch basins, manholes or leaching basins.

Trench excavation and backfill for trenches 5 ft or less in depth for pipe arches, pipe culverts, pipe drains, pipe sewers, and structural plate pipe arches shall be included in the various pipe items. Backfill for that part of a trench which is more than 5 ft in depth shall be included in the item for Class B Trench Excavation. If the material for backfill is obtained from borrow it will be paid for at the contract unit price per cubic yard or ton of the kind of borrow required.

Masonry ends and foundations will be paid for at the contract unit price per cubic yard of the kind of masonry required.

Gravel Borrow will be paid in accordance with Subsection 150: Embankment.
230.82: Payment Items

230. - Inch Corrugated Metal Pipe __ Gage ... Foot
*230.7 - Inch Corrugated Metal Pipe End Section ... Each
*232. __ x __ Inch ACCM Pipe-Arch __ Gage .. Foot
*234. - Inch Drainage Pipe-Option ... Foot
*238. - Ductile Iron Pipe ... Foot
*239. - Structural Plate Pipe .. Foot
*240. - Structural Plate Pipe-Arch, __ Gage .. Foot
*241. - Inch Reinforced Concrete Pipe .. Foot
to *245.-
*241.-1 - Inch Reinforced Concrete Pipe Flared End ... Each
to *245.-1
*252. - Inch Corrugated Plastic (Polyethylene) Pipe ... Foot
*252.1 - Inch Corrugated Plastic Pipe Flared End ... Each
*255. - Polymeric Precoated Corrugated Metal Pipe ... Foot

*Pipe or appurtenance size will be included as part of the item number in order to differentiate between the sizes.

SUBSECTION 258: STONE FOR PIPE ENDS

DESCRIPTION

258.20: General

Stone for pipe ends shall consist of a protective covering of angular shaped stones laid on slopes in front of and around drainage ends to insure protection of the pipe ends and the embankment and shall conform to the Department Standard "Stone for Pipe Ends."

MATERIALS

258.40: General

Stone for pipe ends shall comply with the provisions of M2.02.3: Stone for Pipe Ends.

CONSTRUCTION METHODS

258.60: General

The stone shall be placed to line and grade as shown on the plans or as directed on a prepared bed of embankment material or existing materials. Each stone shall be carefully placed by hand, normal to the slope and firmly bedded thereon. The larger stones shall be placed directly at the drainage end to prevent erosion and displacement. Each stone shall weigh not less than 50 lb nor more than 125 lb and at least 75% of the volume shall consist of stones weighing not less than 75 lb each. The remainder of the stones shall be so graded that when placed with the larger stones, the entire mass will be compact with a minimum percentage of voids and minimum thickness of 6 in.
COMPENSATION

258.80: Method of Measurement
Stone for pipe ends will be measured in place by the square yard. No allowance will be made beyond the dimensions indicated or as directed.

258.81: Basis of Payment
Payment for the above work will be at the contract unit price per square yard complete in place including all excavation, material and labor.

258.82: Payment Items
258. Stone for Pipe Ends ... Square Yard

SUBSECTION 259: CRUSHED STONE FOR BLEEDERS

DESCRIPTION

259.20: General
The work under this item consists of constructing foundation drains, using crushed stone filter material, in accordance with these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

259.40: General
Crushed Stone shall comply with the provisions of M2.01.0: Crushed Stone and M2.02.4: Modified Rockfill.

CONSTRUCTION METHODS

259.60: General
The trench for crushed stone bleeder shall be excavated to the specified line and grade. The width and the depth shall be as shown on the plans. The sides of the trench shall be vertical.

Crushed stone shall be placed and rough graded after the Special Borrow has been placed but before the subbase or surface course, except as otherwise directed.

COMPENSATION

259.80: Method of Measurement
Measurement of the above work shall be the quantity of Crushed Stone actually used. The weight slips shall be countersigned on delivery by the Engineer, and no weight slip not so countersigned shall be included for payment.
259.81: Basis of Payment
Payment for the above work shall be made at the contract unit price per ton for the quantity of crushed stone actually used, which shall include full compensation for the excavation and all other materials necessary to satisfactorily complete the work.

259.82: Payment Items

259. Crushed Stone for Bleeders

SUBSECTION 260: SUBDRAINS

DESCRIPTION

260.20: General
This work shall consist of constructing subdrains, using pipe, filter fabric and crushed stone filter material in accordance with the plans and these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

260.40: General
Materials shall meet the requirements specified in the following subsection of Division III, Materials:

Perforated Corrugated Metal Pipe: M5.03.1
Porous Concrete Pipe: M5.03.11
Crushed Stone: M2.01.5
Slot Perforated Corrugated Plastic Pipe: M5.03.9
Geotextile Fabric for Subsurface Drainage: M9.50.0

260.60: Excavation (See 140.60: General)
The drain trench shall be excavated to the depth designated on the plans or, if directed, to a stratum of impervious material.

Where no structure is to be placed at the ends of the subdrain pipe, the trench shall be excavated a distance of 3 ft beyond the end of the pipe.

The excavation shall proceed in advance of the actual drain construction only to the extent the Engineer directs. The width of the trench for pipe of more than 12 in. in diameter shall be 1 ft greater than the nominal diameter of the pipe. The width of the trench for pipe 12 in. or less in diameter shall be 2 ft.

Where rock is encountered in the excavation, no part of any rock remaining in the trench shall come within 6 in. of any portion of the pipe.
260.61: Laying Pipe

Before any pipe is installed filter fabric shall be placed along the sides and bottom of the trench. The overlap between any adjoining pieces of fabric shall be at least 2 ft. Perforated subdrain pipe shall be laid with the perforations facing up.

260.62: Filling Drain Trench

The pipe shall be laid on a 2-in. bed of crushed stone and the space about, above, and in the 3 ft beyond the ends of the pipe shall be filled with 0.5-in. or 0.75-in. crushed stone.

The Contractor shall be responsible for keeping the backfill material clean and free of objectionable material from a line 1 in. below the flow line of the pipe to the top of the trench.

260.63: Protection of Inlets and Open Outlets

Inlets and open outlets of subdrains shall be covered with a #23 gauge galvanized wire screen of ¼ in. mesh satisfactorily fastened to the pipe.

COMPENSATION

260.80: Method of Measurement

Subdrain pipe shall be measured in place and the quantity to be paid for shall be the length of pipe actually constructed, plus an allowance of 3 ft for open ends.

Trench excavation greater than a depth of 5 ft and rock excavation shall be measured as specified in 140.80: Method of Measurement for Class B Trench Excavation and Class B Rock Excavation, respectively.

260.81: Basis of Payment

Payment for the above work at the contract price per foot will include excavation, pipe, filter fabric, crushed stone and installation complete in place and satisfactory to the Engineer.

Trench excavation greater than 5 ft in depth and rock excavation will be paid for as specified in 140.81: Basis of Payment for Class B Trench Excavation and Class B Rock Excavation, respectively.

260.82: Payment Items

*261.- Inch Perforated Corrugated Metal Pipe __ Gage (Subdrain)Foot
*265.- Inch Pipe Subdrain – Option.. Foot
*266.- Inch Porous Concrete Pipe (Subdrain)..Foot
*269.- Inch Slot-Perforated Corrugated Plastic Pipe (Subdrain)...............Foot

*Pipe size will be added to the item number and description.
SUBSECTION 270: PIPES REMOVED AND RELAID OR STACKED

DESCRIPTION

270.20: General
This work shall consist of removing present pipes, plugging the ends and relaying or stacking them in accordance with these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

270.40: General
Material for Pipe Joints shall conform to the requirement of 230.40: General.

CONSTRUCTION METHODS

270.60: Removal of Pipe
A trench of sufficient width and depth shall be excavated so that the present pipe can be removed without damage to the pipe. All joints shall then be opened and the pipe removed in its original sectional lengths.

Existing pipe in good condition which is damaged in removing or other handling due to carelessness of the Contractor, shall be replaced with new pipe at the Contractor's expense.

270.61: Relaying
The construction methods for relaying the pipe in its final location shall conform to the requirements of 230.60: General to 230.63: Structural Plate Pipe and Pipe-Arch inclusive. In the case of corrugated metal pipe culverts, the Contractor shall furnish and place new collars and bolts and repair the coating of the pipe as directed.

270.62: Masonry Plugs for Pipe Ends
Masonry plugs shall consist of bricks and mortar to form a watertight seal at the end of the pipe being plugged. The thickness of the plug shall at least be equal to the inside diameter of the pipe being plugged.

270.63: Stacking
The Contractor shall accept and hold entire responsibility for the removal, handling, stacking at a location convenient for removal by the owner, and protection of all pipe until its final removal by others as designated and in accordance with the following:

Any pipe lost or damaged through lack of protection or carelessness by the Contractor shall be replaced with satisfactory pipe at their expense. The Contractor's responsibility will cease upon final acceptance of the work or 60 days from the time a certified notice, with copy to Engineer, is sent by Contractor to owner of material that all material is available for removal.
270.64: Backfilling Trenches

The trench left by the removal of the pipes shall be backfilled in conformance with the relevant provisions of 150.64: Backfilling for Structures and Pipes.

COMPENSATION

270.80: Method of Measurement

Pipes removed and relaid as directed will be measured in place after being relaid and quantity to be paid for shall be the length actually relaid. Any remaining pipe not required to be stacked shall become the property of the Contractor and shall be removed from the work without additional compensation.

Masonry plugs for pipe ends shall be measured in place by the cross-sectional area of the inside of the pipe being plugged.

Pipes removed and stacked, as directed, will be measured as the actual length of pipe removed and stacked in good condition.

Trench excavation greater than a depth of 5 ft and rock excavation will be measured as specified in 148.80: Method of Measurement for Class B Trench Excavation and Class B Rock Excavation, respectively.

270.81: Basis of Payment

Pipes removed and relaid will be paid for at the contract unit price per foot of the kind of pipe required to be removed and relaid, installed and complete in place.

Masonry plugs will be paid for at the contract unit price per square yard complete in place.

Pipes removed and stacked will be paid for at the contract unit price per foot of the kind of pipe required to be removed and stacked.

Field Stone Masonry in Cement Mortar and 3,000 psi, 1.5-inch, 470 Cement Concrete will be paid for at the contract unit price per cubic yard.

Trench excavation for both removing and relaying greater than a depth of 5 ft and rock excavation for relaying will be paid for as specified in 140.81: Basis of Payment for Class B Trench Excavation and Class B Rock Excavation.

Backfill for trenches 5 ft or less in depth shall be included in the various items of pipe. Backfill for that part of a trench which is more than 5 ft in depth shall be included in the item for Class B Trench Excavation.

If borrow material is used for backfilling, it will be paid for at the contract price per cubic yard of the kind of borrow required.
SUBSECTION 280: WATERWAYS

DESCRIPTION

280.20: General
This work shall consist of the construction of waterways in accordance with these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

280.40: General
Materials shall meet the requirements specified in the following Subsections of Division III, Materials.

- Gravel Borrow..M1.03.0 Type b
- Hot Mix Asphalt ..M3.11.00
- Cement Concrete..M4.02.00
- Preformed Expansion Joint Filler.................................M9.14.0
- Welded Steel Wire Fabric..M8.01.2
- Load Transfer Assembly..M8.14.0
- Lubricant..M8.14.0

CONSTRUCTION METHODS

280.60: General

A. Excavation
(See 140.60: General).

B. Foundation.
The gravel may be placed in one layer and compacted (See 401.60: Gravel Sub-base).

280.61: Hot Mix Asphalt Waterways
Bituminous mixture shall be spread in two courses on the prepared gravel base and compacted by tamping or rolling.
280.62: Cement Concrete Paving (Waterways)

The cement concrete shall be mixed, placed, finished, protected and cured in conformity with requirements of Subsection 901: Cement Concrete, except that consolidation of the cement concrete in paved waterways may be accomplished by rodding, without vibration.

COMPENSATION

280.80: Method of Measurement

The actual area of the exposed surfaces will be measured on paved waterways.

280.81: Basis of Payment

The paving of waterways, together with the construction of a gravel foundation, fine grading and compacting, will be paid for at the contract unit price per square yard, respectively, under the item for Hot Mix Asphalt or Cement Concrete Paving, complete in place.

Excavation (except rock) will be paid for at the contract unit price per cubic yard under the item for Class A Trench Excavation as specified in 140.81: Basis of Payment.

Rock Excavation will be paid for at the contract unit price per cubic yard under the item for Class B Rock Excavation if not already paid for under previous rock excavation.

280.82: Payment Items

280. Hot Mix Asphalt Waterway... Square Yard
281. Cement Concrete Paving (Waterway).. Square Yard
SECTION 300: WATER SYSTEMS

SUBSECTION 301: WATER SYSTEMS

DESCRIPTION

301.20: General
Work under this section shall consist of making alterations in existing municipal water main systems or constructing new sections of existing systems affected by highway and bridge construction. The work includes furnishing and installing new water pipe and appurtenances and removing and resetting existing materials in the same or new locations in accordance with these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer.

301.21: Workmen
All personnel employed by the Contractor on this work shall be experienced and skilled in water main installation.

All conduits, pipes or structures uncovered during excavation, whether or not they are shown on the plans, shall be protected, and if damaged by the Contractor shall be repaired by them or the utility company at the expense of the Contractor.

The Contractor shall not abandon existing conduits, pipes or structures without the prior approval of the Engineer.

301.23: Notices
Prior written notice of at least 48 hours shall be given by the Contractor to affected Municipal Water and Fire Departments, with a copy of such notice submitted to the Engineer, before any water main is shut off and in no case shall a gate or hydrant be opened or shut without proper authorization.
MATERIALS

301.40: General

Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

- Thrust Blocks
 - Cement Concrete
- Water Pipe and Fittings
 - Copper Tubing
 - Ductile Iron Pipe and Fittings
 - Insulation and Waterproof Jackets
 - Cellular Glass
 - Fiber Glass
 - Expanded Polystyrene
 - Urethane
 - Jointing Materials for Pipes
 - Waterproof Jackets

Valve boxes, service boxes, corporation cocks, air relief valves, yokes and tie-rods, curb stops, plugs and any other materials which are required shall be the type used by the particular municipality involved or as specified in the Special Provisions. Air relief valves shall be installed at the high points of the main or where and as directed.

CONSTRUCTION METHODS

301.60: General

The installation or removal and reinstallation of water systems or parts thereof shall conform to the following construction procedures:

A. Pipe Fittings, etc.

All pipe fittings, valves, hydrants and other heavy accessories shall be carefully handled by the use of hoists or skidways to avoid shock or damage. Pipe handled on skidways shall not be skidded or rolled against pipe already on the ground. The Contractor shall replace or repair, at his own expense, any materials that have been damaged due to his negligence.

Where pipes are required in less than standard lengths, the cutting shall be done in a neat and workmanlike manner without damage to the pipe.

B. Excavation.

See 140.60: General.

C. Bedding Pipe.

See 230.61: Bedding Pipes.
D. **Bridging.**

Where required, the Contractor shall provide suitable bridges for traffic to cross open trenches at streets and driveways.

E. **Cleaning and Plugging Pipe.**

The pipes and fittings shall be thoroughly cleaned before being laid and shall be kept clean until accepted in the finished work. The ends of all uncompleted lines shall be tightly closed with temporary plugs at all times when the pipe laying is not in progress, and no trench water or debris shall be permitted to enter the pipe.

F. **Removal of Castings.**

In the work of removing hydrants and other castings to be reset, or stacked for the municipality, the castings shall be exposed, care being taken that they are not damaged by excavating or other machinery, the joints shall then be opened and the castings carefully removed.

Any materials damaged during this work due to the Contractor's negligence shall be replaced by the Contractor at their own expense.

G. **Laying Pipe.**

Proper tools and equipment for the safe and convenient handling and laying of the pipes shall be used. The Contractor shall exercise reasonable caution during their operations in order to avoid damaging the pipes, castings, or fittings and any which are damaged shall be replaced by them at their own expense.

The Contractor shall furnish the necessary pumps and tools to handle any water encountered in the pipe trench, and shall maintain the trench in a satisfactory condition, free from water, during the laying of the pipe. The pipe, after being laid in place, shall not under any circumstances be used as a drain pipe for the trench.

Cast iron pipe sections shall be laid with the bell on the upgrade end, unless otherwise directed. Before laying the pipe, the outside of the spigot and the inside of the bell shall be wire brushed and wiped clean and dry. When placing a length of pipe, the yarning material for the joint shall be held around the bottom of spigot so that it will enter the bell as the pipe is shoved into position.

H. **Setting Gates and Hydrants.**

Gates and gate boxes shall be set in the pipe lines as directed. Care shall be taken to see that the spigot ends are securely seated in the bell ends. Blocking or supports of a permanent nature shall be placed under each valve to insure against settlement. The blocking or permanent supports shall conform to Owner's Specifications. Each gate shall be tightly closed before being placed in the line and shall remain so until the joints on each side are completely made. Gate boxes shall be set for all gates. They shall be carefully fitted together and to the gate and securely held during backfilling. The earth around them shall be thoroughly tamped in place and the cover set to the finished grade.

New gate and service boxes, and existing gate and service boxes that are designated to be removed and reset or adjusted to line or grade, which are located in roadway pavement areas shall have concrete collars constructed around them. The concrete collars shall conform to the details of design shown in the Department's Standards for Concrete Collars.
Hydrants shall be properly supported and held plumb while the joints are being made and during backfilling. One (1) ft³ of crushed stone or screened gravel stone shall be placed as directed to drain each hydrant drip. The hydrants shall be satisfactorily braced near the bottom of the stem.

I. Thrust Blocks and Pipe Anchors.

Reaction or thrust blocks of concrete shall be constructed at all tees, plugs, and bends as directed or as detailed on the drawings with 3,000 psi, 1.5-inch, 470 Cement Concrete. The blocks shall be poured against undisturbed original ground and shall be so placed that pipe joints will be accessible for any possible future repairs. Yokes and tie-rods shall be installed in addition to or in lieu of thrust blocks. Pipe anchors shall be used when and as directed.

J. Testing.

After completion, the trenches shall be partially backfilled leaving the joints exposed for examination, and the pipe line then subjected to a hydrostatic pressure of 50% above the normal operating pressure. The pipe shall be tested between points as designated by the Engineer by slowly filling the test section with water by means of a pump connected to the pipe but not before the pipe has been relieved of air through taps made where required. Any defects in the pipe or joints revealed by this pressure test shall be repaired or replaced and the pipe line again subjected to a hydrostatic pressure test as described above for possible leakage over the allowable limits. Pump, connections, gauges and a measuring device shall be furnished by the Contractor. The pressure test shall be maintained for at least 2 hours during which time all exposed joints, fittings, valves and hydrants will be carefully examined.

No pipe installation will be accepted until the leakage during a 2-hr test period measured by pumping at the specified test pressure from a calibrated container into the section of pipe being tested is less than that determined by the formula:

\[L = \frac{ND\sqrt{P}}{1850} \]

Where:
- \(L \) = Allowable Leakage in gallons per hour
- \(N \) = Number of joints
- \(D \) = Nominal pipe diameter in inches
- \(P \) = Average test pressure in pounds per square inch

Any defective joints, and any defects in new pipe fittings, valves or hydrants revealed during the leakage test or before final acceptance of the project shall be removed and replaced with other new material and again tested until the work is satisfactory, with no additional compensation.

K. Disinfection.

After the testing has been successfully completed, the water mains shall be disinfected in accordance with the AWWA Standard Procedure C601.

L. Adjusting Boxes.

Gate boxes and service boxes shall be adjusted to required grades and shall be securely held during backfilling (see paragraph H).
M. Backfilling.

See 150.64: Backfilling for Structures and Pipes.

N. Installing Insulation and Jacket.

1. General.

Where water pipe is installed or hung on structures, the insulating material shall be fiber glass, cellular glass, expanded polystyrene, or urethane. Section lengths and thickness shall depend on the pipe size and the recommendations of the insulation manufacturers. When urethane insulating material is used the total thickness shall be not less than 2 in.; when any other type of insulating material is used the total thickness shall be not less than 3 in.

2. Construction Requirements

a. Cellular glass pipe insulation for use on water pipes shall be applied as follows: Insulation shall cover all fittings, flanges and pipe clamps. The pipe shall be covered with the required thickness of cellular glass insulation of the premolded rigid type. It shall be molded and cut to conform to the size and shape of the pipe. All joints shall be tightly butted and sealed with adhesive as recommended by the manufacturer. The cellular glass insulation shall be applied to clean dry pipe surfaces and secured with ¾-in. x 0.015 in. stainless steel strapping spaced 9 in. on center. After insulation is in place, a tack coat of fibrated adhesive mastic shall be applied at the rate of 2 gal per 100 ft². Into this, a layer of asphalt coated 20 x 20 mesh glass fabric overlapping all edges at least 3 in. shall be embedded. A second layer of the same fabric shall then be applied together with additional adhesive mastic to completely embed the layer of fabric. Finally, apply another coating of mastic at the rate of 4 gal per 100 ft². A weatherproof seal shall be provided at the ends of the insulation. Insulation covering flanges, fittings, and pipe clamps shall be cut to make a tight fit with the pipe insulation overlapping 3 in. on each end.

b. Fiber glass insulation for use on water pipes shall be premolded with an integral vapor barrier jacket and applied as follows: The fiber glass insulation shall be applied to the clean, dry pipe surface. Adjoining sections shall be butted firmly together and taped. The tape shall be composed of a 3-ply system consisting of 1 layer of creped kraft paper, 1 layer of aluminum foil and 1 layer of asphalt impregnated creped kraft paper. The 3 layers shall be tightly bonded together with an asphalt adhesive. The tape shall be applied so that it overlaps the bun joint a minimum of 2 in. on each side. The longitudinal seam of the vapor barrier shall be sealed with a suitable adhesive. All flanges, fittings and pipe clamps shall be insulated with cement applied to the same total thickness as the pipe insulation and covered with 1-in. galvanized wire netting stretched tightly over the surface and wired in place with 16 gage galvanized wire. A weatherproof jacket of 0.020-in.-thick corrugated aluminum shall be placed over the insulation, all edges to lap a minimum of 2 in. Longitudinal joints shall be placed in the most suitable direction for shedding water. An adhesive mastic cement shall be applied to all joints and seams, making them completely water tight. The aluminum jacket shall be secured with 0.75-in. x 0.015-in. stainless steel strapping and stainless-steel clips spaced 12 in. on center.

c. Expanded polystyrene or urethane insulation for use on water pipes shall be premolded and applied as follows: The polystyrene or urethane insulation shall be applied to clean dry pipe surfaces. All joints shall be tightly butted and sealed with a suitable polystyrene or urethane adhesive. The insulation shall be secured with ¾-in. x 0.015-in. stainless steel strapping and
Corrugated aluminum with integral vapor barrier shall be applied over the insulation, all edges
to lap a minimum of 2 in. Longitudinal joints shall be placed in the most suitable direction for
shedding water. The jacket shall be secured with ¾-in. x 0.015-in. stainless steel strapping and
stainless-steel clips spaced 12 in. on center. A suitable adhesive that is compatible with
polystyrene or urethane shall be applied to all joints and seams of the aluminum jacket making
them completely watertight. All flanges, fittings and pipe clamps shall be covered with the same
insulating material remolded and sized to make a tight fit with the pipe insulation and
overlapping the pipe insulation 3 in. on each end. Prior to the application of the aluminum
jacket all open ends of insulation covering flanges, fittings and pipe clamps shall be covered
with a layer of 20 x 20 mesh, asphalt coated glass fabric embedded in suitable adhesive mastic
cement.

COMPENSATION

301.80: Method of Measurement

Water pipe will be measured in place along the axis of the pipe without deduction for the space
occupied by valves, excluding however, the length occupied by new fittings. Where two pipes join,
measurement will be made to the intersection of the axes, excluding the length occupied by new
cast iron fittings.

Fittings, consisting of bends, tees, caps, wyes, sleeves, reducers, increasers, blow-off fittings and
other specials, applies only when new materials are necessary and which are not specifically
provided for under other items in the Proposal. Fittings other than new will not be paid separately
but only under the applicable foot items. When new fittings are measured for payment under the
pound price for Item 308, the length occupied by the fittings will not be measured for payment
under the foot items.

The fittings (excluding accessories comprising of Rings, Gaskets, Bolts, Nuts, Washers and Clamps)
will be measured by the pound and the quantity to be paid for shall be the weight stated on the
invoice of the supplier or the manufacturer’s rated weight as listed in the catalog whichever is the
lesser.

For new special fittings not listed in the catalog the weight payable will be the invoice weight. The
Contractor shall furnish a copy of the Manufacturer’s catalog at the start of work. Concrete collars
required for gate and service boxes shall be included in the contract unit price for the relevant gate
and service box items.

Insulation will be measured by the foot under the applicable water pipe insulation item.

Trench excavation in excess of 5 ft in depth and rock excavation shall be measured as specified in
148.80: Method of Measurement for Class B Trench Excavation and Class B Rock Excavation,
respectively.

301.81: Basis of Payment

Water system work will be paid for at the contract unit price under the respective items for the
kind of work involved as set forth in the Proposal.
New yokes and tie-rods will be paid for at the contract unit price per pound under Item 309. Payment for fittings other than new will be paid for at the contract unit price per foot under the relevant pipe items.

The prices shall also include all excavation (except rock) to a maximum depth of 5 ft (as measured from the top of the trench to the bottom of the pipe barrel).

Trench excavation greater than 5 ft and rock excavation will be paid for a specified in 140.81: Basis of Payment for Class B Trench Excavation and Class B Rock Excavation.

Backfill for trenches 5 ft or less in depth shall be included in the various items of pipe. Backfill for that part of a trench which is more than 5 ft in depth shall be included in the item for Class B Trench Excavation.

If the material for backfill is obtained from borrow, it will be paid for at the contract unit price per cubic yard of the kind of borrow required.

The prices shall also include all disinfection and testing of the water pipeline system.

Payment for the restoration of surfaces over trenches shall be made at the contract unit price for the kind of materials used.

Thrust blocks, where required, will be paid for at the contract unit price per cubic yard under Item 903, 3,000 psi, 1.5-inch, 470 Cement, Concrete Masonry.

Insulation will be paid for at the contract unit price per foot under Item 373. Water Pipe Insulation, complete in place.
301.82: Payment Items

*302. Ductile Iron Water Pipe (Rubber Gasket) ... Foot
*303. Ductile Iron Water Pipe (Mechanical Joint) ... Foot
309. Ductile Iron Fittings for Water Pipe ... Pound
*313. Water Main Removed and Relaid ... Foot
*315. Water Main Removed and Stacked ... Foot
*347. Copper Tubing Type K .. Foot
*349. Gate Valve .. Each
*350. Gate and Gate Box .. Each
*351. Gate and Gate Box Removed and Reset .. Each
*354. Gate Box Removed and Reset ... Each
*355. Gate and Gate Box Removed and Stacked .. Each
*357. Gate Box ... Each
358. Gate Box Adjusted ... Each
*363. Corporation Cock .. Each
*367. Cast Iron Plug .. Each
*373. Water Pipe Insulation .. Foot
376. Hydrant .. Each
376.2 Hydrant Removed and Reset ... Each
376.3 Hydrant Removed and Stacked ... Each
381. Service Box ... Each
381.1 Service Box Removed and Reset ... Each
381.2 Service Box Removed and Stacked ... Each
381.3 Service Box Adjusted .. Each
384. Curb Stop .. Each
384.1 Curb Stop Removed and Reset .. Each

*Pipe or appurtenance size will be included as part of the item number in order to differentiate between the sizes.
SECTION 400: SUB-BASE, BASE COURSES, SHOULDERS,
PAVEMENTS AND BERMS

SUBSECTION 401: GRAVEL SUB-BASE

DESCRIPTION

401.20: General

The gravel sub-base shall consist of approved gravel placed on the subgrade and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

401.40: General

Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

Gravel Borrow... M1.03.0, (Type a or b)
Processed Gravel... M1.03.1

CONSTRUCTION METHODS

401.60: Gravel Sub-base

The gravel shall be spread and compacted in layers not exceeding 8 in. in depth, compacted measurement, except the last layer of gravel Sub-base course (conforming to M1.03.0: Gravel Borrow Type a or b, or M1.03.1: Processed Gravel for Subbase) will be 4 in. in depth compacted measurement and all layers shall be compacted to not less than 95% of the maximum dry density of the material as determined by AASHTO T 99 Method C at optimum moisture content as determined by the Engineer. If the material retained on the #4 sieves is 50% or more of the total sample this test shall not apply and the material shall be compacted to the satisfaction of the Engineer. The specific density of the Gravel Sub-base shall be maintained by determining the number of passes of a roller required to produce a constant and uniform density, after conducting a series of tests either using the sand/volume or the nuclear device.

Any stone with a dimension greater than that permitted for the type of gravel specified shall be removed from the sub-base before the gravel is compacted. Compaction shall continue until the surface is even and true to the proposed lines and grades within a tolerance of ⅜ in. above or below the required cross-sectional elevations and to a maximum irregularity not exceeding ⅜ in. under a 10-ft line longitudinally. In locations when the 8 in. of gravel is used as a base for Item 405 this tolerance shall be ¾ in. under a 10-ft line. Any specific area of gravel sub-base which, after being rolled, does not form a satisfactory, solid, stable foundation shall be removed, replaced and recompacted by the Contractor without extra compensation. The gravel foundation for cement concrete surfacing shall be conditioned in accordance with the provisions of 476.61: Preparation of Grade.
COMPENSATION

401.80: Method of Measurement
Gravel for sub-base shall be measured as specified in 150.80: Method of Measurement.

401.81: Basis of Payment
Gravel for the sub-base will be paid for at the contract unit price per cubic yard for Gravel Borrow.
Payment for shaping and compacting of the sub-base as specified herein shall be included in the item of Gravel Borrow.

SUBSECTION 402: DENSE GRADED CRUSHED STONE FOR SUB-BASE

DESCRIPTION

402.20: General
Dense Graded Crushed Stone for Sub-base consist of crusher-run coarse aggregates of crushed stone or gravel and fine aggregates of natural sand or stone screenings uniformly pre-mixed and placed on the sub-grade or sub-base in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

402.40: General
Material shall meet the requirements specified in the following Subsection of Division III: Materials Specifications:

Dense Graded Crushed Stone for Sub-base...M2.01.7

CONSTRUCTION METHODS

402.60: General
Grade control survey shall conform to Subsection 5.07: Construction Survey Control. The Contractor shall furnish, set, and maintain all line and grade stakes.

402.61: Spreading and Compacting
The Dense Graded Crushed Stone shall be spread in layers from self-spreading vehicles equipped with automated grade-controlled equipment. Power graders or conventional self-spreading vehicles may be used only with prior written approval of the Engineer. The Dense Graded Crushed Stone shall be placed to the tolerance as stipulated in Subsection 401: Gravel Sub-Base. Suitable watering devices shall be available at the source of supply and on the project for use as directed by the Engineer to prevent segregation in transit and during spreading and to obtain proper density and stability of the mixture. The specified density of the Dense Graded Crushed Stone shall be maintained by determining the number of passes of a roller are required to produce a constant and uniform density, after conducting a series of tests either using the sand/volume method or the nuclear device.
COMPENSATION

402.80: Method of Measurement
Dense Graded Crushed Stone shall be measured in place, to the limits specified on the plans or as directed by the Engineer, with no percentage added.

402.81: Basis of Payment
Dense Graded Crushed Stone for sub-base will be paid for at the contract unit price per cubic yard or ton complete in place.

402.82: Payment Items
402. Dense Graded Crushed Stone for Sub-base...Cubic Yard
402.1 Dense Graded Crushed Stone for Sub-base...Ton

SUBSECTION 403: RECLAIMED PAVEMENT FOR BASE COURSE AND/OR SUB-BASE

DESCRIPTION

403.20: General
The work shall consist of producing a stabilized base course and/or sub-base through the recycling of the existing pavement structure and a specified depth of acceptable sub-base material. This combination of pavement and sub-base material is to be uniformly crushed, pulverized and blended, then spread, graded, and compacted to the lines and grades shown on the plans or established by the Engineer.

MATERIALS

403.40: General
All reclaimed material shall conform to the requirements of M1.09.0: Reclaimed Pavement Borrow Material.

Aggregate for Crushed Stone for Blending, used to correct gradation deficiencies, shall conform to the requirements of M2.01.0: Crushed Stone to M2.01.6.

Aggregate for Dense Graded Crushed Stone for Sub-Base shall conform to the requirements of M2.01.7: Dense Graded Crushed Stone for Sub-base.

403.41: Sampling and Pretesting
The Department will take and analyze test pits to the depth to be recycled and provide the following information in the bid proposal for each:

1. The location of the test pit.
2. The depth of existing asphalt pavement material to be recycled.
3. The aggregate gradation of the underlying material to be recycled.
CONSTRUCTION METHODS

403.60: General

Reclaiming operations shall not be permitted when the existing pavement or sub-base contains frost, when the sub-base is excessively wet as determined by the Engineer, nor when the air or surface temperature is below 40°F.

Reclaiming operations shall not commence before April 15 and shall terminate on or before October 15.

Prior to the start of reclaiming operations, the Contractor shall locate and protect existing drainage and utility structures and underground pipes, culverts, conduits and other appurtenances. The limit of each sequence of the reclamation process shall be 1-mile full width or as directed by the Engineer in order that the placing of pavement structure, up to the binder course, will be completed before beginning the next sequence of roadway reclamation work.

403.61: Equipment

The recycling equipment shall have a positive depth control to ensure a uniform depth of processing. This equipment shall have the ability to process the complete design depth specified into a homogeneous mass. It shall also be capable of crushing all oversize material encountered except ledge, or boulders larger than 8 in. in diameter.

A minimum of 14 calendar days prior to the proposed start of work, the Contractor shall submit in writing to the Engineer for approval, a description of the specific equipment and construction methods to be used in performing the work. The Contractor will be required to demonstrate to the Engineer the ability of the work crew and equipment to produce reclaimed material conforming to specifications at a rate of production consistent with the time allowed under the Contract. A test section shall be constructed approximately 500 ft long and one lane wide and be located within the project limits at a location determined by the Engineer. The forward speed and processing direction (e.g. up cutting vs. down cutting) of the recycling equipment shall be recorded during construction of the test section. Representative samples of the reclaimed material shall be taken from this test section for analysis by the Engineer. Full scale production will not be allowed to commence until the Engineer has reviewed the test results and gives written approval of the equipment and construction methods used in the construction of the test strip.

Failure to meet gradation requirements or an insufficient production rate may be considered cause for rejection of the equipment, the construction methods, or both. The Contractor must then submit, in writing, the proposed changes in equipment and/or construction methods and either construct another test section or reconstruct the original section, as determined by the Engineer. This procedure may be repeated until acceptable results are obtained, at no additional compensation.
Failure to meet gradation requirements due to improper equipment or construction methods, shall not constitute a reason for any additional compensation for the import and blending of any aggregate to meet the deficiencies.

Approval of equipment includes the speed and processing direction it was operated at during construction of the test section. Therefore, the same operating speed and processing direction must be maintained during normal production. Changes in the equipment’s operating speed and/or processing direction may only be made with the Engineer’s written approval.

At least one vibratory roller shall be used on each reclaimed surface, and shall have a compacting width of not less than 5 ft. Each roller shall have a gross weight of not less than 15 tons.

Approved equipment shall be maintained in satisfactory working condition at all times.

403.62: Structure Lowering and Raising

All work shall be done in accordance with the applicable provisions of Subsection 220: Adjustment, Rebuilding and Remodeling of Drainage Structures.

All drainage, utility, and municipality structures are to be referenced and lowered to a minimum depth 6 in. below the bottom of the proposed reclaimed base course. Lowered structures shall be covered with steel plates conforming to the requirements specified in Subsection 7.09: Public Safety and Convenience. The voids remaining after the structures have been lowered are to be filled with a suitable material as determined by the Engineer. The Contractor will be responsible for the coordination with the respective utility companies for the lowering and raising of privately-owned structures and gate boxes. The reclaiming operation shall not begin until all structures and boxes are lowered.

It shall be the Contractor's responsibility to maintain drainage functioning properly in the areas under construction up to the time when the final system is put into use. All structures lowered will be raised to the binder grade elevation upon placement of the binder course material for that section. Adjustment of the castings to final grade will not be allowed until the Engineer approves the placement of hot mix asphalt top course material throughout the project.

Any drainage structure found to be deteriorated below the plated depth shall be rebuilt from the bottom of the deterioration to the plated depth.

403.63: Reclaiming Operations

Prior to the start of reclamation, the existing pavement shall be swept with a power sweeper to remove all trash, sand, dirt, organic matter, and other undesirable material, to the satisfaction of the Engineer.

Also, the existing pavement shall be sawcut full depth within the areas where the adjacent surface is to be protected (curb, side streets, etc.) as shown on the plans and/or as directed by the Engineer.

The Contractor shall reclaim only that area of pavement that can be processed and compacted by the end of the same working day, at which time it must be opened to traffic, with the Engineer’s approval. In any section, reclamation work shall be done on one-half the road width at a time. One-way traffic will be allowed only during working hours with traffic police present. Two-way traffic shall be maintained at all other times. Suitable ramping shall be in place at the beginning and end of
each work zone to allow for smooth and safe travel. This shall be considered incidental to the work for this item. The required density shall be maintained until the hot mix asphalt pavement has been placed. Any imperfections discovered prior to the placement of hot mix asphalt shall be repaired, as directed by the Engineer, at no additional compensation.

The total thickness of the pavement structure and uppermost portion of the sub-base layer shall be recycled to the design depth specified on the typical sections. The Engineer shall perform a sieve analysis of the reclaimed material for every 5,000 yd2 of material processed or as often as conditions may require as determined by the Engineer. Test results shall be made available to the Contractor. If conditions warrant, the Engineer may stop work until the required test results become available. If the Engineer directs, due to grading deficiencies in the existing materials as indicated by the test pits, the appropriate crushed stone aggregate sizes shall be blended with the recycled material to produce a uniform mixture meeting the gradation requirements. Additionally, if the Engineer directs, dense graded crushed stone shall be added for volume purposes.

Any required modifications to the remaining sub-base such as, but not limited to, cuts, fills, and grade realignment shall be made. Existing unsuitable material shall be removed to the lines and grades established by the Engineer and replaced with a suitable material, as determined by the Engineer. Existing surplus reclaimed material shall be used, when available, at no additional compensation.

All unsuitable material and/or excess reclaimed material shall become the property of the Contractor to be properly disposed of outside the project limits.

403.64: Compaction and Dust Control

The reclaimed material shall be rolled, compacted and fine graded to the specified cross section(s) and/or grades as shown or as established by the Engineer.

The reclaimed base course shall be tested for compaction and smoothness and accuracy of grade in accordance with the applicable provisions of 401.60: Gravel Sub-base. The required density shall be measured by a Nuclear Density Gauge supplied by the Department. If any portions are found to be unacceptable by the Engineer, such portions shall be reprocessed, regraded, and recompacted until the required smoothness and accuracy are obtained.

At the end of each day’s progress, the Contractor shall apply Calcium Chloride in accordance with the applicable provisions of Subsection 440: Roadway Dust Control. Water for roadway dust control shall be applied as directed.

A grader, roller, and water wagon shall be maintained on the project site during the reclamation process. The Contractor shall submit to the Engineer, in writing, a 24-hour availability telephone number for any emergency maintenance dictated by the weather conditions or as determined by the Engineer, for repair, compaction, and dust control.

COMPENSATION

403.80: Method of Measurement

Reclaimed Base Course shall be measured in place, to the limits specified on the plans or as directed by the Engineer. No deductions will be made for surface structures. The lowering and the plating of
gates and structures will be considered incidental to this Item and no additional compensation will be allowed.

Structures raised from the plated depth to an intermediate depth of approximately 8 in. below finished grade, as determined by the Engineer, shall be plated and shall be measured by the unit each as a Drainage Structure Remodeled.

Structures adjusted from the intermediate depth to finished grade shall be measured by the unit each as a Drainage Structure Adjusted.

Structures rebuilt shall be measured by the average height in feet and tenths of feet from the bottom of the deterioration to the plated depth. Structures damaged below the plated depth, due to the Contractors negligence, shall be measured and deducted from the depth measurement. Raising the structure from the plated depth will be measured as stated above for a remodeled unit.

403.81: Basis of Payment

The accepted quantity of reclamation as measured above shall be paid for at the contract unit price bid per square yard. This unit price shall include all compensation for crushing, pulverizing, blending, spreading, grading, sawcutting the existing asphalt pavement at the direction of the Engineer, compacting, test section construction, blending with aggregate, moving the processed material to allow for modifications to the remaining sub-base and/or subgrade, moving reclaimed material from one location to another within the project and any incurred costs resulting from the Contractor’s decision to process off site.

The unit price bid shall also include compensation for all costs associated with the removal of the castings and the referencing, lowering, and plating of the structures. It shall also include full compensation for all labor, tools, equipment, materials, and all incidental work necessary to complete the work as specified.

Removal and disposal of unsuitable material, surplus reclaimed material, or any sub-base/subgrade material necessary for grade changes shall be paid for at the contract unit price per cubic yard for Item 120.1, Unclassified Excavation.

Special borrow required to be placed under the reclaimed material shall be paid for at the contract unit price per cubic yard for Item 150.1, Special Borrow.

Grading and compacting the sub-base and/or subgrade resulting from the removal of unsuitable material shall be paid for at the contract unit price per square yard for Item 170., Fine Grading and Compacting.

Adjustment of drainage structures shall be paid for at the contract unit price each for Item 220., Drainage Structure Adjusted.

Rebuilding of drainage structures shall be paid for vertically at the contract unit price per foot for Item 220.2, Drainage Structure Rebuilt.

Raising of lowered structures shall be paid for at the contract unit price each for Item 220.5 Drainage Structure Remodeled.

Aggregate for providing added volume shall be paid for at the contract unit price per ton or Item 402.1, Dense Graded Crushed Stone for Sub-base.
Aggregate to correct gradation deficiencies shall be paid for at the contract unit price per ton for Item 403.1, Crushed Stone for Blending.

Calcium Chloride for dust control shall be paid for at the contract unit price per pound for Item 440., Calcium Chloride for Roadway Dust Control.

Water for dust control shall be paid for at the contract unit price per 1,000 gallons for Item 443., Water for Roadway Dust Control.

403.82: Payment Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>403</td>
<td>Reclaimed Pavement for Base Course and/or Sub-base Square Yard</td>
</tr>
<tr>
<td>403.1</td>
<td>Crushed Stone for Blending</td>
</tr>
</tbody>
</table>

SUBSECTION 404: RECLAIMED PAVEMENT BORROW MATERIAL

DESCRIPTION

404.20: General

Reclaimed pavement borrow material shall be used for base course and sub-base areas. The material shall be pre-mixed and placed on the sub-grade or sub-base in close conformity with the lines and grades established by the Engineer.

MATERIALS

404.40: General

Material shall meet the requirements of M1.09.0: Reclaimed Pavement Borrow Material.

CONSTRUCTION METHODS

404.60: General

The reclaimed pavement borrow material shall be spread and compacted in layers not exceeding 8 in. in depth, compacted measurement, except the last layer of reclaimed pavement borrow material (conforming to M1.09.0: Reclaimed Pavement Borrow Material) will be 4 in. in depth compacted measurement. The specified density of the Reclaimed Pavement Borrow Material shall be maintained by determining the number of passes of a roller that are required to produce a constant and uniform density, after conducting a series of tests either using the sand/volume method or the nuclear device. The Reclaimed Pavement Borrow Material shall be placed to the tolerance as stipulated in Subsection 401: Gravel Sub-Base.

COMPENSATION

404.80: Method of Measurement

Reclaimed Pavement Borrow Material shall be measured in place, to the limits specified on the plans or as directed by the Engineer, with no percentage added.
404.81: Basis of Payment
Reclaimed Pavement Borrow Material will be paid for at the contract unit price per cubic yard complete in place.

404.82: Payment Items
404.5 Reclaimed Pavement Borrow Material... Cubic Yard

SUBSECTION 415: PAVEMENT MILLING

DESCRIPTION

415.20: General
This work shall consist of milling and removal of existing HMA pavement courses from the project by the Contractor. Milling shall be performed in conformity with the limits, line, grade, and typical cross-section shown on the plans. The milling operation shall be categorized as either Standard Milling, Fine Milling, Micro Milling, or Bridge Pavement Milling as defined in Table 415.20-1. The milled material shall become the property of the Contractor.

<table>
<thead>
<tr>
<th>Type</th>
<th>Tooth Spacing (in.)</th>
<th>Cut Depth (in.)</th>
<th>Ridge to Valley Depth (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavement Standard Milling</td>
<td>⅝</td>
<td>0 to 8</td>
<td>⁵⁄₁₆</td>
</tr>
<tr>
<td>Pavement Fine Milling</td>
<td>⅜</td>
<td>0 to 2 ½</td>
<td>³⁄₁₆</td>
</tr>
<tr>
<td>Pavement Micro Milling</td>
<td>¼</td>
<td>0 to 1 ½</td>
<td>¹⁄₁₆</td>
</tr>
<tr>
<td>Bridge Pavement Milling</td>
<td>⅜</td>
<td>0 to 1</td>
<td>³⁄₁₆</td>
</tr>
</tbody>
</table>

CONSTRUCTION PROCEDURES

415.40: General
The Contractor shall provide satisfactory QC of the milling operation as further outlined in 415.61: Milled Surface Inspection. The specific QC procedures to be implemented shall be identified in the Contractor’s QC Plan for HMA, submitted in accordance with the requirements of Subsection 450: Hot Mix Asphalt Pavement. The Contractor shall present and discuss in sufficient detail, the QC information and activities related to milling at the Construction Quality Meeting required under Subsection 450: Hot Mix Asphalt Pavement.

415.41: Milling Equipment Requirements
The milling equipment shall be self-propelled with sufficient power, traction, and stability to remove the existing HMA pavement to the specified depth and cross-slope. The milling machine shall be capable of operating at a minimum speed of 10 ft per minute, designed so that the operator
can always observe the milling operation without leaving the control area of the machine, and be equipped with the following:

(a) A built-in automatic grade control system that can control the longitudinal profile and the transverse cross-slope to produce the specified results.
(b) Longitudinal controls capable of operating from any longitudinal grade reference, including string line, 30-ft ski minimum, 30-ft mobile string line minimum, or a matching shoe.
(c) The transverse controls shall have an automatic system for controlling cross-slope at a given rate.
(d) Cutting heads able to provide a minimum 6 ft cutting width and a 0 to 4 in. deep cut in one pass. The teeth on the revolving cutting drum must be continually maintained and shall be replaced as warranted to provide a uniform pavement texture.
(e) An integral pickup and conveying device to immediately remove milled material from the roadway and discharge the millings into a truck, all in one operation.
(f) Safety devices such as reflectors, headlights, taillights, flashing lights and back up signals so as to operate safely in both day and night.
(g) A means of effectively limiting the amount of dust escaping from the milling and removal operation in accordance with local, State, and Federal air pollution control laws and regulations.
(h) Whenever the milling operations are being conducted between the hours of sunset and sunrise, the Contractor shall provide mobile lighting system(s) in accordance with 415.43: Mobile Lighting for Milling and Sweeping Equipment.
(i) Bridge pavement milling equipment drums shall not exceed 5 ft in width and a gross operating weight of 45,000 lb.

When milling smaller areas or areas where it is impractical to use the above described equipment, the use of a smaller or lesser-equipped milling machine may be permitted when approved by the Engineer.

415.42: Sweeper Equipment

The Contractor shall provide a sufficient number of mechanical sweepers to ensure that the milled surface is free of millings and debris at the end of each day's milling operations. Each sweeper shall be equipped with a water tank, spray assembly to control dust, a pick-up broom, a dual gutter broom, and a dirt hopper. The sweepers shall be capable of removing millings and loose debris from the textured pavement.

415.43: Mobile Lighting for Milling and Sweeping Equipment

Whenever milling operations are being conducted between the hours of sunset and sunrise, the Contractor shall provide mobile lighting system(s) attached to each piece of mobile milling equipment, including milling machines and mechanical sweepers but shall not include trucks used to transport materials and/or personnel to the work zone or other vehicles that are continually moving in and out of the work zone.

Mobile lighting systems attached to milling equipment shall be in addition to work zone lighting requirements specified in Subsection 850: Traffic Controls for Construction and Maintenance Operations.
Lighting attached to each machine shall be capable of providing a minimum of 1 fc measured 60 ft in front of and behind the equipment. Lighting measurements shall be per Subsection 850: Traffic Controls for Construction and Maintenance Operations. Light fixtures shall be balloon-style or otherwise diffused to minimize glare. Flood lights without diffusers shall not be permitted.

No part of the mobile lighting system shall exceed a height 13 ft above the pavement. In areas with constrained vertical clearances the height may further be limited by the Engineer.

Existing street or highway lighting shall not eliminate the requirement for the Contractor to provide lighting.

415.44: Milling Operations

The Contractor shall coordinate milling and paving operations to minimize the exposure of milled surfaces to traffic. The Contractor shall ensure that milled surfaces are paved in a timely manner to avoid damage to the pavement structure. Any damage to the pavement structure resulting from extended exposure of the milled surface to traffic shall be repaired as directed by the Engineer at the Contractor's expense.

The milling operations shall not proceed more than 3 miles ahead of the paving operations. Under no circumstances shall the milled surface be left exposed to traffic for a period exceeding 7 calendar days. The Engineer may allow the Contractor to adjust the limits of milling production when necessary.

The existing pavement shall be removed to the average depth shown on the plans, in a manner that will restore the pavement surface to a uniform cross-section and longitudinal profile. The longitudinal profile of the milled surface shall be established using a 30-ft mobile ski, mobile string line, or stationary string line. The cross-slope of the milled surface shall be established by a second sensing device or by an automatic cross-slope control mechanism. The Contractor will be responsible for providing all grades necessary to remove the material to the proper line, grade, and typical cross-section shown on the plans. The requirement for automatic grade or slope controls may be waived by the Engineer in locations warranted by the situation, including intersections and closely confined areas.

The Engineer may adjust the average milling depth specified on the plans by ¾ in. during each milling pass at no additional payment to minimize delamination of the underlying pavement course or to otherwise provide a more stable surface. If delamination or exposure of concrete occurs when milling an HMA pavement course from an underlying Portland Cement Concrete pavement, the Contractor shall cease milling operations and consult the Engineer to determine whether to reduce the milling depth or make other adjustments to the operation.

For projects on controlled access highways, when milling the high-speed lane or low-speed lanes, the initial pass of the milling machine shall be parallel and adjacent to the face of all drainage structures. This will allow the milling operation to proceed in a straight line relative to the travel lane and not require the machine to turn or jump over structures in order to avoid them. The high-speed shoulder shall be milled after the high-speed lane.
415.45: Bridge Pavement Milling Operations

The Contractor shall mill bridge pavement to the depth specified in the contract while minimizing impacts, vibration, loading and other damage to the bridge. The Contractor shall make every effort to minimize damage to the bridge deck and joints by reducing cut depths, minimizing forward milling speed, and limiting the equipment size. Bridge pavement milling shall adhere to the following:

(a) Milling over bridge decks may occur only with the direct oversight of the Engineer and shall not proceed without the Engineer present.
(b) Milling speed shall not exceed 20 ft per minute.
(c) Milling cut depth shall not exceed 1 in. per pass. Milling depths exceeding 1 in. will require multiple passes.
(d) Pavement milling depth shall be pre-set on the machine. Automation will not be permitted to vary the depth of cut or modify the profile without the Engineer’s consent.
(e) Milling operations shall cease immediately upon exposure of the cement concrete deck and shall not proceed without approval of the Engineer.

415.46: Protection of Inlets and Utilities

Throughout the milling operation, protection shall be provided around existing catch basin inlets, manholes, utility valve boxes, and any similar structures. Any damage to such structures as a result of the milling operation is the Contractor’s responsibility and shall be repaired at the Contractor’s expense. To prevent the infiltration of milled material into the storm sewer system the Contractor shall take special care to prevent the milled material from falling into the inlet openings or inlet grates. Any milled material that falls into inlet openings or inlet grates shall be removed at the Contractor’s expense.

415.47: Vertical Faces

All permanent limits of the milled area shall be sawcut or otherwise neatly cut by mechanical means to provide a clean and sound vertical face. No vertical faces, transverse or longitudinal, shall be left exposed to traffic. If any vertical face is formed in an area exposed to traffic a temporary paved transition with a maximum 12:1 slope shall be established. If the milling machine is used to temporarily transition the milled pavement surface to the existing pavement surface, the temporary transition shall be constructed at a maximum 12:1 slope.

415.48: Opening to Traffic

Prior to opening a milled area to traffic, the milled surface shall be thoroughly swept with a mechanical sweeper to remove all remaining millings and dust. This operation shall be conducted in a manner so as to minimize the potential for creation of a traffic hazard and to comply with local, State, and Federal air pollution control laws and regulations. Any damage to vehicular traffic as a result of milled material becoming airborne is the responsibility of the Contractor and shall be repaired at the Contractor’s expense. Temporary pavement markings shall be placed in accordance with the provisions of 850.64: Temporary Pavement Markings and Temporary Raised Pavement Markers.
415.60: General

The Contractor shall provide a QC System adequate to ensure that all workmanship meets the quality requirements herein. The Contractor shall provide qualified QC personnel and perform QC inspection, data analysis, corrective action (when necessary), and documentation as outlined further below. QC activities related to the milling operation shall be addressed in the Contractor’s QC Plan for HMA Pavement in accordance with 450.61: Contractor Quality Control Plan.

415.61: Milled Surface Inspection

The milled surface shall provide a satisfactory riding surface with a uniform textured appearance. The milled surface shall be free from gouges, excessive longitudinal grooves and ridges, oil film, and other imperfections that are a result of defective equipment, non-uniform milling teeth, improper use of equipment, or otherwise poor workmanship. Any unsatisfactory surfaces produced shall be corrected by re-milling at the Contractor's expense.

The Contractor shall perform QC inspection of all work items addressed under Subsection 415: Pavement Milling as further specified in Table 415.61-1. Inspection activities during milling of HMA pavement may be performed by qualified Production personnel (e.g. Skilled Laborers, Foremen, Superintendents). However, the Contractor’s QC personnel shall have overall responsibility for QC inspection. The Contractor shall not rely on the results of Department Acceptance inspection for QC purposes. The Engineer shall be provided the opportunity to monitor and witness all QC inspection.

The quality of each milled pavement surface will be inspected and evaluated on the basis of Lots and Sublots. A Lot is defined as an isolated quantity of work which is assumed to be produced by the same controlled process. A Lot shall constitute no greater than the entire milled surface area on the project completed within the same construction season using the same milling process.

The milled surface of each travel lane shall be divided into longitudinal Sublots of 500 ft. The Contractor shall perform a minimum of 1 random QC measurement within each Sublot with a 10-ft straightedge in the transverse direction across the milled surface. Additional selective QC measurements within each Sublot will be performed as deemed necessary by the QC personnel. All QC inspection results shall be recorded on NETTCP IRFs.

The milled surface shall have a texture such that the variation from the edge of the straightedge to the top of ridges between any 2 ridge contact points shall not exceed \(\frac{1}{8} \) in. The difference in height from the top of any ridge to the bottom of the valley adjacent to that ridge shall not exceed the values specified in Table 415.61-1. Any point in the surface not meeting these requirements shall be corrected as directed by the Engineer at the Contractor’s expense.

In isolated areas where surface delamination between existing HMA layers or a surface delamination of HMA on Portland Cement Concrete causes a non-uniform texture to occur, the straightedge surface measurement requirements stated in the preceding paragraph may be waived by the Engineer.
Table 415.61-1: Minimum QC Inspection of Milling Operations

<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Attributes Inspected</th>
<th>Minimum Inspection Frequency</th>
<th>Point of Inspection</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>As specified in QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td>Protection of Inlets & Utilities</td>
<td>Per QC Plan</td>
<td>Existing Surface</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Removal of Millings & Dust</td>
<td>Per QC Plan</td>
<td>Milled Surface</td>
<td>Visual Check</td>
</tr>
<tr>
<td>Materials</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Workmanship</td>
<td>Milling Depth</td>
<td>Per QC Plan</td>
<td>Milled Surface</td>
<td>Check Measurement</td>
</tr>
<tr>
<td></td>
<td>Cross-Slope & Profile</td>
<td>Once per 500 ft per milled lane</td>
<td>Milled Surface</td>
<td>Check Measurement</td>
</tr>
<tr>
<td></td>
<td>Uniform Surface Texture</td>
<td>Per QC Plan</td>
<td>Milled Surface</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Milled Surface Roughness</td>
<td>Once per 500 ft per milled lane</td>
<td>Milled Surface per 415.61: Milled Surface Inspection</td>
<td>10-ft Standard Straightedge</td>
</tr>
<tr>
<td></td>
<td>Sawcut Limit Vertical Face</td>
<td>Per QC Plan</td>
<td>Sawcut Limits</td>
<td>Visual Check</td>
</tr>
</tbody>
</table>

415.62: Control Strip

The Contractor shall mill a control strip prior to proceeding to full milling operations. The control strip shall be 500 ft minimum in length with a uniformly textured surface and cross-slope and meet the requirements of 415.61: Milled Surface Inspection. In the event the control strip does not conform to the milled surface requirements, it shall be corrected, and an additional control strip shall be required by the Engineer.

DEPARTMENT ACCEPTANCE

415.70: General

The Department is responsible for performing all Acceptance activities and making the final Acceptance determination for each milled pavement surface. The Department’s Acceptance System will include monitoring the Contractor’s QC activity and performing Acceptance inspection in order to determine the Quality and corresponding payment for each Lot.

415.71: Milled Surface Inspection

The Engineer will perform Acceptance inspection of all work items addressed under Subsection 415: Pavement Milling as further specified in Table 415.71-1.

The Engineer will randomly inspect a minimum of 25% of the Sublots. Additional selective Acceptance measurements within each Sublot will be performed as deemed necessary by the Engineer. All Acceptance inspection results will be recorded on NETTCP IRFs.
The milled surface shall meet the requirements of 415.61: Milled Surface Inspection.

Table 415.71-1: Department Acceptance Inspection of Milling Operations

<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Attributes Inspected</th>
<th>Minimum Inspection Frequency</th>
<th>Point of Inspection</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Workmanship</td>
<td>Milling Depth</td>
<td>25% of Sublots</td>
<td>Milled Surface</td>
<td>Check Measurement</td>
</tr>
<tr>
<td></td>
<td>Cross-Slope & Profile</td>
<td>25% of Sublots</td>
<td>Milled Surface</td>
<td>Check Measurement</td>
</tr>
<tr>
<td>Uniform Surface Texture</td>
<td>25% of Sublots</td>
<td>Milled Surface</td>
<td>Visual Check</td>
<td></td>
</tr>
<tr>
<td>Milled Surface Roughness</td>
<td>25% of Sublots</td>
<td>Milled Surface per 415.61: Milled Surface Inspection</td>
<td>10-ft Standard Straightedge</td>
<td></td>
</tr>
<tr>
<td>Sawcut Limit Vertical Face</td>
<td>25% of Sublots</td>
<td>Sawcut Limits</td>
<td>Visual Check</td>
<td></td>
</tr>
</tbody>
</table>

COMPENSATION

415.80: Method of Measurement

All pavement milling will be measured for payment by the number of square yards of area from which the milling of existing HMA pavement has been completed and the work accepted. No area deductions will be made for minor un-milled areas such as catch basin inlets, manholes, utility boxes and any similar utility structures.

Bridge Pavement Milling will be measured for payment by the number of square yards of area from which the milling of existing bridge surface has been completed and the work accepted. No additional compensation will be provided for multiple passes. No area deductions will be made for minor un-milled areas such as bridge joints, catch basin inlets, manholes, utility boxes, and any similar utility structures.

415.81: Basis of Payment

All pavement milling of existing HMA pavement will be paid for at the contract unit price per square yard. This price shall include all QC activity related to the milling operation, all equipment, tools, labor, incidental materials, and removal and disposal of milled material. No additional payments will be made for multiple passes with the milling machine to remove the existing HMA surface to the grade specified.

The work shall also include:

- Milling of existing concrete repair materials at grade.
- Providing protection to underground utilities from the vibration of the milling operation.
- Sawcutting milled limits; installing and removing any temporary transition.
• Performing handwork removal of existing pavement and providing protection around bridge joints, catch basin inlets, manholes, utility valve boxes and any similar structures.
• Furnishing a sweeper and sweeping after milling.
• Removing and disposing of millings.
• Repairing surface defects as a result of the Contractor’s negligence.

415.82: Payment Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>415.1</td>
<td>Pavement Standard Milling</td>
<td>Square Yard</td>
</tr>
<tr>
<td>415.2</td>
<td>Pavement Fine Milling</td>
<td>Square Yard</td>
</tr>
<tr>
<td>415.3</td>
<td>Pavement Micro Milling</td>
<td>Square Yard</td>
</tr>
<tr>
<td>415.4</td>
<td>Bridge Pavement Milling</td>
<td>Square Yard</td>
</tr>
</tbody>
</table>

SUBSECTION 430: CEMENT CONCRETE BASE COURSE

DESCRIPTION

430.20: General

Cement concrete base course shall be constructed in one course on the prepared sub-base in accordance with these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

430.40: General

Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

*3,000 psi, 1.5-inch, 470 Cement Concrete | M4.02.00
Preformed Joint Filler | M9.14.0
Hot Poured Joint Sealer | M3.05.0

*The concrete shall have a slump of 2 in. with a tolerance of ± ½ in.

CONSTRUCTION METHODS

430.60: General

The cement concrete base course may be constructed by the Slip-Form Method or the Fixed-Form Method.

Equipment and tools necessary for handling materials and performing all parts of the work shall be approved by the Engineer as to design, capacity, and mechanical condition.

Grade control survey and staking shall conform to Subsection 5.07: Construction. The Contractor shall furnish, set, and maintain all line and grade stakes for grading and paving.
430.61: Side Forms

The forms where required shall be an approved wood or metal type, of a width equal to the depth of the concrete, true to line, free from warp and of sufficient strength, when staked, to resist the pressure of the concrete without springing and so designed that the various sections may be fastened together in such a manner as to prevent the vertical or horizontal movement of the ends.

The forms shall be jointed neatly and tight, shall be set true to line and grade, well staked and braced, and shall have uniform bearing on the sub-base through their entire length. In general the setting of forms shall proceed at least 500 ft in advance of the mixing and placing of concrete. The forms shall be thoroughly cleaned before any concrete is placed against them and shall be made tight to prevent the leaking of mortar from the concrete.

430.62: Fine Grading

The fine grading of the foundation shall conform to 476.61: Preparation of Grade.

430.63: Joints

The Contractor shall construct weakened plane transverse contraction joints in the concrete base course every 30 to 50 ft or as shown on the plans. These joints shall consist of surface slots constructed in accordance with the requirements of 476.68: Joints, Paragraph C, for transverse contraction joints.

Expansion joints shall be formed about all structures and features projecting through or into the pavement and between the pavement slab and adjacent curbing. Unless otherwise indicated, such joints shall be ½ in. in width and shall be filled with preformed joint filler as specified in M9.14.0: Preformed Expansion Joint Filler and sealed with joint filler compound as specified in M3.05.0: Hot Poured Joint Sealer in the same manner as specified for transverse expansion joints in 476.68: Joints, Paragraph B. There will be no additional compensation for joints.

430.64: Placing Concrete

Concrete shall be placed on a moist, firm and smooth sub-base in accordance with the requirements of 476.64: Placing Concrete except that it shall be placed in one layer.

430.65: Finishing Concrete

The surface of the concrete shall be struck off with a template shaped so as to leave the concrete with a smooth, even contour surface and crown as shown on the plans and in the typical cross section. The template shall be so constructed that it shall have sufficient strength to retain its shape under all working conditions. This template shall be moved with a longitudinal and crosswise motion and always in the direction in which the work is progressing. The surface of the concrete shall be finished to the elevations, contours and crowns required with a tolerance allowance of ¼ in. in 10 ft.

The surface of the concrete shall be made free of footprints, ruts, depressions or other imperfections and shall then be lightly broomed, as directed, with approved stable or wire brooms.
430.66: Protection and Curing

The pavement shall be protected and cured as required in 476.71: Curing except that membrane compounds not compatible with bituminous materials shall not be used.

COMPENSATION

430.80: Method of Measurement

Cement concrete base course will be measured in place by the square yard conforming to the length, width and depth required by the plans or as directed. The Contractor shall have no claim for extra if thickness of pavement exceeds that shown on the plans or as directed.

430.81: Basis of Payment

Standard cement concrete base course will be paid for at the contract unit price per square yard under the item for Cement Concrete Base Course.

High early strength concrete base course will be paid for at the contract unit price per square yard under the item for High Early Strength Cement Concrete Base Course.

The price paid per square yard shall also include all sprinkling or treating the roadway to keep down dust.

430.82: Payment Items

430. Cement Concrete Base Course .. Square Yard
431. High Early Strength Cement Concrete Base Course Square Yard

SUBSECTION 440: ROADWAY DUST CONTROL

DESCRIPTION

440.20: General

This work shall consist of furnishing and applying approved dust control material to the surface of the subgrade or elsewhere as directed in accordance with these specifications.
MATERIALS

440.40: General

The material for this work shall be of the kind shown on the plans and shall meet the requirements of the following Subsections of Division III, Materials.

- Sand ... M1.04.0, Type a
- Calcium Chloride .. M9.01.0
- Bituminous Material
 - Cut-back Asphalt .. M3.02.0
 - Asphalt Emulsion ... M3.03.0

CONSTRUCTION METHODS

440.60: General

The required material shall be properly applied where directed by the Engineer and distributed uniformly at the rate specified or ordered. The means of distribution shall depend upon the kind of material used, and the method and equipment used shall be satisfactory to the Engineer. The number and frequency of applications shall be as determined by the Engineer.

440.61: Treatment with Calcium Chloride

Calcium chloride shall be uniformly applied at the rate of 1 ½ lb per yd² or at any other rate as directed by means of a mechanical spreader, or other approved methods.

440.62: Treatment with Bitumen

Bituminous material shall be applied by means of an approved pressure distributor of a type that will distribute the material uniformly under a pressure of not less than 30 psi without streaks or spots. It shall be so designed as to enable its operator to “cut out” any portion of the roadway, to control the flow, and to avoid any surplus deposit of the material on the roadway or elsewhere. The bitumen shall be applied at the rate specified on the plans or as directed by the Engineer.

440.63: Sand Cover

When and if directed by the Engineer, the bitumen shall be covered with a sufficient quantity of sand to absorb all surplus bitumen.

440.64: Treatment with Water

Water shall be applied at locations at such times, and in the amount as directed by the Engineer. Quantities of water wasted or applied without authorization will not be paid for.

Watering equipment shall consist of pipelines, tanks, tank trucks, or other devices, approved by the Engineer, which are capable of applying a uniform spread of water over the surface. A suitable device for a positive shut-off and for regulating the flow of water shall be located so as to permit positive operator control.
COMPENSATION

440.80: Method of Measurement

Calcium chloride will be measured by the pound.

Bituminous material will be measured by volume in gallons in accordance with the provisions of Subsection 468: Pea Stone Cover for Concrete Paved Shoulders.

Sand will be measured by the cubic yard by load measurement. The quantity shall be the volume of the load, as measured, divided by 1.15.

Water will be measured for payment by the number of M gallons (1,000 gallons). The water will be measured in tanks or tank trucks of predetermined capacity, or by means of satisfactorily installed meters. Any and all measuring devices shall be furnished by the Contractor.

440.81: Basis of Payment

Calcium chloride will be paid for at the contract unit price per pound under the item for Calcium Chloride for Roadway Dust Control, complete in place.

Bituminous material will be paid for at the contract unit price per gallon of Bitumen for Roadway Dust Control, complete in place.

Sand will be paid for at the contract unit price per cubic yard under the item for Sand Borrow (Cover), complete in place as specified.

Water will be paid for at the contract price per “M” gallons for Water for Roadway Dust Control which price shall include all water, labor, tools and equipment required to furnish and measure the water applied to surfaces designated by the Engineer and at the times specified.

440.82: Payment Items

440. Calcium Chloride for Roadway Dust Control...Pound
441. Bitumen for Roadway Dust Control ..Gallon
443. Water for Roadway Dust Control .. M. Gallons

SUBSECTION 445: SHOULDERS

DESCRIPTION

445.20: General

Shoulders shall be constructed of approved materials in accordance with these specifications and in conformity with the lines, grades and typical cross sections shown on the plans.

Shoulders shall be composed of excavated material or borrow of the kind required or as shown on the plan.

Where shown on the plans, the top portions of shoulders shall be paved with surfacing material of the kind specified.
MATERIALS

445.40: General

Materials shall meet the requirements specified in the following Subsections of Division III, Materials.

Ordinary Borrow.. M1.01.0
Gravel Borrow .. M1.03.0 Type c
Loam Borrow .. M1.05.0
Sodding (Field) .. M6.05.0
Seed ... M6.03.0

445.41: Surfacing Materials

The surfacing materials for paving the top portion of shoulders shall conform to the requirements of the particular sections of these specifications relating to the kind of pavement or surfacing required.

CONSTRUCTION METHODS

445.60: General

The subgrade for shoulders, if required, shall be prepared as required in Subsection 170: Grading.

Portions of the shoulders, of sufficient width to hold the pavement in its proper place, shall be built in conjunction with the pavement and shall be rolled to a width of at least 12 in. with each rolling of the roadway base course or surface course.

Whenever the plan shows that sodding, loaming, paving or other similar work affecting shoulder construction adjacent to the roadway pavement is required, the Contractor will be required to construct temporary shoulders of suitable material to support the roadway pavement adequately during rolling operations. After the pavement is constructed, the temporary shoulders shall be carefully removed and satisfactorily disposed of by the Contractor prior to construction of the permanent shoulders.

Where necessary, temporary shoulders shall be constructed in conjunction with the construction of paved shoulders in the same manner as prescribed above for roadway pavement.

When shoulders are to be loamed and seeded, the construction method shall be as specified in Subsection 765: Seeding for such work.

Sodding of shoulders shall be done in conformity with the requirements of Subsection 770: Sodding.

Ordinary borrow, gravel borrow and loam shall be furnished, placed and rolled in accordance with the requirements of Subsection 150: Embankment and as specified herein.

Paving of shoulders shall be done in the manner specified in the particular section of these specifications relating to the kind of pavement or surfacing to be used in this work.

At all times construction shall be so carried on that effective and adequate drainage will be provided.
The full widths of all shoulders except paved or sodded areas shall be reformed, trimmed, raked and rolled before the final completion of the work and the surface when finished shall conform to the proposed grade and cross section.

COMPENSATION

445.80: Method of Measurement

All borrow materials for shoulders will be measured by the cubic yard in accordance with the provision of 150.80: Method of Measurement.

Surfacing materials for paving shoulders will be measured as specified in the particular section for the kind of pavement required.

Sodding will be measured by the square yard as specified in 770.80: Method of Measurement.

445.81: Basis of Payment

Payment for grading of shoulders composed of material obtained from excavation will be included in the price paid for removal and disposal of the type of excavation used.

When composed of borrow, shoulders will be paid for at the contract unit price per cubic yard of borrow, of the kind required as specified in 150.81: Basis of Payment.

Compensation for the removal and disposal of temporary shoulder material will be included in the contract unit price under the item for the kind of material used in the roadway pavement or permanent shoulder.

When shoulders are paved with surfacing materials, such materials will be paid for at the contract unit prices for the kinds of materials used in the pavement as specified in the particular section relating to the kind of pavement or surface ordered.

When sodding is used on shoulders, it will be paid for at the contract unit price per square yard under Item for Field Sodding, complete in place, as specified in 770.81: Basis of Payment.

The fine-grading and rolling of the subgrade upon which shoulders are constructed will be paid for at the contract unit price per square yard under Item 170. Fine Grading and Compacting (In Subgrade Areas).

SUBSECTION 450: HOT MIX ASPHALT PAVEMENT

DESCRIPTION

450.10: General

This work shall consist of producing and placing HMA pavement. The HMA pavement shall be constructed as shown on the plans and as directed on the prepared or existing base in accordance with these specifications and in close conformity with the lines, grades, compacted thickness and typical cross section as shown on the plans. Each HMA pavement course placed shall be comprised of one of the mixture types listed in Table 450.10-1.
Table 450.10-1: HMA Pavement Courses & Mixture Types

<table>
<thead>
<tr>
<th>Pavement Course</th>
<th>Mixture Type</th>
<th>Mixture Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friction Course</td>
<td>Open-Graded Friction Course – 9.5 – Polymer</td>
<td>OGFC-P</td>
</tr>
<tr>
<td></td>
<td>Open-Graded Friction Course – 9.5 – Asphalt Rubber</td>
<td>OGFC-AR</td>
</tr>
<tr>
<td>Surface Course</td>
<td>SUPERPAVE Surface Course – 4.75</td>
<td>SSC – 4.75</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 4.75 – Polymer</td>
<td>SSC – 4.75 – P</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 9.5</td>
<td>SSC – 9.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 9.5 – Polymer</td>
<td>SSC – 9.5 – P</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 12.5</td>
<td>SSC – 12.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 12.5 – Polymer</td>
<td>SSC – 12.5 – P</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 19.0</td>
<td>SSC – 19.0</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 19.0 – Polymer</td>
<td>SSC – 19.0 – P</td>
</tr>
<tr>
<td></td>
<td>Asphalt Rubber Gap Graded – 12.5</td>
<td>ARGG – 12.5</td>
</tr>
<tr>
<td>Intermediate Course</td>
<td>SUPERPAVE Intermediate Course – 12.5</td>
<td>SIC – 12.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Intermediate Course – 12.5 – Polymer</td>
<td>SIC – 12.5 – P</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Intermediate Course – 19.0</td>
<td>SIC – 19.0</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Intermediate Course – 19.0 – Polymer</td>
<td>SIC – 19.0 – P</td>
</tr>
<tr>
<td>Base Course</td>
<td>SUPERPAVE Base Course – 25.0</td>
<td>SBC – 25.0</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Base Course – 37.5</td>
<td>SBC – 37.5</td>
</tr>
<tr>
<td>Leveling Course</td>
<td>SUPERPAVE Leveling Course – 4.75</td>
<td>SLC – 4.75</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Leveling Course – 9.5</td>
<td>SLC – 9.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Leveling Course – 12.5</td>
<td>SLC – 12.5</td>
</tr>
<tr>
<td>Bridge Surface Course</td>
<td>SUPERPAVE Bridge Surface Course – 9.5</td>
<td>SSC-B – 9.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Bridge Surface Course – 9.5 – Polymer</td>
<td>SSC-B – 9.5 – P</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Bridge Surface Course – 12.5</td>
<td>SSC-B – 12.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Bridge Surface Course – 12.5 – Polymer</td>
<td>SSC-B – 12.5 – P</td>
</tr>
<tr>
<td>Bridge Protective Course</td>
<td>SUPERPAVE Bridge Protective Course – 9.5</td>
<td>SPC-B – 9.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Bridge Protective Course – 9.5 – Polymer</td>
<td>SPC-B – 9.5 – P</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Bridge Protective Course – 12.5</td>
<td>SPC-B – 12.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Bridge Protective Course – 12.5 – Polymer</td>
<td>SPC-B – 12.5 – P</td>
</tr>
</tbody>
</table>

450.20: Quality Assurance

A. Quality Assurance Responsibilities.

This is a Quality Assurance Specification wherein the Contractor is responsible for controlling the quality of materials and workmanship and the Department is responsible for accepting the completed work based on the measured quality. Quality Assurance is simply defined as “making sure the Quality of a product is what it should be.”

The core elements of Quality Assurance include: Contractor Quality Control (QC), Department Acceptance, Department Independent Assurance (IA), Dispute Resolution, Qualified Laboratories, and Qualified Personnel. Although Quality Assurance utilizes test results to control production and
determine acceptance of the HMA, inspection remains as an important element in controlling the process and accepting the product.

The Contractor is responsible for providing an appropriate Quality Control System (QC System) to ensure that all materials and workmanship meet the required quality levels for each specified Quality Characteristic. The Contractor will perform all required Quality Control inspection, sampling, and testing in accordance with these specifications and the Contractor’s Quality Control Plan (QC Plan).

The Department will monitor the adequacy of the Contractor’s QC activities and will perform Acceptance inspection, sampling, and testing. The Department’s Acceptance information will be utilized in the acceptance determination for each Lot of material produced and placed.

IA is the responsibility of the Department’s Research & Materials Section (RMS). The function of IA testing is to periodically provide an unbiased and independent evaluation of the sampling and testing procedures used in the acceptance decision. Contractor QC and Department Acceptance testing procedures and equipment will be evaluated by IA personnel using one or more of the following: observation, calibration checks, split sample comparison, or proficiency samples (homogeneous samples distributed and tested by two or more laboratories). QC and Acceptance testing personnel are evaluated by observation and split samples or proficiency samples.

B. Hot Mix Asphalt Lots & Sublots.

The quality of each HMA pavement course of the same mixture type produced and placed will be inspected, tested, and evaluated on the basis of Lots and Sublots. A Lot is defined as “an isolated quantity of material from a single source which is assumed to be produced or placed by the same controlled process.”

The Lot size and corresponding unit of measure is a function of the individual Quality Characteristic evaluated. Lot sizes for Quality Characteristics subject to Department Acceptance are as shown in Table 450.10-2.

Changes in the target values, material sources, or JMF for an HMA mixture type will constitute a change in Lot, requiring the establishment of a new Lot. All Lots will be properly identified for accurate evaluation and reporting of HMA quality.
C. HMA Quality Assurance Requirements.

These Specifications establish three categories under which HMA Lots will be produced, placed, evaluated and accepted. Table 450.10-3 below defines each of the Lot categories and outlines the required Quality Assurance activities of the Contractor and the Department. The division of the Lot categories is based on the total estimated contract quantity of each individual HMA mixture type per each project location. For contracts containing multiple HMA items, it is possible to have work performed under more than one HMA Lot category.

(1) Determination of Lot Size and Lot Category

When the total contract quantity of an HMA mixture type is <2,100 tons, it shall be classified as a Minor Lot (Category C Lot).

When the total contract quantity of an HMA mixture type is ≥2,100 tons, but <7,500 tons, it shall be classified as a Small Lot (Category B Lot).

When the total contract quantity of an HMA mixture type is ≥7,500 tons, but ≤15,000 tons, it shall be classified as a Large Lot (Category A Lot).

When the total contract quantity of an HMA mixture type is >15,000 tons, each 15,000 tons will represent a Category A Lot. If the quantity remaining after all 15,000 ton Category A Lots is ≤3,000 tons, it shall be added to the final Lot providing a final Lot quantity not to exceed 18,000 tons. If the quantity remaining after all 15,000 ton Category A Lots is >3,000 tons, it shall constitute a separate Category A Lot.
If a Category A Lot extends into the subsequent year, the Lot will be ended, and a new Lot will be established for the next year. The Lot category for the subsequent year shall be categorized based on the remaining tonnage to be placed as designated above.

Category A and B Lots shall not be divided to produce multiple smaller category Lots without the prior approval of the District Quality Engineer and RMS.

(2) Determination of Sublot Size

Each HMA Lot will be divided into Sublots. The size of each HMA Sublot shall be as listed in Table 450.65-2 and Table 450.74-1. If the quantity of HMA at the end of a Lot is equal to or greater than one half of a full Sublot, then such quantity shall be identified and evaluated as a separate Sublot. If the HMA quantity at the end of a Lot is less than one half of a full Sublot, then such quantity shall be combined with the previous full Sublot quantity and shall be identified and evaluated as the final Sublot.
Table 450.10-3: HMA Lot Categories & Quality Assurance Requirements

<table>
<thead>
<tr>
<th>Quality Assurance Requirements</th>
<th>Category A (Large Lot)</th>
<th>Category B (Small Lot)</th>
<th>Category C (Minor Lot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Quantity for individual Lot of HMA</td>
<td>≥7,500 tons, but ≤15,000 tons (See Note 1)</td>
<td>≥2,100 tons, but <7,500 tons</td>
<td><2,100 tons</td>
</tr>
<tr>
<td>QC Plan Required:</td>
<td>YES</td>
<td>YES</td>
<td>(See Notes 2 and 3)</td>
</tr>
<tr>
<td>Contractor QC Inspection Required:</td>
<td>YES (450.64: Quality Control Inspection)</td>
<td>YES (450.64: Quality Control Inspection)</td>
<td>YES (450.64: Quality Control Inspection)</td>
</tr>
<tr>
<td>Control Strip Required:</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Control Charts Required:</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>QLA Required:</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>MassDOT Acceptance Inspection Performed</td>
<td>Minimum 25% of Sublots (450.73: Acceptance Inspection)</td>
<td>Minimum 50% of Sublots, but Minimum 3 Sublots (450.73: Acceptance Inspection)</td>
<td>100% of Sublots (450.73: Acceptance Inspection)</td>
</tr>
<tr>
<td>MassDOT Acceptance Testing Performed:</td>
<td>Minimum 25% of Sublots (450.74: Acceptance Sampling & Testing)</td>
<td>Minimum 50% of Sublots, but Minimum 3 Sublots (450.74: Acceptance Sampling & Testing)</td>
<td>100% of Sublots (450.74: Acceptance Sampling & Testing)</td>
</tr>
<tr>
<td>QC Test Results included in MassDOT Acceptance Determination:</td>
<td>YES (If Validated)</td>
<td>YES (If Validated)</td>
<td>NO</td>
</tr>
<tr>
<td>Pay Adjustment Applied:</td>
<td>YES (450.92: Pay Adjustment)</td>
<td>YES (450.92: Pay Adjustment)</td>
<td>NO</td>
</tr>
</tbody>
</table>

Note 1: Category A Lots shall not exceed 18,000 tons as specified in 450.20: Quality Assurance, Part C(1).
Note 2: If all HMA Lots fall under Category C then a QC Plan is not required. However, if any Lots on the project fall under Category A or Category B, then any Category C Lots must be addressed in the QC Plan.
Note 3: If a QC Plan is not required, it is still the responsibility of the Contractor to provide to the Engineer any information that is designated as “Per QC Plan” as found in this specification.

MATERIALS

450.30: General

Materials shall meet the requirements in the following Subsections of Division III, Materials and as otherwise specified herein:

- Performance Graded Asphalt Binder ... M3.01.0
- Warm Mix Asphalt .. M3.01.4
- Asphalt Anti-Stripping Additive ... M3.01.5
Asphalt Release Agents ... M3.01.6
Asphalt Emulsion for Tack Coat... M3.03.0
Hot Poured Joint Sealer ... M3.05.0
Hot Mix Asphalt .. M3.11.0
Aggregate .. M3.11.2
Hot Mix Asphalt Mixture Design .. M3.11.4
Verification of Laboratory Trial Mix Formula.. M3.11.5
Hot Mix Asphalt Production Facility .. M3.12.0
Contractor Quality Control Laboratory .. M3.13.1
Department Acceptance Laboratory ... M3.13.2

450.32: Hot Mix Asphalt Design

HMA mixtures shall be composed of the following: Mineral aggregate, mineral filler (if required), Performance Graded Asphalt Binder (PGAB), and as permitted, recycled materials. The Contractor shall be responsible for development of an HMA Laboratory Trial Mix Formula (LTMF) for each HMA mixture type specified for the contract in accordance with the requirements of 450.30: General.

CONSTRUCTION PROCEDURES

450.40: General

Prior to the start of any work activity addressed in 450.43: Preparation of Underlying Surface through 450.52: Opening to Traffic below, a Construction Quality Meeting shall be held to review the Contractor’s QC System. The Contractor shall present and discuss with the Engineer in sufficient detail the specific QC information and activities contained in each section of their QC Plan as outlined in 450.61: Contractor Quality Control Plan. The meeting is intended to ensure that the Contractor has an adequate QC System in place and that the Contractor’s personnel are fully knowledgeable of the roles and activities for which they are responsible to achieve the specified level of quality. Contractor personnel required to attend the Construction Quality Meeting include the Construction Quality Control Manager (QC Manager) and all Superintendents. The Contractor shall provide a copy of the approved QC Plan for each Contractor and Department attendee of the meeting.

450.41: Control of Grade and Cross-Section

The Contractor will provide a longitudinal and transverse reference system, with a maximum spacing of 100 ft, for the purpose of locating and documenting sampling and testing locations and related uses. It is the Contractor’s responsibility to clearly mark this reference system in the field. Work related to this reference system is incidental and will be included as part of the Contractor’s QC System. The Department shall provide information tying in the Contractor’s reference system to the State Mile Marker System.

The Contractor shall furnish, set and maintain all line and grade stakes necessary to guide the automated grade control equipment. Where required these control stakes shall be maintained by the Contractor and used throughout the operations, from the grading of the subbase material up to and including the final course of the pavement.
Under normal conditions, where more than one course of HMA is to be constructed, the use of the string line for grade control may be eliminated or discontinued after the construction of the initial course of HMA. For resurfacing projects, where only one course of HMA is to be constructed, the use of the string line for grade control may be eliminated. The use of approved automation may then be substituted for the string line where lines and grades are found to be satisfactory by the Engineer.

450.42: Weather Limitations

HMA shall only be placed on dry, unfrozen surfaces and only when the temperature requirements contained in Table 450.42-1 below are met. If the temperature requirements contained in Table 450.42-1 are not met at any point throughout the paving shift, HMA placement shall cease, except as determined and directed in writing by the Engineer depending upon the necessity and emergency of attendant conditions, and weather conditions.

The Contractor may continue HMA placement when overtaken by sudden rain, but only with material which is in transit from the HMA production facility at the time, and then only when the temperature of the HMA mixture is within the temperature limits specified and when the existing surface on the roadway is free of standing moisture. The Engineer is not obligated to accept any material that was not already in transit prior to the onset of rain and the Contractor shall suspend operations for the day when the requirements of this specification cannot be met.

The construction of HMA pavement shall terminate November 15 and shall not be resumed prior to April 1 except as determined and directed in writing by the Engineer depending upon the necessity and emergency of attendant conditions, weather conditions, and location of the project. Only in extreme cases will the placement of Surface Courses be permitted between November 15 and April 1. Regardless of any temperature requirements, OGFC mixtures shall not be placed after October 31 or before May 1 without the written permission of the Engineer.

<table>
<thead>
<tr>
<th>HMA Pavement Course</th>
<th>Lift Thickness (in.)</th>
<th>Minimum Air Temperature (°F)</th>
<th>Minimum Surface Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friction Course</td>
<td>1</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>Surface Course</td>
<td><1 ¾</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Surface Course</td>
<td>≥1 ¾</td>
<td>35 (see Note 1)</td>
<td>40</td>
</tr>
<tr>
<td>Intermediate Course</td>
<td>All</td>
<td>35 (see Note 1)</td>
<td>40</td>
</tr>
<tr>
<td>Base Course</td>
<td>All</td>
<td>35 (see Note 1)</td>
<td>40</td>
</tr>
<tr>
<td>Leveling Course</td>
<td>As Specified</td>
<td>45</td>
<td>50</td>
</tr>
</tbody>
</table>

Note 1: When the air temperature falls below 50°F, extra precautions shall be taken in drying the aggregates, controlling the temperatures of the materials, and in placing and compacting the mixtures.

The Contractor shall supply the Engineer with two approved dial type thermometers with a temperature range of -50°F to 500°F and two infrared pistol thermometers for each paving machine in operation on the project. The infrared pistol thermometers shall read in Fahrenheit and conform to the following requirements:
Portable and battery operated
LCD Display to nearest 1°F
Temperature operating range of 0°F to 750°F
Accuracy of ± 2%
Repeatability of ± 5°F
Emissivity preset at 0.95

The thermometers will remain the property of the Contractor upon completion of the project.

450.43: Preparation of Underlying Surface

HMA mixtures shall be placed only upon properly prepared surfaces that are clean from foreign materials. The underlying surface shall be prepared in accordance with the requirements below, prior to the placement of HMA pavement courses.

A. Subbase or Reclaimed Base.

Prior to the placement of HMA Base Course mixtures, the Contractor shall inspect the prepared subbase or reclaimed base material to ensure that it is in conformance with the required grade, cross-section, and in-place density. Subbase or reclaimed base material that is not in accordance with the plans or specifications shall be reworked or replaced to meet the applicable requirements of Subsection 401: Gravel Sub-Base, Subsection 402: Dense Graded Crushed Stone for Sub-Base, or Subsection 403: Reclaimed Pavement for Base Course and/or Sub-Base before the start of HMA placement. The compacted subbase or reclaimed base shall not be frozen or have standing water when placing HMA.

B. Milling Existing HMA Pavement.

When specified on the plans, existing HMA pavement courses shall be milled and removed from the project by the Contractor in accordance with Subsection 415: Pavement Milling. Adjustments to milling depth shall be approved by the Engineer and shall be used for consideration of the HMA pavement thickness measurements.

Each vertical face of the milled pavement that will be abutted by new pavement shall be thoroughly coated with a hot poured joint sealer meeting the requirements of 450.30: General immediately prior to placing new HMA mixture adjacent to the vertical face.

C. Patching Existing Pavement Courses.

Areas of existing HMA pavement courses that are significantly distressed or unsound shall be removed and replaced with patches using new Hot Mix Asphalt. The location and limits of patching will be as identified in the plans or as directed by the Engineer.

Each existing pavement course determined to be unsound shall be removed to the full depth of the pavement course within a rectangular area. For each patch location equal to or greater than 50 ft² in area (and having a minimum dimension of 4 ft) where the existing pavement courses are removed down to subbase, the subbase shall be compacted by mechanical means to not less than 95% of the maximum dry density of the subbase material as determined by AASHTO T 99 Method C at optimum moisture content. Each edge of the patch area shall be sawcut or otherwise neatly cut by mechanical means to provide a clean and sound vertical face. The vertical face of each edge shall be...
be thoroughly coated with a hot poured joint sealer meeting the requirements of 450.30: General immediately prior to placing the HMA patching mixture.

Delaminated areas of existing pavement courses resulting from pavement milling shall be cut back neatly by mechanical means to the limits of any unsound material. After removing all unsound material, the underlying pavement surface within the patch limits shall receive a thorough tack coat at a rate of application in accordance with 450.43: Preparation of Underlying Surface, Part G(2) prior to placing the HMA patching mixture.

HMA patching mixture shall be the same mixture type as the existing pavement course being patched or as specified on the plans or as directed by the Engineer. The lift thickness of the patching mixture shall not exceed four times the nominal maximum aggregate size of the mixture. The patching mixture will be placed by hand or by mechanical means and shall match the thickness, grade, and cross-slope of the surrounding pavement. The HMA patching mixture shall be compacted using a steel wheel roller. For patch areas not large enough to permit use of a roller, compaction shall be accomplished using a mechanical tamper capable of achieving the required in-place density. The Contractor shall test the in-place density of each patched area using a calibrated density gauge and record the test data for each patched area on NETTCP Test Report Forms (TRFs). The in-place density of the HMA patching mixture shall be not less than 90% of the maximum theoretical density of the mixture as determined by AASHTO T 209 (Method A).

D. Leveling Courses.

HMA Leveling Courses shall only be used when specified in the Contract. The HMA mixture used for a Leveling Course shall be as specified in the Contract and shall conform to the relevant materials requirements of this specification.

E. Preparation of Curbs, Edging, and Utilities.

All curbs or edging shall be installed or reset to the line and grade established on the plans. The surface elevation of all catch basin frames and grates, manholes, utility valve boxes, or other utility structures located in the pavement shall uniformly match the grade and cross-slope of the final pavement riding surface. Adjustment of all curbs, edging, and utilities shall be completed prior to the placement of the HMA Surface Course. When OGFC is specified to be placed over the Surface Course, all curbs, edging, and utilities shall be adjusted prior to placement of the HMA Surface Course mixture. Hand placement of HMA along curbs and edging or around utilities after placement and compaction of the Surface Course shall not be permitted.

F. Sweeping Underlying Surface.

The Contractor shall provide a mechanical sweeper equipped with a water tank, spray assembly to control dust, a pick-up broom, a dual gutter broom, and a dirt hopper. The sweeper shall be capable of removing millings and loose debris from the underlying surface.

Prior to opening a milled area to traffic, all milled pavement surfaces shall be thoroughly swept in accordance with the applicable milling specification required by the contract to remove all remaining millings and dust. All pavement surfaces shall be swept clean, free of dust, fines, and slurry immediately prior to application of the tack coat. Any new HMA pavement course that has been open to traffic, or that was placed 30 days prior to placement of the subsequent pavement course, shall also be swept immediately prior to application of the tack coat.
G. Asphalt Emulsion for Tack Coat.

A tack coat of asphalt emulsion, meeting the requirements of 450.30: General shall be uniformly applied to existing or new pavement surfaces prior to placing pavement courses as specified below. The existing surface shall be swept clean of all foreign matter and loose material using a mechanical sweeper and shall be dry before the tack coat is applied.

In addition to the requirements above, all vertical surfaces of curbs, edging, utilities, and drainage structures that will be abutted by new pavement shall receive a thorough tack coat application immediately prior to placing each HMA pavement course.

(1) Tack Distributor System.

A pressure distributor shall be used to apply the tack coat. The tack distributor system shall be equipped with the following to control and monitor the application:

- System for heating the asphalt emulsion uniformly to specified temperature.
- Thermometer for measuring the asphalt emulsion temperature.
- Adjustable full circulation spray bar.
- Positive controls including tachometer, pressure gauge, and volume measuring device.

At least once every 12 months the application rate of the tack distributor system shall be calibrated by the Contractor using the appropriate spray bar nozzle size(s). The calibration shall be in the transverse and longitudinal directions following ASTM D2995. The calibration shall address the spray bar height, nozzle angle, spray bar pressure, thermometers, and strapping stick. Documentation of the annual calibration shall be kept with the tack distributor system and shall be provided to the Engineer when requested.

The use of tack wagons/trailers shall only be allowed for patching under Item 451 or when the Engineer agrees that the area is inaccessible to the distributor. Regardless of application method the tack application rates shall meet the requirements below. The use of gravity distributors is not allowed.

(2) Tack Application Requirements.

The tack coat material shall be applied by a pressure distributor. All nozzles on the distributor shall be open and functioning. All nozzles shall be turned at the same angle to the spray bar. The nozzles shall be offset at an angle from the spray bar to prevent the fan from one nozzle from interfering with the fan from another. Proper nozzle angle shall be as determined by the Manufacturer of the distributor spray bar. The spray bar shall be adjusted so that it is at the proper height above the pavement surface to provide a triple overlap spray for a uniform coverage of the pavement surface. A triple lap application requires that the nozzle spray patterns overlap one another such that every portion of the pavement receives spray from exactly three nozzles.
II.116 2020 Edition

Massachusetts Department of Transportation – Highway Division

Standard Specifications for Highways and Bridges

Tack coat application rates for specific surface conditions shall be in accordance with the following:

a) On a new HMA surface, not opened to traffic, the emulsion application rate shall equal 0.06 to 0.08 gallons per square yard

b) On an existing tight smooth pavement the emulsion application rate shall equal 0.06 to 0.08 gallons per square yard

c) On a milled surface the emulsion application rate shall equal 0.07 to 0.09 gallons per square yard

d) On cement concrete base course the emulsion application rate shall be equal to spray application for adjacent surface

e) On new HMA patches the emulsion application rate shall equal 0.06 to 0.09 gallons per square yard

Specified application rates are based on a 57/43 residual to water ratio. The residual amount of tack is defined as the remaining asphalt after the tack coat has set and all water has evaporated. The application rate of the tack coat emulsion shall be set at a rate that achieves the specified residual amount. Tack coat shall be applied to cover a minimum of 95% of the pavement surface.

(3) Tack Inspection.

The asphalt emulsion temperature and application rate shall be periodically measured and properly recorded by the Contractor on NETTCP Inspection Report Forms (IRFs). If the temperature or application rate is determined to not be in conformance with the specification requirements above, the Contractor shall make appropriate adjustments to the tack application operations.

450.44: Zero Tolerance for Use of Petroleum Products as Release Agents

There is zero tolerance for the use of petroleum products (e.g. diesel, kerosene, etc.) as a release or cleaning agent in the manufacture, loading, transporting, and placement of HMA materials. The Contractor’s QC Manager shall ensure conformance with this requirement. Equipment to be used for transferring, hauling, or placing HMA materials shall be inspected by QC personnel per the approved QC Plan and will ensure that no petroleum products are used. Contaminated equipment shall not be used most especially haul units. Haul units and truck companies with repeated violations will not be used to haul HMA materials for MassDOT projects. Any violations of this policy shall be reported to the Engineer and subject to the following actions:

A. Haul Unit Violations During Loading at the Plant and Transportation to the Project.

Haul units identified by the Contractor to have contaminated beds during initial inspection prior to loading will not be used during that day’s placement operations. If a haul unit is found to violate this policy after the initial inspection, the Engineer shall issue a Deficiency Report (DR) and the haul unit and driver shall be suspended from the project until a written corrective action is proposed and approved by the Engineer.

If a haul unit is found to be contaminated with an unapproved release agent after it has been loaded, the HMA shall be rejected by the Engineer. The Engineer shall issue a DR and the haul unit and driver shall be suspended from the project until a written corrective action is proposed and approved by the Engineer.
B. **Field Equipment Violations.**

All equipment used for the placement and compaction of HMA shall not be treated with an unapproved release agent. This includes the paver, MTV, rollers, plate compactors, and tools.

Any use of an unapproved release agent will result in the termination of placement operations and the removal of contaminated materials. The Engineer shall issue a DR and paving operations will not be allowed to resume until a written corrective action is submitted and approved by the Engineer.

C. **Repeated Violations**

If a Contractor or any of their Subcontractors is found to repeatedly violate this policy it may result in further actions taken by the Engineer including filing a report with the Department of Environmental Protection.

450.45: Hot Mix Asphalt Production

HMA production shall conform to the requirements of 450.30: General.

450.46: Hot Mix Asphalt Transportation and Delivery

A. **Haul Unit Equipment**

The trucks used to transport HMA to the field placement site shall have tight, clean, smooth metal beds. When necessary to maintain the required HMA temperature, trucks shall be equipped with insulated beds. The truck beds shall be evenly and lightly coated with an approved release agent found on the QCML to prevent HMA mixture adherence. Truck beds shall be kept free of kerosene, gasoline, fuel oil, solvents, or other materials that could adversely affect the HMA mixture in accordance with 450.44: Zero Tolerance for Use of Petroleum Products as Release Agents. Excess lubricant shall not be allowed to accumulate in low spots in the body. The Contractor shall employ sufficient procedures and QC inspection to ensure that all truck beds are free of contaminants, residual HMA, or excess release agent.

B. **HMA Protection During Transport.**

The HMA shall be transported from the plant to the field placement site in trucks previously cleaned of all foreign materials. During transportation of the HMA from the plant to the placement equipment at the site, each load shall be fully covered at all times, without exception, with canvas or other suitable material of sufficient size and thickness, which is tightly secured to furnish complete protection. Mesh tarps will not be allowed. The HMA shall not be transported such a distance that temperature segregation of the mixture takes place or that excessive crusting is formed on the surface, bottom or sides of the HMA.

C. **Coordination and Inspection of HMA Delivery.**

The dispatching of trucks from the plant shall be continuously coordinated to ensure that all of the HMA mixture planned to be delivered to the field placement site may be placed and compacted before the end of the scheduled workday. During paving operations, the Contractor shall provide for ongoing two-way radio or cellular phone communication between the field placement site and the HMA plant.
The target temperature and allowable range of the HMA when delivered at the field placement site will be established in the Contractor's QC Plan. The Contractor shall measure the temperature of the HMA, either from the trucks prior to discharge or from the paver hopper, using an infrared pistol type thermometer at the minimum frequency indicated in the approved QC Plan. All QC temperature measurement results of the delivered HMA mixture shall be recorded on NETTCP IRFs. The Contractor shall also visually inspect the delivered HMA for crusting or material (physical) segregation. The Contractor shall reject any loads of HMA with material which is crusted, segregated, or which is not within the delivery temperature range established in the Contractor's QC Plan.

450.47: Hot Mix Asphalt Placement

A. Material Transfer Vehicles.

For projects on all controlled access highways with HMA Category A Lots, a Material Transfer Vehicle (MTV) will be required. An MTV shall also be required for all pavement courses requiring Ride Quality testing (IRI). The MTV shall be used to place each pavement course, with the exception of base and leveling courses, on the mainline of the traveled way including all travel lanes, auxiliary lanes, and collector/distributor (C/D) lanes.

(1) MTV Equipment Requirements.

The MTV shall be self-propelled and capable of remixing and transferring the HMA mixture to the paver so that the HMA mat behind the paver has a uniform homogeneous temperature and appearance. The MTV shall be equipped with the following:

(a) A truck unloading system, capable of maintaining the planned paving production rate, which shall receive HMA from the trucks and independently deliver the mixture from the trucks to the paver.

(b) A paver hopper insert with a minimum capacity of 14 tons shall be installed in the hopper of conventional paving equipment. The paver hopper insert shall be marked to identify the point at which the insert is 50% full.

(c) An internal storage bin with a minimum capacity of 25 tons of mixture and a remixing system in the bottom of the storage bin to continuously blend the mixture as it discharges to a conveyor system; or a dual pugmill system located in the paver hopper insert with two full length longitudinally mounted counter-rotating screw augers to continuously blend and feed the mixture through the paver to the screed.

(2) MTV Operations.

The Contractor shall ensure that the MTV is loaded continuously to keep the paver moving. The volume of HMA in the paver hopper insert shall remain above the 25% capacity mark during all paving operations. In the event the MTV malfunctions during HMA placement operations, the Contractor shall continue placement of material until such time there is sufficient HMA placed to maintain traffic in a safe manner. The Contractor may continue placement of HMA until any additional mixture in transit has been placed. Paving Operations may resume only after the MTV has been repaired and is fully operational.
The MTV shall operate in the adjacent lane and not travel on the tack coat when the Engineer and Construction QC Manager determine that the project conditions and safety allow. In these instances, only the paver will be allowed on the tack coat.

(3) Bridge Loading Restrictions.

The MTV shall be subject to all bridge load restrictions. The Contractor shall verify the sufficiency of the current bridge ratings with the Engineer. In the event that the MTV exceeds the maximum allowable bridge load, the MTV shall be empty when crossing the bridge and shall be moved across without any other Contractor vehicles or equipment being on the bridge. The MTV shall be moved across the bridge in a travel lane and shall not be moved across the bridge on the shoulder. The MTV shall be moved at a speed no greater than 5 mph without any acceleration or deceleration.

B. Pavers.

Each HMA pavement course shall be placed with one or more pavers at the specified grade, cross-slope, and lift thicknesses.

(1) Paver Equipment Requirements.

Each paver shall be a self-contained, power propelled unit and shall produce a finished surface of smooth and uniform texture without segregating, tearing, shoving or gouging the HMA. The pavers shall be equipped with the following:

- A receiving hopper having sufficient capacity to ensure a uniform and continuous placement operation.
- Automatic feed controls, which are properly adjusted to maintain a uniform depth of material ahead of the screed.
- Automatic screed controls with sensors capable of sensing the transverse slope of the screed, and providing the automatic signals that operate the screed to maintain grade and transverse slope.
- An adjustable vibratory screed with full-width screw augers and heated for the full width of the screed.
- Capable of spreading and finishing HMA pavement courses in widths at least 12 in. more than the width of one travel lane.
- Capable of being operated at forward speeds to satisfactorily place the HMA.

(2) Paver Operations.

The Contractor shall ensure that the paver is loaded continuously to keep the placement operation moving. The volume of HMA in the paver receiving hopper shall remain above the paver tunnel during all paving operations. Proper practices shall be utilized to ensure that HMA is not dumped or spilled onto the prepared underlying surface in front of the paver by trucks unloading into the receiving hopper. Any material that falls in front of the paver shall be removed before the paver passes over it. The screed vibrator shall be operated at all times.

When the use of an MTV is required the paving operations shall be coordinated in such a manner as to allow the paver to operate at a consistent speed without stopping. If the Construction QC Manager or the Engineer determines that the paver excessively changes speed or stops, then
Massachusetts Department of Transportation – Highway Division
Standard Specifications for Highways and Bridges

II.120 2020 Edition

stoppage of the paving operation may be required until such time the Contractor is able to correct the deficiency.

C. Mobile Lighting for Milling and Paving Equipment.

Whenever paving operations are being conducted between the hours of sunset and sunrise, the Contractor shall provide mobile lighting system(s) attached to each piece of mobile paving equipment, including mechanical sweepers, material transfer devices, paver machines, and rollers, but shall not include trucks used to transport materials and/or personnel to the work zone or other vehicles that are continually moving in and out of the work zone.

Mobile lighting systems attached to paving equipment shall be in addition to work zone lighting requirements specified in Subsection 850: Traffic Controls for Construction and Maintenance Operations.

Lighting attached to each machine shall be capable of providing a minimum of 1 fc measured 60 ft in front of and behind the equipment. Lighting measurements shall be per Subsection 850: Traffic Controls for Construction and Maintenance Operations. Light fixtures shall be balloon-style or otherwise diffused to minimize glare. Flood lights without diffusers shall not be permitted.

No part of the mobile lighting system shall exceed a height 13 ft above the pavement except in areas with constrained vertical clearances where the height may further be limited by the Engineer.

Existing street or highway lighting shall not eliminate the requirement for the Contractor to provide lighting.

D. HMA Placement Inspection.

The HMA shall be free of identifiable material (physical) segregation or temperature related segregation. The HMA placed shall be a homogeneous mixture that is of uniform temperature. The Contractor shall inspect the mixture in the paver receiving hopper for material (physical) segregation. The Contractor will also inspect the uncompacted HMA mat behind the paver for longitudinal streaks, end-of-load segregation or other irregularities.

The Contractor shall also measure the temperature differential in the uncompacted mat behind the paver. Each HMA pavement course behind the paver shall be divided into longitudinal Sublots of 500 ft. The mat temperature differential of the uncompacted HMA shall be measured at a minimum of one location in each Sublot along a straight transverse line behind the paver at a minimum frequency of once per Sublot. The transverse line for mat temperature measurement shall be established at a distance within 10 ft behind the paver screed. Temperature measurements shall be obtained by the Contractor using an infrared pistol thermometer at 2-ft intervals along the transverse line across the width of the mat and recorded on NETTCP IRFs. The difference between the highest and lowest temperature measurement shall not exceed 20℉.

If the maximum mat temperature differential is exceeded, or if material segregation or irregularities in the HMA mat behind the paver are noted, the Contractor shall review the production, transportation, and placement operations and take corrective action. The Contractor shall make every effort to prevent or correct any irregularities in the HMA, such as changing pavers or using different and additional equipment. The Contractor’s QC Plan shall fully outline procedures
for inspecting the HMA mat during placement, identifying and troubleshooting material segregation or temperature related segregation, and implementing corrective action.

450.48: Hot Mix Asphalt Compaction

A. Compaction Equipment Requirements.

The Contractor shall employ compaction equipment as outlined in the approved QC Plan. Equipment used for compaction of HMA Base Courses, Intermediate Courses and Surface Courses may include steel wheeled rollers, vibratory rollers, oscillation rollers, or pneumatic-tired (rubber tired) rollers as determined appropriate by the Contractor for the particular mixture type being placed. The number and type of rollers used for breakdown, intermediate, and finish rolling shall be sufficient to achieve the target in-place density and specified course thickness.

B. Compaction Operations.

The rollers shall not crush the aggregate in the HMA mixture and shall be capable of reversing without shoving or tearing the mixture. Rollers shall not be permitted to stop on the mat except to reverse direction. Rollers may also stop on the mat to refill water when the Construction QC Manager and Engineer determine that the project conditions and safety do not allow for removing the roller from the pavement mat. In these instances, the Contractor shall ensure that the pavement is sufficiently cool to prevent the roller from leaving mat deficiencies. The Contractor shall outline in the QC Plan the proposed rolling sequence for each HMA pavement course to be placed. For HMA Category A Lots, the initial rolling pattern for each pavement course will be confirmed or adjusted during placement of the Control Strip in accordance with the requirements of 450.51: HMA Mix Design Verification and Control Strip Requirements, Part B. As the Lot placement progresses during the construction season, the rolling pattern shall be adjusted as necessary to achieve the specified HMA in-place density. The rolling pattern shall be noted in the Quality Control Daily Diary. If there is a major change to the rolling pattern, such as the addition or subtraction of a roller and the subsequent individual pavement mat quality characteristic test results fall below the Specification Limits, then a new Control Strip shall be performed.

C. Compaction of OGFC.

Rubber tire rollers will not be permitted on Open-Graded Friction Course (OGFC) mixtures. Vibratory and oscillatory rollers shall be operated in static mode. Initial rolling of OGFC should be accomplished with the breakdown roller within a short distance of the paver. Any subsequent rolling shall be accomplished without over-rolling the mixture. Breakdown and intermediate rolling of OGFC shall be completed before the material has cooled to 195°F.

D. Inspection & Testing of Compacted HMA

The compacted HMA pavement course shall be free of mat deficiencies listed below and shall meet the requirements for in-place density, thickness, and ride quality specified in 450.65: Quality Control Sampling and Testing Requirements, Part F. The Contractor shall inspect each Sublot of HMA throughout the compaction operation and shall further inspect the in-place HMA after Sublot completion and identify any areas of visible material (physical) segregation. The Contractor shall reject any in-place Sublot of HMA which is determined to be segregated through procedures established in the QC Plan. The Contractor will also test each Sublot for in-place density, thickness,
Mat deficiencies include, but are not limited to:

- Material (physical) segregation
- Wavy surface
- Tearing of the mat
- Non-uniform mat texture
- Screed marks
- Poor pre-compaction
- Poor mix compaction
- Poor Joints
- Transverse (check) cracking
- Mat shoving under roller
- Bleeding or fat spots in the mat
- Roller marks

450.49: Hot Mix Asphalt Joints

The Contractor shall plan the sequence of HMA placement to minimize transverse and longitudinal joints in each pavement course. Paving operations should employ long pulls or tandem pavers, whenever practicable, to reduce the number and length of joints. Finished joint surfaces, including joints in the roadway and bridge joints, shall be uniform and true to the required grade and cross-slope without deviations exceeding ¼ in., both transversely and parallel to the joint, when measured with a 10-ft standard straightedge.

A. Transverse Joints.

Where the start or end of a new HMA pavement course meets existing HMA pavement, the existing pavement shall be sawcut to form a transverse butt joint for the full depth of all new pavement courses. The sawcut shall follow a straight line and provide a clean and sound vertical face. Material at any intermediate transverse joint resulting from suspension of placement of a new HMA pavement course shall also be sawcut and removed to provide a clean vertical face before continuing placement of the pavement course.

When traffic is to be carried over any transverse joint before completion of an HMA pavement course, the Contractor shall provide a temporary tapered joint with a maximum 12:1 slope. The HMA mixture forming the taper shall be placed on heavy wrapping paper or other suitable material to serve as a bond breaker. The temporary tapered joint shall be sawcut to reveal the full depth of the pavement course and form a transverse butt joint with a clean vertical face. The temporary tapered joint material shall be completely removed before resuming placement of the HMA pavement course.

Prior to the start of HMA placement at each transverse joint, the vertical joint face shall be thoroughly coated with a hot poured joint sealer meeting the requirements of 450.30: General. The asphalt sealer temperature and application rate for each pavement course shall be established in the Contractor’s QC Plan and shall follow the Manufacturer’s recommendation. No reheating of the joint face shall be permitted. Equipment used to apply the hot poured joint sealer shall be capable of maintaining the sealer at the established temperature and application rate sufficient to uniformly coat the vertical joint face without runoff or accumulation of the asphalt sealer.
B. Longitudinal Joints.

All longitudinal joints in HMA Surface Courses shall be located on the roadway centerline or on a lane line or edge line of the traveled way. The longitudinal joints in each pavement course below the Surface Course shall be successively offset from the joint in the Surface Course by no more than 12 in. and no less than 6 in. Joints shall be straight and parallel to the lane line of the roadway.

(1) Vertical Joints.

When an HMA pavement course is placed using single paver pulls, the Contractor shall employ suitable equipment to confine the longitudinal edge of the HMA mixture to establish an edge that is near vertical. For all HMA Surface Course mixtures placed, when the Contractor’s placement operations do not provide a confined and near vertical edge, the longitudinal edge of the Surface Course shall be sawcut full depth and removed to provide a clean vertical face before placement of the adjacent course of HMA.

All longitudinal joint edges of HMA Surface Courses, regardless of whether the joint edge is required to be sawcut, shall be treated prior to placing the adjacent pull of HMA. The vertical joint shall be coated with a hot poured joint sealer meeting the requirements of 450.30: General. The asphalt sealer shall be applied at a sufficient temperature and application rate for each pavement course sufficient to uniformly coat the vertical joint face without runoff or accumulation of the sealer. The asphalt sealer temperature and application rate shall be established in the Contractor’s QC Plan and shall follow the Manufacturer’s recommendation. No reheating of the joint shall be permitted.

When placing an HMA Surface Course with pavers in tandem, the use of the hot poured joint sealer will be omitted, provided the temperature of the mixture at the longitudinal joint does not fall below 200°F prior to the placement of the adjacent mat.

When the longitudinal edge of any HMA pavement course is placed against an adjoining edge such as existing pavement, curb, gutter, drainage or utility structure, or any metal surface, a tack coat shall be uniformly applied to the entire vertical joint surface in accordance with 450.43: Preparation of Underlying Surface prior to placement of the HMA.

(2) Wedge Joints.

The Contractor may use a longitudinal wedge joint when placing HMA pavement courses at a thickness of 1.25 in. to 3.75 in. as shown in Figure 450.49-1 below. In instances where the joint will not be subjected to traffic prior to the adjacent pass being placed the maximum thickness may be increased to 5 in.

When a wedge joint is proposed for use, the joint detail shall be included in the Contractor’s QC Plan. The wedge joint shall include a notched vertical edge with a minimum depth equal to the nominal maximum aggregate size (NMAS) at the top and bottom of the wedge. The sloped surface of the wedge joint shall not exceed a 6:1 slope. The width of the wedge shall not exceed 6 times the pavement depth. The Contractor shall use a commercially manufactured wedge joint attachment to the paver, or other attachment approved by the Engineer, to form the wedge joint.

Hot poured joint sealer shall not be applied to wedge joints. A tack coat shall be applied to the entire surface of the wedge joint in accordance with 450.43: Preparation of Underlying Surface prior to placement of the adjacent pull of HMA.
C. Inspection & Testing of HMA Joints.

The hot poured joint sealer temperature and application rate shall be measured and properly recorded by the Contractor on NETTCP IRFs a minimum of once per transverse joint and once per 1,000 ft of longitudinal joint. If the temperature or application rate is determined to not be in conformance with the requirements established in the Contractor’s QC Plan, the Contractor shall make appropriate adjustments to the asphalt sealer application operations.

The placement and compaction of HMA at each transverse joint or longitudinal joint shall provide a tight bond between the existing pavement and the new pavement course. The Contractor shall visually inspect each transverse joint and longitudinal joint throughout the placement and compaction operations and shall further inspect the joints after Sublot completion and identify any bumps, depressions, openings, or other visible defects. The Contractor shall reject any in-place Sublot of HMA which is determined to have defective joints through procedures established in the QC Plan.

Finished joint surfaces, including joints in the roadway and bridge joints, shall be uniform and true to the required grade and cross-slope without deviations exceeding ¼ in., both transversely and parallel to the joint, when measured with a 10-ft standard straightedge. The in-place density of the completed HMA pavement course, within 1 ft of either side of the finished joint, shall be not less than 90% of the maximum theoretical density of the mixture as determined by AASHTO T 209 (Method A). The Contractor will measure the surface smoothness and test the in-place density of each transverse joint and longitudinal joint of each Sublot of HMA as specified in 450.65: Quality Control Sampling and Testing Requirements, Part F. All joint inspection and testing data shall be recorded on NETTCP IRFs and TRFs.

450.50: HMA Pavement on Bridges

A. Bridge Course Mixture Requirements.

HMA pavement courses for bridge decks shall consist of a Bridge Protective Course, placed first, followed by a Bridge Surface Course. The maximum amount of Recycled Asphalt Pavement (RAP) used in HMA pavement courses for bridge decks shall not exceed 15%. All Bridge Protective Course mixtures shall be treated with an approved anti-stripping compound as specified under Subsection 450.30: General. The addition of anti-strip incorporated in the HMA mixture shall be in accordance with the anti-strip Manufacturer’s recommendation.
The Bridge Protective Course and Bridge Surface Course shall be placed only after all curbing and edging, when included in the work, are in place. The Bridge Protective Course shall be placed within 24 hours after the membrane waterproofing has been placed. No vehicular traffic shall be permitted over any bare membrane waterproofing. Equipment used for placement and compaction of the Bridge Protective Course and Bridge Surface Course shall be sufficient to place the HMA mixture at the required grade, cross-slope, thickness, and in-place density without damaging the underlying membrane waterproofing. Rollers will not be allowed to use the vibratory function when compacting the mat. Rollers operated in oscillatory mode may be permitted.

B. Inspection & Testing of Bridge Course Mixtures.

The Contractor shall inspect and test each Sublot of Bridge Protective Course HMA mixture and Bridge Surface Course HMA mixture in accordance with the requirements for mixture temperature, mat temperature, segregation, and joint quality as specified in 450.43: Preparation of Underlying Surface through 450.52: Opening to Traffic. QC sampling and testing of each Sublot shall be performed for all HMA loose mix Quality Characteristics specified in 450.65: Quality Control Sampling and Testing Requirements, Part F. The in-place density of the Bridge Protective Course and Bridge Surface Course shall be randomly tested using a calibrated density gauge and the test data recorded on NETTCP TRFs. The in-place density of the Bridge Protective Course and Bridge Surface Course shall be not less than 90% of the maximum theoretical density of the mixture as determined by AASHTO T 209 Method A and tested per AASHTO T 343 or T 355. Cores shall only be allowed for Dispute Resolution. When the HMA Bridge Surface Course is placed in conjunction with mainline pavement, QC testing for ride quality shall be performed as specified in 450.65: Quality Control Sampling and Testing Requirements, Part F(11).

450.51: HMA Mix Design Verification and Control Strip Requirements

For all pavement courses with HMA Lots falling under Lot Category A (Large Lots), the HMA mix design Verification and Control Strip procedures outlined below shall apply.

A. Laboratory Verification of HMA Mix Design.

The Contractor shall develop and submit a Laboratory Trial Mix Formula (LTMF) for each HMA mixture type, which is to be proposed as a Job Mix Formula (JMF), a minimum of 60 days prior to the start of HMA production in accordance with the requirements of 450.30: General and MassDOT’s Asphalt Mix Design approval process. The Contractor shall not proceed to HMA production for the Control Strip as outlined below until the LTMF is verified by the Department.

B. HMA Control Strip.

For all HMA pavement courses with Lots falling under Category A (Large Lots), with the exception of Leveling Courses, the Contractor shall produce and place a Control Strip Lot on the first day of HMA production.

The Control Strip will be used to verify that the HMA can be produced per the LTMF, to establish compaction patterns, and to verify that the equipment and processes for lay-down and compaction are capable of providing the HMA pavement course in conformance with these specifications. The Control Strip Lot shall be placed in the same manner planned for the full production Lot. This shall include paving with the same equipment and personnel, at the same speed, and using the same number of rollers as will be used during full production. If the paving operation is significantly
changed after the Control Strip then the Engineer may require that another Control Strip be performed.

The Control Strip Lot shall consist of a minimum of 600 tons of HMA, but not more than 1,800 tons. Each Control Strip will be divided into 3 equal Sublots. The Contractor and the Department will both perform inspection, sampling, and testing on the Control Strip and evaluate the corresponding data as outlined below.

The Engineer may waive the requirement for a Control Strip in its entirety or for evaluation of the plant production Quality Characteristics, if all of the following requirements are met:

- The Contractor has placed a passing (i.e. Verified) Control Strip in the same calendar year.
- The Verified Control Strip was for an HMA pavement course with the same LTMF produced by the same HMA plant.
- The Verified Control Strip was for a pavement course with the same lift thickness (±15%).
- The Contractor’s most recent Category A Lot represented by the Verified Control Strip has a Quality Level of 90 PWL or better (for each Quality Characteristic) in the same calendar year.

(1) Control Strip Inspection.

The Contractor’s QC personnel shall perform inspection of each Control Strip Sublot at both the HMA production facility and at the site of HMA field placement. The specific items to be inspected for the Control Strip shall include the four primary inspection components (Equipment, Materials, Environmental Conditions, Workmanship) in accordance with the requirements of Table 450.64-3, Table 450.64-4, and as specified in the Contractor’s approved QC Plan. The Department will also inspect each Control Strip Sublot for the inspection components of Materials and Workmanship.

(2) Control Strip Sampling and Testing.

The Contractor and the Department shall independently sample and test the Control Strip Lot for the Quality Characteristics identified in Table 450.51-1. The Contractor and the Department shall independently sample and test each Sublot produced and placed. Each Contractor QC sample and each Agency Acceptance sample shall be randomly obtained from each Sublot in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part A and the prescribed sampling protocols for each Quality Characteristic as outlined in 450.65: Quality Control Sampling and Testing Requirements, Part F. Split samples shall be retained for each Sublot by both the Contractor and the Department in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part D.

(3) Evaluation of Control Strip Inspection Data.

The Contractor and the Department shall each evaluate their respective Control Strip inspection data against the requirements for Materials and Workmanship specified in 450.43: Preparation of Underlying Surface through 450.52: Opening to Traffic.

(4) Evaluation of Control Strip Sampling and Testing Data.

The Contractor and the Department shall each evaluate their respective individual Sublot test results against the Control Strip Quality Limits in Table 450.51-1. The Contractor and the Department shall also evaluate the Control Strip Lot Quality Level (represented by PWL) using the
Specification Limits in Table 450.51-1 for those Quality Characteristics subject to Quality Level Analysis (QLA). The Contractor’s QC test data shall be subject to Validation against the Agency’s Acceptance test data in accordance with 450.77: Lot Acceptance Determination Based on Testing Data and, if Validated, shall be combined with the Acceptance test data to determine the Lot Quality. The Control Strip Lot Quality Level must be 70 PWL or greater.

Table 450.51-1: Control Strip Quality Limits

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Target</th>
<th>Specification Limits LSL</th>
<th>Specification Limits USL</th>
<th>Engineering Limits LEL</th>
<th>Engineering Limits UEL</th>
<th>Acceptance Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG Asphalt Binder Grading</td>
<td>Per Binder Grade specified</td>
<td>N/A</td>
<td>N/A</td>
<td>Per M3.01.0: Performance Graded Asphalt Binder</td>
<td>N/A</td>
<td>≥70 PWL</td>
</tr>
<tr>
<td>PG Asphalt Binder Content</td>
<td>Per LTMF</td>
<td>Target – 0.3%</td>
<td>Target + 0.3%</td>
<td>Target – 0.4%</td>
<td>Target + 0.4%</td>
<td>≥70 PWL</td>
</tr>
<tr>
<td>Volumetrics: Air Voids</td>
<td>4%</td>
<td>2.7%</td>
<td>5.3%</td>
<td>2%</td>
<td>6%</td>
<td>≥70 PWL</td>
</tr>
<tr>
<td>Combined Gradation: Passing #4 and Larger Sieves</td>
<td>Per LTMF</td>
<td>N/A</td>
<td>N/A</td>
<td>Target – 7%</td>
<td>Target + 7%</td>
<td>N/A</td>
</tr>
<tr>
<td>Combined Gradation: Passing #8 Sieve</td>
<td>Per LTMF</td>
<td>N/A</td>
<td>N/A</td>
<td>Target – 5%</td>
<td>Target + 5%</td>
<td>N/A</td>
</tr>
<tr>
<td>Combined Gradation: Passing #16 to #50 Sieve</td>
<td>Per LTMF</td>
<td>N/A</td>
<td>N/A</td>
<td>Target – 4%</td>
<td>Target + 4%</td>
<td>N/A</td>
</tr>
<tr>
<td>Combined Gradation: Passing #100 Sieve</td>
<td>Per LTMF</td>
<td>N/A</td>
<td>N/A</td>
<td>Target – 3%</td>
<td>Target + 3%</td>
<td>N/A</td>
</tr>
<tr>
<td>Combined Gradation: Passing #200 Sieve</td>
<td>Per LTMF</td>
<td>N/A</td>
<td>N/A</td>
<td>Target – 1.5%</td>
<td>Target + 1.5%</td>
<td>N/A</td>
</tr>
<tr>
<td>In-Place HMA Mat Density (Cores)</td>
<td>95% of G_{mm}</td>
<td>92.5% of G_{mm}</td>
<td>97.5% of G_{mm}</td>
<td>91.5% of G_{mm}</td>
<td>98.5% of G_{mm}</td>
<td>≥70 PWL</td>
</tr>
<tr>
<td>Thickness: (All Courses 1 in. or greater) (See Note 1)</td>
<td>Per Plans</td>
<td>-20% of Target Thickness</td>
<td>+20% of Target Thickness</td>
<td>-30% of Target Thickness</td>
<td>+30% of Target Thickness</td>
<td>≥70 PWL</td>
</tr>
<tr>
<td>Ride Quality: Posted Speed Limit ≥55 mph (See Note 1)</td>
<td>50 in./mi</td>
<td>N/A</td>
<td>70 in./mi</td>
<td>N/A</td>
<td>80 in./mi</td>
<td>≥70 PWL</td>
</tr>
<tr>
<td>Ride Quality: Posted Speed Limit ≥40 mph, but <55 mph (See Note 1)</td>
<td>70 in./mi</td>
<td>N/A</td>
<td>100 in./mi</td>
<td>N/A</td>
<td>110 in./mi</td>
<td>>70 PWL</td>
</tr>
</tbody>
</table>

Note 1: To be evaluated for applicable pavement courses subject to testing per 450.65: Quality Control Sampling and Testing Requirements, Part F. The Quality Limits for Ride in this table shall only apply to Control Strips for the final pavement course (HMA Surface Course or Friction Course). For pavement courses below the final pavement course that are subject to Ride Quality testing, the Mean IRI for the Control Strip Sublots shall be less than or equal to the Maximum Mean IRI values in Table 450.65-4.
(5) Verification of Control Strip Lot and LTMF.

In order for a Control Strip Lot and corresponding LTMF to be Verified, the following criteria must be met:

a) All Attributes inspected for each Sublot must meet the specification requirements in Table 450.73-3.

b) All individual Sublot test results for the Quality Characteristics tested on the Control Strip must be within the Engineering Limits in Table 450.51-1.

c) If the evaluation of all inspection data and testing data for the Control Strip indicates that the individual Sublots are in conformance with the requirements outlined in 450.41: Control of Grade and Cross-Section, Part B, paragraphs (3) and (4) above and the Lot Quality for each applicable Quality Characteristic in Table 450.51-1 is ≥70 PWL, the Control Strip Lot and LTMF shall be declared “Verified.” In such event, the LTMF shall become the JMF for the Lot and the Contractor may proceed with production and placement of the first HMA Lot.

d) If the Control Strip is not Verified, the Contractor shall reassess the LTMF, the production process, and the placement process to determine the apparent cause(s) of non-conformance. The Contractor must submit proposed adjustment(s) to the LTMF and/or the production process and/or placement process. If adjustments to the LTMF are “major” (as defined in Table 1 of AASHTO R 42), the Contractor will be required to submit a new LTMF for laboratory verification by the Engineer per the requirements of 450.51: HMA Mix Design Verification and Control Strip Requirements, Paragraph A. If proposed adjustment(s) are accepted by the Engineer, the Contractor may proceed with a subsequent Control Strip.

 i. If a 2nd or any subsequent Control Strip does not pass all of the inspection and testing requirements, the Contractor must submit proposed adjustment(s) to the LTMF and/or the production process and/or placement process.

 ii. If the computed PWL for any Quality Characteristic, with the exception of thickness, is <60 PWL, the Control Strip Lot will be determined rejected and shall be removed. If the mean thickness of the Lot is greater than the target, it may remain in place, but payment will be based upon the HMA tonnage calculated at the target thickness.

 iii. For any Control Strip that is not Verified, the Contractor shall prepare a Corrective Action Plan for the nonconforming Control Strip Lot. The corrective method(s) proposed by the Contractor shall be subject to the approval of the Department and shall be performed at the Contractor's expense.

 iv. When a Control Strip is not Verified, all subsequent Control Strips shall be tested for all applicable Quality Characteristics. For these subsequent Control Strips, no waivers will be allowed for evaluation of either plant production or field Quality Characteristics.

(6) Acceptance and Payment of Control Strips.

a. 1st and 2nd Control Strip

For each Control Strip Lot that has been Verified, payment shall be determined for each individual Quality Characteristic in accordance with the pay adjustment provisions of 450.92: Pay Adjustment.
i. If the Lot Quality Level for an individual Quality Characteristic is 90 PWL, payment for the Quality Characteristic shall be 100% of the Contractor’s bid price for the pay item quantity placed on the Control Strip.

ii. If the Lot Quality Level for an individual Quality Characteristic is >90 PWL, payment for the Quality Characteristic shall be an incentive amount determined in accordance with 450.92: Pay Adjustment.

iii. If the Lot Quality Level for an individual Quality Characteristic is ≥60 PWL, but <90 PWL, payment for the Quality Characteristic shall be a disincentive amount determined in accordance with 450.92: Pay Adjustment.

iv. If the computed Quality Level for an individual Quality Characteristic is <60 PWL, the Control Strip Lot will be determined rejected and removed in accordance with 450.51: HMA Mix Design Verification and Control Strip Requirements, Paragraph B(5) and shall receive no payment.

b. 3rd Control Strip

If a 3rd Control Strip Lot is placed and is Verified, payment shall be limited to a maximum of 75% of the Contractor’s bid price for the entire pay item quantity placed on the Control Strip, regardless of the actual calculated Quality Level for the Lot.

If a 3rd Control Strip Lot is placed and is not Verified, payment shall be limited to a maximum of 70% of the Contractor’s bid price for the entire pay item quantity placed on the Control Strip, regardless of the actual calculated Quality Level for the Lot.

If the computed Quality Level for an individual Quality Characteristic is <60 PWL, the Control Strip Lot will be determined rejected and removed in accordance with 450.51: HMA Mix Design Verification and Control Strip Requirements, Part B(5), and shall receive no payment.

c. 4th or Subsequent Control Strip

If a 4th or subsequent Control Strip Lot is placed and is Verified, payment shall be limited to a maximum of 65% of the Contractor’s bid price for the entire pay item quantity placed on the Control Strip, regardless of the actual calculated Quality Level for the Lot.

If a 4th or subsequent Control Strip Lot is placed and is not Verified, payment shall be limited to a maximum of 60% of the Contractor’s bid price for the entire pay item quantity placed on the Control Strip, regardless of the actual calculated Quality Level for the Lot.

If the computed Quality Level for an individual Quality Characteristic is <60 PWL, the Control Strip Lot will be determined rejected and removed in accordance with 450.51: HMA Mix Design Verification and Control Strip Requirements, Part B(5), and shall receive no payment.

450.52: Opening to Traffic

No vehicular traffic or loads shall be permitted on the newly completed HMA pavement until adequate stability has been attained and the material has cooled sufficiently to a temperature of 140°F or less as indicated by an infrared thermometer. The Contractor shall clearly outline, in the QC Plan, the specific criteria related to opening new pavement to traffic. The final determination to open the pavement to traffic shall be made by the Engineer and the Construction QC Manager.
HMA cores shall be obtained by the Contractor for all Sublots placed each day in accordance with the approved QC Plan prior to opening to traffic. At the discretion of the Engineer, based on climactic or other conditions, obtaining of cores may be delayed for a period up to, but not to exceed, 48 hours.

In the event of force majeure resulting from direction by the Engineer, the Contractor shall document the event and may submit a claim in accordance with current Department procedures. In such event, the Engineer and Construction QC Manager will determine if the affected Sublots must be isolated from the relevant HMA Lot and the HMA quality be evaluated as a separate Lot.

CONTRACTOR QUALITY CONTROL

450.60: General

The Contractor shall provide a Quality Control System (QC System) and, when required, a QC Plan, adequate to ensure that all materials and workmanship meet the required quality levels for each specified Quality Characteristic. The Contractor shall provide qualified QC personnel and QC laboratory facilities and perform Quality Control inspection, sampling, testing, data analysis, corrective action (when necessary), and documentation as outlined further below.

450.61: Contractor Quality Control Plan

For projects with HMA Category A Lots (Large Lot) or Category B Lots (Small Lot), the Contractor shall provide and maintain a detailed Quality Control Plan (QC Plan). If all HMA Lots fall under Lot Category C (Minor Lot) then a QC Plan is not required. However, if any Lots on the project fall under Lot Category A or Category B, then any Category C Lots must be addressed in the QC Plan. The QC Plan should sufficiently document the QC processes of all Contractor parties (i.e. Prime Contractor, Subcontractors, Producers) performing work required under this specification. The QC Plan is not intended to be a generic document, but rather must be project specific. If a QC Plan is not required, it is still the responsibility of the Contractor to provide to the Engineer any information that is designated as “Per QC Plan” as found in this specification.

A. QC Plan Submittal Requirements.

At the pre-construction meeting, the Contractor shall be prepared to discuss the QC Plan. Information to be discussed shall include the proposed QC Plan submittal date, QC organization, and sources of materials. The Contractor shall submit one hard copy and one electronic copy of the QC Plan to the Engineer for approval not less than 30 days prior to the start of any work activities related to HMA pavement construction (including preparation of underlying surface) addressed in 450.43: Preparation of Underlying Surface through 450.52: Opening to Traffic. The Contractor shall not start work on the subject work items without an approved QC Plan.

B. QC Plan Format and Contents.

The QC Plan shall be structured to follow the format and section headings outlined in the MassDOT Model QC Plan. The pages of the QC Plan shall be sequentially numbered. The QC Plan shall address, in sufficient detail, the specific information requested under each section and subsection contained in the MassDOT Model QC Plan.
C. QC Plan Approval and Modifications.

Approval of the QC Plan will be based on the inclusion of the required information. Revisions to the QC Plan may be required prior to approval for any part of the QC Plan that is determined by the Department to be insufficient. Approval of the QC Plan does not imply any warranty by the Engineer that the QC Plan will result in completed work that complies with the specifications. It remains the responsibility of the Contractor to demonstrate such compliance. The Contractor may modify the QC Plan as work progresses when circumstances necessitate changes in Quality Control personnel, laboratories, or procedures. In such case, the Contractor shall submit an amended QC Plan to the Department for approval a minimum of three calendar days prior to the proposed changes being implemented.

450.62: Quality Control Personnel Requirements

The Contractor’s Quality Control organization shall, at a minimum, consist of the personnel outlined below that meet the described minimum qualifications. Every effort should be made to maintain consistency in the QC organization, however substitution of qualified personnel shall be allowed. When circumstances necessitate substitution of QC personnel not originally listed in the approved QC Plan, the Contractor shall submit an amended QC Plan for approval in accordance with 450.61: Contractor Quality Control Plan, Part C.

A. Construction QC Manager.

The Contractor’s QC System and QC Plan shall be administered by a qualified project assigned Construction Quality Control Manager (QC Manager). The QC Manager must be a full-time employee of the Contractor or a Quality Control consultant engaged by the Contractor. The QC Manager (or their assistant in the QC Manager’s absence) shall have full authority to institute any and all actions necessary for the successful implementation of this specification and the QC Plan. The QC Manager (or their assistant in the QC Manager’s absence) shall be available to communicate with the Engineer at all times.

Principal responsibilities of the QC Manager shall include preparation and submittal of the Contractor’s QC Plan, managing the activities of all QC personnel, communicating on quality issues within the Contractor’s organization, and ensuring that all requirements outlined in the approved QC Plan are met.

The QC Manager shall be certified by the NETTCP as a Quality Assurance Technologist. For projects having only HMA Category C Lots, the Contractor may submit alternate qualifications for the QC Manager acceptable to the Department.

B. Production Facilities QC Technician(s).

All Contractor QC sampling, testing, and inspection conducted at the HMA production facility shall be performed by qualified Production Facility Quality Control Technicians (Plant QCTs). The Contractor shall provide a sufficient number of Plant QCTs to adequately implement the minimum QC requirements contained in this specification and as outlined in the approved QC Plan. A minimum of one qualified Plant QCT shall be present at each production facility location. HMA will not be accepted by the Department unless the Plant QCT is physically present at the plant during production and correctly performs the required QC inspection, testing and documentation.
All Plant QCTs shall be certified as an HMA Plant Technician by the NETTCP.

C. Laboratory Quality Control Technician(s).

Any QC testing that is performed at off-site laboratories (i.e. other than at the production facility or field site) shall be performed by qualified Laboratory Quality Control Technicians (Laboratory QCTs). The Contractor shall provide a sufficient number of Laboratory QCTs to adequately implement the minimum QC requirements contained in this specification and as outlined in the approved QC Plan.

All Laboratory QCTs shall be certified as a HMA Plant Technician by the NETTCP.

D. Field Quality Control Technician(s).

All Contractor QC sampling, testing, and inspection conducted at the HMA field placement site shall be performed by qualified Field Quality Control Technicians (Field QCTs). The Contractor shall provide a sufficient number of Field QCTs to adequately implement the minimum QC requirements contained in this specification and as outlined in the approved QC Plan. A minimum of one qualified Field QCT will be present at each field placement site. HMA will not be accepted by the Department unless the Field QCTs is physically present at the site during pre-placement and placement operations and correctly performs the required QC inspection, testing and documentation.

All Field QCTs shall be certified as a HMA Paving Inspector as certified by the NETTCP.

450.63: Quality Control Laboratory Facility Requirements

All Contractor QC testing shall be performed in laboratories qualified through the NETTCP Laboratory Qualification Program (LQP) or accredited through the AASHTO Accreditation Program (AAP). The QC laboratory shall conform to 450.30: General.

450.64: Quality Control Inspection

The Contractor shall perform QC inspection of all work items addressed under this specification. Inspection activities during HMA production and placement may be performed by qualified Production personnel (e.g. Skilled Laborers, Foremen, and Superintendents). However, the Contractor’s QC personnel shall have overall responsibility for QC inspection. The Contractor shall not rely on the results of Department Acceptance inspection for Quality Control purposes. The Engineer shall be provided the opportunity to monitor and witness all QC inspection.

QC inspection activities must address the following four primary components:

1. Equipment
2. Materials
3. Environmental Conditions
4. Workmanship

The minimum frequency of QC inspection activity shall be in accordance with the requirements below and as outlined in the approved QC Plan. The results and findings of QC inspection shall be documented on NETTCP Inspection Report Forms (IRFs).
A. QC Inspection for Preparation of Underlying Surface.

The Contractor's personnel will perform QC inspection during preparation of the underlying surface in accordance with the requirements of 450.43: Preparation of Underlying Surface. The minimum items to be inspected shall be as outlined in Table 450.64-1 and Table 450.64-2. The Contractor shall identify in the QC Plan the specific inspection activities necessary to ensure the quality of the work, including any additional inspection activities not specifically listed in Table 450.64-1 and Table 450.64-2.

<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Inspection Attribute</th>
<th>Minimum Inspection Frequency</th>
<th>Point of Inspection</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>As specified in QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
</tr>
<tr>
<td>Materials</td>
<td>Aggregates & PG Binder (Correct Type)</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check & Manufacturer COC</td>
</tr>
<tr>
<td></td>
<td>HMA Mixture (Correct Type)</td>
<td>Per QC Plan</td>
<td>From Haul Vehicle at Patching Site</td>
<td>Visual Check & Delivery Ticket</td>
</tr>
<tr>
<td></td>
<td>Joint Sealer (Correct Type)</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Check Manufacturer COC</td>
</tr>
<tr>
<td></td>
<td>Temperature of HMA Mix</td>
<td>4 per Day (See Note 1)</td>
<td>From Haul Vehicle at Patching Site</td>
<td>Check Measurement</td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td>Underlying Surface Soundness & Moisture</td>
<td>Per QC Plan</td>
<td>Underlying Surface</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Temperature of Air & Underlying Surface</td>
<td>1 per Day (See Note 2)</td>
<td>At Patching Site</td>
<td>Check Measurement</td>
</tr>
<tr>
<td>Workmanship</td>
<td>Sawcut Limit Vertical Face</td>
<td>Per QC Plan</td>
<td>Sawcut Limits</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Joint Sealer Application Rate</td>
<td>Per QC Plan</td>
<td>Sawcut Limits</td>
<td>Check Measurement</td>
</tr>
<tr>
<td></td>
<td>HMA Lift Thickness</td>
<td>Per QC Plan</td>
<td>HMA Lift</td>
<td>Check Measurement</td>
</tr>
<tr>
<td></td>
<td>Cross-Slope & Profile</td>
<td>Per QC Plan</td>
<td>Compacted HMA</td>
<td>Check Measurement</td>
</tr>
</tbody>
</table>

Note 1: The initial temperature measurements will be taken from haul vehicles on the first or second load. Note 2: At a minimum, the temperature measurements of the air and underlying surface shall be obtained prior to starting the HMA patching placement.
Table 450.64-2: Minimum QC Inspection of Tack Coat Operations

<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Inspection Attribute</th>
<th>Minimum Inspection Frequency</th>
<th>Point of Inspection</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>As specified in QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
</tr>
<tr>
<td>Materials</td>
<td>Asphalt Emulsion (Correct Type)</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Check Manufacturer COC</td>
</tr>
<tr>
<td></td>
<td>Asphalt Emulsion Temperature</td>
<td>(See Note 1)</td>
<td>From Tack Distributor System</td>
<td>Check Measurement</td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td>Underlying Surface Cleanliness & Moisture</td>
<td>Per QC Plan</td>
<td>Underlying Surface</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Temperature of Air & Underlying Surface</td>
<td>1 per Day (See Note 2)</td>
<td>At Paving Site</td>
<td>Check Measurement</td>
</tr>
<tr>
<td>Workmanship</td>
<td>Asphalt Emulsion Application Rate</td>
<td>(See Note 1)</td>
<td>From Tack Distributor System</td>
<td>Check Measurement</td>
</tr>
</tbody>
</table>

Note 1: The Asphalt Emulsion Temperature and Application Rate shall be checked as follows:
- After application of the first 1,000 lane-feet per HMA pavement course.
- After application of the next 1,500 lane-feet per HMA pavement course.
- After application of the next 2,500 lane-feet per HMA pavement course.
- Thereafter, a minimum of once per 5,000 lane-feet each day.

Note 2: As a minimum, the temperature measurements of the air and underlying surface shall be obtained prior to starting the tack coat placement.

B. QC Inspection for Production & Placement of HMA Lots.

The Contractor's QC personnel will perform QC inspection at both the HMA production facility and at the site of HMA field placement to ensure that the production and placement processes are providing work conforming to the contract requirements. The minimum items to be inspected for each HMA Lot shall be in accordance with the requirements of 450.43: Preparation of Underlying Surface through 450.52: Opening to Traffic and as outlined in Table 450.8 and Table 450.9. The Contractor shall identify in the QC Plan the specific inspection activities necessary to ensure the quality of the work, including any additional inspection activities not specifically listed in Table 450.8 and Table 450.9.

Wheel Path Deviations.

A wheel path is defined as 3 ft from and parallel to each longitudinal edge of a travel lane. Each wheel path for all HMA pavement course Lots shall be inspected for Wheel Path Deviations (high points or low points). All Transverse joints, Bridge joints, and structures that are within 3 ft of a wheel path shall be inspected for Wheel Path Deviations.

Inspection shall be performed using a 10-ft standard straightedge in the longitudinal direction on each wheel path. The Sublot size and minimum frequency of QC inspection for Wheel Path Deviations shall be as specified in Table 450.64-4, and in the approved Contractor QC Plan. Each random inspection location shall be established by determining a randomly selected distance along
the wheel path in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part A. Additional selective QC inspection for Wheel Path Deviations within each Sublot of compacted HMA pavement courses shall be as determined necessary by the Field QCT and as specified in the Contractor's approved QC Plan.

The variation from the edge of the 10-ft straightedge to the top of the wheel path surface between any two contact points in the wheel path shall not exceed ¼ in. The Contractor shall correct any location in a pavement course wheel path not meeting this requirement. The corrective method(s) proposed by the Contractor shall be subject to the approval of the Engineer and shall be performed at the Contractor's expense. The Contractor shall re-inspect any Sublots where corrections are made and provide the Engineer with a copy of the inspection data for the corrected Sublots.
Table 450.64-3: Minimum QC Inspection at HMA Production Facility

<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Inspection Attribute</th>
<th>Minimum Inspection Frequency</th>
<th>Point of Inspection</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>As specified in QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
</tr>
<tr>
<td>Materials</td>
<td>PG Binder (Correct Type)</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check & Manufacturer COC</td>
</tr>
<tr>
<td></td>
<td>Aggregates (Correct Type)</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>RAP</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>MAS</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check & Manufacturer COC</td>
</tr>
<tr>
<td>Release Agent</td>
<td>Per QC Plan</td>
<td>Haul Vehicle Bed at Plant</td>
<td>Check QCML & Visual Check & Manufacturer COC</td>
<td></td>
</tr>
<tr>
<td>Temperature of HMA Mix at Plant</td>
<td>4 per Day (See Note 1)</td>
<td>From Haul Vehicle at Plant</td>
<td>Check Measurement</td>
<td></td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td>Stockpile Moisture</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Air Temperature & Precipitation Forecast</td>
<td>1 per Day (See Note 2)</td>
<td>HMA Production Facility</td>
<td>Check Measurement</td>
</tr>
<tr>
<td>Workmanship</td>
<td>Uncoated Mixture</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Excess Blue Smoke or Moisture</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Burnt Mix</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Physical Segregation</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check</td>
</tr>
</tbody>
</table>

Note 1: The initial temperature measurements shall be taken from the first or second load.
Note 2: As a minimum, the air temperature measurements and precipitation forecast shall obtained prior to starting the HMA Plant operation.
<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Inspection Attribute</th>
<th>Minimum Inspection Frequency</th>
<th>Point of Inspection</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>As specified in QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
</tr>
<tr>
<td>Materials</td>
<td>Rubberized Asphalt Sealant (Correct Type)</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Check Manufacturer COC</td>
</tr>
<tr>
<td>Temperature of Delivered HMA Mix</td>
<td>4 per Day (See Note 1)</td>
<td>From Haul Vehicle or Paver Hopper</td>
<td>Check Measurement</td>
<td></td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td>Underlying Surface Soundness & Moisture</td>
<td>Per QC Plan</td>
<td>Underlying Surface</td>
<td>Visual Check</td>
</tr>
<tr>
<td>Temperature of Air & Underlying Surface</td>
<td>1 per Day (See Note 2)</td>
<td>At Paving Site</td>
<td>Check Measurement</td>
<td></td>
</tr>
<tr>
<td>Workmanship</td>
<td>Joint Location & Alignment</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Visual Check</td>
</tr>
<tr>
<td>Sawcut Joint Vertical Face</td>
<td>Per QC Plan</td>
<td>Joint Vertical Face</td>
<td>Visual Check</td>
<td></td>
</tr>
<tr>
<td>Rubberized Asphalt Sealant Application Rate</td>
<td>Once per 1,000 ft per joint</td>
<td>Joint Vertical Face</td>
<td>Check Measurement</td>
<td></td>
</tr>
<tr>
<td>Temperature Differential in HMA Mat</td>
<td>Once per 500 ft per pavement course</td>
<td>HMA Mat Behind Paver</td>
<td>Per 450.47: Hot Mix Asphalt Placement, Part D</td>
<td></td>
</tr>
<tr>
<td>Physical Segregation</td>
<td>Per QC Plan</td>
<td>HMA Mat Behind Paver & Compacted HMA</td>
<td>Visual Check</td>
<td></td>
</tr>
<tr>
<td>HMA Lift Thickness</td>
<td>Per QC Plan</td>
<td>HMA Lift</td>
<td>Check Measurement</td>
<td></td>
</tr>
<tr>
<td>Cross-Slope</td>
<td>Per QC Plan</td>
<td>Compacted HMA</td>
<td>Check Measurement</td>
<td></td>
</tr>
<tr>
<td>Joint Tightness</td>
<td>Per QC Plan</td>
<td>Compacted HMA</td>
<td>Visual Check</td>
<td></td>
</tr>
<tr>
<td>Joint Surface Deviations</td>
<td>Once per 500 ft per joint</td>
<td>At Finished Joint</td>
<td>10-ft standard straightedge</td>
<td></td>
</tr>
<tr>
<td>Wheel Path Deviations</td>
<td>Once per 2,000 ft per Wheel Path</td>
<td>Wheel Path</td>
<td>10-ft standard straightedge</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The initial temperature measurements shall be taken from the first or second load.
Note 2: As a minimum, the temperature measurements of the air and underlying surface shall be obtained prior to starting the HMA placement.
450.65: Quality Control Sampling and Testing Requirements

The Contractor’s QC personnel will perform QC sampling and testing at both the HMA production facility and at the site of HMA field placement to ensure that the production and placement processes are providing work conforming to the contract requirements. The Engineer will not sample or test for Quality Control or assist in controlling the Contractor’s operations. All QC sampling and testing shall be in accordance with the current AASHTO, ASTM, NETTCP, or Department procedures specified in Table 450.65-1 and Table 450.65-2. When a test method has been updated or superseded, the superseding specification shall be used. If a test method has been removed from circulation with no replacement then that test method shall be used until otherwise noted. The Contractor shall furnish approved containers for all material samples. The Engineer shall be provided the opportunity to monitor and witness all QC sampling and testing.

A. Random Sampling.

The Contractor’s QC System shall utilize stratified random sampling of each Lot produced and placed to assure that all material within the Lot has an equal probability of being selected for testing. The Contractor’s qualified QC personnel shall obtain random QC samples at the minimum frequencies specified in Table 450.65-1 and Table 450.65-2. In all cases, application of the specified QC sampling frequencies shall result in a minimum of one random sample per Sublot.

Random sample locations shall be determined using the random number tables and procedures contained in ASTM D3665 or an electronic random number generator, as presented by the NETTCP. The determination of all random sample locations shall be documented on NETTCP Standard Test Report Form D3665RNG. The Contractor will provide the Engineer with the random QC sampling locations selected and documented for each Sublot prior to production and placement of the relevant Sublots.

B. Selective Sampling.

The Contractor’s QC System will also utilize selective sampling (i.e. non-random samples), as needed, to provide supplemental information to assist in maintaining all production and placement processes in control. The Contractor’s qualified QC personnel shall obtain selective QC samples from any Sublot as determined necessary and in accordance with the guidelines established in the approved QC Plan. Selective QC core samples shall not be obtained within a 10-ft radius of a Department random Acceptance sample. Selective QC samples shall not be used as a basis to dispute Department Acceptance test results.

C. QC Sample Identification System.

The Contractor shall establish a reliable system for the identification of all QC samples obtained. All PG Asphalt Binder samples, HMA loose mixture samples, and core samples shall be correctly labeled with the following minimum information:
(a) Contract No.
(b) Date of Sample.
(c) Bid Item Number.
(d) Mixture Type.
(e) Mixture ID Number.
(f) Lot & Sublot No.
(g) Sample No.
(h) Sample Type (i.e. Random or Selective).
(i) Sample Location (e.g. Station & Offset).

All QC sampling data for Ride Quality and Wheel Path Deviations will be identified by the Contractor as directed by the Engineer. The Contractor’s system and procedures for identification of QC samples shall be outlined in the approved QC Plan.

D. Retention of Split Samples.

The Contractor's qualified QC personnel shall obtain all material samples (PGAB samples, HMA loose mix samples, and cores) for QC testing. The Contractor will retain split samples from each PGAB sample and HMA loose mix sample. If requested, these split samples will be provided to the Engineer. The Contractor shall retain the original core samples after testing to serve as “split samples” and protect them from damage. All split samples shall be properly labeled and stored for a period of 30 days, or until tested. These split samples (PGAB samples, HMA loose mix samples, and cores) will only be utilized if necessary, in the Dispute Resolution process. The retained split samples may be discarded prior to the required 30 days when agreed upon by the Contractor and the Department.

E. Quality Control Testing of Prepared Underlying Surface.

The Contractor’s QC personnel will perform QC testing during preparation of the underlying surface. All QC testing shall be in accordance with the current AASHTO, ASTM, NETTCP, or Department procedures specified in Table 450.65-1. The Engineer shall be provided the opportunity to monitor and witness all QC testing.
Table 450.65-1: Minimum QC Sampling & Testing of Prepared Underlying Surface

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method(s)</th>
<th>Sublot Size</th>
<th>Minimum Test Frequency</th>
<th>Point of Sampling</th>
<th>Sampling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA Patching Mixture: PG Asphalt Binder Content</td>
<td>AASHTO T 308</td>
<td>150 tons</td>
<td>1 per Sublot</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97</td>
</tr>
<tr>
<td>HMA Patching Mixture: Combined Agg. Gradation</td>
<td>AASHTO T 30</td>
<td>150 tons</td>
<td>1 per Sublot</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97</td>
</tr>
<tr>
<td>HMA Patching Mixture: Maximum Theo. Specific Gravity</td>
<td>AASHTO T 209 (Method A)</td>
<td>150 tons</td>
<td>1 per Sublot</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97</td>
</tr>
<tr>
<td>HMA Patching Mixture: In-place Density</td>
<td>AASHTO T 343 or T 355</td>
<td>100 sq. ft per each Patch Area</td>
<td>1 per Sublot</td>
<td>From Compacted HMA Patch</td>
<td>Random AASHTO T 343 or T 355</td>
</tr>
</tbody>
</table>

F. Quality Control Testing of HMA Lots.

The Contractor’s QC personnel will perform QC testing at both the HMA production facility and at the site of HMA field placement to ensure that the production and placement processes are providing work conforming to the contract requirements. The Engineer shall be provided the opportunity to monitor and witness all QC testing of HMA. All QC testing of HMA Lots shall be in accordance with the current AASHTO, ASTM, NETTCP, or Department test methods specified in Table 450.65-2 and the procedures outlined below.

Table 450.65-2: Minimum QC Sampling & Testing of HMA Lots

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method(s)</th>
<th>Sublot Size</th>
<th>Minimum Test Frequency</th>
<th>Point of Sampling</th>
<th>Sampling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG Asphalt Binder Grading</td>
<td>Per M3.01.0: Performance Graded Asphalt Binder</td>
<td>Per Supplier QC Plan or 24,000 tons of HMA per 450.65: Quality Control Sampling and Testing Requirements, Part F(1)</td>
<td>See 450.65: Quality Control Sampling and Testing Requirements, Part F(1)</td>
<td>See 450.65: Quality Control Sampling and Testing Requirements, Part F(1)</td>
<td>Random AASHTO R 66</td>
</tr>
<tr>
<td>RAP Asphalt Binder Content</td>
<td>AASHTO T 308</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>At HMA Plant Per QC Plan</td>
<td>Random AASHTO R 90</td>
</tr>
<tr>
<td>RAP Gradation</td>
<td>AASHTO T 30</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>At HMA Plant Per QC Plan</td>
<td>Random AASHTO R 90</td>
</tr>
<tr>
<td>Aggregate Gradation</td>
<td>AASHTO T 27</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>At HMA Plant Per QC Plan</td>
<td>Random AASHTO R 90</td>
</tr>
<tr>
<td>Quality Characteristic</td>
<td>Test Method(s)</td>
<td>Sublot Size</td>
<td>Minimum Test Frequency</td>
<td>Point of Sampling</td>
<td>Sampling Method</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>PG Asphalt Binder Content</td>
<td>AASHTO T 308</td>
<td>600 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>Combined Aggregate Gradation</td>
<td>AASHTO T 30</td>
<td>600 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>Maximum Theo. Specific Gravity</td>
<td>AASHTO T 209 (Method A)</td>
<td>600 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>Bulk Specific Gravity</td>
<td>AASHTO T 166 (Method A)</td>
<td>600 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>Bulk Specific Gravity (OGFC)</td>
<td>AASHTO T 331</td>
<td>1 Day’s Production</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>Volumetrics: Air Voids, VMA, VFA</td>
<td>AASHTO T 312 and R 35</td>
<td>600 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>In-place HMA Mat Density (Density Gauge)</td>
<td>AASHTO T 343 or T 355</td>
<td>150 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Compacted HMA Course</td>
<td>Selective & Random AASHTO T 343 or T 355</td>
</tr>
<tr>
<td>In-place HMA Mat Density (Cores)</td>
<td>AASHTO T 269</td>
<td>600 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Compacted HMA Course</td>
<td>Random AASHTO R 67</td>
</tr>
<tr>
<td>Thickness</td>
<td>ASTM D 3549</td>
<td>600 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Compacted HMA</td>
<td>Random AASHTO R 67</td>
</tr>
<tr>
<td>Transverse Joint Density</td>
<td>AASHTO T 343 or T 355</td>
<td>Each Joint</td>
<td>1 per Sublot (See Note 1)</td>
<td>At Finished Joint</td>
<td>Random AASHTO T 343 or T 355</td>
</tr>
<tr>
<td>Longitudinal Joint Density</td>
<td>AASHTO T 343 or T 355</td>
<td>500 ft per Joint</td>
<td>1 per Sublot (See Note 1)</td>
<td>At Finished Joint</td>
<td>Random AASHTO T 343 or T 355</td>
</tr>
<tr>
<td>Ride Quality (IRI)</td>
<td>AASHTO R 54 per 450.65: Quality Control Sampling and Testing Requirements, Part F(11)</td>
<td>0.1 miles per each Wheel Path</td>
<td>3 Runs per Sublot</td>
<td>Each Pavement per 450.65: Quality Control Sampling and Testing Requirements, Part F(11)</td>
<td>Random per 450.65: Quality Control Sampling and Testing Requirements, Part F(11)</td>
</tr>
</tbody>
</table>

Note 1: In the event that the total daily HMA production is less than one Sublot, a minimum of one random QC sample shall be obtained for the day’s production.
(1) PG Asphalt Binder Grading.

QC testing of PG Asphalt Binder shall be performed by the PGAB Supplier in accordance with AASHTO R 26 and the Supplier’s approved PGAB QC Plan. The Contractor shall submit to the Engineer the Supplier’s Certificate of Compliance (COC) along with copies of the Certificate of Analysis (COA) showing the certified test results for each Supplier Lot of PGAB from which the HMA Producer’s PGAB was obtained. A copy of the COA and a copy of all Bill of Ladings (BOL) for the Lot of PGAB being used shall be kept in the Contractor’s QC laboratory. For crumb rubber modified asphalt binder the Contractor shall submit the COC, COA, and BOLs for the virgin unmodified binder. The Contractor shall also provide the COC and BOLs for the crumb rubber and documentation that it was added to the virgin binder at the required dosage.

If the Contractor adds to or modifies the PGAB at the HMA production facility through blending or introduction of an asphalt binder modifier, the Contractor (i.e. HMA Producer) shall assume responsibility as the PGAB Supplier per AASHTO R 26. In such case, the Contractor shall obtain and test a minimum of one random sample of the modified PGAB for each 24,000-ton HMA Sublot, as defined in Table 450.65-2, to determine conformance with M3.01.0: Performance Graded Asphalt Binder.

A minimum of two 1-qt containers of PGAB shall be obtained for each PGAB sample in accordance with AASHTO R 66. All QC samples shall be split prior to testing and the untested portion of the sample shall be retained for a minimum of 30 days.

For HMA Category A Lots incorporating greater than 25% RAP by weight of the mix in the job-mix formula, the Contractor shall perform full asphalt binder grade testing on a minimum of one random sample from the Control Strip and from each Sublot as specified in Table 450.65-2 during HMA Lot production. The QC testing shall follow the procedures for developing a blending chart as provided in AASHTO M 323 Appendices X1 to X3. The PG Asphalt Binder Grade test results, as depicted by the blending chart, shall conform to the specified PGAB grade for the HMA pavement course mixture.

(2) Aggregate Gradation.

The virgin aggregates utilized in each HMA Lot shall be tested for Gradation in accordance with AASHTO T 27. The Sublot size and minimum frequency of QC testing for Aggregate Gradation shall be as specified in the Contractor’s approved QC Plan. Aggregate samples shall be obtained at the HMA plant from aggregate bins or stockpiles in accordance with AASHTO R 90.

(3) PG Asphalt Binder Content.

Each HMA Lot produced and placed shall be tested for PG Asphalt Binder Content in accordance with AASHTO T 308. The Sublot size and minimum frequency of QC testing for PG Asphalt Binder Content shall be as specified in Table 450.65-2. Each material sample for PG Asphalt Binder Content shall be obtained at the HMA plant from a randomly selected quadrant from the haul vehicle in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part A and AASHTO R 97 and R 47.
(4) Combined Aggregate Gradation.

Each HMA Lot produced and placed shall be tested for Combined Aggregate Gradation in accordance with AASHTO T 30. The Sublot size and minimum frequency of QC testing for Combined Aggregate Gradation shall be as specified in Table 450.65-2. Each material sample for Combined Aggregate Gradation shall be obtained at the HMA plant from a randomly selected quadrant from the haul vehicle in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part A and AASHTO R 97 and R 47.

The QC test results of Combined Aggregate Gradation must be plotted on Control Charts with Action Limits. Minimum Action Limits are provided in Table 450.65-3, however, the Action Limits to be used for each HMA Lot shall be as specified in the Contractor’s approved QC Plan. If the QC test results for an individual Sublot fall outside of the established Action Limits, the Contractor shall evaluate the HMA production process and determine any adjustments necessary to bring the Combined Aggregate Gradation back within the Action Limits. If the subsequent Sublot test result falls outside of the Action Limits, the Contractor shall suspend Lot production until it can be demonstrated that the HMA mixture can be produced within the Action Limits. The Contractor’s QC personnel shall document all action(s) taken to bring the HMA production process into control.

<table>
<thead>
<tr>
<th>Table 450.65-3: Minimum Action Limits for Combined Aggregate Gradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Size</td>
</tr>
<tr>
<td>Passing No. 4 Sieve and larger sieve sizes</td>
</tr>
<tr>
<td>Passing No. 8 sieves</td>
</tr>
<tr>
<td>Passing No. 16 to No. 50 sieves (inclusive)</td>
</tr>
<tr>
<td>Passing No. 100 sieve</td>
</tr>
<tr>
<td>Passing No. 200 sieve</td>
</tr>
</tbody>
</table>

(5) Maximum Theoretical Specific Gravity.

Each HMA Lot produced and placed shall be tested for Maximum Theoretical Specific Gravity in accordance with AASHTO T 209 Method A. The Sublot size and minimum frequency of QC testing for Maximum Theoretical Specific Gravity shall be as specified in Table 450.65-2. Each material sample for Maximum Theoretical Specific Gravity shall be obtained at the HMA plant from a randomly selected quadrant from the haul vehicle in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part A and AASHTO R 97 and R 47.

(6) Bulk Specific Gravity.

Each HMA Lot produced and placed shall be tested for Bulk Specific Gravity in accordance with AASHTO T 166 (Method A). OGFC shall be tested in accordance with AASHTO T 331. The Sublot size and minimum frequency of QC testing for Bulk Specific Gravity shall be as specified in Table 450.65-2. Each material sample for Bulk Specific Gravity shall be obtained at the HMA plant from a randomly selected quadrant from the haul vehicle in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part A and AASHTO R 97 and R 47.
(7) Volumetrics (Air Voids, VMA, VFA).

Each HMA Lot produced and placed shall be tested for Volumetrics (Air Voids, VMA, VFA) in accordance with AASHTO T 312 and R 35. The requirement for Volumetric testing of laboratory compacted specimens applies to all HMA mixtures designed by the Superpave volumetric method. The Sublot size and minimum frequency of QC testing for Volumetrics shall be as specified in Table 450.65-2. Each material sample for Volumetrics shall be obtained at the HMA plant from a randomly selected quadrant from the haul vehicle in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part A and AASHTO R 97 and R 47.

(8) In-place HMA Mat Density.

Each HMA Lot produced and placed shall be tested for In-place Density using a density gauge or cores as specified below. The requirement for In-Place Density testing applies to all pavement courses, with the exception of OGFCs and Leveling Courses. The Sublot size and minimum frequency of random QC testing for In-place Density by either density gauge or core shall be as specified in Table 450.65-2.

(a) Testing In-place Density by Density Gauge.

Initial QC testing of In-place Density during compaction of HMA pavement courses shall be performed selectively (or randomly when determined appropriate by QC personnel) using a density gauge in accordance with AASHTO T 343 or T 355. QC testing of In-Place Density for all HMA Bridge Protective Courses and Bridge Surface Courses shall be performed randomly using a density gauge. Each random sampling and testing location for HMA bridge courses shall be established by determining a randomly selected tonnage and corresponding approximate longitudinal distance within the Sublot, along with a randomly selected offset distance in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part A. Additional selective QC sampling and testing within each Sublot of compacted HMA Bridge Protective Courses or Bridge Surface Courses shall be as determined necessary by the Contractor’s QC personnel and as specified in the Contractor’s approved QC Plan.

The density gauge shall be calibrated at least once every 12 months in accordance with the applicable test method and Manufacturer’s recommendations. Calibration certificates shall be kept with the gauge and a copy shall be provided to the Engineer upon request. This calibration does not include calibration of the gauge to the specific HMA pavement placed.

(b) Testing In-place Density by Cores.

Final QC testing of In-Place Density of all applicable HMA pavement courses shall be performed using 6-in. diameter cores in accordance with AASHTO T 269. Cores shall not be obtained from Bridge Protective Courses and Bridge Surface Courses. In-Place Density shall be determined from each core by comparing the Bulk Specific Gravity of the core to the average Maximum Theoretical Specific Gravity for all HMA mixture Sublots produced for the pavement course on the same day’s production. Each core location shall be established by determining a randomly selected tonnage and corresponding approximate longitudinal distance within the Sublot, along with a randomly selected offset distance in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part A. If the randomly determined sampling location coincides with one of the following conditions, the sampling location shall be relocated immediately beyond the boundary distance as indicated below for the specific condition:
II.145 2020 Edition

a) Within 1 ft from an edge of pavement course to be left unconfined upon project completion.
b) Within 1 ft of any longitudinal joint or transverse joint.
c) Within 3 ft of any drainage structure.
d) For shoulders less than or equal to 3 ft, the shoulder width shall be excluded from random sampling.

Core samples shall be obtained in accordance with AASHTO R 67 prior to opening the pavement course to traffic. To protect the integrity of the core, when the target lift thickness is less than 1.5 in., the Contractor shall drill so that the sampled core is comprised of at least the lift to be tested as well as the lift immediately below. At the discretion of the Engineer, based on climactic or other conditions, sampling of cores may be delayed for a period up to, but not to exceed, 48 hours. All cores shall be protected against damage and tested within 24 hours after they have been obtained. The Contractor shall fill all core holes, whether from QC sampling or Department Acceptance sampling, with fresh HMA mixture from the same Lot. The filled core holes shall be thoroughly compacted as outlined in the Contractor’s approved QC Plan.

(9) Thickness.

Each HMA pavement course specified to be placed at a compacted thickness of 1 in. or greater shall be tested for Thickness using cores, with the exception of the following courses:

- Open-Graded Friction Course.
- Bridge Surface Course.
- Bridge Protective Course.
- Leveling Course.
- In the absence of a Leveling Course, the first pavement course placed over existing pavement. A milled surface is not considered an existing pavement. HMA placed on top of a milled surface shall be subject to thickness testing unless it is one of the previous 4 courses listed above, or if the milling operation, approved by the Engineer, caused the pavement thickness to vary.

The aforementioned pavement courses are exempt only from determination of Thickness using cores and the corresponding statistical evaluation of Lot quality. The Contractor is still responsible for ensuring the minimum required thickness of these pavement courses using an appropriate sampling and testing protocol as outlined in the Contractor’s approved QC Plan. The mean thickness will be in accordance with 450.74: Acceptance Sampling & Testing, Part F(6).

All sampling and testing for Thickness of the applicable pavement courses using cores shall be in accordance with AASHTO R 67 and ASTM D3549, respectively. The Sublot size and minimum frequency of random QC testing for Thickness shall be as specified in Table 450.65-2.

(10) Joint Density.

Each transverse joint and longitudinal joint formed during placement of a pavement course shall be tested for Joint Density using a density gauge in accordance with AASHTO T 343 or T 355. The requirement for Joint Density testing applies to all pavement courses, with the exception of Open-Graded Friction Courses and Leveling Courses. The Sublot size and minimum frequency of random QC testing for Joint Density shall be as specified in Table 450.65-2.
Each random sampling and testing location shall be established by determining a randomly selected distance along the joint, along with a randomly selected offset distance within 1 ft of either side of the finished joint, in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part A. Additional selective QC sampling and testing of Joint Density within each Sublot of compacted HMA pavement courses or Bridge Protective Surface Courses shall be as determined necessary by the Field QCT and as specified in the Contractor’s approved QC Plan.

(11) Ride Quality.

The finished surface of the pavement shall be uniform in appearance, free from irregularities in contour and texture and shall present a smooth riding surface. Ride Quality testing shall be performed for Quality Control on a periodic basis during construction of the HMA pavement courses specified below. QC testing shall be performed for HMA Category A Lots, at a minimum, within 48 hours after each 8 lane-miles of an individual pavement course have been placed. QC testing of HMA Category B Lots shall be performed, at a minimum, every other paving day. In addition, the Contractor shall perform QC testing of the entire final pavement course placed upon completion.

(a) Pavement Courses Subject to Ride Quality Testing.

For projects having a posted speed equal to or greater than 40 mph with HMA Lots falling under Lot Category A (Large Lots) or Category B (Small Lots), QC testing shall be performed with an inertial profiler to determine the Ride Quality of the following pavement courses:

- Friction Course
- Surface Course
- Intermediate Course (lift immediately beneath Surface Course only)
- Leveling Course (when placed immediately beneath Surface Course)
- Bridge Surface Course (when asphaltic bridge joints are used and when placed on the same contract with the mainline Surface Course)

At a minimum, the finished surface of these pavement courses will be tested for all mainline travel lanes, auxiliary lanes, ramps, and side road travel lanes. The Contractor may also elect to perform Ride Quality testing of the pavement courses beneath the courses indicated above in order to provide adequate Quality Control.

(b) Pavement Courses Excluded from Ride Quality Testing.

The following pavement courses and surfaces are specifically excluded from Ride Quality testing:

- All exposed concrete bridge decks and any Bridge Surface Course without asphaltic bridge joints (including 15 ft before the approach joint and 15 ft after the departure joint).
- Mainline pavement courses less than ½ mi in total length (excluding bridge lengths).
- Side road pavement courses less than one Sublot (0.1 mi) in total length.
- Single resurfacing pavement courses placed in one lift at a total plan (compacted) thickness less than 1.5 in. when not placed over a milled surface.
- Pavement courses on horizontal curves having a centerline radius of curvature of 500 ft or less, including the length of pavement within the super-elevation transition of such curves.
- Pavement courses for shoulders.
• Pavement segments with manholes or catch basins in the travel lane (the Ride Quality testing data for such pavement segments shall be excluded, including 15 ft before and after these manholes or catch basins).

(c) Inertial Profiler Equipment Requirements.

All inertial profilers used for Contractor QC testing shall conform to the equipment specifications contained in AASHTO M 328. The inertial profiler shall be equipped with a system of transducers (height sensor, accelerometer, distance sensor) to measure the longitudinal pavement profile. An automated triggering system shall be provided that detects a reference mark to start, stop, and event mark the data collection process. The profiler equipment shall include an onboard computer system capable of storing all profile measurement data, calculating the real time International Roughness Index (IRI) per ASTM E1926 (independent of speed), and displaying profile plots.

(d) Certification and Correlation of Inertial Profilers.

All inertial profilers used for Contractor QC testing must be certified for precision and accuracy in accordance with the requirements of AASHTO R 56. In addition, all Contractor QC profilers must be correlated against the Department’s reference profiling device in accordance with the Department’s correlation procedures. The certification and correlation of all profilers shall be conducted at MassDOT’s designated Profiler Correlation Center. The certification and initial correlation of the Contractor’s inertial profiler shall be completed prior to the start of Ride Quality testing on the project. After the initial correlation is successfully completed, the same inertial profiler can be used on any Department project without re-correlation for the remainder of the construction season. Equipment that does not pass the Department’s correlation procedure shall not be used. The Contractor’s use of inertial profiler equipment that has not been successfully correlated is sufficient grounds for withholding payment for QC testing of Ride Quality. The Contractor’s inertial profiler equipment may be required to undergo re-correlation at any time during the construction season if significant variations are found within the Contractor’s QC test data or between the QC test data and the Department’s Acceptance test data.

(e) Ride Quality Test Procedures.

Ride Quality testing shall be performed in accordance with the procedures outlined in AASHTO R 57, as clarified or amended herein.

The Ride Quality will be measured for each wheel path (a wheel path is defined as 3 ft from and parallel to each longitudinal edge of the lane to be measured). Each wheel path will be divided into 0.1-mile Sublots starting at the project limits in the direction of traffic. Partial Sublots may result at either end of the project or as a result of interruptions of the continuous pavement surface (i.e. bridge approaches, railroad crossing, cessation of daily paving operations, etc.).

Just prior to testing, the Contractor shall sweep the pavement and remove all foreign objects or materials on the pavement course surface. Testing will begin 15 ft after the transverse approach joint and end 15 ft before the transverse departure joint. A minimum of three and up to a maximum of five test runs will be performed on each wheel path. The final test result for each Sublot will be the average of the three best test runs.
(f) Data Format and Reporting Requirements.

All Ride Quality QC testing data shall be collected and saved in electronic format in an ASCII data file. A copy of the raw data file shall be provided to the Engineer on site immediately following testing of completed Sublots. A longitudinal profile shall be determined for all Sublots tested and an average IRI value shall be determined and reported for each Sublot (i.e. each 0.1-mile segment of each wheel path). The Contractor shall summarize the results for all Sublots, by corresponding Ride Quality Lot, in an electronic spreadsheet file (MS Excel) consistent with the format of the Department’s QA Spreadsheets. The summary spreadsheet of QC testing data shall be submitted to the Department, electronically and in hardcopy, within two days after the testing is completed.

(g) Ride Quality Monitoring & Corrective Action.

The Contractor shall evaluate and monitor the test data for each pavement course requiring Ride Quality testing for conformance with the applicable Quality Limits specified in Tables 450.77-1, 450.77-2, or 450.77-3. If the running Quality Level for all Sublots placed and tested falls below the Suspension Quality Level (SQL) of 70 PWL, the Contractor shall suspend further placement of the corresponding pavement course and evaluate the Sublots placed for appropriate corrective action. If the running Mean IRI of all Sublots placed and tested for the pavement course immediately below the final course is greater than the Action Limits specified in Table 450.65-4, corrective action will be required prior to placement of the final pavement course.

When Ride Quality correction is required, the Contractor shall use one or more of the following corrective methods:

a) Removal and replacement of the entire pavement course.
b) Partial depth removal of the pavement course by milling and placement of new pavement course(s) of the same mixture type.
c) Overlaying (not patching) with the specified pavement course.
d) Diamond grinding or use of other surface profiling devices.

The corrective method(s) chosen by the Contractor shall be subject to the approval of the Department and shall be performed at the Contractor’s expense. The Contractor shall retest any Sublots where corrections are made and provide the Department with a copy of the raw data file, the profile plot, and the IRI summary spreadsheet data for the corrected Sublots.

<table>
<thead>
<tr>
<th>Posted Speed Limit (See Note 1)</th>
<th>Target IRI</th>
<th>Maximum Running Mean IRI of All Sublots Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥55 mph</td>
<td>60 in./mi</td>
<td>≤85 in./mi</td>
</tr>
<tr>
<td>≥40 but <55 mph</td>
<td>80 in./mi</td>
<td>≤105 in./mi</td>
</tr>
<tr>
<td><40 mph</td>
<td>Not subject to Ride Quality testing</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 450.65-4: Action Limits for Pavement Course Below Final Pavement Course

Note 1: Projects with posted speed limits that fall into more than one of the Posted Speed Limit ranges above will be divided into multiple Lots and evaluated separately.
450.66: Quality Control Documentation and Data Evaluation

A. QC Inspection Documentation & Evaluation.

The Contractor shall document all QC inspection activities for each HMA Lot Category (Category A, B, or C) produced and placed. All inspection results shall be recorded within 24 hours of inspection on current NETTCP standard IRFs. The QC Manager shall evaluate inspection results in a timely manner to confirm that production and placement processes are in control. The Contractor shall submit hard copies of all IRFs to the Engineer at the completion of each Lot.

B. QC Sampling and Testing Documentation & Data Analysis.

The Contractor shall document all QC sampling and testing data for each HMA Lot Category (Category A, B, or C) produced and placed. All sampling and testing data shall be recorded within 24 hours of sampling and testing on current NETTCP standard TRFs. The QC Manager shall evaluate sampling and testing results in a timely manner, as further outlined below, to confirm that production and placement processes are in control. All QC testing data shall be entered into the Department’s QA Data Spreadsheets via the MassDOT QA SharePoint site (massdotqa.com) within 2 days after completion of testing. The Contractor shall submit hard copies of all TRFs to the Engineer at the completion of each Lot.

(1) Control Charts.

For each HMA Category A Lot produced and placed, the Contractor shall use Control Charts as part of the QC System to assist in identifying assignable causes affecting the HMA production and placement processes. Control Charts shall be prepared for the Quality Characteristics subject to QC sampling and testing listed in Table 450.65-2. As a minimum, the Contractor shall plot all QC test results of each Lot on Control Charts for individual Sublot measurements or test values (Run Charts). It is also recommended practice for the Contractor to use Control Charts that plot Subgroups of data (e.g. X-Bar Charts, R Charts). The Contractor shall submit examples of the Control Charts to be used in the QC Plan. As a minimum, the Control Charts shall identify the Contract number, the Payment Item number, the Lot number, the Quality Characteristic, the Control Chart Target, the Upper and Lower Control Chart Limits, and Sublot or Subgroup numbers.

All Control Charts should be updated within 24 hours after the corresponding testing is completed and documented. QC personnel should use the Control Chart data to monitor and adjust the production and placement processes or suspend operations as determined necessary. Control Charts for Quality Characteristics related to HMA production should be maintained at the HMA production facility. Control Charts for Quality Characteristics related to HMA field placement should be maintained at the project field site. Current Control Charts shall be posted in an accessible location. The Engineer shall be provided access to all Control Charts as part of the Department’s monitoring of Contractor QC activity.

(2) Evaluation of Individual Sublot QC Test Results.

The Contractor shall evaluate the individual QC test results for each HMA Lot Category (Category A, B, or C) produced and placed. Each random QC test result shall be evaluated against the applicable Quality Limits within 24 hours of testing. Each Sublot test value shall be within the applicable Engineering Limits specified in Tables 450.77-1, 450.77-2, or 450.77-3.
If the evaluation of the QC testing data indicates that an individual Sublot is not in conformance with the applicable Engineering Limits, the Contractor shall follow the requirements of 450.67: Corrective Action.

(3) Evaluation of Lot Quality Level.

For HMA Category A Lots and Category B Lots, the Contractor shall use all random QC test results to continuously evaluate the running quality level and determine the Percent Within Limits (PWL) for each Lot during production and placement. The PWL shall be determined through Quality Level Analysis (QLA) for each of the applicable Quality Characteristics listed in Tables 450.77-1, 450.77-2, or 450.77-3 using the corresponding Specification Limits therein. The Contractor shall perform a running QLA using random QC data only after a minimum of 5 Sublots have been tested and shall plot the cumulative PWL after each 5 Sublot interval. The Engineer shall be provided access to all records documenting the running QLA for each Lot as part of the Department’s monitoring of Contractor QC activity.

If the running QLA shows the PWL falling below the Acceptable Quality Level (AQL) of 90 PWL, the Contractor shall initiate appropriate adjustments to the production or placement process or initiate corrective action in accordance with procedures outlined in the approved QC Plan. If the PWL falls below the SQL of 70 PWL, the Contractor shall suspend production and placement of the Lot prior to any subsequent Sublots being placed. The Contractor shall prepare a plan of corrective action for any nonconforming Lot, as further outlined below.

a) If the corrective action requires a significant adjustment to the JMF or the production or placement process, a new Lot will be established. If any of the JMF target values are changed, creating a new DMF according to AASHTO R 42, then a new Lot will be established. For Category A Lots, a Control Strip will be required upon the establishment of a new Lot. After resuming production and placement, the PWL for the new Lot must be back at or above the AQL of 90 PWL once the Lot PWL can be calculated.

b) If the corrective action does not require a new Lot to be established, then the PWL must return to 70 or above within 6 Sublots.

c) If the Lot PWL falls below 70 for more than 6 Sublots, then any material that is placed from the time that the PWL falls below 70 to when the PWL returns to 70 or above will be determined rejected and removed and shall receive no payment.

450.67: Corrective Action

As part of the Contractor’s QC System, the Contractor shall implement corrective action for any part of a Lot that is determined by inspection or testing to not be in conformance with the quality requirements specified in this specification. If the results of QC inspection identify nonconforming material or workmanship within one or more Sublots, or if the evaluation of the QC testing data indicates that any Sublot is not in conformance with the applicable Quality Limits for the particular HMA Lot Category, the Contractor shall isolate the Sublot(s) and perform additional inspection or testing to further assess the quality of the Sublot. Selective inspection or testing should be used to determine the limits of non-conformance. If a Sublot test result is outside of the Engineering Limits, the QC Manager and the Engineer will further assess the Sublot quality to determine whether the material in the Sublot can remain in place in accordance with 450.77: Lot Acceptance Determination Based on Testing Data, Part A(2).
Based on the results of additional inspection or testing, the Contractor shall prepare a plan of corrective action for the nonconforming Sublot(s). The corrective action plan shall be submitted to and approved by the Engineer prior to initiating corrective action. All corrective action shall be performed at the Contractor’s expense.

450.68: Quality Control Records System

A. QC Daily Diary.

The QC Manager should maintain a Quality Control Daily Diary (QC Daily Diary) to document all major activities or actions related to the Contractor's QC System. The QC Daily Diary serves as a summary record of key actions taken by QC personnel each day. Recommended Information which should be recorded in the QC Daily Diary includes:

- The day’s weather or environmental conditions.
- A summary of production or placement activities completed.
- Any non-conforming material or workmanship identified.
- Any corrective actions recommended or taken by QC personnel.
- Discussions held with other Contractor personnel or Department personnel.
- Visitors to the production facility or field placement operation.

B. QC Record Books.

The Contractor shall maintain one or more ringed binders referred to as “Quality Control Record Books” (QC Record Books) to store all required QC documents. Separate QC Record Books shall be kept at each HMA production facility and at the project field site. Either a separate QC Record Book shall be established for each HMA pavement course or the data for each pavement course may be included in a single QC Record Book provided the data is separated according to pavement course. QC data for each pavement course shall be organized into separate sections by Quality Characteristic and by Lot number.

QC documents to be stored in the QC Record Book(s) include:

- A signed copy of the current approved QC Plan.
- The original signed copies of all completed IRFs.
- The original signed copies of all completed Random Sampling location forms.
- The original signed copies of all completed TRFs.
- A current copy or printout of all Control Charts.
- A current copy or printout of all running QLA performed.
- Current summaries of all individual QC test results to date (by Lot & Sublot).
- Summary sheets of material quantities produced or placed (by Lot & Sublot).

Each required record shall be inserted into the corresponding QC Record Book within 24 hours after the document has been completed. All QC Record Books shall be maintained in a suitable location. The Engineer shall be provided access to all QC Record Books as part of the Department's monitoring of Contractor QC activity.

In addition to entering all QC test results to the QA Data Spreadsheets, QC personnel shall also upload, to the MassDOT QA SharePoint site, all QC IRFs and TRFs for each day of production within
2 days after completion of testing and inspection. QC personnel shall also track the daily tonnage of HMA which leaves the production facility and the quantity that is actually placed on the project site.

C. QC Records Retention.

All Contractor QC records identified above shall be retained for a minimum of 7 years. The records shall be protected from damage or alteration. When requested by any State or Federal Agency for audit or similar purposes, the Contractor shall provide complete access to all QC records.

D. Failure to Provide QC Records

The Contractor shall provide the Engineer with requested QC records within 48 hours of the request. Failure to provide the documentation in the required timeframe will result in the removal of all Validated QC test results from the Analysis of the Lot Quality Level as specified in 450.77: Lot Acceptance Determination Based on Testing Data and no incentive will be paid for any of the Quality Characteristics.

DEPARTMENT ACCEPTANCE

450.70: General

The Department is responsible for performing all Acceptance activities and making the final Acceptance determination for each HMA Lot produced and placed. The Department’s Acceptance System will include monitoring the Contractor’s QC activity and performing Acceptance inspection, sampling and testing in order to determine the Quality and corresponding payment for each Lot. These activities will be performed for each HMA Lot Category (Lot Category A, B, and C) as outlined further below.

450.71: Acceptance System Approach

A. Acceptance of Category A Lots.

The Engineer’s Acceptance determination for each HMA Category A Lot will be based on an evaluation of the Department’s Acceptance inspection information and testing data. The Engineer will perform Acceptance sampling and testing on a minimum of 25% and a maximum of 100% of the Sublots produced and placed. Contractor QC test data will be included in the Department’s Acceptance determination for each Category A Lot provided the following requirements are met:

a) Split Sample Correlation testing requirements are satisfied.
b) The Contractor provides adequate Quality Control per the approved QC Plan.
c) All QC test results included are from random samples.
d) The QC test results are Validated against the Department’s Acceptance test results.

B. Acceptance of Category B Lots.

The Engineer’s Acceptance determination for each HMA Category B Lot will also be based on an evaluation of the Department’s Acceptance inspection information and Acceptance testing data. The Engineer will perform Acceptance sampling and testing on a minimum of 50% and a maximum of 100% of the Sublots produced and placed, but not less than 3 Sublots. Contractor QC test data will be included in the Department’s Acceptance determination for each Category B Lot provided the requirements outlined in paragraph A above are satisfied.
C. Acceptance of Category C Lots.

For all HMA Category C Lots, the Engineer's Acceptance determination will be based only on the Department’s Acceptance inspection information and Acceptance testing data. The Engineer will perform Acceptance sampling and testing on 100% of the Sublots produced and placed. Contractor QC test data will not be included in the Department’s Acceptance determination for Category C Lots.

450.72: Department Monitoring of Contractor Quality Control

The Department will monitor the Contractor’s QC System to confirm that QC activities are being performed for each Lot in compliance with this specification and the approved QC Plan. Department monitoring of the Contractor’s QC System is not intended to evaluate the quality of the work. The Engineer will not perform the QC responsibilities of the Contractor or provide constant direction to the Contractor on how to perform Quality Control. The Engineer’s monitoring of QC activity will include the following:

- Periodic visual observation of QC inspection, sampling, and testing.
- Reviewing QC documentation and records.
- Providing feedback based on monitoring findings.

When deficiencies in the Contractor’s QC System are identified and documented by the Engineer, the Contractor shall take immediate action to address the deficiencies. Deficiencies related to HMA Quality Characteristics where a QLA is performed shall not be considered under this subsection. If the material in an HMA Lot where deficiencies in the Contractor's QC System were identified is removed and replaced, and the replacement HMA complies with the Specification requirements, the actions listed below will not apply. If the Contractor fails to acknowledge the deficiency and take appropriate action, the Contractor shall suspend production and placement of the corresponding Lot(s). Failure by the Contractor to comply with the Quality Control requirements in either this specification or the approved QC Plan will result in the following actions:

a) 1st Incident: A Non-conformance Report (NCR) will be issued by the District Quality Engineer. A follow-up Construction Quality Meeting will be held in accordance with 450.40: General.

b) 2nd Incident: An NCR will be issued by the District Quality Engineer and work shall be immediately suspended until compliance with the specification and approved QC Plan is established. The Engineer shall issue a Deficiency Report (DR) with a deduction of 1% of the awarded contract Bid Price amount for all tonnage placed for the HMA Lot(s) where the violations were documented. Work shall not resume until a follow-up Construction Quality Meeting is held in accordance with 450.40: General.

c) 3rd Incident: An NCR will be issued by the District Quality Engineer and work shall be immediately suspended until compliance with the specification and approved QC Plan is established. The Engineer shall issue a DR with a deduction of 2% of the awarded contract Bid Price amount for all tonnage placed for the HMA Lot(s) where the violations were documented. The deduction will be in addition to the deduction amount from the second incident. Work shall not resume until a follow-up Construction Quality Meeting is held in accordance with 450.40: General.

d) 4th and Subsequent Incidents: An NCR will be issued by the District Quality Engineer and work shall be immediately suspended until compliance with the specification and approved QC Plan is established. The Engineer shall issue a DR with a deduction of 3% of the awarded contract Bid Price amount for all tonnage placed for the HMA Lot(s) where the violations were documented. Work shall not resume until a follow-up Construction Quality Meeting is held in accordance with 450.40: General.
contract Bid Price amount for all tonnage placed for the HMA Lot(s) where the violations were documented. The deduction will be in addition to the deduction amount from the previous incidents. An additional deduction of 1% of the awarded contract Bid Price amount for all tonnage placed for the HMA Lot(s) where the violations were documented will be added for each additional occurrence beyond the 4th. Work shall not resume until a follow-up Construction Quality Meeting is held in accordance with 450.40: General. The Contractor may also be required to replace the Construction QC Manager.

Failures in the Contractor QC System shall result in taking the actions listed above as well as any corrective action to the HMA pavement deemed necessary by the Engineer.

450.73: Acceptance Inspection

The Engineer will perform Acceptance inspection of all work items addressed under this specification to ensure that all materials and completed work are in conformance with the contract requirements. Acceptance inspection is intended to visually assess the quality of each HMA Lot produced and placed and will address only the inspection components of Materials and Workmanship in support of the Department’s final acceptance determination.

All Acceptance inspection activity by the Department will be performed independent of the Contractor’s QC inspection at both the HMA production facility and at the site of HMA field placement. The Engineer will document the results and findings of Acceptance inspection on NETTCP IRFs. The Engineer will furnish a copy of all Department Acceptance inspection results to the Contractor within 5 days following the inspection.

A. Acceptance Inspection of Prepared Underlying Surface.

The Department will perform Acceptance inspection of the prepared underlying surface prior to placement of HMA. The items to be inspected and minimum frequency of inspection will be in accordance with the requirements outlined in Table 450.73-1 and Table 450.73-2.

<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Inspection Attribute</th>
<th>Minimum Inspection Frequency</th>
<th>Point of Inspection</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>Mixture Type & PG Binder Grade (Correct Type)</td>
<td>1 per Day</td>
<td>HMA Production Facility</td>
<td>Visual Check & Manufacturer COC</td>
</tr>
<tr>
<td></td>
<td>Joint Sealer (Correct Type)</td>
<td>1 per Day</td>
<td>At Paving Site</td>
<td>Check Manufacturer COC</td>
</tr>
<tr>
<td>Workmanship</td>
<td>Sawcut Limit Vertical Face</td>
<td>25% of Patched Areas</td>
<td>Sawcut Limits</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Joint Sealer Application Rate</td>
<td>25% of Patched Areas</td>
<td>Sawcut Limits</td>
<td>Visual Check & Check Measurement</td>
</tr>
<tr>
<td></td>
<td>Cross-Slope & Profile</td>
<td>25% of Patched Areas</td>
<td>Compacted HMA</td>
<td>Check Measurement</td>
</tr>
</tbody>
</table>
Table 450.73-2: Department Acceptance of Tack Coat

<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Inspection Attribute</th>
<th>Minimum Inspection Frequency</th>
<th>Point of Inspection</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>Asphalt Emulsion</td>
<td>1 per Day</td>
<td>At Paving Site</td>
<td>Check Manufacturer COC</td>
</tr>
<tr>
<td></td>
<td>(Correct Type)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workmanship</td>
<td>Asphalt Emulsion</td>
<td>Once per 5,000 lane-feet</td>
<td>Tacked Surface &</td>
<td>Visual Check & Check Measurement</td>
</tr>
<tr>
<td></td>
<td>Application Rate</td>
<td></td>
<td>Tack Distributor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>System</td>
<td></td>
</tr>
</tbody>
</table>

B. Acceptance Inspection of HMA Lots.

The Department will perform Acceptance inspection at both the HMA production facility and at the site of HMA field placement. For purposes of Acceptance inspection, the total quantity of each HMA pavement course produced and placed during the same construction season will constitute a Lot. Each in-place HMA Lot will be divided into 500 lane-feet Sublots. The items to be inspected and minimum frequency of inspection will be in accordance with the requirements outlined in Table 450.73-3.

Wheel Path Deviations.

Each HMA Lot produced and placed will be inspected by the Engineer for Wheel Path Deviations (high points or low points) using a 10-ft standard straightedge in accordance with the procedures outlined in 450.64: Quality Control Inspection, Part B. Acceptance inspection for Wheel Path Deviations applies to all pavement courses (including Bridge Protective Courses and Bridge Surface Courses). The finished surface of each required pavement course will be inspected for all mainline travel lanes, auxiliary lanes, ramps, and side road travel lanes. The Sublot size and minimum frequency of Acceptance inspection for Wheel Path Deviations will be as specified in Table 450.73-3.
Table 450.73-3: Department Acceptance of HMA Lots

<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Inspection Attribute</th>
<th>Minimum Inspection Frequency</th>
<th>Point of Inspection</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>HMA Mixture Type, Aggregates & PG Binder (Correct Type)</td>
<td>1 per Day</td>
<td>HMA Production Facility</td>
<td>Visual Check & Manufacturer COC</td>
</tr>
<tr>
<td>Joint Sealer (Correct Type)</td>
<td>1 per Day</td>
<td>At Paving Site</td>
<td>Check Manufacturer COC</td>
<td></td>
</tr>
<tr>
<td>Workmanship</td>
<td>Joint Location & Alignment</td>
<td>50% of Sublots, Once per Joint</td>
<td>At Finished Joint</td>
<td>Visual Check</td>
</tr>
<tr>
<td>Sawcut Joint Vertical Face</td>
<td>50% of Sublots, Once per Joint</td>
<td>Joint Vertical Face</td>
<td>Visual Check</td>
<td></td>
</tr>
<tr>
<td>Joint Sealer Application Rate</td>
<td>50% of Sublots, Once per Joint</td>
<td>Joint Vertical Face</td>
<td>Visual Check & Check Measurement</td>
<td></td>
</tr>
<tr>
<td>Physical Segregation</td>
<td>50% of Sublots, Once per Joint</td>
<td>Compacted HMA</td>
<td>Visual Check</td>
<td></td>
</tr>
<tr>
<td>Cross-Slope</td>
<td>50% of Sublots, Once per Joint</td>
<td>Compacted HMA</td>
<td>Check Measurement</td>
<td></td>
</tr>
<tr>
<td>Joint Tightness</td>
<td>50% of Sublots, Once per Joint</td>
<td>Compacted HMA</td>
<td>Visual Check</td>
<td></td>
</tr>
<tr>
<td>Joint Surface Deviations</td>
<td>50% of Sublots, Once per Joint</td>
<td>At Finished Joint</td>
<td>10-ft standard straightedge</td>
<td></td>
</tr>
<tr>
<td>Wheel Path Deviations</td>
<td>50% of Sublots, per Wheel Path</td>
<td>Wheel Path</td>
<td>10-ft standard straightedge</td>
<td></td>
</tr>
</tbody>
</table>

450.74: Acceptance Sampling & Testing

A. Random Sampling.

The Department will utilize stratified random sampling to determine the overall quality of each HMA Lot produced and placed. Random Acceptance sample locations will be determined by the Engineer in accordance with ASTM D 3665 or by electronic random number generator, as presented by NETTCP. All random Acceptance sample locations will be documented on the most current version of MassDOT Test Report Form RMS100.

The Contractor shall furnish the Engineer with approved containers for all Acceptance samples. The Engineer will obtain all random Acceptance samples independent of the Contractor's QC samples at the frequencies outlined below.

(1) Sampling HMA Category A Lots.

The Engineer will obtain Acceptance samples from a minimum of 25% and a maximum of 100% of all Sublots in each HMA Category A Lot for all Quality Characteristics specified in Table 450.74-1, other than PG Asphalt Binder Grading and Ride Quality. Acceptance samples for PG Asphalt Binder Grading and Ride Quality will be obtained from each Sublot as defined in Table 450.74-1.
(2) Sampling HMA Category B Lots.

The Engineer will obtain Acceptance samples from a minimum of 50% and a maximum of 100% of all Sublots, but not less than 3 Sublots, in each HMA Category B Lot for all Quality Characteristics specified in Table 450.74-1, other than PG Asphalt Binder Grading and Ride Quality. Acceptance samples for PG Asphalt Binder Grading and Ride Quality will be obtained from each Sublot as defined in Table 450.74-1.

(3) Sampling HMA Category C Lots.

The Engineer will obtain Acceptance samples from 100% of all Sublots in each HMA Category C Lot for all Quality Characteristics specified in Table 450.74-1, other than Ride Quality. Acceptance sampling and testing for Ride Quality will not be performed on Category C Lots.

B. Selective Sampling.

The Department will utilize selective sampling (i.e. non-random samples) as needed to provide supplemental information to assist in quantifying the quality of apparent nonconforming material. The test results of selective Acceptance samples will not be combined with random Acceptance sample data in the determination of Lot acceptance using QLA as outlined in 450.78: Quality Level Analysis Procedures.

C. Contractor Assistance in Obtaining Acceptance Samples.

The Engineer will obtain all material samples for Acceptance testing by the Department. When requested by the Department, the Contractor shall assist the Engineer in obtaining Acceptance samples in accordance with the following requirements:

a) The Acceptance sample location and time will be randomly selected by the Engineer and provided to the Contractor immediately prior to sampling.
b) The Contractor's qualified QC personnel will only provide the physical labor to assist the Engineer in obtaining the Acceptance sample.
c) The Engineer will be present to direct and monitor the taking of the sample.
d) The Engineer will take immediate possession of the Acceptance sample.

Contractor assistance may be requested in obtaining Acceptance samples (random or selective) for PG Asphalt Binder Grading and for In-Place Density and Thickness (HMA cores). The Contractor shall provide adequate traffic control for the Department to obtain cores, regardless of whether the Contractor assists the Engineer in obtaining the Acceptance core samples.

D. Acceptance Sample Identification System.

The Department will use a standard system for the identification of all Acceptance samples. All PG Asphalt Binder samples, HMA loose mixture samples, and core samples will be labeled by the Engineer with the minimum information indicated under 450.65: Quality Control Sampling and Testing Requirements, Part C. Acceptance sampling data for Ride Quality and Wheel Path Deviations will be identified by the Engineer in accordance with the Department's Standard Operating Procedure CSD QA-6.
E. Retention of Split Samples.

Qualified Department personnel will obtain all material samples (PGAB samples, HMA loose mix samples, and cores) for Acceptance testing. The Department will retain Acceptance split samples from each PGAB sample and HMA loose mix sample and provide a split sample to the Contractor if requested. The Department will retain the original core samples after testing to serve as “split samples” and protect them from damage. All split samples will be stored by the Department for a period of 30 days, or until tested. These split samples will be utilized if necessary, in the Dispute Resolution process. The retained split samples may be discarded prior to the required 30 days when agreed upon by the Contractor and the Department.

F. Acceptance Testing of HMA Lots.

The Department will perform Acceptance testing using the random samples obtained in accordance with 450.74: Acceptance Sampling & Testing, Part A from the HMA production facility and at the site of HMA field placement. The specific Quality Characteristics subject to Department Acceptance testing are identified in Table 450.74-1. All Acceptance testing of HMA Lots will be performed by the Engineer in accordance with the AASHTO, ASTM, NETTCP, or Department test methods specified in Table 450.74-1 and the procedures outlined below. The Engineer will furnish a copy of all Department Acceptance test results/data to the Contractor within 5 days following completion of testing.

(1) PG Asphalt Binder Grading.

The Department will review the Supplier's Bill of Lading (BOL) submitted by the Contractor along with the Certificate of Compliance (COC) and Certificate of Analysis (COA) showing the corresponding certified test results for each Supplier Lot of PGAB from which the HMA Producer's PGAB was obtained. The Engineer will also obtain and test a minimum of one random Acceptance sample of PGAB for each 12,000-ton HMA Sublot, as defined in Table 450.74-1, to determine conformance with M3.01.0: Performance Graded Asphalt Binder. A minimum of one 1-qt container of PGAB will be obtained for each Acceptance sample from the HMA Producer plant in accordance with 450.30: General. All PGAB Acceptance samples will be split prior to testing and the un-tested portion of the sample will be retained for a minimum of 30 days.

(2) PG Asphalt Binder Content.

The Engineer will test each HMA Lot produced and placed for PG Asphalt Binder Content in accordance with either AASHTO T 308. The test results will be reported with all correction factors. The Sublot size and minimum frequency of Acceptance testing for PG Asphalt Binder Content will be as specified in Table 450.74-1. Each material sample for PG Asphalt Binder Content will be obtained at the HMA plant from a randomly selected quadrant from the haul vehicle in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part A and AASHTO R 97 and R 47.

(3) Volumetrics (Air Voids).

The Engineer will test each HMA Lot produced and placed for Volumetrics (Air Voids) in accordance with AASHTO T 312 and R 35. The requirement for Volumetric testing of laboratory compacted specimens applies to HMA mixtures for all pavement courses, with the exception of OGFC. The Sublot size and minimum frequency of Acceptance testing for Volumetrics will be as
specified in Table 450.74-1. Each material sample for Volumetrics will be obtained at the HMA plant from a randomly selected quadrant from the haul vehicle in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part A and AASHTO R 97 and R 47.

(4) Combined Aggregate Gradation.

Each HMA Lot produced and placed shall be tested for Combined Aggregate Gradation in accordance with AASHTO T 30. The Sublot size and minimum frequency of Acceptance testing for Combined Aggregate Gradation shall be as specified in Table 450.74-1. Each material sample for Combined Aggregate Gradation shall be obtained at the HMA plant from a randomly selected quadrant from the haul vehicle in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part A and AASHTO R 97 and R 47.

If the Acceptance test results for an individual Sublot fall outside of the Action Limits specified in Table 450.65-3, the Engineer shall inform the Contractor so that they may evaluate the HMA production process and determine any adjustments necessary to bring the Combined Aggregate Gradation back within the Action Limits. If the subsequent Sublot test result falls outside of the Action Limits, the Contractor shall suspend Lot production until it can be demonstrated that the HMA mixture can be produced within the Action Limits.
Table 450.74-1: Department Acceptance Sampling and Testing of HMA Lots

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method(s)</th>
<th>Sublot Size</th>
<th>Minimum Test Frequency</th>
<th>Point of Sampling</th>
<th>Sampling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG Asphalt Binder Grading</td>
<td>Per M3.01.0: Performance Graded Asphalt Binder</td>
<td>12,000 tons of HMA using same PG Grade</td>
<td>1 per Sublot</td>
<td>From In-line Sample Valve at HMA Plant</td>
<td>Random AASHTO R 66</td>
</tr>
<tr>
<td>PG Asphalt Binder Content</td>
<td>AASHTO T 308</td>
<td>600 tons</td>
<td>1 per Sublot sampled</td>
<td>From Haul Vehicle at HMA Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>Combined Aggregate Gradation</td>
<td>AASHTO T 30</td>
<td>600 tons</td>
<td>1 per Sublot sampled</td>
<td>From Haul Vehicle at HMA Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>Volumetrics: Air Voids</td>
<td>AASHTO T 312 and R 35</td>
<td>600 tons</td>
<td>1 per Sublot sampled</td>
<td>From Haul Vehicle at HMA Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>In-place HMA Mat Density (Cores)</td>
<td>AASHTO T 269</td>
<td>600 tons</td>
<td>1 per Sublot sampled</td>
<td>From Compacted HMA Course</td>
<td>Random AASHTO R 67</td>
</tr>
<tr>
<td>In-place HMA Mat Density (Bridge Courses)</td>
<td>AASHTO T 343 or T 355</td>
<td>150 tons</td>
<td>1 per Sublot sampled</td>
<td>From Compacted HMA Course</td>
<td>Random AASHTO T 343 or T 355</td>
</tr>
<tr>
<td>Thickness</td>
<td>ASTM D3549</td>
<td>600 tons</td>
<td>1 per Sublot sampled</td>
<td>From Compacted HMA Course</td>
<td>Random AASHTO R 67</td>
</tr>
<tr>
<td>Ride Quality (IRI)</td>
<td>AASHTO R 54 per 450.65: Quality Control Sampling and Testing Requirements, Part F(11)</td>
<td>0.1 miles per each Wheel Path</td>
<td>1 per Sublot</td>
<td>Each Pavement Course per 450.65: Quality Control Sampling and Testing Requirements, Part F(11)</td>
<td>Random per 450.65: Quality Control Sampling and Testing Requirements, Part F(11)</td>
</tr>
</tbody>
</table>

Note 1: In the event that the total daily HMA production is less than one Sublot but greater than 150 tons, a minimum of one random Acceptance sample shall be obtained for the day’s production.

(5) In-Place HMA Mat Density.

The Engineer will test each HMA Lot produced and placed for In-place HMA Mat Density. The requirement for In-Place Density testing applies to all pavement courses, with the exception of OGFC and Leveling Courses, as outlined below.
(a) Testing In-Place Density by Cores.

Acceptance testing of HMA pavement courses (other than bridge courses) for In-place Density will be performed using cores in accordance with the procedures outlined in 450.65: Quality Control Sampling and Testing Requirements, Part F(8)(b). The Sublot size and minimum frequency of Acceptance testing for In-place Density of HMA pavement courses by core will be as specified in Table 450.74-1. In order to ensure that the correct maximum specific gravity is utilized to determine the In-Place Density of a core, the Engineer reserves the right to determine the maximum specific gravity of the core itself after its bulk specific gravity has been determined and verified.

(b) Testing In-Place Density by Density Gauge.

Acceptance testing of all HMA Bridge Protective Courses and Bridge Surface Courses for In-place Density will be performed using a density gauge in accordance with the procedures outlined in 450.65: Quality Control Sampling and Testing Requirements, Part F(8)(a). The Sublot size and minimum frequency of Acceptance testing for In-place Density of HMA bridge courses by density gauge will be as specified in Table 450.74-1.

(6) Thickness.

Each HMA pavement course specified to be placed at a compacted thickness of 1 in. or greater, with the exception of the HMA pavement courses identified in 450.65: Quality Control Sampling and Testing Requirements, Part F(9), will be tested by the Engineer for Thickness using cores. Acceptance sampling and testing for Thickness of the applicable pavement courses shall be in accordance with AASHTO R 67 and ASTM D3549, respectively. The Sublot size and minimum frequency of Acceptance testing for Thickness will be as specified in Table 450.74-1.

If the mean thickness of the Lot is above the Upper Specification Limit, it may remain in place presuming that the final pavement elevation is within project requirements, but payment will be based upon the HMA tonnage calculated at the target thickness. If the mean thickness of the Lot is below the Lower Specification Limit, the Lot shall be rejected, and the Contractor will be required to submit a corrective action plan for review by the Engineer.

(7) Ride Quality.

Department Acceptance testing for Ride Quality will be required for all projects having a posted speed equal to or greater than 40 mph with HMA Lots falling under Lot Category A or Category B. The Engineer will perform Ride Quality testing on the final HMA pavement course placed (either Surface Course or OGFC, when specified) for all mainline travel lanes, auxiliary lanes, ramps, and side road travel lanes using an inertial profiler in accordance with the procedures outlined in 450.65: Quality Control Sampling and Testing Requirements, Part F(11). Pavement courses and surfaces that are specifically excluded from Acceptance testing for Ride Quality are as specified in 450.65: Quality Control Sampling and Testing Requirements, Part F(11)(b). The Sublot size and minimum frequency of Acceptance testing for Ride Quality will be as specified in Table 450.74-1.

The inertial profiler equipment used to perform Acceptance testing will be certified and correlated by the Department in accordance with the requirements and procedures outlined in 450.65: Quality Control Sampling and Testing Requirements, Part F(11). The Department Acceptance data and Contractor QC data will be correlated and normalized using statistical procedures. The
normalization of data will be based on the measurement difference/bias from the Department Reference Profiling Device determined during the device correlation conducted at MassDOT’s designated Profiler Correlation Center. The Department will provide software and procedures to perform the data normalization. The normalized Acceptance Ride Quality data and QC Ride Quality data will be used to determine the quality level (PWL) and corresponding pay for each Lot.

450.75: Split Sample Correction

Split Sample Correlation is an important part of the Department Acceptance System for HMA Category A Lots and Category B Lots. Split Sample Correlation shall be performed when Validated Contractor QC test data is to be included in the acceptance determination. The purpose of Split Sample Correlation testing is to identify and eliminate any discrepancies in testing procedures or equipment that could result in significant differences between the Contractor’s QC testing results and the Engineer’s Acceptance testing results. The Engineer may waive the requirement for Split Sample Correlation if the following requirements are met:

a) The Contractor and the Department have successfully completed correlation on another project within the same calendar year in accordance with the Split Sample Correlation procedures below.

b) The Contractor’s most recent Category A Lot(s) or Category B Lot(s) on the other project(s) during the same calendar year have a Quality Level of 90 PWL or better (for each Quality Characteristic).

Either prior to or on the first day of production and placement of any HMA Category A or B Lot, the Contractor and the Department will conduct Split Sample Correlation. The Engineer or the Contractor may also request that Split Sample Correlation be performed at any time during HMA Lot production and placement. Department IA personnel may also test a split of the Correlation samples.

Split Sample Correlation will be performed on split material samples for those Quality Characteristics identified in Table 450.75-1. Correlation samples for HMA mixture testing shall be either laboratory prepared specimens or plant produced HMA specimens. Samples for HMA Category A Lots may be obtained from the Control Strip Lot. The Contractor’s QC personnel shall test one portion of the split sample using the equipment in their qualified QC laboratory. The Engineer shall test the other portion using the Department’s equipment. Both parties shall not perform testing using the same equipment.

Correlation testing for In-place HMA Mat Density and Thickness shall be performed by both parties using the same sample. Correlation testing of the Contractor’s QC ride quality testing equipment and the Department’s Acceptance ride quality testing equipment will be performed in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part F(11)(d).
II.163 2020 Edition

Table 450.75-1: Split Sample Correlation Allowable Differences

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method(s)</th>
<th>Allowable Difference Between Contractor and Department Split Samples (d2s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG Asphalt Binder Content</td>
<td>AASHTO T 308</td>
<td>± 0.35</td>
</tr>
<tr>
<td>Maximum Theoretical Specific Gravity (Gmm)</td>
<td>AASHTO T 209 (Method A)</td>
<td>± 0.020</td>
</tr>
<tr>
<td>Bulk Specific Gravity (Gmb)</td>
<td>AASHTO T 166 (Method A)</td>
<td>± 0.020</td>
</tr>
<tr>
<td>Volumetrics - Air Voids</td>
<td>AASHTO T 269</td>
<td>± 1.20</td>
</tr>
<tr>
<td>In-Place Mat Density (Cores)</td>
<td>AASHTO T 269</td>
<td>± 1.20</td>
</tr>
<tr>
<td>Thickness</td>
<td>ASTM D3549</td>
<td>± 0.125</td>
</tr>
<tr>
<td>Ride Quality (IRI)</td>
<td>AASHTO R 56</td>
<td>Per 450.65: Quality Control Sampling and Testing Requirements, Part F(11)(d)</td>
</tr>
</tbody>
</table>

If the Contractor’s Split Sample Correlation results differ from the Department’s results by more than the allowable differences specified in Table 450.75-1, then the Contractor and the Department shall determine and resolve the reasons for the differences prior to the start or continuation of HMA Lot production and placement.

450.76: Lot Acceptance Determination Based on Inspection Results

The Department’s Acceptance Inspection results will be used in the final acceptance determination for all HMA Lots (Lot Category A, B, and C). Prior to final acceptance of each HMA Lot produced and placed, the Department will periodically evaluate all Acceptance inspection information for the prepared underlying surface and the Lot. The materials and product workmanship for the completed work will be evaluated for conformance with the plans and the requirements specified in 450.43: Preparation of Underlying Surface through 450.52: Opening to Traffic.

When the Acceptance information identifies deficiencies in either material quality or product workmanship for any underlying surface location or HMA Sublot(s), the location or Sublot(s) will be isolated and further evaluated by the Engineer through additional Acceptance inspection (or sampling and testing, if relevant or possible). Depending upon the findings of the additional Acceptance inspection activity, the Engineer will determine the disposition of the nonconforming work in accordance with Subsection 5.03: Conformity with Plans and Specifications.

After each HMA Lot (and corresponding prepared underlying surface) is complete, including any corrective action, the Engineer will evaluate all Acceptance inspection information for the Work. The Department will accept the subject Work if the Engineer’s evaluation of all inspection information for the completed Lot (and underlying surface) indicates that the corresponding materials and product workmanship meet the specified requirements (provided the evaluation of all Acceptance testing data for the subject work per 450.77: Lot Acceptance Determination Based on Testing Data also finds the work to be acceptable).
450.77: Lot Acceptance Determination Based on Testing Data

Prior to final acceptance of each HMA Category A Lot produced and placed, the Engineer will periodically evaluate all available Department Acceptance testing data for the Lot.

The Contractor's random QC testing data for each Lot will be included with the Department's random Acceptance testing data in the acceptance determination, provided that the QC data has been Validated in accordance with Paragraph (1) below. The Department's Acceptance data and all Validated Contractor QC data will be evaluated using the Quality Limits specified in Tables 450.77-1, 450.77-2, or 450.77-3, and as further outlined below.

(1) Validation of Contractor QC Test Results.

Validation is defined as the mathematical comparison of two independently obtained sets of data to determine whether it can be assumed they came from the same Population. The Validation of each HMA Lot will be performed through a statistical comparison of the Engineer's random Acceptance testing data and the Contractor's random QC testing data for the Lot.

The statistical comparison of testing data will be made using the test result Variances (F-test) and the test result Means (t-test) at a significance level of 0.01 and in accordance with the procedures contained in AASHTO R 9. The Validation worksheet in the Department's QA Data Spreadsheets will be used to perform the Validation of each Lot.

If the Validation results indicate that the Contractor's QC test results and the Department’s Acceptance test results can be assumed to be from the same Population, then the Contractor’s QC test results will be included with the Department’s Acceptance test results in the final acceptance determination for each Lot. If Validation results indicate that the Contractor's QC test results and the Department’s Acceptance test results cannot be assumed to be from the same Population, then the Contractor's QC test results will be excluded from the final acceptance determination for the Lot and no incentive will be paid for any of the Quality Characteristics.

If the Validation results indicate that the Contractor's QC test results and the Department’s Acceptance test results cannot be assumed to be from the same Population, then the Department will endeavor to determine the reason for the difference between the two data sets. If a reason for the difference cannot be determined, then only the Department’s Acceptance test results will be used in the final acceptance determination for each Lot.

(2) Conformance with Engineering Limits.

The Engineer will evaluate all Department Acceptance testing data and Validated Contractor QC testing data for each Category A Lot to determine conformance with the Engineering Limits Tables 450.77-1, 450.77-2, or 450.77-3. Each Sublot test value for the Acceptance Quality Characteristics identified in Tables 450.77-1, 450.77-2, or 450.77-3 shall be within the Engineering Limits.

If a Sublot test result is outside of the Engineering Limits, the QC Manager and Engineer will further assess the Sublot quality to determine whether the material in the Sublot can remain in place as follows:
a) When it is possible to obtain additional samples, the Sublot will be isolated and divided into three equal Sublots. A random sample shall be obtained from each Sublot.
 i. If any of the additional samples are outside of the Engineering Limits the Sublot will be rejected and the Contractor will be required to submit a corrective action plan for review by the Engineer.
 ii. If all 3 samples are within Engineering Limits then the average of the original value along with the three additional values will be determined.
 (a) If the average of the 4 results is found to be within the Engineering Limits, the Sublot will be considered acceptable and the average of all four values will replace the original value in the QLA for the Sublot.
 (b) If the average of the 4 results is found to not be within the Engineering Limits, the Sublot will be considered rejected and the Contractor will be required to submit a corrective action plan for review by the Engineer.

b) If it is not possible to obtain additional samples, the Engineer will determine the disposition of the Sublot in accordance with Subsection 5.03: Conformity with Plans and Specifications. If the Engineer’s assessment determines that the material quality is sufficient to permit the Sublot to remain in place without corrective action, the Engineer shall request a credit for that Sublot. In addition, the original out of Engineering Limits test result will be included in the QLA for the Lot in accordance with 450.77: Lot Acceptance Determination Based on Testing Data, Part A(3) below.

If the Engineer’s assessment determines that the material quality is not sufficient to permit the Sublot to remain in place the Sublot shall be removed and replaced. When a nonconforming Sublot is corrected or replaced, the Engineer will perform Acceptance testing of the Sublot and evaluate the test results for conformance with the Engineering Limits. The Acceptance test data for the corrected Sublot will replace the original Acceptance test result and will be included in the QLA for the Lot in accordance with Paragraph (3) below. Once the above requirements have been met, the Department will accept all completed Sublots, provided that the overall Lot quality is above the Acceptance Limit as further outlined below.

(3) Analysis of Lot Quality Level.

For each HMA Category A Lot, the Engineer will determine the Lot Quality Level, for the applicable Quality Characteristics in Tables 450.77-1, 450.77-2, or 450.77-3, using the QLA procedures outlined in 450.78: Quality Level Analysis Procedures. The QLA procedure will evaluate all Department Acceptance testing data and Validated Contractor QC testing data using the applicable Specification Limits in Tables 450.77-1, 450.77-2, or 450.77-3. The Department’s QA Data Spreadsheets will be used to perform the QLA for each Lot.

All random test results that are within the Engineering Limits will be included in the QLA. Individual Sublot test results that are beyond the Engineering Limits, but for which the corresponding Sublot is permitted to remain in place per Paragraph (2) above, will also be included in the QLA.

The QLA procedure will determine the Percent Within Limits (PWL) for each Lot. The Acceptance Limit (Rejectable Quality Level) for each completed Lot is 60 PWL. Each Lot must achieve a final Quality Level of at least 60 PWL in order to be accepted by the Department. The payment for the Lot will be as follows:
a) If the final computed Lot Quality Level for each of the applicable Quality Characteristics in Tables 450.77-1, 450.77-2, or 450.77-3 is at 90 PWL, the Contractor will receive full payment at the unit bid price for the Lot.

b) If the Lot Quality Level for an individual Quality Characteristic is greater than 90 PWL, the Contractor will receive an incentive pay adjustment for the Lot in accordance with 450.92: Pay Adjustment.

c) If the Lot Quality Level for an individual Quality Characteristic is less than 90 PWL but greater than or equal to 60 PWL, the Contractor will receive a disincentive pay adjustment for the Lot.

d) If the Lot Quality Level for any Quality Characteristic in Tables 450.77-1, 450.77-2, or 450.77-3 is below 80 PWL, the Contractor will receive no incentive pay adjustments for any Quality Characteristics with a PWL over 90. The Contractor, however, will receive any disincentive pay adjustments for the Lot.

e) If the final computed Lot Quality Level for an individual Quality Characteristic is below 60 PWL, the Lot will not be accepted. Payment for the Lot will be withheld, and the Contractor shall submit a corrective action plan within 14 days following determination of the Lot PWL. The Engineer will review the corrective action plan and render a decision within 14 days of receipt of the corrective action plan. If the Engineer determines that the Lot or some of the Sublots cannot remain in place, the Contractor shall remove and replace the affected Lot or Sublots. If the Engineer allows the Lot to remain in place, payment will be limited to a maximum of 75% of the bid price for the item.

(4) Final Lot Acceptance Determination.

After each HMA Category A Lot is complete, including any corrective action, the Engineer will perform a final evaluation of all Department Acceptance data and Validated Contractor QC data for the Lot. The Department will accept the subject Lot if the Engineer’s evaluation of all testing data for the Lot is in conformance with the applicable Quality Limits as outlined in 450.77: Lot Acceptance Determination Based on Testing Data, Part A(2) and Part A(3) above.
<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Target</th>
<th>Specification Limits</th>
<th>Engineering Limits</th>
<th>Acceptance Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LSL</td>
<td>USL</td>
<td>LEL/UEL</td>
</tr>
<tr>
<td>PG Asphalt Binder Grading</td>
<td>Per Binder Grade specified</td>
<td>N/A</td>
<td>N/A</td>
<td>Per M3.01.0: Performance Graded Asphalt Binder</td>
</tr>
<tr>
<td>PG Asphalt Binder Content</td>
<td>Per JMF</td>
<td>Target – 0.3%</td>
<td>Target + 0.3%</td>
<td>Target – 0.4%</td>
</tr>
<tr>
<td>Volumetrics: Air Voids</td>
<td>4%</td>
<td>2.7%</td>
<td>5.3%</td>
<td>2%</td>
</tr>
<tr>
<td>In-Place HMA Mat Density (Cores)</td>
<td>95% of G_{mm}</td>
<td>92.5% of G_{mm}</td>
<td>97.5% of G_{mm}</td>
<td>91.5% of G_{mm}</td>
</tr>
<tr>
<td>In-Place HMA Mat Density (Bridge Courses)</td>
<td>95% of G_{mm}</td>
<td>N/A</td>
<td>N/A</td>
<td>90% of G_{mm}</td>
</tr>
<tr>
<td>Thickness: (All Courses 1 in. or greater)</td>
<td>Per Plans</td>
<td>-20% of Target Thickness</td>
<td>+20% of Target Thickness</td>
<td>-30% of Target Thickness</td>
</tr>
<tr>
<td>Ride Quality: Posted Speed Limit ≥55 mph (See Note 1)</td>
<td>50 in./mi</td>
<td>N/A</td>
<td>70 in./mi</td>
<td>N/A</td>
</tr>
<tr>
<td>Ride Quality: Posted Speed Limit ≥40 but <55 mph (See Note 1)</td>
<td>70 in./mi</td>
<td>N/A</td>
<td>100 in./mi</td>
<td>N/A</td>
</tr>
<tr>
<td>Ride Quality: Posted Speed Limit <40 mph</td>
<td></td>
<td></td>
<td></td>
<td>Not subject to Ride Quality Testing</td>
</tr>
</tbody>
</table>

Note 1: Projects with posted speed limits that fall into more than one of the Posted Speed Limit ranges above will be divided into multiple Lots and evaluated separately.
<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Target</th>
<th>Specification Limits</th>
<th>Engineering Limits</th>
<th>Acceptance Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LSL</td>
<td>USL</td>
<td>LEL</td>
</tr>
<tr>
<td>PG Asphalt Binder Grading</td>
<td>Per Binder Grade specified</td>
<td>N/A</td>
<td>N/A</td>
<td>Per ASTM D6114</td>
</tr>
<tr>
<td>PG Asphalt Binder Content</td>
<td>Per JMF</td>
<td>Target – 0.4%</td>
<td>Target + 0.4%</td>
<td>Target – 0.6%</td>
</tr>
<tr>
<td>Volumetrics: Air Voids</td>
<td>Per JMF</td>
<td>Target – 1.3%</td>
<td>Target + 1.3%</td>
<td>Target – 2.0%</td>
</tr>
<tr>
<td>In-Place HMA Mat Density (Cores)</td>
<td>95% of G<sub>mm</sub></td>
<td>92.5% of G<sub>mm</sub></td>
<td>97.5% of G<sub>mm</sub></td>
<td>91.5% of G<sub>mm</sub></td>
</tr>
<tr>
<td>In-Place HMA Mat Density (Bridge Courses)</td>
<td>95% of G<sub>mm</sub></td>
<td>N/A</td>
<td>N/A</td>
<td>90% of G<sub>mm</sub></td>
</tr>
<tr>
<td>Thickness: (All Courses 1 in. or greater)</td>
<td>Per Plans</td>
<td>-20% of Target Thickness</td>
<td>+20% of Target Thickness</td>
<td>-30% of Target Thickness</td>
</tr>
<tr>
<td>Ride Quality: Posted Speed Limit ≥55 mph</td>
<td>50 in./mi</td>
<td>N/A</td>
<td>70 in./mi</td>
<td>N/A</td>
</tr>
<tr>
<td>(See Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ride Quality: Posted Speed Limit ≥40 but <55 mph (See Note 1)</td>
<td>70 in./mi</td>
<td>N/A</td>
<td>100 in./mi</td>
<td>N/A</td>
</tr>
<tr>
<td>Ride Quality: Posted Speed Limit <40 mph</td>
<td></td>
<td></td>
<td>Not subject to Ride Quality Testing</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Projects with posted speed limits that fall into more than one of the Posted Speed Limit ranges above will be divided into multiple Lots and evaluated separately.
Table 450.77-3: Quality Limits for Acceptance of OGFC Lots

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Target</th>
<th>Specification Limits</th>
<th>Engineering Limits</th>
<th>Acceptance Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LSL</td>
<td>USL</td>
<td>LEL</td>
</tr>
<tr>
<td>PG Asphalt Binder Grading</td>
<td>Per Binder Grade specified</td>
<td>N/A</td>
<td>N/A</td>
<td>Per ASTM D6114</td>
</tr>
<tr>
<td>PG Asphalt Binder Content (OGFC-P)</td>
<td>Per JMF</td>
<td>Target – 0.3%</td>
<td>Target + 0.3%</td>
<td>Target – 0.4%</td>
</tr>
<tr>
<td>PG Asphalt Binder Content (OGFC-AR)</td>
<td>Per JMF</td>
<td>Target – 0.4%</td>
<td>Target + 0.4%</td>
<td>Target – 0.6%</td>
</tr>
<tr>
<td>Volumetrics: Air Voids</td>
<td>Per JMF</td>
<td>Target – 2%</td>
<td>Target + 2%</td>
<td>Target – 3%</td>
</tr>
<tr>
<td>Ride Quality: Posted Speed Limit ≥55 mph (See Note 1)</td>
<td>50 in./mi</td>
<td>N/A</td>
<td>70 in./mi</td>
<td>N/A</td>
</tr>
<tr>
<td>Ride Quality: Posted Speed Limit ≥40 but <55 mph (See Note 1)</td>
<td>70 in./mi</td>
<td>N/A</td>
<td>100 in./mi</td>
<td>N/A</td>
</tr>
<tr>
<td>Ride Quality: Posted Speed Limit <40 mph</td>
<td></td>
<td>Not subject to Ride Quality Testing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Projects with posted speed limits that fall into more than one of the Posted Speed Limit ranges above will be divided into multiple Lots and evaluated separately.

Prior to final acceptance of each HMA Category B Lot produced and placed, the Engineer will periodically evaluate all available Department Acceptance testing data for the Lot.

The Contractor’s random QC testing data for each Lot will be included with the Department’s random Acceptance testing data in the acceptance determination, provided that the QC data has been Validated. The Department’s Acceptance data and all Validated Contractor QC data will be evaluated for conformance with Engineering Limits and for Lot Quality Level in accordance with the requirements of 450.77: Lot Acceptance Determination Based on Testing Data, Part A above using the applicable Quality Limits specified in Tables 450.77-1, 450.77-2, or 450.77-3.

After each HMA Category B Lot is complete, including any corrective action, the Engineer will perform a final evaluation of all Department Acceptance data and Validated Contractor QC data for the Lot. The Department will accept the subject Lot if the Engineer’s evaluation of all testing data for the Lot is in conformance with the applicable Quality Limits.

C. Evaluation of Lot Category C Testing Data.

For each HMA Category C Lot produced and placed, the Engineer will evaluate all Department Acceptance testing data for the Lot entered into the Department’s QA Data Spreadsheets after all HMA Sublots are complete in-place. The Contractor’s random QC testing data for each Lot will not be included with the Department’s random Acceptance testing data in the Acceptance...
determination. Work under HMA Lot Category C will not be subject to an evaluation of Lot Quality Level using QLA procedures.

The individual Sublot test results for each HMA Category C Lot will be evaluated against the applicable Specification Limits contained in Tables 450.77-1, 450.77-2, or 450.77-3 (Note: the Engineering Limits are not applied since the inherent variability for Minor Lot quantities is expected to be within the Specification Limits). For Sublots which are outside of the Specification Limits a credit shall be calculated using the following formula:

When below LSL:
\[\text{Disincentive Value} = (LSL - x_i) \times 0.05 \times Q \times P \]

When above USL:
\[\text{Disincentive Value} = (x_i - USL) \times 0.05 \times Q \times P \]

Where:
- \(LSL \) = Lower Specification Limit for the particular Quality Characteristic
- \(USL \) = Upper Specification Limit for the particular Quality Characteristic
- \(x_i \) = Individual Sublot test result
- \(Q \) = Sublot quantity
- \(P \) = Item bid price per ton

If a Sublot test result is outside of the Engineering Limits, the Engineer will further assess the Sublot quality in accordance with the requirements of 450.77: Lot Acceptance Determination Based on Testing Data, Part A(2). The Engineer will determine the disposition of the Sublot in accordance with Subsection 5.03: Conformity with Plans and Specifications.

After each HMA Category C Lot is complete, including any corrective action, the Engineer will perform a final evaluation of all Department Acceptance data. The Department will accept the subject Lot if the Engineer's evaluation of the testing data for each Sublot is in conformance with the Engineering Limits.

450.78: Quality Level Analysis Procedures

For each Quality Characteristic subject to analysis of Lot Quality Level, QLA will be used to determine the percentage of the Lot that is within the Specification Limits. The number of significant figures retained in each step of the QLA calculations and the rounding of all reported values will be as established in the Department’s QA Data Spreadsheets. The estimated percentage of work that is within the Specification Limits for a given Lot will be determined as follows:

A. Step 1 – Determine Lot Mean.

The Mean \((X) \) will be determined for each Lot using all random Department Acceptance sample test values and all random Contractor QC sample test values (provided they have been Validated). The Mean is calculated using the following equation:

\[X = \frac{\sum x}{n} \]

Where:
- \(\sum \) = summation of
- \(x \) = individual test value of each material sample
- \(n \) = total number of material samples tested
B. **Step 2 – Determine Lot Standard Deviation.**

The Standard Deviation (s) will be determined for each Lot using all random Department Acceptance sample test values and all random Contractor QC sample test values (provided they have been Validated). The Standard Deviation is calculated using the following equation:

$$s = \sqrt{\frac{n \sum(x^2) - (\sum x)^2}{n(n - 1)}}$$

Where:

- $\sum(x^2) =$ summation of the squares of individual test values
- $(\sum x)^2 =$ summation of the individual test values squared

C. **Step 3 – Determine Upper Quality Index for Lot.**

The Upper Quality Index (Q_u) will be determined for each Lot using the Lot Mean and Lot Standard Deviation calculated in Step 1 and Step 2 above. The Upper Quality Index is calculated using the following equation:

$$Q_u = \frac{USL - X}{s}$$

Where:

- $USL =$ Upper Specification Limit from Tables 450.77-1, 450.77-2, or 450.77-3
- $X =$ Lot Mean
- $s =$ Lot Standard Deviation

D. **Step 4 – Determine Lower Quality Index for Lot.**

The Lower Quality Index (Q_L) will be determined for each Lot using the Lot Mean and Lot Standard Deviation calculated in Step 1 and Step 2 above. The Lower Quality Index is calculated using the following equation:

$$Q_L = \frac{X - LSL}{s}$$

Where:

- $LSL =$ Lower Specification Limit from Tables 450.77-1, 450.77-2, or 450.77-3
- $X =$ Lot Mean
- $s =$ Lot Standard Deviation

E. **Step 5 – Determine Percentage of Lot Below Upper Specification Limit.**

The estimated percentage of the Lot falling below the Upper Specification Limit (P_{LU}) will be determined using Table 450.78-1. The P_{LU} value is determined from the table by entering the column for the number of material samples (n) representing the Lot and locating the row that corresponds to the Q_u value determined in Step 3 above. If no USL is specified in Table 450.78-1, the P_{LU} value is equal to 100.

F. **Step 6 – Determine Percentage of Lot Above Lower Specification Limit.**

The estimated percentage of the Lot falling above the Lower Specification Limit (P_{L}) will be determined using Table 450.78-1. The P_{L} value is determined from the table by entering the column for the number of material samples (n) representing the Lot and locating the row that corresponds
to the Q_L value determined in Step 4 above. If no LSL is specified in Table 450.78-1, the P_L value is equal to 100.

G. Step 7 – Determine Estimated PWL for Lot.

The Lot Quality Level will be determined by estimating the PWL. The PWL is determined using the P_U value from Step 5 and the P_L value from Step 6 above. The PWL is calculated using the following equation:

$$PWL = (P_U + P_L) - 100$$
Massachusetts Department of Transportation – Highway Division
Standard Specifications for Highways and Bridges

Table 450.78-1: Values for Estimating Percent of Lot Within Specification Limits
Pu or
Pl

(%)(1)

n=3

n=4

n=5

n=6

Upper Quality Index (QU) or Lower Quality Index (QL)
n=7
n=8
n=9
n=10 n=12 n=15 n=19
to
to
to
to
n=11 n=14 n=18 n=25

n=26
to
n=37

n=38
to
n=69

n≥
70,
≤200

100
1.16 1.50 1.79 2.03 2.23 2.39 2.53 2.65 2.83 3.03 3.20 3.38 3.54 3.70
99
1.47 1.67 1.80 1.89 1.95 2.00 2.04 2.09 2.14 2.18 2.22 2.26 2.29
98
1.15 1.44 1.60 1.70 1.76 1.81 1.84 1.86 1.91 1.93 1.96 1.99 2.01 2.03
97
1.41 1.54 1.62 1.67 1.70 1.72 1.74 1.77 1.79 1.81 1.83 1.85 1.86
96
1.14 1.38 1.49 1.55 1.59 1.61 1.63 1.65 1.67 1.68 1.70 1.71 1.73 1.74
95
1.35 1.44 1.49 1.52 1.54 1.55 1.56 1.58 1.59 1.61 1.62 1.63 1.63
94
1.13 1.32 1.39 1.43 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55
93
1.29 1.35 1.38 1.40 1.41 1.42 1.43 1.44 1.44 1.45 1.46 1.46 1.47
92
1.12 1.26 1.31 1.33 1.35 1.36 1.36 1.37 1.37 1.38 1.39 1.39 1.40 1.40
91
1.11 1.23 1.27 1.29 1.30 1.30 1.31 1.31 1.32 1.32 1.33 1.33 1.33 1.34
90
1.10 1.20 1.23 1.24 1.25 1.25 1.26 1.26 1.26 1.27 1.27 1.27 1.28 1.28
89
1.09 1.17 1.19 1.20 1.20 1.21 1.21 1.21 1.21 1.22 1.22 1.22 1.22 1.22
88
1.07 1.14 1.15 1.16 1.16 1.16 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17
87
1.06 1.11 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.13
86
1.04 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08
85
1.03 1.05 1.05 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04
84
1.01 1.02 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99
83
1.00 0.99 0.98 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.95
82
0.97 0.96 0.95 0.94 0.93 0.93 0.93 0.92 0.92 0.92 0.92 0.92 0.92 0.92
81
0.96 0.93 0.91 0.90 0.90 0.89 0.89 0.89 0.89 0.88 0.88 0.88 0.88 0.88
80
0.93 0.90 0.88 0.87 0.86 0.86 0.86 0.85 0.85 0.85 0.85 0.84 0.84 0.84
79
0.91 0.87 0.85 0.84 0.83 0.82 0.82 0.82 0.82 0.81 0.81 0.81 0.81 0.81
78
0.89 0.84 0.82 0.80 0.80 0.79 0.79 0.79 0.78 0.78 0.78 0.78 0.77 0.77
77
0.87 0.81 0.78 0.77 0.76 0.76 0.76 0.75 0.75 0.75 0.75 0.74 0.74 0.74
76
0.84 0.78 0.75 0.74 0.73 0.73 0.72 0.72 0.72 0.71 0.71 0.71 0.71 0.71
75
0.82 0.75 0.72 0.71 0.70 0.70 0.69 0.69 0.69 0.68 0.68 0.68 0.68 0.68
74
0.79 0.72 0.69 0.68 0.67 0.66 0.66 0.66 0.66 0.65 0.65 0.65 0.65 0.64
73
0.76 0.69 0.66 0.65 0.64 0.63 0.63 0.63 0.62 0.62 0.62 0.62 0.62 0.61
72
0.74 0.66 0.63 0.62 0.61 0.60 0.60 0.60 0.59 0.59 0.59 0.59 0.59 0.58
71
0.71 0.63 0.60 0.59 0.58 0.57 0.57 0.57 0.57 0.56 0.56 0.56 0.56 0.55
70
0.68 0.60 0.57 0.56 0.55 0.55 0.54 0.54 0.54 0.53 0.53 0.53 0.53 0.53
69
0.65 0.57 0.54 0.53 0.52 0.52 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50
68
0.62 0.54 0.51 0.50 0.49 0.49 0.48 0.48 0.48 0.48 0.47 0.47 0.47 0.47
67
0.59 0.51 0.47 0.47 0.46 0.46 0.46 0.45 0.45 0.45 0.45 0.44 0.44 0.44
66
0.56 0.48 0.45 0.44 0.44 0.43 0.43 0.43 0.42 0.42 0.42 0.42 0.41 0.41
65
0.52 0.45 0.43 0.41 0.41 0.40 0.40 0.40 0.40 0.39 0.39 0.39 0.39 0.39
64
0.49 0.42 0.40 0.39 0.38 0.38 0.37 0.37 0.37 0.37 0.36 0.36 0.36 0.36
63
0.46 0.39 0.37 0.36 0.35 0.35 0.35 0.34 0.34 0.34 0.34 0.34 0.33 0.33
62
0.43 0.36 0.34 0.33 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.31
61
0.39 0.33 0.31 0.30 0.30 0.29 0.29 0.29 0.29 0.29 0.28 0.28 0.28 0.28
60
0.36 0.30 0.28 0.27 0.27 0.27 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.25
59
0.32 0.27 0.25 0.25 0.24 0.24 0.24 0.24 0.23 0.23 0.23 0.23 0.23 0.23
58
0.29 0.24 0.23 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.20 0.20 0.20 0.20
57
0.25 0.21 0.20 0.19 0.19 0.19 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
56
0.22 0.18 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15
55
0.18 0.15 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
54
0.14 0.12 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
53
0.11 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
52
0.07 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
51
0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
50
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
If the calculated value of QU or QL does not correspond exactly to a value in the table, use the next lower value.
If QU or QL are negative values, PU or PL is equal to 100 minus the table value for PU or PL.
(1) PU or PL = PWL for positive values of QU or QL.

II.173

n≥
201

3.83
2.31
2.05
1.87
1.75
1.64
1.55
1.47
1.40
1.34
1.28
1.23
1.17
1.13
1.08
1.04
0.99
0.95
0.92
0.88
0.84
0.81
0.77
0.74
0.71
0.67
0.64
0.61
0.58
0.55
0.52
0.50
0.47
0.44
0.41
0.39
0.36
0.33
0.31
0.28
0.25
0.23
0.20
0.18
0.15
0.13
0.10
0.08
0.05
0.02
0.00

2020 Edition


450.80: Disputable Items

The Contractor or the Department may dispute any of the test values that are utilized in the acceptance determination for a given Lot. The specific Quality Characteristics which may be disputed are as listed in Table 450.84-1 below. All disputes shall be initiated within the 30-day split sample retention time limit as specified in 450.82: Dispute Resolution Samples below.

450.81: Basis for Dispute

Differences from one individual Contractor QC test value to another (or from one individual Department Acceptance test value to another) within a Lot are expected due to inherent variability. Differences are also expected between the QC test values and the Acceptance values for a given Lot as a result of inherent variability. An individual QC test value cannot be directly compared to an individual Acceptance test value since the samples are randomly obtained independent of one another. However, if one or more of either the Contractor’s random QC test values or Department’s random Acceptance test values for a Lot significantly differs from the rest of the test values for the same Lot, either party may dispute the validity of an individual test value.

450.82: Dispute Resolution Samples

Samples used for Dispute Resolution testing shall be the split samples required to be retained for 30 days by the Contractor and the Department in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part D and 450.74: Acceptance Sampling & Testing, Part E. Original cores are to be retained and shall be protected from damage. If In-place density or thickness is disputed, then the original core, unless damaged, will be used in the Dispute Resolution process. If the original disputed core is damaged, then a new core shall be obtained from within a 2-ft radius of the location of the original core by the party whose data is being disputed in the presence of the other party. If ride quality smoothness test data is disputed, then the disputed Sublot(s) shall be re-sampled/retested by the party whose data is being disputed in the presence of the other party.

450.83: Dispute Resolution Process

The Contractor may dispute the Department’s Acceptance results and the Department may dispute the Contractor’s QC results by requesting that the dispute resolution split sample be tested. Such a request, either from the Contractor or the Department, must be made in writing within 5 days after the original sample was tested. The following shall be provided in the written request:

a) Sample reference number, including Lot and Sublot.
b) The specific Quality Characteristic and test result(s) being disputed.
c) The complete NETTCP TRF containing the disputed results.

RMS shall act as the Arbitrator in all disputes related to the specific Quality Characteristics listed in Table 450.84-1. Once RMS receives the written request, they shall review the dispute and determine the Final Disposition. RMS will perform Dispute Resolution testing or evaluation to resolve the dispute. RMS’s decision will be final. RMS will determine which of the following steps will be completed as part of the Dispute Resolution Process.
A. **Step 1 – Split Sample Correlation.**

Immediately prior to conducting testing for Dispute Resolution, the Contractor’s QC testing personnel, the Department’s Acceptance testing personnel (from the District), and a Department Independent Assurance technician will conduct Split Sample Correlation testing as detailed in 450.75: Split Sample Correction. Split Sample Correlation testing will be conducted on a separate material sample obtained independent from the original sample and the Dispute Resolution sample.

The purpose of the Split Sample Correlation testing is to determine if testing procedures or equipment utilized by the Contractor or the Department might be the cause of the disputed result(s).

B. **Step 2 – Dispute Resolution Sample Testing.**

RMS will test the Dispute Resolution split sample obtained per 450.82: Dispute Resolution Samples. Testing of the Dispute Resolution split sample shall be performed in the presence of both the Contractor and the Department.

C. **Step 3 – Additional Dispute Resolution Testing.**

If either the Contractor or the Department believes that the results of the Dispute Resolution split sample testing in Step 2 above do not conclusively resolve the dispute, additional sampling and testing within the disputed Sublot may be requested. In such case, RMS will obtain and test three random samples from the disputed Sublot. The Mean of the three test results will be used as the Dispute Resolution test value.

450.84: Final Disposition

If the difference between the original test value and the Dispute Resolution test value (as determined under either Step 2 or Step 3 above) is within the maximum test difference values listed in Table 450.84-1, then the original test value will be used in the Acceptance determination for the Lot. If the difference between the original test value and the Dispute Resolution test value exceeds the maximum difference values in Table 450.84-1, then the Dispute Resolution test value will be used in the Acceptance determination. In such case, the record of the original test value will be retained (with notation of the outcome of Dispute Resolution); however, it will not be used in calculating the Lot quality level.
Table 450.84-1: Dispute Resolution Maximum Test Difference Values

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method(s)</th>
<th>Maximum Test Difference (d2s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG Asphalt Binder Content</td>
<td>AASHTO T 308</td>
<td>±0.35</td>
</tr>
<tr>
<td>Maximum Theoretical Specific Gravity (G_{mm})</td>
<td>AASHTO T 209 (Method A)</td>
<td>±0.020</td>
</tr>
<tr>
<td>Bulk Specific Gravity (G_{mb})</td>
<td>AASHTO T 166 (Method A)</td>
<td>±0.020</td>
</tr>
<tr>
<td>Volumetrics - Air Voids</td>
<td>AASHTO T 269</td>
<td>±1.20</td>
</tr>
<tr>
<td>In-Place Mat Density (Cores)</td>
<td>AASHTO T 269</td>
<td>±1.20</td>
</tr>
<tr>
<td>Thickness</td>
<td>ASTM D3549</td>
<td>±0.125</td>
</tr>
<tr>
<td>Ride Quality (IRI)</td>
<td>AASHTO R 56</td>
<td>Per 450.65: Quality Control Sampling and Testing Requirements, Part F(11)(d)</td>
</tr>
</tbody>
</table>

COMPENSATION

450.90: Method of Measurement

A. **Patching.**

HMA for Patching will be measured for payment by the ton and shall be the actual quantity complete, in place and accepted by the Engineer.

B. **Tack Coat.**

Asphalt Emulsion for Tack Coat, as required by the plans or these specifications, will be measured by the gallon.

C. **Joint Sealer.**

HMA Joint Sealant used for sealing all longitudinal joints and transverse joints in HMA pavement courses will be measured by the foot.

D. **Hot Mix Asphalt.**

Hot Mix Asphalt pavement course mixtures will be measured by the ton and shall be the actual pavement course quantity complete, in place, and accepted by the Engineer. The quantity shall be determined only by weight slips that have been properly countersigned by the Engineer at the time of delivery.

When it is determined that the mean thickness of the pavement is not in conformance with the specification limit thicknesses, as specified under 450.74: Acceptance Sampling & Testing, Part F(6), the quantity shall be determined based on the actual pavement course quantity complete, in place, at the target thickness specified on the plans and accepted by the Engineer. Material quantity above the target thickness shall not be considered for payment.
450.91: Basis of Payment

A. Patching.

HMA for Patching will be paid for at the contract unit price per ton of the HMA mixture type specified under Pay Item 451. Payment shall include all sawcutting, removal of existing distressed or unsound pavement, applying hot poured joint sealer to vertical faces, applying the tack coat to all required surfaces at the specified rate in accordance with 450.43: Preparation of Underlying Surface, Part G, and transportation, delivery, placement, and compaction of HMA for Patching in accordance with 450.43: Preparation of Underlying Surface, Part C.

B. Tack Coat.

Asphalt Emulsion for Tack Coat will be paid for at the contract unit price per gallon of applied tack coat under Pay Item 452. Payment shall include sweeping existing surfaces and applying the tack coat to all required surfaces at the specified rate in accordance with 450.43: Preparation of Underlying Surface, Part G.

C. Joint Sealer.

HMA Joint Sealer will be paid for at the contract unit price per foot of joint sealed under Pay Item 453. Payment shall include application of the joint sealer to all longitudinal joints and transverse joints in HMA pavement courses as required and in accordance with 450.49: Hot Mix Asphalt Joints.

D. Hot Mix Asphalt.

Each HMA pavement course will be paid for at the contract unit price per ton of in-place mixture under the HMA Pay Items specified (Pay Items 450.10 through 450.70). Payment shall include sweeping the underlying surface, transportation, delivery, placement (including providing an MTV, when required), and compaction of each HMA pavement course in accordance with 450.43: Preparation of Underlying Surface through 450.52: Opening to Traffic. Mobile lighting for nighttime milling and paving, in accordance with 450.47: Hot Mix Asphalt Placement, Part C, is considered incidental to the cost of each HMA pavement course placed.

All sawcutting required for transverse joints or longitudinal joints in accordance with 450.49: Hot Mix Asphalt Joints shall also be included in the contract unit price for each HMA pavement course. All required sawcutting in the existing pavement in accordance with this specification will be included in the contract unit price for each HMA pavement course, except sawcutting pavement for box widening, which will be paid under Item 482.5.

E. Contractor Quality Control.

The Contractor's QC System will be considered incidental to the work and shall be included in the Contract unit price for each HMA pavement course. No separate payment will be made for any assistance provided by the Contractor to the Engineer in obtaining Department Acceptance samples. Failure of the Contractor to perform adequate Quality Control in accordance with the specifications and the Contractor's approved QC Plan will be justification for withholding payment.

450.92: Pay Adjustment

Payment for each HMA Category A Lot and Category B Lot will be determined based on the final Lot Quality Level (PWL) computed in accordance with the QLA procedures contained 450.78: Quality
Level Analysis Procedures. Pay adjustments will be determined for each of the Acceptance Quality Characteristics identified in Table 450.92-1. The relative pay adjustment weight assigned to each of the HMA Quality Characteristics is indicated in Table 450.92-1.

Table 450.92-1: Pay Adjustment Weight Assigned to HMA Quality Characteristics

<table>
<thead>
<tr>
<th>HMA Quality Characteristics</th>
<th>Pay Adjustment Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG Asphalt Binder Content</td>
<td>10%</td>
</tr>
<tr>
<td>Volumetrics - Air Voids</td>
<td>15%</td>
</tr>
<tr>
<td>In-Place HMA Mat Density</td>
<td>35%</td>
</tr>
<tr>
<td>Thickness</td>
<td>10%</td>
</tr>
<tr>
<td>Ride Quality (IRI)</td>
<td>30%</td>
</tr>
</tbody>
</table>

A. **Lot Pay Factor.**

A Pay Factor \((PF)\) will be determined for each HMA Lot using the Quality Level (PWL) computed for the Lot and the equation below:

\[
PayFactor\ (PF) = \frac{5.5 + 0.5(\text{QualityLevel})}{100}
\]

The Lot Pay Factor will be used to determine the pay adjustment for each Quality Characteristic as further outlined below.

B. **Pay Adjustment for PG Asphalt Binder Content.**

Pay adjustment for PG Asphalt Binder Content shall be applied to Pay Item 999.490 at the completion of the HMA Lot. The total Lot pay adjustment for PG Asphalt Binder Content will be determined as follows:

\[
PA_{PGAB} = \sum (PF_i - 1)(Q_i)(P_i)(PAW_{PGAB})
\]

Where:
- \(PA_{PGAB}\) = Pay adjustment in dollars for PG Asphalt Binder Content
- \(PF_i\) = Pay factor based on Quality Level (PWL) of PG Asphalt Binder Content for individual Lot (i)
- \(Q_i\) = Quantity represented by individual Lot (i), in tons
- \(P_i\) = Contract unit price per ton for individual Lot (i)
- \(PAW_{PGAB}\) = Weight given to PG Asphalt Binder Content pay adjustment, from Table 450.92-1, expressed as a decimal

C. **Pay Adjustment for Volumetrics (Air Voids).**

Pay adjustment for Volumetrics (Air Voids) shall be applied to Pay Item 999.491 at the completion of the HMA Lot. The total Lot pay adjustment for Volumetrics (Air Voids) will be determined as follows:
Pay adjustment for In-Place HMA Mat Density.

Pay adjustment for In-Place HMA Mat Density shall be applied to Pay Item 999.492 at the completion of the HMA Lot. The total Lot pay adjustment for In-Place HMA Mat Density will be determined as follows:

\[
PA_{\text{In-Place Density}} = \sum (PF_i - 1)(Q_i)(P_i)(PAW_{\text{In-Place Density}})
\]

Where:
- \(PA_{\text{In-Place Density}}\) = Pay Adjustment in dollars for In Place HMA Mat Density
- \(PF_i\) = Pay factor based on Quality Level (PWL) of In Place HMA Mat Density for individual Lot (i)
- \(Q_i\) = Quantity represented by individual Lot (i) in tons
- \(P_i\) = Contract unit price per ton for individual Lot (i)
- \(PAW_{\text{In-Place Density}}\) = Weight given to In Place HMA Density pay adjustment, from Table 450.92-1, expressed as a decimal

E. Pay Adjustment for Thickness.

Pay adjustment for Thickness shall be applied to Pay Item 999.493 at the completion of the HMA Lot. The total Lot pay adjustment for Thickness will be determined as follows:

\[
PA_{\text{Thickness}} = \sum (PF_i - 1)(Q_i)(P_i)(PAW_{\text{Thickness}})
\]

Where:
- \(PA_{\text{Thickness}}\) = Pay adjustment in dollars for Thickness
- \(PF_i\) = Pay factor based on Quality Level (PWL) of Thickness for individual Lot (i)
- \(Q_i\) = Quantity represented by individual Lot (i) in tons
- \(P_i\) = Contract unit price per ton for individual Lot (i)
- \(PAW_{\text{Thickness}}\) = Weight given to Thickness pay adjustment, from Table 450.92-1, expressed as a decimal

F. Pay Adjustment for Ride Quality.

Pay adjustment for Ride Quality shall be applied to Pay Item 999.494 at the completion of all HMA Lots. Although Ride Quality Acceptance testing will be performed only on the final pavement course, the pay adjustment will be applied to the total quantity of all HMA pavement courses placed. Since each wheel path of the final pavement course represents a Lot for Ride Quality, the quantity for each Lot shall be computed by dividing the total quantity of all pavement courses placed by the
number of wheel paths for all lanes tested in the final pavement course. The total Lot pay adjustment for Ride Quality will be determined as follows:

\[
P_{A_{\text{Ride Quality}}} = \sum (P_{F_i} - 1)(Q_i)(P_i)(P_{A_{W\text{Ride Quality}}})
\]

Where:
- \(P_{A_{\text{Ride Quality}}}\) = Pay adjustment in dollars for Ride Quality
- \(P_{F_i}\) = Pay factor based on the Quality Level (PWL) of Ride Quality for individual Lot (i)
- \(Q_i\) = Quantity represented by individual Lot (i) in tons
- \(P_i\) = Contract unit price per ton for individual Lot (i)
- \(P_{A_{W\text{Ride Quality}}}\) = Weight given to Ride Quality pay adjustment, from Table 450.92-1, expressed as a decimal
Massachusetts Department of Transportation – Highway Division
Standard Specifications for Highways and Bridges

450.93: Payment Items

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>450.10</td>
<td>Open-Graded Friction Course - 9.5 - Polymer (OGFC - P)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.11</td>
<td>Open-Graded Friction Course - 9.5 - Asphalt Rubber (OGFC - AR)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.21</td>
<td>SUPERPAVE Surface Course - 4.75 (SSC - 4.75)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.211</td>
<td>SUPERPAVE Surface Course - 9.5 - Polymer (SSC - 9.5 - P)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.22</td>
<td>SUPERPAVE Surface Course - 9.5 (SSC - 9.5)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.221</td>
<td>SUPERPAVE Surface Course - 9.5 - Polymer (SSC - 9.5 - P)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.23</td>
<td>SUPERPAVE Surface Course - 12.5 (SSC - 12.5)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.231</td>
<td>SUPERPAVE Surface Course - 12.5 - Polymer (SSC - 12.5 - P)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.24</td>
<td>SUPERPAVE Surface Course - 19.0 (SSC - 19.0)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.241</td>
<td>SUPERPAVE Surface Course - 19.0 - Polymer (SSC - 19.0 - P)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.31</td>
<td>SUPERPAVE Intermediate Course - 12.5 (SIC - 12.5)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.311</td>
<td>SUPERPAVE Intermediate Course - 12.5 - Polymer (SIC - 12.5 - P)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.32</td>
<td>SUPERPAVE Intermediate Course - 19.0 (SIC - 19.0)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.321</td>
<td>SUPERPAVE Intermediate Course - 19.0 - Polymer (SIC - 19.0 - P)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.41</td>
<td>SUPERPAVE Base Course - 25.0 (SBC - 25.0)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.42</td>
<td>SUPERPAVE Base Course - 37.5 (SBC - 37.5)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.51</td>
<td>SUPERPAVE Leveling Course - 4.75 (SLC - 4.75)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.52</td>
<td>SUPERPAVE Leveling Course - 9.5 (SLC - 9.5)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.53</td>
<td>SUPERPAVE Leveling Course - 12.5 (SLC - 12.5)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.60</td>
<td>SUPERPAVE Bridge Surface Course - 9.5 (SSC-B - 9.5)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.601</td>
<td>SUPERPAVE Bridge Surface Course - 9.5 - Polymer (SSC-B - 9.5 - P)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.61</td>
<td>SUPERPAVE Bridge Surface Course - 12.5 (SSC-B - 12.5)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.611</td>
<td>SUPERPAVE Bridge Surface Course - 12.5 - Polymer (SSC-B - 12.5 - P)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.70</td>
<td>SUPERPAVE Bridge Protective Course - 9.5 (SPC-B - 9.5)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.701</td>
<td>SUPERPAVE Bridge Protective Course - 9.5 - Polymer (SPC-B - 9.5 - P)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.71</td>
<td>SUPERPAVE Bridge Protective Course - 12.5 (SPC-B - 12.5)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.711</td>
<td>SUPERPAVE Bridge Protective Course - 12.5 - Polymer (SPC-B - 12.5 - P)</td>
<td>Ton</td>
</tr>
<tr>
<td>450.80</td>
<td>Asphalt Rubber Gap Graded - 12.5 (ARGG - 12.5)</td>
<td>Ton</td>
</tr>
<tr>
<td>451.</td>
<td>HMA for Patching</td>
<td>Ton</td>
</tr>
<tr>
<td>452.</td>
<td>Asphalt Emulsion for Tack Coat</td>
<td>Ton</td>
</tr>
<tr>
<td>453.</td>
<td>HMA Joint Sealant</td>
<td>Ton</td>
</tr>
<tr>
<td>999.490</td>
<td>HMA Pay Adjustment – PG Asphalt Binder Content</td>
<td>Dollar</td>
</tr>
<tr>
<td>999.491</td>
<td>HMA Pay Adjustment – Volumetrics (Air Voids)</td>
<td>Dollar</td>
</tr>
<tr>
<td>999.492</td>
<td>HMA Pay Adjustment – In-place Mat Density</td>
<td>Dollar</td>
</tr>
<tr>
<td>999.493</td>
<td>HMA Pay Adjustment – Thickness</td>
<td>Dollar</td>
</tr>
<tr>
<td>999.494</td>
<td>HMA Pay Adjustment – Ride Quality</td>
<td>Dollar</td>
</tr>
</tbody>
</table>

1Not a bid item.
SUBSECTION 460: HOT MIX ASPHALT PAVEMENT FOR LOCAL STREETS

DESCRIPTION

460.10: General

This Subsection shall not be used on MassDOT projects.

This work shall consist of producing and placing HMA pavement on local streets and parking lots. The HMA pavement shall be constructed as shown on the plans and as directed on the prepared or existing base in accordance with these specifications and in close conformity with the lines, grades, compacted thickness and typical cross section as shown on the plans. Each HMA pavement course placed shall be comprised of one of the mixture types listed in Table 460.10-1.

<table>
<thead>
<tr>
<th>Pavement Course</th>
<th>Mixture Type</th>
<th>Mixture Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Course</td>
<td>SUPERPAVE Surface Course – 9.5</td>
<td>SSC – 9.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 9.5 – Polymer</td>
<td>SSC – 9.5 – P</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 12.5</td>
<td>SSC – 12.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 12.5 – Polymer</td>
<td>SSC – 12.5 – P</td>
</tr>
<tr>
<td>Intermediate Course</td>
<td>SUPERPAVE Intermediate Course – 12.5</td>
<td>SIC – 12.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Intermediate Course – 19.0</td>
<td>SIC – 190</td>
</tr>
<tr>
<td>Base Course</td>
<td>SUPERPAVE Base Course – 37.5</td>
<td>SBC – 37.5</td>
</tr>
<tr>
<td>Leveling Course</td>
<td>SUPERPAVE Leveling Course – 4.75</td>
<td>SLC – 4.75</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Leveling Course – 9.5</td>
<td>SLC – 9.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Leveling Course – 12.5</td>
<td>SLC 12.5</td>
</tr>
</tbody>
</table>

460.20: Quality Assurance

A. Quality Assurance Responsibilities.

This is a basic Quality Assurance Specification wherein the Contractor is responsible for controlling the quality of materials and workmanship and the Department is responsible for accepting the completed work based on the measured quality. Quality Assurance is simply defined as “making sure the Quality of a product is what it should be.”

The two primary elements of Quality Assurance include Contractor Quality Control (QC), Department Acceptance, and Qualified Personnel. Although Quality Assurance utilizes test results to control production and determine acceptance of the HMA, inspection remains as an important element in controlling the process and accepting the product.

The Contractor is responsible for providing an appropriate Quality Control system to ensure that all materials and workmanship meet the required quality levels for each specified Quality Characteristic. The Contractor will perform all required Quality Control inspection, sampling, and testing in accordance with these specifications and the Contractor's Quality Control Plan.
The Department will monitor the adequacy of the Contractor’s QC activities and will perform Acceptance inspection, sampling, and testing. The Department’s Acceptance information, and when found acceptable, the Contractor’s QC information will be utilized in the Acceptance determination for each Lot of material produced and placed.

B. Hot Mix Asphalt Lots & Sublots.

The quality of the HMA pavement of the same mixture type produced and placed will be inspected, tested, and evaluated on the basis of Lots and Sublots. A Lot is defined as “an isolated quantity of material from a single source which is assumed to be produced or placed by the same controlled process.”

Lot sizes for Quality Characteristics subject to the Engineer’s Acceptance are as shown in Table 460.20-1.

Changes in the target values, material sources, or JMF for an HMA mixture type will constitute a change in Lot, requiring the establishment of a new Lot. All Lots will be properly identified for accurate evaluation and reporting of HMA quality.

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Lot Size & Unit of Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG Asphalt Binder Content</td>
<td>Total quantity of an HMA mixture type with the same JMF for same individual pavement course, produced by a single plant, using the same source of materials and placed at a uniform plan thickness within the same construction season.</td>
</tr>
<tr>
<td>Volumetrics – Air Voids</td>
<td></td>
</tr>
<tr>
<td>In-place Density</td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td></td>
</tr>
</tbody>
</table>

C. HMA Quality Assurance Requirements.

These Specifications establish two categories under which Hot Mix Asphalt Lots will be produced, placed, evaluated and accepted. Table 460.20-2 defines each of the Lot categories and outlines the required Quality Assurance activities of the Contractor and the Department. The division of the Lot categories is based on the total estimated contract quantity of each individual HMA mixture type per each project location. For contracts containing multiple Hot Mix Asphalt items, it is possible to have work performed under more than one HMA Lot category.

(1) Determination of Lot Size and Lot Category.

When the total contract quantity of an HMA mixture type is < 4,800 tons, it shall be classified as a Minor Lot (Category E Lot).

When the total contract quantity of an HMA mixture type is ≥ 4,800 tons, it shall be classified as a Small Lot (Category D Lot).

If a Lot extends into the subsequent year, the Lot will be ended, and a new Lot will be established for the next year. The Lot category for the subsequent year shall be categorized based on the remaining tonnage to be placed as designated above.

Category D Lots shall not be divided to produce multiple smaller category Lots without the prior approval of the Engineer.
(2) Determination of Sublot Size.

Each HMA Lot will be divided into Sublots. The size of each HMA Sublot shall be as listed in 460.65-1 and Table 460.74-1. If the quantity of HMA at the end of a Lot is equal to or greater than one half of a full Sublot, then such quantity shall be identified and evaluated as a separate Sublot. If the HMA quantity at the end of a Lot is less than one half of a full Sublot, then such quantity shall be combined with the previous full Sublot quantity and shall be identified and evaluated as the final Sublot.

<table>
<thead>
<tr>
<th>Table 460.20-2: HMA Lot Categories & Quality Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Assurance Requirements</td>
</tr>
<tr>
<td>Total Quantity for individual Lot of HMA</td>
</tr>
<tr>
<td>QC Plan Required:</td>
</tr>
<tr>
<td>Contractor QC Inspection Required:</td>
</tr>
<tr>
<td>Contractor QC Testing Required:</td>
</tr>
<tr>
<td>Department Acceptance Inspection Performed</td>
</tr>
<tr>
<td>Department Acceptance Testing Performed:</td>
</tr>
</tbody>
</table>

Note 1: If all HMA Lots fall under Category E then a QC Plan is not required. However, if any Lots on the project fall under Category D then any Category E Lots must be addressed in the QC Plan.

Note 2: If a QC Plan is not required, it is still the responsibility of the Contractor to provide to the Engineer any information that is designated as "Per QC Plan" as found in this specification.
II.185 2020 Edition

MATERIALS

460.30: General

Materials shall meet the requirements in the following Subsection of Division III, Materials and as otherwise specified herein:

- Performance Graded Asphalt Binder ... M3.01.0
- Warm Mix Asphalt ... M3.01.4
- Asphalt Anti-Stripping Additive .. M3.01.5
- Asphalt Release Agents ... M3.01.6
- Asphalt Emulsion for Tack Coat ... M3.03.0
- Hot Poured Joint Sealer ... M3.05.0
- Hot Mix Asphalt ... M3.11.0
- Aggregate .. M3.11.2
- Hot Mix Asphalt Mixture Design ... M3.11.4
- Verification of Laboratory Trial Mix Formula ... M3.11.5
- Hot Mix Asphalt Production Facility ... M3.12.0
- Contractor Quality Control Laboratory ... M3.13.1
- Department Acceptance Laboratory ... M3.13.2

Table 460.30-1: SUPERPAVE Traffic Level Requirements

<table>
<thead>
<tr>
<th>Traffic Level Design ADT (vpd)</th>
<th>Number of Gyrations by Superpave Gyratory Compactor (N<sub>design</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5,000</td>
<td>50</td>
</tr>
<tr>
<td>≥ 5,000 but < 25,000 (See Note 2)</td>
<td>75</td>
</tr>
</tbody>
</table>

Note 1: For routes that have heavy truck traffic greater than 5%, a polymer modified surface course should be considered.
Note 2: For routes that have an ADT greater than 25,000 vehicles per day or contain greater than 5% truck traffic, consult MassDOT Pavement Section.

460.31: Hot Mix Asphalt Design

HMA mixtures shall be composed of the following: Mineral aggregate, mineral filler (if required), PGAB, and as permitted, recycled materials. The Contractor shall be responsible for development of an HMA LTMF for each HMA mixture type specified for the contract in accordance with the requirements of 460.30: General.

The Contractor shall develop and submit an LTMF for each HMA mixture type, which is to be proposed as a JMF, a minimum of 60 days prior to the start of HMA production in accordance with the requirements of M3.11.4: Hot Mix Asphalt Mixture Design, M3.11.5: Verification of Laboratory Trial Mix Formula, and MassDOT's Asphalt Mix Design approval process. The Contractor shall not proceed to HMA production until the LTMF is verified by the Department.
CONSTRUCTION METHODS

460.40: General

Prior to the start of any work activity addressed in 460.43: Preparation of Underlying Surface through 460.51: Opening to Traffic, a Construction Quality Meeting shall be held to review the Contractor’s QC System. The Contractor shall present and discuss with the Engineer in sufficient detail the specific QC information and activities. The meeting is intended to ensure that the Contractor has an adequate QC System in place and that the Contractor’s personnel are fully knowledgeable of the roles and activities for which they are responsible to achieve the specified level of quality. Contractor personnel required to attend the Construction Quality Meeting include the Construction Quality Control Manager (QC Manager) and all Superintendents.

460.41: Control of Grade and Cross-Section

The Contractor will provide a longitudinal and transverse reference system for the purpose of locating and documenting sampling and testing locations and related uses, i.e. limits of paving. It is the Contractor's responsibility to clearly define this reference system. Work related to this reference system is incidental and will be included as part of the Contractor's QC System.

The Contractor shall furnish, set, and maintain all line and grade stakes necessary to guide the automated grade control equipment. Where required these control stakes shall be maintained by the Contractor and used throughout the operations, from the grading of the subbase material up to and including the final course of the pavement.

Under normal conditions, where more than one course of HMA is to be constructed, the use of the string line for grade control may be eliminated or discontinued after the construction of the initial course of HMA. For resurfacing projects, the use of the string line for grade control may be eliminated. The use of approved automation may then be substituted for the string line where lines and grades are found to be satisfactory by the Engineer.

460.42: Weather Limitations

HMA shall only be placed on dry, unfrozen surfaces and only when the temperature requirements contained in Table 460.42-1 below are met. If the temperature requirements contained in Table 460.42-1 are not met at any point throughout the paving shift, HMA placement shall cease, except as determined and directed in writing by the Engineer depending upon the necessity and emergency of attendant conditions and weather conditions.

The Contractor may continue HMA placement when overtaken by sudden rain, but only with material which is in transit from the HMA production facility at the time, and then only when the temperature of the HMA mixture is within the temperature limits specified and when the existing surface on the roadway is free of standing moisture. The Engineer is not obligated to accept any material that was not already in transit prior to the onset of rain and the Contractor shall suspend operations for the day when the requirements of Subsection 460: Hot Mix Asphalt Pavement for Local Streets cannot be met.

The construction of HMA pavement shall terminate November 15 and shall not be resumed prior to April 1, except as determined and directed in writing by the Engineer depending upon the necessity and emergency of attendant conditions, weather conditions, and location of the project. Only in
extreme cases will the placement of Surface Courses be permitted between November 15 and April 1.

Table 460.42-1: Temperature Limitations for HMA Placement

<table>
<thead>
<tr>
<th>HMA Pavement Course</th>
<th>Lift Thickness (in.)</th>
<th>Minimum Air Temperature (°F)</th>
<th>Minimum Surface Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Course</td>
<td><1 ¾</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Surface Course</td>
<td>≥1 ¾</td>
<td>35 (see Note 1)</td>
<td>40</td>
</tr>
<tr>
<td>Intermediate Course</td>
<td>All</td>
<td>35 (see Note 1)</td>
<td>40</td>
</tr>
<tr>
<td>Base Course</td>
<td>All</td>
<td>35 (see Note 1)</td>
<td>40</td>
</tr>
<tr>
<td>Leveling Course</td>
<td>As Specified</td>
<td>45</td>
<td>50</td>
</tr>
</tbody>
</table>

Note 1: When the air temperature falls below 50°F, extra precautions shall be taken in drying the aggregates, controlling the temperatures of the materials, and in placing and compacting the mixtures.

The Contractor shall supply the Engineer with 2 approved dial type thermometers with a temperature range of -50°F to 500°F and 2 infrared pistol thermometer for each paving machine in operation on the project. The thermometers will remain the property of the Contractor upon completion of the project. The infrared pistol thermometers shall read in Fahrenheit and conform to the following requirements:

- Portable and battery operated
- LCD Display to nearest 1°F
- Temperature operating range of 0°F to 750°F
- Accuracy of ± 2%
- Repeatability of ± 5°F
- Emissivity preset at 0.95

460.43: Preparation of Underlying Surface

HMA mixtures shall be placed only upon properly prepared surfaces that are clean from foreign materials. The underlying surface shall be prepared in accordance with the requirements below, prior to the placement of HMA pavement courses.

A. Subbase or Reclaimed Base.

Prior to the placement of HMA Base Course mixtures, the Contractor shall inspect the prepared subbase or reclaimed base material to ensure that it is in conformance with the required grade, cross-section, and in-place density. Subbase or reclaimed base material that is not in accordance with the plans or specifications shall be reworked or replaced to meet the applicable requirements of Subsection 401: Gravel Sub-Base, Subsection 402: Dense Graded Crushed Stone for Sub-Base, or Subsection 403: Reclaimed Pavement for Base Course and/or Sub-Base before the start of HMA placement. The compacted subbase or reclaimed base shall not be frozen or have standing water when placing HMA.
B. Milling Existing HMA Pavement.

When specified on the plans, existing HMA pavement courses shall be milled and removed from the project by the Contractor in accordance with Subsection 415: Pavement Milling.

Adjustments to milling depth shall be approved by the Engineer and shall be used for consideration of the HMA pavement thickness measurements.

Each vertical face of the milled pavement that will be abutted by new pavement shall be thoroughly coated with a hot poured joint sealer meeting the requirements of 460.30: General immediately prior to placing new HMA mixture adjacent to the vertical face.

C. Patching Existing Pavement Courses.

Areas of existing HMA pavement courses that are significantly distressed or unsound shall be removed and replaced with patches using new HMA. The location and limits of patching will be as identified in the plans or as directed by the Engineer.

Each existing pavement course determined to be unsound shall be removed to the full depth of the pavement course within a rectangular area. For each patch location equal to or greater than 50 ft² (and having a minimum dimension of 4 ft) where the existing pavement courses are removed down to subbase, the subbase shall be compacted by mechanical means to not less than 95% of the maximum dry density of the subbase material as determined by AASHTO T 99 Method C at optimum moisture content. Each edge of the patch area shall be sawcut or otherwise neatly cut by mechanical means to provide a clean and sound vertical face. The vertical face of each edge shall be thoroughly coated with a hot poured joint sealer meeting the requirements of 460.30: General immediately prior to placing the HMA patching mixture.

Delaminated areas of existing pavement courses resulting from pavement milling shall be cut back neatly by mechanical means to the limits of any unsound material. After removing all unsound material, the underlying pavement surface within the patch limits shall receive a thorough tack coat at a rate of application in accordance with 460.43: Preparation of Underlying Surface, Paragraph G(2) prior to placing the HMA patching mixture.

HMA patching mixture shall be the same mixture type as the existing pavement course being patched or as specified on the plans or as directed by the Engineer. The lift thickness of the patching mixture shall not exceed 4 times the nominal maximum aggregate size of the mixture. The patching mixture will be placed by hand or by mechanical means and shall match the thickness, grade, and cross-slope of the surrounding pavement. The HMA patching mixture shall be compacted using a steel wheel roller. For patch areas not large enough to permit use of a roller, compaction shall be accomplished using a mechanical tamper capable of achieving the required in-place density. The in-place density of the HMA patching mixture shall be not less than 90% of the maximum theoretical density of the mixture as determined by AASHTO T 209 (Method A). When the Contractor and Engineer elect to test the in-place density of a patched area using a calibrated density gauge, the test data for the patched area shall be recorded on NETTCP TRFs.
D. Leveling Courses.

HMA Leveling Courses shall only be used when specified in the Contract. The HMA mixture used for a Leveling Course shall be as specified in the Contract and shall conform to the relevant materials requirements of Subsection 460: Hot Mix Asphalt Pavement for Local Streets.

E. Preparation of Curbs, Edging, and Utilities.

All curbs or edging shall be installed or reset to the line and grade established on the plans. The surface elevation of all catch basin frames and grates, manholes, utility valve boxes, or other utility structures located in the pavement shall uniformly match the grade and cross-slope of the final pavement riding surface. Adjustment of all curbs, edging, and utilities shall be completed prior to the placement of the HMA Surface Course. Hand placement of HMA along curbs and edging or around utilities after placement and compaction of the Surface Course shall not be permitted.

F. Sweeping Underlying Surface.

The Contractor shall provide a mechanical sweeper equipped with a water tank, spray assembly to control dust, a pick-up broom, a dual gutter broom, and a dirt hopper. The sweeper shall be capable of removing millings and loose debris from the underlying surface.

Prior to opening a milled area to traffic, all milled pavement surfaces shall be thoroughly swept in accordance with the applicable milling specification required by the contract to remove all remaining millings and dust. All pavement surfaces shall be swept clean, free of dust, fines, and slurry immediately prior to application of the tack coat. Any new HMA pavement course that has been open to traffic, or that was placed 30 days prior to placement of the subsequent pavement course, shall also be swept immediately prior to application of the tack coat.

G. Asphalt Emulsion for Tack Coat.

A tack coat of asphalt emulsion, meeting the requirements of 460.30: General shall be uniformly applied to existing or new pavement surfaces prior to placing pavement courses as specified below. The existing surface shall be swept clean of all foreign matter and loose material using a mechanical sweeper and shall be dry before the tack coat is applied.

In addition to the requirements below, all vertical surfaces of curbs, edging, utilities, and drainage structures that will be abutted by new pavement shall receive a thorough tack coat application immediately prior to placing each HMA pavement course.

1) Tack Distributor System.

A pressure distributor shall be used to apply the tack coat. The tack distributor system shall be equipped with the following to control and monitor the application:

a) System for heating the asphalt emulsion uniformly to specified temperature.

b) Thermometer for measuring the asphalt emulsion temperature.

c) Adjustable full circulation spray bar.

d) Positive controls including tachometer, pressure gauge, and volume measuring device.

At least once every 12 months the application rate of the tack distributor system shall be calibrated by the Contractor using the appropriate spray bar nozzle size(s). The calibration shall be in the transverse and longitudinal directions following ASTM D2995. The calibration shall address the
spray bar height, nozzle angle, spray bar pressure, thermometers, and strapping stick. Documentation of the annual calibration shall be kept with the tack distributor system and shall be provided to the Engineer when requested.

The use of tack wagons/trailers shall only be allowed for patching or when approved by the Engineer. Regardless of application method the tack application rates shall meet the requirements below.

(2) **Tack Application Requirements.**

The tack coat material shall be applied by a pressure distributor. All nozzles on the distributor shall be open and functioning. All nozzles shall be turned at the same angle to the spray bar. The nozzles shall be offset at an angle from the spray bar to prevent the fan from one nozzle from interfering with the fan from another. Proper nozzle angle shall be as determined by the Manufacturer of the distributor spray bar. The spray bar shall be adjusted so that it is at the proper height above the pavement surface to provide a triple overlap spray for a uniform coverage of the pavement surface. A triple lap application requires that the nozzle spray patterns overlap one another such that every portion of the pavement receives spray from exactly three nozzles. Tack coat application rates for specific surface conditions shall be in accordance with the following:

 a) On a new HMA surface, not opened to traffic, the emulsion application rate shall equal 0.06 to 0.08 gal/\(yd^2\).
 b) On an existing tight smooth pavement, the emulsion application rate shall equal 0.06 to 0.08 gal/\(yd^2\).
 c) On a milled surface the emulsion application rate shall equal 0.07 to 0.09 gal/\(yd^2\).
 d) On cement concrete base course, the emulsion application rate shall be equal to spray application for adjacent surface.
 e) On new HMA patches the emulsion application rate shall equal 0.06 to 0.09 gal/\(yd^2\).

Tack coat shall be applied to cover a minimum of 95% of the pavement surface.

(3) **Tack Inspection.**

The asphalt emulsion temperature and application rate shall be periodically measured by the Contractor. If the temperature or application rate is determined to not be in conformance with the specification requirements above, the Contractor shall make appropriate adjustments to the tack application operations.

460.44: Zero Tolerance for Use of Petroleum Products as Release Agents

There is zero tolerance for the use of petroleum products (e.g. diesel, kerosene, etc.) as a release or cleaning agent in the manufacture, loading, transporting, and placement of HMA materials. The Contractor shall ensure conformance with this requirement. Equipment to be used for transferring, hauling, or placing HMA materials shall be inspected by QC personnel per the approved QC Plan and will ensure that no petroleum products are used. Contaminated equipment shall not be used most especially haul units. Haul units and truck companies with repeated violations will not be used to haul HMA materials. Any violations of this policy shall be reported to the Engineer and subject to the following actions:
A. **Haul Unit Violations During Loading at the Plant and Transportation to the Project.**

Haul units identified by the Contractor to have contaminated beds during initial inspection prior to loading will not be used during that day's placement operations.

If a haul unit is found to be contaminated with an unapproved release agent after it has been loaded, the HMA shall be rejected by the Engineer.

B. **Field Equipment Violations.**

All equipment used for the placement and compaction of HMA shall not be treated with an unapproved release agent. This includes the paver, material transfer vehicle, rollers, plate compactors, and tools.

Any use of an unapproved release agent will result in the termination of placement operations and the removal of contaminated materials.

460.45: Hot Mix Asphalt Production

HMA production shall conform to the requirements of 460.30: General.

460.46: Hot Mix Asphalt Transportation and Delivery

A. **Haul Unit Equipment.**

The trucks used to transport HMA to the field placement site shall have tight, clean, smooth metal beds. When necessary to maintain the required HMA temperature, trucks shall be equipped with insulated beds. The truck beds shall be evenly and lightly coated with an approved release agent found on the QCML to prevent HMA mixture adherence. Truck beds shall be kept free of kerosene, gasoline, fuel oil, solvents, or other materials that could adversely affect the HMA mixture in accordance with 460.44: Zero Tolerance for Use of Petroleum Products as Release Agents. Excess lubricant shall not be allowed to accumulate in low spots in the body. The Contractor shall employ sufficient procedures and QC inspection to ensure that all truck beds are free of contaminants, residual HMA, or excess release agent.

B. **HMA Protection During Transport.**

The HMA shall be transported from the plant to the field placement site in trucks previously cleaned of all foreign materials. During transportation of the HMA from the plant to the placement equipment at the site, each load shall be fully covered at all times, without exception, with canvas or other suitable material of sufficient size and thickness, which is tightly secured to furnish complete protection. Mesh tarps will not be allowed. The HMA shall not be transported such a distance that temperature segregation of the mixture takes place or that excessive crusting is formed on the surface, bottom or sides of the HMA.

C. **Coordination and Inspection of HMA Delivery**

The dispatching of trucks from the plant shall be continuously coordinated to ensure that all of the HMA mixture planned to be delivered to the field placement site may be placed and compacted before the end of the scheduled workday. During paving operations, the Contractor shall provide for ongoing two-way radio or cellular phone communication between the field placement site and the HMA plant.
The target temperature and allowable range of the HMA when delivered at the field placement site will be established in the Contractor's QC Plan. The Contractor shall measure the temperature of the HMA, either from the trucks prior to discharge or from the paver hopper, using an infrared pistol type thermometer at the minimum frequency indicated in the approved QC Plan. The Contractor shall also visually inspect the delivered HMA for crusting or material (physical) segregation. The Contractor shall reject any loads of HMA with material which is crusted, segregated, or which is not within the delivery temperature range established in the Contractor’s QC Plan.

460.47: Hot Mix Asphalt Placement

A. Material Transfer Vehicles.

When specified in the contract, and where the speed limit is 40 mph or greater, an MTV will be required. The MTV shall be used to place all intermediate and surface pavement courses.

(1) MTV Equipment Rentals.

The MTV shall be self-propelled and capable of remixing and transferring the HMA mixture to the paver so that the HMA mat behind the paver has a uniform homogeneous temperature and appearance. The MTV shall be equipped with the following:

a) A truck unloading system, capable of maintaining the planned paving production rate, which shall receive HMA from the trucks and independently deliver the mixture from the trucks to the paver.

b) A paver hopper insert with a minimum capacity of 14 tons shall be installed in the hopper of conventional paving equipment. The paver hopper insert shall be marked to identify the point at which the insert is 50% full.

c) An internal storage bin with a minimum capacity of 25 tons of mixture and a remixing system in the bottom of the storage bin to continuously blend the mixture as it discharges to a conveyor system; or a dual pugmill system located in the paver hopper insert with two full length longitudinally mounted counter-rotating screw augers to continuously blend and feed the mixture through the paver to the screed.

(2) MTV Operations.

The Contractor shall ensure that the MTV is loaded continuously to keep the paver moving. The volume of HMA in the paver hopper insert shall remain above the 25% capacity mark during all paving operations. In the event the MTV malfunctions during HMA placement operations, the Contractor shall continue placement of material until such time there is sufficient HMA placed to maintain traffic in a safe manner. The Contractor may continue placement of HMA until any additional mixture in transit has been placed. Paving Operations may resume only after the MTV has been repaired and is fully operational.

(3) Bridge Loading Restrictions.

The MTV shall be subject to all bridge load restrictions. The Contractor shall verify the sufficiency of the current bridge ratings with the Engineer. In the event that the MTV exceeds the maximum allowable bridge load, the MTV shall be empty when crossing the bridge and shall be moved across without any other Contractor vehicles or equipment being on the bridge. The MTV shall be moved
across the bridge in a travel lane and shall not be moved across the bridge on the shoulder. The MTV shall be moved at a speed no greater than 5 mph without any acceleration or deceleration.

B. Pavers.

Each HMA pavement course shall be placed with one or more pavers at the specified grade, cross-slope, and lift thicknesses.

1. **Paver Equipment Requirements.**

 Each paver shall be a self-contained, power propelled unit and shall produce a finished surface of smooth and uniform texture without segregating, tearing, shoving or gouging the HMA. The pavers shall be equipped with the following:

 a) A receiving hopper having sufficient capacity to ensure a uniform and continuous placement operation.

 b) Automatic feed controls, which are properly adjusted to maintain a uniform depth of material ahead of the screed.

 c) Automatic screed controls with sensors capable of sensing the transverse slope of the screed and providing the automatic signals that operate the screed to maintain grade and transverse slope.

 d) An adjustable vibratory screed with full-width screw augers and heated for the full width of the screed.

 e) Capable of spreading and finishing HMA pavement courses in widths at least 12 in. more than the width of one travel lane.

 f) Capable of being operated at forward speeds to satisfactorily place the HMA.

2. **Paver Operations.**

 The Contractor shall ensure that the paver is loaded continuously to keep the placement operation moving. The volume of HMA in the paver receiving hopper shall remain above the paver tunnel during all paving operations. Proper practices shall be utilized to ensure that HMA is not dumped or spilled onto the prepared underlying surface in front of the paver by trucks unloading into the receiving hopper. Any material that falls in front of the paver shall be removed before the paver passes over it. The screed vibrator shall be operated at all times.

 When the use of an MTV is required the paving operations shall be coordinated in such a manner as to allow the paver to operate at a consistent speed without stopping.

C. Mobile Lighting for Milling and Paving Equipment.

Whenever milling or paving operations are being conducted between the hours of sunset and sunrise, the Contractor shall provide mobile lighting system(s) attached to each piece of mobile milling and paving equipment, including milling machines, mechanical sweepers, material transfer devices, paver machines, and rollers, but shall not include trucks used to transport materials and/or personnel to the work zone or other vehicles that are continually moving in and out of the work zone.

Mobile lighting systems attached to milling and paving equipment shall be in addition to work zone lighting requirements specified in Subsection 850: Traffic Controls for Construction and Maintenance Operations.
Lighting attached to each machine shall be capable of providing a minimum of 1 fc measured 60 ft in front of and behind the equipment. Lighting measurements shall be per Subsection 850: Traffic Controls for Construction and Maintenance Operations. Light fixtures shall be balloon-style or otherwise diffused to minimize glare. Flood lights without diffusers shall not be permitted.

No part of the mobile lighting system shall exceed a height 13 ft above the pavement except in areas with constrained vertical clearances where the height may further be limited by the Engineer.

Existing street or highway lighting shall not eliminate the requirement for the Contractor to provide lighting.

D. HMA Placement Inspection.

The HMA shall be free of identifiable material (physical) segregation or temperature related segregation. The HMA placed shall be a homogeneous mixture that is of uniform temperature. The Contractor shall inspect the mixture in the paver receiving hopper for material (physical) segregation. The Contractor will also inspect the uncompacted HMA mat behind the paver for longitudinal streaks, end-of-load segregation, or other irregularities.

The Contractor shall also measure the temperature differential in the uncompacted mat behind the paver. The transverse line for mat temperature measurement shall be established at a distance within 10 ft behind the paver screed. Temperature measurements shall be obtained by the Contractor using an infrared pistol thermometer at 2-ft intervals along the transverse line across the width of the mat. The difference between the highest and lowest temperature measurement shall not exceed 20°F.

If the maximum mat temperature differential is exceeded, or if material segregation or irregularities in the HMA mat behind the paver are noted, the Contractor shall review the production, transportation, and placement operations and take corrective action. The Contractor shall make every effort to prevent or correct any irregularities in the HMA, such as changing pavers or using different and additional equipment. The Contractor’s QC Plan shall fully outline procedures for inspecting the HMA mat during placement, identifying and troubleshooting material segregation or temperature related segregation, and implementing corrective action.

460.48: Hot Mix Asphalt Compaction

A. Compaction Equipment Requirements.

The Contractor shall employ compaction equipment as outlined in the approved IQC Plan. Equipment used for compaction of HMA Base Courses, Intermediate Courses and Surface Courses may include steel wheeled rollers, vibratory rollers, oscillation rollers, or pneumatic-tired (rubber tired) rollers as determined appropriate by the Contractor for the particular mixture type being placed. The number and type of rollers used for breakdown, intermediate, and finish rolling shall be sufficient to achieve the target in-place density and specified course thickness.

B. Compaction Operations.

The rollers shall not crush the aggregate in the HMA mixture and shall be capable of reversing without shoving or tearing the mixture. Rollers shall not be permitted to stop on the mat except to reverse direction. Rollers may also stop on the mat to refill water when the project conditions and safety do not allow for removing the roller from the pavement mat. In these instances, the
Contractor shall ensure that the pavement is sufficiently cool to prevent the roller from leaving mat deficiencies. The Contractor shall outline in the QC Plan the proposed roller configuration for each HMA pavement course to be placed.

C. Inspection and Testing of Compacted HMA.

The compacted HMA pavement course shall be free of mat deficiencies listed below and shall meet the requirements for in-place density, and thickness as specified in 460.65: Quality Control Sampling and Testing Requirements, Part F. The Contractor shall inspect each Sublot of HMA throughout the compaction operation and shall further inspect the in-place HMA after Sublot completion and identify any areas of visible material (physical) segregation. The Contractor shall reject any in-place Sublot of HMA which is determined to be segregated. The Contractor will also test each Sublot for in-place density, and thickness as specified in 460.65: Quality Control Sampling and Testing Requirements, Part F. Mat deficiencies include, but are not limited to:

- Material (physical) segregation.
- Wavy surface.
- Tearing of the mat.
- Non-uniform mat texture.
- Screed marks.
- Poor subbase compaction.
- Poor mix compaction.
- Poor joints.
- Transverse (check) cracking.
- Mat shoving under roller.
- Bleeding or fat spots in the mat.
- Roller marks.

460.49: Hot Mix Asphalt Joints

The Contractor shall plan the sequence of HMA placement to minimize transverse and longitudinal joints in each pavement course. Paving operations should employ long pulls or tandem pavers, whenever practicable, to reduce the number and length of joints. Finished joint surfaces, including joints in the roadway and bridge joints, shall be uniform and true to the required grade and cross-slope without deviations exceeding ¼ in., both transversely and parallel to the joint, when measured with a 10-ft standard straightedge.

A. Transverse Joints.

Where the start or end of a new HMA pavement course meets existing HMA pavement, the existing pavement shall be sawcut to form a transverse butt joint for the full depth of all new pavement courses. The sawcut shall follow a straight line and provide a clean and sound vertical face. Material at any intermediate transverse joint resulting from suspension of placement of a new HMA pavement course shall also be sawcut and removed to provide a clean vertical face before continuing placement of the pavement course.

When traffic is to be carried over any transverse joint before completion of an HMA pavement course, the Contractor shall provide a temporary tapered joint with a maximum 12:1 slope. The HMA mixture forming the taper shall be placed on heavy wrapping paper or other suitable material to serve as a bond breaker. The temporary tapered joint shall be sawcut to reveal the full depth of
the pavement course and form a transverse butt joint with a clean vertical face. The temporary
tapered joint material shall be completely removed before resuming placement of the HMA
pavement course.

Prior to the start of HMA placement at each transverse joint, the vertical joint face shall be
thoroughly coated with a hot poured joint sealer meeting the requirements of 460.30: General. The
asphalt sealer temperature and application rate for each pavement course shall follow the
Manufacturer’s recommendation and, when applicable, be established in the Contractor’s QC Plan.
No reheating of the joint face shall be permitted. Equipment used to apply the hot poured joint
sealer shall be capable of maintaining the sealer at the established temperature and application rate
sufficient to uniformly coat the vertical joint face without runoff or accumulation of the asphalt
sealer.

B. Longitudinal Joints.

All longitudinal joints in HMA Surface Courses shall be located on the roadway centerline or on a
lane line or edge line of the traveled way. The longitudinal joints in each pavement course below
the Surface Course shall be successively offset from the joint in the Surface Course by no more than
12 in. and no less than 6 in. Joints shall be straight and parallel to the lane line of the roadway.

(1) Vertical Joints.

When an HMA pavement course is placed using single paver pulls, the Contractor shall employ
suitable equipment to confine the longitudinal edge of the HMA mixture to establish an edge that is
near vertical. For all HMA Surface Course mixtures placed, when the Contractor’s placement
operations do not provide a confined and near vertical edge, the longitudinal edge of the Surface
Course shall be sawcut full depth and removed to provide a clean vertical face before placement of
the adjacent course of HMA.

All longitudinal joint edges of HMA Surface Courses, regardless of whether the joint edge is required
to be sawcut, shall be treated prior to placing the adjacent pull of HMA. The vertical joint shall be
coated with a hot poured joint sealer meeting the requirements of 460.30: General. The asphalt
sealer shall be applied at a sufficient temperature and application rate for each pavement course
sufficient to uniformly coat the vertical joint face without runoff or accumulation of the sealer. The
asphalt sealer temperature and application rate shall follow the Manufacturer’s recommendation
and, when applicable, be established in the Contractor’s QC Plan. No reheating of the joint shall be
permitted.

When placing an HMA Surface Course with pavers in tandem, the use of the hot poured joint sealer
will be omitted, provided the temperature of the mixture at the longitudinal joint does not fall
below 200°F prior to the placement of the adjacent mat.

When the longitudinal edge of any HMA pavement course is placed against an adjoining edge such
as existing pavement, curb, gutter, drainage or utility structure, or any metal surface, a tack coat
shall be uniformly applied to the entire vertical joint surface in accordance with 460.43:
Preparation of Underlying Surface prior to placement of the HMA.
(2) Wedge Joints.

The Contractor may use a longitudinal wedge joint when placing HMA pavement courses at a thickness of 1.25 in. to 3.75 in. as shown in Figure 460.49-1. In instances where the joint will not be subjected to traffic prior to the adjacent pass being placed the maximum thickness may be increased to 5 in.

When a wedge joint is proposed for use, the joint detail shall be included in the Contractor’s QC Plan. The wedge joint shall include a notched vertical edge with a minimum depth equal to the nominal maximum aggregate size (NMAS) at the top and bottom of the wedge. The sloped surface of the wedge joint shall not exceed a 6:1 slope. The width of the wedge shall not exceed 6 times the pavement depth. The Contractor shall use a commercially manufactured wedge joint attachment to the paver, or other attachment approved by the Engineer, to form the wedge joint.

Joint sealer shall not be applied to wedge joints. A tack coat shall be applied to the entire surface of the wedge joint in accordance with 460.43: Preparation of Underlying Surface prior to placement of the adjacent pull of HMA.

C. Inspection and Testing of HMA Joints.

The hot poured joint sealer temperature and application rate shall be measured a minimum of once per transverse joint and once per 1,000 ft of longitudinal joint. If the temperature or application rate is determined to not be in conformance with the requirements established in the Contractor’s QC Plan, the Contractor shall make appropriate adjustments to the asphalt sealer application operations.

The placement and compaction of HMA at each transverse joint or longitudinal joint shall provide a tight bond between the existing pavement and the new pavement course. The Contractor shall visually inspect each transverse joint and longitudinal joint throughout the placement and compaction operations and shall further inspect the joints after Sublot completion and identify any bumps, depressions, openings, or other visible defects. The Contractor shall reject any in-place Sublot of HMA which is determined to have defective joints.

Finished joint surfaces, including joints in the roadway, shall be uniform and true to the required grade and cross-slope without deviations exceeding ¼ in., both transversely and parallel to the joint, when measured with a 10-ft standard straightedge. The in-place density of the completed
HMA pavement course, within 1 ft of either side of the finished joint, shall be not less than 90% of the maximum theoretical density of the mixture as determined by AASHTO T 209 (Method A). The Contractor will measure the surface smoothness and test the in-place density of each transverse joint and longitudinal joint of each Sublot of HMA as specified in 460.65: Quality Control Sampling and Testing Requirements, Part F.

460.50: HMA Pavement on Bridges

All HMA pavement on bridge decks shall conform to 450.50: HMA Pavement on Bridges.

460.51: Opening to Traffic

No vehicular traffic or loads shall be permitted on the newly completed HMA pavement until adequate stability has been attained and the material has cooled sufficiently to a temperature of 140°F or less as indicated by an infrared thermometer. The Contractor shall clearly outline, in the QC Plan, the specific criteria related to opening new pavement to traffic. The final determination to open the pavement to traffic shall be made by the Engineer and the Construction QC Manager.

HMA cores shall be obtained by the Contractor for all Sublots placed each day in accordance with the approved QC Plan prior to opening to traffic. At the discretion of the Engineer, based on climactic or other conditions, obtaining of cores may be delayed for a period up to, but not to exceed, 48 hours.

In the event of force majeure resulting from direction by the Engineer, the Contractor shall document the event and may submit a claim in accordance with current Department procedures. In such event, the Engineer and Construction QC Manager will determine if the affected Sublots must be isolated from the relevant HMA Lot and the HMA quality be evaluated as a separate Lot.

CONTRACTOR QUALITY CONTROL

460.60: General

The Contractor shall provide a QC System and, when required, a QC Plan, adequate to ensure that all materials and workmanship meet the required quality levels for each specified Quality Characteristic. The Contractor shall provide qualified QC personnel and QC laboratory facilities and perform QC inspection, sampling, testing, data analysis, corrective action (when necessary), and documentation as outlined further below.

460.61: Contractor Quality Control Plan

For projects with HMA Category D Lots (Small Lot), the Contractor shall provide and maintain a Quality Control Plan(QC Plan). If all HMA Lots fall under Lot Category E (Minor Lot) then a QC Plan is not required. However, if any Lots on the project fall under Lot Category D, then any Category E Lots must be addressed in the QC Plan. The QC Plan should sufficiently document the QC processes of all Contractor parties (i.e. Prime Contractor, Subcontractors, Producers) performing work required under this specification. The QC Plan is intended to be a project specific document. If a QC Plan is not required, it is still the responsibility of the Contractor to provide to the Engineer any information that is designated as “Per QC Plan” as found in this specification.
A. QC Plan Submittal Requirements.
At the pre-construction meeting, the Contractor shall be prepared to discuss the QC Plan. Information to be discussed shall include the proposed QC Plan submittal date, QC organization, and sources of materials. The Contractor shall submit the QC Plan to the Engineer for approval prior to the start of any work activities related to HMA pavement construction (including preparation of underlying surface) addressed in 460.43: Preparation of Underlying Surface thru 460.51: Opening to Traffic. The Contractor shall not start work on the subject work items without an approved QC Plan.

B. QC Plan Format and Contents.
The QC Plan shall be structured to follow the format and section headings outlined in the MassDOT Model QC Plan.

C. QC Plan Approval and Modifications.
Approval of the QC Plan will be based on the inclusion of the required information. Revisions to the QC Plan may be required prior to approval for any part of the QC Plan that is determined by the Engineer to be insufficient. Approval of the QC Plan does not imply any warranty by the Department that the QC Plan will result in completed work that complies with the specifications. It remains the responsibility of the Contractor to demonstrate such compliance. The Contractor may modify the QC Plan as work progresses when circumstances necessitate changes in Quality Control personnel, laboratories, or procedures. In such case, the Contractor shall submit an amended QC Plan to the Department for approval a minimum of 3 calendar days prior to the proposed changes being implemented.

460.62: Quality Control Personnel Requirements
The Contractor’s QC organization shall, at a minimum, consist of the personnel outlined below that meet the described minimum qualifications. Every effort should be made to maintain consistency in the QC organization, however substitution of qualified personnel shall be allowed. When circumstances necessitate substitution of QC personnel not originally listed in the approved QC Plan, the Contractor shall submit an amended QC Plan for approval in accordance with 460.61: Contractor Quality Control Plan, Part C.

A. Construction Quality Control Manager.
The Contractor’s QC System and QC Plan shall be administered by a qualified Construction QC Manager. The QC Manager must be a full-time employee of the Contractor or a QC consultant engaged by the Contractor. The QC Manager (or their assistant in the QC Manager’s absence) shall have full authority to institute any and all actions necessary for the successful implementation of this specification and the QC Plan. The QC Manager (or their assistant in the QC Manager’s absence) shall be available to communicate with the Engineer at all times.

Principal responsibilities of the QC Manager shall include preparation and submittal of the Contractor’s QC Plan, managing the activities of all QC personnel, communicating on quality issues within the Contractor’s organization, and ensuring that all requirements outlined in the approved QC Plan are met.
The QC Manager, at a minimum, shall be trained in Quality Assurance Fundamentals through the NETTCP or comparable Quality Assurance training.

B. Production Facility Quality Control Technician(s).

All Contractor QC sampling, testing, and inspection conducted at the HMA production facility shall be performed by qualified Production Facility Quality Control Technicians (Plant QCTs). The Contractor shall provide a sufficient number of Plant QCTs to adequately implement the minimum QC requirements contained in Subsection 460: Hot Mix Asphalt Pavement for Local Streets and as outlined in the approved QC Plan.

All Plant QCTs who are performing testing shall be certified as an HMA Plant Technician by the NETTCP. QC inspection and sampling may be performed by a person qualified by the QC Manager.

C. Laboratory Quality Control Technician(s).

Any QC testing that is performed at off-site laboratories (i.e. other than at the production facility or field site) shall be performed by qualified Laboratory Quality Control Technicians (Laboratory QCTs). The Contractor shall provide a sufficient number of Laboratory QCTs to adequately implement the minimum Quality Control requirements contained in Subsection 460: Hot Mix Asphalt Pavement for Local Streets and Parking Lots and as outlined in the approved QC Plan.

All Laboratory QCTs who are performing testing shall be certified as a HMA Plant Technician by the NETTCP.

D. Field Quality Control Technician(s).

All Contractor QC sampling, testing, and inspection conducted at the HMA field placement site shall be performed by qualified Field Quality Control Technicians (Field QCTs). The Contractor shall provide a sufficient number of Field QCTs to adequately implement the minimum QC requirements contained in Subsection 460: Hot Mix Asphalt Pavement for Local Streets and Parking Lots and as outlined in the approved QC Plan.

All Field QCTs shall be certified as an HMA Paving Inspector as certified by the NETTCP. QC inspection and sampling may be performed by a person qualified by the QC Manager.

460.63: Quality Control Laboratory Facility Requirements

All Contractor QC testing shall be performed in laboratories qualified through the NETTCP LQP or accredited through AAP. The QC laboratory shall conform to 460.30: General.

460.64: Quality Control Inspection

The Contractor shall perform QC inspection of all work items addressed under this specification. Inspection activities during HMA production and placement may be performed by qualified Production personnel (e.g. Skilled Laborers, Foremen, and Superintendents). However, the Contractor’s QC personnel shall have overall responsibility for QC inspection. The Contractor shall not rely on the results of the Department’s Acceptance inspection for QC purposes. The Engineer shall be provided the opportunity to monitor and witness all QC inspection.
QC inspection activities must address the following four primary components:

a) Equipment.
b) Materials.
c) Environmental Conditions.
d) Workmanship.

The minimum frequency of QC inspection activity shall be in accordance with the requirements below and as outlined in the approved QC Plan. NETTCP IRFs may be used by the Contractor to document the results and findings of QC inspection.

A. QC Inspection for Preparation of Underlying Surface.

The Contractor's personnel will perform QC inspection during preparation of the underlying surface in accordance with the requirements of 460.43: Preparation of Underlying Surface. The minimum items to be inspected shall be as outlined in Table 460.64-1 and Table 460.64-2. The Contractor shall identify in the QC Plan the specific inspection activities necessary to ensure the quality of the work, including any additional inspection activities not specifically listed in Table 460.64-1 and Table 460.64-2.
Table 460.64-1: Minimum QC Inspection of HMA Patching Operations

<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Inspection Attribute</th>
<th>Minimum Inspection Frequency</th>
<th>Point of Inspection</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>As specified in QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
</tr>
<tr>
<td>Materials</td>
<td>Aggregates & PG Binder (Correct Type)</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check & Manufacturer COC</td>
</tr>
<tr>
<td></td>
<td>HMA Mixture (Correct Type)</td>
<td>Per QC Plan</td>
<td>From Haul Vehicle at Patching Site</td>
<td>Visual Check & Delivery Ticket</td>
</tr>
<tr>
<td></td>
<td>Joint Sealer (Correct Type)</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Check Manufacturer COC</td>
</tr>
<tr>
<td></td>
<td>Temperature of HMA Mix</td>
<td>4 per Day (See Note 1)</td>
<td>From Haul Vehicle at Patching Site</td>
<td>Check Measurement</td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td>Underlying Surface Soundness & Moisture</td>
<td>Per QC Plan</td>
<td>Underlying Surface</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Temperature of Air & Underlying Surface</td>
<td>1 per Day (See Note 2)</td>
<td>At Patching Site</td>
<td>Check Measurement</td>
</tr>
<tr>
<td>Workmanship</td>
<td>Sawcut Limit Vertical Face</td>
<td>Per QC Plan</td>
<td>Sawcut Limits</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Joint Sealer Application Rate</td>
<td>Per QC Plan</td>
<td>Sawcut Limits</td>
<td>Check Measurement</td>
</tr>
<tr>
<td></td>
<td>HMA Lift Thickness</td>
<td>Per QC Plan</td>
<td>HMA Lift</td>
<td>Check Measurement</td>
</tr>
<tr>
<td></td>
<td>Cross-Slope & Profile</td>
<td>Per QC Plan</td>
<td>Compacted HMA</td>
<td>Check Measurement</td>
</tr>
</tbody>
</table>

Note 1: The initial temperature measurements will be taken from haul vehicles on the first or second load.
Note 2: At a minimum, the temperature measurements of the air and underlying surface shall be obtained prior to starting the HMA patching placement.
Table 460.64-2: Minimum QC Inspection of Tack Coat Operations

<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Inspection Attribute</th>
<th>Minimum Inspection Frequency</th>
<th>Point of Inspection</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>As specified in QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
</tr>
<tr>
<td>Materials</td>
<td>Asphalt Emulsion (Correct Type)</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Check Manufacturer COC</td>
</tr>
<tr>
<td></td>
<td>Asphalt Emulsion Temperature</td>
<td>Per QC Plan</td>
<td>From Tack Distributor System</td>
<td>Check Measurement</td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td>Underlying Surface Cleanliness & Moisture</td>
<td>Per QC Plan</td>
<td>Underlying Surface</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Temperature of Air & Underlying Surface</td>
<td>1 per Day (See Note 1)</td>
<td>At Paving Site</td>
<td>Check Measurement</td>
</tr>
<tr>
<td>Workmanship</td>
<td>Asphalt Emulsion Application Rate</td>
<td>Per QC Plan</td>
<td>From Tack Distributor System</td>
<td>Check Measurement</td>
</tr>
</tbody>
</table>

Note 1: As a minimum, the temperature measurements of the air and underlying surface shall be obtained prior to starting the tack coat placement.

B. QC Inspection for Production & Placement of HMA Lots.

The Contractor’s QC personnel will perform QC inspection at both the HMA production facility and at the site of HMA field placement to ensure that the production and placement processes are providing work conforming to the contract requirements. The minimum items to be inspected for each HMA Lot shall be in accordance with the requirements of 460.43: Preparation of Underlying Surface through 460.51: Opening to Traffic and as outlined in Table 460.64-3 and Table 460.64-4. The Contractor shall identify in the QC Plan the specific inspection activities necessary to ensure the quality of the work, including any additional inspection activities not specifically listed in Table 460.64-3 and Table 460.64-4.

Wheel Path Deviations.

For projects having a posted speed equal to or greater than 40 mph with HMA Lots falling under Lot Category D (Small Lots), QC inspection for wheel path deviations in the mainline travel lanes shall be performed for the following pavement courses:

- Surface Course
- Intermediate Course (lift immediately beneath Surface Course only)
- Leveling Course (when placed immediately beneath Surface Course)

A wheel path is defined as 3 ft from and parallel to each longitudinal edge of a travel lane. Each wheel path for all HMA pavement course Lots shall be inspected for Wheel Path Deviations (high points or low points). All Transverse joints, Bridge joints, and structures that are within 3 ft of a wheel path shall be inspected for Wheel Path Deviations.
Inspection shall be performed using a 10-ft standard straightedge in the longitudinal direction on each wheel path. The Sublot size and minimum frequency of QC inspection for Wheel Path Deviations shall be as specified in Table 460.64-4, and in the approved Contractor QC Plan. Each random inspection location shall be established by determining a randomly selected distance along the wheel path in accordance with 460.65: Quality Control Sampling and Testing Requirements, Part A. Additional selective QC inspection for Wheel Path Deviations within each Sublot of compacted HMA pavement courses shall be as determined necessary by the Field QCT and as specified in the Contractor’s approved QC Plan.

The variation from the edge of the 10-ft straightedge to the top of the wheel path surface between any two contact points in the wheel path shall not exceed ¼ in. The Contractor shall correct any location in a pavement course wheel path not meeting this requirement. The corrective method(s) proposed by the Contractor shall be subject to the approval of the Engineer and shall be performed at the Contractor’s expense.
Table 460.64-3: Minimum QC Inspection at HMA Production Facility

<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Inspection Attribute</th>
<th>Minimum Inspection Frequency</th>
<th>Point of Inspection</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>As specified in QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
</tr>
<tr>
<td>Materials</td>
<td>PG Binder (Correct Type)</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check & Manufacturer COC</td>
</tr>
<tr>
<td></td>
<td>Aggregates (Correct Type)</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>RAP</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>RAS</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check & Manufacturer COC</td>
</tr>
<tr>
<td></td>
<td>Release Agent</td>
<td>Per QC Plan</td>
<td>Haul Vehicle Bed at Plant</td>
<td>Check QCML & Visual Check & Manufacturer COC</td>
</tr>
<tr>
<td></td>
<td>Temperature of HMA Mix</td>
<td>4 per Day (See Note 1)</td>
<td>From Haul Vehicle at Plant</td>
<td>Check Measurement</td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td>Stockpile Moisture</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Air Temperature & Precipitation Forecast</td>
<td>1 per Day</td>
<td>HMA Production Facility</td>
<td>Check Measurement</td>
</tr>
<tr>
<td>Workmanship</td>
<td>Uncoated Mixture</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Excess Blue Smoke or Moisture</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Burnt Mix</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Physical Segregation</td>
<td>Per QC Plan</td>
<td>HMA Production Facility</td>
<td>Visual Check</td>
</tr>
</tbody>
</table>

Note 1: The initial temperature measurements shall be taken from the first or second load.
Table 460.64-4: Minimum QC Inspection at HMA Placement Location

<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Inspection Attribute</th>
<th>Minimum Inspection Frequency</th>
<th>Point of Inspection</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>As specified in QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
</tr>
<tr>
<td>Materials</td>
<td>HMA Mixture (Correct Type)</td>
<td>Per QC Plan</td>
<td>From Haul Vehicle at Patching Site</td>
<td>Visual Check & Delivery Ticket</td>
</tr>
<tr>
<td></td>
<td>Joint Sealer (Correct Type)</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Check Manufacturer COC</td>
</tr>
<tr>
<td></td>
<td>Temperature of Delivered HMA Mix</td>
<td>4 per Day (See Note 1)</td>
<td>From Haul Vehicle or Paver Hopper</td>
<td>Check Measurement</td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td>Underlying Surface Soundness & Moisture</td>
<td>Per QC Plan</td>
<td>Underlying Surface</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Temperature of Air & Underlying Surface</td>
<td>1 per Day</td>
<td>At Paving Site</td>
<td>Check Measurement</td>
</tr>
<tr>
<td>Workmanship</td>
<td>Joint Location & Alignment</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Sawcut Joint Vertical Face</td>
<td>Per QC Plan</td>
<td>Joint Vertical Face</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Joint Sealer Application Rate</td>
<td>Per QC Plan</td>
<td>Joint Vertical Face</td>
<td>Check Measurement</td>
</tr>
<tr>
<td></td>
<td>Temperature Differential in HMA Mat</td>
<td>Per QC Plan</td>
<td>HMA Mat Behind Paver</td>
<td>Per 460.47: Hot Mix Asphalt Placement, Part D</td>
</tr>
<tr>
<td></td>
<td>Physical Segregation</td>
<td>Per QC Plan</td>
<td>HMA Mat Behind Paver & Compacted HMA</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>HMA Lift Thickness</td>
<td>Per QC Plan</td>
<td>HMA Lift</td>
<td>Check Measurement</td>
</tr>
<tr>
<td></td>
<td>Cross-Slope</td>
<td>Per QC Plan</td>
<td>Compacted HMA</td>
<td>Check Measurement</td>
</tr>
<tr>
<td></td>
<td>Joint Tightness</td>
<td>Per QC Plan</td>
<td>Compacted HMA</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Joint Surface Deviations (See Note 2)</td>
<td>Once per 500 ft per joint</td>
<td>At Finished Joint and Adjusted Structures</td>
<td>10-ft standard straightedge</td>
</tr>
<tr>
<td></td>
<td>Wheel Path Deviations</td>
<td>Once per 2,000 ft per Wheel Path</td>
<td>Wheel Path</td>
<td>10-ft standard straightedge</td>
</tr>
</tbody>
</table>

Note 1: The initial temperature measurements will be taken from the first or second load.

Note 2: When measured with a 10-ft straightedge the deviation shall be less than \(\frac{3}{8} \) in.
460.65: Quality Control Sampling and Testing Requirements

The Contractor's QC personnel will perform QC sampling and testing at both the HMA production facility and at the site of HMA field placement to ensure that the production and placement processes are providing work conforming to the contract requirements. The Engineer will not sample or test for QC or assist in controlling the Contractor's operations. All QC sampling and testing shall be in accordance with the current AASHTO, ASTM, NETTCP, or Department procedures specified in Table 460.65-1. When a test method has been updated or superseded, the superseding specification shall be used. If a test method has been removed from circulation with no replacement then that test method shall be used until otherwise noted. The Contractor shall furnish approved containers for all material samples. The Engineer shall be provided the opportunity to monitor and witness all QC sampling and testing.

A. Random Sampling.

The Contractor's QC System shall utilize stratified random sampling of each Lot produced and placed to assure that all material within the Lot has an equal probability of being selected for testing. The Contractor's qualified QC personnel shall obtain random QC samples at the minimum frequencies specified in Table 460.65-1. In all cases, application of the specified QC sampling frequencies shall result in a minimum of one random sample per Sublot.

Random sample locations shall be determined using the random number tables and procedures contained in ASTM D3665 or an electronic random number generator, as presented by the NETTCP. The determination of all random sample locations shall be documented on NETTCP Standard Test Report Form D3665RNG. The Contractor will provide the Engineer with the random QC sampling locations selected and documented for each Sublot prior to production and placement of the relevant Sublots.

B. Selective Sampling.

The Contractor's QC System may also utilize selective sampling (i.e. non-random samples), as needed, to provide supplemental information to assist in maintaining all production and placement processes in control. The Contractor's qualified QC personnel shall obtain selective QC samples from any Sublot as determined necessary and in accordance with the guidelines established in the approved QC Plan. Selective QC core samples shall not be obtained within a 10-ft radius of an Department’s random Acceptance sample. Selective QC samples shall not be used as a basis to dispute the Department's Acceptance test results.
C. QC Sample Identification System.

The Contractor shall establish a reliable system for the identification of all QC samples obtained. All HMA loose mixture samples and core samples shall be correctly labeled with the following minimum information:

(a) Contract No.
(b) Date of Sample.
(c) Bid Item Number.
(d) Mixture Type.
(e) Mixture ID Number.
(f) Lot & Sublot No.
(g) Sample No.
(h) Sample Type (i.e. Random or Selective).
(i) Sample Location (e.g. Station & Offset).

The Contractor's system and procedures for identification of QC samples shall be outlined in the approved QC Plan.

D. Retention of Split Samples.

The Contractor’s qualified QC personnel shall obtain all material samples (HMA loose mix samples and cores) for QC testing. The Contractor will retain split samples from each HMA loose mix sample. If requested, these split samples will be provided to the Engineer. The Contractor shall retain the original core samples after testing to serve as “split samples” and protect them from damage. All split samples shall be properly labeled and stored for a period of 30 days, or until tested. The retained split samples may be discarded prior to the required 30 days when agreed upon by the Contractor and the Department.

E. Quality Control Testing of Prepared Underlying Surface.

The Contractor's QC personnel will perform QC testing during preparation of the underlying surface. For projects having a posted speed equal to or greater than 40 mph with HMA Lots falling under Lot Category D (Small Lots), QC testing of the prepared underlying surface in the mainline travel lanes shall be performed. All QC testing shall be in accordance with the current AASHTO, ASTM, NETTCP, or Department procedures specified in Table 460.65-1. The Engineer shall be provided the opportunity to monitor and witness all QC testing.
Table 460.65-1: Minimum QC Sampling & Testing of Prepared Underlying Surface

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method(s)</th>
<th>Sublot Size</th>
<th>Minimum Test Frequency</th>
<th>Point of Sampling</th>
<th>Sampling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA Patching Mixture:</td>
<td>AASHTO T 308</td>
<td>300 tons</td>
<td>1 per Sublot</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97</td>
</tr>
<tr>
<td>PG Asphalt Binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>AASHTO R 97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMA Patching Mixture:</td>
<td>AASHTO T 30</td>
<td>300 tons</td>
<td>1 per Sublot</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97</td>
</tr>
<tr>
<td>Combined Agg. Gradation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMA Patching Mixture:</td>
<td>AASHTO T 209</td>
<td>300 tons</td>
<td>1 per Sublot</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97</td>
</tr>
<tr>
<td>Maximum Theo. Specific</td>
<td>(Method A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravity</td>
<td>AASHTO T 343</td>
<td>100 ft² per each Patch Area</td>
<td>1 per Sublot</td>
<td>From Compacted HMA Patch</td>
<td>Random AASHTO T 343 or T 355</td>
</tr>
</tbody>
</table>

F. Quality Control Testing of HMA Lots.

The Contractor’s QC personnel will perform QC testing at both the HMA production facility and at the site of HMA field placement to ensure that the production and placement processes are providing work conforming to the contract requirements. The Engineer shall be provided the opportunity to monitor and witness all QC testing of HMA. All QC testing of HMA Lots shall be in accordance with the current AASHTO, ASTM, NETTCP, or Department test methods specified in Table 460.65-2 and the procedures outlined below.
<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method(s)</th>
<th>Sublot Size</th>
<th>Minimum Test Frequency</th>
<th>Point of Sampling</th>
<th>Sampling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAP Asphalt Binder Content</td>
<td>AASHTO T 308</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>At HMA Plant Per QC Plan</td>
<td>Random AASHTO R 90</td>
</tr>
<tr>
<td>RAP Gradation</td>
<td>AASHTO T 30</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>At HMA Plant Per QC Plan</td>
<td>Random AASHTO R 90</td>
</tr>
<tr>
<td>Aggregate Gradation</td>
<td>AASHTO T 27</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>At HMA Plant Per QC Plan</td>
<td>Random AASHTO R 90</td>
</tr>
<tr>
<td>PG Asphalt Binder Content</td>
<td>AASHTO T 308</td>
<td>1,200 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>Combined Aggregate Gradation</td>
<td>AASHTO T 30</td>
<td>1,200 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>Maximum Theo. Specific Gravity</td>
<td>AASHTO T 209</td>
<td>1,200 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>Bulk Specific Gravity</td>
<td>AASHTO T 166</td>
<td>1,200 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>Volumetrics: Air Voids, VMA, VFA</td>
<td>AASHTO T 312</td>
<td>1,200 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>In-place HMA Mat Density (Density Gauge)</td>
<td>AASHTO T 343 or T 355</td>
<td>600 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Compacted HMA Course</td>
<td>Selective & Random AASHTO T 343 or T 355</td>
</tr>
<tr>
<td>In-place HMA Mat Density (Cores)</td>
<td>AASHTO T 269</td>
<td>1,200 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Compacted HMA Course</td>
<td>Random AASHTO R 67</td>
</tr>
<tr>
<td>Thickness</td>
<td>ASTM D3549</td>
<td>1,200 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Compacted HMA</td>
<td>Random AASHTO R 67</td>
</tr>
<tr>
<td>Transverse Joint Density</td>
<td>AASHTO T 343 or T 355</td>
<td>Each Joint for every 500 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>At Finished Joint</td>
<td>Random AASHTO T 343 or T 355</td>
</tr>
<tr>
<td>Longitudinal Joint Density</td>
<td>AASHTO T 343 or T 355</td>
<td>1,000 feet per Joint</td>
<td>1 per Sublot (See Note 1)</td>
<td>At Finished Joint</td>
<td>Random AASHTO T 343 or T 355</td>
</tr>
</tbody>
</table>

Note 1: In the event that the total HMA production for one calendar week is less than one Sublot, a minimum of one random QC sample shall be obtained for the week’s production.
(1) PG Asphalt Binder Grading.

QC testing of PG Asphalt Binder shall be performed by the PGAB Supplier in accordance with AASHTO R 26 and the Supplier’s approved PGAB QC Plan. The Contractor shall submit to the Engineer the Supplier’s COC along with copies of the COA showing the certified test results for each Supplier Lot of PGAB from which the HMA Producer’s PGAB was obtained. A copy of the COA and a copy of all BOLs for the Lot of PGAB being used shall be kept in the Contractor's QC laboratory.

If the Contractor modifies the PGAB at the HMA production facility through blending or introduction of an asphalt binder modifier, the Contractor (i.e. HMA Producer) shall assume responsibility as the PGAB Supplier per AASHTO R 26. In such case, the Contractor shall obtain and test a minimum of one random sample of the modified PGAB for each 24,000 tons of HMA produced for the project to determine conformance with M3.01.0: Performance Graded Asphalt Binder.

(2) Aggregate Gradation.

The virgin aggregates utilized in each HMA Lot shall be tested for Gradation in accordance with AASHTO T 27. The Sublot size and minimum frequency of QC testing for Aggregate Gradation shall be as specified in the Contractor's approved QC Plan. Aggregate samples shall be obtained at the HMA plant from aggregate bins or stockpiles in accordance with AASHTO R 90.

(3) PG Asphalt Binder Content.

Each HMA Lot produced and placed shall be tested for PG Asphalt Binder Content in accordance with AASHTO T 308. The Sublot size and minimum frequency of QC testing for PG Asphalt Binder Content shall be as specified in Table 460.65-2. Each material sample for PG Asphalt Binder Content shall be obtained at the HMA plant from a randomly selected quadrant from the haul vehicle in accordance with 460.65: Quality Control Sampling and Testing Requirements, Part A and AASHTO R 97 and R 47.

(4) Combined Aggregate Gradation.

Each HMA Lot produced and placed shall be tested for Combined Aggregate Gradation in accordance with AASHTO T 30. The Sublot size and minimum frequency of QC testing for Combined Aggregate Gradation shall be as specified in Table 460.65-2. Each material sample for Combined Aggregate Gradation shall be obtained at the HMA plant from a randomly selected quadrant from the haul vehicle in accordance with 460.65: Quality Control Sampling and Testing Requirements, Part A and AASHTO R 97 and R 47.

Minimum Action Limits are provided in Table 460.65-3, however, the Action Limits to be used for each HMA Lot shall be as specified in the Contractor’s approved QC Plan. If the QC test results for an individual Sublot fall outside of the Action Limits, the Contractor shall evaluate the HMA production process and determine any adjustments necessary to bring the Combined Aggregate Gradation back within the Action Limits. If three consecutive Sublot test results fall outside of the Action Limits, the Contractor shall suspend Lot production until it can be demonstrated that the HMA mixture can be produced within the Action Limits. The Contractor’s QC personnel shall document all action(s) taken to bring the HMA production process into control.
Table 460.65-3: Minimum Action Limits for Combined Aggregate Gradation

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Action Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passing No. 4 Sieve and larger sieve sizes</td>
<td>JMF Target ± 6%</td>
</tr>
<tr>
<td>Passing No. 8 sieves</td>
<td>JMF Target ± 5%</td>
</tr>
<tr>
<td>Passing No. 16 to No. 50 sieves (inclusive)</td>
<td>JMF Target ± 3%</td>
</tr>
<tr>
<td>Passing No. 100 sieve</td>
<td>JMF Target ± 2%</td>
</tr>
</tbody>
</table>

(5) **Maximum Theoretical Specific Gravity.**

Each HMA Lot produced and placed shall be tested for Maximum Theoretical Specific Gravity in accordance with AASHTO T 209 Method A. The Sublot size and minimum frequency of QC testing for Maximum Theoretical Specific Gravity shall be as specified in Table 460.65-2. Each material sample for Maximum Theoretical Specific Gravity shall be obtained at the HMA plant from a randomly selected quadrant from the haul vehicle in accordance with 460.65: Quality Control Sampling and Testing Requirements, Part A and AASHTO R 97 and R 47.

(6) **Bulk Specific Gravity.**

Each HMA Lot produced and placed shall be tested for Bulk Specific Gravity in accordance with AASHTO T 166 (Method A). The Sublot size and minimum frequency of QC testing for Bulk Specific Gravity shall be as specified in Table 460.65-2. Each material sample for Bulk Specific Gravity shall be obtained at the HMA plant from a randomly selected quadrant from the haul vehicle in accordance with 460.65: Quality Control Sampling and Testing Requirements, Part A and AASHTO R 97 and R 47.

(7) **Volumetrics (Air Voids, VMA, VFA).**

Each HMA Lot produced and placed shall be tested for Volumetrics (Air Voids, VMA, VFA) in accordance with AASHTO T 312 and R 35. The requirement for Volumetric testing of laboratory compacted specimens applies to all HMA mixtures designed by the Superpave volumetric method. The Sublot size and minimum frequency of QC testing for Volumetrics shall be as specified in Table 460.65-2. Each material sample for Volumetrics shall be obtained at the HMA plant from a randomly selected quadrant from the haul vehicle in accordance with 460.65: Quality Control Sampling and Testing Requirements, Part A and AASHTO R 97 and R 47.

(8) **In-place HMA Mat Density.**

Each HMA Lot produced and placed shall be tested for In-place Density using a density gauge or cores as specified below. The requirement for In-Place Density testing applies to all pavement courses, with the exception of Open Graded Friction Courses and Leveling Courses. The Sublot size and minimum frequency of random QC testing for In-place Density by either density gauge or core shall be as specified in Table 460.65-2.

(a) **Testing In-Place Density by Density Gauge.**

Initial QC testing of In-Place Density during compaction of HMA pavement courses shall be performed selectively (or randomly when determined appropriate by QC personnel) using a density gauge in accordance with AASHTO T 343 or T 355.
The density gauge shall be calibrated at least once every 12 months in accordance with the applicable test method and Manufacturer’s recommendations. Calibration certificates shall be kept with the gauge and a copy shall be provided to the Engineer upon request. This calibration does not include calibration of the gauge to the specific HMA pavement placed.

(b) Testing In-Place Density by Cores.

Final QC testing of In-Place Density of all applicable HMA pavement courses shall be performed using 6-in. diameter cores in accordance with AASHTO T 269. In-Place Density shall be determined from each core by comparing the Bulk Specific Gravity of the core to the Maximum Theoretical Specific Gravity for the Sublot. Each core location shall be established by determining a randomly selected tonnage and corresponding approximate longitudinal distance within the Sublot, along with a randomly selected offset distance in accordance with 460.65: Quality Control Sampling and Testing Requirements, Part A. If the randomly determined sampling location coincides with one of the following conditions, a new random sampling location shall be generated and documented:

1. Within 1 ft from edge of pavement course to be left unconfined upon project completion.
2. Within 1 ft of any longitudinal joint or transverse joint.
3. Within 3 ft of any drainage structure.
4. For shoulders less than or equal to 3 ft, the shoulder width shall be excluded from random sampling.

Core samples shall be obtained in accordance with AASHTO R 67 within 48 hours of completion of the Sublot. To protect the integrity of the core, when the target lift thickness is less than 1.50 in., the Contractor shall drill so that the sampled core is comprised of at least the lift to be tested as well as the lift immediately below. All cores shall be protected against damage and tested within 48 hours after they have been obtained. The Contractor shall fill all core holes, whether from QC sampling or the Department Acceptance sampling, with fresh HMA mixture from the same JMF. The filled core holes shall be thoroughly compacted.

(9) Thickness.

Each HMA pavement course specified to be placed at a compacted thickness of 1.25 in. or greater shall be tested for Thickness using cores, with the exception of the following courses:

1. Leveling Course.
2. In the absence of a Leveling Course, the first pavement course placed over existing pavement. A milled surface is not considered an existing pavement. HMA placed on top of a milled surface shall be subject to thickness testing, unless it is a leveling course, or if the milling operation, approved by the Engineer, caused the pavement thickness to vary.

The aforementioned pavement courses are exempt only from determination of Thickness using cores and the corresponding evaluation of Lot quality. The Contractor is still responsible for ensuring the minimum required thickness of these pavement courses using appropriate sampling and testing protocols.

All sampling and testing for Thickness of the applicable pavement courses using cores shall be in accordance with AASHTO R 67 and ASTM D3549, respectively. The Sublot size and minimum frequency of random QC testing for Thickness shall be as specified in Table 460.65-2.
(10) Joint Density.

Each transverse joint and longitudinal joint formed during placement of a pavement course shall be tested for Joint Density using a density gauge in accordance with AASHTO T 343 or T 355. The requirement for Joint Density testing applies to all pavement courses, with the exception of Leveling Courses. The Sublot size and minimum frequency of random QC testing for Joint Density shall be as specified in Table 460.65-2.

Each random sampling and testing location shall be established by determining a randomly selected distance along the joint, along with a randomly selected offset distance within 1 ft of either side of the finished joint, in accordance with 460.65: Quality Control Sampling and Testing Requirements, Part A. Additional selective QC sampling and testing of Joint Density within each Sublot of compacted HMA pavement courses shall be as determined necessary by the Field QCT and as specified in the Contractor’s approved QC Plan.

460.66: Quality Control Documentation and Data Evaluation

A. QC Inspection Documentation & Evaluation.

The Contractor shall document all QC inspection activity for each HMA Lot Category (Category D or E) produced and placed. All inspection results shall be recorded within 24 hours of inspection on current NETTCP standard IRFs. The QC Manager shall evaluate inspection results in a timely manner to confirm that production and placement processes are in control. The Contractor shall submit hard copies of all IRFs to the Engineer at the completion of each Lot.

B. QC Sampling and Testing Documentation & Data Analysis.

The Contractor shall document all QC sampling and testing data for each HMA Lot Category (Category D or E) produced and placed. All sampling and testing data shall be recorded within 24 hours of testing on current NETTCP standard TRFs. The QC Manager shall evaluate sampling and testing results in a timely manner to confirm that production and placement processes are in control. The Contractor shall submit hard copies of all TRFs to the Engineer at the completion of each Lot.

(1) Control Charts.

The Contractor may use Control Charts as part of the QC System to assist in identifying assignable causes affecting the HMA production and placement processes. When used, Control Charts shall be prepared for the Quality Characteristics subject to QC sampling and testing listed in Table 460.65-2. The Contractor may plot all QC test results of each Lot on Control Charts for individual Sublot measurements or test values (Run Charts). It is also recommended practice for the Contractor to use Control Charts that plot Subgroups of data (e.g. X-Bar Charts, R Charts). When used, the Control Charts shall identify the Contract number, the Payment Item number, the Lot number, the Quality Characteristic, the Control Chart Target, the Upper and Lower Control Chart Limits, and Sublot or Subgroup numbers.

QC personnel should use the Control Chart data to monitor and adjust the production and placement processes or suspend operations as determined necessary. Control Charts for Quality Characteristics related to HMA production should be maintained at the HMA production facility.
Control Charts for Quality Characteristics related to HMA field placement should be maintained at the project field site.

(2) Evaluation of Individual Sublot QC Test Results.

The Contractor shall evaluate the individual QC test results for each HMA Lot Category (Category D or E) produced and placed. Each random QC test result shall be evaluated against the applicable Quality Limits within 24 hours of testing. Each Sublot test value shall be within the applicable Engineering Limits specified in Table 460.76-1.

If the evaluation of the QC testing data indicates that an individual Sublot is not in conformance with the applicable Engineering Limits, the Contractor shall follow the requirements of 460.67: Corrective Action.

460.67: Corrective Action

As part of the Contractor’s QC System, the Contractor shall implement corrective action for any part of a Lot that is determined by inspection or testing to not be in conformance with the quality requirements specified in Subsection 460: Hot Mix Asphalt Pavement for Local Streets. If the results of QC inspection or testing identify nonconforming material or workmanship within one or more Sublots, the Contractor shall isolate the Sublot(s) and perform additional inspection or testing to further assess the quality of the Sublot. Selective inspection or testing should be used to determine the limits of non-conformance. If a Sublot test result is outside of the Engineering Limits, the QC Manager and the Engineer will further assess the Sublot quality to determine whether the material in the Sublot can remain in place in accordance with 460.76: Lot Acceptance Determination Based on Testing Data, Part (2).

Based on the results of additional inspection or testing, the Contractor shall prepare a plan of corrective action for the nonconforming Sublot(s). The Corrective action plan shall be submitted to and approved by the Engineer prior to initiating corrective action. All corrective action shall be performed at the Contractor’s expense.

460.68: Quality Control Records System

A. Quality Control Daily Diary.

The QC Manager should maintain a Quality Control Daily Diary (QC Daily Diary) to document all major activities or actions related to the Contractor's QC System. The QC Daily Diary serves as a summary record of key actions taken by QC personnel each day. Recommended information which should be recorded in the QC Daily Diary includes:

a) The day’s weather or environmental conditions.
b) A summary of production or placement activities completed.
c) Any non-conforming material or workmanship identified.
d) Any corrective actions recommended or taken by QC personnel.
e) Discussions held with other Contractor personnel or Engineer.
f) Visitors to the production facility or field placement operation.
B. Quality Control Record Books.

The Contractor shall maintain one or more ringed binders referred to as “Quality Control Record Books” (QC Record Books) to store all required QC documents. The Contractor may elect to keep an electronic QC Record Book. QC Record Books shall be kept at each HMA production facility or other designated location. QC data for each pavement course shall be organized into separate sections by Quality Characteristic and by Lot number.

QC documents to be stored in the QC Record Book(s) include:

a) A signed copy of the current approved QC Plan.
b) The original signed copies of all completed Inspection Report Forms.
c) The original signed copies of all completed Random Sampling location forms.
d) The original signed copies of all completed Test Report Forms.

Each required record shall be inserted into the corresponding QC Record Book within 24 hours after the document has been completed. The Engineer shall be provided access to all QC Record Books. QC personnel shall also track the daily tonnage of HMA which leaves the production facility and the quantity that is actually placed on the project site.

C. Quality Control Records Retention.

All Contractor QC records identified above shall be retained for a minimum of 7 years. The records shall be protected from damage or alteration. When requested by any State or Federal Agency for audit or similar purposes, the Contractor shall provide complete access to all QC records.

D. Failure to Provide Quality Control Records

The Contractor shall provide the Engineer with requested QC records within 48 hours of the request. Failure to provide the documentation in the required timeframe will result in the withholding of payment.

DEPARTMENT ACCEPTANCE

460.70: General

The Department is responsible for performing all Acceptance activities and making the final acceptance determination for each HMA Lot produced and placed. The Department’s Acceptance System will include monitoring the Contractor’s QC activity and performing Acceptance inspection, sampling and testing in order to determine the Quality and corresponding payment for each Lot. These activities will be performed for each HMA Lot Category (Lot Category D and E) as outlined further below.

460.71: Acceptance System Approach

For all HMA Category D and E Lots, the Engineer’s Acceptance determination will be based on the Engineer’s Acceptance inspection information and Acceptance testing data. The Engineer will perform Acceptance sampling and testing on a minimum of 50% of the Sublots produced and placed.
460.72: Department Monitoring of Contractor Quality Control

The Department will monitor the Contractor’s QC System to confirm that QC activities are being performed for each Lot in compliance with this specification and the approved QC Plan. The Engineer will not perform the QC responsibilities of the Contractor or provide constant direction to the Contractor on how to perform Quality Control. The Engineer’s monitoring of QC activity will include the following:

a) Periodic visual observation of QC inspection, sampling, and testing.
b) Reviewing QC documentation and records.
c) Providing feedback based on monitoring findings.

When deficiencies in the Contractor’s QC System are identified and documented by the Engineer, the Contractor shall take immediate action to address the deficiencies and coordinate appropriate corrective actions with the Engineer. If the material in an HMA Lot where deficiencies in the Contractor’s QC System were identified is removed and replaced, and the replacement HMA complies with the Specification requirements, the actions listed below will not apply. If the Contractor fails to acknowledge the deficiency and take appropriate action, the Contractor shall suspend production and placement of the corresponding Lot(s). Failure by the Contractor to comply with the Quality Control requirements in either this specification or the approved QC Plan may result in the withholding of payment.

460.73: Acceptance Inspection

The Engineer will perform Acceptance inspection of all work items addressed under Subsection 460: Hot Mix Asphalt Pavement for Local Streets to ensure that all materials and completed work are in conformance with the contract requirements. Acceptance inspection is intended to visually assess the quality of each HMA Lot produced and placed and will address only the inspection components of Materials and Workmanship in support of the Department’s final acceptance determination.

All Acceptance inspection activity by the Department will be performed independent of the Contractor’s QC inspection. NETTCP IRFs may be used by the Engineer to document the results and findings of Acceptance inspection.

A. Acceptance Inspection of Prepared Underlying Surface.

The Department will perform Acceptance inspection of the prepared underlying surface prior to placement of HMA. Inspection will be in accordance with Table 460.73-1 and Table 460.73-2.
Table 460.73-1: Department Acceptance Inspection of HMA Patching

<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Inspection Attribute</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>Mixture Type & PG Binder Grade (Correct Type)</td>
<td>Visual Check & Manufacturer COC</td>
</tr>
<tr>
<td>Joint Sealer (Correct Type)</td>
<td></td>
<td>Check Manufacturer COC</td>
</tr>
<tr>
<td>Workmanship</td>
<td>Sawcut Limit Vertical Face</td>
<td>Visual Check</td>
</tr>
<tr>
<td>Joint Sealer Application Rate</td>
<td></td>
<td>Visual Check & Check Measurement</td>
</tr>
<tr>
<td></td>
<td>Cross-Slope & Profile</td>
<td>Check Measurement</td>
</tr>
</tbody>
</table>

Table 460.73-2: Department Acceptance Inspection of Tack Coat

<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Inspection Attribute</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>Asphalt Emulsion (Correct Type)</td>
<td>Check Manufacturer COC</td>
</tr>
<tr>
<td>Workmanship</td>
<td>Asphalt Emulsion Application Rate</td>
<td>Visual Check, Check Measurement & Confirm Calibration</td>
</tr>
</tbody>
</table>

B. Acceptance Inspection of HMA Lots.

The Department may perform Acceptance inspection at the HMA production facility and will perform Acceptance Inspection at the site of HMA field placement. For purposes of Acceptance inspection, the total quantity of each HMA pavement course produced and placed during the same construction season will constitute a Lot. Each in-place HMA Lot will be divided into 500 lane-feet Sublots. The items to be inspected and minimum frequency of inspection will be in accordance with the requirements outlined in Table 460.73-3.

Wheel Path Deviations.

The Engineer will inspect the HMA pavement for Wheel Path Deviations (high points or low points) using a 10-ft standard straightedge in accordance with the procedures outlined in 460.64: Quality Control Inspection, Part B. The finished surface of each required pavement course will be inspected. The Sublot size and minimum frequency of Acceptance inspection for Wheel Path Deviations will be as specified in Table 460.73-3.
<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Inspection Attribute</th>
<th>Minimum Inspection Frequency</th>
<th>Point of Inspection</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>HMA Mixture Type (Correct Type)</td>
<td>1 per Day</td>
<td>At Paving Site</td>
<td>Visual Check & Delivery Ticket</td>
</tr>
<tr>
<td></td>
<td>Joint Sealer (Correct Type)</td>
<td>1 per Day</td>
<td>At Paving Site</td>
<td>Check Manufacturer COC</td>
</tr>
<tr>
<td>Workmanship</td>
<td>Joint Location & Alignment</td>
<td>50% of Sublots, Once per Joint</td>
<td>At Finished Joint</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Sawcut Joint Vertical Face</td>
<td>50% of Sublots, Once per Joint</td>
<td>Joint Vertical Face</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Joint Sealer Application Rate</td>
<td>50% of Sublots, Once per Joint</td>
<td>Joint Vertical Face</td>
<td>Visual Check & Check Measurement</td>
</tr>
<tr>
<td></td>
<td>Physical Segregation</td>
<td>50% of Sublots, Once per Lane</td>
<td>Compacted HMA</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Cross-Slope Joint</td>
<td>50% of Sublots, Once per Lane</td>
<td>Compacted HMA</td>
<td>Check Measurement</td>
</tr>
<tr>
<td></td>
<td>Tightness</td>
<td>50% of Sublots, Once per Joint</td>
<td>Compacted HMA</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Joint Surface Deviations</td>
<td>50% of Sublots, Once per Joint</td>
<td>At Finished Joint</td>
<td>10-ft standard straightedge</td>
</tr>
<tr>
<td></td>
<td>Wheel Path Deviations</td>
<td>50% of Sublots, per Wheel Path</td>
<td>Wheel Path</td>
<td>10 ft standard straightedge</td>
</tr>
</tbody>
</table>

460.74: Acceptance Sampling and Testing

A. Random Sampling.

The Department will utilize stratified random sampling to determine the overall quality of each HMA Lot produced and placed. Random Acceptance sample locations will be determined by the Engineer in accordance with ASTM D3665 or by electronic random number generator, as presented by NETTCP. All random Acceptance sample locations will be documented on the most current version of NETTCP Test Report Form D3665.

The Contractor shall furnish the Engineer with approved containers for all Acceptance samples. The Engineer will obtain all random Acceptance samples independent of the Contractor’s QC samples at the frequencies outlined below.

Sampling HMA Category D and E Lots.

For projects having a posted speed equal to or greater than 40 mph with HMA Lots falling under Lot Category D (Small Lots), Acceptance testing will be performed by the Engineer for each of the Quality Characteristics specified in Table 460.74-2.

For projects with HMA Lots falling under Lot Category E (Minor Lots), the Engineer will perform Acceptance testing only for in-place HMA mat density and thickness.
The Engineer will obtain Acceptance samples from a minimum of 50% of all Sublots for the applicable Quality Characteristics specified in Table 460.74-2.

B. Selective Sampling.

The Department will utilize selective sampling (i.e. non-random samples) as needed to provide supplemental information to assist in quantifying the quality of apparent nonconforming material. The test results of selective Acceptance samples will not be combined with random Acceptance sample data in the determination of Lot acceptance.

C. Contractor Assistance in Obtaining Acceptance Samples.

The Engineer will obtain all material samples for Acceptance testing. When requested by the Department, the Contractor shall assist the Engineer in obtaining Acceptance samples in accordance with the following requirements:

a) The Acceptance sample location and time will be randomly selected by the Engineer and provided to the Contractor immediately prior to sampling.

b) The Contractor's qualified QC personnel will only provide the physical labor to assist the Engineer in obtaining the Acceptance sample.

c) The Engineer will be present to direct and monitor the taking of the sample.

d) The Engineer will take immediate possession of the Acceptance sample.

Contractor assistance may be requested in obtaining Acceptance samples (random or selective) for In-Place Density and Thickness (HMA cores). The Contractor shall provide adequate traffic control for the Department to obtain cores, regardless of whether the Contractor assists the Engineer in obtaining the Acceptance core samples.

D. Acceptance Sample Identification System.

The Department will use a standard system for the identification of all Acceptance samples. All HMA loose mixture samples and core samples will be labeled by the Engineer with the minimum information indicated under 460.65: Quality Control Sampling and Testing Requirements, Part C.

E. Retention of Split Samples.

Department personnel will obtain all material samples (HMA loose mix samples and cores) for Acceptance testing. The Department will retain Acceptance split samples from each HMA loose mix sample and provide a split sample to the Contractor, if requested. The Engineer will retain the original core samples after testing to serve as "split samples" and protect them from damage. All split samples will be stored by the Department for a period of 30 days, or until tested. These split samples may be utilized if necessary, in to resolve a dispute. The retained split samples may be discarded prior to the required 30 days when agreed upon by the Contractor and the Department.

F. Acceptance Testing of HMA Lots.

The Engineer, or the Engineer’s Designated Agent, will perform Acceptance testing using the random samples obtained in accordance with 460.74: Acceptance Sampling and Testing, Part A from the HMA production facility and at the site of HMA field placement. The specific Quality Characteristics subject to the Engineer's Acceptance testing are identified in Table 460.74-1. All Acceptance testing of HMA Lots will be performed by the Engineer in accordance with the AASHTO,
ASTM, NETTCP, or Department test methods specified in Table 460.74-1 and the procedures outlined below. Testing performed on samples obtained from the HMA production facility shall be performed by a NETTCP certified HMA Plant Technician.

(1) PG Asphalt Binder Grading.
The Department will review the Supplier’s BO) submitted by the Contractor along with the COC and COA showing the corresponding certified test results for each Supplier Lot of PGAB from which the HMA Producer’s PGAB was obtained.

(2) PG Asphalt Binder Content.
The Engineer will test each HMA Acceptance sample obtained for PG Asphalt Binder Content in accordance with AASHTO T 308. The Sublot size and minimum frequency of Acceptance testing for PG Asphalt Binder Content will be as specified in Table 460.74-1. Each material sample for PG Asphalt Binder Content will be obtained at the HMA plant from a randomly selected quadrant from the haul vehicle in accordance with 460.65: Quality Control Sampling and Testing Requirements, Part A and AASHTO R 97 and R 47.

(3) Volumetrics (Air Voids).
The Engineer will test each HMA Acceptance sample obtained for Volumetrics (Air Voids) in accordance with AASHTO T 312 and R 35. The requirement for Volumetric testing of laboratory compacted specimens applies to HMA mixtures for all pavement courses. The Sublot size and minimum frequency of Acceptance testing for Volumetrics will be as specified in Table 460.74-1. Each material sample for Volumetrics will be obtained at the HMA plant from a randomly selected quadrant from the haul vehicle in accordance with 460.65: Quality Control Sampling and Testing Requirements, Part A and AASHTO R 97 and R 47.

(4) Combined Aggregate Gradation.
Each HMA Acceptance sample obtained shall be tested for Combined Aggregate Gradation in accordance with AASHTO T 30. The Sublot size and minimum frequency of Acceptance testing for Combined Aggregate Gradation shall be as specified in Table 460.74-1. Each material sample for Combined Aggregate Gradation shall be obtained at the HMA plant from a randomly selected quadrant from the haul vehicle in accordance with 460.65: Quality Control Sampling and Testing Requirements, Part A and AASHTO R 97 and R 47.

If the Acceptance test results for an individual Sublot fall outside of the Action Limits specified in Table 460.65-2, the Engineer shall inform the Contractor so that they may evaluate the HMA production process and make any adjustments necessary to bring the Combined Aggregate Gradation back within the Action Limits.
Table 460.74-1: Department’s Acceptance Sampling and Testing of HMA Lots

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method(s)</th>
<th>Sublot Size</th>
<th>Minimum Test Frequency</th>
<th>Point of Sampling</th>
<th>Sampling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG Asphalt Binder Content</td>
<td>AASHTO T 308</td>
<td>1,200 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Haul Vehicle at HMA Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>Combined Aggregate Gradation</td>
<td>AASHTO T 30</td>
<td>1,200 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Haul Vehicle at HMA Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>Volumetrics: Air Voids</td>
<td>AASHTO T 312 and R 35</td>
<td>1,200 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Haul Vehicle at HMA Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>In-place HMA Mat Density (Cores)</td>
<td>AASHTO T 269</td>
<td>1,200 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Compacted HMA Course</td>
<td>Random AASHTO R 67</td>
</tr>
<tr>
<td>Thickness</td>
<td>ASTM D3549</td>
<td>1,200 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Compacted HMA Course</td>
<td>Random AASHTO R 67</td>
</tr>
</tbody>
</table>

Note 1: In the event that the total HMA production for one calendar week is less than one Sublot, a minimum of one random Acceptance sample shall be obtained for the week’s production.

(5) In-Place HMA Mat Density.

The Engineer will test each HMA Lot produced and placed for In-place HMA Mat Density. The requirement for In-Place Density testing applies to all pavement courses as outlined below.

Testing In-Place Density by Cores.

Acceptance testing of HMA pavement courses for In-place Density will be performed using cores in accordance with the procedures outlined in 460.65: Quality Control Sampling and Testing Requirements, Part F(8)(b). The Sublot size and minimum frequency of Acceptance testing for In-place Density of HMA pavement courses by core will be as specified in 460.74-1. In order to ensure that the correct maximum specific gravity is utilized to determine the In-Place Density of a core, the Engineer reserves the right to determine the maximum specific gravity of the core itself after its bulk specific gravity has been determined and verified.

(6) Thickness.

Each HMA pavement course specified to be placed at a compacted thickness of 1 inch or greater, with the exception of the HMA pavement courses identified in 460.65: Quality Control Sampling and Testing Requirements, Part F(9), will be tested by the Engineer for Thickness using cores. Acceptance sampling and testing for Thickness of the applicable pavement courses shall be in accordance with AASHTO R 67 and ASTM D3549, respectively. The Sublot size and minimum frequency of Acceptance testing for Thickness will be as specified in Table 460.74-1.

460.75: Lot Acceptance Determination Based on Inspection Results

The Department’s Acceptance Inspection results will be used in the final Acceptance determination for all HMA Lots (Lot Category D and E). Prior to final Acceptance of each HMA Lot produced and
placed, the Department will periodically evaluate all Acceptance inspection information for the prepared underlying surface and the Lot. The materials and product workmanship for the completed work will be evaluated for conformance with the plans and the requirements specified in 460.43: Preparation of Underlying Surface through 460.51: Opening to Traffic.

When the Acceptance information identifies deficiencies in either material quality or product workmanship for any underlying surface location or HMA Sublot(s), the location or Sublot(s) will be isolated and further evaluated by the Engineer through additional Acceptance inspection (or sampling and testing, if relevant or possible). Depending upon the findings of the additional Acceptance inspection activity, the Engineer will determine the disposition of the nonconforming work in accordance with Subsection 5.03: Conformity with Plans and Specifications.

After each HMA Lot (and corresponding prepared underlying surface) is complete, including any corrective action, the Engineer will evaluate all Acceptance inspection information for the Work. The Department will accept the subject Work if the Engineer's evaluation of all inspection information for the completed Lot (and underlying surface) indicates that the corresponding materials and product workmanship meet the specified requirements (provided the evaluation of all Acceptance testing data for the subject work per 460.76: Lot Acceptance Determination Based on Testing Data also finds the work to be acceptable).

460.76: Lot Acceptance Determination Based on Testing Data

Evaluation of Lot Category D and E Testing Data.

Prior to final acceptance of each HMA Lot produced and placed; the Engineer will periodically evaluate all available Acceptance testing data for the Lot.

1) Conformance with Engineering Limits.

The Engineer will evaluate all Acceptance testing data and Contractor QC testing data for each Lot to determine conformance with the Engineering Limits in Table 460.76-1. Each Sublot test value for the Acceptance Quality Characteristics identified in Table 460.76-1 shall be within the Engineering Limits.

If a Sublot test result is outside of the Engineering Limits, the QC Manager and Engineer will further assess the Sublot quality to determine whether the material in the Sublot can remain in place. The Engineer will determine the disposition of the Sublot in accordance with Subsection 5.03: Conformity with Plans and Specifications.

If the Engineer’s assessment determines that the material quality is not sufficient to permit the Sublot to remain in place the Sublot shall be removed and replaced. When a nonconforming Sublot is corrected or replaced, the Engineer will perform Acceptance testing of the Sublot and evaluate the test results for conformance with the Engineering Limits. Once the above requirements have been met, the Department will accept all completed Sublots.

2) Final Lot Acceptance Determination.

For each HMA Category D and E Lot produced and placed, the Engineer will evaluate all Acceptance testing data for the Lot after all HMA Sublots are complete in-place.
After each HMA Lot is complete, including any corrective action, the Engineer will perform a final evaluation of all Acceptance data and Contractor QC data for the Lot. The Department will accept the Lot if the Engineer’s evaluation of all testing data for the Lot is in conformance with this specification and the contract documents.

Table 460.76-1: Quality Limits for Acceptance of HMA Lots

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Target</th>
<th>Lower Engineering Limit</th>
<th>Upper Engineering Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG Asphalt Binder Grading</td>
<td>Per Binder Grade Specified</td>
<td>Per Binder Grade Specified</td>
<td>Per Binder Grade Specified</td>
</tr>
<tr>
<td>PG Asphalt Binder Content</td>
<td>Per JMF</td>
<td>Target - 0.4%</td>
<td>Target + 0.4%</td>
</tr>
<tr>
<td>Volumetrics: Air Voids</td>
<td>4%</td>
<td>2%</td>
<td>6%</td>
</tr>
<tr>
<td>In-Place HMA Mat Density (Cores)</td>
<td>95% of G\text{mm}</td>
<td>91.5% of G\text{mm}</td>
<td>98.5% of G\text{mm}</td>
</tr>
<tr>
<td>Thickness: (All Courses 1 (\frac{1}{4}) inch or greater)</td>
<td>Per Plans</td>
<td>-30% of Target Thickness</td>
<td>+30% of Target Thickness</td>
</tr>
</tbody>
</table>

COMPENSATION

460.90: Method of Measurement

A. Patching.

HMA for Patching will be measured for payment by the ton and shall be the actual quantity complete, in place and accepted by the Engineer.

B. Tack Coat.

Asphalt Emulsion for Tack Coat, as required by the plans or these specifications, will be measured by the gallon.

C. Joint Sealer.

HMA Joint Sealer used for sealing all longitudinal joints and transverse joints in HMA pavement courses will be measured by the foot.

D. Hot Mix Asphalt.

Hot Mix Asphalt pavement course mixtures will be measured by the ton and shall be the actual pavement course quantity complete, in place and accepted by the Engineer. The quantity shall be determined only by weight slips that have been properly countersigned by the Engineer.

E. Sweeping of Underlying Surface.

Sweeping of the Underlying Surface prior to paving, as required by the plans or these specifications, will be measured by the hour.
F. **Material Transfer Vehicle.**

A Material Transfer Vehicle, as required by the plans or these specifications, will be measured by the ton.

460.91: **Basis of Payment**

A. **Patching.**

HMA for Patching will be paid for at the contract unit price per ton of the HMA mixture type specified under Pay Item 451. Payment shall include all sawcutting, removal of existing distressed or unsound pavement, applying hot poured joint sealer to vertical faces, applying the tack coat to all required surfaces at the specified rate in accordance with 460.43: Preparation of Underlying Surface, Part G, and transportation, delivery, placement, and compaction of HMA for Patching in accordance with 460.43: Preparation of Underlying Surface, Part C.

B. **Tack Coat.**

Asphalt Emulsion for Tack Coat will be paid for at the contract unit price per gallon of applied tack coat under Pay Item 452. Payment shall include sweeping existing surfaces and applying the tack coat to all required surfaces at the specified rate in accordance with 460.43: Preparation of Underlying Surface, Part G.

C. **Joint Sealer.**

HMA Joint Sealer will be paid for at the contract unit price per foot of joint sealed under Pay Item 453. Payment shall include application of the joint sealer to all longitudinal joints and transverse joints in HMA pavement courses as required and in accordance with 460.49: Hot Mix Asphalt Joints.

D. **Hot Mix Asphalt Pavement.**

Each HMA pavement course will be paid for at the contract unit price per ton of in-place mixture under the HMA Pay Items specified. Payment shall include transportation, delivery, placement, and compaction of each HMA pavement course in accordance with 460.43: Preparation of Underlying Surface through 460.51: Opening to Traffic. Mobile lighting for nighttime milling and paving, in accordance with 460.47: Hot Mix Asphalt Placement, Part C, is considered incidental to the cost of each HMA pavement course placed.

All sawcutting required for transverse joints or longitudinal joints in accordance with 460.49: Hot Mix Asphalt Joints shall also be included in the contract unit price for each HMA pavement course. All required sawcutting in the existing pavement in accordance with this specification will be included in the contract unit price for each HMA pavement course.

E. **Contractor Quality Control.**

The Contractor's QC system will be considered incidental to the work and shall be included in the Contract unit price for each HMA pavement course. No separate payment will be made for any assistance provided by the Contractor to the Engineer in obtaining Acceptance samples. Failure of the Contractor to perform adequate QC in accordance with the specifications and the Contractor's approved QC Plan will be justification for withholding payment.
F. Sweeping of Underlying Surface

Sweeping of Underlying Surface will be paid for at the contract unit price per hour under Pay Item 460.90. Payment shall include sweeping existing surfaces prior to paving in accordance with 460.43: Preparation of Underlying Surface, Part F.

G. Material Transfer Vehicle.

The Material Transfer Vehicle will be paid for at the contract unit price per ton under Pay Item 460.91. Payment shall include the use of a material transfer vehicle during paving operations in accordance with 460.47: Hot Mix Asphalt Placement, Part A.

All respective items listed under 460.93: Payment Items shall be bid separately.

460.93: Payment Items

460.22 SUPERPAVE Surface Course - 9.5 (SSC - 9.5) .. Ton
460.221 SUPERPAVE Surface Course - 9.5 - Polymer (SSC - 9.5 - P) Ton
460.23 SUPERPAVE Surface Course - 12.5 (SSC - 12.5) ... Ton
460.231 SUPERPAVE Surface Course - 12.5 - Polymer (SSC - 12.5 - P) Ton
460.31 SUPERPAVE Intermediate Course - 12.5 (SIC - 12.5) Ton
460.32 SUPERPAVE Intermediate Course - 19.0 (SIC - 19.0) Ton
460.42 SUPERPAVE Base Course - 37.5 (SBC - 37.5) .. Ton
460.51 SUPERPAVE Leveling Course - 4.75 (SLC - 4.75) ... Ton
460.52 SUPERPAVE Leveling Course - 9.5 (SLC - 9.5) ... Ton
460.53 SUPERPAVE Leveling Course - 12.5 (SLC - 12.5) ... Ton
460.90 Sweeping of Underlying Surface .. Hour
460.91 Material Transfer Vehicle .. Ton

SUBSECTION 466: STRESS ABSORBING MEMBRANE INTERLAYER

DESCRIPTION

466.20: General

This work consists of the application of hot, rubberized asphalt to a paved surface and immediately embedding aggregate therein by spreading and rolling in accordance with these specifications. This item may also be referred to as SAMI.

MATERIALS

466.40: General

Asphalt: asphalt cement for the asphalt rubber mixture shall be AC-10 or AC-20, complying with the requirements of M3.01.0: Performance Graded Asphalt Binder. If AC-10 is used, the SAMI shall be overlayed within 10 days.

Rubber: The granulated rubber shall be a vulcanized rubber product from the ambient temperature processing of pneumatic tires.

The granulated rubber type shall meet the following gradations:
Table 466.1: Gradation Requirements for Granulated Rubber

<table>
<thead>
<tr>
<th>Sieve Designation</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>#8</td>
<td>100</td>
</tr>
<tr>
<td>#10</td>
<td>95-100</td>
</tr>
<tr>
<td>#16</td>
<td>-</td>
</tr>
<tr>
<td>#30</td>
<td>0-10</td>
</tr>
<tr>
<td>#50</td>
<td>0-5</td>
</tr>
</tbody>
</table>

Aggregate shall conform to the requirements of M2.01.0: Crushed Stone for crushed stone. Crushed gravel stone will not be permitted. Gradation requirements will conform to M2.01.6. Percentage of wear as determined by the Los Angeles Abrasion Test (AASHTO T 96) shall be a maximum of 30.

CONSTRUCTION METHODS

466.60: General

Preparation of Existing Surface.

Prior to application of the rubberized asphalt, the entire paved surface to be treated shall be cleaned by sweeping, blowing and other methods until free of dirt and loose particles. Pot holes, depressions, cracks larger than ¾ in. and other irregularities will be patched with hot bituminous mix and compacted. No water shall be present on the surface. A levelling course shall be placed on planed, milled or existing surface if required.

Seasonal and Weather Limitations.

Construction shall not proceed when the ambient temperature has been below 50°F within the previous 12 hours, when rain is falling, or when conditions are unfavorable to obtaining a uniform spread.

466.61: Asphalt Rubber Mixing and Reaction

The percent of rubber shall be 23 ±2% as indicated by the mixture design for specific project requirements by weight of total mixture, that is, by total weight of asphalt cement, plus granulated rubber.

The temperature of the asphalt shall be between 350°F and 425°F at the time of addition of the vulcanized rubber. The asphalt and rubber shall be combined and mixed together in a blender unit and reacted in the distributor for a period of time as required by the Engineer which shall be based on laboratory testing by the rubberized asphalt supplier. The temperature of the rubberized asphalt mixture shall be above 325°F during the reaction period.

After the reaction between asphalt and rubber has occurred, the viscosity of the hot rubberized asphalt mixture may be adjusted for spraying and/ or better “wetting” of the cover material by the addition of a diluent. The diluent shall comply with the requirements of ASTM D369, Grade #1 Fuel Oil and shall not exceed 7.5% by volume of the hot asphalt rubber mixture.

When a job delay occurs after full reaction, the rubberized asphalt may be allowed to cool. The rubberized asphalt shall be reheated slowly just prior to application, but not to a temperature
Viscosities shall be run, by the applicator, on each blended load of rubberized asphalt rubber using a Haake Field viscometer. One viscosity prior to the induction of the diluent and one after the induction of the diluent blended into the asphalt and rubber mixture. The viscosity of the final product shall be in the range of 2,000 to 5,000 centipoise.

466.62: Equipment

1. Distributor Truck.

At least two pressure-type bituminous semi-distributor trucks in good condition will be required. The distributor shall be equipped with an internal heating device capable of heating the material evenly up to 425°F; have adequate pump capacity to maintain a high rate of circulation in the tank; have adequate pressure devices and suitable manifolds to provide constant positive cut off to prevent dripping from the nozzles. The distribution bar on the distributor shall be fully circulating. Any distributor that produces a streaked or irregular distribution of the material shall be promptly repaired or removed from the project.

Distributor equipment shall include a tachometer, pressure gauges, volume measuring devices, a thermometer for reading temperature of tank contents, and an internal auger to maintain proper mixture and blending of asphalt and rubber. Controls for spray bar shall be located in cab of truck, for controlling width and rate of spray of product.

It shall be so constructed that uniform applications may be made at the specified rate per square yard within a tolerance of ±0.05 gal per yd².

2. Brooms.

Revolving brooms shall be so constructed as to sweep clean or redistribute aggregate without damage to the rubberized-asphalt membrane or surface treatment.

There shall be at least two multiple wheel self-propelled pneumatic-tired rollers with provisions for loading eight to twelve tons as deemed necessary. Pneumatic-tired rollers shall have a total compacting width of at least 60 in. and shall have a minimum tire pressure of 60 psi. A minimum of three rollers are required, two pneumatic and one steel.

Shall be self-propelled steel rollers weighing between 1.5 ton and 5 ton.

5. Asphalt Heating Tank.

To heat the asphalt cement to the necessary temperature for blending with the rubber, tank shall be a minimum 3,000-gal capacity and capable of heating product at a minimum rate of 60°F per hour.

For proper proportioning and thorough mixing of the asphalt and rubber together to produce the specified rubber content material. This unit shall have both an asphalt totalizing meter (gal) and a
flow rate meter (gal per min), positive placement auger to feed rubber properly to mix chamber at the specified rate, and an auger in mixing chamber running through a static motionless mixer.

7. **Distributor.**

Shall include a tachometer, pressure gauges, volume measuring devices, a thermometer, a 12-in. auger capable of blending and maintaining proper blending of material and an 8-in. dual positive placement gear head pump capable of spraying the rubberized asphalt at a viscosity of 2,000 to 5,000 centipoise.

A "bootman" shall accompany the distributor and ride in a position so that all spray bar nozzles are in their full view and readily accessible for unplugging.

8. **Chip Spreader.**

This equipment shall be self-propelled and be adjustable to control and spread accurately the given amounts of cover aggregate per square yard. It shall have a width of spread of not less than 12 ft. Cut off plates shall be provided to permit the width of spread to be reduced in increments of 6 in. or 1 ft from the maximum width specified. The spreader shall be equipped with a hitch at the rear so it can lock onto the hauling trucks while they are discharging into the spreader. Two conveyor belts shall supply aggregate from the hopper to the element which spreads the cover aggregate over the road surface. Screen below screw auger at bottom of hopper shall be in place.

466.63: Construction Requirements

The rubberized asphalt mixture shall be applied at a temperature of 290°F to 340°F at a rate of 0.60 ± 0.050 gal per yd². Transverse joints shall be constructed by placing building paper across and over the end of the previous rubberized asphalt application. Once the spraying has progressed beyond the paper, the paper shall be removed immediately and disposed of as directed by the Engineer. Longitudinal joints shall be overlapped from 4 to 6 in.

If rubberized asphalt is applied directly to an old existing Portland Cement Concrete pavement, band-aid strips shall be placed prior to the rubberized asphalt treatment on all transverse and longitudinal joints. The strips shall be Pave-Prep, Polygard, Roi-Glas or equal and shall be placed 18 in. wide. The SAMI shall be applied within four days of the placement of the band-aid strips.

1. **Application.**

No application shall be made to any area which cannot immediately be covered with aggregate.

The application from the distributor shall be stopped before the tank is empty to be sure the application does not run light. At all starts, intersections, junctions at transverse joints with previous spreads or other pavements, provision shall be made to ensure that the distributor nozzles are operated at full force when the application begins. Building paper or other suitable devices shall be used to receive the initial application from the nozzle before any material reaches the surface at the transverse joint. The paper shall be removed immediately after use without spilling surplus material on the surface. Longitudinal joints shall be reasonably true to line and parallel to centerline. The overlap in application of asphalt-rubber material shall be minimum to assure complete coverage. Where any construction joint occurs, the edges shall be broomed back and blended so there are no gaps and the elevations are the same, and free from ridges and depressions.
During application, adequate provision shall be made to prevent marring and discoloration of adjacent pavements, structures, vehicles, foliage or personal property.

2. Aggregate Application.

The application of aggregate shall follow as close as possible behind the application of the hot rubberized asphalt which shall not be spread further in advance of the aggregate spread that can be immediately covered. Construction equipment or other vehicles shall not drive on the uncovered rubberized asphalt.

The dry aggregate, pre-coated with 0.5 to 1.0% of AC-20, shall be spread uniformly by a self-propelled spreader at a rate of spread directed by the Engineer, generally between 30 and 40 lb per yd². Any deficient areas shall be covered with additional material.

Prior to application, the aggregate shall be pre-heated to a temperature between 250°F to 300°F and coated with 0.5% to 1.0% of asphalt, grade AC-20.

3. Rolling.

Rolling shall commence immediately following spread of aggregate. There shall be at least three complete passes by the pneumatic tired rollers to embed the aggregate particles firmly into the rubberized asphalt, allowed by an additional pass of the steel roller.

4. Sweeping.

When the maximum of aggregate has been embedded into the rubberized asphalt and the pavement has cooled, all loose material shall be swept or otherwise removed at such time and in such a manner as will not displace any embedded aggregate or damage the rubberized asphalt.

5. Curing.

The rubberized asphalt surface treatment should be overlaid immediately following completion of sweeping. If traffic must travel over the surface treatment, it shall be allowed to cool and speed controlled so as not to exceed 25 mph.

COMPENSATION

466.80: Method of Measurement

Stress Absorbing Membrane Interlayer will be measured by the square yard and shall be the actual number of square yards applied as directed by the Engineer.

466.81: Basis of Payment

Stress Absorbing Membrane Interlayer shall be paid at the contract unit price per square yard and payment shall be full compensation for all labor, materials and equipment required to complete the work to the satisfaction of the Engineer.
466.82: Payment Items

460. Hot Mix Asphalt Pavement Type I-1 ... Ton
466. Stress Absorbing Membrane Interlayer .. Square Yard

SUBSECTION 468: PEA STONE COVER FOR CONCRETE PAVED SHOULDERS

DESCRIPTION

468.20: General

Pea stone cover for hot mix asphalt paved shoulders will consist of an application of bitumen on the finished surface of the shoulder and then a cover of pea stone spread and rolled in accordance with these specifications.

MATERIALS

468.40: General

Materials shall meet the requirements of the following Subsections of Division III, Materials:

- Crushed Stone Aggregate .. M2.01.0
- Pea Stone Cover ... M2.01.6
- Bituminous Material
 - Asphalt Cement .. M3.01.0
 - Asphalt Emulsion ... M3.03.0
 - Cationic Emulsified Asphalt ... M3.03.1
 - Cutback Asphalts ... M3.02.0

CONSTRUCTION METHODS

468.60: General

The width of the treatment shall be as shown on the plans and as directed. The surface to be treated shall be clean and cleared of all leaves, twigs, and other foreign or objectionable material with brooms or other approved method.

468.61: Applying Bitumen

The bitumen shall be applied uniformly at the specified rate with a pressure distributor. Distributors shall be in good mechanical condition, with an accurate tachometer, and capable of spraying satisfactorily for a width of not less than 15 ft at a pressure of between 40 and 60 psi. The distributor shall be equipped with a system for heating evenly the entire volume of the bitumen under efficient and positive control at all times.

Distributors shall also be equipped with satisfactory thermometers for measuring the temperature of the material to be applied and shall have either a steam or air-kerosene system for the clearing of the lines and pumps. Evidence of fluxing with kerosene or emulsification by steam will be sufficient cause for rejection of the delivery.

Deliveries of bitumen will be refused when the above conditions are not fulfilled.
A hose attachment on the distributor shall be used to apply bitumen wherever necessary to touch up any areas missed or inaccessible to the distributor.

The bitumen shall be applied at the temperature recommended in the Department Specifications for Bituminous and Allied Materials for the type of asphaltic material being used.

No bituminous work shall be done during rainy weather or when weather conditions as to temperature or otherwise are, in the Engineer’s judgment, unfavorable for obtaining satisfactory results.

468.62: Spreading and Rolling Stone

The bitumen shall be immediately covered with a sufficient amount of \(\frac{3}{8} \)-in. pea stone to take up the excess bitumen and then thoroughly rolled. The pea stone shall be spread evenly by means of a mechanical or box type chip spreader. Spreading shall not be done with a power grader or directly from trucks. The application of pea stone shall be performed in conjunction with the application of the bitumen and a rate to assure proper bonding before cooling takes place.

Rolling shall be performed with a steel wheel roller weighing not less than 240 lb per inch of tread or an approved pneumatic tired roller. The surfaces of the wheels of the roller shall be kept clean at all times. Precautions shall be taken to prevent the depositing of dirt or other foreign material on the shoulders. Only enough rolling will be done to set the stone and bond it to the shoulder. Excess rolling that will crush the stone will not be permitted.

The stone shall be free of all deleterious materials and if, in the opinion of the Engineer, it is deemed necessary for the proper bonding to the bitumen, the stone shall be lightly treated at the plant with a cut back asphalt or other suitable vehicle.

No trucks or other vehicles shall be allowed to pass over a section for at least 12 hours after the stone has been placed.

COMPENSATION

468.80: Method of Measurement

Pea stone for cover will be measured by the ton.

The weight slips shall be countersigned on delivery by the Engineer, and no weight slip not so countersigned shall be included for any payment under the contract.

Bitumen delivered in tank trucks or tank feeders shall be weighted on scales and the volume computed on the basis of the current tabulation of Weights per Gallon of Bituminous Materials, as approved by the Department.

Scales used in weighing shall be standard scales furnished by and at the expense of the Contractor. Such scales shall be sealed as often as necessary to insure their accuracy, at the expense of the Contractor. A sworn weigher to be compensated by the contractor shall weigh all bitumen required to be weighed. The weighing of such materials may be witnessed by the Engineer.

Bitumen delivered in tank cars, when not actually weighed shall be measured by volume at the loading temperature, and this quantity converted to the volume at the applying temperature. The
coefficient of expansion or contraction per °F, shall be 0.00035 for asphalt, 0.00025 for asphaltic
emulsions, 0.0004 for cutback asphalt and 0.0003 for tar.

In no case shall the total number of gallons of bituminous material for any car be in excess of the
United States Interstate Commerce Commission's rating for the car, plus the expansion based on the
volumetric change between the loading and the specific application temperature.

468.81: Basis of Payment
Pea Stone for Cover will be paid for at the contract unit price per ton under the item for Crushed
Stone for Pea Stone Cover.

Bitumen for Pea Stone Cover will be paid for at the contract unit price per gallon, under the item for
Bitumen for Pea Stone Cover, applied, complete in place.

468.82: Payment Items

468. Crushed Stone for Pea Stone Cover ... Ton
469. Bitumen for Pea Stone Cover ... Gallon

SUBSECTION 470: HOT MIX ASPHALT BERM

DESCRIPTION

470.20: General
The work under this section shall consist of placing HMA berm in accordance with the contract
details shown on the plans. The work shall be at locations shown on the plans, or as directed.

MATERIALS

470.30: General
HMA berm materials shall meet the requirements of the following subsections of Section M3:
Asphaltic Materials:

Asphalt Release Agents ... M3.01.6
Hot Mix Asphalt for Driveways, Sidewalks, Berm, and Curb ... M3.11.6
Hot Mix Asphalt Production Facility .. M3.12.0

CONSTRUCTION PROCEDURES

470.40: General
The Contractor shall obtain HMA berm material of the type specified.

470.41: Underlying Surface
The underlying surface for HMA berms shall be as shown on the plans, or as directed.
470.42: Paving of Hot Mix Asphalt Berm
The HMA berm mixture shall be placed and compacted by a mechanical paver or berm machine. The berm shall be construction in accordance with the contract drawings.

CONTRACTOR QUALITY CONTROL

470.60: General
The Contractor shall provide QC activities to ensure that their processes for berm operations will provide berm that conforms to the specified material and workmanship requirements.

470.61: HMA Berm Materials and Workmanship
The Contractor shall verify that they are using the correct HMA berm materials as specified under 470.30: General. All berm shall exhibit satisfactory workmanship, including: cleaning loose material and debris, compacting to a satisfactory density, and tying in fully with the surrounding pavement surface in order to provide a smooth transition.

DEPARTMENT ACCEPTANCE

470.70: General
The Department shall verify that the Contractor is correctly performing the work.

470.71: HMA Berm Materials and Workmanship
The Engineer will verify that the HMA berm materials and workmanship conform with 470.61: HMA Berm Materials and Workmanship.

COMPENSATION

470.80: Method of Measurement
Hot Mix Asphalt Berm will be measured for payment by the ton and shall be the actual quantity complete in place and accepted by the Engineer.

470.81: Basis of Payment
Hot Mix Asphalt Berm will be paid for at the contract unit price per ton, which shall include sweeping the underlying surface, transportation, delivery, placement, and compaction.

470.82: Payment Items

470. Hot Mix Asphalt Berm .. Ton
SUBSECTION 472: TEMPORARY ASPHALT PATCHING

DESCRIPTION

472.20: General

The work under this section shall consist of placing and removing temporary asphaltic material for use as curbing, berm, sidewalk, roadway patches, temporary transition ramps, or other incidental work performed primarily by hand methods. This work may also include emergency pothole repair and filling in milled rumble strips. Permanent pothole repair shall be performed in accordance with Item 451 HMA for Patching.

The work shall be at locations shown on the plans or as directed by the Engineer, except that Item 472 shall not be used when the work is to be permanent or is included under other items in the contract.

MATERIALS

472.30: General

Temporary patching materials shall meet the patching requirements of Subsection 450: Hot Mix Asphalt Pavement and Subsection 460: Hot Mix Asphalt Pavement for Local Streets, except if hot mix asphalt is not available, the Contractor shall use approved cold patch material. Temporary patching material shall meet the requirements of the following subsections of Division III, Asphaltic Materials:

- Performance Graded Asphalt Binder
- Warm Mix Asphalt
- Asphalt Anti-Stripping Additive
- Asphalt Release Agents
- Asphalt Emulsion for Tack Coat
- Hot Mix Asphalt
- Aggregate
- Hot Mix Asphalt Mixture Design
- Verification of Laboratory Trial Mix Formula
- Cold Patch for Temporary Patching
- Hot Mix Asphalt Production Facility

CONSTRUCTION PROCEDURES

472.40: General

The Contractor shall obtain asphalt patching material of the type specified. The work shall meet the patching requirements of Subsection 450: Hot Mix Asphalt Pavement or Subsection 460: Hot Mix Asphalt Pavement for Local Streets, as specified in the contract, but will not require formal QC Inspection and Testing. The Engineer may waive specific requirements of 450.43: Preparation of Underlying Surface, Part C or 460.43: Preparation of Underlying Surface, Part C depending on the application in which the temporary patching material will be used.
Existing patching material shall be completely removed before a temporary surface is placed. The placement of asphalt patching materials is intended to be primarily by hand methods.

Temporary patching materials shall be placed to the required thickness and sufficiently compacted.

CONTRACTOR QUALITY CONTROL

472.60: General

The Contractor shall provide QC activities to ensure that their processes for patching operations will provide temporary patching that conforms to the specified material and workmanship requirements.

472.61: Patching Materials and Workmanship

The Contractor shall verify that they are using the correct patching materials as specified under 472.30: General. All patches shall exhibit satisfactory workmanship including; cleaning loose material and debris, compacting to a satisfactory density, and tying in fully with the surrounding pavement surface in order to provide a smooth transition.

DEPARTMENT ACCEPTANCE

472.70: General

The Department shall verify that the Contractor is correctly performing the work and QC.

472.71: Patching Materials and Workmanship

The Engineer will verify that the patching materials and workmanship conform with 472.61: Patching Materials and Workmanship.

COMPENSATION

472.80: Method of Measurement

Temporary Asphalt Patching will be measured for payment by the ton and shall be the actual quantity complete, in place and accepted by the Engineer.

472.81: Basis of Payment

Temporary Asphalt Patching will be paid for at the contract unit price per ton complete in place. When required, removal and disposal of temporary material shall be included in the contract unit price. Payment shall include all sawcutting, removal of existing distressed or unsound pavement, and transportation, delivery, placement, and compaction of HMA.

472.82: Payment Items

472. Temporary Asphalt Patching.. Ton
SUBSECTION 476: CEMENT CONCRETE PAVEMENT

DESCRIPTION

476.20: General

This work shall consist of a pavement composed of air entrained Portland cement concrete, plain or reinforced as specified, constructed on an approved foundation in accordance with these specifications and in close conformity with the lines, grades, thicknesses, and typical cross sections shown on the Plans or established by the Engineer.

MATERIALS

476.40: General

Materials shall meet the requirements of the following Subsections of Division III, Materials:

Concrete, (Air Entrained) 5,000 psi, 1.5-inch, 660.......................... M4.02.00
Scored Concrete Pavement-Air Entrained-5,000 psi, ¾-inch, 705 M4.02.00
Steel Reinforcement
Reinforcing Bars ... M8.01.0
Welded Steel Fabric .. M8.01.2
Steel Bar Mats ... M8.01.3
Tie Bars and Bolts ... M8.01.4
Load Transfer Assembly .. M8.14.0
Preformed Joint Filler .. M9.14.0
Joint Filler Compound .. M3.05.0
Polyurethane Joint Sealer .. M9.14.3
Asphaltic Paint
RC-70 ... M3.02.0
RS-1 .. M3.03.0
Curing Materials
Impervious Liquid Membrane ... M9.06.5
Waterproof Paper ... M9.06.0
Burlap ... M9.06.3
Polyethylene Coated Burlap ... M9.06.4
White Polyethylene .. M9.06.1, Part B
Base Stabilization Materials
Portland Cement .. M4.01.0
Bitumen .. M3.02.0

Fine aggregate for use in concrete to be placed with a slip-form paver shall meet the grading requirements as specified for fine aggregate for cement concrete except that the maximum passing the #100 sieve may be increased to 10% and a maximum of 4% passing the #200 sieve may be established in order to increase the cohesiveness of the cement concrete. Also, the concrete when tested in accordance with AASHTO Designation T 119M/T 119 shall have a slump of not more than 2 in. nor less than 1 in.
CONSTRUCTION METHODS

476.60: General

The cement concrete pavement may be constructed by the Slip-Form Method or the Fixed-Form Method. Equipment and tools necessary for handling materials and performing all parts of the work shall be approved by the Engineer as to design, capacity, and mechanical condition. The equipment shall be at the job site sufficiently ahead of the start of construction operations to be examined thoroughly and approved. Any equipment or tools which are not maintained in full working order or which, as used by the Contractor, prove inadequate to obtain the results prescribed, shall be improved or new equipment or tools substituted or added as directed.

Grade control survey and staking shall conform to Subsection 5.07: Construction Survey Control. The Contractor shall furnish, set, and maintain all line and grade stakes for grading and paving.

476.61: Preparation of Grade

The sub-base shall consist of gravel or dense graded crushed stone conforming to Subsection 401: Gravel Sub-Base or Subsection 402: Dense Graded Crushed Stone for Sub-Base, or of soil cement, and shall be as specified on the plans. The sub-base shall be conditioned and perfected not less than 500 ft in advance of the placing of the concrete. If any traffic is allowed to use the prepared grade, the grade shall be checked and corrected immediately ahead of the placing of the concrete.

Sub-base prepared for the slip-form method shall be placed to a compacted depth approximately 1 in. higher than the grade called for on the plans to allow for planing by approved mechanical means to the proper profile. It shall also be placed to a width 3 ft greater (18 in. on each side) than the required pavement slab width. After the sub-base has been placed and compacted to the required density, and will adequately support the subgrade machine and the slip-form paver, the track areas shall be cut to the proper elevation by the use of a mechanical form grading machine.

Behind the form grading machine the track areas shall be rolled to a smooth, firm, and uniform surface.

The grade on which the pavement is to be constructed shall then be brought to the proper profile by means of a track mounted subgrade machine operation on the prepared track line or by other mechanical means approved by the Engineer. When concrete is placed, the surface of the sub-base shall not be above, nor more than ¾ in. below the plan subgrade elevation. If the density of the subgrade is disturbed by the subgrade machine, it shall be corrected by additional compaction before concrete is placed.

The sub-base, after being conditioned, shall provide a firm unyielding support which will not be displaced under the movement of the paver. If the sub-base is displaced by the movement of the paver to the extent that the finished pavement will be affected, the two areas that will support the slip-form paver tracks shall be stabilized as provided herein. The areas to be stabilized will be immediately outside the edge lines of the pavement slab on both sides and are each to be not less than 18 in. in width, measured from the exterior edges of the proposed pavement slab.

If cement is used for stabilization, the material to be stabilized shall be loosened and pulverized before any cement is added. Cement shall be uniformly spread on the loosened and pulverized material at the rate of approximately 4.5 psf. The final depth of stabilization shall be not less than
3.5 in. in the completed track area after it is brought to proper elevation. The exact amount of cement to be used to adequately harden the mixture of cement and subgrade material will be determined by the Engineer.

The cement and subgrade material shall be thoroughly mixed by means of a power-driven mixer until the mixture is of a uniform color throughout the full required depth.

After the cement and subgrade material have been mixed, water shall be added to the mixture and mixing continued until the water is uniformly distributed throughout the mixture. The amount of water to be added will be determined by the Engineer. The moist mixture when ready for compaction shall be near its optimum moisture content.

The mixture shall be uniformly compacted for the full depth until it is firm and unyielding, and within 2 hours after the addition of the water. Compaction shall be with a 10-ton three wheeled or tandem roller, approved rubber-tired roller or approved mechanical vibrator.

After compaction, the surface of the area that will support the paver tracks shall be cut to true profile and elevation by approved mechanical equipment and then rolled to obtain a smooth, true surface.

The stabilization shall be protected from drying by the application of approved bituminous material (approximately 0.2 gallons per square yard) or cover of straw, sand or earth. If straw, sand or earth is used for cover, it must be broomed off before the area is used in further operations. The curing material shall be applied immediately after final rolling and maintained for at least 2 days.

In lieu of the above method and procedure for stabilization of the track area, other proven methods and materials will be considered subject to equivalent and acceptable performance.

Regardless of the method, materials and procedures used, the burden or responsibility for the acceptability of work shall rest with the Contractor.

If stabilization of the track areas is required such stabilization will not be paid for separately, but will be included under Item 476., Cement Concrete Pavement.

Where fixed-form construction is specified, the use of a subgrade machine may follow form setting.

When side forms have been securely set to grade, the sub-base shall be brought to proper cross section. The fine grading shall be compacted by means of approved equipment to a condition similar to that of surrounding grade. A sub-base check template shall be used as a final check. The surface of the sub-base shall not be above nor more than \(\frac{1}{8} \) in. below the plan sub-base elevation. Any deviation from the required sub-base surface exceeding this tolerance shall be corrected.

The template shall span the width being paved and be supported on the side forms. It may be power or hand operated, with scratch teeth or pins which can be adjusted readily to the required cross section and supported in a frame of sufficient weight and strength to withstand the loads. The points of the teeth or pins shall be adjusted to be at the plan sub-base elevation. High areas shall be trimmed to proper elevation. Low areas shall be filled and compacted to a condition similar to that of surrounding grade except that areas which are not more than \(\frac{3}{4} \) in. below sub-base elevation may be filled with concrete integral with the pavement. The finished grade shall be maintained in a smooth and compacted condition until the pavement is placed.
The sub-base shall be uniformly moist when the concrete is placed. When the sub-base is dry, it shall be sprinkled with as much water as can be readily absorbed immediately in advance of placing concrete. It shall also have been similarly sprinkled not less than 8 hours or more than 24 hours before concrete is placed thereon.

476.62: Forms and Form Setting

Where fixed-form construction is specified, the straight side forms shall be made of metal and shall be furnished in sections not less than 10 ft in length. Forms shall have a depth equal to the prescribed edge thickness of the concrete without horizontal joint and a base width equal to the depth of the forms but not less than 8 in. Flange braces shall extend outward on the base not less than two-thirds the height of the form. Flexible or curved forms of proper radius shall be used for curves of 200-ft radius or less and be of a design acceptable to the Engineer. Satisfactory wooden forms, as approved by the Engineer, may be used for curves of 200-ft radius or less or where the design of pavement is such that metal forms cannot be used. Forms shall be provided with adequate devices for secure setting so that when in place they will withstand, without visible spring or settlement, the impact and vibration of the consolidating and finishing equipment. Forms with battered top surfaces and bent, twisted or broken forms shall be removed from the work. Repaired forms shall not be used until inspected and approved by the Engineer. The top face of the form shall not vary from a true plane by more than $\frac{1}{8}$ in. in 10 ft, and the upstanding leg shall not vary from a true plane by more than $\frac{1}{8}$ in. in 10 ft. The forms shall contain provisions for locking the ends of abutting form sections together tightly and for secure setting. Forms to be used for concrete which is to be furnished by hand shall have a base not less than 6 in. in width.

The foundation under the forms shall be hard and true to grade so that the form, when set, will be firmly in contact for its whole length and at the specified grade. Any grade which at the form line is found below established grade shall be filled to grade with granular material in lifts of $\frac{1}{2}$ in. or less for a distance of 18 in. on each side of the base of the form, and thoroughly compacted. Imperfections or variations above grade shall be corrected by tamping or by cutting as necessary.

After the forms have been set to correct grade, the grade shall be thoroughly tamped, mechanically or by hand, at both the inside and outside edges of the base of the forms. Forms shall be joined neatly and tightly and staked securely with not less than 3 pins for each 10-ft section. A pin shall be placed at each side of every joint. Form sections shall be tightly locked free from play or movement in any direction. If any play or movement of the forms occurs, additional pins shall be required by the Engineer. The entire base of forms shall be directly in contact with the finished sub-base. If a form does not have satisfactory bearing area for its full length, it shall be removed, the bearing area of sub-base reshaped and compacted, and the form replaced. Building of pedestals of earth or other materials upon which to reset the forms in order to bring them to the required grade is not permitted. Forms shall be set at least 500 ft in advance of the point of placing concrete. They shall be thoroughly cleaned and greased or soaped before concrete is placed against them. No excessive settlement or springing of forms under the finishing machine will be tolerated.

The forms shall be set to correct line and grade. Smooth alignment and grade shall be checked by sighting and with an approved 10-ft straight edge. The alignment and grade elevations of the forms shall be checked and corrections made by the Contractor immediately before placing the concrete. When any form has been disturbed or any grade has become unstable, the form shall be reset and rechecked. Use of a straight-edge will not be required on vertical curves. A mechanical tamper of
approved type and design will be permitted for use in the preparation of a firm, even sub-base for form installation.

476.63: Batching and Mixing Concrete

The materials shall be batched at a central plant. The batch plant site, layout, equipment, and provisions for transporting material shall be such as to assure a continuous operation of the paver employed on the project. The work shall be done in accordance with the relevant provisions of M4.02.08: Plant and Equipment.

Concrete may be mixed at the site of construction or at a central point. Mixers shall conform to the applicable requirements of M4.02.09: Mixers and Agitators.

Concrete mixed at a central plant shall be hauled to the paving site by agitation trucks or other approved haul units in accordance with the relevant provisions of M4.02.10: Mixing and Delivery.

Concrete mixed completely in truck mixers in accordance with M4.02.10: Mixing and Delivery, Paragraph A-1, may be allowed when approved by the Engineer.

The Contractor shall obtain approval of their proposed central mix plant site, its capacity, concrete materials sources, hauling equipment, proposed haul routes, etc. prior to moving said equipment onto project.

Concrete mixed in pavers at the site shall be mixed for a period of not less than 60 seconds including transfer time but no less than 50 seconds, exclusive of transfer time, but no less than 50 seconds, exclusive of transfer time, after all materials, except water, are in the drum. The mixer shall be operated at drum speed shown on the manufacturer’s name plate. The manufacturer’s guaranteed capacity of the mixer shall not be less than 27 ft³. Except by written permission of the Engineer, the mixer shall not be operated in excess of its guaranteed capacity nor by more than 10% above its rated capacity as shown on the standard rating plate on the machine, when operating on grades not exceeding 6%.

The batch shall be so charged into the drum that a portion of the mixing water shall enter in advance of the cement and aggregates. The flow of water shall be uniform and all water shall be in the drum by the end of the first 20 seconds of the mixing period. The entire contents shall be removed from the drum before the succeeding batch is introduced. The inside of the drum shall be kept free from hardened concrete. The skip and throat of the mixer drum shall be kept clean and free of accumulation or encrustations of inert materials and the admission of these materials to the mixer shall be cause for rejection of the batch in which they are included. The concrete, as discharged from the mixer, shall be uniform in composition and consistency. If this condition is not produced with the maximum size of batch, the size of the batch shall be reduced or the mixing time increased, or both, until an acceptable mixture is obtained.

As required above, all materials except water shall be admitted to the mixer simultaneously and thereafter no additional amount of any ingredient shall be admitted to the mixer, except on specific instructions of the Engineer or their representative, for each individual batch. Such instructions shall not be given for more than three consecutive batches after which the proportions of the mix shall be correct prior to the initial charging of the mixer, and further, such instructions shall not relax the following restrictions concerning the retempering of concrete.
Retempering of concrete by the addition of water will not be permitted. The addition of water to the batch in the mixer after 10 minutes have elapsed after the initial charging, or the addition of water to the concrete after removal from the mixer, shall be construed as retempering. Batches of concrete prepared contrary to these restrictions shall be rejected and immediately removed from the site. The concrete shall be mixed only in the quantity required for immediate use and concrete not in place within 30 minutes from the time the ingredients were charged into the mixing drum, or that has developed initial set, shall not be used.

The concrete shall have a slump of between 1.5 and 3 in. if not vibrated, or between 1 and 2 in. if vibrated throughout, as measured in accordance with AASHTO Designation T 119M/T 119.

Batches shall be discharged in a manner to facilitate placing the concrete in its final position with a minimum of rehandling and without damage to forms, concrete previously placed, or other parts of the work.

The interval between loads shall be controlled in order that concrete in place will not become partially hardened prior to placing succeeding batches and in no case shall it exceed 30 minutes. Plant capacity and transportation facilities shall be sufficient to insure delivery of concrete at the rate required.

Samples of concrete for test and test specimens will be taken from transportation units at the point of discharge or from the concrete in place as determined by the Engineer.

When cement concrete paving operations are done during cold weather, the stipulations as outlined in 901.64: Protection from Adverse Weather shall apply.

476.64: Placing Concrete

Concrete shall be placed only on an approved sub-base.

The Contractor shall notify the Engineer at least 24 hours in advance of placing the concrete. In the event they desire to operate after the daylight hours, the Contractor shall provide a lighting system sufficiently adequate to illuminate all of the operations to the satisfaction of the Engineer.

No finishing of the concrete will be permitted after daylight hours unless an adequate and approved lighting system is provided by the Contractor and operated in a satisfactory manner. Approval of the lighting system by the Engineer must be obtained prior to its use.

At least 500 ft of foundation shall have been prepared ahead of the mixer or concrete operations at all times. The depositing of concrete on excessively wet subgrades or sub-bases or a frozen foundation will not be permitted. No concrete shall be placed around manholes or other structures until they have been installed to the required grade and alignment.

During dry weather, when traffic on the foundation or adjacent roadways would deposit wind-blown dust and dirt on the freshly placed concrete before it can be protected, the Contractor shall sprinkle the foundation or adjacent roadways with water or otherwise apply satisfactory treatment to keep down the dust.

Unless otherwise permitted by the Engineer, all equipment used for mixing, hauling and placing the concrete shall be operated outside of the area being paved. Should operation of such equipment be
permitted on the prepared foundation, suitable planks or platforms shall be provided and used for the equipment to run on, so that the foundation will be maintained in an approved condition.

The concrete shall be deposited on the grade in such a manner as to require as little handling as possible. Concrete shall be distributed in such a manner that when consolidated and finished, the slab thickness and surface grade required by the plans will be obtained at all points. Unless truck-mixers, truck-agitators, or non-agitating hauling equipment demonstrate that they will discharge concrete without segregation of the materials, the concrete shall be unloaded into an approved spreading device and mechanically spread on the grade in such a manner as to prevent segregation of the materials. Placing shall be continuous between transverse joints without the use of intermediate bulkheads except as specified under 476.68: Joints for construction joints. Necessary hand spreading shall be done with shovels, not rakes. Workmen shall not be allowed to walk in the freshly mixed concrete with boots or shoes coated with earth or foreign substances.

The concrete shall be deposited carefully at and around contraction and expansion joints. It shall be shoveled against both sides of expansion joints simultaneously, maintaining equal pressure on both sides. Care shall be taken that the concrete is worked under all metal parts of the load transfer assemblies. The concrete shall not be dumped directly upon or against the joints in any manner which displaces the load transfer assemblies or joint material from the true position.

Should any concrete materials fall on or be worked into the surface of a completed slab, they shall be removed immediately by approved methods.

Where concrete is to be placed adjoining a previously constructed lane of pavement and mechanical equipment will be operated upon the existing lane of pavement, that lane may be opened to traffic when curing operations have been completed provided that beam tests show that the concrete has attained a modulus of rupture of at least 550 psi. Curing operations will not be considered completed unless a curing period of at least 7 days has elapsed since the concrete was placed. However, the pavement may be used at the end of 5 days if only rubber-tired finishing equipment is permitted to operate upon it and the concrete has attained a modulus of rupture of at least 550 psi.

When high early strength concrete is used, mechanical equipment may be operated upon the pavement after a shorter period of curing or as beam tests show that the concrete has attained a modulus of rupture of at least 550 psi.

Pavers will not be permitted to operate on the finished pavement unless permission is given by the Engineer.

Gaps in the pavement for crossovers will not be permitted. Should crossings be necessary, suitable bridging of slabs or sand cushioning will be provided, as approved by the Engineer.

476.65: Spreading and Strike-Off of Concrete

As soon as concrete has been placed on the sub-base, it shall be immediately struck-off accurately, by means of an approved mechanical spreading device, leaving a surface uniform in texture, true to grade, elevation and contour. The strike-off shall be so adjusted for elevation that when the concrete is consolidated, as herein designated, sufficient material remains above grade as is required for the final finished surface of the pavement.
When reinforced concrete pavement is placed in two layers, the entire width of the bottom layer shall be struck-off to such length and depth that the sheet of fabric or bar mat may be laid full length on the concrete in its final position without further manipulation. The reinforcement shall then be placed directly upon the concrete, after which the top layer of the concrete shall be placed, struck-off and screeded. Any portion of the bottom layer of concrete which has been placed more than 30 minutes without being covered with the top layer shall be removed and replaced with freshly mixed concrete at the Contractor's expense.

A. Slip-Form Method.

The slip-form paver shall be an approved machine designed to spread, consolidate, screed, and float finish the freshly placed concrete in one complete pass of the machine in such manner that a minimum of hand finish will be necessary to provide a dense and homogeneous pavement in conformance with the plans and specifications.

The slip-form paver shall be of the self-propelled type, equipped with crawler type tracks not less than 22 ft in length.

The machine shall vibrate the concrete for the full width and depth of the strip of pavement being placed. Such vibration shall be accomplished with vibrating tubes or arms working in the concrete or with a vibrating screed or pan operating on the surface of the concrete. The sliding forms shall be rigidly held together laterally to prevent spreading of the forms. The forms shall trail behind the paver for such a distance that no appreciable slumping of the concrete will occur, and that necessary final finishing can be accomplished while the concrete is still within the forms.

The slip-form paver shall be adjustable as to crown and super-elevation and shall shape and compact the concrete to the required cross section as shown on the plans. Such adjustments shall be readily controllable for accuracy in transitions. No tractive force shall be applied to the machine except that which is controlled from the machine.

The concrete shall be of uniform consistency such that there will be no appreciable slumping at the edge of the pavement after the slip-forms have passed. The following tolerances on edge slump shall apply: Edge slump, exclusive of edge rounding, shall not exceed ¼ in. within 6 in. of the edge at the extreme outside limits of the concrete pavement; at the longitudinal joint along the pavement crown and along the longitudinal joint between the travel lanes and speed change lanes. The edges along the longitudinal joint between the two travel lanes of the same cross-slope shall be at true finish grade. Any deviation from these tolerances shall be corrected while the concrete is plastic.

The slip-form paver shall be operated with as nearly a continuous forward movement as possible and all operations of mixing, delivering and spreading concrete shall be so coordinated as to provide uniform progress with stopping and starting of the paver held to a minimum. If, for any reason, it is necessary to stop the forward movement of the paver, the vibratory and tamping elements shall also be stopped immediately.

For reinforced pavement and where necessary, more than one machine and/or complimentary equipment will be allowed, subject to the Engineer's approval.
B. Fixed-Form Method.

The spreading machine shall be mechanical, self-propelled, and of an approved type. It shall be capable of spreading the concrete evenly between the side forms, without segregation, and without introducing thrust on the side form. It shall be equipped with a spreading device, adjustable in height for distributing the concrete longitudinally and transversely, and a blade adjustable in height to strike-off the concrete at the required elevation above or below the top of the side form.

Immediately after the concrete has been struck off, it shall be thoroughly consolidated against and along the faces of all forms and along the full length and around all parts of joint assemblies, by means of vibrators inserted in the concrete.

Vibrators, for full width vibration of concrete paving slabs, may be either the surface pan type or the internal type with either immersed tube or multiple spuds. They may be attached to the spreader or the finishing machine, or may be mounted on a separate carriage. They shall not come in contact with the joint, load transfer devices, subgrade, or side forms. The frequency of the surface vibrators shall not be less than 3,500 impulses per minute and the frequency of the internal type shall not be less than 5,000 impulses per minute for tube vibrators and not less than 7,000 impulses per minute for spud vibrators.

When spud type internal vibrators, either band operated or attached to spreaders or finishing machines, are used adjacent to forms, they shall have a frequency of not less than 3,500 impulses per minute.

Vibrators shall not cause the displacement of the side forms nor cause undue delay due to mechanical difficulties. Should these problems arise, they shall be removed from the work and be replaced by equipment meeting these specifications.

Surface vibrating apparatus shall be used only on the top course or layer of the pavement and must be completely out of use when moving over transverse joints or when spreading the bottom course of concrete in two-course construction. It shall not be operated where the surface of the concrete, as spread, is below the elevation of the finished surface of the pavement.

476.66: Placing Steel Reinforcement

All reinforcing metal must be kept clean and free from dirt, oil, paint, grease, mill scale, loose or thick dust or any foreign material which could impair bond of the steel with the concrete. Welded sheet fabric and clipped bar mats shall be furnished in flat sheets and shall be handled carefully during the placing and kept straight until installed.

The reinforcement shall be placed as shown on the plans. The reinforcement shall be placed so that the extreme longitudinal member will be located not more than 4 in. from the edge of the slab section and the ends of all longitudinal members shall extend to within 3 in. of the ends of the slab sections. Adjacent sheets of welded fabric and clipped bar mats shall be lapped as shown on the plans.

Mats or sheets of reinforcement shall be preformed in accordance with the schedule shown on the plans, and placed in the concrete by the strike-off method without chairs or other supporting devices. Laps between adjacent mats or sheets and positions of same with respect to longitudinal joints, transverse joints and edges of pavement shall be as shown on the plans.
Concreting operations shall be performed in a manner so that the mats and sheets will be left in required position.

When reinforced concrete is specified, or permitted by the Engineer, to be placed in one layer, the reinforcement may be positioned in advance of concrete placement or it may be placed in plastic concrete by mechanical or vibratory means immediately after the concrete has been spread and struck-off.

476.67: Finishing Concrete

Immediately after placement, concrete shall be properly finished. The sequence of operations shall be as follows: strike-off, consolidation, transverse screeding, longitudinal floating, straightedging, texturing and finally edging of formed joints. The machine method of finishing shall be employed, except that odd widths or shapes of slab may be finished by hand method.

The addition of superficial water to the surface of the concrete to assist in finishing operations will not be permitted.

A. Machine Finishing.

When the concrete paver is not designed to screed and float finish the freshly placed concrete, the surface shall be struck-off and screeded by an approved finishing machine.

The transverse finishing machine for the pavement shall be mechanical, self-propelled, and of an approved type. It shall be equipped with at least two oscillating screeds. It shall have an independent screed and traction speeds to permit the operator to choose a combination of speeds that will produce the required finish with the consistency of concrete being used. The tops of the forms shall be kept clean by an effective device attached to the machine and the travel of the machine on the forms shall be maintained true without lift, wobbling, or other variation tending to affect the precision finish.

The transverse finishing machine shall consolidate and screed the concrete with no more than two passages over the slab, except with the special permission of the Engineer. The operation of the machine shall be controlled so as to prevent excess mortar and water from being worked to the top of the slab, and from forming a watery mortar in the roll of concrete in front of the screeds.

If excess mortar does form, it shall be removed from the site and wasted. It shall not, under any circumstances, be placed on the sub-base or shoveled ahead on top of the slab. Segregated particles of coarse aggregate which may collect in front of the screed shall be wasted outside the forms.

A uniform depth roll of concrete shall be maintained in front of the screeds at all times, in order to secure uniform consolidation and to prevent lifting of the screed by irregular amount or overload of concrete.

When vibration is permitted vibrators for full width vibration of concrete paving slabs shall meet the requirement herein of 476.65: Spreading and Strike-Off of Concrete, Paragraph B. If uniform and satisfactory density of the concrete is not obtained by the vibratory method at joints, along forms, at structures, and throughout the pavement, the Contractor shall furnish equipment and methods which will produce pavement conforming to the Specifications.
B. Longitudinal Finishing.

As soon as possible after the transverse finishing has been completed as specified above, the surface of the concrete shall be further smoothed and finished by use of an approved longitudinal float.

Mechanical Method: The float in contact with the pavement shall be at least 12 ft in length and at least 12 in. wide. The type of float and details of its construction shall be approved by the Engineer, and it shall be in good working condition.

The tracks from which the float operates shall be accurately adjusted to the required crown. The float shall be accurately adjusted and coordinated with the adjustments of the transverse finishing machine so that a small amount of mortar is carried ahead of the float at all times. The forward speed shall be adjusted so that the float will lap the distance specified by the Engineer on each transverse trip. The float shall pass over each area of pavement no more than twice except with the special permission of the Engineer. Any excess water or soupy material shall be wasted over the side forms on each pass.

Hand Method: When strike-off and consolidation are done by hand methods and longitudinal floating by hand is required the float shall be not less than 16 ft in length, not less than 10 in. in width, suitably stiffened against flexibility and warping and equipped with suitable handles. It shall be operated from bridges spanning the pavement. It shall be operated with a sawing motion parallel to the center line while passing gradually from one side of the pavement to the other. Movement ahead shall be in successive advances of not more than one half the length of the float. Excess water or soupy material shall be wasted over the side forms of each pass.

C. Alternate Finishing and Floating.

As an alternative to the mechanical finishing and floating method in 476.67: Finishing Concrete, Paragraphs A and B preceding, the Contractor may use a long wheel base combination float-finishing machine in lieu of the transverse finishing machine and longitudinal float, providing the combination machine can be adjusted to produce satisfactory results and final finishing is properly timed. Any combination of screeding, floating and finishing machines shall include at least two transverse oscillating screeds.

D. Hand Finishing.

Unless otherwise specified, hand finishing methods will not be permitted except under the following conditions:

In the event of breakdown of the mechanical equipment, hand methods may be used to finish the concrete already deposited on the grade when the breakdown occurs. Narrow widths or areas of irregular dimensions where operations of the mechanical equipment is impractical may be finished by hand methods.

The surface of the concrete shall be struck-off immediately after it is placed and leveled by means of an adjustable steel template 10 in. wide and 2 ft longer than the width of the pavement. A second adjustable steel template 8 in. wide and 2 ft longer than the width of the pavement shall be used directly behind this template. Both templates shall be constructed to produce pavement of the desired cross section and shall have sufficient strength to retain their shape under all working conditions.
conditions. The templates shall be moved forward with a combined longitudinal and crosswise motion fully resting at all times on the forms, and during the operation, the distance between the two templates shall at no time exceed 10 ft. The template shall be used until a true surface is obtained. While the concrete is being struck-off with the first template, three or more men shall be at work leveling, spading and tamping the concrete in front of the template.

Consolidation shall be attained by the use of a suitable vibrator or other approved equipment.

After the concrete has been struck-off with the hand templates described previously, other finishing operations described as following the screeding by the finishing machines shall be carried out.

Straightedging operations following the screeding shall be sufficient to remove surface irregularities or produce a riding surface equivalent to that produced by machine operation.

Experienced skilled operators and concrete finishers shall be employed. Any laxity in this respect shall be cause for immediate suspension of concreting operations.

E. Finishing at Joints.

The concrete adjacent to joints shall be compacted or firmly placed without voids or segregation against the joint material, under and around all load transfer devices, joint assembly units, and other features designed to extend into the pavement. Concrete adjacent to joints shall be mechanically vibrated as required in 476.65: Spreading and Strike-Off of Concrete. After the concrete has been placed and vibrated adjacent to the joints the machine shall be brought forward operating in a manner to avoid damage or misalignment of joints. If uninterrupted operation of the finishing machine, to, over, and beyond the joints causes segregation of concrete, damage to or misalignment of the joints, the finishing machine shall be stopped when the front screed is approximately 8 in. from the joint. Segregated concrete shall be removed from in front of and off the joint: the front screed shall be lifted and set directly on top of the joint and the forward motion of the finishing machine resumed. When the second screed is close enough to permit the excess mortar in front of it to flow over the joint, it shall be lifted and carried over the joint. Thereafter, the finishing machine may be run over the joint without lifting the screeds, provided there is no segregated concrete immediately between the joint and the screed or on top of the joint.

The edges of the slabs on both sides of the transverse expansion joint shall be finished to the same grade. The top transverse edges of formed joints shall then be rounded to a radius of 0.125 in. by means of approved edging tools. The transverse edges of formed joints shall be rounded with an edging tool having a vertical leg of sufficient length to contact the vertical side of the preformed filler. The lateral edge adjacent to pavement already in place shall be rounded with an edging tool having a vertical leg ¼ in. wide and slightly longer than hat used on the first slab. Tool marks shall be eliminated.

The finishing of the concrete at joints shall be done from a bridge which shall not rest on the concrete at my point. The finishers shall use a short straightedge not less than 4 ft in length when finishing transverse formed joints to ensure that both slab ends will be at the same elevation or grade.
F. **Straightedge Testing and Surface Corrections.**

Following the longitudinal finishing operations all remaining irregularities shall be eliminated by use of scraping straightedges 10 ft in length, equipped with handles 2 ft longer than the width of one lane. Straightedges shall be made of redwood or aluminum. For wood the cross section shall be 2 in. by 7 in. tapered from 1 in. depth at center to 4 in. depth at ends. For aluminum the preferred shape is the 'T' section with bearing width of not more than 3 in. For both metal and wood the approximate weight should be 30 to 35 lb for the 10 ft length exclusive of handle. The handle shall be attached to form an angle of about 10 degrees with the horizontal so as to present a cutting edge when in operation.

The scraping straightedge shall be employed directly after the longitudinal finisher.

The straightedge shall be placed on the form or edge of completed pavement nearest the operator. The handle shall be lowered to knee height and pushed transversely over the pavement surface. When it reaches the opposite form or center of full width paving, the handle shall be raised to shoulder height and the straightedge drawn back across the pavement in the same path. Additional passes shall be made if all irregularities are not removed by these two passes. Each pass shall be lapped one-half of the length of the straightedge as the work progresses. Any depressions found shall be immediately filled with freshly mixed concrete struck-off, consolidated, and refinished. High areas shall be cut down and refinished. Special attention shall be given to assure that the surface across joints meets the requirements for smoothness.

Straightedge testing and surface corrections shall continue until the entire surface is found to be free from observable departures from the straightedge and the slab conforms to the required grade and cross section.

Where a wood straightedge is used, the Contractor shall maintain a master straightedge on the job. Wood straightedges are required to be checked on the master straightedge twice a day, once in the morning before use and again at noon. Any variation from a true plane shall be corrected before further use.

G. **Final Finish.**

Following the scraping straightedges, the final surface texture shall be developed by use of a wet burlap strip dragged longitudinally over the pavement. The burlap shall be not less than 3 ft nor more than 6 ft wide without seams and the leading edge fastened to a wood pole for purpose of keeping burlap in proper position. The burlap shall be a minimum of 2 ft longer than the pavement width being dragged. At least 2 ft of the burlap drag shall be in contact with the surface when dragging the pavement. Generally, two such drags should be used so that the complete operation may be in a forward direction without backing up.

The drags shall be cleaned of mortar when necessary so as to maintain uniform and satisfactory surface texture. Drags that cannot be cleaned shall be discarded and new drags substituted. When not in use, the drag shall be removed from the pavement surface.

The surface of the concrete, after burlap drag operation, shall be uniform in appearance with a gritty texture, shall have the required grade and contour, shall be free from surplus water, rough and porous spots, irregularities, depressions and other objectionable surface features resulting
from the improper handling of the tools. The entire operation shall be executed to the satisfaction of the Engineer.

Mechanically operated wire or plastic bristle brooms shall be used where specified to provide an adequate skid resistant surface.

H. Edging at Forms and Joints.

After the final finish has been completed, but before the concrete has taken its initial set, the edges of slabs along forms and at formed joints shall be carefully finished and tooled to form a smooth rounded surface of the radius required on the plans. Corners or edges of slabs which have crumbled and any areas which lack sufficient mortar for proper finishing shall be cleaned by removing all loose fragments and soupy mortar and shall be solidly filled and finished with a mixture of correct proportions and appropriate consistence. Tool marks shall be eliminated, and all edges shall be smooth and true to line.

The surface of the slab shall not be unduly disturbed by tilting of the tool during use. All concrete on top of the joint filler shall be completely removed.

476.68: Joints

Joints shall be constructed of the types and dimensions and at the locations required by the plans, or specifications, or as directed by the Engineer. They shall be placed to a true alignment as shown on the plans or as directed. The sides of joints shall be protected during the curing period. Joint spaces shall be protected against infiltration of foreign materials before the time of sealing. All joints shall be sealed before the pavement is opened to any kind of traffic. Dowels, tie-bars and tie-bolts shall be prepared and placed across joints where indicated on the plans.

If joints become adulterated with dirt, sand, gravel, or other foreign material during the construction period, they shall be reopened, cleaned and resealed prior to opening the job to traffic. This shall be done in conjunction with final clean-up. The Contractor shall provide sawing equipment adequate in number of units and power to complete the sawing with a water-cooled diamond edge saw blade or an abrasive wheel to the required dimensions and at the required rate, and the Contractor shall provide at least one standby saw in good working order. An ample supply of saw blades shall be maintained at the site of the work at all times during sawing operations. The Contractor shall provide adequate artificial lighting facilities for night sawing. All of this equipment shall be on the job both before and continuously during concrete placement.

The Contractor shall submit for approval by the Engineer their proposed equipment for lighting and sawing prior to commencing work on the project.

A. Longitudinal Joints.

Longitudinal joints shall consist of construction joints between adjacent lanes and surface groove joints when the paving is placed more than one lane wide. They shall be located as shown on the plans or as directed.

Deformed steel bars or tie-bolts of specified length, size, spacing and material shall be placed perpendicular to the longitudinal joints; they shall be placed by approved hand or mechanical methods or rigidly secured by chairs or other approved supports to prevent displacement. Tie-bars
and tie-bolts shall not be painted or coated with asphalt or other material or enclosed in tubes or sleeves.

When fixed-forms are used, tie-bolts shall be placed across longitudinal construction joints as shown on the plans or as directed. Tie-bolts shall be installed in two major parts to form an integral tie-bolt unit. Such device, as approved, shall result in proper installation as specified, and shall conform to all standard requirements specified herein for strength and design.

Tie-bars in full width paving shall be of the size and length shown on the plans and placed at right angle to and across the locations of the longitudinal joint. The mid-point of the tie-bar shall be at the longitudinal joint. When supported above the fine grade before placing concrete, the tie-bars shall be at the mid-depth of the pavement. Tie-bars may be placed under the distributed reinforcement by approved hand or mechanical methods before the reinforcement is placed and before the top layer of concrete is placed. If placed under the distributed reinforcement; the tie-bars shall be not less than 2.75 in. nor more than 4.5 in. below the finished pavement surface.

Longitudinal construction joints shall extend for the full depth of the pavement, be perpendicular to the pavement surface and keyed and tied as shown on the plans. The upper edges of the slab shall be rounded as shown on the plans. The slab placed second shall be edged with a tool having a vertical leg ¼-in. thick and longer than that used in the first slab. The joint shall be filled with sealing material.

All honeycombed areas on the vertical faces of longitudinal joints shall be cleaned with a wire brush and thoroughly wetted and patched with mortar of the same composition as that used in the pavement.

The faces of the concrete slabs at the longitudinal joints shall be painted with asphaltic material specified in 476.40: General before the adjacent slab is placed against it.

Longitudinal surface groove joints shall be constructed by sawing with an approved concrete saw to the depth, width and line shown on the plans. The width of the cut shall not be less than ¼-in. and the depth shall not be less than 25% of the pavement thickness plus ¼ in. Suitable guide lines or devices shall be used to assure cutting the joint on the true line as shown on the plans. The joint shall be sawed before any equipment or vehicles are allowed on the pavement. If sawing is done before the end of the curing period, the faces of the joint shall be cured as provided for transverse sawed joints. The joints shall be filled with joint sealer compound as specified under 476.40: General.

Where there is more than one longitudinal joint, the cutting of this joint shall be done by tandem sawing, which saws shall be fixed to assure lines parallel and true, as shown on the plans.

B. Transverse Expansion Joints.

Transverse expansion joints shall be constructed where shown on the plans or directed by the Engineer.

They shall consist of a preformed filler ¾ in. thick (476.40: General), a top sealing cap of poured joint filler compound (476.40: General), and an approved load transfer assembly (476.40: General).

The expansion joint filler shall be continuous from edge to edge shaped to the subgrade and to the keyway along the edge. It shall extend from the subgrade to 1 in. below the pavement surface.
Preformed joint filler shall be furnished in lengths equal to the paving width or equal to the width of one lane. Where more than one section is used in a joint, the sections shall be securely laced or clipped together. Damaged or repaired joint filler shall not be used unless approved by the Engineer.

A removable metal cap shall be placed over the top of the preformed joint during the concreting operations to maintain proper grade and alignment. Concrete shall be placed as specified and shall be carefully spaded against the joint filler. The metal cap shall be removed immediately after the final pass of the finishing machine. A suitable strip of the exact dimensions of the filler shall then be inserted in the joint as a guide and the concrete edged with a $\frac{1}{8}$-in. radius edging tool. The strip shall then be removed and any rough or torn places in the concrete shall be corrected.

Particular care shall be taken to keep the concrete in exactly the same plane on the two sides of the joint. No concrete shall extend across the joint. No plugs of concrete shall be permitted anywhere within the expansion space.

C. Transverse Contraction Joints.

These joints shall consist of planes of weakness created by sawing grooves in the surface of the pavement at the locations indicated on the plans.

Approved load transfer assemblies shall be installed at each contraction joint as shown on the plans and in accordance with the Specifications.

When approved by the Engineer, a vibrating bar may be used to move coarse aggregate off the line of the saw cut. The vibrating bar shall be used only in plastic concrete and so as not to produce areas of segregated mortar.

The Contractor’s sawing equipment and method of sawing shall be subject to the approval of the Engineer. The timing and sawing and the order in which joints are sawed shall be subject to such control by the Engineer as in their judgement is necessary to protect the pavement from ravelling, spalling, cracking, or other damage. Normally, contraction joints will be sawed progressively with an approved circular saw at not less than 6 nor more than 24 hours after finishing. All joints shall be sawed before uncontrolled shrinkage cracking takes place. If necessary, the sawing operations shall be carried on both during the day and the night regardless of weather conditions.

The pavement shall be cut for not less than $\frac{1}{8}$ in. in width to a depth at least 25% of the pavement thickness. Secondary saw cuts shall be made as necessary so that the final joint width is at least $\frac{3}{8}$ in. or as shown on the plans. In the event of excessive relief of the joint, care should be taken to secure this minimum opening.

To control random cracking the Engineer may require that initial curing (for the first 24 hours) be done with wet burlap. The sawing of any joint shall be omitted if a crack occurs at or near the joint location prior to the time of sawing. Sawing shall be discontinued when a crack develops ahead of the saw. In general, all joints should be sawed in sequence. All contraction joints in lanes adjacent to previously constructed lanes shall be sawed before uncontrolled cracking occurs.
D. Transverse Construction Joints.

Transverse construction joints shall be placed at the end of each day's work and when placing concrete will be interrupted for more than 30 minutes. No transverse construction joint shall be placed closer than 15 ft to another transverse joint. If sufficient concrete has not been mixed at the time of interruption to form a slab at least 15 ft long, the excess concrete back to the last preceding joint shall be removed and disposed as directed.

Substantial temporary wood or metal bulkheads shall be used to form construction joints. Particular care will be taken to provide a good riding joint and hand finishing shall be kept to a minimum. Poor riding joints will be corrected.

When the construction joint is placed at a regular location of an expansion or contraction joint, a standard load transfer assembly will be used. When the construction joint is at other than the regular joint location, deformed bars will be used to create a bonded tie across the joint. Minimum tie steel shall be #8 round deformed bars, 48 in. long at 12 in. center to center.

E. Load Transfer Devices.

Dowels shall be held in position parallel to the surface and center line of the slab by a metal device meeting the requirements of 476.40: General or shall be placed by an approved mechanical placing device.

The sub-base at the locations where expansion, contraction, and construction joint load transfer assemblies are to be installed shall be trimmed accurately to the required cross section and depth of pavement. Where used, the complete joint assembly shall be carefully placed. If the sub-base is trimmed too low or if there are any open spaces beneath the preformed joint filler, the joint assembly shall be removed, the sub-base correctly graded and tamped, and the joint assembly reset.

One-half the length of each slip-dowel bar of load transfer units shall be rendered bondless with a coat of either a graphite lubricant or a wax base grease meeting the requirements of M8.14.0: Load Transfer Assembly. The graphite lubricant shall be applied by daubing, mopping or gloved hand to produce a thorough coating approximately $\frac{1}{16}$ in. thick. Brushes shall not be used for the application of the graphite lubricant.

The wax base grease shall be pre-heated to temperatures of 170°F to 190°F and applied either by dipping or by brush to produce a coating approximately $\frac{1}{16}$ in. thick.

Dowels shall be coated at least one hour before the concrete is placed around the dowel assembly.

The assembly shall be held in the required position at line and grade by metal stakes or pins throughout the operation of placing and striking-off the concrete. No concrete shall be placed unless the methods and devices used by the Contractor for installing and securing the joint assembly, including any joint filler required, and finishing the joint meet with the approval of the Engineer. Immediately prior to depositing the concrete, the position of dowels shall be checked and the assemblies tightened if necessary. The installation of dowel assemblies and the placement of the surrounding concrete shall result in dowels tightly encased in concrete and parallel to both the pavement surface and center line at plan locations. In lieu of using dowel assemblies at contraction joints, dowel bars may be placed in the plastic concrete by a mechanical device approved by the Engineer.
476.69: Numbering Slabs

The pavement slabs shall be numbered consecutively as the work progresses, and the last slab placed each day shall be stamped with the date. The marking shall be on the right hand corner at the beginning of each slab, and so placed that it can be read traveling in the direction the pavement was laid. The figures and letters shall be 1.5 in. high and plainly and neatly stamped after the final finish of the concrete as directed. When two or more paver mixers are working, the distinguishing letter for each mixer shall be stamped adjacent to the number.

476.70: Surface Test

The entire surface shall be checked while the concrete is still plastic with an approved metal straightedge 10 ft in length, and any deviation from the general surface shall be corrected at once. The surface shall be checked again immediately after the removal of the burlap where an initial burlap covering is used, or at the end of 72 hours where 72-hour covering is used. The straightedge shall be placed at several points across the pavement parallel to the centerline and shall be advanced in 5-ft steps. Areas showing high spots of more than \(\frac{1}{8} \) in. but not exceeding \(\frac{1}{2} \) in. in 10 ft shall be marked and immediately ground or rubbed down with an approved tool to an elevation where the area or spot will not show surface deviations in excess of \(\frac{1}{8} \) in. when tested with a 10-ft straightedge. This grinding or rubbing shall be conducted carefully so as to avoid loosening coarse aggregate or otherwise damaging the slab.

Where the departure from correct cross section exceeds \(\frac{1}{2} \) in., the pavement shall be removed and replaced by and at the expense of the Contractor.

Any area or section so removed shall be not less than 15 ft in length nor less than the full width of the lane involved. When it is necessary to remove and replace a section of pavement, any remaining portion of the slab adjacent to the joints that is less than 15 ft in length, shall also be removed and replaced.

476.71: Curing

Immediately after the finishing operations have been completed and as soon as marring of the concrete will not occur, the entire surface of the newly placed concrete shall be covered and cured in accordance with one of the following methods. In all cases in which curing requires the use of water, the curing shall have prior rights to all water supply or supplies. Failure to provide sufficient cover material of whatever kind the Contractor may elect to use, or a lack of water adequate to take care of both curing and other requirements, shall be cause for immediate suspension of concreting operations. The concrete shall not be left exposed for more than 30 minutes between stages of curing or during the curing period. Whenever fixed-forms are not used, exceptional care shall be taken in the use of paper or burlap to prevent any damage to the unsupported edges of the pavement. The curing media shall be applied at the appropriate time and shall be applied uniformly and completely to all surfaces and edges of the pavement.

A. Moist Curing.

Initial Curing: Strips of burlap saturated with water shall be placed on the fresh concrete surface carefully so as to avoid marring, and the strips shall overlap not less than 3 in. This burlap shall be kept thoroughly and continuously wet by sprinkling it with a fine spray of until it is removed. Initial
curing with wet burlap shall be for a period of not less than 24 hours. Burlap which has been used for any purpose other than curing concrete shall not be used.

Final Curing: Following completion of initial curing the curing shall be continued using an additional layer of burlap or cotton mats. This double layer shall remain in place and shall be kept thoroughly and continuously saturated with water for a period of not less than 5 days.

Cotton mats may be used for final curing if approved by the Engineer. Such covering shall be as effective in preventing evaporation of mixing water and controlling variance in temperature of the concrete as the two thicknesses of wet burlap. If cotton mats are used for final curing, the burlap shall be removed in such a manner that not more than 60 lineal ft of pavement is exposed at one time, followed at once by application of cotton mats.

B. Waterproof Paper Curing.

The top surface and sides of the pavement shall be entirely covered with waterproof paper. Each paper cover shall be not less than 20 or more than 75 ft in length, and shall be of such width that, when in place, it will extend to at least 18 in. beyond the edges of the slab to be covered.

Paper covers may be furnished in widths corresponding to that of the slab provided supplemental stringer sheets, at least 18 in. wide are used, in which case such sheets shall be placed along the edges of the slab under the paper covers. On removal of forms the paper shall be brought down over the slab side and held with a continuous bank of earth. The junctions between the paper covers shall be lapped approximately 12 in. and held in place with a bank of earth.

All rips or holes occurring in the paper covers while in use shall be immediately repaired with a sealed patch to render them airtight. Covers which have become damaged or soiled to the extent that they will not provide satisfactory curing or will mar the concrete shall not be used.

The paper shall be left in place for a period of 72 hours or longer, if necessary to obtain the required strength. The surface of the pavement shall be moist when the paper is placed.

C. Impervious Membrane Curing.

After finishing operations have been completed, and immediately after the free water has left the surface, the surface of the slab shall be completely coated and sealed with a uniform layer of white pigmented curing compound. The compound shall be applied in a 2-coat continuous operation and at a total coverage of not less than 1 gal per 150 ft² of surface.

The compounds shall be applied by means of a mechanical pressure sprayer mounted on a self-propelled carriage. The compound shall form a uniform, continuous, coherent film that shall not check, crack or peel and shall be free from pin holes, or other imperfections. If discontinuities, pin holes or abrasion exist, an additional coat shall be applied within 30 minutes to the affected areas.

The equipment shall provide adequate stirring of the compound during application. Also, wind protection to the spray fog shall be provided by an adequate shield when the compound is applied to the pavement. The equipment for applying the compound shall be approved by the Engineer before work is started. Should the method of applying the compound not produce a uniform film, its use shall be discontinued and the curing shall be done by one of the other approved methods specified herein.
The curing compound shall be of such character that the film will harden within 30 min after application. Should the film become damaged from any cause within the required curing period, the damaged portions shall be repaired immediately with additional compound.

Liquid membrane material shall not be placed on the faces of joints. Immediately after the contraction joints are sawed, they shall be protected and moist-cured with strips of waterproof paper or plastic. Ropes made of jute or cotton may also be used. The method used shall insure proper curing of the portion of the slab adjacent to the joints.

Immediately after the forms are removed, the entire area of the sides of the slab shall be coated with the curing compound at the rate specified for the pavement surface. This spraying shall be a continuous process and waiting until all forms have been removed before making the application will not be permitted. Hand-spray equipment will be permitted for the application of the curing compound over the sides of the slab. Care shall be used to prevent coating the ends of sawed contraction joints. If hair checking develops before the curing compound can be applied, the concrete shall be moist-cured for at least 24 hours before applying any membrane curing compound. If rain falls on the newly coated pavement before the film has dried sufficiently to resist damage, or if the film is damaged in any other way, the Contractor will be required to apply a new coat of material to the affected areas, equal to that specified for the original coat. The treated surface shall be protected by the Contractor from injury for a period of at least 3 days. All traffic, foot or otherwise, will be considered injurious to the film of the applied compound. A minimum of foot traffic will be permitted on the dried film as necessary to carry on the work properly, provided any damage to the film is immediately repaired by the application of an additional coat of compound.

D. **White Polyethylene Sheeting.**

The general requirements for the use of white polyethylene sheets shall be those for waterproof paper curing in 476.71: Curing, Paragraph B.

E. **Curing in Cold Weather.**

During cold weather, when the air temperature may be expected to drop below 40°F, a sufficient supply of loose dry hay or straw or other suitable blanketing material for covering shall be provided along the line of the work, and at any time when the air temperature may be expected to reach the freezing point during the day or night, the material so provided shall be spread to a sufficient depth to prevent freezing of the concrete. The period of time such protection shall be maintained shall be not less than 5 days or until the concrete has hardened thoroughly. The use of such hay or straw does not take the place of the burlap or other covering specified herein, but shall be applied in addition to the covering. The Contractor shall be responsible for the quality and strength of the concrete placed during cold weather, and any concrete injured by frost action shall be removed and replaced at the Contractor’s expense.

476.72: Removing Forms

Forms shall not be removed for 12 hr after the concrete has been placed, or for a longer period if directed. Extreme care shall be taken in removing forms in order that no damage will be done to the concrete. Under no condition shall any bar, pick, or other tool be used which depends upon leverage on the concrete, for removal of the pins or forms.
As soon as side forms are removed and prior to sealing joints, the ends of all joints shall be opened and all mortar or foreign material shall be removed from the joint opening above the filler or other space as provided so that there will be complete freedom for required movement of the joint. After the forms have been removed, the side of the slab shall be cured as outlined in one of the methods indicated previously.

All holes or honeycomb shall be patched promptly with mortar, of the same composition as that used in the pavement, which has been allowed to set for about one-half hour after mixing. Major honeycombed areas will be considered as defective work and shall be removed and replaced. Any area or section so removed shall not be less than 15 ft in length nor less than full width of the lane involved. When it is necessary to remove and replace a section of pavement, any remaining portion of the slab adjacent to the joints that is less than 15 ft in length, shall also be removed and replaced.

476.73: Sealing Joints

Joints shall be sealed after curing and before any kind of traffic is permitted on the pavement.

The sealing of joints shall be undertaken only when the atmospheric temperature is above 40°F, and when the weather is not foggy or rainy.

Just prior to sealing, each joint shall be thoroughly cleaned of all foreign material, including curing compound, by means of a mechanical, power-operated concrete grooving machine or a power wire brush. The concrete grooving machine or wire brush shall be operated in such a manner that the vertical faces of the concrete in the joint opening will present thoroughly clean concrete surfaces for application of the joint sealing compound. Following this operation, each joint shall then be further cleaned by means of a powerful jet of compressed air.

No joints shall be filled when there is any free water in or adjacent to the joints. Joint walls and all surfaces to which the sealing compound is to be applied shall be surface dry for at least 3 hr prior to placing. No joints shall be sealed until the joints have been approved by the Engineer as being clean and dry in accordance with the foregoing provisions.

Joints shall be sealed with an approved joint sealing compound conforming to M3.05.0: Hot Poured Joint Sealer.

The melting devices used for heating the joint sealing material shall be of the double boiler, indirect heating type using high flash oil for heat transfer. Constant mechanical agitation during the entire melting period shall be provided and no material shall be subjected for more than 60 min to the high temperature required for melting of the material. Positive temperature control (preferably by thermostat) of the heating medium of the sealing compound shall be provided at all times.

Hot-poured sealing compound shall not be subjected to temperatures in excess of 450°F at any stage of the melting operation. Sealing material that has remained in the kettle in a molten state overnight will not be acceptable for use.

Hot-poured filler for use in sealing all joints, except expansion joints, shall be applied under pressure. When hot-poured filler is applied under pressure, the material shall be applied by means of a heavy-duty air operated pump, or other approved device. The material shall be discharged through a suitable nozzle in such a way as to fill the joint opening solid and uniformly in a neat and workmanlike manner.
When the atmospheric temperature at the time of sealing is below 50°F, the surface of the sealing compound in the finished joint shall be not less than $\frac{3}{16}$ in. below the level of the pavement surface. Otherwise, the surface of the finished joint shall be within $\frac{1}{4}$ in. below the level of the pavement surface.

The sealing shall be done in such a manner that the material will not be spilled on the exposed surfaces of the concrete. Any excess material on the surface of the concrete pavement shall be removed immediately and the pavement surface cleaned.

In the event paving and construction operations must close down in the Fall because of cold weather and the contract cannot be completed until the following year, the Engineer shall require the Contractor to clean and seal all joints in the part of the pavement completed at the time of the shut-down, in the manner prescribed in this Specification. Under no circumstances shall any joint remain unsealed between the period of shut-down in the fall and resumption of construction in the spring.

476.74: Protection of Pavement

The Contractor shall erect and maintain suitable barricades and employ watchmen to exclude traffic from the newly constructed pavement for the period herein prescribed. These barriers shall be so arranged as not in any way to interfere with or impede public traffic on any lane intended to be kept open. Necessary signs shall be maintained by the Contractor clearly indicating the open lanes to the public. When it is necessary to provide for traffic across the pavement, the Contractor shall construct at their entire expense, immediately after the finishing of the concrete, the necessary bridges over the pavement clear of the forms and at least 3 in. clear of the concrete and sufficiently strong to carry the traffic. The Contractor shall maintain these bridges until the concrete has attained the strength required in these Specifications for opening to traffic.

Prior approval shall be obtained from the Engineer for crossing of existing structures with the paving train.

When fixed-forms are not used, the Contractor shall be required to have available at all times, materials for the protection of the edges and surface of the unhardened concrete in order that the concrete may be properly protected against the effects of rain before the concrete is sufficiently hardened. Such protective materials shall consist of standard metal forms or wood plank having a nominal thickness of not less than 2 in. and a nominal width of not less than the thickness of the pavement at its edge for the protection of the pavement edges, and covering material such as burlap or cotton mats, curing paper, or plastic sheeting material for the protection of the surface of the pavement.

An adequate quantity of the materials described above shall be available, loaded on vehicles which can be promptly driven or towed to the scene of paving operations and be located not more than one-half mile from the place where the paving operations are in progress.

When rain appears imminent, all paving operations shall stop and all available personnel shall begin placing forms against the sides of the pavement and covering the surface of the unhardened concrete with the protective covering.
The Contractor shall have on hand at the paving site sufficient burlap or paper to cover at least 6,000 ft² of freshly laid pavement as a protection against sudden thunder showers or heavy downpours of rain.

Any part of the pavement damaged by traffic or other causes occurring prior to its final acceptance shall be repaired or replaced by and at the expense of the Contractor in a manner satisfactory to the Engineer. The Contractor shall protect the pavement against both public traffic and the traffic caused by their own employees and agents. The pavement shall be so protected until the beam test shows a strength of at least 550 psi.

476.75: Opening to Traffic

Upon completion of curing operations as specified, the pavement may be opened to traffic provided that beam tests show that the concrete has attained a modulus of rupture of at least 550 psi. However, curing operations will not be considered completed unless a curing period of at least 7 days has elapsed since the concrete was placed.

Where high-early strength concrete is used, the pavement may be opened to traffic after a shorter period of curing or as beam tests show that the concrete has attained a modulus of rupture of at least 550 psi.

476.76: Test Specimens

Test specimens shall conform to the requirements of M4.02.13: Test Specimens. They will be taken in the field from batches used in the pavement to determine the adequacy of control of the materials, the proportioning and mixing of the concrete and compliance with the minimum strength requirements. Test beams shall be 6 in. x 6 in. x 36 in. in length and shall be made, cured, and used in accordance with AASHTO T 23 and T 97. At least two beams shall be made for each 2,000 yd² or fraction thereof of pavement placed.

Payment for the forms, material and assistance as the Engineer may require to make, cure and test the field specimens will not be paid for directly but shall be included in the contract unit price for the pavement.

476.77: Tolerance in Pavement Thickness

It is the intent of these Specifications that the pavement shall be constructed in accordance with the thickness shown on the plans. Before final acceptance of the work or during the progress of the work, as may be advisable or necessary, the thickness or depth of concrete pavement will be determined by cores taken by the Contractor under the direction of the Engineer or their designee, and unsatisfactory work shall be repaired, replaced, or will be paid for at an adjusted unit price. Where any pavement is found deficient in thickness, the following rules relative to replacement of the faulty pavement and adjustment of unit price shall govern.

The thickness of the pavement will be determined by average caliper measurement of cores tested in accordance with AASHTO T 148.

For the purpose of establishing an adjusted unit price for pavement, units to be considered separately are defined as not more than 1,000 linear ft of pavement in each traffic lane starting at the end of the pavement bearing the smaller station number. A traffic lane is defined as being
between longitudinal joints or between a longitudinal joint and a pavement edge. The last unit in each lane shall be 1,000 ft plus the fractional part of 1,000 ft remaining.

One core will be taken at random in each unit by the Contractor.

When the measurement of the core from a unit is not deficient by more than 0.25 in. from the plan thickness, the pavement in the unit represented will be paid for at full unit price.

When such measurement is deficient by more than 0.25 in. but less than 0.5 in., two additional cores at intervals of not less than 300 ft will be taken. The thickness of the unit will be considered to be the average of the three cores provided none is deficient by 0.5 in. or more. Payment for the pavement in the unit will be at an adjusted unit price as provided in 476.81: Basis of Payment.

In calculating the average thickness of the pavement, measurements in excess of the specified thickness will be considered as the specified thickness. Measurements which are less than the specified thickness by ½ in. or more will not be included in the average.

When any core is deficient by ½ in. or more, additional cores will be taken at 25 ft intervals in each direction until a core is found in each direction that is deficient by less than ½ in. Each such exploratory core will represent the depth of 25 lineal ft of pavement one traffic lane in width. The pavement so represented will be deducted from the unit of pavement being measured and the remaining area cored and measured as described previously.

Pavement deficient by ½ in. or more but less than ¾ in. may be accepted by the Engineer at no payment to the Contractor. However, the Contractor may, at their own expense, remove and replace the pavement, which will then be cored and measured for payment as herein provided.

Pavement deficient by 0.75 in. or more shall be removed and replaced by the Contractor at their own expense. Payment for such replaced pavement will be as provided herein.

Other areas such as intersections, entrances, crossovers, ramps, etc., will be considered as one unit and the thickness of each unit will be determined separately. Small irregular unit areas may be included as part of another unit. At such points as the Engineer may select in each unit, one core will be taken for each 2,000 yd² of pavement, or fraction thereof, in the unit. Thickness of each unit will be determined as described previously except that when additional cores in any unit are required, they will be taken at locations as directed by the Engineer.

COMPENSATION

476.80: Method of Measurement

Cement concrete pavement will be measured by the square yard and the quantity paid for shall be the number of square yards as determined by the actual area of the finished pavement, complete in place and accepted, but subject to adjusted proportional payment or non-payment as stated in 476.81: Basis of Payment for all pavement areas found deficient in depth.

The width for measurement of the pavement shall be as shown on the typical cross sections, including additional widening where called for, or as otherwise directed in writing by the Engineer. The length will be measured horizontally along the center line of each roadway or ramp.
476.81: Basis of Payment

Standard cement concrete pavement will be paid for at the contract unit price per square yard complete in place subject to price adjustments as set forth below. No additional payment over the unit contract price will be made for any pavement having an average thickness in excess of that shown on the plans. Average thickness shall be calculated as stated in 476.77: Tolerance in Pavement Thickness. Where the average thickness of pavement is deficient in thickness by more than \(\frac{1}{4} \) in., but less than \(\frac{1}{2} \) in., payment will be made as follows:

<table>
<thead>
<tr>
<th>Deficiency in Thickness, Determined by Cores (in.)</th>
<th>Proportional Part of Contract Prices Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq \frac{1}{4})</td>
<td>100%</td>
</tr>
<tr>
<td>(> \frac{1}{4}) but (\leq \frac{3}{8})</td>
<td>80%</td>
</tr>
<tr>
<td>(> \frac{3}{8}) but (< \frac{1}{2})</td>
<td>70%</td>
</tr>
</tbody>
</table>

Where core measurements indicate that the pavement is deficient in thickness by \(\frac{1}{2} \) in. but less than \(\frac{3}{4} \) in. the pavement may be accepted without any payment being made to the Contractor, or it may be replaced at the option of the Contractor with pavement of the specified thickness at their entire expense. If the deficiency in thickness is \(\frac{3}{4} \) in. or more, the Contractor shall be required to remove such deficient areas and replace them with cement concrete pavement conforming with all requirements of these Specifications and to the thickness shown on the plans. Such areas when accepted will then be duly included in the yardage for which payment shall be made at the contract unit price. The Contractor shall receive no compensation for materials or labor involved in removing and replacing deficient areas.

When high early strength concrete is specified at the direction of the Engineer, in order to expedite the opening of pavement to traffic, the high early strength will be obtained by means of an increase in the cement factor and a reduction of the water-cement ratio. The extra cement will be paid for at the actual unit cost per barrel to the Contractor for the extra quantity of cement actually incorporated in the pavement, plus an allowance of 5% of the cost per barrel, which cost shall include all equipment, labor storage, transportation and work incidental to its inclusion in the concrete and incorporation in the finished pavement.

476.82: Payment Items

476. Cement Concrete Pavement ... Square Yard

SUBSECTION 477: MILLED RUMBLE STRIPS

DESCRIPTION

477.20: General

The work consists of constructing rumble strips on paved highway shoulders by milling grooves into finished hot mix asphalt surfaces.
CONSTRUCTION METHODS

477.61: Equipment
The equipment shall self-align with the slope of the roadway surface and/or any irregularities in the roadway surface.

The Contractor shall demonstrate to the Engineer the ability to achieve the desired groove without tearing or snagging the roadway surface prior to beginning the work.

477.62: Installation of Rumble Strips
Rumble strips shall be installed in accordance with the locations, dimensions and patterns shown on the plans. Rumble strips shall not be installed on shoulders less than 2 ft wide, on bridge decks, within 50 ft of an intersection or major driveway, or on roadways with posted speeds less than 40 miles per hour.

In areas where acceleration and/or deceleration lanes have no paved outside shoulders, any rumble strips in the outside shoulders shall be terminated at the beginning of each deceleration lane and initiated at the end of each acceleration lane.

477.63: Control of the Work Area
At the end of each working day, all equipment shall be moved to a location where it does not present a hazard to traffic. The pavement shall be cleaned by sweeping and the work area shall be reopened to traffic.

Pavement millings shall become the property of the Contractor and shall be removed and disposed of off-site.

COMPENSATION

477.80: Method of Measurement
Milled Rumble Strip will be measured by the total length of installed rumble strip. Milled Rumble Strip for Bicycle Traffic will be measured by the total length of installed rumble strip excluding the designed gaps. Breaks at castings, bridge decks, intersections or other breaks will not be measured for payment.

477.81: Basis of Payment
Payment for Milled Rumble Strip and Milled Rumble Strip for Bicycle Traffic will be made at the contract unit price per foot of rumble strips, complete in place. Such payment will be full compensation for furnishing all equipment and labor for satisfactorily performing the work including cleanup and disposal of excess materials.

477.82: Payment Items
477. Milled Rumble Strip .. Foot
477.1 Milled Rumble Strip for Bicycle Traffic... Foot
SUBSECTION 482: SAWCUTTING

DESCRIPTION

482.20: General
This work shall consist of the sawcutting of asphalt and concrete pavements, sidewalks and trenches where shown on the plans, and as required by the Engineer.

EQUIPMENT

482.40: General
The saw shall be capable of wet cutting to neat lines established by the Engineer. The equipment shall be approved by the Engineer prior to commencing work.

CONSTRUCTION METHODS

482.60: General
The pavement shall be sawcut through its full depth at all joints between existing and proposed pavements, and at all utility trenches, to provide a uniform, smooth vertical surface. Existing pavements shall be sawcut at the limits of work as shown on the plans and as required by the Engineer.

Sawcut edges which become broken, ragged or undermined as a result of the Contractor's operations shall be re-cut prior to the placement of abutting proposed pavement at no additional cost to the Department.

Sawcut surfaces in asphalt pavements shall be sprayed or painted with a uniform, thin coat of asphalt emulsion tack coat immediately before placement of hot mix asphalt against the cut surfaces.

COMPENSATION

482.80: Method of Measurement
Sawing pavement will be measured by the foot along the cut line.

482.81: Basis of Payment
Sawing pavement will be paid for at the respective contract unit prices per foot, which prices shall include all labor, materials and equipment necessary to perform the work.

Sawcutting will be paid separately when made in areas of full depth box widening.

Sawcuts made in existing pavement in areas of trenching for new conduit, in areas of new or reset curb, or trench limits for drainage/water work, will be included in the unit price under the respective items and will not be paid for separately under this item.

Asphalt emulsion tack coat will be paid for under Item 452. Asphalt Emulsion for Tack Coat.
482.82: Payment Items

482.3 Sawcutting Asphalt Pavement...Foot
482.4 Sawcutting Portland Cement Concrete..Foot
482.5 Sawcutting Asphalt Pavement for Box Widening.................................Foot

SUBSECTION 485: GRANITE RUBBLE BLOCK PAVEMENT

DESCRIPTION

482.20: General

This item of work shall consist of furnishing and setting granite rubble block pavement on a sand cushion on a concrete base course in accordance with these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

482.40: General

Materials shall meet the requirements specified in the following Subsections of Division III. Materials:

Granite Rubble Block...M2.03.0
3,000 psi, 1.5-inch, 470 Cement Concrete...M4.02.00

Expansion and Contraction Joints

Preformed Filler..M9.14.0
Hot Poured Joint Sealer ..M3.05.0
Mortar..M4.02.15
Sand Borrow..M1.04.0, Type b

CONSTRUCTION METHODS

485.60: General

The sub-base below the concrete base course shall be fine graded and thoroughly compacted after forms are in place: it shall be placed on compacted fill as required under Subsection 401: Gravel Sub-Base.

485.61: Forms

Forms shall be placed if directed to the full depth of the combined granite rubble block, sand cushion, and concrete base. They shall be of wood, not less than nominal 2-in. thickness and dressed on all four sides. Forms shall be securely staked and braced and shall be constructed and set so as to resist the pressure of the concrete without springing out of alignment. They shall be oiled before use.

485.62: Placing Concrete

Concrete shall be deposited with minimum rehandling and in one layer. Hand spreading and spading shall be done adjacent to forms and joints.
The concrete shall be struck off and float-finished. Protection and curing shall be done as required in Subsection 901: Cement Concrete. Placing of sand cushion and laying of granite rubble blocks shall not be done until at least 24 hours after the final curing period of the concrete base course.

The forms shall remain in place until the granite rubble blocks are laid, in order to confine the sand cushion and mortar.

485.63: Joints in Concrete

Weakened plane transverse contraction joints shall be constructed in the concrete base course every 40 ft or as shown on the plans. These joints shall consist of surface slats 2 in. deep, varying in width from $\frac{3}{8}$ in. at top to $\frac{1}{4}$ in. at bottom.

Expansion joints shall be formed at all existing expansion joints of existing reinforced concrete surface where this surface is to be used as the base. Joints shall be $\frac{1}{2}$ in. in width and shall be filled with preformed joint filler. All joints shall be sealed with joint filler compound.

485.64: Laying Blocks

Blocks shall be carefully laid on a sand cushion over the concrete foundation as shown on the plans and as directed and shall be solidly rammed in position. Joints between blocks shall be a maximum of 1.5 in. and a minimum of 1-in. in width. Blocks shall be kept perfectly clean and joints between stones shall be clean and open to the full depth of blocks until the joint is filled with mortar.

After a sufficient area of block pavement has been laid the surface shall be tested with a 10-ft straight-edge laid parallel with the centerline and any variation exceeding $\frac{3}{8}$ in. shall be corrected and brought to proper grade.

Stones disturbed in making replacements or correcting variations shall be settled into place by carefully ramming or tampering to grade by use of a hand tamper applied upon a 2-in. plank.

Each section of block surfacing must be acceptable to the Engineer before joints in that section are filled with mortar.

485.65: Filling Joints

Mortar shall be placed and worked in such a manner as to fill the joint to a depth $\frac{1}{2}$ in. below the surface. The top surface of blocks shall be kept clean of mortar stains. Immediately after the mortar joints have set sufficiently the granite block pavement shall be swept clean and any marks on the top surface removed.

COMPENSATION

485.80: Method of Measurement

Granite Rubble Block will be measured by the square yard for the work complete in place including the required excavation and materials.

485.81: Basis of Payment

This work will be paid for at the contract unit price per square yard for Granite Rubble Block Pavement, complete in place.
485.82: Payment Items

485. Granite Rubble Block Pavement .. Square Yard
SECTION 500: CURB AND EDGING

SUBSECTION 501: CURB, CURB INLETS, CURB CORNERS AND EDGING

DESCRIPTION

501.20: General

This item of work shall consist of furnishing and setting curb, curb inlets, curb corners and edging on a gravel foundation except for bridge curb which is set in full mortar bed and hot mix asphalt curb which is placed on a hot mix asphalt base, in accordance with these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

501.40: General

Materials shall conform to the requirements specified in the following Subsection of Division ill, Materials:

- Granite Curb
- Granite Curb Inlets
- Granite Curb Corners
- Granite Edging
- Mortar
- Gravel
- Anchors
- Cement Concrete Precast Units
- Joint Material
 - Tar Paper
 - Preformed Expansion Joint Filler
- Hot Mix Asphalt Curb, Types 1, 2 & 3
- Cement Concrete
- Liquid Concrete Penetrant/Sealer

CONSTRUCTION METHODS

501.60: Excavating Trench

The trench for the curb shall be excavated to a width of 18 in. The subgrade of the trench shall be a depth below the proposed finished grade of the curb equal to 6 in. plus the depth of the curbstone.

Existing pavements shall be sawcut in accordance with the requirements of Subsection 482: Sawcutting as shown on the plans and as required by the Engineer.

501.61: Preparing Foundation

The foundation for the curb shall consist of gravel spread upon the subgrade and after being thoroughly compacted by tamping shall be 6 in. in depth.
The gravel foundation for edging shall be as shown on the plans and shall be thoroughly rammed or tamped until firm and unyielding.

The foundation for the curb inlet shall consist of a full bed of Portland cement mortar on the supporting back wall of the catch basin or gutter inlet and sufficient gravel on each side to support the overhang. The trench for the gravel foundation shall be at least 6 in. in depth and 18 in. in width. This trench shall be filled with gravel thoroughly tamped to the required grade.

The trench for the curb corner shall be excavated so that there shall be constructed a foundation of gravel which when thoroughly compacted will be 6 inches in depth, and extending 6 in. beyond the front and back of curb corner to the full depth of foundation. Other acceptable material may be used for backing.

501.62: Setting Curb and Edging

Curbing, curb corners or edging shall be set on additional gravel spread upon the foundation.

All spaces under the curb, curb corners or edging shall be filled with gravel thoroughly compacted so that the curb, curb corners or edging will be completely supported throughout their length. The curb shall be set at the line and grade required as shown on the plans unless otherwise directed.

Curb, curb corners or edging shall be fitted together as closely as possible except for VA5 curb which shall not fit closer to each other than ¼ in.

If curb, curb corners, curb inlets or edging of different quarries is used on the same project, curbing of each particular quarry shall be segregated and set to give uniform appearance.

501.63: Concrete Curb, Corners, and Edging

A. General

The curb shall consist of concrete castings molded in place in sections 6 ft long, 24 in. in depth, 6 in. in width at the top, and 7 in. in width at the bottom and with front vertical face. The top front edge of curb shall be rounded to ¾-in. radius. The ends of curb sections shall be chamfered ¼ in.

The edging shall consist of concrete castings conforming to the size and dimensions shown on plans. Straight edging shall be cast in lengths of 4 ft. Edging for curves with radii-300 ft or less shall be straight edging but shall be cast in lengths less than 4 ft in order to avoid angles at joints. The ends of all edging shall be normal to the line of face. The edges of edging face shall be chamfered ¼ in.

Corners shall match the adjacent curb in size, color and finish. The front arris line shall extend through ¼ of a circle having a radius of 2 ft or 3 ft respectively for Type A or Type B curb comer. The back arris line shall be straight. The plan of the back shall be normal to the top.

All forms shall be set true to lines and grades indicated on plans and as directed and held rigidly in proper position. They shall be either of metal or of acceptable planed and matched lumber of such construction that a smooth surface will be provided.

Expansion joints shall be formed at the intervals shown on the plans using preformed expansion joint filler having a thickness of ½ in. When curb is constructed adjacent to or on concrete pavement, expansion joints shall be located opposite or at expansion joints in the pavement.
B. Mixing and Placing Concrete.

The concrete shall be of such consistency and be so spaded and worked that a smooth mortar face will be produced.

C. Protection, Curing and Finishing of Concrete.

1. Protection. The forms shall be left in place for 24 hours or as directed until the concrete has set sufficiently so that they can be removed without injury to the castings. Particular care will be required to prevent any discoloration of the exposed surface.

2. Curing. When the concrete has hardened sufficiently the concrete shall be covered with acceptable burlap or other approved material and kept wet for 3 days or longer. Under extreme weather or other particular conditions proper curing shall be carried out as directed.

3. Finishing. The castings shall, immediately upon removal of the forms, be rubbed down to a smooth and uniform surface, but no plastering will be allowed. For this work a competent and skillful finisher shall be employed.

4. Protective Coating. The Concrete Penetrant/Sealer shall conform to the requirements of M9.15.0: Liquid Penetrant/Sealant. After the concrete is at least 14 days old and after a 48-hour minimum drying period (a longer period shall be required if castings do not appear dry) just prior to the time of treatment, the exposed surface shall be cleaned to remove all oil, grime and loose particles which would prevent the mixture from penetrating the concrete. Immediately before the application of the mixture, an air blast shall be directed over the surface to be treated so that all dust will be removed. Unless otherwise directed, the temperature of the concrete and air shall be 50°F or higher at the time of application. For rate of application see M4.02.14: Precast Units, Paragraph D.

The second application of the surface treatment mixture shall not be made until the concrete, in the judgement of the Engineer, has regained its dry appearance.

Traffic shall be prohibited from the area until the concrete has regained its dry appearance.

501.64: Hot Mix Asphalt Curb

The HMA mixture shall be placed and compacted with a machine acceptable and approved by the Engineer. The machine shall be capable of spreading the mixture true to line and grade and to the shape stipulated.

The HMA curb shall be placed as shown in the current Department Standards.

If at any time before the acceptance of the work any soft or imperfect spots develop in the exposed surface of the curb, such material placed shall be removed and replaced with new-material and compacted, without additional compensation.

501.65: Filling About Trench

After the curb, curb corners, curb inlets, and edging is set, the space between it and the wall of the trench shall be filled with gravel thoroughly tamped to the depth directed, care being taken not to affect the line or grade of the curb, curb corners, curb inlets and edging.
501.66: Bridge Curb

On bridges, after the concrete base has set and before the concrete in back of the curb is placed, Type VA5 curb shall be set to line and grade in full mortar beds and full mortar end joints with the anchors in the stone grouted in place.

Each curb shall be brushed clean and free from loose particles, and thoroughly wetted with clean, fresh water before setting. The stone shall be carefully bedded in a full bed of mortar and in such a way as not to slide the stone on the mortar bed.

Each stone shall be held securely in position by 2 steel anchors. The anchors shall be of the required dimensions and shapes and shall extend 3 in. into the curb and 6 in. into the concrete. Care shall be taken in placing the concrete in back of the curb to avoid disturbing the line or grade of the curb.

Wherever plans indicate a construction joint in the sidewalk, or paraffin joint in coping, the curb shall be laid out so that a joint in the curb will be opposite the joint in the sidewalk, or coping.

501.67: Pointing

The joints between curbstones (both front and back) or edging shall be carefully filled with cement mortar and neatly pointed on the top and front exposed portions. After pointing, the curbstones or edging shall be satisfactorily cleaned of all excess mortar that may have been forced out of the joints.

501.68: Transition Curb for Wheelchair Ramps

Transitions from normal curb settings to wheelchair ramps shall be accomplished with transition curb as directed. Transitions shall be of the same type curb and similar to that abutting and, if on a curve, of the same radius.

COMPENSATION

501.80: Method of Measurement

The length of curb (except hot mix asphalt curb) and edging shall be as measured along the front arris of the curb and edging, except that where the edging is set on a curve having a radius of 10 ft or less, the measurement will be made along the edging at the lowest exposed level after completion of shoulder or pavement.

The quantity of hot mix asphalt curb to be paid for will be the length actually measured along curb at its lowest exposed edge or by tonnage actually used, complete in place.

Weight slips shall be countersigned upon delivery by the Engineer and slips not countersigned shall not be included for payment.

Each curb corner and curb inlet set, complete in place, will be considered one unit.

501.81: Basis of Payment

Curb or edging will be paid for at the contract unit price per foot, complete in place which shall include sawcuts made in existing pavement, cement concrete placed to set the curb or edging and all other work necessary to complete the installation.
Curved granite curb shall include all curb (except curb corners), cut to specified radius and set on curve.

The steel anchors used with Type VA5 curb will be paid for under the Item for VA5 curb.

Where granite edging is set on a curve having a radius of 10 ft or less the work will be paid for at the contract unit price per foot, complete in place, under the respective item for the particular type of edging required.

Curb inlets will be paid for at the contract unit price each under the respective item for the particular type of inlet, either straight or curved, complete in place.

All curb corners will be paid for at the contract unit price for each, under the item for the particular type of corner required, complete in place.

The initial excavation, except Class A Rock Excavation, when done in conjunction with excavation for sub-base will be paid for under the appropriate excavation item. The price of the curbing will include compensation for any other required excavation.

Gravel borrow for the foundations and backfilling will be paid for at the contract unit price per cubic yard under the item for Gravel Borrow.

Rock excavation, if necessary, will be paid for at the contract unit price per cubic yard under the item for Class A Rock Excavation.
501.82: Payment Items

501. Granite Curb Type VA1-Straight ... Foot
501.1 Granite Curb Type VA1-Curved .. Foot
502. Granite Curb Type VA2-Straight ... Foot
502.1 Granite Curb Type VA2-Curved .. Foot
503. Granite Curb Type VA3-Straight ... Foot
503.1 Granite Curb Type VA3-Curved .. Foot
504. Granite Curb Type VA4-Straight ... Foot
504.1 Granite Curb Type VA4-Curved .. Foot
505. Granite Curb Type VA5-Straight ... Foot
505.1 Granite Curb Type VA5-Curved .. Foot
506. Granite Curb Type VB-Straight ... Foot
506.1 Granite Curb Type VB-Curved .. Foot
509. Granite Transition Curb for Wheelchair Ramps-Straight Foot
509.1 Granite Transition Curb for Wheelchair Ramps-Curved Foot
510. Granite Edging Type SA ... Foot
510.1 Granite Edging Type SA (Radius 10 Feet or less) Foot
511. Granite Edging Type SB-Straight ... Foot
511.1 Granite Edging Type SB (Radius 10 Feet or less) Foot
512. Granite Edging Type SC ... Foot
512.1 Granite Edging Type SC (Radius 10 Feet or less) Foot
513. Granite Curb Inlet-Straight .. Each
513.1 Granite Curb Inlet-Curved .. Each
516. Granite Curb Corner Type A ... Each
517. Granite Curb Corner Type B ... Each
520. Concrete Curb Type VA ... Foot
521. Concrete Curb Corner Type A ... Each
521.1 Concrete Curb Corner Type B ... Each
522. Concrete Edging Type SA ... Foot
570.1 Hot Mix Asphalt Curb Type 1 ... Foot
570.2 Hot Mix Asphalt Curb Type 2 ... Foot
570.3 Hot Mix Asphalt Curb Type 3 ... Foot
572.1 Hot Mix Asphalt Curb Type 1 ... Ton
572.2 Hot Mix Asphalt Curb Type 2 ... Ton
572.3 Hot Mix Asphalt Curb Type 3 ... Ton

SUBSECTION 580: CURB OR EDGING REMOVED AND RESET; REMOVED AND STACKED OR REMOVED AND DISCARDED

DESCRIPTION

580.20: General

This work shall consist of removing the present curb, edging, curb corners and curb inlets of every type and cross section made of granite, concrete or granite-faced and resetting or stacking them or
discarding them in accordance with these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

580.40: Curb Edging, Curb Inlets and Curb Corners
Curb, edging, curb inlets and curb corners shall consist of so much of the same as is suitable, in the Engineer's judgment to be reset or stacked.

580.41: Gravel
Gravel shall conform to the requirements of M1.03.0: Gravel Borrow Type c.

CONSTRUCTION METHODS

580.60: Removal
A trench of sufficient width and depth shall be excavated so that the present curb, edging, curb corners and curb inlets can be removed without damage.

Existing pavements shall be sawcut in accordance with the requirements of Subsection 482: Sawcutting as shown on the plans and as required by the Engineer.

580.61: Protection
The Contractor shall protect all curb or edging and keep it in satisfactory condition until the acceptance of the entire contract. Particular care will be required to prevent any unsatisfactory discoloration of the curb or edging. The Contractor shall replace any existing curb, edging, curb corners and curb inlets that is to be reset, which is lost or damaged as a result of their operations, or because of their failure to store and protect it in a manner that would eliminate its loss or damage.

580.62: Adjustment
The length of any section of curb or edging, shall be altered by cutting in order to fit closures as necessary. The ends of all stones shall be square with the planes of the top and face so that when the stones are placed end-to-end as closely as possible no space shall show in the joint at the top and face of more than ¾ in. for the full width of the top and for 8 in. down on the face.

580.63: Relaying
The Construction methods for resetting all curbing or edging, in the final location shall conform to the requirements of 501.60: Excavating Trench to 501.62: Setting Curb and Edging, 501.65: Filling About Trench, and 501.67: Pointing.

580.64: Stacking
The Contractor shall accept and hold entire responsibility for the removal, handling, stacking at a location convenient for removal by owner, and protection of all curbing or edging until its final removal as designated in accordance with the following:
Any curbing or edging damaged through lack of protection or carelessness by the Contractor shall be replaced at their expense. The Contractor’s responsibility will cease upon final acceptance of the work or 60 days from the time a certified notice, with copy to the Engineer, is sent by Contractor to owner of material that all material is available for removal.

580.65: Discarding

Any curb, edging, curb corners and curb inlets not damaged through lack of protection or carelessness by the Contractor but deemed by the Engineer as unsatisfactory for relaying or stacking, will be discarded. It will be the Contractor’s responsibility to dispose of any discarded curb, edging, curb corners and curb inlets without additional compensation.

COMPENSATION

580.80: Method of Measurement

The quantity of curb and edging to be paid for will be the length actually removed and reset, and measured as specified in 501.80: Method of Measurement.

The quantity of curb or edging measured will be the length actually removed and stacked, and measured along the front arris line at the location stacked.

The quantity of curb or edging removed and discarded will be the length ordered to be removed and actually removed, but not included for payment under the items of Removed and Reset or Removed and Stacked.

Each curb inlet or curb corner removed and stacked or discarded will be considered as 1 unit.

Any remaining curb or edging removed which is not included for payment under the items listed above shall be classified as Earth Excavation (See 120.21: Earth Excavation).

580.81: Basis of Payment

Removing and resetting curb and edging will be paid for at the contract unit price per foot at the new location complete in place, which shall include sawcuts made in existing pavement, cement concrete placed to set the curb or edging and all other work necessary to complete the installation.

Removing and resetting curb inlets will be paid for at the contract unit price each for Curb Inlets Removed and Reset.

Removing and resetting curb corners will be paid for at the contract unit price each Curb Corners Removed and Reset.

Removing and stacking curb or edging will be paid for at the contract unit price per foot under the respective item.

Removing and stacking of curb inlets and curb corners will be paid for under the items for Curb Inlets Removed and Stacked, and Curb Corners Removed and Stacked, respectively.

Removing and discarding curb or edging will be paid for at the contract unit price per foot under the respective item.
Removing and discarding of curb inlets and curb corners will be paid for under the items for Curb Inlets Removed and Discarded, and Curb Corners Removed and Discarded, respectively.

580.82: Payment Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>580</td>
<td>Curb Removed and Reset</td>
<td>Foot</td>
</tr>
<tr>
<td>581</td>
<td>Curb Inlet Removed and Reset</td>
<td>Each</td>
</tr>
<tr>
<td>582</td>
<td>Curb Corner Removed and Reset</td>
<td>Each</td>
</tr>
<tr>
<td>583</td>
<td>Edging Removed and Reset</td>
<td>Foot</td>
</tr>
<tr>
<td>590</td>
<td>Curb Removed and Stacked</td>
<td>Foot</td>
</tr>
<tr>
<td>591</td>
<td>Curb Inlet Removed and Stacked</td>
<td>Each</td>
</tr>
<tr>
<td>592</td>
<td>Curb Corner Removed and Stacked</td>
<td>Each</td>
</tr>
<tr>
<td>593</td>
<td>Edging Removed and Stacked</td>
<td>Each</td>
</tr>
<tr>
<td>594</td>
<td>Curb Removed and Discarded</td>
<td>Foot</td>
</tr>
<tr>
<td>595</td>
<td>Curb Inlet Removed and Discarded</td>
<td>Each</td>
</tr>
<tr>
<td>596</td>
<td>Curb Corner Removed and Discarded</td>
<td>Each</td>
</tr>
<tr>
<td>597</td>
<td>Edging Removed and Discarded</td>
<td>Foot</td>
</tr>
</tbody>
</table>
SECTION 600: HIGHWAY GUARD, FENCES AND WALLS

SUBSECTION 601: GUARDRAIL

DESCRIPTION

601.20: General
This work shall consist of the construction of guardrail and guardrail end treatments in accordance with these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

601.40: General
Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

Guardrail ... M8.07.0
Guardrail End Treatment ... M8.07.1
Guardrail Delineator ... M9.30.7
Guardrail Termini Delineator ... M9.30.10

The contractor shall provide a detailed list of all system components for maintenance purposes.
No work shall commence under these items until the Engineer has received all documentation.

CONSTRUCTION METHODS

601.60: Posts
Posts shall be set plumb, in hand or mechanically dug holes, or driven, then backfilled with acceptable material placed in layers and thoroughly compacted.

If driven, the posts shall be provided with suitable driving caps and equipment used which will prevent battering or injury of posts. Posts damaged or distorted as a result of driving shall be removed and replaced with approved posts.

Posts to be set in areas of proposed hot mix asphalt surfacing shall be erected prior to laying the surrounding finished surface.

Posts set in areas of hot mix asphalt or cement concrete surfacing shall conform to the special post design shown on the plans.

601.62: Guardrail Panel
The rail shall be erected in a smooth continuous rail conforming to the required line and grade. All rail elements and splices shall be per the plans. The rail shall make full contact at each splice.
All bolts, except where otherwise required at expansion joints shall be drawn tight. Bolts through expansion joints shall be drawn up as tightly as possible without being too tight to prevent the rail elements from sliding past one another longitudinally.

Curved guardrail shall be used when the radius is 150 ft or less.

Guardrail delineators shall be installed at intervals as indicated on the plans. Retroreflective sheeting shall conform to the following colors:

a. White on the upstream face in the right shoulder.

b. Yellow on the upstream face in the left shoulder.

c. Red on the downstream (wrong-way travel direction) face within 1,000 ft upstream of a median break of a divided highway or interchange.

601.63: Guardrail End Treatment

Proprietary end treatment systems shall be installed in accordance with the manufacturers’ specifications and recommendations.

COMPENSATION

601.80: Method of Measurement

Guardrail and curved guardrail will be measured along the top edge of the rail element from the center of the first mid-span splice to the center of the last mid-span splice.

Transition to NCHRP 350 Guardrail will be measured as individual units 34 ft-4.5 in. in length, measured over two 12-ft-6-in. and one 9-ft-4.5-in. panels, as shown on the plans.

Transition to Rigid Barrier (Single Faced) will be measured as individual units 39 ft-10.75 in. in length, measured from the mid-span splice with the guardrail or end terminal to the end of the W beam terminal connector, as shown on the plans.

Transition to Rigid Barrier (Double Faced) will be measured as individual units 45 ft-7.75 in. in length, measured from the mid-span splice with the guardrail or end terminal to the end of the thrie beam terminal connector, as shown on the plans.

Transition to Bridge Rail will be measured as individual units 33 ft-9 in. in length, measured from the mid-span splice with the guardrail or end terminal to the end of the thrie beam terminal connector, as shown on the plans.

Transition to Thrie Beam, for connections between new guardrail and existing thrie beam guardrail, will be measured as individual units 6 ft-3 inches in length, measured from the W Beam post bolt slots to the thrie beam post bolt slots, as shown on the plans.

Trailing Anchorage will be measured as an individual unit 9 ft-4.5 in. in length, measured from the mid-span splice with the guardrail to the centerline of the short timber breakaway post, as shown on the plans.

Flared end treatments, tangent end treatments and guardrail end treatments will be measured as individual units, measured from the Begin Length of Need to the face of the impact head, as shown on the plans.
601.81: Basis of Payment

The construction of all guardrail items shall include the assembly and erection of all components, parts and materials complete at the intended locations.

Guardrail and curved guardrail will be paid for at the contract price per foot, complete in place, including posts, offset blocks, panels and connecting hardware.

Transition to NCHRP 350 Guardrail, Transition to Rigid Barrier (Single Faced), Transition to Rigid Barrier (Double Faced), Transition to Bridge Rail, and Transition to Thrie Beam Guardrail will be paid for at the contract unit price each, complete in place.

Trailing Anchorage will be paid for at the contract unit price each. Guardrail flared end treatments, tangent end treatments and guardrail terminal ends will be paid for at the contract unit price each, complete in place.

Guardrail delineators shall be considered incidental to the cost of the guardrail, guardrail end treatment or guardrail trailing anchorage.

The use of special post designs, where necessary or directed by the Engineer, shall be incidental to the work with no additional compensation.

Rock excavation, if necessary, will be paid for at the contract unit price per cubic foot under the item for Class B Rock Excavation.

601.82: Payment Items

620.12 Guardrail, TL-2 (Single Faced) .. Foot
620.13 Guardrail, TL-3 (Single Faced) .. Foot
620.32 Guardrail - Curved, TL-2 (Single Faced) ... Foot
620.33 Guardrail - Curved, TL-3 (Single Faced) ... Foot
621.12 Guardrail, TL-2 (Double Faced) ... Foot
621.13 Guardrail, TL-3 (Double Faced) ... Foot
621.32 Guardrail - Curved, TL-2 (Double Faced) ... Foot
621.33 Guardrail - Curved, TL-3 (Double Faced) ... Foot
627.1 Trailing Anchorage .. Each
627.72 Guardrail End Treatment, TL-2 (Double Faced) ... Each
627.73 Guardrail End Treatment, TL-3 (Double Faced) ... Each
627.82 Guardrail Tangent End Treatment, TL-2 .. Each
627.83 Guardrail Tangent End Treatment, TL-3 .. Each
627.92 Guardrail Flared End Treatment, TL-2 ... Each
627.93 Guardrail Flared End Treatment, TL-3 ... Each
628.21 Transition to NCHRP 350 Guardrail.. Each
628.22 Transition to Rigid Barrier (Single Faced) ... Each
628.23 Transition to Rigid Barrier (Double Faced) .. Each
628.24 Transition to Bridge Rail ... Each
628.25 Transition to Thrie Beam ... Each
SUBSECTION 628: PERMANENT IMPACT ATTENUATORS

DESCRIPTION

628.20: General

This item shall consist of furnishing and installing impact attenuators in close conformance with the specifications of the manufacturer, and in close conformance with the locations, lines, and grades shown on the plans and/or designated in the Special Provisions.

MATERIALS

628.40: General

All materials used in the foundation and anchorage of the impact attenuator shall meet the requirements specified in Division III, Materials.

The impact attenuator may be any impact attenuator which meets the requirements of NCHRP Report 350 and its subsequent revisions, and has been accepted by the Federal Highway Administration in the location intended. Impact attenuators which have not been accepted by the Federal Highway Administration, or which have been designated as approved for experimental use by the Federal Highway Administration shall be rejected by the Engineer. The manufacturer must provide evidence of the suitability and acceptance by the Federal Highway Administration of the impact attenuator.

The impact attenuator shall be designed to fit within reasonably close tolerance of the dimensions given in the plans or the Special Provisions for a given location. The manufacturer shall design the impact attenuator for the design speed given on the plans or other such speed designated in the Special Provisions. Copies of the design shall be given to the Engineer for inclusion in the contract record. A listing of the parts shall also be given to the Engineer for future maintenance operations.

The approach end shall be covered with a Type 3 Object Marker sheeting conforming to the requirements of Section 2C.65 of the MUTCD. The sheeting material shall meet the requirements of M9.30.0: Retroreflective Sheeting.

CONSTRUCTION METHODS

628.60: General

Excavation for attenuator foundations and anchorage shall be made to the required depth and to a width that will permit the installation and bracing of forms where necessary. All soft and unsuitable material shall be replaced with gravel borrow.

The impact attenuator shall be installed in accordance with the specifications and recommendations of the manufacturer. Copies of these specifications and recommendations shall be provided to the Engineer.
COMPENSATION

628.80: Method of Measurement
Impact attenuators will be measured as a single unit, each in place. There will be a separate bid item for each location.

628.81: Basis of Payment
Impact attenuators will be paid for at the contract unit price for each location, which includes full compensation for all labor, equipment, materials, foundation and anchorage, and all incidental work necessary to complete the work as specified.

Gravel Borrow required for any foundation and anchorage work will be paid for at the contract unit price under Item 151, Gravel Borrow.

628.82: Payment Items

628.31 Impact Attenuator for Shoulder, Incapable of Redirection Each
628.32 Impact Attenuator for Shoulder, Capable of Redirection Each
628.33 Impact Attenuator for Median, Incapable of Redirection............................ Each
628.34 Impact Attenuator for Median, Capable of Redirection Each

SUBSECTION 629: CONCRETE BARRIER

DESCRIPTION

629.20: General
This item shall consist of furnishing and placing Portland cement concrete barrier on an accepted prepared subgrade or sub-base in accordance with these specifications and in reasonable close conformity with the lines, grades and dimensions shown on the plans.

MATERIALS

629.40: General
Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

Cement Concrete .. M4.02.00
Steel Reinforcement .. M8.01.0
Epoxy Coated Reinforcing Bars .. M8.01.7
Preformed Joint Filler .. M9.14.0
Concrete Penetrant/Sealer ... M9.15.0
Demountable Reflectorized Delineators .. M9.30.7

629.60: General
Concrete barriers shall be either precast or cast-in-place and conform to M4.02.00: Cement Concrete.
The subgrade shall be properly shaped and compacted as specified in Subsection 170: Grading.

The barrier shall be cured according to the relevant requirements of 476.71: Curing and M4.02.14: Precast Units as herein amended. If the water method is utilized, the units shall be kept moist for a period of seven days.

Under no condition will the use of a curing compound be permitted.

629.61: Precast Barrier

The precast concrete barriers and transition pieces shall be in lengths of 10 ft and shall be subject to the approval of the Engineer for method of casting, handling and setting of the sections.

The reinforcing steel shall be in conformance with 901.62: Reinforcement and M8.01.7: Epoxy Coated Reinforcing Bars, as modified to conform to ASTM Designation A615, Grade 60.

The 1-in. plain dowel bars shall conform to ASTM A36 and shall be galvanized according to AASHTO M 111M/M 111.

The units shall be manufactured in a plant approved by the Engineer and subject to their inspection and control.

The forms shall be constructed of steel or other approved material and are to conform to the design shown on the plans; wood forms will not be allowed. Reuse of old, worn or misshapen forms will not be allowed.

The form release material is to be applied to the forms in an approved manner and of a type that will not reduce the adhesive and or penetrating qualities of the protective coating (Concrete Penetrant/Sealer) to the concrete.

The dowel bars shall be accurately set true to a plane at right angles to the plane of the end of the unit.

Lifting holes or devices shall be as indicated on Construction Standards so that no undue stresses are transmitted to the units.

The units shall be cast with the forms in a 180° inverted position and compacted with an approved vibrator. Air holes are to be filled immediately after form removal to the satisfaction of the Engineer.

629.62: Cast-in-Place Barrier

A. Conventionally Formed Barrier.

Forms shall be accurately set to the required line and grade, secured by a method not detrimental to the roadway pavement and maintained in a true position during concrete placement. Forms may be removed no sooner than 24 hours after placement of concrete.

B. Slipformed Barrier.

Concrete traffic barriers may be constructed by the use of slipform equipment provided that the finished barrier is true to the specified line and grade within a tolerance of ±¼ in. in 10 ft.
The barrier shall present a smooth, uniform appearance in its final position, and shall conform to the horizontal and vertical lines shown on the plans or as directed by the Engineer. Any unsatisfactory section of the barrier shall be removed and replaced at the Contractor's expense.

The concrete shall be vibrated and worked until adequately consolidated and free of honeycomb. The concrete shall be of such consistency after slipforming that it will maintain the shape of the barrier without support. Prior to the beginning of operations, the Contractor shall insure that a continuous supply of concrete is available to the slipform machine to minimize starting and stopping. The slump of concrete shall not exceed 1.5 in. unless directed otherwise by the Engineer.

The slipform machine shall be guided by vertical and horizontal sensors that ride along a wire line. A grade line gauge or pointer shall be attached to the machine in such a manner that a continual comparison can be made between the barrier being placed and the established grade line. The slipform machine shall not exceed the speed recommended by the manufacturer. In lieu of sensor controls, the slipform machine may be operated on rails or supports set at the required grade.

629.63: Concrete Median Barrier Cap

The work consists of constructing a 4-in.-thick cast-in-place cap between the single face median barriers as shown on the plans.

The cap shall be cast in place on a gravel foundation with the length of each section being 30 ft. A ½-in. premolded joint filler will be placed between these 30-ft sections. A ½-in. premolded joint filler will be placed around bridge pier columns and along the joints between the barrier and the cap where required.

629.64: Placement of Barriers

Precast concrete barrier units shall be placed on a previously compacted gravel foundation utilizing 24-in. by 8-in. by 24-in. concrete leveling blocks set flush with the top of the gravel to control setting of the unit to the proper grade.

The Contractor shall schedule their operation and sequence of installation of the barriers so that a minimum amount of closure pieces will be required.

Expansion and construction joints shall be as shown on the Construction Standards.

Any units showing cracks or other damages due to curing, transportation, installation or other acts of the Contractor shall be removed and replaced by the Contractor at no additional compensation.

629.65: Concrete Penetrant/Sealer

Concrete Penetrant/Sealer shall be applied to the exposed faces of the cement concrete barriers and concrete median barrier cap by the method described below and as directed by the Engineer.

The compound shall conform to the provisions of M9.15.0: Liquid Penetrant/Sealant and shall not be applied sooner than 28 days after the concrete has been poured and finished. The compound shall not be applied when the air temperature is below 50°F. unless otherwise directed; the compound is not to be heated.

All of the surfaces that are to be treated shall be dry and cleaned of all dust, dirt, form oil, and debris by sweeping, sand blasting or air blasting.
All joints that are to be filled with a joint sealer are to be shielded from contact with the concrete penetrant/sealer with tape or other suitable protective measures approved by the Engineer.

The compound is to be applied in accordance with the manufacturer's specifications.

629.66: Delineators

Delineators shall be installed in conformance with manufacturer's recommendations at beginnings and ends of each continuous run of barrier with intermediate placement at 80-ft intervals.

Two sided amber reflectors shall be mounted on top of double-faced median barriers.

Single faced barriers shall have side mounted installation with amber color delineating left edge, white color delineating right edge and red color backing on each.

Delineators shall be mounted at appropriate angles which provide maximum reflectorization.

COMPENSATION

629.80: Method of Measurement

Concrete Barrier - Single Faced will be measured by the foot along the face of the barrier at the gutter line.

Concrete Median Barrier - Double Faced will be measured by the foot along the center line of top of barrier.

Cast-in-place median barrier cap concrete will be measured by the cubic yard in place.

629.81: Basis of Payment

Concrete Barrier will be paid for at the contract unit price per foot which includes full compensation for all labor, equipment, materials including concrete penetrant/sealer, delineators, reinforcing steel, premolded filler, concrete leveling blocks and all incidental work necessary to complete the work as specified.

Cast-in-place Concrete Median Barrier Cap will be paid for at the contract unit bid price per cubic yard. This unit price shall include full compensation for all labor, tools, equipment, materials, including concrete penetrant/sealer, reinforcing steel and premolded joint filler and all incidental work necessary to complete the work as specified.

Gravel borrow for the foundation of the barriers and between the sections will be paid for under Item 151; Gravel Borrow.

629.82: Payment Items

- 629.1 Precast Concrete Barrier - Single Faced ... Foot
- 629.2 Precast Concrete Median Barrier - Double Faced... Foot
- 629.3 Cast-in-Place Concrete Barrier - Single Faced... Foot
- 629.4 Cast-in-Place Concrete Median Barrier - Double Faced............................... Foot
- 629.5 Cast-in-Place Median Barrier Cap ... Cubic Yard
SUBSECTION 630: MAINTENANCE OF HIGHWAY GUARD

DESCRIPTION

630.20: General
This work consists of removing present highway guard, replacing individual components (posts, offset blocks and panels) and resetting in accordance with the drawings for new guardrail, these specifications and in close conformity with established lines and grades, or stacking them as directed.

MATERIALS

630.40: General
The materials removed shall be utilized in the highway guard as reset except, where necessary, new posts and new offset blocks shall be furnished by the Contractor. Any posts removed and found unsuitable for use in resetting shall be replaced with new posts and paid for under the item of guardrail post. Any materials damaged or lost during or subsequent to removal shall be replaced by the Contractor without compensation.

All new materials required shall be equal in all respects to the materials in the present highway guard.

CONSTRUCTION METHODS

630.60: Removal
The present highway guard shall be carefully removed together with all fittings, anchors and appurtenances and stacked and preserved safe from damage or loss. Old post holes shall be backfilled with suitable material and satisfactorily compacted.

630.61: Erection
Before resetting, the portion of the posts below the ground surface shall be cleaned. The highway guard shall be reset plumb on the new location lines and to the grades required. Backfilling around the highway guard posts shall consist of suitable material satisfactorily compacted. If the highway guard posts were originally set in concrete they shall be reset in their new locations in concrete.

630.63: Stacking
The Contractor shall accept and hold the responsibility for the removal, handling, stacking at a location convenient for removal by owner and protection of all anchors, posts, cables, fittings, etc. until final removal by others as designated and in accordance with the following:

Any anchors, posts, cables, fittings, etc., lost or damaged through lack of protection or carelessness by the Contractor shall be replaced with satisfactory material in kind at their expense.

Materials stacked shall be stored in neat piles that will be convenient for removal by the owner. The Engineer will determine the size and location of the piles of stacked material.
The Contractor's responsibility will cease upon final acceptance of the work, or 60 days from the
time a certified notice (with copy to Engineer) is sent by Contractor to owner of material that all
material is available for removal.

COMPENSATION

630.80: Method of Measurement

Highway Guard Removed and Reset will be measured in its final position. Highway Guard Removed
and Stacked and Highway Guard Removed and Discarded will be measured in its original position.
Measurements shall be from center to center of end post to which the guard is attached, along the
top edge of rail element.

Individual guard rail posts, offset blocks and panels will be measured by the unit each.

Individual posts removed and reset and individual posts removed and stacked, shall be measured
by the unit each including all hardware.

630.81: Basis of Payment

Removing and resetting highway guard will be paid for at the contract unit price per foot of
Highway Guard Removed and Reset, complete in its final position, including posts, offset blocks,
panels and connecting hardware.

Individual posts, panels and offset blocks shall include all hardware and will be paid for at the
contract unit price each.

Guard panels shall include all hardware and will be paid for at the contract unit price each.

Individual posts removed and reset shall include all hardware and which shall be paid for at the
contract unit price each.

Realignment of existing posts shall be incidental to the work with no additional compensation.

Removing and resetting individual posts will be paid for at the contract unit price each for
Individual Posts Removed and Reset, complete in place.

Removing and stacking of highway guard will be paid for at the contract unit price per foot of
Highway Guard Removed and Stacked.

Removing and stacking individual posts will be paid for at the contract unit price each for
Individual Posts Removed and Stacked.

Rock excavation, if necessary, will be paid for at the contract unit price per cubic foot under the
item for Class B Rock Excavation.
630.82: Payment Items

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>630.</td>
<td>Highway Guard Removed and Reset</td>
<td>Foot</td>
</tr>
<tr>
<td>630.1</td>
<td>Highway Guard Removed and Stacked</td>
<td>Foot</td>
</tr>
<tr>
<td>630.2</td>
<td>Highway Guard Removed and Discarded</td>
<td>Foot</td>
</tr>
<tr>
<td>632.</td>
<td>Guardrail Post – Steel</td>
<td>Each</td>
</tr>
<tr>
<td>632.1</td>
<td>Guardrail Post – Wood</td>
<td>Each</td>
</tr>
<tr>
<td>632.2</td>
<td>Individual Post Removed and Reset</td>
<td>Each</td>
</tr>
<tr>
<td>632.3</td>
<td>Individual Post Removed and Stacked</td>
<td>Each</td>
</tr>
<tr>
<td>632.4</td>
<td>Individual Post Removed and Discard</td>
<td>Each</td>
</tr>
<tr>
<td>633.</td>
<td>Guardrail Offset Block – W Beam</td>
<td>Each</td>
</tr>
<tr>
<td>633.1</td>
<td>Guardrail Offset Block – Thrie Beam</td>
<td>Each</td>
</tr>
<tr>
<td>634.</td>
<td>W Beam Guard Panel</td>
<td>Each</td>
</tr>
<tr>
<td>634.1</td>
<td>Thrie Beam Guard Panel</td>
<td>Each</td>
</tr>
</tbody>
</table>

SUBSECTION 644: CHAIN LINK FENCES AND GATES

DESCRIPTION

644.20: General

This work shall consist of the construction of chain link fence and gates in accordance with these specifications, and in close conformity with the lines and grades shown on the plan or established by the Engineer.

MATERIALS

644.40: General

Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

- Chain Link Fences and Gates ... M8.09.0
- Bonded Vinyl Coated Chain Link Fences, Posts, Rails, Fabric, Gates and Accessories ... M8.09.1
- 4,000 psi, 1.5-inch, 565 Cement Concrete Bases .. M4.02.00
- Paint, High Zinc Dust Content - Galvanizing Repair .. M7.04.11

CONSTRUCTION METHODS

644.60: General

The posts shall be set true to the line and grade of the proposed fence.

End, Corner and Intermediate Brace Posts shall be set in concrete bases as shown in the Construction Standards.

The posts in masonry walls shall be set in pipe sleeves or sockets.
All line posts, except those which are unstable due to soil condition as described hereinafter, shall have drive anchor assemblies as shown in the Construction Standards.

Line Posts, which in the opinion of the Engineer are unstable due to soil condition, (such as in swamps or seasonal wet areas) shall be placed in a concrete base as shown in the Construction Standards.

Where solid rock is encountered without an overburden of soil, line posts shall be set a minimum depth of 8 in., and end, corner, gate and intermediate posts a minimum of 12 in. in the solid rock. The hole shall have a minimum width or diameter of 1 in. greater than the largest dimension of the post section to be set. The posts shall be cut, before installation to lengths which will give the required length of post above ground, or if the Contractor so elects they may use an even length of post above ground, or if the Contractor so elects they may use an even length of post set at greater depth into the solid rock.

After the post is set and plumbed the hole shall be filled with grout consisting of one part Portland cement and one part clean, well graded sand. The grout shall be thoroughly worked into the hole so as to leave no voids. Where posts are set in the above manner, concrete footings will not be required.

Where solid rock is covered by an overburden of soil or loose rock, the posts shall be set to the full depth shown on the standard drawing unless the penetration into solid rock reaches the minimum depths specified above, in which case the depth of penetration may be terminated. Concrete footings shall be constructed from the solid rock to the top of the ground as designated. Grouting will be required on the portion of the posts in solid rock.

Intermediate Brace Posts as used in these specifications, shall be spaced at 500-ft maximum intervals.

Gate, end, corner, and intermediate brace posts shall be braced as shown on the standard drawing. Changes in line of 30° or more shall be considered as corners.

644.61: Foundation Bases

Forms for placing concrete bases will not be required. Chamfer or bevel edges will not be required. Where chain link fences are used to enclose Engineers field office and material buildings, the posts shall be set in ground without concrete bases to facilitate ease in removal later.

644.62: Top Rail

Top rails shall pass through the ornamental tops of line posts, forming a continuous brace from end to end of each stretch of fence. Lengths of top rail shall be jointed by sleeve type couplings. Top rails shall be securely fastened to terminal posts by pressed steel fittings.

On curves with a radius of less than 500 ft the top rail shall be bent true to the curve.

644.63: Spring Tension Wire

One continuous length of spring tension wire shall be used between end, corner or intermediate brace posts. Sufficient tension shall be applied so that there is no visible sag. On completion of the
spring tension wire installation the wire shall be attached to the fence fabric with hog rings and to each line post with tie wire.

644.64: Fence Fabric

Chain link fabric over 5-ft fence shall be placed on the face of the post away from the highway, and for fence 5 ft or less, erect fabric on the face of the posts designated by the Engineer, except that on curves the fabric on all types of fence shall be placed on the face of the post which is on the outside of the curve.

The chain link fabric shall be placed approximately 2 in. above the ground and on a straight grade between posts.

The fabric shall be stretched taut and securely fastened to the posts. Stretching by motor vehicle will not be permitted. Fastening to end, gate, corner, and intermediate brace posts shall be with stretcher bars and fabric bands spaced at 1-ft intervals. The fabric shall be cut and each span attached independently at all intermediate brace and corner posts. Fastening to post, top rail, top tension cable or spring tension wire shall be with wire, metal bands, hog rings, or by other approved method.

Rolls of wire fabric shall be joined by weaving a single strand into the ends of the rolls to form a continuous mesh.

644.65: Gates

Chain link fabric shall be fastened to the end bars of the gate frame by stretcher bars and fabric bands, and to the top and bottom bars of the gate frames by tie wires in the same manner as specified for the chain link fence fabric; or by other standard methods if approved by the Engineer.

The height of the gate frame shall be approximately as follows:

<table>
<thead>
<tr>
<th>Fence Height</th>
<th>Gate Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 ft</td>
<td>5 ft-6 in.</td>
</tr>
<tr>
<td>5 ft</td>
<td>4 ft-6 in.</td>
</tr>
<tr>
<td>4 ft</td>
<td>3 ft-6 in.</td>
</tr>
<tr>
<td>3 ft</td>
<td>2 ft-6 in.</td>
</tr>
</tbody>
</table>

COMPENSATION

644.80: Method of Measurement

Chain link fence will be measured, approximately parallel to the ground by the foot of completed fence, exclusive of openings from outside of to outside of end posts.

Gates with gate posts will be measured between centers of the gate posts.
644.81: Basis of Payment

Chain Link Fence will be paid for at the contract unit price per foot, complete in place, except for rock excavation, which shall include all drive anchors, line posts, fabric, top rail, cable or wire, fasteners, clips and all material and equipment necessary to complete the work in a satisfactory manner. Allowance for rock excavation will be as specified under Class B Rock Excavation.

Gates with Gate Posts will be paid for at the contract unit price per foot of the height specified and the respective widths shown on the plans complete in place. Allowance for rock excavation will be made as specified under Class B Rock Excavation.

End post including brace will be paid for at the contract unit price each under item for Chain Link Fence End Post, complete in place. Corner and intermediate brace post will be paid for at the contract unit price each for Chain Link Fence Corner and Intermediate Brace Post, complete in place. The chain link fence fabric and posts shall be of the type used throughout the installation.

Concrete bases for line posts, if required, shall be paid for under Item 901.3, 4,000 psi, 1.5-in., 565 Cement Concrete for Post Foundation, which shall include the excavation, except rock excavation, which shall be paid under Class B Rock Excavation.

644.82: Payment Items

*644. ___ Inch Chain Link Fence (Spring Tension Wire) (Line Post Option) .. Foot

*644.1 ___ Inch Chain Link Fence (Spring Tension Wire) Vinyl Coated (Line Post Option) .. Foot

*645. ___ Inch Chain Link Fence (Pipe Top Rail) (Line Post Option) Foot

*645.1 ___ Inch Chain Link Fence (Pipe Top Rail) Vinyl Coated (Line Post Option) .. Foot

*647. ___ Inch Chain Link Fence (Pipe Top Rail) with Barbed Wire (Line Post Option) .. Foot

*649. ___ Inch Chain Link Fence (Spring Tension Wire) with Barbed Wire (Line Post Option) ... Foot

*650. ___ Inch Chain Link Gate with Gate Posts .. Foot

*651. ___ Inch Chain Link Gate with Gate Posts and Barbed Wire Foot

*652. ___ Inch Chain Link Fence End Post ... Each

*653. ___ Inch Chain Link Fence Corner or Intermediate Brace Post Each

*654. ___ Inch Chain Link Fence Fabric .. Foot

*Insert height of fence or gate at beginning of nomenclature description. The last digits of the item number will indicate this height when possible.

In the case of option items listed in the proposal, the Contractor shall inform the Engineer of their option prior to the installation of the material. Once the option is designated, all material for the work shall remain the same throughout the job.
SUBSECTION 660: METAL PIPE RAIL

DESCRIPTION

660.20: General

This work shall consist of the construction of metal pipe rail in accordance with these specifications and in close conformity with the lines and grades shown on the plan or established by the Engineer.

MATERIALS

660.40: General

Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

- Rails and Posts ... M8.10.0, Part A
- Fittings .. M8.10.0, Part B
- Lead Wood ... M8.10.0, Part C
- Bitumen... M8.10.0, Part D
- Paint (Primer Coat)
 - Zinc Dust-Zinc Oxide .. M7.04.07
- Paint (Finish Coat)
 - Enamel .. M7.03.02

CONSTRUCTION METHODS

660.60: Fabrication and Erection

All posts shall be set vertical. In setting the posts precautions shall be taken to insure proper alignment and leveling to prevent springing or bending the railing in erecting.

All railings shall be straightened as required before setting up. All horizontal pipes shall be provided with approved expansion couplings at intervals of not more than 50 ft.

Welding shall conform to the requirements of 960.61: Design, Fabrication and Erection.

After erection and welding all welds shall be cleaned and coated with a spot coat of M7.04.07 (TT-P-641G, Type 11 Primer Coating: Zinc Dust-Zinc Oxide).

The fabricator shall be on the Department's approved fabricator's list.

660.61: Painting

After erection and welding the completed rail shall be painted with 1 coat of M7.04.07 and a color coat of M7.03.02, Color No. 10075. Painting shall conform to 960.63: Painting.

COMPENSATION

660.80: Method of Measurement

The pipe rail will be measured in place and the quantity to be paid for will be the length as constructed outside to outside of end posts or top rail whichever is the greater.
660.81: Basis of Payment

The pipe rail will be paid for at the contract unit price per foot under the item for Metal Pipe Rail, complete in place.

660.82: Payment Items

660. Metal Pipe Rail.. Foot

SUBSECTION 665: FENCES AND GATES REMOVED AND RESET, AND REMOVED AND STACKED

DESCRIPTION

665.20: General

This work shall consist of removing present fences and gates and resetting or stacking them in accordance with these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

665.40: General

The materials removed shall be utilized in the fence and gates for resetting except, where necessary, new posts and bases shall be furnished by the Contractor. Any materials missing, damaged or lost during or subsequent to removal shall be replaced by the Contractor without additional compensation.

All new materials required shall be equal in quality and design to the materials in the present fence or gates.

CONSTRUCTION METHODS

665.60: Removal

The present fences and gates together with all appurtenances shall be carefully removed and satisfactorily stored and protected until required for resetting. Old post holes shall be backfilled with suitable material properly compacted.

665.61: Erection

Fences shall be reset plumb on the new line and grade as required and shall conform to the original fence or as the Engineer directs. Backfilling around the posts shall consist of suitable material satisfactorily compacted. If the fence posts were originally set in concrete bases they shall be reset in their new locations in concrete bases, conforming to M4.02.00: Cement Concrete for 4,000 psi, 1.5-inch, 565 Cement Concrete.

If repainting of fences which have been painted originally is required, such work shall be done as directed.
Gates shall be reset where and as directed. Painting, if required, shall be done as directed.

665.62: Stacking

The fencing, posts, braces and gates shall be carefully removed from their present locations, transported and stacked neatly on wooden planks at the locations directed on the project, to be available and convenient for final removal from the project by the owner.

The Contractor will be held responsible for the fencing, posts, braces and gates, and any damage to same prior to final removal from the project, but the Contractor's responsibility will cease upon final acceptance of the work, or 60 days from the time a certified notice (with copy to the Engineer) is sent by Contractor to owner of material that all material is available for removal.

COMPENSATION

665.80: Method of Measurement

Fence that is removed and reset will be measured in the final position from outside to outside of end posts.

Fence that is removed and stacked will be measured in its original position from outside to outside of end posts and the quantity to be paid for will be the length actually removed and stacked.

Fence not required to be reset or stacked will become the property of the Contractor and shall be removed from the project without additional compensation.

Gates with gate posts will be considered as a unit, each.

665.81: Basis of Payment

Fence that is removed and reset will be paid for at the contract unit price per foot, complete in the final position under the respective item.

Fence that is removed and stacked will be paid for at the contract unit price per foot.

Gates with gate posts removed and reset, or removed and stacked will be paid at the contract unit price each.

Allowance for rock, if not already paid for under previous rock excavation, shall be made in accordance with the provisions as stipulated under Class B Rock Excavation.

Concrete bases for line posts shall be paid for under Item 901.3, 4,000 psi, 1.5-inch, 565 Cement Concrete for Post Foundation, which shall include the excavation.
665.82: Payment Items

665. Chain Link Fence Removed and Stacked ... Foot
666. Chain Link Fence Removed and Reset ... Foot
667. Chain Link Fence Gate with Gate Posts Removed and Stacked Each
668. Chain Link Fence Gate with Gate Posts Removed and Reset Each
669. Fence Removed and Stacked .. Foot
670. Fence Removed and Reset .. Foot
671. Fence Gate and Gate Posts Removed and Stacked ... Each
672. Fence Gate and Gate Posts Removed and Reset .. Each

SUBSECTION 670: SEDIMENTATION FENCE

DESCRIPTION

670.20: General

This work shall consist of furnishing, installing, and removing sedimentation fence in accordance with these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

670.40: General

Materials shall meet the requirements specified in Division 3, Materials, M9.50.0: Geotextile Fabrics, for Temporary Silt Fence.

Fence post may be wood or metal. Wooden posts shall be at least 1.25 in. square by 5 ft long. Metal posts shall be at least 1 in. in each dimension, 5 ft long, and approved by the Engineer.

For each specific use, only commercially available fabric which is certified in writing by the manufacturer for the purpose intended shall be used. Torn or punctured fabrics shall not be used. The fabric shall be at least 3 ft wide.

The contractor shall submit a 15 yd² sample and a minimum 1 yd of top seam and cord shall be furnished for testing each type of fabric to be used, along with technical data sheets, for review and approval by the Engineer.

The Engineer reserves the right to reject any fabric which is deemed unsatisfactory for a specific use. The brand name shall be labeled on the fabric or the fabric container.

The contractor may use Department approved filter fabric, otherwise samples of proposed filter fabric shall be furnished 60 days prior to installation of the fabric.

Fabrics which are susceptible to damage from sunlight or heat shall be identified by suitable warning information on the packaging material and shall not be used in any installations where exposure to light will exceed 30 days.

The filter fabric shall have a cord (belt or rope) woven into the top edge of the roll to be used for attaching the fabric to the fence posts and providing support for the fabric.
CONSTRUCTION METHODS

670.60: General

Installation.
Install fence posts no further than 8 ft apart along the line of the proposed fence. The top of the posts shall extend at least 2 ft above the normal water level. Posts shall be driven into the soil to a sufficient depth to form a stable support for the filter fabric.

Attach the fabric to the posts on the upstream side. Attachment of the fabric to the posts can be made with prefabricated pockets in the fabric, staples or other suitable arrangements approved by the Engineer. The fabric shall extend 2 ft above the normal water level and at least 1 ft shall extend horizontally along the soil at the bottom. Excavate a 6-in. x 6-in. trench along the bottom upstream side of the fence, wrap the bottom of the fabric around the inside of the trench and then backfill the soil into the fabric pocket so as to anchor the fence fabric.

Soil shall then be placed over the horizontal bottom layer of fabric to a depth of 6 in..

Fabric may be spliced together along the vertical edge by overlapping the pieces by one post spacing or 6 ft whichever is greater and securing the layer together at intervals of 2 in.

Should the required height exceed the roll width, a second roll shall be used. The width shall be overlapped a minimum of 1 ft and the layers shall be secured together at not more than 2-ft intervals along the midpoint of the overlap.

Installation procedures may be varied to comply with manufacturer’s recommended procedures with the approval of the Engineer. The contractor may submit alternate installation procedures for approval by the Engineer.

Maintenance.
The installed fence shall be inspected at least daily by the contractor and restored as necessary to its approved, newly installed condition. Accumulations of debris and/or silt shall be removed and properly disposed of as necessary at no additional cost. In no case shall accumulations of more than 4 in. above the original ground line be permitted to remain. If a breach or other failure of the fence occurs, the fence shall be immediately restored. Any delay in maintaining the fence shall be cause to immediately suspend the work as provided for in Subsection 8.09: Delay and Suspension of Work.

Removal.
Following the completion of the work and stabilization of adjacent soil, the fence shall be completely removed from the site and the area restored to its original condition.

COMPENSATION

670.80: Method of Measurement

Sedimentation Fence approved by the Engineer shall be measured in place by the length along the top of the fence. Overlaps shall be measured as a single layer of cloth.
670.81: Basis of Payment

The work will be paid for at the contract unit price per foot of Sedimentation Fence complete in place and shall include all materials, labor, and equipment required to furnish, install, maintain, and remove the fence as herein described.

670.82: Payment Items

697. Sedimentation Fence ... Foot

SUBSECTION 685: STONE MASONRY WALL

DESCRIPTION

685.20: General

This work shall consist of the construction of stone masonry walls in accordance with these specifications, and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

685.40: General

Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

- Stone for Stone Masonry Wall .. M9.04.4
- Cement Concrete ... M4.02.00
- Mortar .. M4.02.15

CONSTRUCTION METHODS

685.60: Cement Concrete

Concrete for the footing and coping shall be placed in accordance with the requirements of Subsection 901: Cement Concrete.

685.61: Shaping Stones

Selected stone, roughly shaped to provide suitable exposed faces, shall be used at all angles and ends of walls.

All shaping of stone shall be done before the stone is laid in the wall. If a stone is loosened after the mortar has set, it shall be removed, the mortar cleaned off and the stone relaid in fresh mortar.

685.62: Headers

Headers shall occupy at least one quarter of the face area of the wall and shall be evenly distributed. Headers in walls 2 ft or less in thickness shall extend entirely through the wall.
685.63: Laying Stone

The masonry shall be laid and the face pattern shall be of uniform appearance throughout. The stones shall decrease in size from bottom to top of wall.

The stones shall be laid on horizontal beds parallel to the natural bed of the stone. Vertical joints shall be broken by at least 6 in. and no vertical joint shall be located directly above or below a header.

Each stone to be set in mortar shall be cleaned and thoroughly wetted before being set. They shall be set on full beds of mortar, and mortar joints shall be full and the stone settled in place before the mortar has set.

The wall shall be compactly laid having all interior joints completely filled with suitable stones or spalls thoroughly bedded in mortar.

685.64: Tree Wells

Where directed, dry stone masonry walls shall be constructed around the trunks of trees in order to support the embankment in conformity with the standard design shown on the plans and as directed.

COMPENSATION

685.80: Method of Measurement

Stone masonry wall will be measured by the number of cubic yards in the completed structure, including the mortar (if required), concrete footing and the coping material complete in place and accepted. The quantity measured for payment shall not exceed that shown on the plans or as directed by the Engineer.

685.81: Basis of Payment

Stone masonry will be paid for at the contract unit price per cubic yard under the item for Stone Masonry Wall in Cement Mortar or Stone Masonry Wall, Dry.

Excavation will be paid for at the contract unit prices per cubic yard under the item for Class A Trench Excavation or Class B Rock Excavation.

685.82: Payment Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>685</td>
<td>Stone Masonry Wall in Cement Mortar</td>
<td>Cubic Yard</td>
</tr>
<tr>
<td>685.1</td>
<td>Stone Masonry Wall, Dry</td>
<td>Cubic Yard</td>
</tr>
</tbody>
</table>
SUBSECTION 690: WALLS REMOVED AND REBUILT

DESCRIPTION

690.20: General
This work shall consist of the removing and rebuilding of present stone masonry and balance stone walls in accordance with these specifications, and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

690.40: General
The stone shall consist of those in the present wall and its foundation and such new stones as may be required.

Mortar shall meet the requirement of M4.02.15: Cement Mortar.

CONSTRUCTION METHODS

690.60: Stone Masonry Walls

A. Laying Stone in Mortar
All the stones from the present walls to be rebuilt, shall be removed and used to rebuild the new walls in addition to furnishing such new stones as may be necessary to provide rebuilt walls of uniform appearance and cross-sectional dimensions throughout their length.

The stones shall be laid so as to break joints and in full mortar beds. All vertical spaces shall be flushed with cement mortar and shall be packed full with spalls. No spalls shall be allowed in the beds – except if the bed requires more than 1 in. of mortar. At least 25% of the stones in the face shall be headers evenly distributed throughout the walls. Weep holes shall be constructed as directed.

B. Laying Stone Dry
The stone shall be laid so as to break joints and all vertical spaces shall be packed full with spalls. No spalls shall be allowed in the beds and at least 25% of the stones in the face shall be headers evenly distributed throughout the wall.

690.61: Balance Stone Walls

A trench for rebuilding the balance stone walls shall be excavated to a minimum depth of 12 in. as directed and to a width sufficient to place the largest bottom stones of the present wall.

All the stones from the present walls to be rebuilt, shall be removed and used to rebuild the new wall in addition to furnishing such new stones as may be necessary to provide rebuilt walls of uniform appearances and cross-sectional dimensions throughout their length. The open spaces about the base of the wall shall be filled with the materials excavated from the trench and all surplus excavation shall be used as directed on the slopes of the new embankment.
COMPENSATION

690.80: Method of Measurement

Stone Masonry Walls, Removed and Rebuilt as specified herein will be measured by the cubic yard and the pay quantity shall be only that quantity actually laid and approved.

Balance Stone Walls Removed and Rebuilt as specified herein will be measured in place and shall be the length of balance stone walls rebuilt.

690.81: Basis of Payment

Stone Masonry Walls, Removed and Rebuilt will be paid for at the contract unit price per cubic yard for the kind of wall removed and rebuilt, complete in place.

Balance Stone Walls, Removed and Rebuilt, will be paid for at the contract unit price per foot, complete in place.

Excavation at the new location will be paid for at the contract unit price per cubic yard under the item for Class A Trench Excavation or Class B Rock Excavation.

690.82: Payment Items

690. Stone Masonry Wall Removed and Rebuilt in Cement Mortar Cubic Yard
690.1 Stone Masonry Wall Removed and Rebuilt Dry Cubic Yard
691. Balance Stone Wall Removed and Rebuilt... Foot
SECTION 700: INCIDENTAL WORK

SUBSECTION 701: CEMENT CONCRETE SIDEWALKS, WHEELCHAIR RAMPS AND DRIVEWAYS

DESCRIPTION

701.20: General

This work shall consist of the construction of cement concrete sidewalks, wheelchair ramps, and driveways in accordance with the specifications and within the tolerances established on the plans.

MATERIALS

701.30: General

Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

- Gravel Borrow, Type b...M1.03.0
- Cement Concrete (4,000 psi, ¾-inch, 610) ...M4.02.00
- Preformed Expansion Joint Filler..M9.14.0

CONSTRUCTION METHODS

701.40: Preparation of Underlying Surface

A. Excavation.

Excavation of the area shall be in accordance with the applicable portions of Subsection 120: Excavation.

B. Subgrade and Subbase.

The subgrade for the sidewalks and driveways shall be shaped parallel to the proposed surface of the sidewalks and driveways and thoroughly compacted. All depressions in the subgrade shall be filled with suitable material and again compacted until the surface is smooth and hard. Prior to the placement of the subbase, the Contractor shall inspect the prepared subgrade to ensure that it is in conformance with the required grade and cross-section. Subgrade shall be fine graded to meet the applicable requirements of Subsection 170: Grading.

After the subgrade has been prepared, a gravel subbase shall be placed upon it. After being compacted thoroughly, the subbase shall be at least 8 inches thick and parallel to the proposed surface of the sidewalk. Prior to the placement of the cement concrete, the Contractor shall inspect the prepared subbase material to ensure that it is in conformance with the required grade and cross-section. Subbase material that is not in accordance with the plans or specifications shall be reworked or replaced to meet the applicable requirements of Subsection 170: Grading before the start of cement concrete placement. When placing cement concrete, the compacted subbase shall not be frozen or have standing water.
701.41: Cement Concrete Sidewalks, Wheelchair Ramps, and Driveways

A. Forms.

Side forms and transverse forms shall be smooth, free from warp, of sufficient strength to resist springing out of shape, of a depth to conform to the thickness of the proposed sidewalk or wheelchair ramp and of a type satisfactory to the Engineer.

All mortar or dirt shall be completely removed from forms that have been previously used. The forms shall be well staked and thoroughly graded and set to the established lines with their upper edge conforming to the grade of the finished sidewalk or wheelchair ramp which shall have sufficient pitch to the roadside edge to provide for surface drainage.

All wheelchair ramp joints and transition sections which define grade changes shall be formed staked and checked for dimension, grade and slope conformance prior to placing cement concrete.

All forms shall be oiled before placing concrete.

B. Placing and Finishing Cement Concrete.

The concrete shall be placed in alternate slabs 30 ft long except as otherwise ordered. The slabs shall be separated by transverse preformed expansion joint filler ½ in. thick.

Preformed expansion joint filler shall be placed adjacent to or around existing structures as directed.

Detectable warning panels conforming to the plans shall be securely incorporated into the work by means acceptable to the Engineer.

On the foundation as specified above, the concrete shall be placed in such quantity that after being thoroughly consolidated in place it shall be 4 in. deep. At driveways, the sidewalks shall be 6 in. deep. No finishing operation shall be performed while free water is present. Finishing operations shall be delayed until all bleed water and water sheen has left the surface and the concrete has started to stiffen. After water sheen has disappeared, edging operations, where required, shall be completed. After edging and joining operations, the surface shall be floated. Immediately following floating, the surface shall be steel-troweled. If necessary tooled joints and edges shall be rerun before and after troweling to maintain uniformity. After troweling, the surface shall be brushed by drawing a soft-bristled push broom with a long handle over the surface of the concrete to produce a nonslip surface.

In conveying the concrete from the place of mixing to the place of deposit, the operation shall be conducted in such a manner that no mortar will be lost, and the concrete shall be so handled that the concrete will be of uniform composition throughout, showing neither excess nor lack of mortar in any one place.

The surface of all concrete sidewalks shall be uniformly scored into block units of areas not more than 36 ft². The depth of the scoring shall be at least ½ in. deep and no more than ½ in. wide.

The application of neat cement to surfaces in order to hasten hardening is prohibited.

The finishing of concrete surface shall be done by experienced and competent cement finishers.
When completed the sidewalks shall be kept moist and protected from traffic and weather for at least 3 days in accordance with the applicable provisions of 476.71: Curing and 476.74: Protection of Pavement.

CONTRACTOR QUALITY CONTROL

701.60: General

The Contractor shall provide QC adequate to ensure that all materials and workmanship conform with the specification requirements. The Contractor shall perform QC activities as outlined further below.

701.61: Contractor Quality Control Plan

The Contractor shall provide and maintain a Quality Control Plan (QC Plan). The QC Plan should sufficiently document the QC processes of all Contractor parties (i.e. Prime Contractor, Subcontractors, Producers) performing work required under this specification.

701.62: Sidewalk, Wheelchair Ramp, and Driveway Materials and Workmanship

The Contractor shall verify that they are using the correct materials as specified under Subsection 701.30. All material shall exhibit satisfactory workmanship including; subgrade and subbase preparation and concrete placement and finishing as specified under 701.41: Cement Concrete Sidewalks, Wheelchair Ramps, and Driveways.

DEPARTMENT ACCEPTANCE

701.70: General

The Department shall verify that the Contractor is correctly performing the work and QC activities.

701.71: Sidewalk, Wheelchair Ramp, and Driveway Materials and Workmanship

The Engineer will perform Acceptance inspection and testing to verify that the workmanship and materials conform with 701.61: Contractor Quality Control Plan.

COMPENSATION

701.80: Method of Measurement

Cement Concrete Sidewalks, Wheelchair Ramps, and Driveways will be measured in square yards. Excavation will be measured by the cubic yard as specified in 120.80: Method of Measurement. Gravel Borrow will be measured by the cubic yard as specified in 150.80: Method of Measurement. Fine grading and compacting will be measured by the square yard as specified in 170.80 Method of Measurement.

701.81: Basis of Payment

Cement Concrete Sidewalk, Cement Concrete Wheelchair Ramp, and Cement Concrete Driveway will be paid for at the contract unit price per square yard complete in place and shall include detectable warning panels.
Gravel will be paid for at the contract unit price per cubic yard under Item 151. Gravel Borrow.

Fine grading and compacting will be paid for at the contract unit price per square yard under Item 170., Fine Grading and Compacting – Subgrade Areas.

Excavation will be paid for at the contract unit price per cubic yard under the excavation items.

701.82: Payment Items

701. Cement Concrete Sidewalk .. Square Yard
701.1 Cement Concrete Sidewalk Driveways ... Square Yard
701.2 Cement Concrete Wheelchair Ramp ... Square Yard

SUBSECTION 702: HOT MIX ASPHALT SIDEWALKS AND DRIVEWAYS

DESCRIPTION

702.20: General

This work shall consist of the construction of sidewalks and driveways. Sidewalks and driveways shall be constructed of HMA. Construction shall be in accordance with the specifications and within the tolerances established on the plans.

MATERIALS

702.30: General

Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

- Gravel Borrow, Type b.. M1.03.0
- Asphalt Release Agents .. M3.01.6
- HMA for Driveways, Sidewalks, Berm, and Curb... M3.11.6
- Hot Mix Asphalt Production Facility.. M3.12.0
- Contractor Quality Control Laboratory ... M3.13.1
- Department Acceptance Laboratory .. M3.13.2

CONSTRUCTION METHODS

702.40: General

Prior to the start of any work activity addressed in 702.40: General through 702.42: Construction of Hot Mix Asphalt Sidewalks and Driveways below, a Construction Quality Meeting shall be held to review the Contractor’s Quality Control system. The Contractor shall present and discuss with the Engineer in sufficient detail the specific QC information and activities required under this specification. The meeting is intended to ensure that the Contractor has an adequate QC system in place and that the Contractor’s personnel are fully knowledgeable of the roles and activities for which they are responsible to achieve the specified level of quality. Contractor personnel required to attend the Construction Quality Meeting include the Construction QC Manager and all Superintendents.
702.41: Preparation of Underlying Surface

Walks and driveways shall be placed only upon properly prepared surfaces that are clean from foreign materials. The underlying surface shall be prepared in accordance with the requirements below, prior to the placement of sidewalk and driveway mixtures.

A. Excavation.

Excavation of the area shall be in accordance with the applicable portions of Subsection 120: Excavation.

B. Subgrade and Subbase.

The subgrade for the sidewalks and driveways shall be shaped parallel to the proposed surface of the sidewalks and driveways and thoroughly compacted. All depressions in the subgrade shall be filled with suitable material and again compacted until the surface is smooth and hard. Prior to the placement of the subbase, the Contractor shall inspect the prepared subgrade to ensure that it is in conformance with the required grade and cross-section. Subgrade shall be fine graded to meet the applicable requirements of Subsection 170: Grading.

After the subgrade has been prepared, a gravel subbase shall be placed upon it. After being compacted thoroughly, the subbase shall be at least 8 in. thick and parallel to the proposed surface of the sidewalk. Prior to the placement of the HMA mixtures, the Contractor shall inspect the prepared subbase material to ensure that it is in conformance with the required grade and cross-section. Subbase material that is not in accordance with the plans or specifications shall be reworked or replaced to meet the applicable requirements of Subsection 170: Grading before the start of HMA placement. When placing HMA, the compacted subbase shall not be frozen or have standing water.

702.42: Construction of Hot Mix Asphalt Sidewalks and Driveways

A. Forms.

Where walls, curbing, or other suitable permanent supports are not present or where an approved mechanical spreader is not used, satisfactory forms shall be installed to assist in securing proper alignment and adequate compaction of the base and surface courses.

B. Zero Tolerance for Use of Petroleum Products as Release Agents.

The production, loading, transport, and placement of HMA sidewalks and driveways shall follow the zero-tolerance policy for the use of petroleum products as a release or cleaning agent specified under 450.44: Zero Tolerance for Use of Petroleum Products as Release Agents.

C. Hot Mix Asphalt Production.

HMA production shall conform to the requirements of 702.30: General.

D. Hot Mix Asphalt Transportation and Delivery.

HMA transportation and delivery shall conform to the requirements of 450.46: Hot Mix Asphalt Transportation and Delivery.
E. **Hot Mix Asphalt Placement.**

The HMA sidewalks shall be paved in two lifts to achieve a final pavement thickness of 3 in. after compaction. The HMA driveways shall be paved in two lifts to achieve a final pavement thickness of 4 in. after compaction. The pavement structure shall meet the following requirements:

(a) The mixtures type shall be in accordance with 702.30: General.

(b) For sidewalks, the compacted lift thickness for intermediate course shall be 1.75 in. and the surface course shall be 1.25 in.

(c) For driveways, the compacted lift thickness for intermediate course shall be 2.5 in. and the surface course shall be 1.5 in.

(d) The intermediate course shall be a driveway and sidewalk recipe mix or 12.5 mm Superpave Surface Course. In areas of high traffic, the driveway intermediate course shall be 12.5 mm Superpave Surface Course.

(e) The surface course shall be a driveway and sidewalk recipe mix or 9.5 mm Superpave Surface Course. In areas of high traffic, the driveway surface course shall be 12.5 mm Superpave Surface Course.

(f) The mixture type and placement method shall be determined by the Contractor and approved by the Engineer prior to commencing the work.

A pedestrian path of travel must be maintained across the driveway opening. The dimensions, cross slope, grades, and tolerances of the pedestrian path shall be in conformance with the standard construction drawings.

The surface of the sidewalk or driveway shall have a cross-slope to the roadside edge to provide for surface drainage. The cross-slope shall be 1.5% ± 0.5%.

HMA shall be placed in a manner which limits segregation and allows for adequate compaction. The mixture shall be spread with a mechanical paver. In areas not accessible to a paver, the mixture shall be deposited in wheelbarrows or on approved steel dump sheets outside the areas on which it is to be placed. It shall then be immediately distributed into place with shovels and raked into a uniformly loose layer to the full width required and of such depth that, when compacted, it shall conform to the grade and slope required.

F. **Hot Mix Asphalt Compaction.**

Equipment used for compaction of HMA sidewalks and driveways may include smooth drum steel wheeled rollers, vibratory rollers, or oscillation rollers as determined appropriate by the Contractor for the particular mixture type being placed. The type and size of rollers used shall meet the requirements below.

(1) **Compaction of Sidewalks.**

The HMA mixture shall be compacted with a self-propelled roller with a weight not less than 1.5 tons and not more than 5 tons. In places inaccessible to a power roller, compaction shall be obtained by means of mechanical plate compactor or by hand tampers with a mass not less than 50 lb and having a tamping face not exceeding 100 in.².
(2) Compaction of Driveways

The surface shall be compacted with a self-propelled roller with a mass not less than 3 tons and not more than 5 tons.

CONTRACTOR QUALITY CONTROL

702.60: General

The Contractor shall provide a Quality Control System (QC System) adequate to ensure that all materials and workmanship conform with the specification requirements. The Contractor shall provide qualified QC personnel and QC laboratory facilities and perform Quality Control inspection, sampling, testing, corrective action (when necessary), and documentation as outlined further below.

702.61: Contractor Quality Control Plan

The Contractor shall provide and maintain a Quality Control Plan (QC Plan). The QC Plan should sufficiently document the QC processes of all Contractor parties (i.e. Prime Contractor, Subcontractors, Producers) performing work required under this specification. QC activities related to the sidewalk and driveway operations shall be addressed in the Contractor’s QC Plan for HMA Pavement in accordance with 450.61: Contractor Quality Control Plan.

702.62: Quality Control Personnel Requirements

The Contractor’s Quality Control organization shall, at a minimum, consist of the personnel outlined under 450.62: Quality Control Personnel Requirements.

702.63: Quality Control Laboratory Facility Requirements

All Contractor QC testing shall be performed in laboratories qualified through the NETTCP LQP or accredited through the AAP. The QC laboratory shall conform to 702.30: General.

702.64: Quality Control Inspection

The Contractor shall perform Quality Control inspection of all work items addressed under this specification. Inspection activities during production and placement may be performed by qualified Production personnel (e.g. Skilled Laborers, Foremen, and Superintendents) or the Contractor's QC personnel. The Contractor shall not rely on the results of Department’s Acceptance inspection for QC purposes. The Engineer shall be provided the opportunity to monitor and witness all QC inspection.

QC inspection activities must address the following four primary components:

- Equipment
- Materials
- Environmental Conditions
- Workmanship
The minimum frequency of QC inspection activity shall be in accordance with the requirements below and as outlined in the approved QC Plan. The quality of each sidewalk and driveway will be inspected and evaluated on the basis of Lots and Sublots. A Lot is defined as an isolated quantity of work which is assumed to be produced by the same controlled process. A Lot shall constitute no greater than the entire sidewalk or driveway surface area on the project completed within the same construction season using the same paving process.

The surface of each sidewalk and driveway shall be divided into longitudinal Sublots of 500 ft. The Contractor shall perform a minimum of one random QC measurement within each Sublot. Additional selective QC measurements within each Sublot will be performed as deemed necessary by the QC personnel. All QC inspection results shall be recorded.

Table 702.64-1: Minimum QC Inspection at HMA Sidewalks and Driveways

<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Inspection Attribute</th>
<th>Minimum Inspection Frequency</th>
<th>Point of Inspection</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>As specified in QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
<td>Per QC Plan</td>
</tr>
<tr>
<td>Materials</td>
<td>HMA Mixture (Correct Type)</td>
<td>Per QC Plan</td>
<td>From Haul Vehicle</td>
<td>Visual Check & Delivery Ticket</td>
</tr>
<tr>
<td></td>
<td>Temperature of HMA Mixture</td>
<td>4 per Day (See Note 1)</td>
<td>From Haul Vehicle at On Site</td>
<td></td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td>Underlying Surface (Soundness)</td>
<td>Per QC Plan</td>
<td>Underlying Surface</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Underlying Surface (Free of Standing Moisture)</td>
<td>Per QC Plan</td>
<td>Underlying Surface</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Temperature of Air & Underlying Surface</td>
<td>1 per Day (See Note 2)</td>
<td>On Site</td>
<td>Check Measurement</td>
</tr>
<tr>
<td>Workmanship</td>
<td>HMA Lift Thickness</td>
<td>Per QC Plan</td>
<td>HMA Lift</td>
<td>Check Measurement</td>
</tr>
<tr>
<td></td>
<td>Physical Segregation</td>
<td>Per QC Plan</td>
<td>HMA Surface</td>
<td>Visual Check</td>
</tr>
<tr>
<td></td>
<td>Cross-Slope & Profile</td>
<td>Per QC Plan</td>
<td>Compacted HMA</td>
<td>Check Measurement</td>
</tr>
<tr>
<td></td>
<td>Surface Deviations (See Note 3)</td>
<td>Once per 50 ft</td>
<td>At Finished Surface</td>
<td>10-ft standard straigntedge</td>
</tr>
<tr>
<td></td>
<td>Joint Deviations (See Note 4)</td>
<td>Once per 50 ft</td>
<td>At Joints</td>
<td>10-ft standard straigntedge</td>
</tr>
</tbody>
</table>

Note 1: The initial temperature measurement will be taken from the first haul vehicle.
Note 2: At a minimum, the temperature measurements of the air and underlying surface shall be obtained prior to starting the HMA placement.
Note 3: When measured with a 10-ft straightedge the deviation shall be less than ¼ in.
Note 4: When measured with a 10-ft straightedge the deviation shall be less than ⅛ in.
Surface Deviation
When inspected with a 10-ft straightedge placed parallel to the center line of the pavement, the variation from the edge of the 10-ft straightedge to the top of the sidewalk or driveway surface between any two contact points shall not exceed ¼ in. The Contractor shall correct any location not meeting this requirement. The corrective method(s) proposed by the Contractor shall be subject to the approval of the Engineer and shall be performed at the Contractor’s expense.

702.65: Quality Control Sampling and Testing
The Contractor’s QC personnel will perform QC sampling and testing at both the production facility and at the site of field placement to ensure that the production and placement processes are providing work conforming to the contract requirements. The Engineer will not sample or test for Quality Control or assist in controlling the Contractor’s operations. The Contractor shall furnish approved containers for all material samples. The Engineer shall be provided the opportunity to monitor and witness all QC sampling and testing.

A. Random Sampling.

The Contractor’s QC System shall utilize stratified random sampling of each Lot produced and placed to assure that all material within the Lot has an equal probability of being selected for testing. The Contractor’s qualified QC personnel shall obtain random QC samples at the minimum frequencies specified in Table 702.65-1. In all cases, application of the specified QC sampling frequencies shall result in a minimum of one random sample per Sublot.

Random sample locations shall be determined using the random number tables and procedures contained in ASTM D3665 or an electronic random number generator, as presented by the NETTCP. The determination of all random sample locations shall be documented on NETTCP Standard Test Report Form D3665RNG. The Contractor will provide the Engineer with the random QC sampling locations selected and documented for each Sublot prior to production and placement of the relevant Sublots.

B. Selective Sampling.

The Contractor’s QC System may also utilize selective sampling (i.e. non-random samples), as needed, to provide supplemental information to assist in maintaining all production and placement processes in control. The Contractor’s qualified QC personnel shall obtain selective QC samples from any Sublot as determined necessary and in accordance with the guidelines established in the approved QC Plan. Selective QC samples shall not be used as a basis to dispute the Engineer’s Acceptance test results.

C. QC Sample Identification System.

The Contractor shall establish a reliable system for the identification of all QC samples obtained. All HMA loose mixture samples and core samples shall be correctly labeled with the following minimum information:

(a) Contract No.
(b) Date of Sample.
(c) Bid Item Number
(d) Mixture Type
(e) Mixture ID Number
(f) Lot & Sublot No.
(g) Sample No.
(h) Sample Type (i.e. Random or Selective).
(i) Sample Location (e.g. Station & Offset).

The Contractor’s system and procedures for identification of QC samples shall be outlined in the approved QC Plan.

D. Retention of Split Samples.

The Contractor's qualified QC personnel shall obtain all material samples (HMA loose mix samples) for QC testing. The Contractor will retain split samples from each HMA loose mix sample. If requested, these split samples will be provided to the Engineer. All split samples shall be properly labeled and stored for a period of 30 days, or until tested. The retained split samples may be discarded prior to the required 30 days when agreed upon by the Contractor and the Engineer.

E. Quality Control Testing of Prepared Underlying Surface.

The Contractor’s QC personnel will perform QC testing during preparation of the underlying surface. All QC testing shall be in accordance with the current AASHTO, ASTM, NETTCP, or Department procedures specified in Subsection 170: Grading. The Engineer shall be provided the opportunity to monitor and witness all QC testing.

F. Hot Mix Asphalt Testing.

The Contractor’s QC personnel will perform Quality Control testing at the HMA production facility to ensure that the production processes are providing work conforming to the contract requirements. The Engineer shall be provided the opportunity to monitor and witness all QC testing of HMA. All QC testing of HMA Lots shall be in accordance with the current AASHTO, ASTM, NETTCP, or Department test methods specified in Table 702.65-1.
Table 702.65-1: Minimum Quality Control Sampling & Testing of HMA Sidewalks and Driveways Lots

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method(s)</th>
<th>Sublot Size</th>
<th>Minimum Test Frequency</th>
<th>Point of Sampling</th>
<th>Sampling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG Asphalt Binder Content</td>
<td>AASHTO T 308</td>
<td>1,200 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>Combined Aggregate Gradation (See Note 2)</td>
<td>AASHTO T 30</td>
<td>1,200 tons</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Haul Vehicle at Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>In-place HMA Mat Density (Density Gauge)</td>
<td>AASHTO T 343 or T 355</td>
<td>Each Driveway</td>
<td>1 per Sublot (See Note 1)</td>
<td>From Compacted HMA Course</td>
<td>Selective & Random AASHTO T 343 or T 355</td>
</tr>
</tbody>
</table>

Note 1: In the event that the total daily HMA production is less than one Sublot, a minimum of one random QC sample shall be obtained for the day’s production.

Note 2: The combined aggregated gradation shall conform to the requirements of 450.65: Quality Control Sampling and Testing Requirements, Part F(4).

702.66: Quality Control Documentation and Data Evaluation

A. QC Inspection Documentation & Evaluation.

The Contractor shall document all QC inspection activities for each HMA Lot produced and placed. All inspection results shall be recorded within 24 hours of inspection on current NETTCP standard IRFs. The QC Manager shall evaluate inspection results in a timely manner to confirm that production and placement processes are in control. The Contractor shall submit hard copies of all IRFs to the Engineer at the completion of each Lot.

B. QC Sampling and Testing Documentation & Data Analysis.

The Contractor shall document all QC sampling and testing data for each HMA Lot produced and placed. All sampling and testing data shall be recorded within 24 hours of sampling and testing on current NETTCP standard TRFs. The QC Manager shall evaluate sampling and testing results in a timely manner, as further outlined below, to confirm that production and placement processes are in control. The Contractor shall submit hard copies of all TRFs to the Engineer at the completion of each Lot.

C. Evaluation of Individual Sublot QC Test Results.

The Contractor shall evaluate the individual QC test results for each HMA Lot produced and placed. Each random QC test result shall be evaluated against the applicable Quality Limits within 24 hours of testing. Each Sublot test value shall be within the applicable Engineering Limits specified in Table 702.76-1.

If the evaluation of the QC testing data indicates that an individual Sublot is not in conformance with the applicable Engineering Limits, the Contractor shall follow the requirements of 702.67: Corrective Action.
702.67: Corrective Action

As part of the Contractor’s QC System, the Contractor shall implement corrective action for any part of a Lot that is determined by inspection or testing to not be in conformance with the quality requirements specified in this specification. If the results of QC inspection identify nonconforming material or workmanship within one or more Sublots, or if the evaluation of the QC testing data indicates that any Sublot is not in conformance with the applicable Quality Limits, the Contractor shall isolate the Sublot(s) and perform additional inspection or testing to further assess the quality of the Sublot. Selective inspection or testing should be used to determine the limits of non-conformance. If a Sublot test result is outside of the Engineering Limits, the QC Manager and the Engineer will further assess the Sublot quality to determine whether the material in the Sublot can remain in place in accordance with 702.76: Lot Acceptance Determination Based on Testing Data, Part (2).

Based on the results of additional inspection or testing, the Contractor shall prepare a plan of corrective action for the nonconforming Sublot(s). The corrective action plan shall be submitted to and approved by the Engineer prior to initiating corrective action. All corrective action shall be performed at the Contractor’s expense.

702.68: Quality Control Records System

The Contractor’s Quality Control Records System shall conform to applicable requirements of 450.68: Quality Control Records System.

DEPARTMENT ACCEPTANCE

702.70: General

The Engineer is responsible for performing all Acceptance activities and making the final Acceptance determination for each Lot produced and placed. The Engineer’s Acceptance System will include monitoring the Contractor’s QC activity and performing Acceptance inspection, sampling, and testing in order to determine the Quality and corresponding payment for each Lot. These activities will be performed for each HMA Lot as outlined further below.

702.71: Acceptance System Approach

For all Lots, the Engineer’s Acceptance determination will be based on the Engineer’s Acceptance inspection information and Acceptance testing data. The Engineer will perform Acceptance sampling and testing on a minimum of 50% of the Sublots produced and placed.

702.72: Engineer Monitoring of Contractor Quality Control

The Engineer will monitor the Contractor’s QC System to confirm that QC activities are being performed for each Lot in compliance with this specification and the approved QC Plan. The Engineer will not perform the QC responsibilities of the Contractor or provide constant direction to the Contractor on how to perform Quality Control. The Engineer’s monitoring of QC activity will include the following:

- Periodic visual observation of QC inspection, sampling, and testing.
- Reviewing QC documentation and records.
- Providing feedback based on monitoring findings.
When deficiencies in the Contractor’s QC System are identified and documented by the Engineer, the Contractor shall take immediate action to address the deficiencies and coordinate appropriate corrective actions with the Engineer. If the material in an HMA Lot where deficiencies in the Contractor’s QC System were identified is removed and replaced, and the replacement HMA complies with the Specification requirements, no further action will be required. If the Contractor fails to acknowledge the deficiency and take appropriate action, the Contractor shall suspend production and placement of the corresponding Lot(s). Failure by the Contractor to comply with the Quality Control requirements in either this specification or the approved QC Plan may result in the withholding of payment.

702.73: Acceptance Inspection

The Engineer will perform Acceptance inspection of all work items addressed under Subsection 702: Hot Mix Asphalt Sidewalks and Driveways to ensure that all materials and completed work are in conformance with the contract requirements. Acceptance inspection is intended to visually assess the quality of each HMA Lot produced and placed and will address only the inspection components of Materials and Workmanship in support of the Department’s final acceptance determination.

All Acceptance inspection activity by the Department will be performed independent of the Contractor’s QC inspection. The Engineer will document the results and findings of Acceptance inspection.

<table>
<thead>
<tr>
<th>Inspection Component</th>
<th>Inspection Attribute</th>
<th>Minimum Inspection Frequency</th>
<th>Point of Inspection</th>
<th>Inspection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>HMA Mixture (Correct Type)</td>
<td>1 per Day On Site</td>
<td>Visual Check & Delivery Ticket</td>
<td></td>
</tr>
<tr>
<td>Workmanship</td>
<td>Physical Segregation</td>
<td>50% of Sublots</td>
<td>Compacted HMA</td>
<td>Visual Check</td>
</tr>
<tr>
<td>Cross-Slope</td>
<td>50% of Sublots</td>
<td>Finished HMA Surface</td>
<td>Check Measurement</td>
<td></td>
</tr>
<tr>
<td>Surface Deviation</td>
<td>50% of Sublots</td>
<td>Finished HMA Surface</td>
<td>10-ft standard straightedge</td>
<td></td>
</tr>
</tbody>
</table>

Surface Deviation.

The Engineer will inspect the pavement for Surface Deviations using a 10-ft standard straightedge in accordance with the procedures outlined in 702.64: Quality Control Inspection.

702.74: Acceptance Sampling & Testing

A. Random Sampling.

The Engineer will utilize stratified random sampling in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part A. The Engineer will obtain all random Acceptance samples independent of the Contractor’s QC samples at the frequencies outlined below. The
Engineer will obtain Acceptance samples from a minimum of 50% of all Sublots for the applicable Quality Characteristics specified in Table 702.74-1.

B. Selective Sampling.

The Engineer will utilize selective sampling (i.e. non-random samples) in accordance with 450.65: Quality Control Sampling and Testing Requirements, Part B.

C. Acceptance Sample Identification System.

The Engineer will use a standard system for the identification of all Acceptance samples. All HMA samples will be labeled by the Engineer with the minimum information indicated under 702.65: Quality Control Sampling and Testing, Part C.

D. Retention of Split Samples.

The Engineer's personnel will obtain all material samples for Acceptance testing. The Engineer will retain Acceptance split samples from each HMA loose mix sample in accordance with 702.65: Quality Control Sampling and Testing, Part D.

E. Hot Mix Asphalt Testing.

The Engineer will perform Acceptance testing using random samples obtained in accordance with 702.74: Acceptance Sampling & Testing, Part A from the HMA production facility. The specific Quality Characteristics subject to the Engineer's Acceptance testing are identified in Table 702.74-1. All Acceptance testing of HMA Lots will be performed by the Engineer in accordance with the AASHTO, ASTM, NETTCP, or Department test methods specified in Table 702.74-1. Testing performed on samples obtained from the HMA production facility shall be performed by a NETTCP certified HMA Plant Technician.

Table 702.74-1: Engineer’s Acceptance Sampling and Testing of HMA Sidewalks and Driveways Lots

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test Method(s)</th>
<th>Sublot Size</th>
<th>Minimum Test Frequency</th>
<th>Point of Sampling</th>
<th>Sampling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG Asphalt Binder Content</td>
<td>AASHTO T 308</td>
<td>1,200 tons</td>
<td>50% of Sublots</td>
<td>From Haul Vehicle at HMA Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>Combined Aggregate Gradation (See Note 1)</td>
<td>AASHTO T 30</td>
<td>1,200 tons</td>
<td>50% of Sublots</td>
<td>From Haul Vehicle at HMA Plant</td>
<td>Random AASHTO R 97 and R 47</td>
</tr>
<tr>
<td>In-place HMA Mat Density (Density Gauge)</td>
<td>AASHTO T 343 or T 355</td>
<td>Each Driveway</td>
<td>50% of Sublots</td>
<td>From Compacted HMA Course</td>
<td>Selective & Random AASHTO T 343 or T 355</td>
</tr>
</tbody>
</table>

Note 1: The combined aggregated gradation shall conform to the requirements of 450.65: Quality Control Sampling and Testing Requirements, Part F(4).
702.75: Lot Acceptance Determination Based on Inspection Results

The Engineer’s Acceptance inspection results will be used in the final Acceptance determination for all Lots. Prior to final Acceptance of each Lot produced and placed, the Engineer will periodically evaluate all Acceptance inspection information for the prepared underlying surface and the Lot. The materials and product workmanship for the completed work will be evaluated for conformance with the plans and the requirements specified in 702.40: General through 702.42: Construction of Hot Mix Asphalt Sidewalks and Driveways.

When the Acceptance information identifies deficiencies in either material quality or product workmanship for any underlying surface location or Sublot(s), the location or Sublot(s) will be isolated and further evaluated by the Engineer through additional Acceptance inspection (or sampling and testing, if relevant or possible). Depending upon the findings of the additional Acceptance inspection activity, the Engineer will determine the disposition of the nonconforming work in accordance with Subsection 5.03: Conformity with Plans and Specifications.

After each Lot (and corresponding prepared underlying surface) is complete, including any corrective action, the Engineer will evaluate all Acceptance inspection information for the Work. The Engineer will accept the subject Work if the Engineer’s evaluation of all inspection information for the completed Lot (and underlying surface) indicates that the corresponding materials and product workmanship meet the specified requirements (provided the evaluation of all Acceptance testing data for the subject work per 702.76: Lot Acceptance Determination Based on Testing Data also finds the work to be acceptable).

702.76: Lot Acceptance Determination Based on Testing Data

Evaluation of Lot Testing Data.

Prior to final acceptance of each Lot produced and placed, the Engineer will periodically evaluate all available Acceptance testing data for the Lot.

(1) Conformance with Engineering Limits.

The Engineer will evaluate all Acceptance testing data and Contractor QC testing data for each Lot to determine conformance with the Engineering Limits in Table 702.76-1. Each Sublot test value for the Acceptance Quality Characteristics identified in Table 702.76-1 shall be within the Engineering Limits.

If a Sublot test result is outside of the Engineering Limits, the QC Manager and Engineer will further assess the Sublot quality to determine whether the material in the Sublot can remain in place. The Engineer will determine the disposition of the Sublot in accordance with Subsection 5.03: Conformity with Plans and Specifications.

If the Engineer’s assessment determines that the material quality is not sufficient to permit the Sublot to remain in place the Sublot shall be removed and replaced. When a nonconforming Sublot is corrected or replaced, the Engineer will perform Acceptance testing of the Sublot and evaluate the test results for conformance with the Engineering Limits. Once the above requirements have been met, the Engineer will accept all completed Sublots.
II.314 2020 Edition

(2) Final Lot Acceptance Determination.

For each Lot produced and placed, the Engineer will evaluate all Acceptance testing data for the Lot after all Sublots are complete in-place.

After each Lot is complete, including any corrective action, the Engineer will perform a final evaluation of all Acceptance data and Contractor QC data for the Lot. The Engineer will accept the Lot if the Engineer’s evaluation of all testing data for the Lot is in conformance with this specification and the contract documents.

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Target</th>
<th>Lower Engineering Limit</th>
<th>Upper Engineering Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG Asphalt Binder Grading</td>
<td>Per Binder Grade Specified</td>
<td>Per Binder Grade Specified</td>
<td>Per Binder Grade Specified</td>
</tr>
<tr>
<td>PG Asphalt Binder Content</td>
<td>Per JMF</td>
<td>Target - 0.4%</td>
<td>Target + 0.4%</td>
</tr>
<tr>
<td>In-Place HMA Mat Density (Density Gauge)</td>
<td>95 % of G_{mm}</td>
<td>91.5 % of G_{mm}</td>
<td>98.5 % of G_{mm}</td>
</tr>
</tbody>
</table>

COMPENSATION

702.80: Method of Measurement

Hot Mix Asphalt Sidewalk or Driveway will be measured by the ton.

Gravel Borrow will be measured by the cubic yard as specified in 150.80: Method of Measurement.

Fine grading and compacting will be measured by the square yard as specified in 170.80 Method of Measurement.

702.81: Basis of Payment

Hot Mix Asphalt Sidewalk or Driveway will be paid for at the contract unit price per ton complete in place.

Gravel will be paid for at the contract unit price per cubic yard under Item 151., Gravel Borrow.

Fine grading and compacting will be paid for at the contract unit price per square yard under Item 170., Fine Grading and Compacting – Subgrade Areas.

Excavation will be paid for at the contract unit price per cubic yard under the excavation items.

701.82: Payment Items

702. Hot Mix Asphalt Sidewalk or Driveway .. Ton
SUBSECTION 710: BOUNDS

DESCRIPTION

710.20: General

Bounds shall be of granite as directed and shall be set at points designated by the Engineer and in conformity with these specifications. Drill Steel rods may be used, if directed, where the points fall on exposed rock.

Where and as directed, the stone or concrete bounds now in the ground shall be removed and reset in conformity with these specifications. In instances where these are not to be reset they shall be transported and stacked as directed.

Bounds (Lettered-Granite) and Bounds (Plain Granite) Furnished and Set, shall consist of furnishing and installing highway property bounds as required and in accordance with the plans and the applicable provisions of this Section. Lettering shall be in accordance with the Department Standards and face abutting properties.

MATERIALS

710.40: General

Material shall meet the requirements specified in the following Subsections of Division III, Materials:

Granite Bounds ... M9.04.8
Drill Steel Rods ... M8.02.0

CONSTRUCTION METHODS

710.60: General

The bounds shall be set at the depth and position as directed, and they shall not project above the ground more than 6 in. after final grading.

Bounds located in lawns shall be set with the top of the bound 2 in. below the surface.

Bounds located in sidewalks or drives shall be set with the top of the bound flush with the surface.

Material for backfilling shall consist of suitable excavated material carefully placed about the bound and thoroughly tamped. When the excavation is in earth not suitable for backfilling, the Contractor shall furnish clean gravel or sand for backfill.

When the bound location falls on solid ledge and the use of a drill steel rod is directed by the Engineer, a 1.5-in. hole shall be drilled to a depth of 18 in. and a drill steel rod as specified under 710.40: General shall be placed in the hole. The rod shall be set so that the hole is on the bound point. The drill steel rod shall project above the ledge from 1 to 2 in. and shall be grouted with a 1:1 mortar mix.

The ½-in. drill holes in the top of the bounds shall be filled to their full depth with lead rope securely compacted in place.
710.61: Bounds Removed and Reset

Present bounds shall be excavated from the ground, the holes properly backfilled with suitable excavated material, or borrow, and the bounds delivered to the new locations and reset as directed and suitably backfilled, all in accordance with the requirements for setting bounds as stipulated hereinbefore.

When a bound to be reset does not have a drill hole in the top center of the bound, a hole 1.5 in. in depth and ½ in. in diameter with the bottom somewhat flared, shall be drilled and this hole filled with lead rope securely compacted in place.

The Contractor will be held responsible for all bounds removed and shall replace at their own expense all bounds as may have been broken by their employees, or otherwise, after such removal.

710.62: Bounds Removed and Stacked

Present bounds shall be excavated from the ground, the holes properly backfilled with suitable excavated material and the bounds carefully stacked, as directed.

The Contractor shall accept and hold entire responsibility for the removal, handling, stacking at a location convenient for removal by owner, and protection of all bounds until the final removal by others as designated and in accordance with the following: Any bound damaged through lack of protection or carelessness by the Contractor shall be replaced with a satisfactory bound at their expense. The Contractor’s responsibility will cease upon final acceptance of the work or 60 days from the time a certified notice, with copy to Engineer, is sent by Contractor to owner of material that material is available for removal.

COMPENSATION

710.81: Basis of Payment

This work will be paid for at the contract unit price each under the item for Bounds Removed and Reset, or Bounds Removed and Stacked, or Bounds (Lettered-Granite) or Bounds (Plain-Granite) or Drill Steel Rods (Set in Solid Ledge) complete in place and paid for as a bound of the type indicated.

Allowance for rock, if not already paid for under previous rock excavation, shall be based on area 24 in.² multiplied by the depth of the rock to the bottom of the bound plus 6 in., and will be paid for under Item 144. Class B Rock Excavation. There will be no rock allowance paid for drill steel rods.

Bounds which are designated to be Removed and Reset and are found to be unsuitable for reuse after excavation through no fault of the Contractor shall be paid for at one half the contract unit price.

Bounds which are designated to be Removed and Stacked and are found to be unsuitable for reuse through no fault of the Contractor will be paid for at the full contract unit price.

Borrow materials, when directed to be used, will be paid for at the contract unit price per cubic yard for the particular type of Borrow.
SUBSECTION 715: RURAL MAIL BOXES REMOVED AND RESET

DESCRIPTION

715.20: General

This work consists of the removing and resetting present mail boxes in accordance with these specifications and in close conformity with the lines and grades established by the Engineer.

MATERIALS

715.40: General

Material shall meet the requirements specified on the plans.

CONSTRUCTION METHODS

715.60: General

The mail boxes indicated shall be removed together with the posts, and the post holes filled with suitable material and properly tamped.

If necessary during the construction the mail boxes shall be set in temporary locations as directed, so that they are easily accessible to the mail carrier.

In their final permanent location the present mail boxes shall be set on new wooden bases and iron pipe posts as shown on the Department’s plan for Setting Rural Mail Boxes.

COMPENSATION

715: Method of Measurement

The number of units to be paid for will be determined by the number of sustaining posts installed and not by the number of mail boxes removed and reset.

715.81: Basis of Payment

Payment for this work will be made at the contract unit price each under the item for Rural Mail Box Removed and Reset which price shall constitute full compensation for setting the boxes in temporary locations.

Rock excavation, if necessary, will be paid for at the contract unit price per cubic yard under the Item 144. Class B Rock Excavation.
SUBSECTION 717: METAL BIN-TYPE RETAINING WALL

DESCRIPTION

717.20: General
This item consists of the furnishing and erection of metal retaining wall members consisting of stringer and spacer units, columns, column caps, stiffeners and other accessories meeting the requirements of these specifications. The details of the wall members and other arrangements in the finished wall shall be as shown on the plans.

717.21: Erected Wall
When erected the walls shall consist of a number of columns in pairs, one column of each pair being in the plane of the front of the wall and the other column being in the plane of the rear of the wall, with the pairs of columns spaced longitudinally with overlapping S-shaped facing and rear members (stringers) and transversely with overlapping U-shaped tie members (spacers). The necessary bolts and appurtenances shall be furnished for complete assembly of the units into a continuous closed face wall of connected bins.

MATERIALS

717.40: General
Material shall meet the requirements specified in M8.13.2: Metal Bin-Type Retaining Wall of Division III, Materials.

CONSTRUCTION METHODS

717.60: Manufacturer’s Responsibility
All units shall be so fabricated that units of the same nominal size shall be fully interchangeable. No drilling, punching or drifting to correct defects in manufacture shall be permitted. Any units having holes improperly punched shall be promptly replaced at the expense of the Contractor.

Whenever possible in the manufacture of the units a minimum forming radius of 1-in. shall be maintained. All units that are formed with less than 1-in. radius shall be hot-dipped galvanized after forming.

717.61: Excavation
Rough excavation for the site of the wall shall be made to the lines and grades shown on the plans or as directed. The bearing at the corners of the bin shall be firm and true to grade before any wall is erected.
No base plate shall be set on ledge or concrete and, if encountered, the ledge or concrete shall be removed and replaced with a gravel cushion having a minimum thickness of 12 in. between the base plate and the ledge or concrete.

Gravel shall conform to the requirements of M1.03.0: Gravel Borrow Type c for Gravel Borrow.

717.62: Erection of Units

Prior to erection, the gauge of stringers, spacers and columns shall be readily identifiable.

The units shall be erected as shown on the plans. Members shall be handled carefully and any which are damaged as a result of handling, storing or erecting shall be removed and new members substituted at the Contractor’s expense. Any and all plain galvanized accessories, excluding bolts, shall be covered prior to erection with an approved paint supplied by the manufacturer.

The units in the wall shall conform to the dimensions and gauges specified on the plans and when assembled, shall be in conformity with the lines, grades and dimensions shown on the plans.

717.63: Construction of Wall on Curve

In the construction of a wall on a curve the proper curvature for the face shall be obtained by the use of shorter stringers in the front or rear panels of retaining wall as designated on the plans or by the Engineer.

717.64: Height of Wall

The wall height may be varied but it shall not exceed the maximum height shown for the design selected. Two or more designs of retaining walls may be incorporated in the same wall by the use of special split columns to make the connection on the stepback.

717.65: Backfill

The filling of the interior of the wall and behind the wall may progress simultaneously with the erection of the units and shall consist of gravel conforming to the requirements of M1.03.0: Gravel Borrow, Type a. The backfilling shall be made in layers not greater than 6 in. in thickness and shall be thoroughly and satisfactorily compacted. The puddling method of backfilling will not be permitted.

COMPENSATION

717.80: Method of Measurement

The quantity of metal bin-type retaining wall to be paid for under this item shall be the number of square feet of area of the total of all front panels of metal retaining wall complete in place in the accepted work. The area of each front panel shall be determined by multiplying the width of each front panel by its total height.

Excavation shall be measured as specified in Subsection 120: Excavation for Earth Excavation or Class A Rock Excavation, and as indicated on the plan.

Gravel borrow shall be measured as specified in 150.80: Method of Measurement.
717.81: Basis of Payment

The above work will be paid for at the contract unit price per square foot of Metal Bin-Type Retaining Walls, complete in place.

Excavation will be paid for at the contract unit price per cubic yard under the item of Earth Excavation or Class A Rock Excavation.

Gravel for filling in and around the metal bin-type retaining wall will be paid for at the contract unit price per cubic yard for Item 151. Gravel Borrow.

717.82: Payment Items

- **717.** Metal Bin-Type Retaining Wall .. Square Foot

SUBSECTION 740: ENGINEER’S FIELD OFFICE AND MATERIALS LABORATORY (EACH WITH PERTINENT EQUIPMENT)

DESCRIPTION

740.20: General

Satisfactory office space, trailers, materials laboratory, or the utilization of a suitable existing building or buildings as directed shall be provided when required, in an approved location on the project or in the immediate vicinity thereof, for the exclusive use of the Engineers and Inspectors of the Department; such facilities to be separate from any building or buildings used by the Contractor.

740.21: Requirements

The trailers or buildings shall be fully equipped and made ready for use prior to the beginning of other work on the project and may remain for a period of approximately 45 days after all work on the project has been completed and accepted by the Department.

All offices and laboratories shall be maintained in good condition and appearance by the Contractor for the designated period, after which all portable buildings or trailers, fencing, surfacing and utilities shall be removed from the location, the areas cleaned, loamed and seeded if required, and left in a neat and acceptable condition.

If existing buildings are utilized, the above-mentioned requirements shall apply, unless otherwise indicated in the Special Provisions.

740.22: Building Types and Construction

Unless particularly specified the building or facilities may consist of any of the following, subject to approval of the Engineer:

- a. Moved onto or constructed on the site.
- b. A trailer or trailers, each type as stipulated in the Proposal.
- c. An existing building, owned or rented by the Contractor, containing floor space equivalent to the type specified.
Buildings or trailers moved onto or constructed on the project shall conform with the following:

A. General.

The work to be done under this section shall consist of furnishing all labor, equipment and materials to construct, furnish and maintain buildings or trailers for the Engineer's use, in accordance with the Department Standards and these Specifications.

The sanitary facilities are not for general use by the Contractor's employees. Sanitary provisions for these employees shall be provided otherwise by the Contractor in accordance with Subsection 7.02: Pollution Prevention, Paragraph F.

The work on buildings and trailers shall be completed before any other construction work is done at the site. Maintenance shall continue until the work at the site under the Contract is completed and the buildings or trailers shall be kept clean, orderly, and in working condition at all times.

The Contractor shall protect the buildings or trailers against theft throughout the 24 hours of the day and night and be responsible for any loss of property of the Department and the personal property of employees of the Department housed therein, due to either fire, theft or other causes.

B. Plumbing.

Each office shall be equipped with complete sanitary and washroom facilities. All connections shall conform with state and local requirements for venting and other sanitary provisions.

A ¾-in. copper tubing type L shall be installed for the water service. The water closets shall be provided with sufficient pressure to completely expel the contents in one operation.

Insulation shall be provided on all services where necessary. If directed, the Contractor shall furnish and install an approved electric tape, as directed, together with necessary switches and thermostat for each water pipe to prevent freezing.

If a sanitary sewer is not available, a septic system adequate for the office meeting the requirements of the Department of Environmental Protection regulations set forth in “The State Environmental Code Minimum Requirements for the Subsurface Disposal of Sanitary Sewage - Title 5” shall be installed.

The Department will not approve the location of a Field Office until the Contractor has obtained approval for their proposed method of sanitary sewage disposal from a) The Department of Environmental Protection if the location is on state property or b) Department of Environmental Protection and the applicable local Board of Health if the location is on private or municipal property.

The Contractor will be required to furnish personnel, equipment and materials for soil test pits and percolation tests and to furnish plans, prepared by a Registered Professional Engineer skilled in the matter of subsurface sewage disposal, signed and stamped with the Engineer’s stamp, for any proposed subsurface sewage disposal system. The plan or plans will meet the requirements of Title 5 of the State Environmental Code or its successor or amendments thereto.

The Contractor will be required to determine, through the appropriate regional office of the Department of Environmental Protection, whether or not a proposed site is within a watershed area for public water supply.
Every effort will be made not to locate temporary Sanitary Facilities on any public water supply watershed. Should there be no alternative, the provisions of any regulations of D.E.P. Division of Water Supply and the above shall apply.

In the event that it can be shown that there is no place reasonably proximate to the job with suitable soil and site conditions that will permit subsurface sewage disposal, the Department of Environmental Protection will consider approval of a tight tank system. The Contractor will have their engineer submit their tight tank proposal and plans to the appropriate Regional Environmental Engineer of the Department of Environmental Protection in compliance with their “Sanitary Sewage Tight Tank Policy” for approval.

C. Wiring and Lighting.

48-in. non-glare fluorescent luminaires shall be installed in each office so as to provide a minimum level of illumination at desk height of 100 foot-candles. Two fixtures shall be placed over the drawing table as directed. The master switch shall be near the door and control the desk light. Separate pull chains shall be provided for the lights over the table. Four double convenience outlets shall be installed where directed.

Electric wiring in each building or trailer shall be complete with meter connections, fuse box and switch.

D. Heating and Air Conditioning.

All buildings or trailers shall be heated and air conditioned with equipment capable of maintaining a temperature of 70°F, the total cost to be borne by the Contractor.

E. Area Enclosures, Surfacing and Maintenance.

The area occupied by the buildings or trailers shall be enclosed with 72-in. chain link fence, including a 12-ft clear opening double-swing gate, all with 3 strands of barbed wire on extension arms and conforming to the relevant provisions of Subsection 644: Chain Link Fences and Gates. The area to be enclosed will depend on the manner in which the buildings are arranged and shall be satisfactory to the Engineer.

A portion of the area within the enclosure designated by the Engineer for use as walks and parking, shall be graded and paved with 2.5-in. hot mix asphalt over a 6-in. gravel foundation.

The Contractor shall maintain the enclosed area by cleaning as required, including the removal of snow from the paved portions.

Toilet tissue, paper towels and soap shall be furnished by the Contractor as required. The office shall be cleaned and floors washed and waxed weekly. The space between the ground and trailer floor shall be completely closed in and insulated.

All of this work shall be included for payment under the contract price for furnishing the specified number and types of buildings.

F. Insurance and Replacement.

At the time the buildings are made available to the Department, the Contractor shall furnish evidence to the Engineer that Insurance in form, coverage and substance satisfactory to the
Department in amount of $5,000 (non-deductible) has been obtained which will protect the Commonwealth’s property and/or employee’s personal work related or professional equipment against loss of property in any of the buildings or trailers from fire, theft, storm or flood.

The insurance shall be kept in effect during the entire period of occupancy, with evidence of all necessary renewals being promptly forwarded to the Engineer.

In case of fire, theft or breakdown, all equipment involved shall be repaired or replaced by the Contractor within 48 hours.

In the event buildings or trailers, being used as field offices or materials laboratory, are destroyed or rendered untenable for any reason, they shall be replaced within two weeks, or as directed.

Title to the buildings and equipment shall remain in the name of the Contractor.

MATERIALS (EQUIPMENT)

740.40: General

Buildings or trailers shall have equipment as hereinafter specified, which shall be new or in condition satisfactory to the Engineer. The repair or replacement of faulty equipment shall be prompt and at the expense of the Contractor. All equipment will remain the property of the contractor. A suitable non-freezing type fire extinguisher shall be furnished for each field office and materials laboratory.

740.41: Engineers Field Office (Type A)

In addition to the general requirements, the Type A office shall provide a minimum of 450 ft² of floor space with two outside doors, six windows and be furnished as follows:

1. A slant top drafting table, 36-in. x 72-in. minimum size, two plan racks and a closet equipped with a lock.
2. Two office type desks, minimum top dimensions 30-in. x 60-in., with two or more drawers on each side.
3. Four desk chairs on casters with adjustable height tilt seat.
4. Four stools (Drafting table type).
5. One fire resistant drawer-type safe, legal size, with combination lock. Combination to be reset at the direction of the Engineer and revealed only to them.
6. A utility table 30 in. high, minimum top size 30-in. x 60-in.
7. Two legal size, fire-resistant metal filing cabinets, 4 drawer, with locks.
8. An electric sanitary hot and cold water cooler, supplied with cups and drinking water, a 3 ft³ capacity refrigerator with freezer compartment and a 1 ft³ capacity microwave oven.
9. An electric adding machine, tape type, with tape.
10. Office equipment as follows:

(a) A fully automatic electric calculator, with printout and sufficient supply of tapes.
(b) Quantity Control Ledger covers, National model no. 94-592 or approved equal. QCL covers shall become the property of the Department.
(c) A smoke alarm capable of being heard 500 ft away.
(d) 2 portable amber colored strobe lights for mounting on vehicles.
11. Safety helmets and safety vests for all Department Construction personnel assigned to the project. The safety equipment will not carry any marking such as the name of the Contractor and shall remain the property of the Contractor after completion of the project.

12. A trailerized office shall be provided with a one half bath that shall consist of a full size water closet and a porcelain steel lavatory recessed in a plastic top. The drain and vent lines shall be A.B.S. plastic and supply lines shall be type L copper. A 6-gallon electric water heater shall be provided.

13. First Aid Kits shall be provided in the amount and with contents as specified in the current requirements of the Massachusetts Department of Labor and Industries regulations.

14. One new or like new Survey Transit, complete with tripod and storage container, for the exclusive use of the Resident Engineer for the duration of the contract. The transit shall be suitable for Construction Surveys, to establish line and grade, equipped with horizontal circle direct-reading to 1 minute and vernier calibrations graduated to at least 20 seconds, a vertical angle gradation with vernier to 30 seconds, crosshairs for stadia measurements, optical plumbing capability. A compatible level rod with a minimum length of 12 ft shall also be supplied for setting elevations for structures, grades, and stakes.

15. One 2-ft electronic smart level, one 100-ft steel tape, one 100-ft cloth tape and one plumb bob.

16. One electrostatic or plain paper copier capable of producing 8.5-in. x 11-in., or 8.5-in. x 14-in. copies. Included shall be the cost of paper and chemicals. The total cost for the paper and chemicals shall not exceed $500, for the life of the project. Only one copier will be required if there is more than one Field Office in the Contract.

17. The Contractor shall assume the cost of all equipment, including installation, service, maintenance, and removal. A working telephone with an answering machine shall be provided at the Engineer’s Field Office.

18. The following materials testing and sampling equipment shall be supplied if the Contract specifies 150 yd3 of cement concrete or more and does not require a Materials Laboratory.

(a) One Air Meter $\frac{1}{4}$ ft3 Press-Ur-Meter Type (Ref. AASHTO T 152 and ASTM C231).

(b) Two Concrete Curing Boxes meeting the requirements of AASHTO T 23, Section 9.

(c) A Quick Check Air Indicator Kit meeting the requirements of AASHTO T 199.

(d) One complete Slump Test Outfit (Ref. AASHTO T 23 and T 119M/T 119), as follows:
 - A slump cone of seamless spun metal, with handles and foot clamps.
 - A tamping rod, 24 in. long, $\frac{3}{8}$-in. diameter, with hemispherical end.
 - A sturdy pan, 14 gauge metal, with reinforced rims (24 in. x 24 in. x 3 in.).
 - A brass-wire briquette brush.
 - A wooden handled steel trowel, 3.5 in. x 7 in.

(e) One wheelbarrow, minimum 2 ft3 volume.

(f) One longhandled shovel.

(g) If 150 yd3 of lightweight concrete are specified in the Contract, the following shall be supplied:

(1) One Roller Meter type air meter (Ref. AASHTO T 196M/T 196).

(2) One Unit weight bucket (Ref. AASHTO T 121M/T 121).

(3) One platform beam scale, capacity 200 lb, sensitivity 0.01 lb, with two beams at front of platform, reading to 20 lb by single pounds and to 1 lb by 0.01 lb, with additional hanger weights to fulfill capacity of 200 lb; all parts to be of steel with enclosed weighing mechanism, platform to be 12.5 in. x 14 in. A digital platform...
scale, with a minimum capacity of 200 lb, with similar sensitivity can be substituted. Scale must be calibrated immediately prior to start of Contract.

19. The following shall be supplied if the Contract specifies painting of bridges:
 (a) Two Each Wet Film Thickness gauges (1 to 13 mils range).
 (b) One Dry Film Thickness Gauge (Tooke Mark III or equal) equipped with spare set of cutting tips.
 (c) One Dry Film Thickness (Gauge Nordsen or Inspector Model III) range 0 to 25 mils.
 (d) One Sling Psychrometer.

20. The following sampling containers are to be supplied in the minimum quantity listed and more as needed to complete the project. All unused containers remaining at the close of the project shall be delivered to the District laboratory and become property of the Department.
 (a) Flat Bottom Poly Lined Kraft Paper Bags capable of holding 60 lb of soil or aggregates with dimensions of at least 12 x 3 x 25 in. Supply a minimum of 50 bags.
 (b) 4-in. or 6-in. Plastic Cylinder Molds and Covers meeting the requirements of AASHTO M 205M/M 205 and approved for use by RMS. Supply 5 cylinders molds per 150 yd³ of concrete placement or fraction thereof with a minimum of 50 molds.
 (c) 1-qt Metal Cans with friction top covers. Supply a minimum of 12 cans when the contract specifies bridge painting.
 (d) 1-qt Wide Mouth Plastic Bottles and Covers designed to hold acid. Supply a minimum of 12 bottles when the contract specifies bridge painting or traffic paint.
 (e) Cardboard Sample Boxes for hot mix asphalt. The sample boxes shall have dimensions of at least 17 x 12 x 4.5 in. and fold to provide a tight closure for transporting. Supply a minimum of 25 boxes.

740.42: Engineers Field Office (Type B)

Engineers Field Office (Type B) shall be equipped as described in 740.41: Engineers Field Office (Type A) except that the minimum floor space shall be 350 ft².

COMPENSATION

740.81: Basis of Payment

Payment for work under these items will be at the respective contract unit bid price for Engineer's Field Office and Equipment (Type A) and Engineering Field Office and Equipment (Type B).

Payment as described above shall be compensation for all services (heat, gas, light, water, sanitary, telephone, etc.) for all labor, material, fencing, surfacing, equipment service (including general inside cleaning at least once each week) and incidentals necessary to provide, equip, maintain, insure, remove and dispose of the buildings and clean the site as specified and directed. The contract unit bid price will prevail for buildings built or furnished as described, for equivalent trailer space, or office space rented in existing buildings, when such substitution has been approved.

740.82: Payment Items

740. Engineer’s Field Office and Equipment (Type A) .. Month
741. Engineer’s Field Office and Equipment (Type B) .. Month
SUBSECTION 746: TRANSPORTATION VEHICLE

DESCRIPTION

746.20: General
This item consists of furnishing and maintaining a current model vehicles equipped with strobe lights for the use of Department personnel assigned to the project.

MATERIALS

746.40: General
The vehicle may be any medium size air conditioned six-cylinder four-door sedan, van, or other type vehicle capable of transporting four persons in comfort and protected against the elements. The vehicle will be registered in Massachusetts and it shall be the Contractor’s responsibility to pay all fees, insurance charges, fuel, lubricants and maintenance costs necessary to provide a legally operable vehicle acceptable to the Engineer. The vehicle will be made available from 15 days after receipt of the executed contract to 45 days after completion of the project unless released earlier by the Engineer.

746.41: Office Van
The van shall have a minimum wheel base of 125 in. and be modeled as follows:

1. A ¾-in. plywood overflooring to which the furniture is securely bolted.
2. A 4-ft sliding door with window on the side as well as rear doors with windows.
3. Secure locking on all doors.
4. An independent switch for an overhead dome light.
5. The van shall be furnished with a knee hole desk and a 2-drawer file cabinet which are fastened down, a ¾-in. plywood table with formica top and a swivel chair without casters that is movable.
6. Safety equipment shall be furnished with the Van and shall remain the property of the Contractor after completion of the project, safety helmets and safety vests for all Department Construction personnel assigned to the project. The safety equipment will not carry any marking such as the name of the Contractor.

CONSTRUCTION METHODS

746.60: General
The vehicle will be for the exclusive use of the Resident Engineer and their assistants to accommodate their official transportation requirements on and off the project site including portal to portal travel between the project site and the assigned personnel’s residence. The vehicle shall not be utilized for non-official or personal use by an individual while it is assigned to this project.

The vehicle shall be used for the transportation of materials and/or samples for testing and also for transportation to properly supervise the coordination of Traffic Police and Safety Functions.
The vehicle shall be maintained in a good state of repair at all times and serviced at the regular intervals recommended by the vehicle manufacturer. Work schedules of the Engineer and/or their assistants will be arranged so that the vehicle will be available for regular maintenance at the scheduled times.

Public Liability and Property Damage Liability Insurance shall be provided throughout the term of this project to the minimum limits established below.

<table>
<thead>
<tr>
<th>Type</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Liability</td>
<td>$250,000/person</td>
<td>$500,000/accident</td>
</tr>
<tr>
<td>Property Damage Liability</td>
<td>$50,000/accident</td>
<td>$200,000/accident</td>
</tr>
</tbody>
</table>

Said insurance shall be maintained in full force and effect during the life of the contract and shall protect the Resident Engineer, their assistants or any other authorized State Driver for personal injury and wrongful death and for damages to property arising in any manner from their negligence or wrongful acts or failures to act. Such insurance against legal liability shall indemnify and save harmless the Commonwealth and any or all of the officers, agents and employees thereof resulting out of or in consequence of the acts, or failures to act, on the part of the Commonwealth.

COMPENSATION

746.80: Method of Measurement

Transportation shall be measured by the month per vehicle and shall be the actual number of months each vehicle is required and available to the Engineer.

746.81: Basis of Payment

Transportation Vehicles will be paid for at the contract unit price bid per month for each vehicle, which price and payment shall be full compensation for the vehicle including all fees, insurance costs, maintenance costs, fuel and lubrication costs, repair costs and all other incidental expenses necessary to provide a legally operable vehicle to the satisfaction of the Engineer.

746.82: Payment Items

*746.__ Transportation Vehicle No. __ .. Month
746.6 Transportation Office Van... Month

*Item number will differentiate to indicate number of transportation vehicle.

SUBSECTION 748: MOBILIZATION

DESCRIPTION

748.20: General

This item shall consist of preparatory work and operations including, but not limited to, those necessary for the movement of personnel, equipment, supplies, and incidentals to the project site,
for the establishment of all contractor's field offices, buildings, and other facilities necessary for work on the project and all other work and operations which must be performed or for costs which must be incurred prior to beginning work. The unit bid price for Item 748, Mobilization shall not exceed 3% of the contract bid total, exclusive of this item. Failure to observe this requirement may result in rejection of the bid in accordance with Subsection 2.04: Preparation of Proposals.

CONSTRUCTION METHODS

748.60: General

The work required to provide the above facilities and services for Mobilization shall be done in a safe and workmanlike manner and shall conform with any pertinent local or state law, regulation or code. Good housekeeping consistent with safety shall be maintained.

COMPENSATION

748.80: Method of Measurement

Payment for Mobilization will be made on a lump sum basis.

748.81: Basis of Payment

1. The first payment of one third of the lump sum price for Mobilization or 1% of the total bid price, whichever is less, will be made on the first estimate.
2. The second payment of one third of the lump sum price for Mobilization or 1% of the total bid price, whichever is less, will be made following the completion of 5% of the total Contract price.
3. The third payment of one third of the lump sum price for Mobilization or 1% of the total bid price, whichever is less, will be made following the completion of 10% of the total Contract price.
4. Upon completion of all the work on the project, payment of any amount bid for Mobilization in excess of the total amount previously paid, will be paid by the Department.

748.82: Payment Items

748. Mobilization ... Lump Sum

SUBSECTION 751: LOAM BORROW AND TOPSOIL REHANDELED AND SPREAD

DESCRIPTION

751.20: General

The work under this item consists of furnishing and placing loam and related items on an approved area in accordance with these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer. The work includes the placing, spreading and grading of loam borrow for seeded and planted areas, preparation of soil for plant material, amendment of loam as required to produce planting soil mix, and provision of soil additives required to adjust for pH requirements of specific plants.
MATERIALS

751.40: General

Material shall meet the requirements specified in the following Subsections of Division III, Materials:

Loam Borrow... M1.05.0
Topsoil.. M1.07.0
Organic Soil Additives.. M1.06.0
Inorganic Amendments.. M6.01.0

Samples and Submittals

At least 30 days prior to ordering, the Contractor shall submit to the Engineer representative samples, certifications, and certified test results for materials as specified below. No materials shall be delivered until the required submittals have been reviewed and approved by the Engineer. Delivered materials shall closely match the approved samples. Approval of test results does not constitute final acceptance. The Engineer reserves the right to reject on or after delivery any material which does not meet the Specifications.

Soil Additives for Loam

Additives shall be used to counteract soil deficiencies as recommended by the soil analysis. Organic matter used as an amendment to soil shall be manufactured compost. Lime or sulfur shall be used to bring soil to acceptable pH levels, per soil test reports. For soils with more than 20% passing the No. 200 sieve, gypsum shall be added at a rate of 3.2 pcf. Soil amendments shall be incorporated thoroughly into loam to meet the specified requirements for loam prior to delivering the material on site.

751.60: Preparation of Areas on which Loam or Topsoil are to be Placed

All areas to receive loam shall be free of construction debris, refuse, compressible or decayable materials and standing water. The area upon which the above materials are to be placed shall be raked, harrowed or dragged to form a smooth surface. All stones, undesirable growth and debris larger than 2 in. in diameter shall be removed from the area and disposed of by the Contractor outside the location.

When directed by the Engineer, additional suitable material available from excavation or furnished under Item 150, Ordinary Borrow, shall be spread as required to repair gullies or depressions. The labor, equipment and materials necessary to place, compact and grade the additional material shall be paid for under the respective item from which the material is obtained.

751.61: Placing Loam or Topsoil

The Contractor shall notify the Engineer when areas to receive loam are ready for inspection and approval. Placement of loam fill material shall not begin until the Engineer has approved the grading of the material that the loam is placed upon.
Loam shall not be handled or placed when the ground or the loam is frozen or saturated, i.e. when squeezed sample shows any sign of free moisture.

The Engineer shall approve the use of the Contractor’s equipment. Any equipment or procedures that are likely to damage or over-compact underlying structure or materials shall be rejected.

Loam shall be placed in lifts not to exceed 4 in. After each lift, the soil shall be thoroughly mixed into the soil layer beneath it. Compaction of each lift shall be minimal, sufficient only to achieve the required grades. Over-compaction of existing soils or fills that would be detrimental to planting objectives shall be corrected by tilling or other means at no additional cost.

Grade stakes shall be set to check finished grades. Deviation from lines and grades that are greater than 1 in. shall not be permitted.

The Contractor shall supply additional loam as necessary so that following finish the grading and compaction operations, the placed loam shall conform to the depth required.

Finish grades shall exhibit no abrupt changes and shall blend in evenly with the undisturbed grade of the ground at the limits of work.

During hauling operations, the roadway surfaces shall be kept clean and any loam or other dirt which may be brought upon the surface shall be removed promptly and thoroughly before it becomes compacted by traffic. If necessary, the wheels of all vehicles used for hauling shall be cleaned frequently and kept clean to avoid bringing any dirt upon the surface. The Contractor shall take all reasonable precautions to avoid injury to existing or planted growth.

751.62: Topsoil Rehandled and Spread

Topsoil which is obtained on the site from piles of topsoil previously excavated and stacked in accordance with the relevant provisions of Subsection 120: Excavation and designated as topsoil to be rehandled and spread shall be used as required, and as directed by the Engineer, on areas to be seeded or planted.

The topsoil must meet the requirements of M1.07.0: Topsoil and be approved before it is spread. The Contractor will be required, without additional compensation, to take corrective action as directed, in order to make the topsoil suitable for its intended use.

The Contractor is required under the item of seeding to adjust the acidity by the addition of limestone as determined by testing as required under 765.61: Application of Limestone and to apply the fertilizer as required under 765.62: Application of Fertilizer for Grass.

COMPENSATION

751.80: Method of Measurement

The quantity of Loam Borrow, or Topsoil Rehandled and Spread shall be determined by measurement in place after compaction to the depth specified on the plans or as directed, and to the volume so ascertained there shall be added 20% to compensate for such loss as may be due to settlement, shrinkage and penetration into the underlying material.

The volume of Topsoil Rehandled and Spread including added percentage for settlement shall not exceed the total volume of Item 125, Topsoil Excavated and Stacked, less any waste.
751.81: Basis of Payment

Loam Borrow and Topsoil Rehandled and Spread will be paid for at the contract unit price per cubic yard, complete in place, which prices shall include all testing, analysis and the grading of areas where stockpiles of topsoil are removed.

751.82: Payment Items

751. Loam Borrow .. Cubic Yard
752. Topsoil Rehandled and Spread... Cubic Yard

SUBSECTION 760: IMPERVIOUS SOIL BORROW

DESCRIPTION

760.20: General

This work shall consist of furnishing and placing impervious soil borrow in accordance with these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

760.40: General

Impervious Soil Borrow shall meet the requirements specified in M1.08.0: Impervious Soil Borrow of Division III, Materials.

CONSTRUCTION METHODS

760.60: General

Impervious Soil Borrow shall be placed and compacted as specified in 751.60: Preparation of Areas on which Loam or Topsoil are to be Placed.

COMPENSATION

760.80: Method of Measurement

Impervious Soil Borrow shall be measured as specified in 751.80: Method of Measurement.

760.81: Basis of Payment

Impervious Soil Borrow shall be paid for at the contract unit price per cubic yard under the item for Impervious Soil Borrow, complete in place, even if the impervious soil borrow is obtained from Muck Excavation.

760.82: Payment Items

760. Impervious Soil Borrow ... Cubic Yard
SUBSECTION 765: SEEDING

DESCRIPTION

765.20: General
This work shall consist of seeding certain areas at the locations indicated on the plans or designated by the Engineer, in accordance with these specifications.

MATERIALS

765.40: General
Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

Limestone ... M6.01.0
Fertilizer .. M6.02.0
Grass Seed ... M6.03.0

CONSTRUCTION METHODS

765.60: General
The Contractor shall not proceed with the work of seeding until permission of the Engineer has been obtained.

Before the application of limestone, fertilizer and seed, the Contractor shall harrow or roto-till to a depth of 3 in., when directed, all areas where loam or topsoil, has been placed under a previous contract when such areas are to be prepared for seeding under this contract. When loam borrow is placed, or topsoil is rehandled and spread; and they are paid for under the respective items of a contract, they will not require harrowing or roto-tilling.

The Contractor shall remove all debris and stones having any dimensions greater than 2 in. before the application of limestone, fertilizer and seed.

765.61: Application of Limestone
Limestone may be applied in dry form or hydraulically as provided in 765.65: Seeding Grass by Spray Machine. Limestone where necessary shall be spread and thoroughly incorporated in the layer of loam or topsoil to adjust the acidity of the loam or topsoil. The rate of application of the limestone will vary up to a maximum of 1 lb per square yard depending on the results of laboratory tests conducted by the Department. The limestone shall be thoroughly incorporated into the layer of loam or topsoil and the upper 1 in. of the underlying subsoil by harrowing or other methods satisfactory to the Engineer so as to provide a layer of thoroughly mixed material for the seed bed.

765.62: Application of Fertilizer for Grass
Fertilizer may be applied in dry form or hydraulically as provided in 765.65: Seeding Grass by Spray Machine.
After the application of limestone, if found necessary, on the seed bed, fertilizer shall be spread on the top layer of loam or topsoil at the rate of 800 lb per acre and worked into the seed bed. The full depth of loam or topsoil shall then be spaded or harrowed and graded to the required cross section.

765.63: Seeding Grass

After the loamed or topsoil areas have been prepared and treated as hereinbefore described, grass seed conforming to the respective formulas hereinbefore specified shall be carefully sown thereon at the rate of approximately 50 lb per acre. Seeding shall be done in two directions at right angles to each other. Seeding on level areas and on slopes up to and including 4:1 slopes shall be done by means of an approved seeder that will seed and roll in one operation. On shoulders and other narrow areas, the seeding may be done longitudinally in one application.

765.65: Seeding Grass by Spray Machine

A hydraulic spray machine, approved by the Engineer, and designed specifically for seed dissemination may be utilized. The application of limestone as necessary, fertilizer and grass seed may be accomplished in one operation by the use of an approved spraying machine. The materials shall be mixed with water in the machine and kept in an agitated state in order that the materials may be uniformly suspended in the water. The spraying equipment shall be so designed that when the solution is sprayed over an area the resulting deposits of limestone, fertilizer and grass seed shall be equal in quantity to those quantities specified above in 765.61: Application of Limestone, 765.62: Application of Fertilizer for Grass and 765.63: Seeding Grass.

A certified statement shall be furnished, prior to start of work, to the Engineer by the Contractor as to the number of pounds of limestone, fertilizer, and grass seed, per 100 gal of water.

This statement should also specify the number of square yards of seeding that can be covered with the solution specified above.

If the results of the spray operation are unsatisfactory, the Contractor will be required to abandon this method and to apply the limestone, fertilizer and seed in accordance with the requirements of 765.61: Application of Limestone, 765.62: Application of Fertilizer for Grass and 765.63: Seeding Grass.

765.66: Care During Construction

The Contractor shall be responsible for the watering of all seeded and grassed areas which shall be kept moist. The Engineer's decision will prevail in the event a dispute develops with the Contractor as to whether or not the seeded and grassed areas are moist. Seeded areas on which growth has started shall be watered to a minimum depth of 2 in. to assure continuing growth. Watering shall be done in a manner which will provide uniform coverage, prevent erosion due to application of excessive quantities over small areas, and pre-vent damage to the finished surface by the watering equipment. The Contractor shall furnish sufficient watering equipment to apply one complete coverage to the seeded areas in an 8-hour period.

If necessary, suitable signs and barricades of brush or other materials shall be placed to protect the seeded areas.
After the grass has appeared, all areas and parts of areas which fail to show a uniform stand of grass, for any reason whatsoever, shall be reseeded and such areas and parts of areas shall be seeded repeatedly until all areas are covered with a satisfactory growth of grass.

The Contractor shall care for all of the seeded areas until the work has been physically accepted, without compensation in addition to the amount regularly to be paid under this item as hereinafter provided. Care shall include all regrading, refertilizing, reseeding and mowing which may be necessary.

Prior to the acceptance of the project the Contractor will be responsible for mowing the grass when necessary on all flat or rolling slopes from level to and including 4 to 1 slopes to a height of 3 in. when the grass has attained a height of 8 in. The grass on all slopes steeper than 4 to 1 shall be cut when necessary to a height of 3 in. at such a time as a stable turf has been established in the Engineer's judgment.

765.67: Liability

A satisfactory stand of grass, as determined by the Engineer, shall be required. To be acceptable, a stand of grass shall consist of a uniform stand of at least 60% established permanent grass species, with a uniform count of at least 100 plants per ft².

When all items of the contract, including the work specified under this item, have been acceptably completed except that a satisfactory stand of grass has not been produced, the contract may be accepted.

COMPENSATION

765.80: Method of Measurement

The quantity of Seeding shall be the number of square yards based on actual measurements made over the general contour of the areas seeded, complete in place, and accepted.

765.81: Basis of Payment

This work, including all mowing, will be paid for at the contract unit price per square yard under the item for Seeding, completed in place. When a satisfactory stand of grass has not been established at the time of acceptance, no payment for Seeding shall be allowed at the time of acceptance. At the time the final estimate is ready to be forwarded to the Contractor the seeded areas will again be inspected by the Engineer and if a satisfactory stand of grass has been established, the seeded areas with a satisfactory stand of grass will be included for payment.

765.82: Payment Items

765. Seeding ... Square Yard
SUBSECTION 766: REFERTILIZATION

DESCRIPTION

766.20: General
This work shall consist of an application of fertilizer to seeded areas as indicated on the plans, or as designated by the Engineer, and in accordance with these specifications.

MATERIALS

766.40: General
Materials shall meet the requirements specified in the following Subsection of Division III, Materials.

Fertilizer .. M6.02.0
Seed ... M6.03.0

CONSTRUCTION METHODS

766.60: General
Work under this item shall be done in April, May, August or September. No permission will be granted to refertilize in months other than herein prescribed. Areas recently seeded shall be refertilized only after one season of growth of two months duration.

766.61: Application of Fertilizer
The fertilizer shall have a composition of 10-10-10 and be applied at a rate of 500 lb per acre. In addition, organic fertilizer derived from any commercial source shall be applied at the rate of 135 lb of N per acre.

766.62: Seed
Seed shall be included with the fertilizer at a rate of 10 lb per acre.

COMPENSATION

766.80: Method of Measurement
The quantity of Refertilization shall be the number of square yards based on actual measurements made over the general contour of the seeded areas, complete in place.

766.81: Basis of Payment
The work under this item will be paid for at the contract unit price per square yard, complete in place, which price shall include all labor, materials and equipment necessary to do the required work.

766.82: Payment Items

766. Refertilization .. Square Yard
SUBSECTION 767: MULCHING; SEED FOR EROSION CONTROL

DESCRIPTION

767.20: General
This work shall consist of furnishing and placing hay, straw, wood chip, wood fibre or aged pine bark mulch, as particularly specified, in the required amounts on the areas indicated on the plans or as directed.

MATERIALS

767.40: General
Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

- Hay Mulch ... M6.04.1
- Straw Mulch ... M6.04.2
- Wood Chip Mulch ... M6.04.3
- Wood Fibre Mulch ... M6.04.4
- Aged Pine Bark Mulch .. M6.04.6
- Seed for Erosion Control... M6.03.1

Bales of Hay for Erosion Control shall be fastened with wire and have a minimum size of 1.0 ft by 1.5 ft by 3.0 ft.

CONSTRUCTION METHODS

767.60: Preparation for Mulching
The areas upon which mulch is to be spread shall be prepared by raking, harrowing or dragging to form a reasonably smooth surface. All stones larger than 2 in., undesirable growth over 2 in. in height and all debris shall be removed from the area and disposed by the Contractor in a satisfactory manner. The disposal area shall be outside the location limits of the project, when required by the Engineer and shall be the responsibility of the Contractor without additional compensation.

When required by the Engineer, the Contractor shall spread, compact and grade additional acceptable material to repair gullies or depressions. Such additional material shall be obtained from suitable excavation or furnished by the Contractor under Item 150., Ordinary Borrow. The labor and equipment required to furnish and place the additional material shall be paid for under the respective item from which the material is obtained without additional compensation.

Grading preparatory to mulching will be included for payment under respective items of mulching.

767.61: Placing Mulch
Hay or Straw Mulch shall be loosely spread to a uniform depth over all areas designated on the plans, at the rate of 4.5 tons per acre, except over certain selected seeded areas where 2 tons of hay per acre shall be used, or as otherwise directed.
Hay or Straw Mulch may be applied by mechanical apparatus, if in the judgment of the Engineer the apparatus spreads the mulch uniformly and forms a suitable mat to control slope erosion. The apparatus shall be capable of spreading at least 80% of the hay or straw in lengths of 6 in. or more, otherwise it shall be spread by hand without additional compensation.

Wood Chip Mulch and Aged Pine Bark Mulch shall be loosely spread to a uniform depth over all areas designated on the plans, at the rate of 390 yd3 per acre (approximately 3 in. in depth), or as otherwise directed.

Wood Chip Mulch and Aged Pine Bark Mulch may be applied by mechanical means, except that if the equipment breaks the mulch into small pieces or changes its desired texture, as determined by the Engineer, it shall be spread by hand without additional compensation.

Wood Fibre Mulch shall be uniformly spread over certain seeded areas at the minimum rate of 1,400 lb per acre unless otherwise directed. It shall be placed by spraying from an approved spraying machine having pressure sufficient to cover the slopes from bottom to top in one operation. Immediately before spraying, the mulching material shall be mixed with water in the sprayer and kept uniformly suspended in the water by agitation during the spraying operation.

767.62: Hay Mulch with Seed for Erosion Control

The intent of these items is the prevention of slope erosion. If the sequence of operations is such that only portions of slopes have been completed, such portions shall be preserved by seeding and mulching when directed prior to completion of the remaining portions of the slope.

The work to be done under the above items consist of applying seed and hay mulch onto slopes that have been graded and completed to the required line and grade at locations designated on the plans and as directed by the Engineer.

The operations shall be separate with the seed applied first. This work may be applied by hand or by mechanical apparatus, if in the Engineer’s judgment, the apparatus spreads the materials uniformly and does not break the hay mulch into fine or small particles or otherwise change the desired texture of the hay mulch.

The seed shall be uniformly applied at the rate of 75 lb per acre.

767.63: Bales of Hay for Erosion Control

Bales of hay shall be supplied and placed along the bottom of slopes, ditches and where directed. The bales shall be securely fastened in place by staking or pinning as shown on the plans or in a manner approved by the Engineer.

During the course of construction, it may be necessary to remove and relocate or replace bales of hay as directed.

The removal of collected sedimentation and debris from behind these bales and disposal of same is included in this item.

The bales shall remain in place until the removal is directed by the Engineer. The bales shall then become the Contractor’s property and shall be disposed of off the site.
COMPENSATION

767.80 Method of Measurement.

Hay Mulch and Straw Mulch will be applied as required and measured by the ton delivered on the site as determined from certified weight slips, or by the square yard, or by the acre, depending on the payment item.

Wood Chip Mulch and Aged Pine Bark Mulch will be measured by the cubic yard based on either truckload measurements delivered on the project or in place measurement, the method of measurement to be determined by the Engineer.

If truckload measurement is used, wood chip mulch taken from this measured volume for mulching trees and shrubs other than placed in mass planting areas will be deducted on the basis of the volume of chips placed over the rated size of each planting pit at a depth of 4 in.

No deduction shall be made in mass planting areas for wood chip mulch ordinarily included in the unit price of the trees or shrubs planted therein.

Wood Fibre Mulch will be measured by the ton delivered on the project, as determined from the net weight certified by the manufacturer on the containers, or as determined from weight slips accompanying delivery.

Bales of Hay for Erosion Control will be measured by the unit in place, each.

Ordinary Borrow will be measured as specified in 150.80: Method of Measurement or by truck load measurement, as determined by the Engineer.

Seed for Erosion Control will be measured by the pound.

767.81: Basis of Payment

Hay Mulch and Straw Mulch will be paid for, complete in place, at the contract unit price.

Wood Fibre Mulch will be paid for, complete in place, at the contract unit price per ton.

Wood Chip Mulch will be paid for complete in place at the contract unit price per cubic yard.

Aged Pine Bark Mulch will be paid for complete in place at the contract unit price per cubic yard.

Bales of Hay for Erosion Control will be paid for each, which shall include all labor, material and equipment necessary to place the bales, relocate as directed and finally remove and dispose of the bales including the removal of sedimentation from behind the bales of hay.

Replacement of Bales of Hay, when directed, will be paid for each.

Ordinary Borrow will be paid for complete in place at the contract unit price per cubic yard.

Seed for Erosion Control will be paid for at the contract unit price per pound.
SUBSECTION 769: PAVEMENT MILLING MULCH UNDER GUARDRAIL

DESCRIPTION

769.20: General
The work shall consist of placing a geotextile fabric under guard rail and placing 4 in. of pavement millings on top of the fabric.

MATERIALS

769.40: General
Pavement milling mulch shall meet the requirements specified in M1.10.0: Pavement Milling Mulch.
The geotextile fabric shall conform to M9.50.0: Geotextile Fabrics for Stabilization Fabric.

CONSTRUCTION METHODS

769.61: General
The mulched area will generally be 3 ft wide and start at the back of the berm, sloped edging, curb or edge of roadway pavement. In end treatment areas where the guard rail is set back from the edge of roadway, the mulch will extend from the edge of roadway to 6 in. behind the back of the guard rail posts.

769.62: New Guard Rail
Where the milling mulch is being placed at locations of new guard rail installation, the fabric and millings shall be placed prior to placing the guard rail. When posts are to be driven, the millings shall be moved aside in the vicinity of the post, the fabric cut, and then the posts shall be driven. After the posts are driven, the millings shall be raked closely around the posts.

769.63: Existing Guard Rail
Where the milling mulch is to be placed in locations of existing guard rail, the fabric shall be placed on both sides of the post and shall be cut at the posts to allow the fabric to lay flat between the
posts, and to overlap a minimum of 1 ft. The millings will then be placed and raked closely around the posts.

COMPENSATION

769.80: Method of Measurement

The quantity of pavement milling mulch shall be the number of feet based on actual measurements made along the guard rail.

769.81: Basis of Payment

The work under this item shall be paid for at the contract unit price per foot complete in place, which price includes the geotextile fabric, pavement millings, and all related excavation, borrow, and grading.

769.82: Payment Items

769. Pavement Milling Mulch Under Guard Rail ... Foot

SUBSECTION 770: SODDING

DESCRIPTION

770.20: General

The work shall consist of the construction of lawn sod as required, on the areas indicated on the plans, or as designated by the Engineer, and in accordance with these specifications.

MATERIALS

770.40: General

Materials shall meet requirements specified in the following Subsections of Division III, Materials:

- Loam Borrow ... M1.05.0
- Topsoil ... M1.07.0
- Sod ... M6.05.0
- Seed ... M6.03.0

CONSTRUCTION METHODS

770.61: Laying Sod

A foundation for the sod shall consist of loam borrow or topsoil rehandled and spread in quantities sufficient to produce a depth of at least 4 in. after tamping and natural settlement as taken place for 1 month. Soil surface shall have a continuous surface free of stones, sticks or roots greater than 2 in. in any dimension, without voids or irregularities. Prior to placement of sod, loam shall be lightly scarified with a rake and watered lightly.

Fresh sods shall then be placed in final position on the designated areas. All sods shall be harvested, delivered and installed within 48 hours. Planting season for sod shall be from April 15 to June 1 and
from August 15 to November 1. Any requests to deviate from this schedule must be submitted by the Contractor to the Engineer in writing.

When air temperature exceeds 90°F, the period of time from harvest to installation shall be less than 24 hours. Sod shall not be planted in soil with a temperature greater than 90°F.

Work shall progress in such a manner that workers are not walking on installed sod. Sod shall be placed parallel with the contour. Vertical joints between sods shall be staggered. Ends and sides of sod shall be butted closely together so that sod is not stretched and ends do not dry out. Contractor shall use full pieces throughout, and trim excess with clean straight cuts. Waste sod and scraps shall not be assembled to create a new piece. All sods shall be very carefully handled, to prevent loosening and separation of the loam from the roots.

The combined thickness of the sod and loam shall be at least 6 in. The sod shall be settled by watering it and by tamping on a board laid over it.

If sod cannot be installed immediately upon arrival to the site, the sod shall be stored in a shaded location, sprinkled with water, and covered with burlap, straw or other acceptable material which shall be kept moist when required and as directed. The sod shall be placed in layers so that the grassy side of the first or bottom layer shall be uppermost, whereas in the next succeeding layer the roots shall be uppermost, and so on in such a manner as to place the grass or roots of each succeeding layer in immediate contact with the corresponding surface of the preceding layer. The sod shall not be stored in such a manner to compress the thickness of sod below 2 in.

770.62: Fastening Sod to Slopes

On slopes steeper than 3:1, sod shall be held securely in place with wooden pegs. The pegs shall be placed at intervals not greater than 3 ft. Pegs shall be at least 1 ft in length, driven flush with the surface of the sod. Other approved methods of fastening sod to slopes may be used where pegging is not practicable.

770.63: Surface Dressing of Sodding

When the sod has been set in final position, loam shall be used to fill the joint and as a surface dressing to cover the sodded areas to a depth of about ¼ in. A grass seed mixture conforming to the specifications stated in M6.03.0: Long Term Seed Mixes for Lawns and Slopes for Slopes and Shoulders shall be mixed with clean, dry sand or dry sandy loam and sown upon the loam surface dressing at the rate of 0.45 lb per 100 yd². The sodded areas shall then be compacted, and the compaction shall be equivalent to that produced by hand roller with a mass of between 75 and 100 lb per ft of width and to produce a smooth, uniform surface.

770.64: Maintenance and Care

The Contractor shall maintain all of the sodded areas for a minimum of 30 days following installation, or until the work has been officially accepted, whichever is longer, without additional compensation. Before acceptance of the work, a satisfactory uniform stand of grass will be required. Partial acceptances will not be granted. Maintenance and care shall be as specified under 765.66: Care During Construction and the following:

If necessary, suitable signs and barricades of brush or other material shall be placed to protect the sodded areas. Barriers shall be removed prior to final inspection.
Maintenance shall include watering, mowing, and any reseeding or resodding determined necessary by the Engineer.

Sod shall be watered in sufficient quantities to maintain adequate soil moisture to a depth of 4 in. Watering shall be done in a manner that will provide uniform coverage, prevent erosion due to application of excessive quantities over small areas, and prevent damage to the turf by the watering equipment.

Mowing shall occur before turf exceeds 5 in. and shall be cut to a height of 3 in.

COMPENSATION

770.80: Method of Measurement

The quantity of sodding shall be the number of square feet based on actual measurements made over the general contour of the areas sodded, complete in place and accepted.

770.81: Basis of Payment

The work involved in sodding will be paid for at the contract unit prices per square yard, complete in place, under the respective items for Lawn Sodding, which prices shall include maintenance, loam for filler and top dressing and seed, except loam used for foundation of sod which will be paid for as Loam Borrow or Topsoil Rehandled and Spread.

770.82: Payment Items

770. Lawn Sodding .. Square Yard

SUBSECTION 771: PLANTING TREES, SHRUBS AND GROUNDCOVER

DESCRIPTION

771.20: General

This work shall consist of furnishing, planting and/or transplanting specified trees, shrubs, vines and ground cover to locations as shown on the plans and/or as directed by the Engineer.

The work shall include excavation of pits, placing of backfill mixture, mulching, watering, staking or guying, wrapping for transport, adding fertilizing and/or other soil amendments, seeding, weeding, watering, care of the plants, and replacement of unsatisfactory plants and materials during the life of the contract.

The Contractor performing work under this Section shall have five years continuous experience and expertise in management, handling and installation of ornamental plant material in large-scale landscape construction projects. Site foreman shall have at least five years’ experience, able to read and interpret plans, and shall be on-site during all times of plant installation.
MATERIALS

771.40: General

Materials shall meet the requirements specified in the following Subsections of Division III, Materials with the amendments and supplements contained herein:

- Loam Borrow
- Organic Soil Additives
- Inorganic Amendments
- Fertilizer
- Wood Chip Mulch
- Aged Pine Bark Mulch
- General Planting
- Nursery Stock – General
- Wrapping for Transport
- Materials for Guying and Staking
- Water for Irrigation

The Contractor shall furnish written certificates of compliance, including nursery shipping lists, in triplicate for each load of plant material showing where the plants were grown and listing all transplantings, age or size as specified, grade and quantity. All plants shall be tagged with botanical name, including cultivar, and size so that proper identification can be made.

All plants shall be northern grown nursery stock. Botanical and common names shall conform to the current edition of Hortus Third, compiled by the staff of L. H. Bailey Hortorium, Cornell University. The latest edition of the American Standard for Nursery Stock (ASNS) published by the American Association of Nurserymen, Inc. shall be the Department's standard for plants and for plant, root ball, and container size, as well as growth and form requirements. The term “plant” shall refer to any tree, shrub, herbaceous perennial, seedling, vine or groundcover.

All trees and shrubs shall be balled and burlapped (B&B) or containerized. The caliper, height, age and other dimensions as specified for all planting material shall apply at the time planting is done and the plants will be inspected by the Engineer at this time as to these requirements as well as the quality or grade and varieties required. The Contractor shall remove all plants not approved by the Engineer from the project.

The following standards shall apply to the work of this Section.

Examination of Conditions

The Contractor shall be responsible for judging the full extent of work requirements involved. This responsibility includes, but is not limited to, the following: transportation, purchase, temporary storage and maintenance of plants; plant rehandling prior to final installation; removal and off-site disposal of existing loam that has been determined unacceptable; purchase, transport, and supply of loam as required for backfill mixing operations.

771.41: Samples and Submittals

The Contractor shall keep the Engineer apprised of the sources and availability of plant material in the Contract. Within 30 days of the pre-construction meeting, the Contractor shall provide nursery supplier lists indicating current and projected availability of all plant material for the project. All the material shall match species, cultivar, sizes and quantities specified in the Contract.

At least 120 days prior to planting, the Contractor shall submit to the Engineer for their approval a watering schedule for all planting in the project. Watering schedule shall include all methods for providing water to plants.

At the same time, the Contractor shall submit a confirmation of availability for all plants on the list, accompanied by nursery sources. When the specified types and sizes of plants are not available, the Contractor may submit written recommendations for substitutions for approval by the Engineer. Substitutions proposed by the Contractor shall have equivalent overall form, height, and horticultural characteristics and must be approved in writing by the Engineer prior to tagging.

For materials other than plants, at least 90 days prior to installation the Contractor shall submit material specifications and (where applicable) installation instructions attesting that the materials meet the requirements specified. No materials shall be ordered until submittals have been approved by the Engineer. Delivered materials shall match the samples. All material samples shall include supplier's literature and certification stating that material meets specifications.

The Contractor shall submit for approval equipment and methods for testing soil moisture and soil pH.

The Contractor shall provide two moisture gauges, including instructions for use and batteries if required, for their use during the duration of the Contract. The meters shall be hand held and shall be capable of measuring moisture at a depth of 6 in. Meter scale shall be sufficient to determine moist, dry, or wet soil. The meters shall be regularly checked for calibration against watered loam and shall be replaced if found faulty at no additional cost.

In addition, the Contractor shall provide to the Engineer one copy of the American Standard for Nursery Stock, ANSI Z-60.1, latest edition.

For work requiring an arborist, the Contractor will provide certification of Massachusetts Certified Arborist.

At least 60 days prior to planting, the Contractor shall submit a schedule for tagging material to the Engineer.

Materials may be temporarily stored within the highway layout as directed by the Engineer. Heavy equipment and fill material shall be stored outside of the drip line of existing tree canopy. If
materials are stored within the layout, the Contractor shall restore the storage area to its original natural condition at the their expense, including tilling of compacted soils and reseeding.

Arrangements shall be made, to the extent that it is practicable, to have plants delivered as the pits or beds are made ready for them. Delivery of plants shall be made to the site, only according to the Contractor’s ability to handle and properly care for them. Whenever plants cannot be planted on the day of arrival, all those with bare roots shall be “heeled-in” in moist soil or mulch. The Contractor shall properly maintain all “heeled-in” plants until they are planted. In the event that “heeled-in” plant material must be held over until the next planting season such material shall be lifted and replanted in a satisfactory manner in nursery rows as directed by the Engineer and shall be suitable for transplanting the following season. The root balls of B&B plants not planted immediately after delivery and inspection shall be covered with loam, mulch or wood chips and irrigated until planted. Throughout the work, care shall be taken to keep the roots of all plants from drying out, to preserve the solidity of the balls of B&B plants, and to prevent plants from being broken, scarred or damaged in any way. All emergency storage of materials shall be at the risk of the Contractor.

For B&B and container shrubs, a representative sample, up to three, shrubs of each species shall be washed of soil media for inspection of Engineer to confirm root conditions. If accepted, the sample plants shall be planted immediately and shall be subject to all planting performance guarantees.

771.42: Backfill Mixture for Plant Material

The Contractor shall provide testing of soils in planting locations. The Contractor shall provide test results and recommendations as necessary for soil amendment to the Engineer for their approval. Backfill shall be a blend of one-part loam borrow, one part organic material and two parts existing subsoil.

CONSTRUCTION METHODS

771.60: General

Furnishing and planting of plant material shall include, but is not limited to, the following: digging of the pits and plant beds; amendment of loam as required to produce planting soil mix; provision of soil additives for pH requirements of specific plants; provision of additional amendments as required, including soil wetting agents; furnishing the plants as specified; plant installation; watering and maintenance, including weeding.

771.61: Seasons for Planting

The purpose of the planting dates is to establish an appropriate period of time for planting. The Contractor may submit request for planting outside the scheduled timeframes in writing to the Engineer for approval. Calendar guidance for planting is as follows:
II.346 2020 Edition

Table 771.61-1: Calendar Guidance for Planting

<table>
<thead>
<tr>
<th>Season</th>
<th>Material Type</th>
<th>Planting Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>Deciduous Materials</td>
<td>March 21 through May 15</td>
</tr>
<tr>
<td>Spring</td>
<td>Evergreen Materials</td>
<td>April 15 through June 1</td>
</tr>
<tr>
<td>Fall</td>
<td>Deciduous Materials</td>
<td>October 1 through December 1</td>
</tr>
<tr>
<td>Fall</td>
<td>Evergreen Materials</td>
<td>August 15 through October 15</td>
</tr>
</tbody>
</table>

Spring planting for bare root material shall be after the ground has thawed, but before leafing out, approximately mid-March to early April. Fall planting for bare root plants may occur in late October, after leaf drop, through mid-November.

771.62: Plant Tagging and Approval

The Contractor shall locate and tag plants at least one month prior to the expected planting date. The Contractor shall be responsible for tagging the material at the nursery. The Contractor shall request that the Engineer provide a representative to approve tagged stock to be planted under this Section. The Contractor shall be responsible for any expenses associated with any necessary travel and overnight accommodations for the Engineer’s representative during the period of time required to locate, select, and approve plant material.

All trees and representative samples of each shrub species on the Plant List shall be tagged by the Contractor at the nursery and approved by the Engineer or their representative, prior to digging, for conformity to specification requirements as to quality, size, and variety. All plants will have labels that list the common name, botanical name, and size.

Approval of tagged material at the nursery shall not prevent the right of inspection and rejection upon delivery at the site or during the progress of the work. Cost of replacement of materials rejected by the Engineer at the site shall be borne by the Contractor.

771.63: Plant Delivery and Planting Preparation

Tree trunks shall be protected during shipping by a heavy walled cardboard sleeve or other suitable material. Plants shall either be shipped in enclosed trucks or all surfaces, leaves and branches shall be wrapped to prevent damage and desiccation. Damaged plants may be rejected by the Engineer at any time.

Locations for all plants shall be approved by the Engineer before any plant pits or plant beds are dug.

The Contractor shall locate all underground utilities within 10 ft of the proposed planting pits and notify the Engineer of any conflicts prior to digging plant pits.

Stake all tree locations, and all shrub and perennial beds, for Engineer approval prior to digging. Contact DIGSAFE and other utilities if coordination has not already occurred for other phases of project.

Prior to the installation of any plant material, the Contractor shall dig test pits and determine percolation rates. Percolation of less than 1 in. per hr shall require corrective measures as recommended by the Contractor and approved by the Engineer.
The Contractor shall notify the Engineer 5 working days prior to the proposed arrival of plant material on the site. All plants shall be planted within 5 days of arrival on site or shall be rejected by the Engineer. Plants stored on site shall be shaded from direct sunlight at all times and shall not be stored on paved surfaces. Plants stored on site shall be watered daily.

771.64: Planting

Pits excavated for plants shall be as shown on the plans. In general, pits shall be 3 times the width of the rootball or plant container. Depth of the pits shall correspond to the height of the rootball, measured from the bottom to the lower extent of the root flare, ensuring that the root flare will not be covered. The sides and bottom of pit shall be scarified to prevent glazed soils.

Plant material installed in infertile or manufactured soils shall have soil modification agents added per manufacturer specifications. After planting, the Contractor shall certify that appropriate agents have been used and properly applied per the manufacturer’s specifications. Written certification shall be provided to the Engineer.

Place trees in the center of pit. Place shrubs and perennials in beds as a group, with grouping and spacing as noted on the plans.

For ball and burlap plants, remove all rope and wire baskets from the root balls. Burlap may be removed off the top and sides. Any excess burlap shall be cut away and disposed of offsite. For container grown plants, score or butterfly cut the rootball of all container-grown plants prior to planting. For peat or other similar degradable containers, remove any portion of the projecting above the level of the soil. All metal, plastic or other non-root-thru type container shall be completely removed during the process of planting.

Prepare planting soil mix as specified above to depths as shown on the drawings. Place backfill mix in layers of not more than 6 in., and water each layer sufficiently to settle soil before the next layer is put in place.

Backfill mix shall meet finished grade after settlement. Shape edge of planting pit to form a saucer for holding water and place mulch as shown in the plans. On steep slopes, the mound around the saucer may be omitted on the uphill side. Do not cover the stem flare of the plants with mulch.

Water plants immediately following planting as necessary to thoroughly moisten rootball and planting soil. The Contractor shall be responsible for furnishing their own supply of water to the site at no extra cost. The Contractor shall, at their own expense, replace any plants injured or damaged due to the lack of water, or due to the use of too much water, as determined by the Engineer.

Plants shall not be wrapped after installation, except as discussed below. Wounds shall not be painted. Trees shall not be staked unless wind or other local conditions require the additional protection.

Once the root ball is placed in the pit and the container, wires and burlap removed, carefully rake the root ball to spread the roots and partially backfill the pit, ensuring that the soil filters in among the roots. The backfill shall be placed with care taken not to injure or bruise the roots.
771.65: Bare Root Planting

Bare root material shall be delivered to the site in a dormant condition. Evergreens will be rejected if the fine roots were lost in digging. All bare root plants shall be prepared with hydrogel at the nursery prior to planting. The backfill mixture of soil placed beneath the plant shall be firmed prior to setting the plant. Do not fertilize bare root plants.

771.66: Staking and Guying and Wrapping

The Contractor shall consult with the Engineer to determine whether wind exposure, potential vandalism, or other conditions warrant tree staking and guying. Evergreen trees up to 4 ft high and deciduous trees up to 6 ft in height shall be supported by one stake driven firmly 2-3 ft into the ground. The stake shall be located far enough from the tree to avoid damaging the roots and so that the top of the stake shall be about two-thirds the height of the tree. The point of attachment to the stake shall not be more than 2 ft from the trunk. Secure the tree to the stake with biodegradable cloth webbing. Do not use wire for staking any plant.

Evergreen trees taller than 4 ft and deciduous trees taller than 6 ft, if less than 3 in. in caliper, shall be supported with two stakes on opposite sides and driven into the ground at least 2 ft. The stake shall not be higher than 75% the height of the tree. Any excess burlap shall be cut away and disposed of as directed.

Trees greater than 3 in. in caliper shall be securely guyed by biodegradable fabric webbing, protective material and anchors. Three anchors shall be equally spaced around the tree. Webbing shall be fastened around the tree trunk immediately above a substantial limb located one-half to two-thirds of the tree height above the ground and anchored at a distance from the trunk equal to two-thirds of the height of attachment to the tree. The anchor shall be a hardwood stake. The anchor stake shall be firmly driven at an angle and to a depth of at least 2 ft and the excess length of stake shall be cut off 3 in. above the ground.

Webbing shall be placed around the tree trunk and secured to the anchor stake.

Staking and guying shall be incidental to tree installation. Use cloth webbing rather than wire. Do not use hose.

All Flowering Cherries and Flowering Crabs shall be protected to a height of 12 to 18 in. above the ground from animals and rodents by a protective cage. The cage shall be of wire or plastic mesh or other approved material and shall not make any direct contact with the tree. Otherwise, do not wrap trees except for transport. Remove transport wrapping after installation of plant material.

771.67: Mulching

No mulch shall be applied prior to the first watering of the plant. Trees and shrubs shall be mulched no later than one week after planting.

Mulch material shall be furnished and placed over all pit or saucer areas of individual trees and shrubs and over the entire area of shrub beds to the depth indicated on the plans. Pull mulch away from stem flare.
In areas to be planted with roses, vines, or ground cover, the entire area shall be mulched before planting. The mulch shall be parted at the location of each hole and carefully replaced around the plant immediately after planting.

Preparation for mulch areas of mass planting shall conform to the provisions of 767.60: Preparation for Mulching.

Mulch material shall be material as indicated on the plans or approved by the Engineer.

The Contractor shall, at their own expense, replace any plant material that has been damaged by too much or too little mulch, as determined by the Engineer.

771.68: Pruning

Pruning of all plants shall be done only by a Massachusetts Certified Arborist or Horticulturist, as follows: Initially, all broken or dead or injured branches shall be cut flush with the trunk or limb, and broken roots shall be pruned on the plant side of the break. If damage is significant, then plant will be replaced per direction of Engineer.

Pruning shall not deform or otherwise destroy the typical shape or symmetry of the tree or shrub and shall not reduce the height or overall size by more than one-third. The leader of the tree shall not be cut back.

771.70: Care and Maintenance During Maintenance and Establishment Periods

The Contractor will be held responsible for all planted material, providing plant care for the duration of the Maintenance and Establishment periods described below, until the project is completed and accepted. At the completion of the Establishment period, all plants shall be in a healthy, growing condition and free from weeds or other noxious materials or conditions. Care shall include watering, weeding, cultivating, pruning, re-mulching, trimming, adjusting of guys, removal of dead material, resetting plants to proper grades or upright position, and maintaining the planting saucer, and by performing other operations as required to keep plants healthy and growing.

Pruning shall be in accordance with the ANSI standards for Class I, fine pruning, to preserve the natural character of the plant. All dead wood or suckers and all broken or badly bruised branches shall be removed. Do not cut leaders. The Engineer shall determine if plants require pruning or should be rejected. All pruning work shall be done by a Massachusetts Certified Arborist. Contractor will submit a copy of the Arborist’s current certification to the Engineer.

The Contractor will be responsible for weeding around planted materials. All weeding shall be completed before acceptance of the project. At no time shall weeds attain the height of 6 in. during the period of contract prior to acceptance. Newly planted material must be clearly visible in order to be approved for Conditional and Final Acceptance.

771.71: Watering

All plants shall be watered during planting and all plants shall be watered at least twice each week during weeks where the average daily temperature exceeds 55° F and when precipitation is less than 1 in., as determined by local National Weather Service data. Watering shall be sufficient to provide moist soil to a depth of 6 in., as determined by the Engineer. If soil is sufficiently moist, as determined by the Engineer, the required watering may be reduced.
Trees will require a minimum of 10 gallons of water each, and shrubs a minimum of 5 gallons per plant per watering. Watering may be achieved using individual drip irrigation bags.

Trees or shrubs planted after October 15 shall be thoroughly watered at the time of planting, after which subsequent watering will not be required until following season.

The Contractor shall maintain a watering log for all plants installed on the project, indicating dates of watering and weather events. Log shall be submitted for final payment.

771.72: Maintenance Period

The Maintenance Period shall begin immediately after all plants are planted and shall continue for a minimum of 60 days following the completion of all planting installations, or until the conditional acceptance of all planting work, whichever is a longer period of time. During the 60-day Maintenance Period, plants shall be inspected for watering, weeding, and other requirements at least twice each week.

Any decline in the condition of new plantings shall require the Contractor to take immediate action to identify potential problems and undertake corrective measures. If required, the Contractor shall immediately notify the Engineer and engage professional arborists and/or horticulturists to inspect plant materials and to identify problems and recommend corrective procedures. Inspection and recommendation reports shall be submitted to the Engineer.

At the end of the Maintenance Period, the Contractor will request inspection by the Engineer at least 10 days before the anticipated date of inspection.

At the time of inspection, if the plant materials, workmanship, and maintenance practices are acceptable to the Engineer, the date of the inspection shall establish the end of the Maintenance Period and the commencement of the required one-year Establishment Period for planting work.

If, in the Engineer's opinion, plant materials, workmanship, or maintenance is deficient, acceptance will not be granted, and the Maintenance Period for all the plants shall be extended until plant replacements are made or other deficiencies are corrected. All dead, declining, or unsatisfactorily maintained plants shall be removed promptly from the project. Replacement plants shall conform in all respects to the Specifications for the original plants and shall be planted in the same manner.

Absolutely no debris may be left on the site. The Contractor shall repair any damage to site as directed by the Engineer, at no additional cost.

771.73: Establishment Period

The purpose of the Establishment Period is to nurture plants through at least one full growing season and one full winter. Planted areas shall be free of weeds and debris, and plantings shall be re-mulched as necessary.

The Contractor is responsible for arranging inspection early enough in the season to allow adequate time to procure and install replacement material. The Engineer will inspect the replacement planting work upon the request of the Contractor. Request for inspection, shall be received by the Engineer at least ten days before the anticipated date of inspection.

At the end of the Establishment Period, each plant shall show healthy growth on at least 75% of its terminal stems, as determined by the Engineer. Determination of healthy growth shall include, but
is not necessarily limited to, viable leaves (in season) and terminal buds, as well as live cambium. Plants found to be unacceptable shall be removed promptly from the site and replaced immediately or during the next normal planting season, as permitted by the specifications.

Stakes and guying shall be removed from all plants before Final Acceptance, and materials will be disposed of offsite at no extra cost to the Contract.

771.74: Replacement of Defective Plant Material

Any dead and unsatisfactory plants shall be replaced in kind and size with plants as originally specified, or on approval by the Engineer in writing, by alternate or substitute varieties of plant material of equal value. Replacement plantings of evergreens shall be in place by October 15 and of deciduous by November 1. Replacement plantings shall conform to the provisions of this section, except the requirements for establishment.

A final inspection of all plant material for acceptance will be held after the replacement planting has been completed.

COMPENSATION

771.80: Method of Measurement

The quantity of plants to be paid for will be the number of living trees, shrubs, vines and ground cover plants of specified kinds and sizes furnished, planted and accepted in accordance with these specifications.

Mulch for planting beds and tree pits shall be incidental to the cost of the plants. Mulch used on areas other than over tree pits or planting beds will be measured by area and at the specified depth. The mulch taken from this measured volume and used for mulching trees and shrubs will be deducted on the basis of the volume of mulch placed over the rated size of each planting pit at a depth of 3 in.

771.81: Basis of Payment

The quantity of trees, shrubs, vines and ground cover plants measured as provided above will be paid for at the contract unit prices per each for planting of the types, species and sizes called for in the bid schedule. The unit price per planting item shall include furnishing and delivering all plants, furnishing and delivering prepared backfill soil, mulch, fertilizer, excavation for plant pits, planting, pruning, guying and staking, mulching, weeding, watering, cleanup, plant establishment work and care including replacements, and for all labor, equipment, tools and incidentals necessary to complete the work prescribed in this section, except that mulch for vines and ground cover plants will be paid for under the contract unit price for the mulch specified. Mulch for areas other than specified for trees and shrubs will be paid for at the contract unit price per cubic yard in place, under the item for Aged Pine Bark Mulch.

No payment will be made for mulching specified as required and included in payment for other contract items.
771.82: Payment Items

772-774 Evergreen Trees .. Each
775-784 Deciduous Trees .. Each
785-787 Evergreen Shrubs ... Each
788-795 Deciduous Shrubs ... Each
796. Vines and Groundcover .. Each
767.6 Aged Pine Bark Mulch .. Cubic Yard
SECTION 800: TRAFFIC CONTROL DEVICES

SUBSECTION 801: CONDUIT, MANHOLES, HANDBOLES, PULL BOXES AND FOUNDATIONS

DESCRIPTION

801.20: General

The work under this section shall consist of furnishing and installing and/or constructing the following in accordance with the requirements of the specifications, as directed on the plans and as directed by the Engineer.

A. Unless otherwise specified or indicated on the plans conduits or ducts, intended for use as raceways for the installation of wires and cables, shall be 3-in. nominal size.
 1. Type NM: Rigid Non-Metallic (Bituminous Fiber, Fire Clay Cement, or Plastic) shall be used for all underground runs unless otherwise specified. When Type NM Electrical Conduit is specified either of the Types NM Electrical Conduit listed under M5.07.0: Electrical Conduit-Rigid Nonmetallic (Type NM) may be used in the work, at the option of the Contractor, but only one type shall be used throughout any one contract.
 2. Type RM: Rigid Metallic (Steel, Steel Plastic Coated, Special Alloys or Aluminum) shall be used for all above ground runs, unless otherwise specified, and where augured or jacked conduit is required. When specified for underground use or to be encased in concrete, conduit shall be plastic coated or manufactured from metal inherently resistant to corrosion.
 3. Type FM: Flexible Metallic (Steel or Steel Plastic Coated) shall be used where flexibility and special applications are required.

B. Junction Boxes or Pull Boxes shall be of such dimension as shown on the Standard Drawings. Unless otherwise specified, other designs shall not be used. Pull Boxes shall be installed in all conduit or duct runs over 150 ft in length, where there is an abrupt change in direction, grade or elevation, to provide a direct one conduit entrance for wire and cable into signal, mast arm or strain pole foundations, and as directed by the Engineer.

C. Electric Manholes as shown on the Standard Drawings, plans, and/or as directed by the Engineer.

D. Foundations for light standards, lighting load centers, standard signal posts, pedestal signal posts, mast arms, strain poles and control cabinets.
801.40: General

Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

- Cement and Cement Concrete Materials ... M4
- Pipe, Culvert Sections, Conduit and Fittings, Pull and Junction Boxes M5
- Paint and Protective Coatings .. M7
- Metal, Related Materials, Cast Iron Frames and Covers M8
- Gravel ... M1.03.0, Type c

Metallic pull and junction boxes may be cast iron, welded sheet steel or cast aluminum, with gasketed covers securely fastened with monel or stainless-steel screws that will, with cover in place, be watertight. Cast iron or sheet steel boxes shall be hot dipped galvanized conforming to the applicable portions of ASTM A153.

CONSTRUCTION METHODS

801.60: Conduit

A. Excavating Trench.

The conduit shall not be placed until after the gravel subbase for the roadway has been constructed and the rolling thereof has been completed.

The trench for a single conduit line shall be excavated to a width of 18 in. to a depth not less than 36 in. below the proposed grade of the finished pavement as shown on the plans. Whenever 2 or more conduit lines are to be laid in the same trench, the trench shall be excavated to the width shown on the plans or as specified in the Special Provisions. If the condition of the bottom of the excavated trench is wet, clayey or spongy, or otherwise unsatisfactory, the Engineer may require that the bottom of the trench be excavated deeper and the space filled with clean gravel to form a firm bearing for the conduit. The gravel shall be firmly compacted in layers not over 6 in. in depth. The grade of the finished trench shall be parallel to the proposed pitch of the traffic conduit or duct.

Existing pavements shall be sawcut in accordance with the requirements of Subsection 482: Sawcutting as shown on the plans and as required by the Engineer.

B. Preparation of Bed.

After the trench has been excavated to the proper width and depth as specified above, a gravel foundation 6 in. in depth shall be constructed on the bottom of the trench to provide a proper cushion for the conduit. This cushion of gravel shall be thoroughly tamped.

C. Laying Conduits.

Unless otherwise directed, all conduit lines shall be direct from one end to the other, no bends being allowed except when entering a pull box or signal base. Whenever 2 or more conduit lines are to be laid in the same trench, the conduits shall be separated from each other by a minimum distance of 3 in.
D. Joints.

All joints shall be made in accordance with conduit or duct manufacturer’s recommendations, NEMA, UL and the MEC.

E. End Markers.

Dead ends of conduit lines shall be plugged with wooden, plastic or fibre stoppers. To mark the ends, sections of 2-in. by 4-in. studs, long enough so as to project above the surface of the ground after the trench has been backfilled, shall be set vertically before the backfill is placed. For single conduit lines, the stud shall be butted directly against the stopper in the end of the conduit. Where 2 or more conduit lines converge to a common point, each line shall be ended 2 ft from the common point of intersection and a stud set up at this point. Backfill shall not be placed until the Engineer has established the necessary ties to the studs.

F. Concrete Envelope.

All Type NM Conduits or ducts marked “X” on the plans shall be encased in a concrete envelope as shown on the Standard Drawings.

G. Filling Trench.

Gravel fill shall be made around the sides of the conduit and over it for a depth of 3 in. and thoroughly tamped. A plank of spruce, fir, hemlock or other satisfactory wood, about 6 in. wide and 2 in. thick, (nominal dimensions) shall be placed over this gravel and the filling of the trench with suitable materials in layers of not over 6 inches, compacted thoroughly, shall be completed. If Extra Heavy Wall (Schedule 80) Conduit is selected as an option for Rigid Non-Metallic Conduit, an approved underground warning tape may be substituted for the 2-in. by 6-in. plank.

H. Testing Installation.

After the trench is backfilled, the Contractor shall, in the presence of the Engineer, test the installation by pushing or pulling through the entire length of the conduit line a rod, rope or fish tape on the end of which is attached a brush and ball with a diameter not smaller than ¼ in. less than the inside diameter of the conduit. All obstructions, including stones, dirt, concrete, etc., shall be removed, and damaged conduits shall be replaced at the expense of the Contractor.

I. Conduit and Duct Crossing Paved Roadways.

Unless otherwise specified, when a trench has been cut across a paved surface, the trench shall be bridged with a 6-in. concrete slab as shown on the Standard Drawings.

When jacking or drilling methods are specified for placing conduits under existing pavements, pavement shall not be disturbed without the approval of the Engineer. In the event obstructions are encountered, upon approval of the Engineer, small test holes may be cut in the pavement to locate the obstructions. Jacking or drilling pits shall be kept 3 ft clear of the edge of any type pavement wherever possible.

J. Conduit on Structures.

Conduit system on structures shall consist of furnishing and installing all material and equipment and performing all work necessary for a complete conduit system. The type of conduit shall be as
designated on the plans conforming to the requirements of M5.07.1: Electrical Conduit-Rigid Metallic (Type RM). All conduit bends shall be made in a neat and workmanlike manner. Crushed or deformed conduit shall not be used. Conduit ends shall be reamed to remove all burrs, and all chips resulting from reaming removed from the conduit before installation. The ends of all conduit runs shall be protected by grounding bushings and be capped if wire and cable is not to be installed immediately. Conduit shall be held rigidly in place to prevent misalignment during placing of concrete. Reinforcing bars shall not be cut, bent, displaced or otherwise altered from that shown on the design plans, unless directed otherwise by the Engineer. One manufactured expansion fitting (made of material compatible with the conduit) shall be used for each conduit run on structures at every expansion joint of the structure, unless flexible metallic conduit loops or bends are stipulated. Clamps or hangers shall be provided at intervals not exceeding 5 ft.

Conduit runs shall be made with the minimum practicable number of bends. The total of the angles of bends between junction or pull boxes shall not exceed 270°. So far as practicable, all bends shall be formed by the use of factory standard radius elbows. For metal conduit, where special angles of bends or offset bends are required, they may be formed to a radius of not less than 6 times the nominal inside diameter, provided the bend is made on a pipe bending machine. Field bends may be made by the use of a conduit bender forming curves the minimum radius of any portion of which shall not be less than 12 times the nominal inside diameter. Short radius bends shall be accomplished by the use of junction boxes or special condulets. Hot bends or other methods of bending which will destroy the protective coating on the metal conduit will not be permitted.

Conduit in which the cross-sectional area has been reduced or which contains sharp kinks will be rejected. Unless the plans indicate otherwise, conduit shall be continuous from outlet to outlet; however, the runs may be interrupted by condulets placed for the purpose of pulling conductors or making short radius bends. All metal conduit shall be cut square the ends internally reamed and threaded the proper length and assembled at all fittings in proper manner so that all joints will be mechanically secure, water tight, and provide electrical continuity. All threaded connections shall be given a coat of pipe joint compound before fitting up.

The ends of field cut joints on non-metallic conduit, except plastic, shall be tapered to conform to factory ends. The sections shall be joined at couplings and fittings by tapping the ends of sections sufficiently to provide water tight joints without over stressing or cracking the fittings. Where non-metallic conduit is joined to metal conduit, special tapered and threaded non-metallic adaptors shall be used. When fitting up compound is specified for non-metallic conduit the compound shall be of a type which will remain plastic during assembly and set within a reasonable period thereafter. The compound shall be carefully painted on joints so that excess compound will not intrude on the inner surface of the conduit after assembly.

All junction boxes shall be of sufficient size to provide for proper splicing and packing of all conductors, plus additional space for a future increase of 50% in the number of conductors or conductor size.

All unused openings in boxes and fitting shall be closed by tight metal plates or plugs and all dead ends of conduit, except where provided for drainage, shall be fitted with pipe caps.

All terminal ends of conduit not ending in boxes or condulets shall be fitted with rubber bused caps containing the required number and size of holes to tightly fit the conductors running through, or fitted with, standard water tight terminal fittings or pot-heads.
Where an obstruction may have developed in any conduit run it shall be removed, if practicable. If the obstruction is not removed the affected portion of the conduit system shall be removed and replaced with new, clean conduit or, if this cannot be accomplished, an entire new conduit shall be placed around the affected section at a location selected by the Engineer.

All conduit encased in concrete shall be rigidly held in proper position during concrete placement. Non-metallic conduit shall be secured against separation at the joints during concrete placement by being tied to a separate steel rod at least ½ in. in diameter running the full length of the conduit. Such rod and ties shall be considered as parts of the electrical installation.

Provisions for adequate drainage shall be made in all conduit systems. Horizontal runs shall be slightly pitched and unless completely sealed against moisture. All low points shall be drained.

Conduit shall be adequately supported by sleeves, fixed boxes, hangers, clamps or anchorages placed at intervals not exceeding 5 ft. Anchor bolts which are indicated on the plans as set in concrete shall be placed in the proper location before placing concrete.

Condulets, pull boxes, junction boxes and caps shall be of galvanized cast or malleable iron, of the threaded connection type with cast waterproof covers fined with moisture proof gaskets. The covers of junction boxes which house transformers or cutouts shall be attached to the box by hinges or chains.

Conduit or raceway sleeves shall be placed during construction of the portions of the structures in which they are located. They shall be maintained in a clean condition and protected from damage or obstruction by placing removable plugs or caps until ready for use.

In general, exposed conduit shall not be placed until all adjacent construction work has been completed. Portions of conduit to be encased in masonry, or boxed in between structural members, shall be placed in advance of placing concrete or during assembly of structural members and protected from damage and plugging by use of covers or tight fining metal caps.

801.61: Electric Manholes, Handholes, Pull Boxes and Junction Boxes

A. General.

Electric manholes, handholes, pull and junction boxes shall be built to the lines, grades, dimensions and designs shown on the plans or Standard Drawings with the necessary frames, covers, etc., in accordance with the applicable provisions of Subsection 201: Basins, Manholes and Inlets.

B. Cast in Place Concrete Units.

After excavation, all loose material shall be removed before the forms are installed. All conduits, ground rods, pulling irons and reinforcing steel shall be installed rigidly in place before the concrete is placed. After the concrete for the manhole, handhole or pull box is placed, and forms removed, all exposed portions of the concrete shall be neatly finished. Frame castings shall be set according to the requirements of 201.63: Placing Castings.

C. Pre-Cast Concrete Units.

The construction methods for pre-cast concrete units shall conform to the relevant provisions of Subsection 901: Cement Concrete, M4.02.14: Precast Units, and the above 801.61: Electric Manholes, Handholes, Pull Boxes and Junction Boxes, Paragraph B.
D. Metallic Units.

Metallic pull and junction boxes shall be installed at the approximate locations shown on the plans, or in long conduit runs, they shall not be spaced over 150 ft from each other. It shall be in the option of the Contractor, at their expense, to install additional pull or junction boxes that they may desire to facilitate their work.

Pull or junction boxes installed shall not be of dissimilar metal to the metal conduit used in any one electrical system.

801.62: Foundations

Light standard, lighting load center, signal post, strain pole, signal mast arm and signal control cabinet foundations, shall be constructed with the necessary anchor bolts (supplied under the items listed in Subsection 815: Traffic Control Signals, Subsection 820: Highway Lighting and Subsection 824: Flashing Beacons, Illuminated Warning Signs, and Lighted Barrier Arrows), reinforcing rods, conduit elbows or sweeps, etc., as shown on the Standard Drawings, and in accordance with the applicable requirements of Subsection 901: Cement Concrete.

For core type foundation estimating and bidding purposes, in the absence of boring samples, or the actual determination of the soil properties at the proposed footing location, the Department will accept an assumed soil bearing pressure of 2 ksf for the design of the footing using the Span Wire Assembly Design Chart III of the Departments Standard Drawings. The moments shall be calculated from the data obtained from the relevant traffic control signal plan.

However, the augered foundations shall not be constructed prior to soil classification of the subsurface soil by a qualified firm or person to perform the soil classification, analysis, and footing design.

The actual existing soil conditions shall be determined from boring samples (see Subsection 190: Borings). If the results of the auger boring show that the soil classification requires the use of a Foundation Design Chart that requires a greater depth the foundation shall be constructed according to the requirements of the appropriate chart and payment will be made for the difference in depth under Item 815.98.

Inversely, if it is determined the soil classification permits the use of a Foundation Design Chart that requires a lesser depth, the Department shall be credited for the difference in depth under Item 815.98.

All unsuitable material within the limits of the footing must be removed at the direction of the Engineer (Peat organic material, material that has been dumped. etc.).

The concrete for the footing shall be placed immediately after excavation to prevent water from collecting in the excavated area.

COMPENSATION

801.80: Method of Measurement

When separate items are listed in the Proposal for various types of Electrical Conduits each type will be measured according to the following:
Pay items for single conduits will be measured by the foot between end terminals along the center line of the conduit as actually installed, complete in place and accepted.

Pay items for multiple conduits will be measured by the foot between end terminals along the center line of the conduit bank as actually installed, complete in place and accepted.

Electric manholes, handholes, pull and junction boxes, and signal and lighting foundations shall be measured for payment as a unit.

Allowance for rock, if not already paid for under previous rock excavation, shall be based on the width of rock encountered in the trench but not to exceed the width specified in 801.60: Conduit. Structure excavation shall be measured in accordance with Subsection 201: Basins, Manholes and Inlets.

The measured quantity (including a 6-in. depth allowance) will be paid for under the item for Class B Rock Excavation.

Gravel will be measured by the cubic yard as specified in 150.80: Method of Measurement.

Cement Concrete will be measured by the cubic yard as specified in 901.80: Method of Measurement.

801.81: Basis of Payment

The unit contract price per foot, shall be full compensation for furnishing and installing all conduits, couplings, expansion fittings, elbows, bends, caps, sleeves, clamps, hangers, reducers, tees, jointing compound, sealing compound, cement concrete required in 801.60: Conduit, Paragraphs F and I, planking required in 801.60: Conduit, Paragraph G, and gravel required in 801.60: Conduit, Paragraph B; for placing the electrical conduit in accordance with these specifications, including all excavation (except Class B Rock) or jacking required, backfilling of the trenches, chipping or sawing of pavement, bedding or hanging of conduit and all other work incidental to the construction of the conduit system, except that when electrical conduit is included on any project as an integral part of a traffic control signal or Highway Lighting System and the conduit is not shown as a pay item, it shall be considered as incidental to the construction and be included in the lump sum price for such systems.

The accepted quantities of signal and lighting foundations (including anchor bolts) will be paid for at the contract unit price each.

Anchor bolts will be paid for under the items listed in 815.82: Payment Items and 824.82: Payment Items.

The accepted quantities (including cost of castings) of electric manholes, handholes and pull and junction boxes will be paid for at the contract unit price each, complete in place.

Any incidental work or materials for which no basis of payment is provided will be considered as completely covered by the unit price bid.

Class B Rock Excavation will be paid for under Item 144. The contract unit price shall be considered full compensation for the satisfactory disposal of the Class B Rock excavated material.

Borings will be paid for in accordance with 190.81: Basis of Payment.
801.82: Payment Items

801.2-801.66 ___ inch Electrical Conduit Type NM (#)... Foot (# = double, 4 bank, or 6 bank)
804.05-804.6 ___ inch Electrical Conduit Type NM – Plastic (UL)......................... Foot
806.05-806.6 ___ inch Electrical Conduit Type RM – Galvanized Steel............... Foot
808.2-808.6 ___ inch Electrical Conduit Type RM – Plastic Coated Steel......... Foot
809.05-809.4 ___ inch Electrical Conduit Type FM... Foot
810. Conduit Encased in Concrete – SD4.041... Foot
811.10-811.14 Electric Manhole – SD2.0___* .. Each (*SD2.010 to SD2.014)
811.20-811.24 Electric Handhole – SD2.0___* .. Each (*SD2.020 to SD2.024)
811.30 Pull Box 8 x 23 Inches SD2.030... Each
811.31 Pull Box 12 x 12 Inches SD2.031... Each
811.35 Pull Box Adjusted ... Each
811.36 Electric Manhole Adjusted ... Each
811.37 Electric Handhole Adjusted .. Each
811.40-811.99 Junction Box ___ x ___ x ___ inches... Each (*SD3.010 to SD3.015)
812.10-812.15 Light Standard Foundation SD3.01___*.. Each
812.20 Lighting Load Center Foundation... Each
812.30 Standard Signal Post Foundation SD3.030.. Each
812.31 Pedestal Signal Post Foundation SD3.031.. Each
812.40 Signal Mast Arm Foundation... Each
812.50 Signal Control Cabinet Foundation SD3.050.. Each
815.98 Footing Cost Adjustment.. Foot

SUBSECTION 813: WIRING, GROUNDING AND SERVICE CONNECTIONS

DESCRIPTION

813.20: General

This work shall consist of furnishing and installing wire and cable of the type and size indicated for traffic signals, highway lighting and related electrical systems, equipment grounding systems, new ground electrodes or connections to existing ground electrodes and all materials and equipment necessary to deliver power to traffic signal, highway lighting and related electrical systems.

Service points shown on the plans are approximate only. The Contractor shall determine exact locations and riser elevations from the serving utility, arrange to complete the service connections and be responsible for all charges incidental thereto.

All electrical connections, splicing, grounding, resistance tests, service connections and circuit identification shall be done by a licensed electrician holding “Certificate B” issued by the State Board of Examiners of Electricians.
813.21: Cable Types and Uses

The types of wire and cable shall be used in the following manner:

<table>
<thead>
<tr>
<th>Wire Type</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>All traffic control signal circuits above ground supported by a messenger wire, in duct or other electrical wire and cable raceway and shall be installed only when the air temperature is above 35°F.</td>
</tr>
<tr>
<td>Type 2</td>
<td>Same as Type 1 except may be installed at any air temperature above 20°F.</td>
</tr>
<tr>
<td>Type 3</td>
<td>All traffic control circuits installed above ground supported by integral messenger.</td>
</tr>
<tr>
<td>Type 4</td>
<td>Same as Type 3 and when an electrical continuous metallic shield is required.</td>
</tr>
<tr>
<td>Type 5</td>
<td>All traffic signal circuits for direct earth burial or severe service conditions.</td>
</tr>
<tr>
<td>Type 6</td>
<td>Traffic control signal heads.</td>
</tr>
<tr>
<td>Type 7</td>
<td>All power and lighting distribution systems in duct or other electrical wire and cable raceways.</td>
</tr>
<tr>
<td>Type 8</td>
<td>Same as Type 7 and includes direct earth burial, services and roadway wire loops (USE XLP only).</td>
</tr>
<tr>
<td>Type 9</td>
<td>Special purpose when specified.</td>
</tr>
<tr>
<td>Type 10</td>
<td>Grounding and bonding traffic control and highway lighting systems.</td>
</tr>
<tr>
<td>Type 11</td>
<td>Shielded detector lead-in cable for wire loop detectors.</td>
</tr>
<tr>
<td>Type 12</td>
<td>Multi-conductor heavy duty portable power cord for traffic control signal mast arm and high mast tower lighting.</td>
</tr>
<tr>
<td>Type 13</td>
<td>Loop detector wire with tube.</td>
</tr>
</tbody>
</table>

MATERIALS

813.40: General

A. Wire and Cable.

All traffic signal cable connectors shall be not less than #14 AWG, solid or stranded, and all conductors for mast arm and/or span wire shall not be less than #16 AWG stranded. Materials shall meet the requirements specified in Section M8: Metals and Related Materials.

B. Equipment Grounding.

Unless otherwise specified, equipment grounding conductors shall be not less than #8 AWG insulated or bare, solid or stranded copper wire meeting the requirements specified in M8.16.10: Type 10 Grounding and Bonding Wire (Solid or Standard, Insulated or Bare).

C. Ground Electrodes.

Ground electrodes shall consist of a water pipe, driven rods or other devices approved for the purpose. Water pipes and driven rods used as grounding electrodes shall conform to the following requirements:
1. A metallic underground water piping system shall be used as grounding electrodes where such a system is available.

2. Where a water system is not available, the grounding connection shall be made to an electrode meeting the requirements specified in Section M8: Metals and Related Materials.

D. Service Connections.

All equipment furnished shall be new unless specifically mentioned otherwise and shall meet the current requirements of NEMA, UL and the code wherever such standards apply.

CONSTRUCTION METHODS

813.60: Wire and Cable

A. Steel Messenger Cable Fittings.

Messenger cable (integral with Types 3 & 4 Traffic Signal Cable) shall be secured to strain poles by means of pole bands. Pole bands shall be installed as detailed on the Standard Drawings. Strain insulators shall be installed as shown on the plans. Attachments to utility owned poles shall be according to the local utility company requirements and under the supervision of the local utility company Engineer. The Contractor shall furnish and install back guys, head guys, anchors, etc. that may be requested by the local utility Engineer, where guys are necessary due to the placement of traffic signal equipment on utility poles.

Traffic signal cable shall be attached to messenger cables by spinning the cable to the messenger with an approved lashing material (0.045 stainless steel or Kevlar-Aramid fiber core with nylon jacket) or when approved in writing by steel cable rings approved for the purpose.

B. Installation of Copper Wire and Cable.

Installation of wire and cable shall not begin until the conduit system has been tested in accordance with the requirements of 801.60: Conduit, Paragraph H.

All conductors and grounding wire shall be drawn, by hand, into ducts or conduits without damage to covering, sheath, insulation or wires. This wiring shall not be done until all work which may damage the wires has been completed. In pulling, all wires shall be drawn freely into conduits without kinks or bends, twisting or lapping. In general, all conductors in each conduit run shall be pulled at the same time, fed from free running reels. Powdered soapstone, talcum or other approved lubricant may be used to assist in placing wire and cable in conduits.

A sufficient length of slack shall be allowed for each cable in all manholes, handholes, pull and junction boxes and equipment enclosures, to provide for neat racking and movement due to thermal expansion and contraction.

C. Splicing.

Splices shall be made in accordance with the Electrical Code by Journeymen Electricians holding “Certificate B” issued by the Board of State Examiners of Electricians.

Splices shall be made only in manholes, handholes, control cabinets, junction boxes or signal and lighting bases.
Pull boxes shall not be used for splicing, except in pull boxes where vehicle detectors are used, soldered splices will be permitted in the pull box nearest the detector (see 813.60: Wire and Cable, Paragraph B). Detector leads shall not run in the same cable sheath or jacket in cable carrying signal currents.

The conductors shall be joined by the use of connectors and terminal lugs, listed by Underwriters Laboratory, and meet all requirements of the Massachusetts Electrical Code.

Splices shall be insulated. Unless otherwise specified, the Contractor may use any of the following:

1. A filler compound or moisture-resistant self-fusing tape, applied to a thickness equal to, and well lapped over, the original conductor insulation, followed by two layers of electrical insulating tape. The dielectric strength of splices shall be at least equal to that of the cable insulation.
2. A UL approved electrical spring connector (“wire-nut”) with an approved sealing compound for protection from dampness and water.
3. An approved re-enterable rigid body splice kit with a non-hardening sealing compound compatible with the wire insulation.
4. An approved heat-shrinking cable sleeve or tape, designed to provide electrical insulation and protect overhead and underground splices from moisture penetration, corrosion and electrical breakdown.

After wiring and splicing is completed, all conduit runs shall be plugged at all manholes, handholes, pull boxes, junction boxes, cabinets and foundations to form a complete closed conduit or duct system to prevent air circulation.

Approved sealing compound (including foam) shall be used in liberal amounts, carefully forced into the ends of the conduits and tightly packed around all wire and cables completely sealing the opening.

D. Highway Lighting Circuit Identification.

The Contractor shall furnish and install colored tapes and identification tags on all lighting conductors at the points where they connect to equipment and on cables in all pull and junction boxes and pole shafts. The colored tapes shall cover a 6-in. portion of the conductor at these points: line 1 - black, neutral - white, line 2 - red, line 3 - blue. In pole shafts, line - black, neutral - white, photocell bypass - red. The tags shall be nylon or other suitable non-metallic material, not less than \(\frac{3}{4} \) in. in diameter, and not less than \(\frac{1}{32} \) in. thick. Identification markings shall be stamped on the tags by means of small tool dies. Each tag shall be securely tied to the proper conductor by nylon or other suitable non-metallic cord (plastic or nylon).

E. Traffic Control Signal Circuit Identification.

The Contractor shall wire and splice traffic control signal circuits to conform to the following color identification code:
Table 813.60-1: Traffic Control Signal Wire Identification Code

<table>
<thead>
<tr>
<th>5/C Cable</th>
<th>Vehicle Phases</th>
<th>Overlaps</th>
<th>Pedestrian Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Black</td>
<td>Spare</td>
<td>Spare</td>
<td>Push Button Switch</td>
</tr>
<tr>
<td>2. White</td>
<td>Phase 1 through 8 – C</td>
<td>Overlap – C</td>
<td>Walk/Don't Walk – C</td>
</tr>
<tr>
<td>3. Red</td>
<td>Phase 1 through 8 – R</td>
<td>Overlap – R</td>
<td>Don't Walk – R</td>
</tr>
<tr>
<td>4. Green</td>
<td>Phase 1 through 8 – G</td>
<td>Overlap – G</td>
<td>Walk – G</td>
</tr>
<tr>
<td>5. Orange</td>
<td>Phase 1 through 8 – Y</td>
<td>Overlap – Y</td>
<td>Push Button Switch</td>
</tr>
<tr>
<td>6. Blue</td>
<td>Spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. White/Black</td>
<td>Phase 2 – C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Red/Black</td>
<td>Phase 2 – R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Green/Black</td>
<td>Phase 2 – G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Orange/Black</td>
<td>Phase 2 – Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Blue/Black</td>
<td>Spare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Black/White</td>
<td>Phase 3 – C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Green/White</td>
<td>Phase 3 – G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Blue/White</td>
<td>Phase 3 – Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Black/Red</td>
<td>Phase 4 – R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. White/Red</td>
<td>Phase 4 – C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Orange/Red</td>
<td>Phase 4 – Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Red/Green</td>
<td>Spare</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The number of conductors required for each traffic control signal system shall be as follows:

All systems shall have a minimum of one 5-conductor cable for each of the following controller outputs to field wiring required by the timing and sequence plan for the system:

- Vehicle Phases
- Overlap Phases
- Pedestrian Phases

Approval may be given, when requested in writing, for alternate use of one 20/C cable in lieu of four of the above 5/C cable.

The Contractor shall furnish and install colored tapes and identification tags on all cables at the points they connect to equipment in all signal bases, in all pole shafts, and in all pull and junction boxes.
The tapes shall cover a 6-in. portion of the cables at the above locations with the following colors:

- Black for Ring 1
- Red for Ring 2
- Brown for Detectors
- Orange for Overlaps
- Yellow for Pedestrian Phases

The tags shall be nylon or other suitable non-metallic material, not less than ¾ in. in diameter and not less than 1/32 in. thick. Identification markings shall be as follows:

- Vehicle Phase Numbers Ring 1
- Vehicle Phase Numbers Ring 2
- Detector Phase Numbers
- Overlap Phase Numbers and Letters

Pedestrian Phase Numbers

The identification markings shall be stamped on the tags by means of small tool dies. Each tag shall be securely tied to the proper cable by nylon or other suitable non-metallic ties.

813.61: Equipment Grounding

With each cable run an equipment grounding conductor shall be installed to which all equipment shall be bonded in accordance with standard practice and the Code.

Metallic cable sheaths, metal conduit, non-metallic conduit grounding conductors, ballast and transformer cases, metal poles and pedestals, metal junction and pull boxes, and metal cabinets shall be made mechanically and electrically secure to form a continuous system and shall be effectively grounded to the ground electrode installed at the service point.

Bonding of traffic signal standards, pedestals, strain poles and mast arms shall be accomplished by installing a $\frac{3}{16}$ in. or larger brass bolt in the lower portion of the shaft.

For bonding purposes in all non-metallic type conduit, the grounding conductor shall be run continuously. Where non-metallic conduit is to be installed for future use, the above-mentioned conductor may be omitted.

In lieu of the continuous equipment grounding conductor, when approved by the Engineer, a ground electrode may be installed at each pole or standard.

Bonding of metallic conduit systems in concrete foundations and pull boxes shall be by means of approved grounding bushings (compatible with the conduit) and bonding jumpers.

All expansion sleeves in metallic conduit runs shall be provided with a bonding jumper, as specified.

813.62: Grounding Electrodes

A. General.

When an underground water system is used as the grounding electrode, the grounding conductor shall be securely attached to the piping system by welding or brazing or other approved means.
If a water-piping system is not available, a driven rod, as specified in 813.40: General, Paragraph C, shall be used as the grounding electrode. Driven rods should, as far as practical, be embedded below permanent moisture level. Except where rock is encountered, rods shall be driven to a depth of at least 8 ft. Where rock is encountered other devices approved for the purpose shall be used (see Article 250 - Grounding MEC).

B. Resistance Tests.

Grounding electrodes shall, where practicable, have a resistance to ground not to exceed 25 ohms. Where the resistance is not as low as 25 ohms, additional rods shall be driven, placed at least 8 ft apart and connected in parallel with a #6 AWG bare copper solid or stranded conductor, as directed by the Engineer.

The measurement shall be made with either a Ground Ohmer or Megger Ground Tester with all wire disconnected (except parallel connections and test wires) from the rod and in the presence of the Engineer. The Contractor shall furnish the Engineer with a report of all resistivity tests, indicating the values obtained for each and combinations (parallel connected) of rods tested. This report shall become a part of the “as built” records.

813.63: Service Connections

Each service shall include a meter socket; a three-wire single phase or four-wire three phase solid neutral disconnect of size noted; the necessary conduit; conduit risers; cable and ground assembly; all installed in accordance with the Code, serving utility and Department requirements.

Service equipment shall include all equipment from the distribution lines of the serving utility to and including the metering equipment. Meter will be furnished and installed by serving utility.

Service disconnect, unless otherwise specified, shall be a standard type circuit breaker, encased in a NEMA Type 3R raintight enclosure that can be padlocked.

In general, all traffic signal services will be 120V or 120/240V, single phase, 60 Hz, alternating current, and all highway lighting will be 120/240V, 240/480V, single phase, or 277/480V, three phase, 60 Hz, alternating current.

Conduit for services shall not be less than 1.25 in. and be rigid metal above ground, securely fastened every 3 ft.

All wire and cable shall conform to Section M8: Metals and Related Materials, Type 8. The wires between the serving utility distribution lines and service disconnect shall not be smaller than #6 AWG.

The ground electrode shall conform to the requirements of 813.62: Grounding Electrodes.

Ground clamps shall be approved by UL and acceptable to the local power company.

In the case of underground services, the Contractor shall furnish and install all equipment as required by the serving utility.

The Contractor shall make adjustments in the installation to comply with the varied requirements of the Code and serving utility and perform all work to the satisfaction of the Code, serving utility and the Department.
COMPENSATION

813.80: Method of Measurement

A. Wire and Cable.

All cable will be measured by the foot, the measurement being made along the center line of the conduit in which the conductor is placed. No allowance will be made for the necessary lengths of slacked cable laid around the sides of manholes, hand holes, junction boxes, pull boxes, or extending from foundations for making splices, taps in cable, and connecting the internal components of control cabinets.

B. Equipment Grounding.

Equipment grounding will be measured as a unit including all nuts, bolts, washers including lockwashers, connectors, clamps and incidental materials to form a continuous system. Equipment grounding conductor will be measured by the foot conforming to 813.80: Method of Measurement, Paragraph A.

C. Ground Electrodes.

When a metallic underground water system is used as the grounding electrode, measurement will be made on the basis of the grounding conductor installed and connected to the metallic water-pipe system.

Measurement for ground rods will be based on units 8 ft, 10 ft or longer, as specified. If in the driving of standard units, obstructions are encountered, measurement will be made for the actual length driven. The ground rod shall then be withdrawn and re-driven at a new location to meet requirements specified above.

D. Service Connections.

Service Connections of each type will be measured on the basis of the number of services installed and connected to the serving utility distribution lines with all appurtenances in acceptable operating condition.

813.81: Basis of Payment

A. Wire and Cable.

All cable will be paid for at the respective contract unit price per foot for the type and size specified, which price shall include installation and connection of wire and cable and all splices and circuit identification. All additional materials required to complete the installation shall be considered as incidental thereto and included in the contract price for wire and cable and no additional compensation will be allowed.

B. Equipment Grounding.

The lump sum price for “Equipment Grounding” shall be full compensation for work necessary or incidental to the installation of the equipment ground, modifying existing grounds, or both, as shown on the plans. All additional materials and labor not shown on the plans or standard drawings called for herein and which are required to complete the installation shall be considered as incidental thereto and be included in the contract unit price for equipment grounding.
Equipment grounding conductor will be paid for at the contract unit price per foot as specified in 813.81: Basis of Payment, Paragraph A.

C. Ground Electrodes.

This work will be paid for at the relevant unit price which price shall include all ground clamps, #6 AWG copper conductors, excavation, backfilling, compaction, welding or brazing, all tests, reports and work incidental thereto.

Allowance will be made for ground rods not driven to minimum depths because of obstructions and will be paid for at the contract unit price per foot for ground rod.

D. Service Connections.

Service connections will be paid for at the contract unit price for each service connection complete in place.

All additional work called for herein which is required to complete the service connection shall be considered as incidental to the construction.

813.82: Payment Items

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>813.10</td>
<td>Traffic Signal Steel Messenger Cable – Type 0</td>
<td>Foot</td>
</tr>
<tr>
<td>813.21-813.25</td>
<td>Traffic Signal Cable – Type #___ (#1 to #5)</td>
<td>Foot</td>
</tr>
<tr>
<td>813.26</td>
<td>Traffic Signal Head Wire Type 6</td>
<td>Foot</td>
</tr>
<tr>
<td>813.30-813.39</td>
<td>Wire Type 7 No. – General Purpose (*10-4/0)</td>
<td>Foot</td>
</tr>
<tr>
<td>813.40-813.49</td>
<td>Wire Type 8 No. – Direct Burial (*10-4/0)</td>
<td>Foot</td>
</tr>
<tr>
<td>813.50</td>
<td>Wire Type 9 Special Purpose (TW-THW)</td>
<td>Foot</td>
</tr>
<tr>
<td>813.51</td>
<td>Wire Type 9 Special Purpose (UF)</td>
<td>Foot</td>
</tr>
<tr>
<td>813.52</td>
<td>Wire Type 10 - #8 Grounding and Bonding</td>
<td>Foot</td>
</tr>
<tr>
<td>813.53</td>
<td>Wire Type 11 – Loop Detector Lead-in</td>
<td>Foot</td>
</tr>
<tr>
<td>813.54</td>
<td>Wire Type 12 – Heavy Duty Portable Cord</td>
<td>Foot</td>
</tr>
<tr>
<td>813.55</td>
<td>Wire Type 13 – Loop Detector Wire and Tube</td>
<td>Foot</td>
</tr>
<tr>
<td>813.60</td>
<td>Equipment Grounding</td>
<td>Lump Sum</td>
</tr>
<tr>
<td>813.70</td>
<td>Ground Rod</td>
<td>Foot</td>
</tr>
<tr>
<td>813.71</td>
<td>Ground Rod 8 feet Long</td>
<td>Each</td>
</tr>
<tr>
<td>813.72</td>
<td>Ground Rod 10 feet Long</td>
<td>Each</td>
</tr>
<tr>
<td>813.80</td>
<td>Service Connection (Overhead)</td>
<td>Lump Sum</td>
</tr>
<tr>
<td>813.81</td>
<td>Service Connection (Underground)</td>
<td>Lump Sum</td>
</tr>
</tbody>
</table>

SUBSECTION 815: TRAFFIC CONTROL SIGNALS

DESCRIPTION

815.20: General

This work shall consist of furnishing and installing or modifying at each location, traffic control signals ready for operation.
Included in the work is the furnishing and installing or modifying existing traffic signal control equipment, signal heads, electric lamps, pedestrian push buttons, control equipment, vehicle detectors, posts and bases, poles, pedestals, mast arms, strain pole and span wire assemblies and all incidental materials (included in Subsection 801: Conduit, Manholes, Handholes, Pull Boxes and Foundations and Subsection 813: Wiring, Grounding and Service Connections) necessary for operating the traffic control signals.

This work shall also include furnishing and erecting any pertinent signs and all painting required to complete the installation. The removal, salvage, stockpiling, reinstalling or transporting of existing traffic installations will be covered under this section and appropriate pay items where applicable.

The locations of signal heads, controllers, standards and appurtenances shown on the plans are approximate and exact locations will be established by the Engineer in the field.

The responsibility for the exact and satisfactory installation of traffic signals shall rest with the Contractor and work performed, if not acceptable by the Engineer, shall be executed to the satisfaction of the Engineer by the Contractor at the Contractor’s expense.

All electrical equipment shall be designed, manufactured and tested in accordance with the applicable standards of the ANSI, IMSA, ITE, NEMA, UL and these Specifications.

Unless otherwise designated on the plans, on the Standard Drawings for Traffic Signals as set forth in the Special Provisions, and as specified herein, all work and materials shall conform to the requirements of the Massachusetts Electrical Code herein referred to as the electrical code.

Wherever reference is made to codes or standards mentioned above, the reference shall be construed to mean the code or standard that is in effect on the date of advertising of the project.

All electrical connections, splicing, grounding, resistance tests, service connections and circuit identification shall be done by a licensed electrician holding “Certificate B” issued by the State Examiners of Electricians.

Standard symbols and construction details for traffic signal installations are shown on the current Traffic Signal and Highway Lighting Standard Drawings.

Within 30 days following execution of the Contract, the Contractor shall submit to the Engineer for approval, a list of equipment they propose to install. The submission shall include all equipment identified on the plans or in the specifications by the name of the manufacturer, model or identifying number of each item. The list shall be supplemented by catalog cuts and such other data as may be required, including wiring diagrams of any special equipment and any proposed minor deviation from the plans. All the above data shall be submitted in triplicate for checking. Following checking, correction and review, not less than 5 complete approved sets shall be resubmitted to the Engineer for distribution. The Department shall not be liable for any material purchased, labor performed, or delay to the work prior to such review and approval.

The Contractor shall provide the Department, within 10 days of receipt of approval, written proof that they have ordered the Traffic Control Signal Devices required by this Section.

Shop drawings are required for all structural support materials and fabricated items that are not specifically detailed on the plans. Shop Drawings are not required for items that are on the QTCE.
The warranties that the Contractor receives from each manufacturer of equipment and materials pertinent to the complete and satisfactory operation of traffic signal installation shall be turned over to the Department at the time of acceptance of the project, at no cost to the Department. Each warranty so furnished shall indicate its expiration date and be in effect for a minimum period of one year from the date traffic signals were placed in continuous operation.

If within one year from the date the traffic signal system is placed on continuous operation the equipment and materials do not meet the warrants specified above and the Engineer notifies the manufacturer or their authorized representative promptly, the manufacturer or their authorized representative thereupon shall correct any defect either by repairing or replacing any defective part or parts, at no cost to the Department.

The Contractor shall, at their own expense, replace any part of the traffic signal control equipment found to be defective in workmanship, material or manner of functioning within six months from the date of final acceptance of all the installations.

It is the intent of the Plans, Specifications and Special Provisions to provide a complete traffic control signal system throughout the project.

It is not intended that every fining, minor detail or feature be shown and described, as the assumption is made that either the Contractor or their Subcontractor is an expert in the particular area of responsibility and is capable of interpreting the plans, specifications and special provisions so that the bid shall include all items required and that they shall be provided and installed in a neat and workmanlike manner.

Any installation of wiring by the Contractor will be performed by licensed electricians.

815.21: Equipment

All new equipment including controllers with cabinets, vehicle detectors and detector amplifiers shall be furnished, except as noted, and installed by the Contractor.

No equipment or accessories specified in Subsection 815: Traffic Control Signals will be accepted unless type tested and approved by the Department prior to the date of the proposal.

The Department will list annually all equipment and accessories that have been type tested approved and/or approval withdrawn.

Such approval by the Department of equipment or accessories, however, shall not relieve the Contractor of any responsibility required under Section 5.00: Control of Work. All approvals will be conditional, and the Department reserves the right to withdraw its approval of equipment or accessories at any time for any of the following reasons:

a. Subsection 815: Traffic Control Signals Delivery of equipment or accessories which do not meet requirements of Subsection 815: Traffic Control Signals.

b. Equipment or accessories with abnormal maintenance and performance records.
MATERIALS

815.40: General

The materials required are those specifically covered in the plans and in accordance with Division III of the Standard Specifications.

Any and all signs required shall conform to Subsection 828: Traffic Signs and the MUTCD.

Unless otherwise indicated on the plans or specified in the Special Provisions, all materials shall be new and of the latest design.

Any equipment that has been type tested and approved by the Department (815.21: Equipment) will be considered as meeting these specifications.

Where existing systems are to be modified, the existing equipment and material shall be incorporated in the revised system, salvaged or abandoned as directed by the Engineer in writing.

815.41: Controllers

See Special Provisions.

815.43: Mast Arms – Strain Poles and Span Wire Assemblies

See Special Provisions.

815.44: Posts and Bases

Standard Signal Post shall consist of a 4-in. shaft complete with an octagonal base (8 ft or 10 ft long including base).

Pedestal Signal Post shall consist of a 4-in. shaft complete with a pedestal base (8 ft or 10 ft long including base).

All posts and their bases shall be of the same material, either steel or aluminum. Aluminum signal posts shall utilize a tapered shaft.

815.45: Vehicle Signal Heads

See Special Provisions.

815.46: Pedestrian Signal Heads

See Special Provisions.

815.47: Louvered Hood and Optically Programmed Adaptors

See Special Provisions.

815.48: Traffic Signal Lamps

See Special Provisions.
CONSTRUCTION METHODS

815.60: General
Details of construction shall conform to all applicable requirements of the Standard Specifications and drawings, plans, details, Special Provisions, manufacturer’s instructions and directions of the Engineer.

815.61: Painting
All painting required shall be done in conformance with applicable portions of 960.63: Painting.

Aluminum posts, pedestals, poles, standards or mast arms shall not be painted. All galvanized surfaces shall not be painted unless abraded or damaged at any time after the applications of the zinc coating. The surfaces shall then be repaired by thoroughly wire brushing the damaged areas and removing all loose and cracked coatings after which the cleaned areas shall be painted with two coats of paint, conforming to the requirements of M7.04.11.

All traffic signal, highway lighting and related electrical equipment (except new traffic signal controller cabinets) that comes from the manufacturer with one or more coats of paint (excluding primer) will be accepted, as one coat if scars or abraded places are properly cleaned and spot coated.

Two additional coats of paint shall then be applied. If such equipment is painted at the factory with just a primer coat, the Contractor shall apply three coats of paint.

Paint shall be applied to all interior surfaces before equipment and appurtenances are installed and to all exposed parts of the equipment and appurtenances after they have been completely installed, using the following colors:

Controller Cabinets (Exterior) ... Aluminum
Controller Cabinets (Interior) .. Aluminum or White
Signal Posts (Exterior Steel) ... Yellow
Signal Posts (Interior Steel) ... Aluminum or Yellow
Mast Arm and Mast Arm Pole (Exterior) Aluminum
Mast Arm and Mast Arm Pole (Interior) Aluminum
Housings (Back) ... Yellow
Housings (Front) .. Black
Visors (Outside) ... Yellow or Black
Visors (Inside) .. Dull Black
Backboards .. Dull Black
Louvers .. Dull Black
Meter Sockets .. Aluminum

Painting may be omitted if equipment and materials are received from the manufacturer with equivalent paint specified above. All scars and abrasions shall be spot coated with two coats of the specified paint.

Steel poles (inner and outer surfaces) shall be painted in accordance with the applicable provisions of the Specifications.
All surfaces of aluminum bases in contact with concrete shall be coated, in the field, with a protective coating recommended by the manufacturer of the base.

815.62: Signals

A. General.

Signal posts, bases, mast arms, mast arm shafts and strain poles shall be handled in loading, unloading and erecting in such a manner that they will not be damaged. Any parts that are damaged due to the Contractor’s operations shall be repaired or replaced at the Contractor’s expense.

Unless otherwise directed by the Engineer, posts, bases, mast arms and strain poles shall not be erected on concrete foundations until the concrete has set for at least three days.

Mast arms and strain poles shall be raked sufficiently to be plumb after all loads have been placed, poles shall be raked by adjusting double nuts. Shims or similar devices for plumbing or raking will not be permitted.

The bottom of the housing assembly of a signal head not mounted over a roadway shall not be less than 8 ft nor more than 15 ft above the sidewalk or, if none, above the pavement grade at the center of the roadway.

The bottom of the housing assembly of a signal head suspended over a roadway shall not be less than 16 ft nor more than 19 ft above the pavement grade at the center of the roadway.

Each signal face shall consist of one or more sections, rigidly and securely fastened together, capable of being positioned to face one direction of traffic.

Each section shall be a self-contained assembly consisting of a housing with door, visor and optical unit (lens and reflector) with traffic signal lamp.

B. Signal Head Section.

Each section shall be constructed to the requirements of ANSI specified in 815.46: Pedestrian Signal Heads including the following:

1. Optical units for 8-in. sections shall be equipped with traffic signal lamps as specified in 815.48: Traffic Signal Lamps
2. Optical units for 12-in. sections shall be equipped with traffic signal lamps as specified in 815.48: Traffic Signal Lamps.
3. Optical units for optically programmed sections shall be equipped with traffic signal lamps as specified in 815.48: Traffic Signal Lamps, equipped with dimming device to reduce lumen output of each signal lamp for nighttime operations.

Signal faces containing sections with both 8-in. and 12-in. lenses may be required. All signal heads including multiple assemblies shall be completely shop assembled and delivered ready for erection. Multiple units shall be assembled using 1.5-in. pipe for the supporting framework and include 1.5-in. center supporting pipe for post top mountings. Span wire and mast arm units shall have approved tie braces for the lower framework without a center support. Welding shall not be used in frame assembly.
Each socket shall be wired with two #18 AWG stranded leads not less than 16 ft long conforming to the requirements of 813.40: General for Type 5 traffic signal head wire. Type TFF or TEW.

The color of the leads from the socket behind the:

- Red lens - 1 red and 1 white wire
- Yellow lens - 1 yellow and 1 white wire
- Green lens - 1 green and 1 white wire
- Green arrow - 1 blue and 1 white wire

At the option of the manufacturer, approved connecting blocks may be installed inside the housing for these connecting wires, provided a 16-ft colored lead for each socket and 1 white common lead is furnished as an integral part of each housing.

C. Hangers and Adapters.

Hangers and adaptors shall be of bronze or malleable iron, or other approved material, strongly constructed, and of hollow design to permit the suspension of signal heads from mast arms or span wires or mounted on brackets, posts or pedestals.

Signal heads intended for post or pedestal mounting shall have suitable slip fitters for post top mounting and be secured to posts by means of set screws.

Mast arm mounted signal heads shall have an approved universal joint and safety chain.

Bracket mounted signal heads shall have suitable brackets to attach them to timber or metal poles to permit either internal or external wiring. Brackets shall be of proper size to be properly attached to pole as shown on the Standard Drawings.

Span-wire mounted signal heads shall have a span-wire hanger similar in design to that shown on the Standard Drawings. Hanger shall be specifically designed for supporting a hanging object from steel stranded messenger cable and have “U” bolts to prevent lateral movement only. Each hanger shall be complete with a wire entrance device.

Where specified, integral terminal compartments shall be provided for any of the above types of mounting. Terminal compartments shall be fabricated of non-frangible metal and be of adequate size to accommodate a terminal block containing not less than twelve poles, each with two pressure type connectors. Each connector shall be capable of holding four #12 AWG conductors.

D. Backplates.

Where stipulated, backplates shall be furnished and installed. Backplates shall be constructed of anodized half hard aluminum sheet 0.06-in. nominal thickness and of the dimensions to fit the signal head housing used.

E. Pole Clamps.

When required for mounting signal heads or equipment, pole clamps shall conform to the general design shown on the Standard Drawings.
815.63: Controllers.
All controller cabinets, control equipment and accessories shall be factory wired ready for operation. Field work will be limited to placing cabinets and equipment and the connecting of field wiring to terminal strips. Cabinets shall be mounted on the foundation and a clear silicone sealer shall be used at the base of the cabinet to form a water-tight seal with the foundation.

In addition, the Contractor shall provide to the Engineer 2 copies of the Operating and Maintenance Instruction Manuals complete with wiring diagrams of the internal, external and field connections for each type of controller furnished on the project and listed in 815.41: Controllers two copies of the Technical Manuals and “Box Prints” for each type of controller furnished on the project and listed in 815.41: Controllers.

815.64: Detectors
The Contractor shall install the detectors at the locations as shown on the signal layout plan in accordance with the applicable requirements of the Department's Standard Drawings.

All detector lead-in cable shall be continuous without splices from the pull box nearest the detector to the controller cabinet terminals provided without passing through any signal bases.

Splices, when necessary in the pull box nearest the detector shall be soldered and made completely watertight using an approved rigid body re-enterable closure.

Detector leads shall not be run in the same cable sheath (jacket) with wires carrying signal currents.

Magnetic Detector Multi-Lane. shall be installed inside a 3-in. Type NM conduit, 18 in. below the surface of the road in a cement concrete envelope not less than 4 in. thick at any point as shown on the Standard Drawings.

Magnetic Detector Single Lane shall be installed in accordance with manufacturer's instructions.

Ultra-Sonic Detectors shall be installed overhead on mast arms or on posts (side-fired) in close conformity with the required lines and grades.

Wire-Loop and Micro-Loop Detectors shall be installed in slots saw-cut in the pavement and oriented to the traffic lane.

The size and type of conductor and method of installation shall conform to the Department’s Standard Drawings.

The saw-slots shall be filled with an approved roadway loop embedding sealer to protect the wire.

815.65: Disposal of Existing Equipment
When removal of existing traffic signal equipment and appurtenances is called for, the order of work shall be as directed by the Engineer. Removal of existing traffic signal equipment and their accessories shall be done in a manner that will not damage reusable material.

All signal posts and bases shall be separated from one another without damage to either unit (4-in. shaft unscrewed from base).
When stipulated, existing material shall be utilized in the construction of the new installation. Material to be installed shall be thoroughly cleaned before reinstallation. All reinstalled material, after cleaning and spot coating, shall receive two brush coats of paint to all parts as specified for new installations. Paint shall be applied after material is in place.

The Contractor shall furnish and install all necessary materials and equipment, including new foundations, etc. required to complete the reinstallation.

All traffic signals, flashing beacons and pedestrian signals to be reinstalled shall be relamped with new lamps of the size and type required for new installations.

Existing material removed and not utilized in the new installation shall be salvaged and transported by the Contractor to the Department Storeroom, unless directed otherwise.

Underground conduit, conductors, foundations and detector frames not reused shall be removed from the project, except if not interfering with other construction, they may with written approval of the Engineer be abandoned in place.

815.66: Tests Required Before Acceptance

The Contractor shall record and make a written report of the following tests to be made on all traffic control signal installations in the presence of the Engineer:

2. An insulation resistance 500V megger test shall be made for each inductive loop sensor and lead-in at the controller cabinet where the combination is to be terminated.

The following test procedure shall be performed in the presence of the Engineer before and after the loop sensor is sealed in the pavement as detailed below.

The cost of equipment, labor, and materials to perform such testing and similar re-testing following repairs, replacement, or adjustment of any detector assembly within the project area shall be included in the price bid for the Traffic Control Signal installation for that location, or under Item 819.831 if applicable.

After installation of wire loop sensors in the roadway and installation of shielded lead-in connecting the loop sensors to the terminals in the controller cabinet. each loop sensor and lead-in combination shall be tested (at the controller cabinet before termination) for proper installation.

The resistance from lead to lead of the same loop sensor shall not exceed 3 ohms per 1,000 ft as measured by a high-quality meter suitable for measurements of low resistance.

A megohm-meter test at 500 VDC shall be made between the two leads of a loop/lead-in combination temporarily spliced together, but otherwise disconnected from all terminals, and the shield drain wire and then the earth ground connection. These resistances shall be recorded and shall be equal to or greater than 100 megohms. The lowest acceptable value shall be 80 megohms under certain worst-case conditions as determined by the Engineer.

A megohm-meter test at 500VDC shall be made between lead-in shield and earth ground connection. This resistance should be at least 100 megohms. The lowest acceptable value shall be greater than 50 megohms under worst case conditions as determined by the Engineer.
If any loop sensor lead-in combination fails to pass any one of the above four tests, it shall be repaired and then re-tested on two occasions at least two weeks apart, and then shall pass on each re-test occasion.

If the loop sensor lead-in combination does not pass all these re-tests, a new loop sensor and/or lead-in shall be installed, and then shall pass all tests, at no additional cost.

After the above tests have been satisfactorily completed, all loop sensor/shielded lead-in inductances shall be measured and a written report of the results shall be filed with the Engineer and a copy stored with the “Box Prints” at the intersection along with a copy of the ground electrode resistance tests required by 813.62: Grounding Electrodes, Paragraph B and the above.

Operation Tests - After satisfactory completion of the required tests, the system(s) shall be placed in operation.

Final acceptance will not be made until the system(s) has operated satisfactorily, as designed and the timing has been fine tuned, for a period of not less than 30 days from a date designated by the Engineer.

This test period shall be included within the specified contract time. Operation of the system(s) shall not in any way be construed as an acceptance of the system(s), or any part of it, or as a waiver of any of the provisions of the contract.

The Contractor shall be responsible for the system(s) during this period of operation and they shall make any adjustments or repairs that may be required and remedy defects or damages which may occur, at their own expense.

815.67: As-Built Drawings

1. Upon completion of the work, the Contractor shall mark and submit 5 complete copies of “as built” or corrected copies of the contract plans (copies for marking furnished by the Department), showing in detail all construction changes, especially locations and depths of conduit and locations of posts, standards, handholes, manholes and pull boxes. All “as built” drawings shall be dated.

2. Manufacturer’s instructions for the maintenance, servicing and operation of all equipment, wiring diagrams of all equipment (except traffic signal controllers specified in 815.41: Controllers) and a parts list sufficient for the ordering of any parts, and any other data thereof as required by the Engineer.

Copies to be distributed as follows:

1. District Traffic Maintenance (1 complete set)
2. Traffic and Safety Section, Headquarters (1 set as described in 1. above)
3. Control Cabinet (1 set as described in 2. above) with Technical Manuals and “Box Prints” required by in 815.41: Controllers).
COMPENSATION

815.80: Method of Measurement

Traffic Control Signals, Traffic Control Signals removed and reset or stacked or transported, Traffic Signal Controllers and accessories shall each be measured for payment as a unit.

Signal post, signal post bases, mast arms (with the specified bracket arm lengths with or without transformer bases) and span wire assemblies shall be paid for at the contract unit price each complete in place.

Signal heads, mounting assembly, louvers, backplates and pole clamps will be paid for at the contract unit price each and when specified, as complete assemblies, which price shall be full compensation for work necessary or incidental to the construction of signal heads, modifying existing heads, or both, including conduit, wiring, and salvaging existing materials.

Wire Loop Installed in Roadway will be measured by the foot along the sawcut or trench that contains the wire, multiple wires or preformed loops.

All additional materials and labor required to complete all of the above items as specified shall be considered as incidental to the construction and be included in the contract price each unit.

815.81: Basis of Payment

The accepted quantities of traffic signal controllers and accessories, signal posts, signal post bases, transformer bases, mast arms with specified bracket arm lengths, span wire assemblies and traffic signal vehicle detectors shall be each measured for payment as a unit which price shall include full compensation for anchor bolts.

When specified in the Contract, Traffic Control Signals and Traffic Signals removed and reset, stacked or transported shall be paid for as a contract lump sum price which price shall be full compensation for all work necessary to perform the stated work, including, but not limited to, modification of existing signals, excavation, backfilling, compaction, concrete foundations, conduit, wiring, restoring facilities destroyed or damaged during construction and salvaging existing materials.

The work of installing Wire Loop Installed in Roadway shall be full compensation for all labor, materials, and equipment necessary to sawcut, install the wire, multiple wires or preformed loops and seal the sawcut or trench as specified.

All additional materials and labor necessary to complete the work shall be considered as incidental to the construction and be included in the lump sum price.

815.82: Payment Items

815. Traffic Control Signal..Lump Sum
815.1 Traffic Control Signal Location No. 1..Lump Sum
815.2 Traffic Control Signal Location No. 2..Lump Sum
815.3 Traffic Control Signal Location No. 3..Lump Sum
815.4 Traffic Control Signal Location No. 4..Lump Sum
815.5 Traffic Control Signal Location No. 5..Lump Sum
816. Traffic Signal Removed and Reset...Lump Sum
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>816.0_</td>
<td>Traffic Signal Reconstruction *Location No..</td>
<td>Lump Sum</td>
<td></td>
</tr>
<tr>
<td>816.40</td>
<td>Traffic Control Signal Removed and Reset...</td>
<td>Lump Sum</td>
<td></td>
</tr>
<tr>
<td>816.80</td>
<td>Traffic Control Signal Removed and Stacked..</td>
<td>Lump Sum</td>
<td></td>
</tr>
<tr>
<td>816.90</td>
<td>Traffic Control Signal Removed and Transported.......................................</td>
<td>Lump Sum</td>
<td></td>
</tr>
<tr>
<td>817.10</td>
<td>Signal Post and Base Standard – 8 feet..</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>817.11</td>
<td>Signal Post and Base Standard – 10 feet...</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>817.20</td>
<td>Signal Post and Base Pedestal – 8 Feet..</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>817.21</td>
<td>Signal Post and Base Pedestal – 10 Feet..</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>817.40</td>
<td>Signal Base Standard – 14-inch Octagonal...</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>817.41</td>
<td>Signal Base Pedestal – 15-inch Square..</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>817.50</td>
<td>Signal Mast Arm *__feet – Aluminum..</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>817.60</td>
<td>Signal Mast Arm *__feet – Steel..</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>818.01</td>
<td>Signal Head 1 Way *__ Section 8-inch Lens..</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>818.05</td>
<td>Signal Head 1 Way *__ Section 12-inch Lens *(1-5)...................................</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>818.23</td>
<td>Signal Head 1 Way *__ Section 2-12-inch Lens..</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>818.35</td>
<td>Signal Head 1 Way *__ Section 12-inch Red Lens *(1-5)................................</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>818.40</td>
<td>Signal Head 1 Way – 1 Section 9-inch Square Lens......................................</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>818.42</td>
<td>Pedestrian Signal Head...</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>818.54</td>
<td>*__Way Post Top Mounting Assembly..</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>818.58</td>
<td>Mast Arm Mounting Assembly – *__ Way..</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>818.62</td>
<td>Post Side Mounting Assembly – *__ Way..</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>818.66</td>
<td>Span Wire Mounting Assembly – *__ Way..</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>818.71</td>
<td>Louvered Hood for *__ inch Signal Section..</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>818.80</td>
<td>Back-Plates for 8-inch Signal Head..</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>818.81</td>
<td>Back-Plates for 12-inch Signal Head...</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>818.82</td>
<td>Back-Plates for Combined 8-inch +12-inch Signal Head..................................</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>818.90</td>
<td>Ornamental Pole Clamp *__ inch Diameter *(4.5-inch to 8.675-inch)...............</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>819.</td>
<td>Traffic Signal Controller..</td>
<td>Lump Sum</td>
<td></td>
</tr>
<tr>
<td>819.1</td>
<td>Traffic Signal Controller Location No. 1...</td>
<td>Lump Sum</td>
<td></td>
</tr>
<tr>
<td>819.2</td>
<td>Traffic Signal Controller Location No. 2...</td>
<td>Lump Sum</td>
<td></td>
</tr>
<tr>
<td>819.3</td>
<td>Traffic Signal Controller Location No. 3...</td>
<td>Lump Sum</td>
<td></td>
</tr>
<tr>
<td>819.4</td>
<td>Traffic Signal Controller Location No. 4...</td>
<td>Lump Sum</td>
<td></td>
</tr>
<tr>
<td>819.5</td>
<td>Traffic Signal Controller Location No. 5...</td>
<td>Lump Sum</td>
<td></td>
</tr>
</tbody>
</table>
SUBSECTION 820: HIGHWAY LIGHTING

DESCRIPTION

820.20: General

This work shall consist of furnishing and installing or modifying highway lighting.

Included in the work is the furnishing and installing or modifying electrical conduit, electric manholes, handholes, pull or junction boxes, concrete foundations, wire and cable, equipment grounding, ground rods, service connection, lighting poles or towers, luminaires, control equipment, load center assemblies, photoelectric control switches, contactors, time clocks, and all incidental materials necessary for operating and controlling highway lighting systems as indicated on the plans. All systems and/or components shall be complete in every respect, fully wired, thoroughly tested, and ready for use.

The locations of highway lighting equipment shown on the plan are approximate and the exact locations will be established by the Engineer in the field with the exception of Lighting Poles or Towers. Their locations may be altered 10 ft (±) only by written permission from the Engineer, if obstructions are encountered during installation.
TRAFFIC CONTROL DEVICES

All electrical equipment shall be designed, manufactured and tested in accordance with the applicable standards of the ANSI, IMSA, ITE, NEMA and UL and these specifications.

Unless otherwise designated on the plans, on the Standard Drawings for Highway Lighting, as set forth in the Special Provisions, and as specified herein, all work and materials shall conform to the requirements of the NEC as amended by the MEC, herein referred to as the electrical code.

Wherever reference is made to codes or standards mentioned above, the reference shall be construed to mean the code or standard that is in effect on the date of advertising of the project.

All electrical connections, splicing, grounding, resistance tests, service connections and circuit identification shall be done by a licensed electrician holding “Certificate B” issued by the State Examiners of Electricians.

Standard symbols and construction details for highway lighting installations are shown on the current Traffic Signal and Highway Lighting Standard Drawings.

Within 30 days following execution of the Contract, the Contractor shall submit to the Engineer for approval, a list of equipment which they propose to install. The submission shall include all equipment identified on the plans or in the specifications by the name of the manufacturer, model or identifying number of each item. The list shall be supplemented by catalog cuts and such other data as may be required, including wiring diagrams of any special equipment and of any proposed minor deviation from the plans. All of the above data shall be submitted in triplicate for checking. Following checking, correction and review, not less than 5 complete approved sets shall be resubmitted to the Engineer for distribution. The Department shall not be liable for any material purchased, labor performed, or delay to the work prior to such review and approval.

The warranties that the Contractor receives from each manufacturer of equipment and materials pertinent to the complete and satisfactory operation of highway lighting installation shall be turned over to the Department at the time of acceptance of the project, at no cost to the Department. Each warranty so furnished shall indicate its expiration date and be in effect for a minimum period of one year from the date the highway lighting was placed in continuous operation.

The contractor shall replace at their own expense any part of the lighting equipment found to be defective in workmanship, material or manner of functioning within six months from the date of final acceptance of all the installations.

If within one year from the date the highway lighting system is placed on continuous operation the equipment and materials do not meet the warrants specified above and the Engineer notifies the manufacturer or their authorized representative promptly, the manufacturer or their authorized representative thereupon shall correct any defect either by repairing or replacing any defective part or parts. at no cost to the Department.

It is the intent of the Plans, Specifications and Special Provisions to provide a complete highway lighting system through the project.

It is not intended that every fitting, minor detail or feature be shown and described, as the assumption is made that either the Prime Contractor or their Subcontractor is an expert in the particular area of responsibility and is capable of interpreting the Plans, Specifications and Special
Provisions so that the bid shall include all items required and that they shall be provided and installed in a neat and workmanlike manner.

820.21: Definitions

A. Highway Lighting Poles.

An aluminum or galvanized steel structure providing up to a 50-ft mounting height for luminaires mounted on arms up to 10 ft long.

B. High Mast Tower.

A steel structure providing a mounting height greater than 50 ft for luminaires and equipped with a lowering device to permit luminaire maintenance at ground level.

C. Load Center Assemblies.

The term, as used herein, shall constitute assemblage of parts. Equipment and miscellaneous items. forming a complete and independent load center and circuit protector system, housed in a weatherproof trunk cabinet or building as specified.

D. Luminaires.

Shall consist of a housing, reflector, refractor or door glass, refractor holder or door glass holder, lamp socket, mounting device, ballast components, photoelectric control when specified and light source.

MATERIALS

820.40: General

All materials shall be new. Luminaires shall incorporate the latest photometric and design standards of IES, NEMA and UL.

Where existing systems are to be modified. the existing equipment and material shall be incorporated in the revised system, salvaged, or abandoned, as directed.

All equipment and materials shall meet the requirements specified in applicable provisions of Section 800: Traffic Control Devices.

All metal support structures shall be in accordance with the requirements of Subsection 960: Structural Steel and Miscellaneous Metal Products.

820.41: Design and Equipment Requirements

The complete structures with all luminaires and appurtenances attached thereto shall be designed and constructed in accordance with the requirements of AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals for the following AASHTO criteria: 1) Fatigue Category No. 1, 2) Design Wind Speed 130 MPH and 3) 50 Year Design Life.

Where aluminum alloy parts are fastened to steel or other dissimilar materials, the aluminum shall be kept from direct contact with the steel or other dissimilar materials by methods approved by the Engineer.
A. Highway Lighting Poles.

1. Poles from 30 to 50 ft shall be made of aluminum or galvanized steel. Galvanizing shall meet the requirements of Section M7: Paints, Protective Coatings. Aluminum poles over 40 ft may be in two sections telescoped together and lapped not less than two times the pole diameter at the lapped-joint. Aluminum poles shall be produced from continuous extruded tube and shall not be sleeved in the base portion to compensate for thinner walled tubing. Each pole shall be designed and fabricated in a manner that will accommodate a single or double arm 10 ft in length.

2. Arms shall be designed for 2-in. slip fitter mounted with 75-lb luminaires that have a projected area of 3.3 ft².

3. Poles shall have a handhole with a reinforced frame and cover. The opening shall be approximately 4 in. x 6 in. located approximately 12 in. from the bottom of the pole and placed 90° to the arms. Pole cap shall be the same material as the pole, watertight and held securely in place on the pole by a set screw or screws or stamped cap.

4. Bonding and grounding shall be provided that will ensure an effective path for fault current that facilitates the operation of an overcurrent protection device.

5. Anchor bolts nuts, bolts, and washers shall conform to M8.01.5: Anchor Bolts, Nuts and Washers and the Standard Drawings.

6. The arms shall be furnished with a finish similar to that of the pole. The exterior of the pole and arm shall be free of protuberances, dents, cracks, discolorations and other imperfections marring their appearance.

7. For shipping purposes, the pole and arm shall be protected to preserve the finish.

8. The dead load deflection at the top of the pole caused by the mass of the arm, luminaires and all appurtenances attached thereto shall not exceed 2% of the pole length.

9. Aluminum poles shall have a Combined Stress Ratio (CSR) no greater than 0.95. Aluminum poles over 20 ft in length shall have internal dampers installed to reduce vibrations.

10. An identifying tag shall be affixed to the pole at a readable location on the side of the pole away from traffic.

11. Information on the tag shall include, manufacturer’s name and order number, date of manufacture and pole material.

B. High Mast Towers.

All high mast towers shall be made of galvanized steel.

Anchorage shall consist of four or more high strength steel bolts, having two heavy duty hex nuts, and fabricated from high strength low alloy steel having a minimum yield of 50 ksi positioned and designed to withstand the forces corresponding to the moment which will cause failure to the shaft.

Anchor bolts shall be furnished with a template and a prefabricated reinforcing cage welded to the bolts.

C. Highway Luminaires.

The luminaire shall be of the horizontal burning gaseous discharge lamp type with IES Type II, III or IV lateral light distribution, as indicated on the plans, with medium vertical light distribution and semi-cutoff vertical light control.
The luminaire shall have a precision-case aluminum housing providing for slipfitter end mounting capable of adapting to 1.25-in. or 2-in. mounting brackets with provisions for vertical adjustments of not less than 3°. The reflector shall be of detachable snap-in design, manufactured of polished aluminum. The refractor shall be mounted in a door frame assembly and hinged with a safety catch to the luminaire at the house side and fastened at the street side by an automatic type latch. The reflector and door frame assembly shall be forced upward at the street side by spring pressure when latched against the gasket seat. Gaskets between the reflector and the refractor and the socket entry shall be made of a material capable of withstanding the temperatures involved and be held securely in place. Refractor shall be heat resisting glass with inner or outer prisms.

When stipulated, luminaires shall be furnished and installed with glare shields.

Luminaires shall have an internal ballast of the regulator type capable of operating from multiple circuit voltages indicated on the plans, at a power factor of not less than 95%. The ballast shall be pre-wired to the lamp socket and terminal board, requiring only connection of the power supply leads to the ballast primary terminals. The ballast shall provide regulation within 4% (8% for 1,000-watt units) variation in center rated lamp watts with a ±13% variation in primary volts from the ballast voltage-design center. Ballast shall provide satisfactory lamp starting to -20°F, minimum over the recommended line voltage variation. Ballast and capacitor components shall be arranged so that their operating temperature is not exceeded.

Unless otherwise specified the luminaire shall include a photoelectric control device, as specified in Paragraph I, and locking type mounting receptacle in accordance with NEMA standards. The receptacle shall be pre-wired to the terminal board.

Lamps shall be of the gaseous discharge type and wattages indicated. They shall conform to ANSI (ASA) requirements as listed in reputable lamp manufacturers catalogues. Lamps failing during first 1,000 hours shall be considered defective and be replaced at no cost to the Department.

D. Area Lighting Luminaires.

Area lighting luminaires are used mainly for special applications. Where this type of lighting is required, Special Provisions and Plans will be prepared for the particular project. In general luminaires will be similar to luminaires specified in 820.41: Design and Equipment Requirements.

E. Flood Lighting Luminaires.

Flood lighting luminaires are used mainly for special applications. Where this type of lighting is required. Special Provisions and plans will be prepared for the particular project. In general, luminaires will be similar to luminaires specified in 820.41: Design and Equipment Requirements and will have special mounting arrangements.

F. Underpass Lighting Luminaires.

Luminaires shall consist of a one or two lamp VHO/CW/RS fluorescent type with internally mounted ballast and recessed sockets. The housing shall be one-piece aluminum with sufficient structural bracing for self-support. The ends of the luminaire shall be tapped for ¾-in. conduit. The reflector shall be polished aluminum readily removable for access to the interior of the housing for wiring and servicing. The refractor shall be heavy plastic and hinged to allow the cover to swing open. Gaskets shall be provided to form a seal between the housing and refractor. Luminaire shall
be watertight and capable of withstanding water pressures up to 100 psi with standard cleaning nozzles commonly used in cleaning tunnels. Luminaires shall be provided with adjustable aluminum or stainless steel brackets to allow a 90° minimum rotation of the luminaire through the longitudinal axis.

Luminaires shall have an internal ballast capable of operating from multiple circuit voltages indicated on the plans and capable of furnishing design voltages and current for the specified fluorescent lamp or lamps. It shall operate satisfactorily over a voltage range of ±5% of its nominal primary voltage rating. Line feedback from the lamp through the power line shall be corrected by means of a built-in interference suppressor incorporated in each ballast. Power factor correction shall be not less than 90% and each ballast shall be capable of starting its lamp or lamps at a temperature of -20°F.

G. Sign Lighting Luminaires.

Sign lighting luminaires may be of the incandescent, gaseous discharge or fluorescent type. Where this type of lighting is required, Special Provisions and Plans will be prepared for the particular project. In general luminaires will be similar to luminaires specified in Paragraph C and Paragraph F.

H. External Ballasts.

The basic ballast housing shall be adaptable by brackets, lugs, or adaptors for either pole-base, pole-side, pole-top, flat wall mounting or direct burial. The housing shall be of heavy gauge aluminum or fiberglass. All assembled core windings and terminals shall be sealed within the housing by a high-melting point filling compound. The electrical characteristics shall conform to ballasts mounted integrally as specified in Paragraph C and Paragraph F. A manufacturer’s name plate shall be an integral pan of the housing. The name plate shall have the manufacturer’s name, model number, serial number, hook-up diagram, power supply data and the load that the ballast is capable of operating.

I. Photo Electric Control.

The controls shall be twist-lock plug-in devices to be used with highway lighting equipment conforming to NEMA standards. They shall be of the tubeless type rated for 50 or 60 Hz, alternating current, at the following voltages and load capacity with inrush current rating not less than 100 A:

1. 105-285V, 18,000 volt-amperes
2. 120V, 1,800 volt-amperes
3. 208V, 1,800 volt-amperes
4. 240V, 1,800 volt-amperes
5. 277V, 1,800 volt-amperes
6. 480V, 1,800 volt-amperes

Controls shall have a turn-on range of 0.5 fc to 2.5 fc and shall be factory adjusted to turn on at 1 fc. The turn off level shall be between 1 fc and 2 fc higher than turn on levels. It shall be possible, by means of simple hand tools or by a calibrated adjustment knob, to adjust the turn on time of the lights when the north sky illumination falls within the range of values specified herein.
Normal operation of the photo electric control shall not be affected by line voltage variations of ±10%. Minimum operating temperature range shall be from -20°F to +150°F. The unit shall have a built-in surge protective device for protection from induced high voltage and follow through currents.

A time delay feature shall be incorporated as a part of the control circuit to prevent false turn-offs by transient light. The controlled lighting load shall remain on or become energized in the event of any functional failure of the photo electric control circuit.

J. Multiple Control Switch.

The switch shall be equipped for either pole or wall mounting with all components (relays, etc.) housed in a weatherproof enclosure and designed for controlling loads up to 6,000 watts. The switch shall be pre-wired complete with NEMA twist-lock receptacle for an integrally mounted photoelectric control, as specified in Paragraph I or controlled remotely by a switch. Photo electric control voltage must match multiple control switch voltage.

K. Multiple Circuit Contactor.

The contactor shall be an unenclosed single phase, two-pole open type magnetic contactor of the rating indicated. Contactors shall be constructed for surface mounting on a false back. The contactor coil shall be remotely operated by a multiple control switch as specified in Paragraph J and a photo electric control as specified in Paragraph I or controlled remotely by a switch as specified in Paragraph L, or controlled remotely by a time clock as specified in Paragraph M, as shown on the plans or specified in the Special Provisions.

L. Remote or Test Switch.

A heavy duty, single-pole tumbler switch rated at 20 amperes, encased in a heavy-duty metal weatherproof housing, shall be installed in the control cabinet or lighting pole bases as a highway lighting test switch. The switch shall be rated for operation on the voltage specified for the device it controls. The switch shall be wired so as to shunt the photo electric control, multiple control switch, multiple circuit contactor or time clock and energize the lighting circuits.

M. Astronomic Time Clock.

Astronomic time switches shall be 35 A, double pole, single throw, heavy duty, 42°30’ North Latitude, astronomic dial street light type with high torque synchronous motor and 10-hour main spring operation to provide accurate timing during power interruptions. When power is restored after any failure, the motor shall resume timing and automatically wind the main spring.

The motor shall be designed to operate on 120/240VAC 60 Hz at temperature ranging from -20°F to +150°F.

The time clock shall have a wall mounted pressed steel case with rain-tight gasketed door cover and mounted in the load center housing.

N. Service Riser Pipe.

Galvanized steel conduit shall meet the requirements of M5.07.1: Electrical Conduit-Rigid Metallic (Type RM).
O. Secondary Conductors.
Secondary conductors shall conform to the requirements of 813.63: Service Connections.

P. Service Cabinet or Housing.
The housing for load center assemblies shall be a trunk type cabinet as specified in Subsection 815: Traffic Control Signals for vehicle-actuated traffic signal controllers, and of a size to house all equipment. The cabinet shall be the product of a Manufacturer with an established reputation who has designed and produced similar cabinets.

Q. Circuit Protection.
The Contractor shall furnish and install on the rear wall of the trunk type cabinet a power distribution panel. A main bus shall be provided, protected by a main and branch circuit breakers. All equipment shall be designed for the amperage, voltage and phase designated. The general arrangement of circuit breakers shall be in accordance with the circuit diagram shown on the plans. Circuit breakers shall be unenclosed molded case bolt-on type with end conductor terminals, suitable for surface mounting on a metal false back. The Contractor shall provide a chart mounted on the cabinet door identifying circuit breakers and the circuits they control.

Circuit breakers shall be of the rating shown on the plans.

R. Load Center Concrete Foundation.
The Contractor shall construct the service cabinet foundation of reinforced cement concrete as shown on the standard drawings on a 12-in. gravel sub-base.

S. Meter Socket.
A 200-ampere meter socket approved by the serving utility shall be furnished and installed on the service cabinet or where directed by the serving utility.

CONSTRUCTION METHODS

820.60: General
Details of construction shall conform to all applicable provisions of Sections listed 820.40: General and the specifications set forth hereinafter.

Highway lighting poles, area lighting poles and high mast towers shall be handled in loading, unloading and erecting in such a manner that they will not be damaged. Any parts that are damaged due to the Contractor’s operations shall be repaired or replaced at the Contractor’s expense.

Unless otherwise directed by the Engineer, poles or towers shall not be erected on concrete foundations until the concrete has set for at least 28 days.

All surfaces of aluminum bases in contact with cement concrete shall be field coated with an aluminum impregnated caulking compound recommended by the manufacturer of the base.

Poles and towers shall be raked sufficiently to be plumb after all loads have been placed, poles shall be raked by adjusting the 2 nuts supplied with each anchor bolt. The mounting height shall be measured from the light source to the roadway surface directly below. The bracket arm shall be
II.388 2020 Edition

securely attached to the shaft and the pole erected with the bracket and perpendicular to the center line of the roadway.

The Contractor shall mark on each light pole or tower, 6 ft above the roadway suitable numbers and letters two 2 in. minimum height displaying the pole number and circuit to which it is connected.

The luminaires shall be installed on the brackets specified, parallel to the road surface or aimed as indicated on the plans, securely fastened, lamped, connected, cleaned and ready for operation.

The service riser, the service cabinet, and the concrete mat shall be installed as shown on the plans and as required by the Code. The work under this item shall include all conduit to 4 ft beyond the load center. The service cabinet shall be installed on the concrete mat, complete with distribution panel mounted inside. The electrical components shall be mounted with machine screws and wired as shown on the plans or as directed. All conduits in the service cabinet shall be bonded together and grounded to the cabinet with not less than #8 AWG bare copper conductors. A ¾-in. x 12-ft long ground rod shall be driven in accordance with 813.62: Grounding Electrodes and stubbed 6 in. above the concrete foundation. Not less than a #2 AWG bare copper grounding conductor from the neutral bus shall be run continuously to the ground rod.

Photoelectric control devices shall be mounted with the light sensitive unit facing toward the north sky. Method of mounting shall be as indicated or as specified in 820.41: Design and Equipment Requirements, Paragraph I. Control switch contactors and time clocks shall be mounted as specified herein before.

Test switches shall be mounted as specified. When mounted in lighting pole base it shall be supported on an “L” shape galvanized steel bracket secured by anchor bolt and nut.

820.61: Tests Required Before Acceptance

The Contractor will be required to test the entire system for continuity, grounds, resistance to ground, insulation resistance, and make provisions for high voltage dielectric strength tests, before any equipment is connected. This shall be done by means of a 500V megohm-meter test which will indicate the insulation of any circuit or group of circuits. When the insulation resistance is less than 100 megohms between insulated conductor and ground (system ground point at the load center), the Contractor shall locate the point or points at fault, make proper corrections and then demonstrate by further tests the elimination of such fault. With all equipment connected to the wiring system, a functional test shall be performed by the contractor using the system power, if not available the Contractor shall provide temporary power where and as required. The tests shall be performed in the presence of the Engineer to demonstrate that the system as a whole, and all parts thereof, function as specified or intended. Any defective materials, equipment or faulty or improper installation shall be permanently corrected by repairs or replacements to be made by the Contractor. All tests and any necessary repairs which are indicated by them to produce a fault-free system shall be performed at the Contractor’s expense.

Operation Tests.

After satisfactory completion of the required tests, the system shall be placed in operation. Final acceptance will not be made until the system has operated satisfactorily, as designed, for a period of not less than 30 days from a date designated by the Engineer. This test period shall be included within the specified contract time. Operation of the system shall not in any way be construed as an
acceptance of the system, or any part of it, or as a waiver of any of the provisions of the contract. The Contractor shall be responsible for the system during this period of operation and they shall make any adjustments or repairs that may be required and remedy defects or damages which may occur, at their own expense.

Any other incidental work or materials for which no basis of payment is provided will be considered as completely covered by the unit price bid.

COMPENSATION

820.80: Method of Measurement

Highway lighting poles, area lighting poles and high mast towers, with the specified mounting heights, bracket arm of specified length and anchor bolts; luminaires of the size and type specified; photo electric control (including test switch); multiple control switch; multiple circuit contactor; time clock; and highway lighting load center, with all necessary nuts, bolts, connectors, clamps, equipment grounding connector, and incidental material to form a complete unit shall each be measured for payment as a unit.

Highway lighting shall be measured as a complete installation and paid at a contract lump sum price.

820.81: Basis of Payment

The lump sum price for “Highway Lighting” and “Highway Lighting Load Center” shall be full compensation for all work necessary or incidental to the construction of the highway lighting installation, modifying existing installations, or both including excavation, backfilling, compaction, concrete foundations, conduit, wiring, and salvaging existing materials. All additional materials and labor required to complete the highway lighting installation shall be considered as incidental to the construction and be included in the respective lump sum contract price. All materials shall conform to Section 800: Traffic Control Devices and Division III: Materials Specifications of these specifications.

The accepted quantities of highway lighting poles, area lighting poles, high mast towers, luminaires, photo electric control (including test switch), multiple control switch, multiple circuit contactor and time clock will be paid for at the contract unit price each, for the length, type and size specified, which price shall include full compensation for anchor bolts and miscellaneous hardware.

No direct payment will be made for the following incidental materials: conduit fittings, all bolts, nuts and washers and wiring.
820.82: Payment Items

820.10 Highway Lighting – Roadway ...Lump Sum
820.11 Highway Lighting – Underpass ...Lump Sum
820.12 Highway Lighting – Area ...Lump Sum
820.13 Highway Lighting – Sign ...Lump Sum
821.10 to 821.15 Highway Lighting Pole (Anchor Base) *(__-Foot Bracket)Each
821.20 to 821.25 Highway Lighting Pole (Anchor Base) Twin *(__-Foot Bracket) *(4- to 15-Foot) ...Each
821.30 to 821.70 Highway Lighting Pole (Anchor Base) DBL*__+_Foot Brackets *(4+6 to 12+15) ...Each
822.10 to 822.15 Highway Lighting Pole (Transformer Base) *__'-Foot BracketEach
822.20 to 822.25 Highway Lighting Pole (Transformer Base) Twin *__'-Foot Bracket *(4- to 15-foot) ...Each
822.30 to 822.70 Highway Lighting Pole (Transformer Base) DBL*__+__'-Foot Brackets *(4+6 to 12+15) ...Each
822.83 to 822.98 High Mast Tower (__'-Foot Mounting Height)Each
823.10 to 823.14 Highway Lighting Luminaire *-Watt *(175- to 1,000-Watt)Each
823.15 to 823.21 Area Lighting Luminaire *-Watt *(175- to 4,000-Watt)Each
823.22 Flood Lighting Luminaire Less Than 500-Watt ..Each
823.23 Flood Lighting Luminaire 500-Watt and Over ...Each
823.30 to 823.32 Underpass Lighting Luminaire *__'-Foot FluorescentEach
823.33 to 823.35 Sign Lighting Luminaire *__'-Foot Fluorescent *(4- to 8-Foot)Each
823.40 Sign Lighting Luminaire 175-Watt ...Each
823.41 Sign Lighting Luminaire 250-Watt ...Each
823.50 Photelectric Control ..Each
823.51 Multiple Control Switch ..Each
823.52 Multiple Circuit Contractor ..Each
823.53 Time Clock ...Each
823.60 Highway Lighting Load Center ..Lump Sum
823.70 Highway Lighting Pole and Luminaire Removed and ResetEach
823.71 Highway Lighting pole and Luminaire Removed and StackedEach
SUBSECTION 824: FLASHING BEACONS, ILLUMINATED WARNING SIGNS, AND LIGHTED BARRIER ARROWS

DESCRIPTION

824.20: General

This work shall consist of furnishing and installing or modifying flashing beacons, highway illuminated wanting signs and lighted barrier arrows at designated locations as shown on the plans and detail sheets in conformance with these Specifications and the Standard Drawings.

Included in the work is the furnishing and installing, modifying, removing, resetting, stacking or transporting existing control equipment, signal beads, electric lamps, posts and bases, poles, pedestals, mast arms, barriers, barrier arrows, service connections, wire and cable, pull and junction boxes, electrical conduits, and all incidental materials necessary for operating and controlling the beacons, signs and arrows.

The locations of beacons, signs, barriers, control equipment and appurtenances shown on the plans are approximate and the exact location will be established by the Engineer in the field.

MATERIALS

824.40: General

When existing systems are to be modified, the existing equipment and materials shall be incorporated in the revised system, salvaged or abandoned as directed.

Equipment and materials shall meet the requirements specified in Section 800: Traffic Control Devices for Signals & Wiring.

824.41: Highway Illuminated Warning Signs and Barrier Arrows

Illuminated warning signs and barrier arrows shall be designed so that lamps, tubes, electrodes, transformers or ballasts and all wiring shall be totally enclosed and protected from the weather. Each sign or arrow shall be delivered to the project completely finished and assembled, ready for erection.

824.42: Flasher

The flasher unit shall be two-circuit jack mounted using solid state circuiting (no moving parts) designed to operate on 105-130VAC, 60 Hz. The output load rating with incandescent traffic signal lamps or an inductive load shall not be less than 10 A. The unit shall be capable of providing alternating flashing operation at the rate of 50 to 60 flashes per minute. The flasher unit shall be individually housed and protected from the weather and must not present a shock hazard to maintenance personnel.

Filter

Each flasher shall be equipped with a suitable filter wired or built into the flasher in the manner recommended by the Manufacturer. Any filter not completely eliminating radio interference shall be replaced.
Housing

The combined flasher and filter shall be installed in an approved weatherproof housing equipped with a disconnect block for shutting off the system. The cabinet shall be fastened to a standard 8-ft signal post by means of a suitable saddle or backplate. The flasher and filter shall be fastened to a backboard and the combined assembly shall be removable from the housing intact.

COMPENSATION

824.80: Method of Measurement

Flashing beacons, highway illuminated warning signs and lighted barrier arrows will be measured as completed units.

824.81: Basis of Payment

Flashing beacons, highway illuminated warning signs and lighted barrier arrows will be paid for at the respective contract unit price complete in place.

824.82: Payment Items

- 824.10 Flashing Warning Beacon Type D ... Lump Sum
- 824.20 Flashing Warning Beacon Type A ... Lump Sum
- 824.30 Flashing Warning Beacon Type B ... Lump Sum
- 824.40 Flashing Warning Beacon Type C ... Lump Sum
- 824.50 Flashing Warning Beacon Removed and Reset ... Lump Sum
- 824.51 Flashing Warning Beacon Removed and Stacked Lump Sum
- 824.60 Highway Warning Sign – Illuminated .. Each
- 824.61 Highway Warning Sign – Illuminated .. Lump Sum
- 824.70 Highway Warning Sign - Illuminated R+R ... Lump Sum
- 824.71 Highway Warning Sign - Illuminated R+S ... Lump Sum
- 824.72 Highway Warning Sign - Illuminated Removed and Transported Lump Sum
- 824.80 Lighted Barrier Arrows .. Each
- 824.81 Lighted Barrier Arrows .. Lump Sum
- 824.90 Lighted Barrier Arrows Removed and Reset .. Lump Sum
- 824.91 Lighted Barrier Arrows Removed and Stacked ... Lump Sum
- 824.92 Lighted Barrier Arrows Removed and Transported Lump Sum
- 824.93 Lighted Barrier Arrows Removed Transported and Reset Lump Sum

SUBSECTION 828: TRAFFIC SIGNS

DESCRIPTION

828.20: General

The provisions of this section shall apply to the fabricating, furnishing and erecting warning clusters and signs, overhead and roadside guide signs, warning and regulatory signs, route and project markers and supports for delineators and markers.

Traffic Signs are officially erected devices, mounted on fixed or portable supports, whereby specific
messages are conveyed by means of words or symbols, for the purpose of regulating, warning or
guiding traffic.

Unless a definite type of material is specified, the Contractor must designate in the Option Items of
the Proposal their choice of panel, either plywood, or aluminum type A or B.

The signs, foundations and supports shall be fabricated and erected in conformity with the
following:

A. MUTCD.
B. AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaries and
 Traffic Signals.
C. MassDOT Construction Standards.

828.21: Plans

The Contractor shall develop plans for the foundations, structural supports and sign panels,
including the spacing of panels, excepting for the designs shown as typical on the standard
drawings and plans. The message and size of legend for sign panels shall be as specified by the
Department.

MATERIALS

828.40: General

Materials shall meet the requirements specified in the following Subsection of Division III.

Materials:

- Retroreflective Sheeting ... M9.30.0
- Acrylic, Prismatic Reflectors and Embossed Aluminum Frames for Signs.............. M9.30.3
- Acrylic Plastic 3.25-Inch Diameter Center-Mount Reflector M9.30.4
- Demountable Reflectorized Delineator-Guard Rail ... M9.30.7
- Reflectorized Flexible Delineator Post ... M9.30.8

828.41: Retroreflective Sheeting

Retroreflective Sheeting shall meet the requirements of M9.30.0: Retroreflective Sheeting.

828.42: Panels

Aluminum sign panels shall be either Type A or Type B. Sign supporting hardware shall be
aluminum or stainless steel.

Type A Panels shall be fabricated from flat sheet Aluminum Alloy of the following types:

A-1:

Flat sheet sign panels shall be fabricated from aluminum sheeting meeting ASTM B209, Alloy 6061-
T6 or Alloy 5052-H38. Panels mounted with P-5 posts (square tube posts or U channel posts) shall
be 0.08 in. (2 mm) thick. Panels mounted with single round breakaway posts shall be 6 mm thick.

A-2:

Flat sheet sections with extruded tabs shall be fabricated from:
1. Sheetings 0.125 in. thick, ASTM B209, Alloy 3033-H18.
2. Extruded parts ASTM B221, Alloy 6063-T6.

A-3:

Flat sheet sections with welded or flush riveted locking tabs and clips shall be fabricated from:

1. Flat sheet ASTM B209, Alloy 6061-T6 or Alloy 5052-H38.
2. Extruded parts as specified by the Manufacturer.

Route marker overlay on directional sign panels shall be fabricated from Aluminum Alloy 5052-H38 0.08 in. thick. Material for attachment shall be compatible with materials joined and shall conform to the following ASTM specifications:

<table>
<thead>
<tr>
<th>Part</th>
<th>Aluminum</th>
<th>Stainless Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolts</td>
<td>B211 6061-T6 Alloy</td>
<td>F593 Type 304 or 305</td>
</tr>
<tr>
<td>Rivets</td>
<td>B316 6061-T6 Alloy</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Nuts</td>
<td>B211 6061-T6</td>
<td>F594 Type 304 or 305</td>
</tr>
<tr>
<td>Washers</td>
<td>B209 Al clad 2024-T4</td>
<td>Compatible with Materials Joined</td>
</tr>
</tbody>
</table>

Type B Panels shall be fabricated of extruded Aluminum ASTM B221. Alloy 6063-T6 shall be \(\frac{3}{16}\) in. thick, 12 in. wide and of bolted joint design. Only one 6-in. panel shall be used where the overall height of a sign requires one panel less than 12 in.

828.43: Legends (Type A, B, C)

The type of legend shall be as specified and shown on the plans except as follows:

a. State and U.S. Route Markers shall have Type C Silk Screen Processed Legends.
b. Interstate Route Markers on Guide Signs on Feeder roads shall have Type B Permanently Applied Legends.
c. Individual Interstate Route Markers shall have Type B Permanently Applied Legends with the required Silk Screen Processed Legend superimposed thereon.
d. Individual Interstate Route Markers on Overhead Signs shall have Type A Demountable Flat Numerals.
e. Type B aluminum signs, per 828.42: Panels, shall have either Type A Demountable Flat or Type B Permanently Applied Legends.

A. Legend Type A - Demountable Flat.

Legends shall be reflective or opaque sheeting as specified conforming with the photometric and other requirements of 828.41: Retroreflective Sheeting. Legends shall be applied to sheet aluminum in a manner specified by the sheeting Manufacturer.

Base material shall be of sheet aluminum ASTM B209, Alloy 3003 H14.

Demountable legends shall be of sheet aluminum, those up to and including 12 in. in height shall be 0.040 in. in thickness; those over 12 in. in height shall be 0.064 in. in thickness.
B. Legend Type B - Permanently Applied Legend.
Legends shall be reflective or opaque sheeting applied directly to a clean, dust-free background in a manner specified by the sheeting manufacturer.
Legends shall be cut neatly at intersect on panel edges.
Heat activated adhesive-coated material shall be applied only by mechanical means.
Finish shall be as specified in 828.51: Retroreflective Sheeting, Paragraph B.

C. Legend Type C - Silk Screen Processed.
The legends and shields shall be of the series and size specified in the AASHTO Manual for “Signing and Pavement Markings,” and the dimensions, details of the letters with respect to each series as specified in the FHWA publication: “Standard Alphabets for Highway Signs,” or as specified and shown on the plans.

828.45: Reflectorized Flexible Delineator Posts
Reflectorized Flexible Delineator Posts shall meet the requirements of M9.30.8: Reflectorized Flexible Delineator Post.

828.46: Delineation for Guardrail Termini
Delineators for Guardrail Termini shall meet the requirements of M9.30.10: Guardrail Termini Delineator.

FABRICATION

828.50: General
Sign fabrication shall be done in a plant properly equipped for the production of the types of signs specified.
Sign panels shall show careful workmanship and present a reasonably plane surface with the message and outlines clear and sharp.
Finished sign panels shall be shipped in such manner as to ensure arrival on the project in undamaged condition, where they shall be properly protected from dirt, scratches, hand-marks and other blemishes until erected and accepted.

828.51: Retroreflective Sheeting
A. Application.
Retroreflective sheeting shall be applied to properly treated base panels with mechanical equipment in a manner specified for the manufacture of traffic control signs by the sheeting manufacturer. Heat activated adhesive coated sheeting shall be pre-perforated.
Sign faces, comprising two or more pieces or panels of retroreflective sheeting, must be carefully matched for color at the time of sign fabrication to provide uniform appearance and brilliance both day and night. Alternate, successive width sections of either sheeting or panels must be reversed and consecutive, to ensure that corresponding edges of retroreflective sheeting lie adjacent on the
finished sign. Nonconformance may result in nonuniform shading and an undesirable contrast between adjacent widths of applied sheeting, which will not be acceptable.

Pressure sensitive adhesive coated sheeting shall be overlapped at splices not less than \(\frac{3}{16} \) in. Heat activated adhesive coated sheeting may be spliced with overlap not less than \(\frac{3}{16} \) in. or butted, gap not to exceed \(\frac{1}{32} \) in. Only butt splices shall be permitted on signs screen-processed with transparent color. Sheeting applied to extruded sections shall extend over top edges and down side legs a minimum of \(\frac{1}{16} \) in. No splices shall be allowed on sign panels 20 ft² or under.

The panel and legend of signs shall be manufactured from the same manufacturer and same grade of sheeting (i.e. Type IX legend on Type IX panel), except where black opaque legends or panels are specified. If the sign legend is black opaque, panel sheeting shall be Type IV, Type VIII, Type IX, or Type XI; if the sign panel is black opaque, legend sheeting shall be Type IV, Type VIII, Type IX, or Type XI.

B. Finish (Protective Coating).

1. When pressure sensitive adhesive coated retroreflective sheeting is used all sheeting splices and sign edges shall be sealed with materials recommended by and in a manner specified by the sheeting manufacturer.

2. Dry heat activated adhesive coated retroreflective sheeting when applied to aluminum or high-density plywood shall be edge sealed as specified by the sheeting manufacturer.

828.52: Panels

White numerals 1-inch in height, designating the size of sign panel, date of fabrication, fabricator, manufacturer and type of sheeting shall be affixed at the bottom left rear corner of all ground mounted guide, historical, cultural, recreational and specific information service signs.

All other ground mounted signs shall have black numerals \(\frac{1}{2} \) in. in height, designating the size of sign panel, date of fabrication, fabricating manufacturer and type of sheeting affixed to the bottom left rear of each panel.

White numerals 1.5 in. in height, designating the size of sign panel, date of fabrication, fabricator, manufacturer and type of sheeting shall be affixed at the bottom left corner of the face of each overhead sign panel.

The code numbers of fabricators and manufacturers will be obtained from the Department.

Black numerals shall be used in place of white numerals where the background they are affixed to is white or aluminum.

Panel surfaces upon which retroreflective sheeting is to be applied shall not be painted.

Fabricated sections with extruded legs shall be manufactured in accordance with the typical detail plans. The face shall have a reasonably plane surface free from protrusions and depressions.

Panels shall be composed in increments 48 in. wide. Panels less than 48 in. wide shall be composed of one sheet. Signs greater than 48 in. shall have no more than 2 sheets less than 48 in. wide.
Sheet increments shall be continuous from top to bottom of sign panel. No horizontal joints will be permitted. Panel assembly shall include all fasteners and backing strips also fabricated from aluminum sheeting ASTM B209, Alloy 6061-T6.

Backing strips shall be provided at every joint and held firmly in place with proper fasteners as recommended by the manufacturer. Caution shall be used in assembly to prevent any projections, dents or gouging of the panel face. The corners of signs shall be rounded to a radius equal to the minimum dimension of the sign except that a minimum corner radius of 12 in. shall be used, unless otherwise noted on the plans.

Route markers shall be attached to aluminum sign panels with aluminum or stainless steel ¼-in. diameter slotted-head bolts with nuts and washers or ¼-in. diameter rivets.

Treatment of Aluminum Sign Panels Prior to Application of Retroreflective Sheeting.

1. **Degreasing.**
 a. Vapor degreasing: by total immersion of the panel in a saturated vapor or trichloroethylene. Trademark printing shall be removed with lacquer thinner or controlled alkaline cleaning system.
 b. Alkaline degreasing: by total immersion of the panel in a tank containing alkaline solutions, controlled and titrated to the solution manufacturer’s specification.
2. **Rinsing.** After satisfactory degreasing, the panels shall be thoroughly washed with running water.
3. **Drying.** The panel shall be thoroughly dried by use of a forced hot air dryer.
4. **Metal shall not be handled between cleaning and etching operation and the application of retroreflective sheeting, except with devices or clean canvas gloves.**
5. **Metal shall not come in contact with greases, oils or other contaminants prior to the application of retroreflective sheeting.**

828.53: Legends

A. Type A.

The letters, numerals, symbols and borders shall be attached to the sign background as specified in 828.52: Panels.

B. Type B.

See 828.43: Legends (Type A, B, C), Paragraph B.

C. Type C.

The legends shall be applied by the Silk Screen Process or by using cutouts from an approved type black film superimposed on retroreflective sheeting.

The flexible black gloss silk screen ink shall conform to the manufacturer’s recommendations.

828.54: Demountable Reflectorized Reference Location Signs

The panels shall be aluminum (Type A) of the size shown on the plans. Retroreflective sheeting shall conform to 828.41: Retroreflective Sheeting.

Legends shall be Type B as specified under 828.43: Legends (Type A, B, C), Paragraph B.
828.55: Hazard Markers

A. H1-1 Demountable Reflectorized Hazard Marker.

The attaching of the backplate to the P-9 post shall conform to the following requirements:

1. Two rivets, each consisting of pin and collar, shall be used to attach the marker to the post. The collar shall be cold-swaged into annular locking grooves on the pins by a method recommended by the manufacturer.

2. Pin rivets shall be \(\frac{3}{16} \)-in. diameter of aluminum ASTM B316. Alloy 2024-T4; collars shall be \(\frac{3}{16} \)-in. diameter aluminum of ASTM B209, alloy 6061-T4 with a minimum washer face of \(\frac{3}{2} \)-in. diameter. The pin rivets shall have truss heads and grip range of 1-in. ± \(\frac{3}{16} \) in.

B. H1-2 24-Inch Warning Cluster.

Fabrication shall conform to 828.51: Retroreflective Sheeting.

C. H1-3 Abutment Warning Panels.

The stripes shall be alternate yellow and black. The yellow stripes shall be reflectorized as required under 828.41: Retroreflective Sheeting.

828.57: Reflectorized Flexible Delineator Posts

Shall be installed in accordance with the manufacturer’s recommendations at locations indicated on the Plans and/or as directed.

828.58: Demountable Reflectorized Station Markers and Project Markers

The panels shall be aluminum (Type A), 0.063 in. thick. They shall be 4 in. wide and of a length required to display the station numerals or Federal-aid Number shown on the plan.

The reflective background sheeting attached to the aluminum sheeting shall conform to the requirements of 828.41: Retroreflective Sheeting. The color of the background sheeting shall be orange for Beginning and End project markers and white for intermediate Station project markers.

The panel shall be punched or sheared to size, with \(\frac{3}{4} \)-in. radius corners, having two square or round \(\frac{3}{4} \)-in. mounting holes.

The numerals shall be type D, black, die-cut, pre-spaced conforming to the FHWA Standard Series 1.5-in. type C. Numerals shall have a pre-coated pressure activated adhesive and be applied as recommended by the manufacturer of the retroreflective sheeting.

828.59: Street Name Sign

The panels shall be fabricated from Type A aluminum 0.080 in. thick. Panels shall be a minimum of 12 in. wide and of a length required to display the street name.

Retroreflective sheeting shall conform to the requirements of Subsection 828.41. The color of the legend should be white, and the color of the background should be green.

The legend shall be Type B or C. Legend size and font shall conform to the MUTCD.

If specified, city/town seals on signs shall conform to the MUTCD.
ERECTION

828.60: General

Warning clusters (H1-2) shall be mounted on one standard P-5 breakaway post assembly. The reflectors shall be amber (Type A), conforming to the requirements of 828.43: Legends (Type A, B, C), Paragraph A.

Abutment warning sign (H1-3) shall be constructed of aluminum panel (Type A) as specified. Posts shall be one standard P-5 breakaway assembly, conforming to Department standards.

Demountable reflectorized station markers and project markers shall be fabricated and erected as shown on the plans and/or as directed by the Engineer.

Demountable reflectorized reference posts shall be mounted on new P-9 Steel posts or on existing posts as shown on the plans and as directed.

Demountable reflectorized hazard marker (H1-1) shall be mounted on a standard P-9 post. The reflectors shall be yellow (amber) (Type A) as specified under 828.43: Legends (Type A, B, C), Paragraph A.

Leading and trailing ends at bridges – 3 delineators: one at the connection of the terminal: the connector and 25-ft plate; one at the middle of the 25-ft plate; and one at the connection of the 25-ft plate and the normal guard rail panel.

In no instance shall delineators be installed on sections of guard rail which deviate substantially from the alignment (vertical or horizontal) of the roadway or which are located more than 8 ft from the edge of the paved surface.

Exceptions and/or modifications to the above shall be made only with the approval of the Engineer in the field.

When roadway alignment permits, the reflector portion of each delineator shall be positioned so that it will be clearly visible for a distance of 1,000 ft under normal weather and atmospheric conditions when illuminated by the high beam of standard automobile headlights on vehicles in the lane adjacent to the delineator.

Delineation for Guard Rail Termini shall be mounted within 6 in. perpendicular to the web of the first and last full height guard rail posts in a section of guard rail.

Street name signs shall be mounted on one standard P-5 breakaway post assembly. Street name signs shall be fabricated and erected as shown on the plans and/or as directed by the Engineer.

828.61: Attachment to Posts

Demountable Reflectorized Reference Location Signs shall be attached to P-5 posts as shown in the Construction and Traffic Standard Details.

Demountable Reflectorized Station Markers and Project Markers, and Delineation for Guardrail Termini shall be attached to the P-9 posts by a connection fabricated as follows:
Two rivets, each consisting of pin and collar, shall be used to attach the marker to the post. The collar shall be cold-swaged into annular locking grooves on the pins by a method recommended by the manufacturer.

Pin rivets shall be \(\frac{3}{16} \) in. in diameter of aluminum ASTM B316, Alloy 2024-T4, collars shall be \(\frac{3}{16} \) in. in diameter aluminum of ASTM B209, Alloy 6061-T4, with a minimum washer face of \(\frac{1}{2} \) in. in diameter. The pin rivets shall have truss heads and grip range of 1-in. ± \(\frac{1}{16} \) in.

An approved two-piece rivet type sign fastener installed by expanding the blind rivet component inside the semi-tubular rivet component may be used.

COMPENSATION

828.80: Method of Measurement

The quantity of Overhead Guide Signs, Roadside Guide Signs, Warning Signs, Regulatory Signs and Route Markers (Shields) shall be the actual total number of square feet of panel in each sign classification.

The area of Route Markers when attached to destination sign panels will not be added to the total area of panels.

Demountable Reflectorized Hazard Marker (H1-1) will be measured by the unit including P-9 post complete in place.

Each Abutment Warning Sign with I Breakaway P-5 Post Assembly shall be considered as one unit.

Each 24-inch Warning Cluster mounted on one P-5 Breakaway Post Assembly shall be considered as one unit.

Demountable Reflectorized Reference Location Signs with P-5 Post will be measured by the respective unit complete in place.

Demountable Reflectorized Delineators – Guardrail shall be measured by the unit, complete in place, with P-9 post or bracket.

Demountable Reflectorized Station Markers and Project Markers including P-9 Post will be measured by the unit complete in place.

Reflectorized Flexible Delineator Posts will be measured by the unit complete in place.

Delineation for Guardrail Termini with P-9 will be measured by the unit each post complete in place.

Each Street Name Sign shall be considered as one unit (excluding post). The P-5 breakaway post assembly for the sign shall be furnished under Item 847.1.

828.81: Basis of Payment

Payment for each classification of sign panels will be made at the contract unit price per square foot which shall be full compensation for fabricating, furnishing, erecting and attaching the completed sign panel, preparing all reflectorized materials. Backgrounds, legends, borders, arrows, shields,
paints, hardware and all other materials and labor required for the completion of the signs as specified.

Demountable Reflectorized Hazard Marker (H1 -1) will be paid for under the contract unit price each complete in place.

Payment for Abutment Warning Panels will be made at the contract unit price each complete in place.

Payment for 24-inch Warning Clusters will be made at the contract unit price each complete in place.

Demountable Reflectorized Reference Location Signs with P-5 Post will be paid for at the contract unit price each complete in place.

Demountable Reflectorized Delineator - Guard Rail will be paid for under the contract unit price each complete in place.

Demountable Reflectorized Station Markers and Project Markers with P-9 Post shall be paid for at the contract unit price each complete in place.

Reflectorized Flexible Delineator Posts will be paid for under the contract unit price each complete in place.

Delineation for Guardrail Termini will be paid for at the contract unit price each complete in place.

Street Name Signs will be paid for at the contract unit price each complete in place.

828.82: Payment Items

- **827.27** 24-Inch Warning Cluster (H1-2) - Aluminum Panel (Type A) Each
- **827.33** Abutment Warning Sign (H1-3)- Aluminum Panel (Type A) Each
- **828.1** Overhead Guide Sign - Aluminum Panel - (Type B) Square Foot
- **829.** Roadside Guide Sign (G) - Aluminum Panel (Type B) Square Foot
- **831.** Roadside Guide Sign (D6/D8)- Aluminum Panel (Type A) Square Foot
- **832.** Warning – Regulatory and Route Marker - Aluminum Panel (Type A).Square Foot
- **833.5** Demountable Reflectorized Delineator - Guard Rail Each
- **833.7** Delineation for Guardrail Termini .. Each
- **834.** Demountable Reflectorized Reference Location Sign Each
- **834.17** Reflectorized Flexible Delineator Post (Amber) Each
- **834.18** Reflectorized Flexible Delineator Post (White) Each
- **835.** Demountable Reflectorized Hazard Marker (H1-1) Each
- **836.** Demountable Reflectorized Project Marker .. Each
- **836.5** Demountable Reflectorized Station Marker .. Each
- **874.** Street Name Sign .. Each
SUBSECTION 840: SIGN SUPPORTS

DESCRIPTION

840.20: General

The work to be done hereunder consists of the erection and fabrication of steel structural supports on 4,000 psi cement concrete foundations.

The Contractor may select any structural sign support system meeting the design criteria of the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals unless otherwise standardized by the Department. Acceptance of the structural sign supports system will be contingent upon the review and approval of Shop Drawing submitted by the Contractor.

The foundations and supports for ground mounted signs shall be based on the plans and the standard drawings.

The design for overhead structures and foundations shall conform to the requirements of 828.21: Plans. Boring samples or actual determination of soil properties are required for all footings for overhead structures.

All unsuitable material within the limits of the footing must be removed at the direction of the Engineer. (Peat, organic material, material that has been dumped. etc.).

The concrete for the footing shall be placed immediately after excavation to prevent water from collecting in the excavated area.

All overhead and cantilever sign support structures shall be designed so as to be supported by single poles or end frames having not more than 2 vertical main members.

All overhead and cantilever sign structures shall have as an integral part of the structure, a Department approved damping device, which shall be installed during erection of the structure.

The damping devices shall be installed as follows:

- Overhead structures shall have the damping devices installed at the midpoint of the span (±1 ft), regardless of sign panel location.
- Two-chord structures shall have the damper attached to the top chord at mid-span.
- Tri-chord structures shall have the damper attached to the middle chord at mid-span.
- Box truss structures shall have the damper attached to the rear top chord at mid-span.
- Cantilever structures shall have the damper attached to the outer end of the horizontal member.
- Existing structures which do not have damping devices shall have dampers installed as part of the Contract.
- Existing structures, which have dampers not attached as specified above, shall have them removed and attached as specified above.

The approximate locations for the new signs are shown on the plans, the exact locations are to be determined by the Engineer on the project.
The Department will mark or stake the center point for each sign foundation only once whereupon it shall be the responsibility of the Contractor to furnish and set at their own expense all tie and construction stakes necessary for the erection of the sign.

All measurements to fabricate and erect the overhead sign structures and supports for ground mounted signs shall be made by the Contractor. Field measurements needed to determine the exact span and height of each structure should be taken immediately upon award of the Contract for incorporation in the structural layout on the shop drawings prior to submission for review.

The Contractor shall submit all design work, together with hand or computerized calculations and plans used for design purposes, to the Department; which shall become property of the Department with no additional compensation. All design work shall bear the seal of a Professional Engineer registered in Massachusetts.

Certificates of compliance shall conform to the requirements of Subsection 6.01: Source of Supply and Quality.

Before fabricating the sign support structures, the Contractor shall submit erection plans and shop drawings for approval of the Engineer in accordance with Subsection 5.02: Plans and Detail Drawings, 828.21: Plans and 960.60: Shop Drawings. Span lengths, post heights, vertical and horizontal clearances, material specifications (grade and/or alloy), anchor bolt layout, and all pertinent information shall be included on the shop drawings. Provisions for cambering shall also be shown to ensure that horizontal cross beams will not deflect below the horizontal.

A 4-in. x 6.5-in. handhole (minimum size) with frame and cover shall be installed in each overhead support structure post and positioned approximately 12 in. above the top of footing. The frames and covers shall be the same material as the posts. A removable cap with set screws shall be furnished on the top of each overhead support structure post.

All supports for ground mounted signs shall be of the “Breakaway” type. The design, fabrication and erection shall conform with the plans.

The work to be done hereunder shall include the furnishing and installation of Breakaway Post Assemblies for ground mounted signs, (not guide), in accordance with Department Standard Drawings and as shown on the plans.

This specification covers the use of standard, tapered, square, rectangular, round and special shape structural metals for sign supports.

Breakaway Sign Supports shall be designed and fabricated in conformance with plans titled "Standard Ground Mounted Supports Breakaway Design."

All vertical supports shall be erected plumb.

Both ends of each truss spanning a roadway shall be set at the same elevation.

Sign panels shall be mounted symmetrically about the horizontal truss or beam and provide a minimum vertical clearance above the roadway surface as shown on the plans.
MATERIALS

840.30: General

All materials shall be new and shall meet the requirements specified in the following Subsections of Division III, Materials:

- 4,000 psi Cement Concrete ...M4.02.00
- Reinforcing Steel ..M8.01.0
- Anchor Bolts ...M8.01.5
- Steel Sign Supports ...M8.18.5
- P-5 Sign Supports ...M8.18.3

All overhead and cantilevered support structures shall be in accordance with the requirements of Subsection 960: Structural Steel and Miscellaneous Metal Products.

FABRICATION

840.40: General

Welding shall conform to the applicable provisions of 960.61: Design, Fabrication and Erection.

No transverse welds will be permitted in the tubular shafts, except at the base plate and flange plate connections or where reinforcing sleeves are required. The shaft shall telescope the flange and the base plate and be welded by two continuous welds, one on the inside of the plate at the end of the shaft and the other on the outside surface of the plate. All welds shall develop the full strength of the section at the point of connection.

CONSTRUCTION METHODS

840.60: General

Work hereunder includes excavation, reinforcing steel, 4,000 psi cement concrete, anchor bolts, backfilling, grading and all other labor, material and equipment required to construct foundations conforming to the details shown on the plans and as directed.

Single pole foundation holes, except in ledge, shall be excavated by the auger method to the neat lines of the outside dimensions of the footings without disturbing the soil around or below the proposed footing.

In areas where rock or ledge is encountered the bottom of the footing shall be placed to the design depth shown on the typical detail plan. Concrete for footings where rock has been excavated, shall fill the entire volume of the excavation to the full depth of footing as designed.

Concrete foundations shall be poured monolithically to grade, except that where the foundation requires a spread footing it may be poured separately, and the pedestal then poured to grade. The lower portion of the footing may be poured separately, and the pedestal then poured to grade. The lower portion of the footing may be poured against the embankment, but the top 6 in. below finished grade shall be formed.

Anchor bolts shall be set to conform with the base-plate template as furnished in conformance with the typical detail plans.
The top of the foundation shall be properly finished and dressed to assure that full bearing will be provided on the leveling nuts which are to be set in concrete. All exposed edges shall have a ½-in. chamfer. Drain grooves shall be provided as shown on the typical plans.

Backfill for foundations, if required by the Engineer, shall be gravel borrow conforming to the requirements of M1.03.0: Gravel Borrow, except that no stone having any dimension greater than 1.25 in. shall be allowed.

The gravel shall be placed in layers not exceeding 6 in. in depth before compaction. Each layer of backfill shall be thoroughly compacted by use of power tampers to a minimum 95% density. All backfilling and compaction shall be in accordance with the applicable provisions of 150.64: Backfilling for Structures and Pipes.

P-5 posts may be either the square tube post or U channel type at the Contractor’s option. Signs mounted with square tube posts shall be installed as follows:

<table>
<thead>
<tr>
<th>Area (ft²)</th>
<th>Mounting with P-5 Square Tube Posts</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤7.5</td>
<td>Single 2.25-in. x 2.25-in. Post</td>
</tr>
<tr>
<td>>7.5 but ≤15</td>
<td>Two 2.25-in. x 2.25-in. Posts</td>
</tr>
<tr>
<td>>15 but ≤20</td>
<td>Two 2.5-in. x 2.5-in, Posts</td>
</tr>
</tbody>
</table>

Single post installation shall be in accordance with the Standard Drawing and Signs and Supports. Signs with two posts require a slip base and shall be installed as per manufacturer’s recommendations except that the sign post anchor shall be embedded at least 4 ft below ground surface.

Signs mounted with U-channel posts shall be installed as follows:

<table>
<thead>
<tr>
<th>Area (ft²)</th>
<th>Mounting with P-5 U-Channel Posts</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤10</td>
<td>Single Post</td>
</tr>
<tr>
<td>>10 but ≤200</td>
<td>Two Posts</td>
</tr>
</tbody>
</table>

Breakaway capabilities shall be maintained via the use of a lap splice or slip base system. Signs with two posts shall be installed as per manufacturer’s specifications except that the sign post anchor shall be embedded at least 4 ft below ground surface.

Damage to the galvanized coating shall be repaired before erection with high zinc dust content paint meeting M7.04.11.

COMPENSATION

840.80: Method of Measurement

The foundation, excavation, backfilling and compaction for foundations and the structural supports shall be considered as one lump sum unit.
Breakaway P-5 Post Assembly, single or double, complete in place, shall be considered as one unit.

840.81: Basis of Payment

Payment items in the 841. payment item series, and payment items 845.1 through 848.1 shall be paid at the contract unit price for each sign installed. Payment for work done under payment items 840.1* and item 844.1* shall be at the contract lump sum price.

The contract price shall be full compensation for designing, furnishing and erecting the supports, including construction of the concrete bases, steel reinforcement and anchor bolts; furnishing and installing post assembly and all excavation, gravel backfill and compaction except rock excavation, which shall be paid under Class B Rock Excavation.

840.82: Payment Items

840.1* Support for Overhead Guide Sign (OD-*) – Steel .. Lump Sum
841.1 Support for Guide Sign (D6 with D8 – 5-Inch Tubular Post) Steel...............Each
841.2 Support for Guide Sign (D6 – 5 Inch Tubular Post) Steel...........................Each
841.3 Support for Guide Sign (D6 – P5 Posts) Steel.. Each
841.4 Support for Guide Sign (D8 – 4 Inch Tubular Post) Steel...........................Each
841.5 Support for Guide Sign (D8 – P5 Posts) Steel..Each
841.6 Support for Guide Sign (I-2A – 5 Inch Tubular Post) Steel...........................Each
841.7 Support for Guide Sign (D6 with D8 – Special Design) Steel.....................Each
841.8 Support for Guide Sign (D6 – Special Design) Steel......................................Each
844.1* Support for Guide Sign (G*) Steel Lump...Sum
845.1 Support for Guide Sign (E5-1) Steel...Each
846.1 Supports for Guide Sign (E5-1A) Steel..Each
847.1 Sign Support (Not Guide) and Route Marker with 1 Breakaway Post Assembly – Steel ...Each
848.1 Sign Support (Not Guide) and Route Marker with 2 Breakaway Post Assemblies – Steel ...Each

* = as per Department Standard Nomenclature

SUBSECTION 850: TRAFFIC CONTROLS FOR CONSTRUCTION AND MAINTENANCE OPERATIONS

DESCRIPTION

850.20: General

Work under this Section consists of furnishing, installing and maintaining in proper operating condition various traffic control devices for the protection of the traveling public and working personnel during construction and maintenance operations. The design, application, and installation of all devices shall conform to MassDOT's "Standard Details and Drawings for the Development of Temporary Traffic Control Plans" and the MUTCD, and/or as directed.

The Contractor shall be responsible for the installation of adequate safety precautions for the protection of the traveling public and all project personnel.
All construction vehicles not protected by any form of traffic control device on a project which is open to traffic shall have an amber flashing light mounted on the cab roof or on the highest practical point of the machinery. The light shall be in operation whenever the equipment is working on the highway or travelway. Amber flashers must be a minimum of 40 cd and have a flashing frequency of 50 to 60 times per minute. Either rotating beacons or strobe lights meeting these requirements are acceptable.

All materials provided by the Contractor under the items of this section shall remain the property of the Contractor upon completion of the project.

All work under this Section shall conform to the approved Temporary Traffic Control Plan.

850.21: Roadway Flagger

The Contractor shall provide the number of flaggers required in either the approved TTCP or that the Engineer deems necessary for the direction and control of traffic within the site. A flagger shall be used as directed by the Engineer in accordance with 701 CMR 7.00, this section, and the TTCP. Any flagger determined by the Engineer to be ineffective in controlling traffic may be removed at the discretion of the Engineer. If a flagger is directed to be removed, the Contractor shall immediately comply with the directive from the Engineer and shall suspend operations as necessary until a qualified replacement can be provided. Such a suspension of operations shall not be considered as a basis for a claim or an extension of time.

MassDOT reserves the right to provide certified Roadway Flaggers or police officers, at the discretion of the Engineer.

850.22: Traffic Cones for Traffic Management

Traffic Cones for Traffic Management consists of furnishing, positioning, repositioning, maintaining and removing, as needed and/or as directed, traffic cones and necessary ballast for the purpose of closing a lane, shifting traffic, channelizing, or otherwise redirecting traffic.

850.23: Safety Signing for Traffic Management

Safety Signing for Traffic Management consists of furnishing, positioning, repositioning, covering and uncovering, maintaining and removing, as needed and/or as directed: regulatory, warning, and guide signs together with their supports. If additional supports are needed due to site conditions they will be considered incidental to the work.

Signs over 50 ft² will require approval of design calculations and shop drawings of the breakaway support system if the signs are installed at an unprotected location.

850.24: Temporary Pavement Markings and Temporary Raised Pavement Markers

Temporary Pavement Markings and Temporary Raised Pavement Markers consist of furnishing, applying, maintaining and removing temporary white and yellow reflectorized pavement markings and temporary raised pavement markers during construction and maintenance operations.

Temporary markings shall be effective for a period of 90 days. Re-application or replacement within the 90-day period shall be done at no additional cost to the Department.
850.25: Arrow Board

Arrow Board consists of providing, operating, positioning, repositioning, maintaining and removing a portable truck-mounted or trailer-mounted flashing arrow unit on the project at designated locations.

850.26: Reflectorized Drums

Reflectorized Drums consists of furnishing, positioning, repositioning, maintaining, and removing reflectorized plastic drums and necessary ballast, as needed and/or as directed by the Engineer.

850.27: Pavement Marking Removal and Raised Pavement Marker Removal

Pavement Marking Removal consists of removing existing pavement markings as required to support the Temporary Traffic Control Plan and as directed by the Engineer. Raised Pavement Marker Removal consists of removal and disposal of the existing raised pavement markers including filling the void.

850.29: Temporary Barrier and Temporary Barrier Removed and Reset

Temporary Barrier consists of furnishing, installing, maintaining and final removal of temporary barriers, including delineation, for traffic control or work zone protection in construction zones. This barrier shall be continuous as a unit across bridges and other limited construction areas unless designated on the plans as “Temporary Restrained Barrier.”

Temporary Barrier Removed and Reset consists of removing, transporting and resetting of temporary barrier units from alignments established along the roadway to new alignments as required by the construction and staged construction operations for the control of traffic or work zone protection.

850.30: Temporary Restrained Barrier and Temporary Restrained Barrier Removed and Reset

Temporary Restrained Barrier consists of furnishing, installing, maintaining and final removal of temporary restrained barriers on bridge decks and other locations including delineation, in accordance with details as shown on the traffic management plans and/or bridge plans and as directed by the Engineer. The work shall also include furnishing and installing all hardware and associated materials necessary to restrain the barriers in position, or attach the barriers to the roadway or the bridge deck.

Only barrier systems that have been crash tested and approved by FHWA are acceptable for the intended use.

Temporary Restrained Barrier Removed and Reset consists of removing, transporting and resetting of temporary restrained barriers in accordance with details as shown on the plans and as directed by the Engineer. The work shall also include furnishing and installing all hardware and associated materials necessary to restrain the barrier or attach the barriers to the roadway or bridge deck.
850.31: Portable Breakaway Barricades Type III

Portable Breakaway Barricades Type III consists of furnishing, positioning, repositioning, maintaining and removing. Portable Breakaway Barricades Type III where indicated on the plans and/or as directed by the Engineer.

Temporary Impact Attenuators consists of furnishing, installing, maintaining and final removal of temporary impact attenuators in conformance with the specifications of the manufacturer and in close conformance with the locations, lines, and grades shown on the plans and/or designated in the special provisions.

Temporary Impact Attenuators Removed and Reset includes maintaining, removing and reinstalling temporary impact attenuators where indicated on the plans or as indicated by the Engineer.

850.33: Portable Changeable Message Sign

Portable Changeable Message Sign consists of furnishing, positioning, repositioning, operating, maintaining, and removing a portable changeable message sign as needed and/or as directed by the Engineer. All messages displayed shall be approved by the Engineer prior to being displayed.

850.34: Truck Mounted Attenuator

Truck Mounted Attenuator consists of furnishing a moveable impact attenuator equipped with a flashing arrow board. The impact attenuator can be either a truck-mounted or a tow-behind unit.

850.35: Temporary Illumination

Temporary Illumination shall conform to the relevant provisions of Section 800: Traffic Control Devices, the Massachusetts Electrical Code and OSHA Safety Standards. The work consists of illuminating the work areas and lane drops on a temporary basis as designated by the Engineer. Lighting for paving and planning operations shall also conform to the requirements of Subsection 450: Hot Mix Asphalt Pavement.

All lighting equipment shall be approved by the Engineer prior to use. The Contractor shall submit to the Engineer a lighting plan for approval. No nighttime work shall be performed until the plan is approved by the Engineer. The lighting plan shall be prepared by a Professional Electrical Engineer and consist of the means and methods of the proposed lighting and contain supporting calculations.

MATERIALS

850.40: General

Devices required under this Section need not be new but must be in first class condition and acceptable to the Engineer. The condition of the work zone traffic control devices shall meet the quality standards set forth in the Quality Standards for Work Zone Traffic Control Devices compiled by ATSSA. Any devices that, in the judgment of the Engineer, are unsatisfactory in appearance and/or performance shall be removed and immediately replaced by acceptable devices.
850.41: Roadway Flagger

Each flagger shall be equipped with the following high visibility clothing, signaling, and safety devices:

1. A white protective hard hat with a minimum level of reflectivity per the requirements of ANSI, Type I, Class E&G;
2. A clean, non-faded, non-torn lime/yellow reflective safety vest and safety pants meeting the requirements of ANSI 107 Class 3;
3. A 24 in. “STOP / SLOW” traffic paddle conforming to the requirements of Part 6E.03 of the MUTCD, a weighted, reflectorized red flag, flagger station advance warning signage, and two-way radios capable of providing clear communication within the work zone between flaggers, the Contractor, and the Engineer. The traffic paddle shall be mounted on a pole of sufficient length to be 7 ft above the ground as measured from the bottom of the paddle;
4. A working flashlight with a minimum of 15,000 candlepower and a 6-in. red attachable wand, a whistle with an attached lanyard, and a First Aid kit that complies with the requirements of ANSI Z308.1; and
5. An industrial/safety type portable air horn that complies with the requirements of the U.S. Coast Guard.

850.42: Traffic Cones for Traffic Management

Traffic cones shall meet the requirements of M9.30.11: Traffic Cones.

850.43: Safety Signing for Traffic Management

Rigid signs shall be fabricated from plywood, aluminum or approved alternate substrate material.

Plywood sign material shall be ¾-in. Exterior MDO – General (one sided).

Aluminum sign material shall be Type A, 0.080 in. thick, as specified in 828.42: Panels.

The entire sign face shall be retro-reflectorized. Retroreflective sheeting shall conform to M9.30.0.

Rollup signs shall be fabricated from vinyl microprismatic retroreflective material.

Background sheeting for all construction warning signs shall be of a fluorescent orange color. The minimum spectral radiance factor, in accordance with Section 5.1 of ASTM E991, for the fluorescence shall be as follows:

New: .. 110% minimum
Weathered: ... 60% minimum

850.44: Temporary Pavement Markings and Temporary Raised Pavement Markers

Glass beads, tapes and paints used for temporary pavement markings shall be lead free, conform to M7.01.07, M7.01.16, M7.01.23 and M7.01.24 and meet the retroreflectivity requirements of the MUTCD for a period of 90 days. Final determination as to pavement marking quality shall be made by the Engineer. The Contractor shall supply a retroreflectometer for this purpose.

The colors of the marking materials shall be the standard highway colors of white or yellow and as outlined in the MUTCD.
Temporary Raised Pavement Markers shall conform to M9.30.6: Temporary Raised Pavement Markers.

850.45: Arrow Board

The unit shall consist of a black background panel meeting the requirements of MUTCD Type C and shall contain at least 15 amber lamps of approximately 8,000 initial maximum cd each.

Panels shall have the capability of the following mode selections:

1. left or right flashing or sequential arrows;
2. left or right sequential chevrons;
3. flashing double arrow;
4. flashing caution; and
5. alternating diamond caution.

Panels shall automatically provide for a minimum of 50% dimming from their rated lamp voltage at night. The flashing rate of the lamps shall not be less than 25 or more than 40 flashes per minute.

Minimum mounting height should be 7 ft above the roadway to the bottom of the panel, except on vehicle-mounted panels, which should be as high as practicable.

850.46: Reflectorized Drums

Reflectorized drums shall conform to Subsection M9.30.9. Warning lights shall conform to the MUTCD Type A. All drums shall be maintained in a satisfactory manner including the removal of dirt and road film that causes a reduction in sheeting retroreflective efficiency.

850.49: Temporary Barrier

The Contractor shall use a temporary barrier system that is listed on the QTCE.

850.50: Temporary Restrained Barrier

Temporary restrained barriers for use on roadways or on bridges shall be restrained by blocking or other system, affixed to the roadway by pinning, set into the roadway surface or other tested system or bolted down to the bridge deck, and shall be manufactured in accordance with the plans and Subsection 629: Concrete Barrier.

The Contractor shall supply a barrier and anchorage system that was crash tested in accordance with NCHRP 350, TL-3 or MASH, TL-3 and accepted by FHWA. The Contractor shall provide evidence of FHWA acceptance.

850.51: Portable Breakaway Barricades Type III

Portable Breakaway Barricades shall conform to the plans and the following requirements:

1. MUTCD.
2. Reflectorized sheeting conforming to M9.30.0: Retroreflective Sheeting, Type VIII. Pipe shall be Polyvinyl Chloride (PVC) pressure rated SDR 21 or SDR 26 ASTM D2241. Fittings may be
PVC ASTM D2665 or Acrylonitrile Butadiene Styrene (ABS) ASTM D2661 (Drainage Waste and Vent).

3. The alternating 6 in. wide reflectorized diagonal stripe shall be orange and white and shall slope downward at 45° toward the end by which the traffic is to pass. Barricades that block the passage of traffic or designate the end of the traveled way shall have alternating vertical orange and white stripes on the rails.

850.52: Temporary Impact Attenuators

Only those Temporary Impact Attenuators previously approved for the purpose intended and listed on the QTCE may be used. The temporary impact attenuator shall be designed to fit within reasonably close tolerance of the dimensions given on the plans or in the special provisions for a given location. The Contractor shall provide a design for temporary impact attenuator at the design speed shown on the plans or other speed designated by the Engineer.

850.53: Portable Changeable Message Sign

The Portable Changeable Message Sign shall be capable of performing all functions at ambient temperatures ranging from -31°F to 165°F. There shall be no degradation of operation due to fog, rain or snow.

Maintenance shall include periodic cleaning. When not being used the sign shall be stored in a secure area approved by the Engineer.

The Portable Changeable Message Sign shall consist of the following major components:

A. Message Sign.

1. Type: The technology can be LED or a combination of both Flip Disk and LED (Hybrid).
2. Matrix Displays: Shall be character, line or full matrix.
3. Size: The message sign shall have a minimum height of 6 ft, maximum height of 6.5 ft and a minimum width of 8 ft, maximum width of 12 ft.
4. Colors: The display shall be either fluorescent yellow or ITE amber.
5. Lines: The message sign shall have the capability of displaying at least three lines of 18 in. characters with a minimum of 8 characters per line.
6. The sign shall be illuminated for nighttime visibility.

B. Operator Interface.

A means of creating and controlling the display message(s) on–site and remotely through an NTCIP compatible IP addressable modem, shall be provided with each sign. The operator interface shall contain as a minimum the following:

1. Display terminal with keyboard to allow previewing the message content and format before it is sent to the sign panel. The keyboard shall be of a standard design.
2. Controller (CPU).
3. Lockable weatherproof enclosure for interface components.

C. Controller.

The controller shall possess, at a minimum, the following features:
1. Full 32K user memory with the option for additional archive memory.
2. Capacity to store a minimum of 50 messages.
3. Changeable message flash rate capability.
4. A minimum of 24-hour battery back-up.
5. Password activation shall be software available.

D. Power Supply.

The sign shall be capable of operation from a diesel-powered generator, a battery or solar power. The power supply shall be protected from the weather and be locked for security.

E. Trailer.

The trailer shall have at least the following features:

1. A current Registry of Motor Vehicles registration as per Subsection 7.04: Motor Vehicles.
2. Swivel jacks capable of leveling the trailer on a 1:6 (1 vertical to 6 horizontal) slope and capable of stabilizing the trailer in winds of up to 80 mph.
3. The sign shall be capable of being locked in a stowed position while being towed.
4. A lift mechanism shall be provided to elevate the sign to its operating position.
5. The capability to lock the sign panel in several off-angle positions with respect to the trailer axis.

850.54: Truck-Mounted Attenuator

Only those truck mounted attenuators previously approved for the purpose intended and listed on the QTCE may be used. Since most approvals are conditional, any associated issues including but not limited to anticipated conditions, model, variations, modifications, proper installation of truck-mounted units and tow-vehicle specifications shall be resolved to the satisfaction of the Engineer before use in the field. The submitted information shall include estimated displacement characteristics for a variety of impacts (assumptions regarding both impacting vehicle weight and speed) so that appropriate temporary traffic control set-ups can be undertaken in the field.

The flashing arrow board shall conform to the requirements of 850.45: Arrow Board.

850.55: Temporary Illumination for Work Zones

All floodlights shall have flat lenses securely fastened to the housing. All floodlight fixtures shall be mounted at a sufficient height to allow for an aiming angle of 45 degrees from the vertical to the job site. An inventory of spare lamps and fixtures shall be maintained on the job site and all lamp or fixture failures shall be repaired or replaced immediately.

Illumination Standards for Work Area

The entire work area shall be illuminated to a minimum average of 10 fc measured on a horizontal plane 6 in. above the work surface. A uniformity ratio (average to minimum) of 4 to 1 or better shall be maintained at all times in the work area. This shall apply to the work areas only. Any area where all phases of the work are completed need not be illuminated except for the safety and transition area lighting.
Illumination Standards for Transition Areas

The transition areas are the sections of roadway where road users are redirected out of their normal path.

The traveled way within these areas and all cones, drums, or other physical barriers placed on the roadway for the purpose of channelizing or restricting vehicular traffic shall be illuminated to a minimum average of 2 fc measured on a horizontal plane 6 in. above the roadway surface. A uniformity ratio (average to minimum) of 4 to 1 or better shall be maintained at all times in the transition area. These areas to be illuminated shall be defined as beginning at the first cone, barrel drum or other physical channelizing device, continuing across the full roadway width through the transition area, and ending where the traveled way attains a constant width.

Lighting Equipment Mounting

Mounting shall be designed and constructed by the contractor to suit the configuration of the equipment to which the lighting is attached.

Mounting shall be secure to prevent excessive vibration. Care shall be exercised to ensure that fixture mounting will clear all overhead structures.

All equipment lighting shall be aimed in such a manner as to maximize the illumination on each individual task.

All lighting units shall be placed in such a manner as to avoid shadows on the work area or the travel area and to prevent excessive glare to the motorist.

An inventory of spare lamps and spare fixtures shall be maintained on the job site by the contractor and all lamp or fixture failures shall be repaired or replaced immediately.

CONSTRUCTION METHODS

850.61: Roadway Flagger

Flaggers used during the performance of the Work shall be at least eighteen years of age. Flaggers used during the performance of the Work shall possess a current certificate of satisfactory completion from a Department-approved flagger training program within the previous two years.

Prior to the start of work, the Contractor shall provide to the Engineer a written list of certified flaggers to be used, including the most recent date of certification or re-certification for each person listed.

All flaggers shall carry their approved flagging training program certification card with them while performing flagging duties. Flagger certifications shall remain valid for the duration of the project or the flagger shall be removed from the project.

Flaggers shall have completed a First Aid training course according to the standards and guidelines of the American Heart Association or the American Red Cross. Flaggers shall carry their First Aid certification cards with them while performing flagging duties. First Aid certifications need not be renewed once the initial certification has expired.
850.62: Traffic Cones for Traffic Management

Traffic Cones shall be in good condition and sufficiently ballasted as determined by the Engineer. Any cones damaged by traffic shall be immediately replaced. The Contractor shall keep an adequate supply of spare cones on hand to replace any damaged cones.

The Contractor shall take steps to prevent cones from being blown over or displaced by wind or moving vehicular traffic. Cones shall not be left in position or on the highway when the construction operations have ceased. If it becomes necessary for the Department to remove any cones from the project due to negligence by the Contractor, all costs for this work will be charged to the Contractor.

850.63: Safety Signing for Traffic Management

Signs which are damaged or are missing from their locations shall be replaced by the Contractor without additional compensation except as described in Subsection 7.17: Traffic Accommodation.

All signs shall be maintained in a satisfactory manner including the removal of dirt or road film that causes a reduction in sign reflective efficiency.

All signs shall be mounted in compliance with the requirements of the MUTCD.

All signs not consistent with the use of the roadway shall be removed, completely covered, or turned away from traffic each day. In no case shall signs or their portable supports be left in the traveled way when the traffic management set-up has been removed.

Rollup signs shall only be used for single work shift setups.

850.64: Temporary Pavement Markings and Temporary Raised Pavement Markers

The Contractor shall install all necessary temporary pavement markings and temporary raised pavement markers, or both, prior to opening the roadway to traffic following the completion of each day’s operations. Temporary raised pavement markers shall be supplemented with tape or painted markings to assure lane delineation. The Contractor shall make all necessary arrangements for this work beforehand so that it may be properly coordinated with construction operations. Temporary pavement markers and temporary raised pavement markers shall be installed in accordance with the requirements of the MUTCD.

850.65: Arrow Board

The arrow board shall be deployed as shown on the approved Temporary Traffic Control Plan or as directed. The unit shall be properly maintained throughout its use on the project.

850.66: Reflectorized Drums

Reflectorized drums are to be used as channeling devices in highway work zones. The first five drums used for any taper or as designated on the Temporary Traffic Control Plan shall be equipped with flashing lights.

850.67: Pavement Marking Removal

Existing pavement markings shall be removed to the fullest extent possible by an approved method. Pavement marking removal methods shall not cause damage to the pavement or cause drastic change in texture, which could be construed as delineation at night, and shall be approved by the
Engineer. It is not permissible to paint over existing markings with black paint in lieu of removal. Approved methods include but are not limited to:

1. High pressure air.
2. High pressure water (cold weather use not permitted)
3. Sand blasting,
4. Mechanical devices such as grinders, sanders, scrapers, scarifiers and wire brushes.

Painting over a pavement marking line by use of asphaltic liquids or paints will not be permitted. Conflicting pavement markings shall be removed before any change is made in the traffic pattern.

Material deposited on the pavement as a result of removing markings shall be removed as the work progresses. Accumulations of sand or other material, which might interfere with drainage or could constitute a hazard to traffic, will not be permitted.

Any damage to the pavement or surfacing caused by pavement marking removal shall be satisfactorily repaired at no additional cost to the Department.

Where the removal operation is being performed near a lane occupied by traffic, a vacuum attachment operating concurrently with the removal operation must be in use. All residue shall be removed immediately from the surface being treated.

850.68: Raised Pavement Marker Removal

Existing raised pavement markers shall be removed by a method approved by the Engineer. Any damage to the pavement or surfacing caused by pavement marking removal shall be repaired at no additional cost by methods acceptable to the Engineer. Voids in the pavement shall be filled with like materials with adhesive bonding to the substrate.

850.69: Temporary Barrier and Temporary Barrier Removed and Reset

The Temporary Barrier shall be installed as shown on the plans, in accordance with these provisions and/or as directed by the Engineer.

Each run of temporary barrier units shall be fastened together to form a continuous chain.

Temporary impact attenuators with delineation shall be installed at ends of barriers within 30 ft of approaching traffic. The Contractor shall not leave a barrier leading-end unprotected.

Delineators shall be installed in conformance with manufacturer’s recommendations on the barriers at their termini; at 20-ft intervals on tangent sections; and 10-ft intervals on curved sections depending on radius as determined by the Engineer.

Delineators mounted on top of barriers separating opposing traffic shall have two sided amber reflectors delineating the left edge. Side mounted delineators shall have amber delineating the left edge, white delineating the right edge and have red as the back color. If mounted on the sides they shall be 6 in. below the top and on the side of traffic. Delineators shall be mounted at angles that provide maximum reflectorization.

Temporary Barriers shall be removed from existing locations and reset in accordance with above requirements, as directed by the Engineer.
850.70: Temporary Restrained Barrier and Temporary Restrained Barrier Removed and Reset

The Contractor shall ensure that where the restrained barrier is to be pinned to the roadway, the pin holes are filled with a sand mortar mix upon removal of the barrier. If the barrier is to be restrained by setting it into the roadway in a planed slot, the roadway surface shall be restored by appropriate full depth HMA or Cement Concrete roadway reconstruction.

The Contractor shall ensure that where the plans require the restrained barrier to be bolted to the bridge deck, the deck reinforcement will not be damaged during the installation of the proposed barrier anchor bolts. Any damage to the deck reinforcement, which occurs during the course of the Contractor’s operations, shall be repaired to the satisfaction of the Engineer at the Contractor’s expense.

Impact or percussion drills are allowed if no distress occurs to the existing concrete. Their use is subject to the approval of the Engineer.

If core drilling, the holes may be cored using either a carbide or diamond bit. The diameter of the cored holes shall be in accordance with the recommendations of the resin manufacturer. If a diamond bit is used to core the holes in the proposed deck, a sandblast, high-pressure water blast, or other mechanical means must be used to properly roughen the inner surface of the holes. The type of abrasive surface roughening used shall be approved by the Engineer.

On the concrete deck all holes shall be blown clear of any debris prior to placement of resin. The Contractor shall have the approval of the Engineer signifying that the holes are clean prior to placing the resin adhesive. The Contractor shall strictly follow the recommendations of the manufacturer for mixing and placing the adhesive material prior to the placement of the bolts. The Contractor shall not place adhesive material when the existing concrete temperature is below 40°F. Any excessive resin adhesive around the hole after placement of the bolt shall be struck off smooth while the resin adhesive is still workable.

The anchor bolt holes shall be repaired as needed by methods acceptable to the Engineer at no additional cost to MassDOT. Damage to the concrete-to-remain shall be repaired to a condition equal to or better than that prior to the beginning of these operations, at no additional cost to the Department.

High strength bolts shall be installed through pockets formed in the barriers and bonded in holes drilled in either the existing or proposed concrete deck. The bolts shall be suitably coated to facilitate removal from the mating threads of the cured resin adhesive once the barriers are no longer needed. The process of removing the bolts shall cause no distress to the proposed deck concrete.

The bolt embedment length and resin adhesive shall be adequate to develop a minimum of 36 kips of tension in the bolts. The embedment length shall not be less than 6.5 in. in concrete and shall not extend below the bottom of the proposed deck.

Where the condition of the existing deck is unsuitable due to deterioration or insufficient embedment depth, bolts extending through the deck and fastened to an appropriately sized steel member which will provide the required pull strength may be used.
The details of the proposed bolted anchorage system and all installation and removal procedures shall be in accordance with the recommendations of the manufacturer and shall be submitted to the Engineer for approval.

Field tests shall be performed to verify the effectiveness of the anchorage detail including the drilled hole diameter, embedment length, and the resin adhesive capacity. Two test bolts in both the existing concrete and the new concrete shall be installed and tested by the Contractor for pullout as required by the system manufacturer. If the desired strength is not achieved, the Contractor shall adjust the hole size, embedment length, bolt size, and/or adhesive material to meet this test requirement. Retesting as required by the Engineer shall be performed by the Contractor, at no additional cost to the Department.

All testing shall be performed by the Contractor and is incidental to the work under this item. The method of applying the tension test load to the bolts shall be in accordance with ASTM E488. The testing equipment used and the locations and details of the test bolts shall be submitted to the Engineer for approval. The Contractor shall perform this test as soon as possible in order to eliminate delays in construction due to the approval process. Bolts shall not be ordered until the embedment lengths have been approved.

The delineators shall be single units, with yellow or white lenses on both sides, placed 6 in. below the top and on the traffic side of the median barrier at 20 ft on center. The delineators shall be the type designed expressly for this type of attachment and may be made entirely of plastic.

Temporary impact attenuators with delineation shall be installed at ends of barriers within 30 ft of approaching traffic. The Contractor shall not leave a barrier leading end unprotected.

Temporary Barriers on Bridge shall be removed from existing locations and reset in accordance with above requirements, as directed by the Engineer.

850.71: Portable Breakaway Barricades Type III

The Contractor shall furnish, set up, move and remove Portable Breakaway Barricades Type III as required or directed by the Engineer. Portable Breakaway Barricades Type III shall be maintained in a good and serviceable condition throughout the project and shall be moved from place to place as required during construction and as directed by the Engineer.

850.72: Temporary Impact Attenuators and Temporary Impact Attenuators Removed and Reset

Excavation for temporary attenuator foundations and anchorage shall be made to the required depth and to a width that will permit the installation and bracing of forms where necessary. All soft and unsuitable material shall be replaced with compacted gravel borrow.

The temporary impact attenuator shall be installed in accordance with the manufacturers’ specifications and recommendations. Copies of these specifications and recommendations shall be provided to the Engineer.

Temporary Impact Attenuators damaged by traffic shall be replaced by the Contractor within 24 hours or as directed by the Engineer.
Temporary Impact Attenuators Removed and Reset consists of removing temporary impact attenuators furnished above, relocating and re-installing it at new locations in accordance with the specifications and recommendations of the manufacturer.

850.73: Portable Changeable Message Sign

The changeable message unit shall be available for immediate use throughout the duration of the project and be positioned in accordance with the Temporary Traffic Control Plan and/or at the direction of the Engineer. The sign shall be visible from a minimum distance of 900 ft with a viewing angle of no less than 30°. The Contractor shall take appropriate measures as needed within the roadway layout to provide the required minimum sight distance. The Contractor shall be responsible for the maintenance of each device and appurtenance. If the unit is found to be defective in any way it shall be replaced immediately at the Contractor’s expense.

850.74: Truck-Mounted Attenuator

The truck-mounted attenuator shall be utilized as shown on the plans or as directed by the Engineer, at the proper orientation and height above the paved surface.

A damaged truck-mounted attenuator shall not be used. Any repairs to the attenuator shall be accompanied by a statement from the product manufacturer certifying the repairs that were performed. Any work that becomes delayed due to the lack of a properly functioning truck-mounted attenuator will not constitute justification for an extension of time.

850.75: Temporary Illumination

All portable lighting shall be located off the travel way. Whenever possible the lighting shall be located on the side of the road opposite the closed lanes.

The Contractor shall provide power to adequately energize the lighting equipment specified. Generator placement and wiring shall be in compliance with the Massachusetts Electrical Code and OSHA safety standards.

The Contractor shall furnish to the Engineer a Multi-function digital luminance meter, complete with instructions and capable of measuring from 0.01 to 200 fc. The illumination on the project shall be monitored at random intervals for conformance to the specifications set forth herein. Substandard illumination shall be sufficient reason for the Engineer to stop all affected work until the substandard situation is corrected.

COMPENSATION

850.80: Method of Measurement

Construction Vehicle Warning Devices and Personal Protective Safety Equipment shall be incidental to the work of the Contract and shall not be measured for payment.

Roadway Flagger will be measured on an hourly basis for only the actual time spent flagging. Partial hours shall be measured in 0.5-hour increments rounded up to the next 0.5 hours if a portion of that 0.5 hours is worked.

Traffic Cones for Traffic Management will be measured by the day. Traffic Cones for Traffic Management will be measured for payment only when 50 or more cones are used together in a
string, spaced in accordance with the Traffic Control Plan and the MUTCD, for the purpose of
closing a traffic lane, shifting traffic, channelizing, or otherwise redirecting traffic. The use of less
than 50 cones in a string shall be incidental to the work with no additional compensation. Other
uses of traffic cones shall be incidental to the work activity with which the cones are associated.
Each period of up to 24 hours during which Traffic Cones for Traffic Management are in place will
be measured as 1 day, regardless of the number of times that the cones are positioned,
repositioned, removed or returned to service and regardless of the number of locations at which
traffic cones are used. Ballast to weight the cones shall be incidental to the work with no additional
compensation.

Safety Signing for Traffic Management will be measured by the square foot and the quantity will be
only that which is actually used on the project. Regardless of the number of times that a sign may be
reused on the project, it will not be measured for payment more than once.

Temporary Pavement Markings will be measured by the foot using the procedure outlined for
Permanent Pavement Markings in 860.80: Method of Measurement.

Temporary Raised Pavement Markers will be measured by the unit each.

Arrow Board will be measured by the day. Each period of up to 24 hours during which an arrow
board is in use will be measured as one day, regardless of the number of times that the unit is
positioned, repositioned, removed or returned to service.

Reflectorized Drums will be measured by the day. Each period of up to 24 hours during which a
reflectorized drum is in use will be measured as one day regardless of the number of times that the
drum is positioned, repositioned, removed or returned to service.

Pavement Marking Removal will be measured by the square foot of existing pavement marking
actually removed.

Raised Pavement Marker Removal will be measured by the unit each.

Temporary Barrier and Temporary Barrier Removed and Reset will be measured by the foot, in
place. Barrier removed and reset for the purpose of gaining access to the construction work zone
shall not be measured for payment. Any barrier removed and reset for the convenience of the
Contractor will not be measured for payment.

Temporary Restrained Barrier and Temporary Restrained Barrier Removed and Reset will be
measured by the foot in place.

Portable Breakaway Barricade Type III will be measured as one unit each regardless of size.

Temporary Impact Attenuators will be measured as a single unit each.

Temporary Impact Attenuator Removed and Reset will be measured as a single unit each.

Portable Changeable Message Signs will be measured by the day. Each period of up to 24 hours
during which a Portable Changeable Message Sign is in place will be measured as one day,
regardless of the number of times that the sign is positioned or repositioned, removed or returned
to service.
Truck-Mounted Attenuator will be measured by the day which shall include the attenuator, the truck or tow vehicle, the operator or driver, maintenance of the vehicle and components, and arrow board. Each period of up to 24 hours during which a Truck-Mounted Attenuator is in place will be measured as one day, regardless of the number of times that the Truck Mounted Attenuator is positioned, repositioned, removed or returned to service during that period. In either case, the unit and the accompanying truck are considered one unit for measurement and payment purposes.

Temporary Illumination for Work Zone will be measured by the day for each period of up to 24 hours during which temporary illumination is used, regardless of the number of operations requiring lighting, or the number of times that the illumination is positioned, repositioned, removed or returned to service.

850.81: Basis of Payment

The contract prices under these items shall constitute full payment for all material, labor and equipment required or incidental to the satisfactory completion of the work as described above. Any devices provided under this section which are lost, stolen, destroyed or deemed unacceptable while their use is required on the project shall be replaced without additional compensation. Devices damaged by traffic will be compensated in accordance with Subsection 7.17: Traffic Accommodation including temporary impact attenuators. This shall not include other temporary traffic control devices, such as cones, drums and temporary signs.

Roadway Flagger will be paid for at the contract unit price per hour which shall include full compensation for all costs for providing flaggers. No allowance or additional payment will be made for required training, equipment, travel time, transportation, or any administrative charges associated with the costs of flaggers. No allowance shall be made for overtime payment rates. The Contractor shall not be charged nor compensated for the use of MassDOT employee flaggers. This item shall not be subject to renegotiation for any reason under Subsection 4.06: Increased or Decreased Contract Quantities regardless of whether or not this item overruns or underruns.

Traffic Cones for Traffic Management will be paid for at the contract unit price per day which shall provide full compensation for furnishing, positioning, repositioning, and removing traffic cones as directed by the Engineer. A day shall cover all traffic cones for traffic management necessary in that time period, regardless of the total number of cones and regardless of the number of locations at which cones are used. The Contractor will receive the day payment for the period in which the Traffic Cones for Traffic Management are deployed. Safety Signing for Traffic Management will be paid for at the contract unit price per square foot which shall include full compensation for furnishing, installing, maintaining, positioning, repositioning, and removing the signs.

Temporary Pavement Markings will be paid for at the contract unit price per foot which shall include full compensation for furnishing, installing, maintaining and removing, the markings and markers.

Temporary Raised Pavement Markers will be paid for at the contract unit price each which shall include full compensation for furnishing, installing, maintaining and removing, the markings and markers.

Arrow Boards will be paid for at the contract unit price per day which shall include full compensation for furnishing, positioning, repositioning, and removing Arrow Boards as directed by the Engineer.
Reflectorized Drums will be paid for at the contract unit price per day which shall include full compensation for furnishing, positioning, repositioning, and removing Reflectorized Drums as directed by the Engineer. Flashing lights as shown on the Temporary Traffic Control Plan shall be considered incidental to Item 859. Reflectorized Drum.

Pavement Marking Removal will be paid for at the contract unit price per square foot which shall provide full compensation for removing existing markings including any necessary repairs to the roadway surface.

Raised Pavement Markers Removal will be paid for at the contract unit price each which shall provide full compensation for removing the existing markers and filling the voids in the pavement.

Temporary Barrier will be paid for at the contract unit price per foot which shall provide full compensation for furnishing, installing, delineating, aligning, maintaining and final removal of the temporary barrier.

Temporary Barrier Removed and Reset will be paid for at the contract unit price per foot which shall provide full compensation for removing, relocating, re-setting, re-aligning, transporting and maintaining the temporary barrier including delineation, as specified above. The Contractor will be paid Removed and Reset each time the barrier is relocated either to a new work zone, to off-season storage, or back to the project from storage. The Contractor will not be separately compensated for any work necessary to maintain or re-align units or replace damaged units. No payment will be made for removing and resetting barriers for the purpose of gaining access to the construction work zone. No payment will be made for removing, relocating and resetting any barriers moved for the convenience of the contractor.

Temporary Restrained Barriers as shown on the plans will be paid for at the contract unit price per foot which shall provide full compensation for furnishing, initial installation, planing operations, delineation, testing, maintaining the temporary barrier and delineation, final removal and transportation of the temporary barriers, restoration of the planed surfaces or pin holes, and shall include all hardware, materials, equipment, and labor necessary to restrain the barriers.

The Contractor shall have no claim for extra compensation for any variations in the system due to diameter of the bolt hole, the embedment length, the method of producing the hole, repairing the hole or the type of adhesive used in anchoring the proposed barriers.

Temporary Restrained Barriers Removed and Reset will be paid for at the contract unit price per foot which shall provide full compensation for removing, relocating, re-setting, testing, re-aligning, maintaining the temporary barrier and delineation, and transportation of the temporary barrier including delineation, restoration of the planed surfaces or pin holes, and shall include all hardware, materials, equipment, and labor necessary to restrain the barriers. The Contractor shall have no claim for extra compensation for any variations in the system due to diameter of the bolt hole, the embedment length, the method of producing the hole, repairing the hole or the type of adhesive used in anchoring the proposed barriers. The Contractor shall be paid Remove and Reset each time the barrier is relocated either to a new work zone, to off-season storage, or back to the project from storage.

Portable Breakaway Barricades Type III will be paid for at the contract unit price each which shall provide full compensation for all material, labor and equipment necessary to furnish, install, maintain, move and remove the barricades.
Temporary Impact Attenuators will be paid for at the contract unit price each which shall provide full compensation for furnishing, installing and removing the attenuator, as well as all labor, equipment, materials, foundation and anchorage, and all incidental work necessary to complete the work as specified, and to maintain the attenuator in proper working condition.

Temporary Impact Attenuator Removed and Reset will be paid for at the contract unit price each which shall provide full compensation for installing the attenuator, all labor, equipment, materials, foundation and anchorage, and all incidental work necessary to complete the work as specified.

Gravel Borrow for any foundation and anchorage work for Temporary Impact Attenuators will be paid for at the contract unit price under Item 151. Gravel Borrow.

Portable Changeable Message Signs will be paid for at the contract unit price per day which shall provide full compensation for furnishing, positioning, repositioning, and removing Portable Changeable Message Signs as specified or as directed by the Engineer.

Truck Mounted Attenuator will be paid for at the contract unit price per day which shall provide full compensation for positioning, repositioning, removing or returning to service as required or as directed by the Engineer. The Contractor will receive the day payment for each continuous work period in which the Truck Mounted Attenuator is deployed.

Temporary Illumination for Work Zone will be paid for at the contract unit price per day which shall provide full compensation for all lighting specified for use in lane drops, work areas, and other lighting locations as directed by the Engineer. The work includes the lighting plan, delivery, removal, setting and resetting of all floodlighting equipment, staging or tripods, generators, wiring, the light meter, adjustment, maintenance and any equipment necessary or incidental to the operation of a lighting system.
850.82: Payment Items

850.41 Roadway Flagger

851.1 Traffic Cones for Traffic Management

852. Safety Signing for Traffic Management

853.1 Portable Breakaway Barricade Type III

853.2 Temporary Barrier (TL-2)

853.21 Temporary Barrier Removed and Reset

853.403 Truck Mounted Attenuator

853.41 Temporary Impact Attenuator for Shoulder, Incapable of
 Redirection

853.411 Temporary Impact Attenuator for Shoulder, Incapable of
 Redirection, Remove and Reset

853.42 Temporary Impact Attenuator for Shoulder, Capable of Redirection

853.421 Temporary Impact Attenuator for Shoulder, Capable of Redirection,
 Removed and Reset

853.43 Temporary Impact Attenuator for Median, Incapable of Redirection

853.431 Temporary Impact Attenuator for Median, Incapable of Redirection,
 Removed and Reset

853.44 Temporary Impact Attenuator for Median, Capable of Redirection

853.441 Temporary Impact Attenuator for Median, Capable of Redirection,
 Removed and Reset

853.8 Temporary Illumination for Work Zone

854. Temporary Raised Pavement Marker

854.016 Temporary Pavement Markings – 6-inch (Painted)

854.036 Temporary Pavement Markings – 6-inch (Tape)

854.1 Pavement Marking Removal Square

854.5 Raised Pavement Marker Removal

856. Arrow Board

856.12 Portable Changeable Message Sign

859. ReflectORIZED Drum

SUBSECTION 860: REFLECTORIZED PAVEMENT MARKINGS

DESCRIPTION

860.20: General

This item of work consists of furnishing materials and the application of ReflectORIZED Pavement
Markings in accordance with the MUTCD.

MATERIALS

860.40: General

Materials shall be as specified under the particular payment item being used and shall meet the
appropriate requirements specified in the following Subsections of Division III, Materials:
Massachusetts Department of Transportation – Highway Division
Standard Specifications for Highways and Bridges

General Requirements for Paints and Protective Coatings.. M7.00.00
White Thermoplastic Reflectorized Pavement Markings... M7.01.03
Yellow Thermoplastic Reflectorized Pavement Markings ... M7.01.04
White Traffic Paint .. M7.01.05
Yellow Traffic Paint... M7.01.06
Glass Beads ... M7.01.07
White High Heat Rapid Drying Traffic Marking Material .. M7.01.08
Yellow High Heat Rapid Drying Traffic Marking Material .. M7.01.09
Fast Drying White Traffic Paint ... M7.01.10
Fast Drying Yellow Traffic Paint .. M7.01.11
Striping Powder ... M7.01.12
Preformed Permanent Plastic Pavement Markings or Legends M7.01.18
Green Pavement Coatings .. M7.01.21
Fast Drying White Water-borne Traffic Paint .. M7.01.23
Fast Drying Yellow Water-borne Traffic Paint ... M7.01.24

CONSTRUCTION METHODS

860.60: Equipment

All equipment used for the application of pavement markings shall be approved by the Engineer and shall be of standard commercial manufacture. All equipment and devices necessary for the protection of the pavement marking and the traveling public shall be approved by the Engineer. The pavement marking equipment shall be operated in accordance with the manufacturer’s recommendations.

Truck mounted equipment shall be used for the application of pavement markings except in such cases where in the Engineer’s judgment travel will be unreasonably delayed and/or the quality of the work performed by the machine is unsatisfactory.

The Contractor shall supply the following equipment for each pavement marking operation:

1. An infrared pistol thermometer meeting the requirements of 450.42: Weather Limitations;
2. A digital thickness gauge for measuring the thickness of thermoplastic lines;
3. A wet film thickness gauges for painted lines; and
4. A retroreflectometer with certification of calibration within the last 6 months.

The above equipment shall remain the property of the Contractor upon completion of the project.

860.61: Layout of Work

A schedule of pavement marking operations shall be furnished by the Contractor for the approval of the Engineer prior to the application of any pavement markings. This schedule must be in the office of the Engineer 7 days prior to the proposed date of application of any pavement markings.

The Engineer will provide at a convenient location on the roadway a line of reference for use by the Contractor in establishing the location of markings. The line of reference shall be at a maximum of 50-ft intervals by means deemed satisfactory by the Engineer. All markings shall follow the line of reference without deviation. Any line deviating from the establishing control of incorrect width shall be reapplied, as directed by the Engineer in accordance with 860.62: Application of Markings.
Pavement markings shall be applied as follows:

Table 860.62-1: Pavement Marking Application Requirements

<table>
<thead>
<tr>
<th>Material</th>
<th>Application Temperature</th>
<th>Line Thickness Above Roadway Surface</th>
<th>Glass Bead Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>M7.01.03</td>
<td>400°F to 425°F</td>
<td>125 to 188 mils</td>
<td>Drop-on 1 lb per 10 ft²</td>
</tr>
<tr>
<td>M7.01.04</td>
<td>400°F to 425°F</td>
<td>125 to 188 mils</td>
<td>Drop-on 1 lb per 10 ft²</td>
</tr>
<tr>
<td>M7.01.23</td>
<td>135°F to 150°F</td>
<td>15 mils</td>
<td>6 lb per gal</td>
</tr>
<tr>
<td>M7.01.24</td>
<td>135°F to 150°F</td>
<td>15 mils</td>
<td>6 lb per gal</td>
</tr>
</tbody>
</table>

Line thickness above the roadway surface shall meet the minimum requirements regardless of the type of surface on which it is applied.

No thinners shall be used for the above listed pavement marking applications except in accordance with the manufacturer's specifications and at the direction of the Engineer.

No paint or pavement marking material shall be heated above the temperature marked on the container.

Glass beads for water-borne traffic paint and thermoplastic pavement markings shall be applied by the single drop method using AASHTO M 247 Type 1 glass beads sprayed or dropped on pavement marking material.

Glass beads for epoxy and polyurea pavement markings shall be both standard gradation beads and large gradation beads. Standard gradation beads shall be applied by the double drop method. Large gradation beads shall be injected into or dropped onto the liquid pavement marking material. Large gradation beads shall be applied first, immediately followed by standard gradation beads. The beads shall adhere to the cured pavement marking material or all pavement marking operations shall cease until corrections are made.

Markings shall be applied only in seasonable weather and in accordance with good painting practices. The surface shall be dry and free of sand, grease, oil or other foreign substances prior to the application. The Contractor shall prepare the surface to accept the application as part of this item, with no additional compensation. The Engineer will make the final determination for all of the foregoing.

HMA pavements shall have been in place for 48 hours prior to the application of pavement markings except preformed permanent plastic pavement markings which can be applied immediately. When it is necessary to expedite the flow of traffic, the Engineer may reduce the waiting period as is deemed necessary.

If for any reason material is spilled or tracked on the highway, or any markings applied by the Contractor, in the Engineer's judgment, fail to conform to 860.61: Layout of Work, because of a deviation from the desired pattern, the Contractor shall remove such material by a method that is not injurious to the roadway surface and is acceptable to the Engineer, clean the roadway surface and prepare the surface for a reapplication of markings and reapply the markings as directed without additional compensation for any of the foregoing corrective operations.
The ambient (air) temperature for thermoplastic application is to be a minimum of 45°F and rising at the time of marking operations. If work has started and air temperatures fall below 45°F and continuous cooling is indicated, work shall be stopped. In cool weather conditions, temporary drops down to 40°F will be tolerated, providing temperatures also vary upwards. Sustained striping (greater than one hour) at 40°F shall not be allowed. Starting work at air temperatures lower than 45°F shall not be allowed.

860.63: Protection of Markings

Markings shall remain protected until sufficiently dry to bear traffic on highways that are open to traffic. Markings shall be protected by traffic cones conforming to Subsection 850: Traffic Controls for Construction and Maintenance Operations, except in the case of markings which cure to a no track condition in 180 seconds or less in the latter case protection may be provided by a convoy of vehicles with suitable warning devices to warn overtaking or oncoming traffic that the pavement marking operation is in progress.

A. Broken Lines.

On tangents and on curves of 1,000-ft radius or greater, at least one cone shall be placed on every other bar. On curves of less than 1,000-ft radius, one cone shall be placed on every bar unless otherwise directed by the Engineer.

B. Solid Lines.

On tangents and on curves of 1,000-ft radius or greater, cones shall be spaced not over 80 ft apart and on curves of less than 1,000-ft radius the spacing shall be not over 50 ft unless otherwise directed by the Engineer. On edge line adjacent to the median wider spacing may be used at the direction of the Engineer. In order to control the proper positioning of the cones during the drying period, the Contractor shall assign sufficient personnel as determined by the Engineer. Such control is dependent on traffic density, cone widths, etc.

860.64: Accommodation of Traffic

All warning signs and traffic control devices as required shall be in accordance with Subsection 850: Traffic Controls for Construction and Maintenance Operations.

No work shall be done on this item on roadways open to traffic on Saturdays, Sundays, the day before a holiday or on a holiday except when otherwise specifically directed by the Engineer.

Both lanes of two-lane highways shall remain open to traffic at all times. On multi-lane highways only one lane shall be closed to traffic at any time.

Work under this item may be suspended, at the discretion of the Engineer, during peak traffic hours or at any other time when, in their judgment, traffic is being unduly hampered or delayed by the work, under this item.

COMPENSATION

860.80: Method of Measurement

Markings are to be paid for on the actual length of lines applied under the various items of the Contract.
The lengths of solid lines will be obtained by:

1. Calculation from established base line stations; or
2. Use of a measuring wheel; or
3. Vehicle odometer readings.

The length of broken lines (except for broken lines less than 10 ft, the actual length shall be used) will be obtained by using 25% of the results obtained above for solid lines. Patterns, other than lines, are to be paid for by the square foot area under the item in the Contract.

860.81: Basis of Payment

The work under these items will be paid for at the contract unit price under each item of the Contract based on the measurements as determined by the Engineer.

The contract prices shall include all material, labor, and equipment required or incidental to the satisfactory completion of the work.

860.82: Payment Items

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>860.106</td>
<td>6-Inch Reflectorized White Line (Painted)</td>
<td>Foot</td>
</tr>
<tr>
<td>860.112</td>
<td>12-Inch Reflectorized White Line (Painted)</td>
<td>Foot</td>
</tr>
<tr>
<td>861.106</td>
<td>6-Inch Reflectorized Yellow Line (Painted)</td>
<td>Foot</td>
</tr>
<tr>
<td>861.112</td>
<td>12-Inch Reflectorized Yellow Line (Painted)</td>
<td>Foot</td>
</tr>
<tr>
<td>864.01</td>
<td>Pavement Arrow Reflectorized White (Painted)</td>
<td>Square Foot</td>
</tr>
<tr>
<td>864.02</td>
<td>Pavement Arrow and Legends Reflectorized White - Inlay Tape</td>
<td>Square Foot</td>
</tr>
<tr>
<td>864.04</td>
<td>Pavement Arrows and Legends Reflectorized White (Thermoplastic)</td>
<td>Square Foot</td>
</tr>
<tr>
<td>866.106</td>
<td>6-Inch Reflectorized White Line (Thermoplastic)</td>
<td>Foot</td>
</tr>
<tr>
<td>866.112</td>
<td>12-Inch Reflectorized White Line (Thermoplastic)</td>
<td>Foot</td>
</tr>
<tr>
<td>867.106</td>
<td>6-Inch Reflectorized Yellow Line (Thermoplastic)</td>
<td>Foot</td>
</tr>
<tr>
<td>867.112</td>
<td>12-Inch Reflectorized Yellow Line (Thermoplastic)</td>
<td>Foot</td>
</tr>
</tbody>
</table>
SECTION 900: STRUCTURES

SUBSECTION 901: CEMENT CONCRETE

DESCRIPTION

901.20: General

Cement Concrete with or without reinforcement as required for bridges, culverts, walls, steps, drop inlets and other work shall be constructed to the designs and dimensions indicated on the plans or as directed and to close conformity with the lines and grades established by the Engineer.

Where necessary, at the direction of the Engineer, the dimensions or design may be adjusted to fit foundation, slope or construction conditions as encountered.

MATERIALS

901.40: Materials

Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

- Cement Concrete .. M4.02.00
- Silica Fume Modified Cement Concrete .. M4.06.0
- High Performance Cement Concrete .. M4.06.1
- Reinforcing Steel .. M8.01.0
- Epoxy Coated Reinforcing Bars ... M8.01.7
- Galvanized Reinforcing Bars ... M8.01.8
- Mechanical Reinforcing Bar Splicer ... M8.01.9
- Stay-in-Place Bridge Deck Form .. M8.21.0
- Preformed Expansion Joint Filler .. M9.14.0
- Preformed Bituminous Fiber Joint Filler ... M3.05.3
- Preformed Compression Joint Seals (Bridges) ... M9.14.1
- Polyurethane Joint Sealer (Flow Type) .. M9.14.3
- Polyurethane Joint Sealer (Non-Sag Type) .. M9.14.4
- Bonded Closed Cell Joint System .. M9.14.6
- Plastic Water Stops .. M9.07.0
- Curing Materials
 - Impervious Liquid Membrane .. M9.06.5
 - Waterproof Paper ... M9.06.0
 - Burlap ... M9.06.3
 - White Polyethylene for Curing .. M9.06.1, Part B
- Polyethylene Coated Burlap ... M9.06.4
- Concrete Penetrant/Sealer .. M9.15.0
Metal Masonry Plate Bearing Pads
 Rubber - Cotton Duck Bearing Pad... M9.16.1
 Molded Fabric Bearing Pad... M9.16.2

For any project that requires the placement of cement concrete for structural purposes, the Contractor shall supply to the project for the use of the Engineer the following equipment as an incidental item, if not already provided for in a previous section.

1. Concrete cylinder molds with plastic covers shall conform to the requirements of AASHTO M 205M/M 205. The standard concrete cylinder shall be 6 in. in diameter by 12 in. high for regular Cement Concrete. When the nominal maximum size of the coarse aggregate does not exceed 1 in., 4 in. in diameter by 8 in. high cylinders may be used.

2. One complete set of tools for fabricating concrete cylinders that meet the requirements of AASHTO T 23.
 a. Tamping rod shall be round, straight steel rod with at least the tamping end rounded to a hemispherical tip of the same diameter as the rod. Large rod, ¾-in. diameter and approximately 2 ft long to prepare 6-in. diameter concrete cylinders; small rod, ¾-in. diameter and approximately 12 in. long to prepare 4-in. diameter concrete cylinders.
 b. Rubber mallet, shovel, trowel, wood float, metal float, scoop, and wheelbarrow.

3. One complete set of apparatus for measuring the slump of fresh concrete and shall conform to the requirements of AASHTO T 119M/T 119.
 a. Slump cone.
 b. Tamping rod. A round smooth ¾-in. steel rod with the tamping end rounded to a hemispherical tip of ¾-in. diameter. The minimum length shall be 2 ft.
 c. Sheet metal pan 2 ft x 2 ft x 3 in.
 d. Cement mold brush, rule, scoop and trowel.

4. One complete set of apparatus for measuring the air content of freshly mixed concrete and shall conform to the requirements of AASHTO T 152.
 a. Air meter (AASHTO T 152, Type B).
 b. Tamping rod. A round smooth ¾-in. steel rod with the tamping end rounded to a hemispherical tip of ¾-in. diameter. The minimum length shall be 18 in.
 c. Rubber mallet, scoop, shovel, and a metal straightedge a minimum of 12 in. long.

5. One concrete curing box, equipped with thermostatically controlled cooling and heating device, meeting the moisture and temperature requirements of AASHTO T 23. The box shall be capable of holding a minimum of eighteen 6-in. x 12-in. cylinders.

6. Two 4-gal heavy duty buckets.

7. One complete device for measuring the temperature of freshly mixed concrete. The temperature measuring device shall conform to the requirements of AASHTO T 309.

CONSTRUCTION METHODS

901.60: Footings

No concrete shall be placed until after the Engineer has approved the depth and dimensions of the excavation, the character of the material and the condition of the foundation. No footing shall be supported partially on rock and partially on soil. The rock shall be excavated as necessary to allow the placement of gravel borrow in accordance with Subsection 140: Excavation for Structures. The
Engineer may direct, in writing, such changes in dimensions or elevations of footings as may be necessary to obtain satisfactory foundations. The Plans will be revised accordingly.

Shallow foundations (i.e., not supported by driven piles, drilled shafts, or other deep foundations) to be constructed under water shall be inspected prior to the placement of tremie concrete by a Diver hired by the Contractor independently and solely for the purpose of the inspection requirements of the Contract. The Diver shall be a Professional Engineer registered in the Commonwealth of Massachusetts.

In general, the Diver's tasks shall include inspection of the excavations for foundations to determine their completeness and suitability for the placement of concrete, inspection of the drilling and grouting operations for any dowels that may be specified, and inspection of the tremie placement operations to ensure that the concrete placement is proceeding properly and is completed in accordance with applicable contract documents.

The Diver shall be responsible to report any discrepancies in materials or workmanship to the Engineer. The Diver shall record their findings by written and photographic methods and a final report of findings, recommendations and actions taken shall be prepared for the Engineer.

901.61: Forms, Falsework, and Centering

Approved centers and forms shall be provided by the Contractor. Piles shall be used for falsework if required by the Engineer. No extra compensation for falsework or falsework piling shall be allowed, such work shall be considered part of the form work. Falsework shall be set to give the structural camber indicated on the plans or as specified, plus allowance for shrinkage, shortening under load or settlement. Forms, falsework, and centering shall be designed for a liquid head, equal to the maximum height of the liquid concrete in the forms for various placing conditions assuming the load of the liquid concrete to be 150 pcf, and in addition thereto a live load allowance of 50 psf on horizontal surfaces.

All falsework or centering shall be adequate for the type of construction involved. The Contractor shall submit all shop drawings for falsework and centering, including design computations, formally signed and sealed by the Contractor's Massachusetts registered Professional Engineer. The Contractor’s Professional Engineer shall certify that the falsework system has been assembled and constructed according to the approved falsework drawings, prior to placing loads on such falsework.

When structures are to be constructed over railroad tracks, the centering shall also conform to the requirements of the Railroad Company as to temporary operating clearances, safety and design.

Forms for all exposed portions of bridges and structures shall be lined with approved material, or form sheathing which shall consist of five-ply water-proof plywood, approved metal sheathing or other approved material in order to give the concrete a smooth even finish and uniform appearance. This requirement shall not apply to any part of a structure that will be at least 2 ft below the surface of adjacent ground in the completed project that will not be coated with bituminous damp-proofing. Any material that will provide tight forms will be acceptable for such locations.

Full sheets of plywood or other approved material shall be used wherever possible and shall be placed in a regular pattern. The use of small pieces and leftovers will not be permitted except as
they may be needed to complete the design. Forms in good condition may be reused, but forms for any one exposed face shall be all new or all used material and a mixture of old and new forms will not be permitted. Forms for cylindrical pier columns shall be smooth and reasonably free of joints.

The sheathing shall be jointed tightly to prevent leakage from the mix and it shall be of sufficient strength to hold the concrete without bulging between supports. Forms shall be properly braced and tied so as to maintain proper dimensions. Bolts, rods, or other approved form ties shall be used for internal ties. Wire ties will not be permitted except when directed or where concrete is not exposed to view. The Engineer may require the Contractor to employ screw jacks or hard wood wedges in connection with the centering of falsework in order to take up any distortion or settlement in the form work either before or during the placing of the concrete.

Approved inserts required for form and/or falsework support shall be used in connection with all ties in the region of exposed surfaces on the concrete. They shall be so designed as to permit their removal from the concrete without injury to the concrete, and the metal remaining in the concrete shall be no closer than 1.5 in. to the surface. The inserts shall be truly round, not more than 1.5 in. in outside diameter and shall be treated with non-staining mineral oil or other satisfactory material adequate for preventing any adherence to surrounding concrete. Special tools and methods shall be used to remove the inserts from the concrete in a manner to prevent damage to the concrete. All ties and embedded devices required for form and/or falsework support that are to be left in place shall be either epoxy coated or galvanized to match the reinforcement within the concrete placement. Galvanizing of such ties and embedded hardware shall be in accordance with 960.64: Galvanizing.

Form ties of a design with a weakened section 1.5 in. back from the concrete face may be used at places of minor pressure when permitted by the Engineer, but such ties shall be provided with special inserts so as to assure the breaking off of the ties at the proper depth inside the face of the concrete. When such ties fail to break off at the designed depth, the tie metal shall be drilled out before the tie hole is patched. Voids and forming accessory holes shall be patched as necessary to match the surrounding texture and color to produce a uniform appearance.

The use of wooden struts within forms, or of metal ties without approved inserts, as required, will not be permitted.

The centers shall be true to the lines, satisfactorily supported and firmly secured. They shall remain in place as long as directed and shall be replaced with new ones if they lose their proper dimensions and shape.

Forms for the roadway deck slabs shall be so construed that under full dead load, the thickness of the slabs shall be the required thickness shown on the plans and the surface of the pavement will accurately conform to the profile grades, cross sections and alignment shown on the plans. Allowance shall be made for the camber of the floor members as erected and for the additional dead load deflections of the floor members.

Slab haunches shall be provided over steel girders, floor beams or stringers. The depth of haunches shall be variable as required to maintain the uniform thickness of slab between the steel supports.

All exposed edges and corners of concrete not otherwise specified on the plans shall be formed with a wooden triangular 45° chamfer strip, ¾ in. on the square sides. These triangular chamfer strips shall be machine surfaced on all sides and shall be of uniform dimensions throughout the project.
Any chamfered or beveled corners of concrete specified on the plans of larger size shall be formed and finished as required for other parts of the adjacent forms.

Surfaces of the abutments and wingwalls that are designated to receive striation texturing shall be cast using one of the following fractured fin form liner patterns:

1. GREENSTREAK Architectural Form Liners, pattern number 367, as manufactured by GREENSTREAK, 3400 Tree Court Industrial Blvd., St. Louis, MO 63122
2. SYMONS Form Liner, P/C 30492 pattern, as manufactured by SYMONS Corporation, Des Plaines, IL 60018
3. LITHOTEX Form Liner, T33050 texture, as manufacture by L.M. SCOFIELD Co., Los Angeles, CA 90040
4. An equal fractured fin form liner approved by the Engineer that meets the dimensions as shown on the Plans.

The same form liner pattern must be used exclusively for all textured surfaces on the job. Using form liners of different manufacturers together on the same job will not be permitted. Form liners shall be installed to the limits as shown on the Plans. The Contractor shall ensure that the striation fins are plumb. Horizontal joints are not allowed in the form liner.

Form liners shall be used and installed in accordance with the manufacturer’s written instructions and recommendations. Additional job site training in the proper use of the form liner shall be provided by an authorized manufacturer's representative at no additional cost to the project. A test panel with a minimum size of 4 ft x 4 ft shall be erected at the job site for establishing acceptance criteria for the finished surface.

Bridge bearing anchor bolts in piers shall be set accurately by a template prior to placing concrete. Anchor bolts in abutments may be set by a template or by drilling and grouting. Grout shall be a non-shrinking type approved by the Engineer.

The shape, strength, rigidity, water-tightness and surface smoothness of re-used forms shall be maintained at all times. Any warped or bulged lumber must be resized before being used. Forms that are unsatisfactory in any respect shall not be used and shall be removed immediately from the work.

The inside of forms shall be coated with non-staining mineral oil or other approved material to prevent adherence of the concrete to the forms, immediately before placing the concrete. When oil is used, it shall be applied before the reinforcing steel is placed. Any material that will adhere to, discolor or affect the concrete in any manner shall not be used. Forms for bridge decks shall not be oiled but shall be dampened with water ahead of concrete placement.

In the construction of copings, railings and other intricate sections, extreme care shall be taken in the construction to insure true lines.

Prior to placing concrete in the forms all foreign matter and any extraneous materials shall be removed.

Forms shall be inspected immediately preceding and during the placing of the concrete. All dimensions shall be checked carefully and any errors, bulges, warping or other defects shall be remedied before any concrete is placed.
Temporary openings shall be provided for inspection at the base of the column and wall forms and near the bottom of all deep members.

The foregoing specifications for forms as regards to design, mortar-tightness, chamfers or moldings, bracing, alignment, treatment by coating with oil or other approved material, removing and reuse, shall apply to metal forms when such forms are approved for use. The metal forms used shall be of such strength that the forms will remain true to shape. All bolt and rivet heads shall be countersunk. Clamps, pins or other connecting devices shall be designed to hold the forms rigidly together and to allow removal without injury to the concrete. Metal forms which do not present a smooth surface or which do not line up properly shall not be used. Special care shall be exercised to keep metal forms free from rust, grease or other foreign matter that will tend to discolor the concrete. Metal forms shall be provided with an adjustable metal section or occasional sections where wooden forms may be inserted to compensate for slight inaccuracies in measurement.

Removable or stay-in-place forms for bridge decks may be used as alternates except in hazardous locations where stay-in-place forms shall be used. Hazardous locations are defined as high volume roadways and all railroads under the bridge.

Removable forms shall be used for forming end diaphragms, bays with longitudinal construction joints, and overhanging portions of decks.

Material to prevent concrete from adhering to the forms shall not be used when stay-in-place forms are used.

Design of Permanent Steel Bridge Deck Forms.

The following criteria shall govern the design of permanent steel bridge deck forms:

1. The steel forms shall be designed on the basis of dead load of form, reinforcement and plastic concrete plus 50 psf for construction loads. The unit working stress in the steel sheets shall not be more than 0.725 of the specified minimum yield strength of the material furnished, but not to exceed 36,000 psi.

2. Deflection under the load of the forms, the plastic concrete and reinforcement shall not exceed 1/180 of the form span or ½ in., whichever is less. In no case shall this design loading be less than 120 psf total.

The permissible form camber shall be based on the actual dead load condition. Camber shall not be used to compensate for deflection in excess of the foregoing limits.

3. The design span of the form sheets shall be the clear span of the form plus 2 in. (50 mm) measured parallel to the form flutes.

4. Physical design properties shall be computed in accordance with requirements of the American Iron and Steel Institute Specification for the Design of Cold Formed Steel Structural Members, latest published edition.

5. Longitudinal reinforcement shall have minimum concrete cover, as measured from the permanent steel deck form, of 1 in. Main reinforcement shall have minimum concrete cover, as measured from the permanent steel deck form, of 1.5 in.

6. The plan dimensions of both layers of primary deck reinforcement from the top surface of the concrete deck shall be maintained.
7. Permanent steel bridge deck form shall not be considered as lateral bracing for compression flanges of supporting structural members.

8. Permanent steel bridge deck form shall not be used in panels where longitudinal deck construction joints are located between stringers.

9. Welding shall not be permitted to flanges in tension or to structural steel bridge elements fabricated from nonweldable grades of steel.

10. Fabricator's shop and erection drawings shall be submitted to the Engineer for approval. These plans shall indicate the grade of steel deck form sheets and a clear indication of locations where the forms are supported by steel beam flanges subject to tensile stresses.

All forms shall be installed in accordance with approved fabrication and erection plans. Form sheets shall not be permitted to rest directly on the top of the stringer or floor beam flanges. Sheets shall be securely fastened to form supports and shall have a minimum bearing length of 1 in. at each end. Form supports shall be placed in direct contact with the flange of stringer or floor beam. All attachments shall be made by permissible welds, bolts, or clips of other approved means. However, welding of form supports to flanges of steels not considered weldable and to portions of flange subject to tensile stresses shall not be permitted. Welding and welds shall be in accordance with the provisions of AWS D1.3 pertaining to fillet welds except that ⅛-in. fillet welds will be permitted.

Any permanently exposed form metal where the galvanized coating has been damaged shall be thoroughly cleaned and painted with galvanizing repair paint in accordance with 960.64: Galvanizing. Minor heat discoloration in areas of welds need not be touched up.

The Contractor's method of construction should be carefully observed during all phases of the construction of the bridge deck slab. These phases include installation of the metal forms; location and fastening of the reinforcement; composition of concrete items; mixing procedures, concrete placement and vibration; and finishing of the bridge deck. Should the Engineer determine that the procedures used during the placement of the concrete warrant inspection of the underside of the deck, the Contractor shall remove at least one section of the forms at a location and time selected by the Engineer for each span in the contract at no additional cost to the project. This should be done as soon after placing the concrete as practicable in order to provide visual evidence that the concrete mix and the Contractor's procedures are obtaining the desired results. An additional section shall be removed at no additional cost to the project if the Engineer determines that there has been any change in the concrete mix or in the Contractor's procedures warranting additional inspection.

After the deck concrete has been in place for a minimum period of 2 days, the concrete shall be tested for soundness and bonding of the forms by sounding with a hammer as directed by the Engineer. If areas of doubtful soundness are disclosed by this procedure, the Contractor will be required to remove the forms from such areas for visual inspection after the pour has attained adequate strength. This removal of the permanent steel bridge deck forms shall be at no cost to the project. At locations where sections of the forms are removed, the Contractor will not be required to replace the forms, but the adjacent metal forms and supports shall be repaired to present a neat appearance and assure their satisfactory retention. As soon as the form is removed, the concrete surfaces will be examined for cavities, honeycombing and other defects. If irregularities do not justify rejection of the work, the concrete shall be repaired as the Engineer may direct and shall be given an Ordinary Surface Finish, in accordance with the contract specifications. If the concrete where the form is removed is unsatisfactory, additional forms, as necessary, shall be removed at no
additional cost to the project to inspect and repair the slab, and the Contractor’s methods of construction shall be modified as required to obtain satisfactory concrete in the slab. All unsatisfactory concrete shall be removed or repaired as directed by the Engineer.

The amount of sounding and form removal may be moderated, at the Engineer’s discretion, after a substantial amount of slab has been constructed and inspected, if the Contractor’s methods of construction and the results of the inspections as outlined above indicate that sound concrete is being obtained through the slabs.

The Contractor shall provide all facilities as are reasonably required for the safe and convenient conduct of the Engineer’s inspection procedure.

901.62: Reinforcement

The Contractor shall submit for approval detailed shop drawings and schedules of the reinforcing bars so that the reinforcement may be properly placed, and its mass readily computed.

Coated bars shall be either epoxy coated or galvanized, as specified on the plans. Where coated bars are called for without distinction, they may be either epoxy coated bars or galvanized bars, however mixing epoxy coated and galvanized bars will not be permitted. Where coated bars are used in combination with uncoated bars in a reinforcing mat or cage and the coated bars will touch or be tied to uncoated bars with wire ties, only epoxy coated bars shall be used.

All support devices and ties for galvanized bars used in deck reinforcing shall be coated so that there is no electrical continuity either between reinforcing mats or between the reinforcing and the stay-in-place forms or steel beams.

All support devices and ties for epoxy coated bars used in deck reinforcing shall be either epoxy coated or coated with a plastic material compatible with the coating of the reinforcement.

All coated and un-coated reinforcing bars shall be stored above the surface of the ground on platforms, skids, or other supports and shall be protected from mechanical injury and surface deterioration caused by exposure to conditions producing rust. When placed in the work, reinforcing bars shall be free from dirt, loose rust or scale, mortar, paint, grease, oil, or other non-metallic coatings that reduce bond. Reinforcing bars shall be free from injurious defects such as cracks and laminations. Any injurious defects of the epoxy coating shall be repaired and allowed to cure completely prior to concrete placement.

Epoxy coated reinforcing bars shall be coated in a certified epoxy coating applicator plant in accordance with the Concrete Reinforcing Steel Institute’s Voluntary Certification Program for Fusion-Bonded Epoxy Coated Applicator Plants. Epoxy coated reinforcing steel shall be handled and stored by methods that will not damage the epoxy coating. All systems for handling epoxy coated reinforcing bars shall have adequately padded contact areas. All bundling bands shall be padded and all bundles shall be lifted with a strong back, multiple supports, or platform bridge so as to prevent bar to bar abrasion from sags in the bundle. Bars or bundles shall not be dropped or dragged. Epoxy coated reinforcing bars shall be stored on wooden or padded supports.

Epoxy coated reinforcing steel shall be protected from sunlight, salt spray, and exposure to the weather. Provisions shall be made for continuous air circulation around the coated reinforcing to minimize condensation under the protective covering.
If it is impractical to obtain or use bars of the full length required, the bars shall be lapped for the length shown on the plans or joined with mechanical splicers. If no lap length is provided, the lap length shall be calculated for the type of bar used according to the latest AASHTO Standard Specifications for Highway Bridges for a Class C tension lap splice.

If mechanical splicers are used proper consideration shall be given to the installation sequence and shall be so noted on the reinforcing steel shop drawings. The mechanical splicing system shall be assembled in accordance with the manufacturer’s recommendations.

Reinforcement bars to be spliced mechanically shall be marked using indelible ink prior to splice attachment to ensure sufficient embedment in the splicing device. Assembly features shall provide for reasonably error free work under construction conditions. Mechanical reinforcing bar splicers shall be staggered in accordance with the Plans.

The entire splice area of epoxy coated mechanical splicing systems shall be painted with a compatible approved epoxy repair coating after the system is assembled. The entire splice area of galvanized splicing systems shall be painted with a compatible approved galvanizing repair coating after the system is assembled. For mechanical splicer systems that cannot be effectively sealed with an epoxy or galvanizing repair coating, an approved heat shrink tube/sleeving shall be required after installation to seal the system. The mechanical splicer shall not be encased in concrete until the visual inspection and the required testing have been completed and approved by the Engineer.

The steel shall be bent in the shop true to templates and shall be placed accurately as shown on the plans with the following tolerance:

1. Cover (clearance from face of concrete to face of bar) ±¼ in.
2. Horizontal spacing of bars ±2 in. (however the required number of bars must be placed). The minimum spacing cannot be decreased. The reinforcement shall be placed so as to ensure it remains in the correct position during the placing and hardening of the concrete. The clear distance between spliced bars and/or splicing devices shall not be less than 1.5 times the nominal diameter of the bars, 1.5 times the maximum size of the coarse aggregate, nor less than 1.5 in.

The required distance between reinforcing steel and the forms shall be maintained by means of stays, blocks, ties, hangers or other approved supports. The spacing of reinforcing supports shall not exceed 4 ft.

Steel reinforcing mats shall be firmly secured against displacement by tying every other intersection point with a maximum of 12 in. between tied joints. In addition, steel reinforcing mats (top and bottom) shall be securely connected together so that uniform vertical spacing can be maintained throughout. This connection may be accomplished by tying with coated tie wires or other means as approved by the Engineer. Connections between the top and bottom mats of reinforcement shall be placed no farther apart than 4 ft on center. Support devices may be utilized for this purpose. Connection devices shall neither deflect the steel reinforcing nor interfere with the smooth flow of concrete.

Blocks for holding reinforcement from contact with the forms shall be precast mortar blocks of approved shape and dimensions. Blocks for spacing reinforcing bars shall also be precast mortar blocks of approved designs and short enough to permit their ends to be adequately covered with concrete. The precast mortar blocks shall be made from the same materials and of the same
proportions of sand and cement as that of the concrete in which they are to be used. They shall be cast and properly cured before use and shall have a wire of copper or other non-rusting metal or other approved device cast into each block suitably placed so that the block can be securely fastened to the reinforcement. Layers of bars, except for those placed in bridge decks, shall be separated by such blocks, which may be reinforced, and which shall have slots to receive the bars and hold them in place, or by other approved means. Any parts of metal supports that are left in place within 3 in. of an exposed surface of the concrete shall be made of either non-rusting metal, or shall be epoxy coated or galvanized to match the reinforcement. Galvanizing of such parts shall be in accordance with 960.64: Galvanizing. The use of pebbles, pieces of broken stone, metal pipe or wooden blocks will not be permitted.

Reinforcement in any member or section shall be in place and approved by the Engineer before the placing of concrete begins. In no case shall reinforcing steel be driven or forced into the concrete and any reinforced concrete placed in violation of this provision will be rejected by the Engineer, and then shall be removed and replaced by the Contractor entirely at their own expense.

When wire mesh is used as reinforcement, it shall be furnished and placed in accordance with the plans. If the wire mesh is shipped in rolls, it shall be straightened into flat sheets before being used.

Dowels, where required, shall be furnished and placed as indicated on the plans and as directed.

Reinforcement that extends continuously within the concrete of the substructure and the concrete of the superstructure, or any other reinforcement that might stain the exposed surface of the bridge shall be given a light coat of neat cement grout on the surfaces of the reinforcement that will be exposed for more than three weeks before being encased in concrete. Subsequent coats of grout may be required.

901.63: Handling and Placing Concrete

The Contractor shall notify the Engineer at least 24 hours in advance of their intention to place concrete in order to provide ample time for inspection of forms, reinforcement, materials, and equipment.

All concrete shall be placed during daylight, and the placing of concrete shall not be started unless it can be completed and finished during daylight hours, except that when an adequate and approved lighting system is provided beforehand, the Engineer may waive this requirement.

No concrete shall be placed in a bridge or other structure where piles are required until all piles in the structure have been driven. However, the placing of concrete in the steel shells for cast-in-place concrete piles and steel pipe piles shall be done as specified in 940.69: Placing and Protecting Concrete Filled Piles.

No concrete shall be placed until the depth, character and water conditions of the foundations, the adequacy of falsework and forms, the absence of debris in the forms, the condition of the construction joints, and the condition and spacing of the reinforcing steel have been inspected and approved by the Engineer.

The placing of concrete shall be so regulated that the pressures caused by the wet concrete shall not cause distortion or movement of the forms.
The placement and consolidation of the concrete shall be conducted so as to not cause segregation of materials nor displacement of reinforcement and shall result in a dense homogeneous concrete that is free of voids.

Concrete shall be deposited in such manner that the total deflection or settlement of supporting members and the final finishing of the surface shall have occurred before initial set of the concrete takes place. An approved admixture shall be used as necessary to retard setting.

A. Transportation.

The concrete shall be transported from the mixer and placed in the forms by a method that will permit handling concrete of the slump required without segregation. Buggies and wheelbarrows used for this purpose shall be equipped with pneumatic tires. Chutes may be used but the use of long chutes will be permitted only on authority from the Engineer. If such conveyors are allowed and the quality of the concrete as it reaches the forms or the methods of placing or working it therein are not satisfactory, the Engineer may order their use discontinued and the substitution of a satisfactory method of placing. Chutes shall be constructed of aluminum free metal or metal lined and shall extend as nearly as possible to the point of concrete placement. Long chutes shall be provided with reverse flow or remixing hoppers in order to correct for segregation. All chutes shall be kept clean and free from coatings of hardened concrete. Concrete shall not be permitted to be transported through chutes or pipes composed of aluminum.

Transportation of concrete by pumping will be permitted provided that the required slump or air content can be maintained at the discharge end of the hose and there is no adverse effect to the mix design. Concrete shall be sampled and tested at the end of the chute or if pumping is allowed, from the discharge end of the hose. The equipment shall be suitable in kind and adequate in capability for the work. The operation shall be such that a continuous stream of concrete without air pockets is produced. When pumping is completed, the concrete remaining in the pipeline shall be ejected in such a manner that there will be no separation of the ingredients.

Pumping through aluminum pipes will not be permitted.

All pipes and chutes shall be kept clean and free from coatings of hardened concrete.

B. Depositing.

The concrete shall be placed in the form in the approved manner to prevent stone pockets, voids or segregation and to reduce handling and flowing in the forms to a minimum. The concrete shall not be dropped more than 3 ft or dragged more than 10 ft in the forms. Vibrators shall not be used to transport concrete. Epoxy coated steel reinforcement shall be protected from damage from dropping concrete by limiting the maximum height of concrete drop to 2 ft. Points of deposit shall be spaced not more than 20 ft apart nor more than 10 ft from the ends of the forms. Concrete shall be properly distributed in the forms by hand shoveling. The forms shall be filled at a rate of 1 to 3 ft in depth per hour. Care shall be taken to avoid splashing the forms and reinforcing above the level of the concrete as placed. Beams and slabs shall be placed in one continuous operation.

C. Consolidation.

Each layer shall be thoroughly consolidated by rodding and vibration. The face of the forms shall be carefully spaded, if possible, to bring a dense mortar to the face, and produce a good finish.
All concrete for structures shall be compacted by means of approved mechanical vibrators operated within the mass of the concrete. The Contractor shall provide approved methods of vibration to fully consolidate the mix. Vibrators shall be of internal type of standard make and approved capacity, and shall be capable of transmitting vibrations within the concrete at frequencies of not less than 5,500 vibrations per minute nor more than 13,500 vibrations per minute. Epoxy coated steel reinforcement shall be protected from damage from exposed steel headed immersion-type vibrators. Immersion-type vibrators used to consolidate concrete that is reinforced with epoxy coated reinforcement shall feature heads covered with rubber or other resilient non-metallic material approved for concrete consolidation.

Vibration of forms or reinforcing shall not be permitted except where internal vibration is not practicable and then only with the approval of the Engineer.

The vibrator shall be applied directly to the concrete mass at the point and time of deposit and shall be moved throughout the mass continuously from point to point for a sufficient duration to accomplish thorough consolidation. The duration of vibration shall not be prolonged to the point where segregation, serious loss of entrained air, or excessive water bleeding occurs. Vibrators shall not be used close to the forms.

When concrete is placed in lifts, vibrators shall be inserted into at least half the depth of the underlying lift so as to thoroughly consolidate the two lifts into an integral mass without streaks or hardened lift lines. Vibrators shall not be used to move concrete in the forms.

A sufficient number of vibrators shall be provided to obtain proper compaction in accordance with the rate of deposit.

Extreme care shall be taken to prevent penetrating or disturbing previously placed concrete that has become partially set.

D. Placing Concrete Under Water.

Concrete may be deposited in water only when provided by the plans or in the Special Provisions or by approval in writing by the Engineer; and only under the direct supervision of the Engineer.

The concrete shall be of the designation required except that an additional 10 percent of cement shall be added to all concrete deposited under water except that mass concrete shall be placed with the cement content required by Special Provisions.

The method and equipment to be used shall be approved by the Engineer before work has begun.

Concrete deposited under water shall be carefully placed by the tremie method in a compound mass in its final position and shall not be disturbed after being deposited. Special care must be taken to maintain still water at the point of deposit. No concrete shall be placed in running water and all form work designed to retain concrete under water shall be watertight. The consistency of the concrete shall be carefully regulated, and special care shall be taken to prevent segregation of the materials. The concrete shall be distributed uniformly over the entire area between forms in order to maintain a level surface.

The work shall be carried out in a continuous operation with sufficient rapidity to prevent the formation of layers or inclined seams. Concrete shall not be placed in water having a temperature
below 35°F. Pumping of water will not be permitted while the concrete is being deposited nor before it is sufficiently hardened.

The tremie shall be watertight, consisting of a tube constructed in sections with flange couplings fitted with gaskets, and the inside diameter shall be sufficiently large to permit a free flow of concrete. The spacing of tremie tubes shall not exceed 20 ft on centers or 10 ft from the forms. Tremie tubes shall not be moved horizontally or the seal purposely broken once placing of concrete has started.

The radius of influence of a tremie shall not be assumed to exceed 10 ft. The means of supporting the tremie shall be as such as to permit it to be rapidly lowered when necessary to retard or stop the flow of concrete. The discharge end shall be closed at the start of the work so as to prevent water from entering the tube and shall be kept entirely sealed at all times and the tremie tube kept full to the bottom of the hopper during the depositing of the concrete. When a batch is dumped into the hopper the tremie shall be slightly raised, but not out of the concrete at the bottom, until the batch discharges to the bottom of the hopper. The flow shall then be stopped by lowering the tremie. Special care shall be taken to maintain as nearly as practicable a uniform flow and to avoid dropping the concrete through the water. The flow shall be continuous until the work is completed. If the charge is lost during depositing, the tremie shall be withdrawn and refilled.

Dewatering may start when the concrete seal has reached a compressive strength of 1,200 psi.

All laitance and scale shall be removed so that sound, durable concrete is exposed to the area on which the construction is to be based and shall be leveled off with epoxy bonded concrete or mortar.

E. Concrete Exposed to Sea Water.

Concrete structures so located as to be subjected to the action of sea water shall be constructed in a manner to provide a maximum resistance to its disintegrating action.

The concrete shall conform to M4.06.1: High Performance Cement Concrete. The water content shall be carefully controlled and so regulated as to produce concrete of maximum impermeability. In placing concrete, care shall be taken to avoid the formation of pockets and the concrete shall be thoroughly compacted to the satisfaction of the Engineer. The original surface of the concrete shall be left undisturbed. In order to secure a thick and dense surface film, the surfaces of the forms shall be heavily coated with shellac or an approved form oil. The range of possible disintegration of the concrete from an elevation below that of low tide to an elevation above that of extreme high tide shall be determined by the Engineer, and, except with their special permission, no construction joints shall be located within this range. In the determination of this range, due consideration shall be given to wave action, ice formation and other conditions affecting the extreme limits of possible deterioration and disintegration.

Concrete in sea water within the range as above determined shall, except when especially provided for by the plans or in the Special Provisions, be deposited in the dry and no sea water shall be allowed to come in direct contact with the concrete for at least 30 days after placement.
901.64: Protection from Adverse Weather

Suitable precautions shall be taken to thoroughly protect the concrete from any damage by adverse weather conditions during and after placement.

A. Hot and Dry Weather Requirements.

During hot dry weather, and as directed, all new concrete shall be kept shaded from the sun, shielded from the wind and kept wet with water, or protected by other approved methods to retain the moisture in the concrete throughout the curing period. During concrete placement operations in hot weather, appropriate measures shall be taken to reduce the hazards of increased rate of cement hydration, flash set, loss of water due to evaporation, high concrete ingredient temperatures, and the increased difficulty of concrete placing and finishing. The following requirements shall be met during concrete placement operations in hot weather:

1. Concrete Temperature. The temperature of the concrete at the point of discharge shall not exceed 90°F.

2. Cooling Materials. The Contractor may reduce the temperature of the concrete by cooling one or more of several ingredients. The aggregates may be cooled by fogging, or other suitable means that will not result in a high variation of moisture content within the stockpile. Chipped or crushed ice may be used in the mix as a portion of the mixing water on a pound for pound basis, provided such measure is determined at the time it is placed in the mix. If used, all ice shall be melted before the batch is discharged from the mixing unit. Water may also be cooled by refrigeration or other means that provide a uniform mixing water temperature.

3. Concrete Placing. Immediately before the concrete is placed, the forms and reinforcement steel shall be cooled by spraying with water. In no case shall there be any standing water in the concrete forms as a result of the spraying procedures. The Contractor shall have sufficient skilled men and adequate equipment to place the concrete without delays which may cause excessive slump loss and evaporation due to over-mixing or exposure before it is placed.

4. Finishing. To prevent shrinkage cracking resulting from moisture loss, the Contractor may be required to furnish windscreens, to use water fogging, or other approved means of supplying moisture. If the use of windscreens is required, the windscreens shall consist of canvas barriers of suitable height erected on the windward side of the concrete placement. Finishing operations shall follow as closely as practicable behind the placing operation so that curing may begin as soon as possible.

B. Rainy Weather Requirements.

During rainy weather all new concrete shall be properly covered, as may be necessary to prevent damage. Sufficient approved material for covering shall be available at the site of the work for immediate use as may be needed.

C. Cold Weather Requirements.

Cold weather is defined as any time during the concrete placement or curing period the ambient temperature at the work site drops below 40°F or the ambient temperature at the site drops below 50°F for a period of 12 hours or more. Any concrete placed during cold weather shall be placed at the Contractor's risk and any damage or unsatisfactory concrete shall be removed and replaced at
the Contractor's expense. When cold weather is reasonably expected or has occurred within 7 days of anticipated concrete placement, the Contractor shall include as part of their Placement and Curing Plan detailed procedures for the production, transporting, placing, protecting, curing, and temperature monitoring of concrete during cold weather. The Contractor shall include verifiable evidence of satisfactory results obtained by use of their proposed methods. Procedures for accommodating abrupt changes in weather conditions shall be included. Placement of concrete shall not commence until the plan is accepted by the Engineer. Acceptance of the plan will take at least one day. All material and equipment required for cold weather placement and curing protection shall be available at the project site before commencing concrete placement. All snow, ice, and frost shall be removed from the surfaces, including reinforcement and subgrade, against which the concrete is to be placed. The temperature of any surface that will come into contact with fresh concrete shall be at least 35°F and shall be maintained at a temperature of 35°F or above during the placement of concrete.

During the curing period, the Contractor shall provide suitable measures to maintain the concrete surface temperature which shall be monitored by continuously recording surface temperature measuring devices that are accurate within 1.8°F. One temperature measuring device shall be required to be randomly placed in an accessible location for every 1,500 ft² of concrete surface area being cured.

The minimum concrete surface temperature requirements indicated in the Table 901.1 shall be continuously maintained for a curing period of at least 7 days. The 7-day minimum curing period of time will be extended when necessary to develop satisfactory strength in the concrete.

Any day during which the minimum concrete surface temperature requirement is not continuously maintained shall not count as a day contributing to the curing period.

| Table 901.64-1: Cold Weather Concrete Surface Temperature Requirements |
|---|------------------|------------------|------------------|------------------|
| Minimum Section Size Dimension (ft) | <1 | >1, but ≤3 | >3, but ≤6 | >6 |
| Minimum temperature of concrete during curing period | 57°F | 54°F | 50°F | 50°F |
| Maximum allowable temperature drop in any 24-hour period after end of curing | 50°F | 40°F | 30°F | 20°F |

The mixing water and/or aggregates may be heated (prior to cement being added) by approved methods so that the temperature of the aggregates and water mixture is not less than 70°F nor more than 140°F. The temperature of the concrete shall not be less than 60°F nor more than 90°F at the time of placing it in the forms. The heating shall be done in a manner to preclude the occurrence of overheated areas that might result in damage to the materials. Any material containing frost or lumps of hardened material shall not be used.

Insulation shall be approved blanket, batt or board insulation with a thermal conductivity of less than 0.25 BTU per hour per square foot for a thermal gradient of 1°F/in. Insulation shall be applied...
to the forms in an approved manner. Insulation with breaks or tears shall be rejected unless satisfactorily repaired. Openings for thermometers shall be provided where ordered.

Where it may be expected that considerable heat will be generated by the hydration of the concrete, and in some cases where heat is not rapidly dissipated, suitable coverings shall be used to protect concrete. Heavy footings in which the concrete is placed at a concrete temperature of 70°F where protection is provided by the surrounding earth, except on top, shall be protected by a tarpaulin placed over the top with an air space between the concrete and the tarpaulin and sufficient added artificial heat shall be provided to maintain the minimum required concrete surface temperature. Mass concrete, when concrete as such is so specified on the plans or so defined by the Engineer, placed at a concrete temperature of 70°F, shall be protected by enclosure with tight wooden forms at least \(\frac{5}{8} \) in. in thickness except at corners and edges and sufficient added artificial heat shall be provided to maintain the minimum required concrete surface temperature. Double sheathing, insulation board or tarpaulins with a dead air space between the covering and the forms shall be placed to equally protect such corners and edges. Supplemental enclosures and added artificial heat will be utilized when required to maintain the minimum concrete surface temperature.

As much as possible, any enclosure for protection shall be in place before depositing of any concrete and the remainder shall be installed as rapidly as possible in order to reduce heat losses to a minimum. Heating within the enclosure shall be attained by such means of artificial heat as will maintain the temperatures specified continuously and with a reasonable degree of uniformity in all parts of the enclosures. All exposed surfaces of concrete within the enclosure shall be kept sufficiently moist to prevent any drying of the surface concrete with possible resulting damage to the concrete in place. Heating appliances shall not be placed in such a manner as to endanger the enclosure, forms or supports, or expose any area of concrete to drying out or other injury due to excessive temperatures.

901.65: Finishing and Curing

The requirements of this subsection shall be considered applicable to all concrete placements with the exception of bridge deck, bridge sidewalk, bridge safety curb, and bridge median concrete placements. Refer to the requirements specified under 901.66: Placement, Finishing and Curing of Concrete Bridge Decks for bridge deck, bridge sidewalk, bridge safety curb, and bridge median concrete placements.

A. Finishing.

The external surface of all concrete shall be thoroughly vibrated and spaded during the operation of depositing the concrete by means of tools of an approved type. The vibrating and spading shall be such as to force all coarse aggregate away from the surface and slowly work the mortar against the forms to produce a smooth finish free from water, air pockets, and honeycombing. The use of mortar, cement water mixture, or neat cement for plastering over any concrete surface will not be permitted.

The final finish required on particular concrete shall be as follows:

1. Formed Surfaces not Exposed to View.

Immediately after forms have been removed and form ties cut back from the face of the concrete, all voids and cavities shall be filled with a stiff mortar of the same composition and air-entrainment as
the mortar in the original concrete mix. The mortar for filling shall have been mixed and let set for 30 minutes and then remixed before placing in the work. In case the operation of filling is delayed, the surface of the concrete shall be thoroughly cleaned and washed with water, if necessary, before the mortar is applied.

2. **Formed Surfaces Exposed to View.**

Within 48 hours after the forms have been removed and form ties cut back from the face of the concrete, all fins, projections and irregularities shall be carefully removed and all voids and cavities shall be carefully and completely filled with a stiff mortar of the same composition and air-entrainment as the mortar in the original concrete mix. The same brand and color of cement, and the same kind and color of aggregate as was used in the original concrete mix shall be used in this mortar. The mortar for filling shall have been mixed and let set for 30 minutes and then remixed before placing in the work. The surface film of all such pointed surfaces shall be carefully removed before setting of the mortar occurs.

If the Engineer determines these surfaces as prepared do not present a uniformly smooth, clean surface of even texture and appearance, the surface shall be treated and rubbed to obtain a satisfactory finish. The Engineer shall be the sole judge of the amount of rubbing which will be required.

If rubbing is required, the rubbing will start with 48 hours of notification that rubbing is required, the surface should be wetted with clean water and rubbed with a No. 16 carborundum brick or other abrasive of equal quality until even and smooth and of uniform appearance, without applying any cement or other coating. If additional finishing is necessary, it shall be obtained by a thorough rubbing with a No. 10 carborundum brick or other abrasive of equal quality. Subject to approval by the Engineer, rubbing may be performed by use of satisfactory power equipment and tools, providing that the operational procedures shall be the same as those outlined above for hand rubbing.

Rubbing will be kept to a minimum found necessary to produce smooth, even surfaces of uniform appearance. Rubbing will not be required to fill very small surface air bubble holes, to remove a uniform wood grain pattern left by forms, nor to remove inconspicuous lines or marking between form panels.

Patches required for form ties, if carefully and properly done, may not necessitate rubbing. If however, this work is done in such a manner that these patches are conspicuous, the entire exposed face on which they occur shall be rubbed.

After the final rubbing is completed, and the mortar has set up, the surface shall be thoroughly drenched and kept wet with clean water for a period of 5 days.

No rubbing will be permitted when the air temperature is below 40°F.

3. **Preparation of Bridge Seat Bearing Areas.**

(a) General.

Bridge seat bearing areas shall be considered to be those areas of the concrete bridge seats of the abutments, piers, and pedestals that support the bridge bearing devices. The limits of the bridge
seat bearing area shall extend 3 in. outside of the perimeter of the bearing device component that is in contact with the bridge seat.

Bearing devices shall not be placed upon bridge seat bearing areas that are improperly finished, deformed or irregular. Bearing devices shall be set to the required grade in the exact positions called for on the plans and shall have full and even bearing upon the bridge seat cement concrete. Satisfactory drainage shall be provided as called for on the plans and where necessary to prevent water accumulation at the bridge seat bearing areas.

(b) Bearing device installations for adjacent precast concrete deck beam bridges with spans 50 ft or less.

The bridge seat concrete as cast shall be finished to the exact final required elevation and to the roadway profile grade slope in the direction parallel to the centerline of construction and to the cross slope set by the bridge seat elevations in the direction parallel to the centerline of bearings.

(c) For all other bearing device installations.

The surface of the concrete within the limits of the bridge seat bearing area shall be cast a minimum of \(\frac{1}{4} \) in. higher than the required finished elevation. This additional concrete shall be cast monolithically with the rest of the bridge seat concrete and shall be sound and free of voids and laitance. After the concrete has been cured and thoroughly hardened, these areas shall be machine dressed down using approved methods to provide a true even surface at the following elevations and grades:

(1) Elevations: For bearing devices where the elastomeric bearing pad is placed directly onto the as-finished bridge seat concrete surface, the surface of the bridge seat bearing area shall be dressed down to the exact final required elevation.

For bearing devices that utilize a metal masonry plate, the metal masonry plate shall be set on a system of either rubber-cotton duck bearing pads or molded fabric bearing pads and the surface of the concrete shall be dressed down sufficiently below the required finished elevation so that the rubber-cotton duck or molded fabric bearing pad will bring the bottom of the masonry plate to the exact final required elevation.

(2) Grades: The bridge seat bearing areas shall be finished level, except that the bridge seat bearing area for adjacent prestressed concrete deck and box beams shall be finished level in the direction parallel to the centerline of construction and shall be finished to follow the cross slope set by the bridge seat elevations in the direction parallel to the centerline of bearings.

4. **Bridge Approach Slabs.**

After concrete is placed, the top surface shall be struck off to the proper crown and longitudinal profile with an approved template. Satisfactory supports, furnished by the Contractor, shall be set and maintained in place for proper operation of the template so that the surface shall be furnished to the required elevations. These supports shall be carefully removed from the concrete before any set of the concrete occurs, and the spaces left by such removal shall be immediately filled and finished to the level of the adjacent surfaces. The surface shall be checked, by means of an approved straightedge, not less than 10 ft in length, furnished by the Contractor, as the Engineer may direct.
Any irregularities, measuring more than \(\frac{1}{4} \) in. vertically, shall be corrected and the whole surface shall be made smooth and even. No load of any kind shall be placed on the concrete after setting of the concrete has begun, and any work on the concrete then required shall be performed from approved bridges furnished by the Contractor, which will not rest on the new concrete in any manner.

B. Curing.

All concrete shall be kept fully saturated and protected against any drying action by methods of curing specified herein or as otherwise approved by the Engineer for not less than 7 days after placing cement concrete. All surfaces of concrete which are to receive a rubbed surface finish or on which bitumen is to be placed, and concrete at construction joints shall be cured in accordance with requirements below for water curing. All other concrete may be cured in accordance with requirements below for water curing or waterproof membrane curing.

1. **Mass Cement Concrete.**

Cement concrete placements where all volumetric dimensions of the placement are 4 ft or greater shall be considered mass cement concrete. Mass cement concrete shall also include cement concrete placements of other dimensions where measures must be taken to mitigate potential cracking caused by heat of hydration when such placements are specifically designated as mass cement concrete on the plans. The Contractor shall perform the following to prevent cracking in mass cement concrete placements:

- Limit the temperature differential between the internal (hottest) and external (coolest) temperature of the cement concrete to 38°F and limit the maximum concrete temperature to 154°F. Heat control shall be accomplished through a combination of proper cement concrete ingredient selection to minimize heat generated, pre-placement cement concrete ingredient cooling, post-placement cooling, cement concrete placement rate control, cement concrete surface insulation to minimize heat loss, and providing supplemental heat to prevent heat loss.
- Submit for review and approval by the Engineer at least 30 days prior to the date of intended cement concrete placement, along with each mix design, a cement concrete heat of hydration analysis and a detailed plan indicating how temperature differential restrictions for mass cement concrete are to be achieved, methods of observing and recording cement concrete temperatures, and methods of applying immediate corrective action should the temperature differential approach 38°F so as to limit the temperature differential to 38°F.
- Measure and record concrete and ambient air temperatures on an hourly basis. Install 2 sets of 3 temperature sensors (thermocouples) prior to placement of concrete. Thermocouples shall be installed so that one is located 2 in. from the top of flat placements or side of vertical placements, one is located 2 in. from the bottom of flat placements or other side of vertical placements, and the third is located midway between the first and second thermocouples. The thermocouples shall be aligned vertically for flat placements or aligned horizontally for vertical placements. For flat placements, one thermocouple set shall be placed in the center of the plan location of the placement and the second set shall be placed in the plan center of one of the quadrants. For vertical placements, one sensor set shall be located at the mid-height of the placement and the other sensor set shall be located at a quarter point. An additional thermocouple shall be placed in a sheltered area that is out
of direct sunlight, is protected from weather, and shall be used to monitor the air temperature.

The thermocouples shall operate in a minimum temperature range of -22°F to 212°F with an accuracy of 1.8°F. The Contractor shall furnish a temperature logger that records the temperatures automatically at intervals not to exceed once per hour, performs digital temperature storage, and prints temperature data to a paper tape. The thermocouples shall be connected to the recording device using Teflon-sheathed wire or shall use wireless technology. The measuring tips of the thermocouples shall be located as far away from the reinforcing steel as is practical. The thermocouple tips shall be supported with wood or plastic dowels. Thermocouple wire, if used, shall be tied to reinforcing steel bars with plastic zip ties. The thermocouple wire, if used, shall be protected from abrasion and concrete tools by securing the wire to the undersides of reinforcing steel. Temperature data shall be furnished to the Engineer as required, with a minimum frequency of once per day.

2. Water Curing.

Curing of concrete shall begin by fog spraying immediately upon the disappearance of free bleed water on concrete surfaces not protected by forms. Fog spraying shall continue until the burlap cover has been placed. The amount of fog spray shall be strictly controlled, so that accumulations of standing or flowing water on the surface of concrete shall not occur.

Should atmospheric conditions render the use of fog spray impractical, the Contractor shall use plastic covers of suitable weight and securely weighed down, but not directly in contact with the concrete. The covers shall be used only until the initial set has taken place. The burlap covers shall be placed immediately thereafter. On the windward side of the panel being cured, the Contractor shall erect canvas barriers of suitable height when necessary to protect the curing concrete from the direct force of the wind.

The area of concrete to be cured shall be covered by wet burlap blankets placed as soon after concrete finishing as the Engineer determines will not cause damage to the concrete surface. However, in no case will the foregoing time period exceed 1 hour after placing of concrete. Fog spray or covers shall be used continuously during this period. The burlap shall be completely saturated over its entire area by being submerged in water for at least 8 hours before the scheduled start of the placement. The burlap shall be drained of excess water prior to application. The burlap shall be free from cuts, tears, uneven weaving and contaminants. The burlap shall be placed such that the edges are lapped a minimum of 6 in. Burlap shall be kept continuously wet and protected from displacement for the entire curing period in a manner acceptable to the Engineer.

The materials for the coverings shall conform to the pertinent requirements for the same provided under M9.06.3: Burlap. The coverings shall be kept thoroughly wet by sprinkling with a fine spray of water until they may be removed. Wooden forms without liners, if left in place longer than 2 days after the placing of the concrete, shall be thoroughly wet down at least once each day for the remainder of the required curing period. Formed surfaces shall, after the removal of forms, be cured in like manner for the remainder of the required period, the entire surface of the concrete being thoroughly drenched with water and covered immediately after the forms are removed. Portions of the covering material may be removed temporarily when and as necessitated by any required finishing or waterproofing operation.
3. **Impervious Liquid Membrane Curing.**

Immediately after the free bleed water has disappeared on surfaces not protected by forms and immediately after the removal of forms, if such are removed before the end of the required curing period, the concrete shall be sealed by spraying as a fine mist a uniform application of the membrane curing material in a manner as to provide a continuous uniform, water impermeable film without marring or otherwise damaging the concrete. The impervious liquid membrane material used shall conform to the requirements for the same provided under M9.06.5: Impervious Liquid Membrane except that only ASTM C1315, Type I shall be permitted.

The membrane curing shall be applied in one or more separate coats at the rate recommended by the manufacturer. If, in the Engineer’s judgment, discontinuities or pinholes exist or if rain falls on the newly coated surface before the film has dried sufficiently to resist damage, an additional coat of the material shall be applied immediately to those affected areas at the specified rate. If a slight delay in application shall occur, which permits the concrete surface to dry, the surface of the concrete shall be thoroughly moistened with water, immediately prior to the application of the membrane curing material. Application of membrane curing may be delayed for 12 hours if the concrete surface is protected and kept moist by the use of wetted burlap.

The membrane compound shall be thoroughly agitated immediately before application. The liquid shall be applied under pressure by means of an approved pressure spray which shall be held not more than 2 ft away from the concrete surface and the spray protected from any wind by suitable means as may be necessary, so as to apply the material directly onto the concrete surface.

The sprayed surface film shall be protected from abrasion or damage for the duration of the required curing period. The placing of materials or unnecessary walking on the surface will not be allowed until the film is at least 2 days old; and then only if no damage is caused to the surface film during the required curing time.

4. **Curing by Other Methods.**

 a. **Waterproof Paper.** Subject to approval by the Engineer, waterproofed paper may be used for curing particular surfaces of concrete and, if allowed, shall be furnished and used entirely in accordance with the provisions for such under 476.71: Curing, except that the length of time for the curing period shall be as specified herein.

 b. Other methods of curing may be used only when approved in writing by the Engineer prior to any use in the work.

901.66: Placement, Finishing and Curing of Concrete Bridge Decks

This work shall consist of the placement of concrete bridge decks by using self-propelled finishing machines, all as indicated on the Plans and in accordance with these Specifications.

A. **Placement and Curing Plan Submission Requirements.**

At least 30 calendar days prior to the proposed start of placing the concrete bridge deck, the Contractor shall submit to the Engineer for approval, a submission (herein called the Placement and Curing Plan) specifying the method of concrete conveyance, placement, type and number of finishing machines and work bridges, rate of pour, estimated time of completion, screed and rail erection plan, sequence of concrete pours, and the concrete curing procedure. The Placement and
Curing Plan shall take into consideration weather conditions. It shall also include details and a complete description of equipment to be used in the handling, placement, finishing and curing the concrete including the number and type of personnel who will be engaged in the operation. The personnel shall consist exclusively of persons with the experience and skill appropriate to their working assignment. Approval of this plan will not relieve the Contractor of the responsibility for the satisfactory performance of their methods and equipment. The Placement and Curing Plan shall include, but not be limited to, the following:

1. Proof of the following minimum operator qualifications for the bridge deck finishing machine(s):
 a. Five years’ experience operating machines or similar type and manufacturer as that proposed.
 b. Proof of no less than five bridge decks of similar size, placed using a machine of the same manufacturer as that proposed. Or, as a substitute for a. and b.:
 c. A representative of the manufacturer of the bridge deck finishing machine shall be present on the site a minimum of 24 hours in advance of the proposed deck placement to approve the setup of the machine and rail system, and the representative shall be present for the entire duration of the placement of the deck concrete using the bridge deck finishing machine.

2. Curing method.
4. When cold weather is reasonably expected or has occurred within 7 days of anticipated concrete placement, the Contractor shall include detailed procedures for the production, transporting, placing, protecting, curing, and temperature monitoring of concrete during cold weather, including a plan of heating devices, types and locations around structure.
5. Method of monitoring temperature of hardened concrete.
6. Backup systems as required.

Before concrete placement operations begin, the Contractor shall make all necessary arrangements and have all materials on hand for curing and protecting the concrete deck. Concrete placement shall not proceed until the Engineer is satisfied that all necessary steps have been taken to insure adequate compliance with these Specifications and that completion of the operation can be accomplished within the required scheduled time. It shall be the Contractor’s responsibility to allow sufficient time to permit such an inspection by the Engineer.

B. Limitations on Placement.

In addition to the requirements contained herein, all weather and concrete temperature requirements contained in 901.64: Protection from Adverse Weather, shall be satisfied. When placing concrete, the Contractor must provide suitable equipment and take appropriate actions as approved by the Engineer to limit the evaporation rate of the exposed concrete surface to less than 0.15 psf per hour. The deck surface evaporation rate shall be determined in accordance with Figure 901.66-1 (obtained from "Plastic Cracking of Concrete" by Delmar Bloem for the National Ready Mixed Concrete Association and published in ACI 305R-89). To maintain the deck surface evaporation rate below 0.15 psf per hour the Contractor shall take one or more of the following actions:
1. Misting the surface of the concrete with a triple head nozzle immediately behind the finishing machine and until the curing cover is applied. The nozzle shall be rated at 1 gallon per minute or less and shall produce a fine fog mist that will maintain a sheen of moisture on the concrete surface without ponding.

2. Construct windscreens or enclosures to effectively reduce the wind velocity throughout the area of placement. If the use of windscreens is required, the windscreens shall consist of canvas barriers of suitable height erected on the windward side of the concrete placement.

3. Reduce the temperature of the concrete.

Figure 901.65-1: Deck Surface Evaporation Rate
C. Placement.

Concrete placement shall take place during daylight and shall not begin unless the Contractor is certain that the placement can be completed and finished, to the satisfaction of the Engineer, during daylight hours. The Engineer may waive this requirement if adequate and approved lighting facilities are provided by the Contractor prior to the start of the deck placement. Before concrete placement operations begin substantial bulkheads or headers shall be shaped to the required deck surface cross-section. In the event of unforeseen circumstances should the concrete placement be forced to cease, sufficient bulkheads shall be installed at locations determined by the Engineer and the concrete placement shall be discontinued. All concrete in place beyond the bulkhead shall be removed. Concrete placement will recommence only with the approval of the Engineer. The concrete shall be placed as a monolithic unit in a continuous operation between joints. A minimum rate of placement of 35 yd3 per hour shall be maintained at each finishing machine.

D. Consolidation.

The concrete shall be consolidated by means of approved high frequency internal vibrators (9,000 to 13,500 vibrations per minute in concrete) that shall be applied in a manner to secure maximum consolidation of the concrete and by means of surface vibration from the vibrating pan(s) of the finishing machine. Consolidation shall leave the concrete free from voids and insure a dense surface texture, but not be continued so long as to cause segregation or bleeding. A small uniform quantity of concrete shall be maintained ahead of the screed on each pass. At no time shall the quantity of concrete carried ahead of the screed be so great as to cause slipping or lifting.

In the case where the vibratory action of the finishing machine does not provide consolidation in accordance with the rate of placement, the Contractor shall have in reserve at all times sufficient vibration equipment to guard against shutdown of the work. The Contractor shall take preventive measures to ensure that the epoxy coated reinforcement is not susceptible to damage by the vibrators.

E. Finishing.

1. General.

Methods, procedures, and equipment shall be used which will insure a uniform riding surface without over-vibration or segregation of the components of the concrete. The leading edge of freshly placed concrete shall at all times be maintained approximately parallel to the finishing machine.

The weight of the finishing machine(s) shall not cause unaccounted deflection of the bridge members or falsework. The machine shall travel on steel rails, pipe or other approved grade control, which shall be supported by vertical supports securely fastened in place at a maximum spacing of 2 ft to prevent any appreciable deflection between rail supports. Screed rail supports may be located inside or outside of the placement width. Prior to placing the concrete, screed rails shall be completely in place, and accurately set to insure finishing of the concrete deck surface to the elevations shown on the Plans. The supports for the rails, if embedded in the deck concrete, shall be of the type that can be removed without disturbing the concrete.

Screed rails shall be set entirely above the finished surface of the concrete and shall be supported in a manner approved by the Engineer. Where stud type shear connectors are available, welding to the
studs will be permitted. Where no studs are available, other means of attaching the screed rail supports shall be provided. No welding will be permitted directly on stringer or girder flanges or cover plates in tension areas, nor in areas subject to stress reversal, for attaching either screed rail supports of any type. Any welding in compression areas shall be approved by the Engineer.

Screed rail supports set in the concrete shall be so designed that they may be removed to at least 2 in. below the surface of the concrete. Voids created by removal of the upper part of the screed rail supports shall be filled with mortar having the same proportions of sand and cement as that of the slab or wearing surface. The mortar shall contain an approved additive in sufficient proportions to produce non-shrink or slightly expansive characteristics. Screed rail supports shall not be treated with parting compound to facilitate their removal. Rails for finishing machines shall extend beyond both ends of the scheduled length for concrete placement. The extended length shall be of sufficient distance to allow finishing machine(s) to clear the concrete to be placed.

2. **Finishing Machine: Placement Widths Less Than or Equal to 15 Fee) or Bridge Lengths Less Than or Equal to 50 Ft.**

For concrete deck placements specified to be less than or equal to 15 ft in width, or less than or equal to 50 ft in total bridge length, the finishing machine shall be a lightweight vibrating screed with the following features:

- It shall be portable and easily moved, relocated, or adjusted by no more than four persons.
- The power unit shall be operable without disturbing the screeded concrete.
- It shall be self-propelled with controls, that will allow a uniform rate of travel and by which the rate of travel can be increased, decreased, or stopped.
- It shall have controlled, uniform, variable frequency vibration, end to end.
- It shall be fully adjustable for flats, crowns, or valleys.
- The screed length shall be adjustable to accommodate the available work area.

The finishing machine shall be operated over the full length of the bridge segment to be finished prior to beginning of concrete placement operations. The test run of the self-propelled finishing machine shall be performed in the presence of the Engineer at least 24 hours in advance of the concrete placement with the screed adjusted to its finishing position. During the test run, checks shall be made of the deflection due to the finishing machine, adjustment of guide rails and required covers for slab reinforcement. The required concrete cover over the top bars shall be checked by riding the screed over the bars and measuring the cover over the slab reinforcement. Discrepancies so found, which are in excess of the tolerances shall be rectified to secure the required concrete cover. All necessary corrections shall be made before concrete placement is begun.

The rate of concrete placement shall be coordinated with the initial strike-off so that the initial strike-off is never more than 10 ft behind the concrete placement.

Sufficient depth checks shall be made behind the machine(s) and along the full length of the span to insure achievement of the required section and reinforcement cover.

Improper adjustment or operation of the finishing machine(s) that results in inadequate reinforcement cover or smoothness shall be corrected immediately. Unsatisfactory performance, particularly with respect to the surface smoothness attained, shall be cause for rejection of the equipment and cement concrete placed.
3. **Finishing Machine: Placement Widths Greater Than 15 Ft and Bridge Lengths Greater Than 50 Ft.**

An approved bridge deck finishing machine(s) complying with the following requirements shall be used for consolidating, striking off, and finishing the concrete deck surface for concrete placements greater than 15 ft in width and bridge lengths greater than 50 ft. The finishing machine(s) shall have the necessary adjustments, built in by the manufacturer, to produce the required profile grade, cross-section, and surface smoothness. The supporting frame shall span the section being cast in a transverse direction without intermediate support. The finishing machine(s) shall be self-propelled and capable of forward and reverse movement under positive control. Provisions shall be made for raising all screeds to clear the screeded surface for traveling in reverse. The screed device shall be provided with positive control of the vertical position.

The finishing machine(s) shall be self-propelled with two or more rotating cylinder screeds. The rotating cylinder screeds shall rotate in a transverse direction while also traveling in the same direction and shall be operated transversely in overlapping strips in the longitudinal direction not to exceed 6 in. One or more powered augers shall be operated in advance of the screed(s) and a drag (pan type) float shall follow the screed(s). The surface of bridge decks that are to be left exposed without bituminous or cement concrete overlays shall receive an artificial turf drag made of molded polyethylene with synthetic turf blades that are approximately 0.5 in. long and with approximately 6,000 blades per ft² of drag. The artificial turf drag mat shall be removed and replaced with a clean artificial turf drag mat every 10 ft measured along the bridge centerline. The transversely operated rotating cylinders of the finishing machine(s) shall be rotated such that the direction of the rotation of the cylinders at the surface of the concrete is in accordance with the manufacturer’s recommendations.

The finishing machine(s) shall be operated over the full length of the bridge segment to be finished prior to beginning of concrete placement operations. The test run of the self-propelled finishing machine shall be performed in the presence of the Engineer at least 24 hours in advance of the concrete placement with the screed adjusted to its finishing position. During the test run, checks shall be made of the deflection due to the finishing machine, adjustment of guide rails and required covers for slab reinforcement. The required concrete cover over the top bars shall be checked by riding the screed over the bars and measuring the cover over the slab reinforcement. Discrepancies so found, which are in excess of the tolerances shall be rectified to secure the required concrete cover. All necessary corrections shall be made before concrete placement is begun.

The rate of concrete placement shall be coordinated with the initial strike-off so that the initial strike-off is never more than 10 ft behind the concrete placement.

Concrete immediately in front of the power auger(s) of bridge deck finishing machine(s) shall be placed or cut to a depth no higher than the center of the rotating auger(s). The concrete shall be consolidated just prior to the auger strike off. In the case where the vibratory action of the finishing machine does not provide sufficient consolidation in accordance with the rate of placement, the Contractor shall utilize approved high frequency internal vibrators (9,000 to 13,500 vibrations per minute in concrete) that shall be applied in a manner to secure maximum consolidation of the concrete. Consolidation shall leave the concrete free from voids, but shall not be continued so long as to cause segregation or bleeding. The advance auger(s) shall strike off the concrete to approximately ¼ in. above the final grade and then the concrete shall be finished to final grade.
Improper adjustment or operation of the finishing machine(s) that results in inadequate reinforcement cover or smoothness shall be corrected immediately. Unsatisfactory performance, particularly with respect to the surface smoothness attained, shall be cause for rejection of the equipment and cement concrete placed.

4. Work Bridges.

Work bridges supported on the screed rails shall be provided by the Contractor in order to permit access to the surface of the deck for the purpose of finishing, straight-edging, making corrections, and setting curing materials. The Contractor shall furnish a minimum of two work bridges behind the bridge deck finishing machine, capable of spanning the entire width of the deck and supporting at least a 500-lb load without deflection to the concrete surface. These working bridges shall be available to the Engineer for inspection purposes. Workmen will not be permitted to walk in the fresh concrete after it has been screeded. All finishing work, including application of the fog spray and placement of curing mats, shall be performed from bridges supported above the deck surface.

5. Tolerances.

Verification that the completed surface of the deck has been constructed in accordance with the grades and cross slopes specified on the contract drawings shall be made immediately after finishing and again after the deck has been cured. The Contractor shall check the surface of the concrete with a 10-ft-long metal straightedge operated parallel and perpendicular to the centerline of the bridge. Deck surfaces that are not to be overlaid with 1 in. or more of wearing surface material shall show no deviation in excess of ¼ in. from the testing edge of the straightedge. For deck surfaces to be overlaid with 1 in. or more of wearing surface material, such deviation shall not exceed ⅜ in. The checking operation shall progress by overlapping the straightedge at least one half of the length of the preceding straightedge pass. Any area that requires finishing to correct surface irregularities shall be re-textured which may be performed with a hand-operated texture mat wrapped in a roll or attached to a round or curved shaped base. In the event that the tolerance is not met when tested after the concrete has hardened, variance in excess of ¼ in. in 10 ft deck surfaces not to be overlaid with 1 in. or more of wearing surface material or ⅜ in. for deck surfaces to be overlaid 1 in. or more of wearing surface material shall be marked and corrected at the Contractor’s expense in a manner satisfactory to the Engineer. The Contractor shall correct out of tolerance hardened concrete surface irregularities by the use of concrete planing or grinding equipment that does not damage the remaining concrete or violate minimum cover requirements on steel reinforcement.

The straightedges shall be furnished and maintained by the Contractor. They shall be fitted with a handle and all parts shall be made of aluminum or other lightweight metal. The straightedges shall be made available for use by the Engineer when requested.

F. Curing.

All concrete bridge decks shall be kept wet with clean fresh water for a curing period of at least 14 days after placing of concrete.

Curing shall begin by fog spraying during the placing and finishing operations. Fogging shall continue and shall be applied continuously, rather than intermittently, after the finishing operation until wet covering material has been placed over the concrete surface. Deck finishing machine mounted fogging systems shall be augmented by hand-held fogging equipment as needed.
All bridge decks, medians, sidewalks, and safety curbs shall be water cured only and shall be kept continuously wet for the entire curing period by covering with one of the following systems:

a. Two layers of wet burlap,

b. One layer of wet burlap and either a polyethylene sheet or a polyethylene coated burlap blanket.

Curing protection shall be applied within 15 minutes after the concrete is deposited and before the surface of the concrete has lost its surface “wetness” or “sheen” appearance. The burlap shall be completely saturated over its entire area by being submerged in water for at least 8 hours before the scheduled start of the placement. The burlap shall be drained of excess water prior to application. The burlap shall be free from cuts, tears, uneven weaving and contaminants. The burlap shall be placed such that the edges are lapped a minimum of 6 in. Continuous burlap wetting shall commence 10 minutes from the time it is placed and shall be kept continuously wet and protected from displacement for the entire curing period in a manner acceptable to the Engineer.

The covering of bridge decks, medians, sidewalks, and safety curbs shall be kept continuously wet for the entire curing period by the use of soaker hoses. The soaker hoses shall circulate water continuously and shall be located to insure a completely wet surface for the entire curing period.

The Contractor shall make sure that adequate personnel are available at the site to carry out the placement, screeding, finishing, fogging and curing operations simultaneously. To overcome shrinkage problems, the use of wind screens and sun shades shall be used as conditions require.

The application of impervious liquid membrane curing compounds shall not be considered a substitute for achieving the curing of the concrete required by these Specifications. Only in the event of an unavoidable delay during concrete placement shall two coats of an approved curing compound be sprayed on to the concrete that has been deposited and not screeded. The curing compound shall conform to the requirements provided under M9.06.5: Impervious Liquid Membrane, except that only ASTM C1315, Type I shall be permitted. This curing compound shall later be mixed into the concrete by the finishing machine. Curing compounds shall not be applied to the screeded surfaces of bridge decks.

The Contractor shall limit the maximum concrete temperature to 154°F, and control the temperature of the concrete to ensure that it does not fall below 57°F. Heat control shall be accomplished through a combination of proper cement concrete ingredient selection to minimize heat generated, pre-placement cement concrete ingredient cooling, post-placement cooling, cement concrete placement rate control, cement concrete surface insulation to minimize heat loss, and providing supplemental heat to prevent heat loss.

The Contractor shall submit for review and approval by the Engineer at least 30 days prior to the date of intended cement concrete placement, along with each mix design, a plan indicating methods of observing and recording cement concrete temperatures. The Contractor shall measure and record concrete and ambient air temperatures on an hourly basis for at least the first 72 hours after placement or longer during hot or cold weather conditions. The Contractor shall furnish temperature log records of the temperatures that are recorded at a maximum frequency of once per hour. Temperature data shall be furnished to the Engineer as required, with a minimum frequency of once per day.
G. Cold Weather Requirements.

Cold weather is defined as any time during the concrete placement or curing period the ambient temperature at the work site drops below 40°F or the ambient temperature at the site drops below 50°F for a period of 12 hours or more. When cold weather is reasonably expected or has occurred within 7 days of anticipated concrete placement, the Contractor shall include in their Placement and Curing Plan detailed procedures for the production, transporting, placing, protecting, curing, and temperature monitoring of concrete during cold weather. Procedures for accommodating abrupt changes in weather conditions shall be included. Placement of concrete shall not commence until the plan is accepted by the Engineer. Acceptance of the plan will take at least one day. All material and equipment required for cold weather placement and curing protection shall be available at the project site before commencing concrete placement. All snow, ice, and frost shall be removed from the surfaces, including reinforcement, against which the concrete is to be placed. The temperature of any surface that will come into contact with fresh concrete shall be at least 35°F and shall be maintained at a temperature of 35°F or above during the placement of concrete.

During the curing period, the Contractor shall provide suitable measures to maintain the concrete surface temperature between 57°F and 85°F which shall be monitored by continuously recording surface temperature measuring devices that are accurate within 1.8°F. At least one temperature measuring device shall be randomly placed in an accessible location for every 1,500 ft² of concrete deck surface area being cured.

The minimum concrete surface temperature requirement shall be continuously maintained for the entire 14-day wet curing period. Any day during which the minimum concrete surface temperature requirement of 57°F is not continuously maintained shall not count as a day contributing to the curing period.

If the concrete surface temperature falls below 45°F during the curing period, the structure shall be enclosed, and external heat shall be provided as directed by the Engineer. If external heat is required, the following shall apply:

1. The time required for tenting shall not be counted as curing time.
2. External heat shall be maintained on and below the structure for the entire curing period and then reduced gradually such that the uniform change in temperature does not exceed 5°F in one hour or 18°F in any 24-hour period.

If at any time during the curing period the concrete surface temperature falls below 35°F (2°C), the concrete will be inspected by the Engineer for possible damage due to exposure to freezing temperatures. Concrete determined by the Engineer to be damaged due to exposure to freezing temperatures will be considered as being unsatisfactory and rejected.

Adequate precautions shall be taken to protect the concrete deck from any damages resulting from severe weather conditions during the curing process.

H. Surface Texturing.

The final finish required shall be as follows:
1. The finished surface of bridge decks to receive bituminous or cement concrete overlays shall be smooth without any projections that could puncture the membrane waterproofing or depressions that could retain water.

2. Bridge decks that are to be left exposed without bituminous or cement concrete overlays shall receive an artificial turf drag finish and shall be grooved using multi-bladed self-propelled sawcutting equipment. Transverse grooves shall be sawcut no sooner than completion of the 14-day wet curing operation provided that the concrete has reached a compressive strength of 3,300 psi. The grooves shall be rectangular in shape, ⅛ in. wide (+ ¹/₁₆ in., -0 in.) and ³⁄₁₆ in. deep (± ¹/₁₆ in.). The grooves shall be cut at a variable spacing measured from the centerline of grooves as follows: ¾ in., 1 ⅛ in., ⅝ in., 1 in., ⅝ in., 1 ⅛ in., and ¾ in. in 6-in. repetitions across the width to be grooved in one pass of the mechanical saw device. One 6-in. sequence may be adjusted by one-quarter sequence increments to accommodate various cutting head widths provided the general pattern is carried out. The tolerance for the spacing of the grooves is ± ¹/₁₆ in.

The groove sawcutting equipment shall have a depth control device that will detect variations in the surface profile and adjust the cutting head height to maintain the depth of groove specified. The groove sawcutting equipment shall be provided with devices to control the alignment. Flailing type grooving that is uncontrolled and erratic shall not be permitted. Grooves shall be cut continuously across the roadway, perpendicular to the centerline of the roadway, and shall stop 1 ft from the curb line. Grooves shall be continuous across construction joints. At skewed metal bridge deck expansion joints and at the skewed ends of bridge decks, the groove cutting shall be adjusted by using narrow width cutting heads so that all grooves end within 6 in. of the edge of deck joint measured normal to the centerline of joint or end of deck. No un-grooved deck surface greater than 6 in. in width shall remain. A minimum clearance of 1 in. shall exist between the first groove and the end of deck or edge of metal bridge deck expansion joint. No overlapping or repeating of grooving in the same location by the grooving machine shall be permitted. The pattern of grooving shall be discussed and agreed upon with the Engineer before grooving begins. Debris and residue from the grooving operation shall be continuously removed and disposed of offsite. Residue from grooving operations shall not be permitted to flow into gutters or drainage facilities. The surface of exposed concrete decks shall be left in a washed clean condition that is free from all slipperiness from the sawcutting slurry.

A 1-ft wide margin shall be finished adjacent to curbs with a magnesium float.

I. Sidewalks and Medians on Bridges.

After being placed, the horizontal concrete surfaces shall be properly screeded and finished to true grade and surface. The finish shall be with an approved float, followed by light brushing with a fine brush but without the addition of any water to remove the cement film, leaving a fine grained, smooth but sanded texture. The surfaces shall then be cured as specified herein.

901.67: Removal of Forms, Falsework and Loading on Structures.

The terms falsework and centering, as used herein, shall include all supports of the actual forms enclosing and supporting the concrete.

No external loads of any kind, except as provided for herein, shall be allowed until the members reach at least the designated strengths.
A. Removal of Forms and Falsework.

The forms, falsework, and centering for any portion of the structure shall not be removed until the concrete is strong enough, as determined by the Engineer, to avoid possible injury from such removal. Forms, falsework, and centering shall not be removed or disturbed without the prior approval of the Engineer. Forms, falsework, and centering shall be removed in such a manner as to permit the concrete to uniformly and gradually take the stresses due to its own weight.

When test cylinders are taken from the concrete in the members of a structure for the purpose of controlling the timing of form removal operations, the forms shall be left in place until the concrete has attained the minimum percentage of the specified design strength and, regardless of the strength attained, for the minimum period of time with test cylinder testing as designated in the following table. If test cylinders are cast for this purpose, 3 concrete cylinders shall be cast, field cured, and tested by the Contractor at an independent testing laboratory that is certified under the AAP, all at no additional cost to the project. When test cylinders are not taken from the concrete in the members of a structure for the purpose of controlling form removal operations, the minimum days without test cylinder testing designated in the following table shall be used as a guide. The number of days counted shall be measured from the time of the last placement of concrete in the forms or falsework supports and shall exclude days when the surrounding temperature is below 40°F for a total of 4 hours or more. The complete curing process shall be continued after removal of forms, falsework, or centering as required. In order to facilitate any particular finishing operations, side forms carrying no load may be removed 24 hours to 72 hours (depending on weather conditions and type of concrete) after the placing of the concrete has been completed, subject to the approval of the Engineer and with the complete curing process to be continued as required.

<table>
<thead>
<tr>
<th>Structural Member</th>
<th>Minimum Percentage of Specified Design Compressive Strength (f_c)</th>
<th>Minimum Days with Test Cylinder Testing</th>
<th>Minimum Days without Test Cylinder Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free standing walls, columns, and piers</td>
<td>40%</td>
<td>3 days</td>
<td>5 to 7 days</td>
</tr>
<tr>
<td>Arches</td>
<td>80%</td>
<td>10 days</td>
<td>14 to 28 days</td>
</tr>
<tr>
<td>Beams, pier cap beams, slabs, and girders with under 20 ft clear span between supports</td>
<td>80%</td>
<td>10 days</td>
<td>14 to 28 days</td>
</tr>
<tr>
<td>Beams, pier cap beams, slabs, and girders with 20 ft or greater clear span between supports</td>
<td>90%</td>
<td>14 days</td>
<td>21 to 28 days</td>
</tr>
<tr>
<td>Cantilevered beams, slabs, and girders</td>
<td>90%</td>
<td>14 days</td>
<td>21 to 28 days</td>
</tr>
</tbody>
</table>

Where continuous span structures are involved, the forms or falsework shall remain in place until the concrete in every span of the entire group of continuous spans has attained the minimum percentage of the specified design compressive strength.
Any defective work discovered after the forms have been removed shall be immediately removed and replaced. If the surface of the concrete is bulged, uneven or show excessive voids or form joint marks that cannot be repaired satisfactorily, the entire section shall be removed and replaced. All repairs and renewals due to defective work shall be done at the expense of the Contractor.

Any proposal by the Contractor to remove forms, falsework, and centering prior to the concrete attaining the specified minimum percentage of the design compressive strength must satisfy each of the following requirements:

The Engineer has reviewed and approved the Contractor’s justifying calculations. The calculations must be based upon the concrete strength from the time of the proposed early removal until the concrete has attained its design strength. The calculations shall demonstrate that the capacity of the structure shall not be exceeded by computing the loads, resultant stresses, and deformations to which the concrete and reinforcing steel will be subject to at the time of the proposed removal.

The Contractor has had 3 field cured concrete cylinders tested by an independent testing laboratory immediately prior to the start of removal of forms, falsework, and centering, and all of the test results equal or exceed the anticipated strength used in the Contractor’s calculations. The Engineer must accept the field curing of the 3 test cylinders as being representative of the field curing of the production concrete in order for this approval to occur.

B. Application of External Loads.

Loads shall not be applied to concrete structures until the concrete has, as determined by the Engineer, attained sufficient strength so that damage will not occur.

Nothing, except for curing materials and related curing equipment and devices, may be carried on bridge decks until the entire 14-day wet curing operation is completed. A live load not exceeding 5,500 lb, operated at a speed not to exceed 5 mph, may be allowed on bridge deck concrete no sooner than completion of the 14-day wet curing operation provided that the concrete has reached a compressive strength of 3,300 psi. Full traffic loading shall not be allowed on bridge deck concrete until completion of the 14-day wet curing operation and until the concrete has reached its specified strength.

Precast concrete or steel beams or girders shall not be placed on substructure elements until the substructure concrete has attained 70% of its specified strength.

When the placement of backfill will cause flexural stresses in the concrete, the placement shall not begin until the concrete has reached not less than 80% of its specified strength.

901.68: Joints

A. Construction Joints.

Construction joints not shown on the plans shall not be permitted except in case of emergency as specified in Paragraph D hereinafter.

Concrete in structures shall be placed in such a manner that all construction joints shall be exactly horizontal or vertical, as the case may be, and that they shall be straight and as inconspicuous as possible.

All concrete placed between construction joints shall be placed in a continuous operation.
In order to allow for initial shrinkage, concrete shall not be placed against the second side of the construction joint for at least 3 days after that on the first side has been placed.

When making a horizontal construction joint, care shall be taken to have the concrete below the joint as dry as possible and any excess water or creamy material shall be removed before the concrete sets. Within 12 hours after the concrete below the joint has been placed, the top surface shall be thoroughly cleaned by the use of pressurized water blast and wire brushes and all laitance and loose material removed so as to expose clean, solid concrete. Care must be taken not to loosen any of the course aggregate in the concrete. If for any reason this laitance is not removed before the concrete has hardened in place, it shall be removed using such tools and methods as may be necessary to secure the results specified above. Immediately before placing concrete above the joint, the surface of the concrete below the joint that has been cleaned as specified above shall be thoroughly pre-wetted for a minimum duration of 12 hours. On all exposed surfaces, the line of the proposed joint shall be made truly straight by tacking a temporary horizontal straight edge on the inside of the form with its lower edge on the line of the joint and then placing the concrete sufficiently higher than this edge to allow for settlement. Immediately before placing the new concrete, the forms shall be drawn tightly against the concrete already in place.

In construction joints, approved waterstops of plastic material shall be placed not less than 3 in. from the face of concrete and shall extend a minimum of 2.5 in. into the concrete.

Prior to the use of plastic waterstops, the manufacturer’s installation instructions shall be furnished to the Engineer.

B. Expansion Joints.

Expansion joints constructed in bridges, walls and other structures shall be of the thickness shown and as located on the plans. The joint filler shall be cut to the same shape as the area to be covered except that it will be ¼ in. smaller along all surfaces that will be exposed in the finished work. The filler shall be fixed firmly against the surface of the concrete already in place in such a manner that it will not be displaced when the concrete is deposited against it. When necessary to use more than one piece to cover any surface, the abutting pieces shall be placed in close contact and the joint between the separate pieces shall be covered with a layer of two-ply roofing felt, one side of which shall be covered with hot asphalt to insure proper adhesion. The ¼-in. spaces along the edges at exposed faces shall be filled with wooden strips of the same thickness as the joint material. These wooden strips shall be saturated with oil and have sufficient draft to make them readily removable after the concrete is placed.

Whatever material is used, the exposed edge of the filler shall be the finished edge as it comes from the fabricator in order to avoid exposure of material roughened by cutting. Each piece of filler shall be fastened to the concrete on one side of the joint with a single line of No. 10 gauge insulation nails 3 in. long and 12 in. on centers.

Immediately after forms are removed, the expansion joint shall be carefully inspected and any concrete or mortar that has sealed across the joint shall be cut neatly and removed. The outer edge of the joint shall be straight, parallel and satisfactory in appearance.

In expansion joints, approved waterstops of plastic material shall be placed not less than 3 in. from the face of the concrete and shall extend a minimum of 4.5 in. (115 mm) into the concrete, measured from the center line of the joint.
Prior to the use of plastic waterstops, the manufacturer’s installation instructions shall be furnished to the Engineer.

All surfaces to which sealants are to be applied shall be thoroughly cleaned to remove all loose concrete, dirt, oil, grease, paint, lacquer, rust, scales, bituminous or other foreign materials. Projections of concrete into joint space shall be removed. Steel surfaces shall be sandblasted or mechanically brushed to obtain a bright, clean, metal surface. Loose particles or dirt shall be removed, and the joint shall be dried before application of primer and/or sealer. A bond breaker shall be used so that the joint sealer shall not be placed in direct contact with bituminous material or bituminous filler.

A primer shall be used, when so designated in the manufacturer’s instructions. The sealant shall be mixed and applied in accordance with the manufacturer’s instructions. Application shall be made only when air temperature is 50°F or over. The sealant shall be installed in a neat and workmanlike manner to the depth specified on the plans. The sealant surface shall be either flush with, or be not more than, ⅛ in. above adjacent joint surfaces.

Any material that does not adhere or bond to the applied surface, or fails to set up properly, will be removed and replaced at the expense of the Contractor. Any material improperly mixed or which sets up before placement will likewise be rejected and be replaced at the expense of the Contractor.

Bonded closed cell joints shall consist of a watertight wear resistant joint system located within the joint gap as shown on the plans. The joint system shall be installed after the adjacent concrete structures have cured for a minimum of 14 days. The joint seal shall be installed in widths which are 20% to 25% wider than the joint gap defined on the plans. The joint seal shall be uncoiled from the shipping packaging and shall be allowed to reach a relaxed condition prior to installation. The following installation procedure shall be followed:

A. The joint seal shall be precut to the proper lengths with splices only at the corners. Corner splices shall be made by cutting the seals on a 45° miter, bonding adjoining sections together by applying an epoxy-based adhesive to the mitered faces and holding together for one minute, and letting the spliced section remain undisturbed for one hour prior to installation;
B. The ribbed or grooved areas of the seal shall be vigorously scrubbed with a conditioning agent using a stiff nylon brush;
C. The ribbed or grooved areas of the seal shall then be cleaned using clean absorbent white cotton rags;
D. All oil, grease, dirt, wax, curing compounds, and laitance shall be removed from the surfaces of the previously cast concrete prior to installation of the joint seal;
E. The two-components of an epoxy-based adhesive shall be thoroughly mixed in accordance with the manufacturer’s recommendations;
F. The sidewalls of the joint interface shall be coated with the adhesive to a depth necessary to engage the lowest rib or groove of the joint seal;
G. The ribs or grooves of the joint seal shall be completely covered with the adhesive;
H. The joint seal shall then be inserted into the joint gap using a blunt tool to position the seal at the proper depth.
C. Bonding to Concrete Already Set.

In bonding new concrete to concrete already set, the surface of the concrete shall be thoroughly cleaned, roughened, wetted with clean water, and then flushed with a mortar composed of equal parts of the cement and sand specified for the new concrete, before new concrete is placed adjacent thereto. New concrete shall be placed before mortar has taken initial set. In lieu of the mortar, an epoxy adhesive suitable for bonding fresh concrete to hardened concrete for load bearing applications may be used. The epoxy adhesive shall conform to AASHTO M 235M/M 235 Type V and shall be applied in accordance with the manufacturer’s recommendations.

D. Emergency.

When the work of placing concrete is unexpectedly interrupted by breakdowns, storms or other causes and the concrete as placed would produce an improper construction joint, the Contractor shall construct a construction joint to the approval of the Engineer at no additional expense to the project. When such a joint occurs at a section on which there are shearing or flexural stresses, the Contractor shall provide an adequate mechanical bond across the joint by forming a key, inserting reinforcing steel or by some other satisfactory means, which will prevent a plane of weakness.

901.69: Weep Holes and Drains

Weep holes shall be provided through all structures as indicated on the plans and as directed. Ends of weep holes that are to be covered by filling material shall be protected by ¼-in. mesh galvanized wire screen 23 gauge and not less than 1 yd³ of screened gravel or crushed stone conforming to Subsection M2.01.1.

Drains shall be provided for bridge superstructures as indicated on the plans.

901.70: Protection of Pipes and Conduits

The Contractor shall care for and protect from injury all pipes, wires and conduits encountered in the work by furnishing and maintaining suitable supports, including steel bars, where directed on the bridge during construction.

The Contractor shall provide suitable openings in the abutments, walls, piers, and superstructures as shown on the plans and as may be directed. If required, the opening shall be filled with brick masonry in a satisfactory manner.

901.71: Date, Seal, Bench Marks and Ornaments

A. Date.

The Contractor shall place a date on bridges as shown on the plans or as directed. The date used shall be the latest year of contract completion as of the date placement. The same date shall be used when placed at multiple locations on a given bridge. The date shall be cast or cut in masonry as directed. Detail drawings of the date will be furnished by the Department upon the request of the Contractor.

B. Seal.

If indicated on the plans, the Contractor shall place a bronze replica of the State Seal on Bridges, as directed by the Engineer. The seal will be furnished by the Department.
C. Ornaments.

Concrete ornaments shall be furnished and placed by the Contractor on bridges when indicated on the plans. The ornamental castings may be either cast in place or precast.

901.72: Concrete Penetrant/Sealer

Concrete penetrant/sealer shall be applied to cement concrete surfaces if shown on the plans. This work shall consist of furnishing all necessary labor, materials and equipment to treat concrete surfaces, including surface preparation and application.

The concrete penetrant/sealer shall conform to M9.15.0: Liquid Penetrant/Sealant. Clear concrete penetrant/sealers, after complete application, shall not stain or discolor the concrete. Application of the penetrant/sealer shall not alter the surface texture and shall be compatible with the use of surface finish coatings and/or caulkings. The surface shall dry to a tack free condition. Application of the penetrant/sealer shall be in accordance with the manufacturer's recommendations, including condition and preparation of surfaces to be treated and safety precautions.

The preparation process shall not cause any damage to the concrete surface, remove or alter the existing surface finish, or expose the coarse aggregate of the concrete.

The Engineer shall approve the prepared surface prior to application of the penetrant/sealer.

The Contractor shall prevent the penetrant/sealer from coming in contact with any joint sealers.

COMPENSATION

901.80: Method of Measurement

Cement Concrete will be measured by the cubic yard and the quantity shall be determined in accordance with dimensions shown on the plans and such alteration of the plans as are specifically ordered by the Engineer in writing. No deduction shall be made in bridges for rustications, chamfered corners of dimensions less than 4 in. on the square sides, or for the volume of pipes less than 18 in. in diameter, drainage inlets, or for anchor bolts or reinforcing bars. The volume occupied by pipe culverts in headwalls shall be deducted.

Underwater Foundation Inspection shall be measured by the Unit Day of Underwater Foundation Inspection ordered by the Engineer and actually performed at the work site by each Diver that is a Professional Engineer registered in the Commonwealth of Massachusetts. Each 8-hour period for which Underwater Foundation Inspection is performed as described above shall be measured as one Unit Day. Underwater Foundation Inspection that is performed as described above for less than 4 hours on a given work day shall be measured as one half of one Unit Day. Underwater Foundation Inspection that is performed as described above for more than 4 hours, but less than 8 hours, on a given work day shall be measured as one Unit Day. Underwater Foundation Inspection that is performed as described above for more than 8 hours on a given work day shall be measured by the quantity of Unit Days determined by the actual number of hours during which Underwater Foundation Inspection is performed divided by 8 hours for each Unit Day.

Reinforcement for Cement Concrete structures shall be measured by the pound. The weight of bars shall be the product of the length as shown on the approved shop drawings and schedules and the standard weight per foot of length as adopted by the Concrete Reinforcing Steel Institute.
Mechanical splicers will be measured by the product of the weight per foot of the bar being joined and the length of an AASHTO Class C lap splice. Wire, metal clips, metal chairs or other fastening and supporting devices used for keeping the reinforcement continuous and in correct position will not be considered reinforcement and the Contractor will receive no additional compensation for their use.

The weight of wire mesh (incorporated in the structure) shall be the computed weight in accordance with the plans based on the standard weight accepted by the trade for the unit area of the particular mesh.

901.81: Basis of Payment

Cement Concrete will be paid for at the contract unit price per cubic yard under the particular item of Cement Concrete of the Class required, as shown on the plans or as directed, complete in place and accepted.

The Contractor shall have no claims for special allowances for extra cement or apparent shrinkage due to inaccurate proportioning or control, bulging of forms, spilling, waste or for any other project conditions within their control.

Payment for additional cement required to be used in proportioning by volume and in placing of concrete under water shall be included in the contract unit price paid for the particular designation of Cement Concrete specified or directed.

Underwater Foundation Inspection shall be paid at the contract unit price per unit day of Underwater Foundation Inspection ordered by the Engineer and performed by a Professional Engineer registered in the Commonwealth of Massachusetts. Written records, final reports, recommendations, travel time, and photographic documentation shall be considered incidental to Underwater Foundation Inspection and shall not be measured for payment.

Steel reinforcement including wire mesh will be paid at the contract unit price per pound complete in place including mechanical splicers, lap splices and proper coating of the bars and splices. Fastening devices and supports for keeping the reinforcement in the correct position are considered incidental to the steel reinforcement and shall not be measured for payment.

Galvanized steel curb bars and steel dowels will be paid for at the contract unit price per pound under the item for Steel Reinforcement for Structures.

The work specified under 901.69: Weep Holes and Drains, 901.70: Protection of Pipes and Conduits, 901.71: Date, Seal, Bench Marks and Ornaments, and 901.72: Concrete Penetrant/Sealer, shall be done without extra compensation except when openings for pipes, wires and conduits are required to be blocked up, the brick masonry will be paid for at the contract unit price per cubic foot of the kind of masonry in which the opening occurs.

Holes for dowels shall be drilled by the Contractor without extra compensation.
901.82: Payment Items

901. 4,000 psi 1.5-inch, 565 Cement Concrete .. Cubic Yard
901.3 4,000 psi 1.5-inch, 565 Cement Concrete for Post Foundations Cubic Yard
902. 3,500 psi 1.5-inch, 520 Cement Concrete .. Cubic Yard
903. 3,000 psi 1.5-inch, 470 Cement Concrete .. Cubic Yard
904. 4,000 psi ¾-inch, 610 Cement Concrete .. Cubic Yard
904.1 5,000 psi, ¾-inch, 705 Cement Concrete ... Cubic Yard
904.2 5,000 psi, ¾-inch, 685 Silica Fume Modified Cement Concrete Cubic Yard
904.3 5,000 psi, ¾-inch, 685 HP Cement Concrete .. Cubic Yard
905. 4,000 psi, ⅜-inch, 660 Cement Concrete ... Cubic Yard
905.1 5,000 psi, ⅜-inch, 660 Silica Fume Modified Cement Concrete Cubic Yard
905.2 5,000 psi, ⅜-inch, 710 HP Cement Concrete .. Cubic Yard
906. 5,000 psi, 1.5-inch, 660 Cement Concrete ... Cubic Yard
909.9 Underwater Foundation Inspection ... Unit Day
910. Steel Reinforcement for Structures ... Pound
910.1 Steel Reinforcement for Structures - Epoxy Coated Pound
910.2 Steel Reinforcement for Structures – Coated ... Pound
910.3 Steel Reinforcement for Structures – Galvanized ... Pound

SUBSECTION 940: DRIVEN PILES

DESCRIPTION

940.20: General

This work shall consist of furnishing and driving piles to the required bearing capacity in accordance with these specifications and in close conformity with the lines and grades shown on the plans established by the Engineer.

The Contractor will be responsible for furnishing piling of sufficient length to obtain the penetration and bearing value required.

940.21: Pile Schedule

The Contractor shall submit to the Engineer, for approval, a schedule of the length of piles they propose to order, and the schedule shall designate the respective location of the piles. The scheduled length shall comprise the length expected to be left in the structure plus the length that might be necessary to provide fresh heading. When test piles and load tests are required, the data obtained from driving test piles and making test loads shall be used in conjunction with other available information to determine the lengths of piles to be furnished.

940.22: Precast-Prestressed Concrete Piles

A. Required Submittals.

The Contractor shall submit to the Engineer, shop drawings and design calculations which demonstrate the pile complies with the Contract documents. The drawings shall include a schedule of pile lengths, all structural, reinforcing and pre-stressing details, pickup points, and splice designs.
All designs shall be in accordance with the latest AASHTO *Standard Specifications for Highway Bridges*.

B. Special Tips.

Piles driven to bed rock, into dense stratum or through strata with obstructions shall be equipped with embedded steel H sections or equivalent type protection to minimize damage to the pile tip.

C. Extensions.

Extensions on precast-prestressed piles shall be in accordance with details shown in the Contract Documents. The final cutting shall be perpendicular to the axis of pile at such an elevation that at least 40 diameters of reinforcing steel are exposed. The final cutting shall not cause undue spalling of the pile adjacent to the cut. Steel reinforcing and concrete for the extensions shall be of the same strength and quality as that used for the original pile.

MATERIALS

940.40: General

Piles shall meet the requirements specified in the following Subsection of Division III:

A. Materials

Untreated Timber Pile .. M9.05.6
Treated Timber Pile ... M9.05.6
Steel Pile .. M8.05.1
Steel Pipe Piles ... M8.05.5
Cast-in-Place Pile ... M8.05.2
Precast-Prestressed Concrete Pile .. M8.05.6
4,000 psi, ¾-inch, 610 Cement Concrete M4.02.00
Steel Reinforcement .. M8.01.0
Mortar .. M4.02.15

B. Length of Steel Pipe and H Piles.

When the proposed length is:

1. 60 ft or less, the pile shall be furnished in a single piece of the required length.
2. Greater than 60 ft, the Contractor will have the option of furnishing the pile in a single piece, or of furnishing each pile in 2 pieces, approximately equal in length, to make up the required length.
3. 100 ft or less, piles shall be spliced on the ground before being placed in the leads.

C. Length of Precast-Prestressed Concrete Piles.

1. 60 ft or less the pile shall be furnished in a single piece.
2. Greater than 60 ft, the Contractor shall have the option of furnishing the pile in a single piece or splicing 2 pieces approximately equal in length.

D. Storage and Handling of Piles.

Special care shall be used in the storage and handling of piles to avoid damage.
The method of handling of precast-prestressed concrete piling shall prevent cracking or fracture by impact or induced bending stresses. At the discretion of the Engineer, cracked or fractured piling shall be either rejected or repaired with epoxy. Fine cracks, which do not extend to the reinforcing steel as determined by the Engineer, will neither require repair or be cause for rejection. The Contractors proposed method for repair with epoxy or the like shall be submitted to the Engineer for approval.

E. Pile Shoes and Tips.

Pile shoes of the type and dimensions specified shall be provided and installed when shown on the contract documents.

Timber pile shoes shall be metal and be fastened securely to the pile. Timber pile tips shall be carefully shaped to secure an even uniform bearing on the pile shoes.

Steel pile shoes shall be fabricated from cast steel conforming to ASTM A27.

CONSTRUCTION METHODS

940.50: Equipment for Driving Piles

940.51: Hammers

A. General.

Piles shall be driven by approved impact hammers or by a combination of jetting and impact hammers. Impact hammers include single, double and differential acting air or steam hammers, and open or closed-end diesel hammers. Drop (Gravity) hammers may be used with the written permission of the Engineer to drive timber piles.

Valve mechanisms and other pans of impact hammers shall be maintained in good condition. Hammers shall be capable of delivering the manufacturer’s rated energy and shall be operated at the manufacturer's specified maximum blows per minute. Power sources such as steam boilers and air compressors shall be capable of continuously maintaining the hammer manufacturer's recommended pressure and flow rate at the intake of the hammer. Boilers and Compressors shall be equipped with pressure gauges or other devices, calibrated against the rated hammer energy. When directed by the Engineer, a gauge readable from the ground surface, shall be provided at the hammer intake to determine the actual pressure delivered to the hammer.

The Contractor shall equip open-end diesel hammers with a calibrated scale to enable accurate observation of ram stroke from the ground surface.

The Contractor shall also provide the Engineer a chart from the hammer manufacturer equating stroke and blows per minute for the open-end diesel hammer to be used.

Double acting diesel hammers (closed-end) shall be equipped with a gauge to measure pressure in the bounce chamber. The gauge shall be readable from the ground surface. Alternatively, the gauge can be equipped with a hose sufficiently long to enable reading on the ground surface. The gauge and hose assembly shall be calibrated to allow for losses in the hose. The Contractor shall provide charts relating the throttle setting and/or bounce chamber pressure to rated hammer energy.
B. Minimum Energy Requirements

Hammers for Timber Piles.

Impact hammers shall have a ram weight of not less than 2,000 lb and shall develop not less than 6,000 ft-lb of energy per blow. When driving to final resistance, the total energy to drive the pile the last 6 in. shall not exceed 32,000 ft-lb times the pile tip diameter in inches.

Drop (Gravity) Hammers may be used only with the written permission of the Engineer. Such hammers shall weigh between 2,000 and 3,500 lb, but in no case shall the weight of the hammer be less than the combined weight of driving head and pile. The fall shall be so regulated as to avoid damage to the pile and in no case shall exceed 15 ft.

To control excessive stress in concrete piling during driving, the Engineer may require:

1. Increase in cushion thickness, or change the materials comprising the cushion;
2. Reduction of ram stroke;
3. Reduced ram stroke for driving through very soft soil and increased ram stroke as soil resistance increases;
4. Combination of increased cushion thickness and reduced ram stroke;
5. Combination of increased cushion thickness and shorter stroke; or
6. Use of pilot holes or jetting when driving through hard or alternating hard and soft strata.

C. Submittals.

The Contractor shall submit to the Engineer for approval, a description of the proposed driving equipment with manufacturer’s specifications. The equipment description shall include hammer type, hammer cushion, drivehead, and pile cushion, etc. as contained in the “Pile and Driving Equipment Data Form” included in the contract documents or supplied by the Engineer.

D. Approval Criteria.

Impact hammers shall have an energy rating that will provide the required pile capacity with a penetration resistance between 3 and 15 blows per inch (BPI). The energy required for these rates shall be determined by the formula given in 940.61: Driven Pile Capacity, Paragraph A for piles with a required capacity less than 50 tons. For piles with required capacity over 50 tons, or as directed by the Engineer, the Contractor shall submit to the Engineer the results of a Wave Equation Analysis performed in accordance with 940.61: Driven Pile Capacity, Paragraph B for the proposed driving equipment. The analysis shall evaluate the acceptability of the driving equipment with regard to energy transfer to the pile top and the potential for impending pile damage due to induced driving stresses.

The pile stresses which are indicated by the wave equation to be generated by the driving equipment shall not exceed the values where pile damage impends, if the equipment is to be acceptable. That value is determined by the magnitude of the induced compressive stresses.

The point of impending damage in steel piles is defined herein as a compressive driving stress of 90% of the yield point of the pile material. For concrete piles, tensile stresses shall not exceed 3 multiplied by the square root of the concrete compressive strength (f_c) plus the effective prestress value, ($3 \times \sqrt{f_c + \text{prestress}}$) and compressive stresses shall not exceed 85% of the compressive strength minus the effective prestress value ($0.85 \times f_c - \text{prestress}$). For timber piles, the
II.470 2020 Edition

Compressive driving stress shall not exceed three times the allowable static design strength listed on the plans. These criteria will be used in evaluating wave equation results to determine acceptability of the Contractor’s proposed driving system. The results of the analysis, including input parameters, shall be subject to the review and approval of the Engineer prior to any pile installations.

The Contractor will be notified of the acceptance or rejection of the driving system within 14 calendar days of the Engineer’s receipt of the “Pile and Driving Equipment Data Form.” If the wave equation analyses show that either pile damage or inability to drive the pile with a reasonable blow count to the desired ultimate capacity will result from the Contractor’s proposed equipment or methods, the Contractor shall modify or replace the proposed methods or equipment until subsequent wave equation analyses indicate the piles can be reasonably driven to the desired ultimate capacity, without damage.

Approval of the equipment by the Engineer will not relieve the Contractor of their responsibility to provide and install piles capable of supporting the design loads given on the contract documents.

940.52: Driving Appurtenances

A. Pile Helmet.

Piles driven with impact hammers require an adequate helmet to distribute the hammer blow to the pile head. The helmet shall be axially aligned with the hammer and the pile. The helmet should be guided by the leads and not be free-swinging. The helmet should fit around the head in such a manner as to prevent transfer of torsional forces during driving while maintaining proper alignment of hammer and pile.

1. For steel and timber piling, the pile heads shall be cut squarely and a helmet, as recommended by the hammer manufacturer, be provided to hold the axis of the pile in line with the axis of the hammer.
2. For precast concrete and prestressed concrete piles, the pile head shall be plane and perpendicular to the longitudinal axis of the pile to prevent eccentric impacts.
3. For special types of piles, appropriate pile helmets, mandrels or other devices shall be provided in accordance with the manufacturer’s recommendations so that the piles may be driven without damage.

B. Bands.

Collars, bands, or other devices, to protect timber piles against splitting and brooming, shall be provided by the Contractor.

C. Hammer Cushion.

All pile driving equipment shall be equipped with a suitable thickness of hammer cushion material to prevent damage to the hammer or pile and to insure uniform driving behavior. Hammer cushions shall be made of durable, manufactured materials, provided in accordance with the hammer manufacturer’s guidelines except that all wood, wire rope, and asbestos hammer cushions are specifically disallowed and shall not be used. A striker plate as recommended by the hammer manufacturer shall be placed on the hammer cushion to insure uniform compression of the cushion material. The hammer cushion shall be inspected in the presence of the Engineer when beginning
pile driving at each substructure element or after each 100 hours of pile driving, whichever is less. Any reduction of hammer cushion thickness shall be replaced by the Contractor before driving is permitted to continue.

D. Pile Cushion.

The heads of concrete piles shall be protected by a pile cushion made of plywood or other similar material approved by the Engineer. The minimum plywood thickness placed on the pile head prior to driving shall not be less than 4 in. A new pile cushion shall be provided for each pile. In addition, during the driving of each pile, the pile cushion shall be replaced if during the driving the cushion is either compressed more than one half the original thickness or begins to burn. The pile cushion dimensions shall match the cross-sectional area of the pile top.

E. Leads.

The pile driver shall be equipped with fixed leads that are an integral part of the machine. The pile driving hammer shall ride in the ways of the leads. Fixed leads shall be used for driving all piles unless written approval to the contrary is obtained from the Engineer.

F. Followers.

Followers shall only be used when approved in writing by the Engineer, or when specifically stated in the contract documents. The follower shall be of such material and dimensions to permit the piles to be driven to the length determined necessary from the driving of the full-length piles. The final position and alignment of the first two piles installed with followers in each substructure unit shall be verified to be in accordance with the location tolerances in this specification before additional piles are installed.

G. Jets.

Jetting shall only be permitted if approved in writing by the Engineer or when specifically stated in the contract documents.

Jetting will not be allowed when driving through newly placed embankment.

The use of water jets will be permitted only when excess of water will not affect adjacent structures. In general, jetting will not be permitted near railroad tracks.

When jetting is permitted, the Contractor shall determine the number of jets and the volume and pressure of water at the jet nozzles necessary to freely erode the material adjacent to the pile without affecting the lateral stability of the final in-place pile. The Contractor shall control, treat if necessary, and dispose of all jet water such as to meet environmental considerations. The Contractor shall be responsible for all damage to the site caused by jetting operations. The jetting plant shall have sufficient capacity to deliver at all times a pressure equivalent to at least 100 psi at two ¾-in. jet nozzles. Unless otherwise indicated, jet pipes shall be removed when the pile tip is a minimum of 5 ft above prescribed tip elevation and the pile shall be driven to the required bearing capacity with an impact hammer.

H. Preaugaring.

Preaugering shall only be permitted if approved in writing by the Engineer or when specifically stated in the Contract documents. When permitted, the Contractor shall provide the necessary
equipment such as augers, well drilling machines. etc. to preauger holes at pile locations and to the depths required by the Engineer.

PILE INSTALLATION

940.60: Preparation for Driving

A. Excavation.

When piles are located in an area where excavation is to be made or in an area where embankment is to be placed, the piles shall not be driven until the excavation has been made or the embankment has been placed. For either of the foregoing, the grade shall be brought to such an elevation as to compensate for possible uplift or subsidence of the surrounding earth. Adjustments in the grade shall be made after all the piles at the location have been driven. Additional excavation or embankment will be considered as part of the process of pile driving and will not be included in the payment for either excavation or borrow.

B. Preaugering.

Where timber, cast-in place, precast-prestressed concrete piles, or steel piles are to be driven through an embankment, and the depth of the embankment at the pile location is in excess of 5 ft, the Contractor shall make a hole for the full depth of the embankment for each pile with an auger or by other approved methods. The hole shall have a diameter of not less than the bun diameter of the pile. After driving, the annular space around the pile shall be filled to the ground surface with dry sand, fine gravel or pea stone. Material resulting from drilling holes shall be disposed of in accordance with Subsection 120: Excavation.

940.61: Driven Pile Capacity

For piles with proposed capacities greater than 50 tons, the Ultimate Pile Capacity shall be determined by a Wave Equation Analysis conducted by a Registered Professional Engineer experienced in the method of analysis, at the expense of the Contractor. For piles with proposed capacities not greater than 50 tons, the Ultimate Pile Capacity may be determined by the following formula.

A. Formula Method.

\[R_u = 1.75\sqrt{E} \log(10N) - 100 \]

Where:

- \(R_u \) = Ultimate Pile Capacity (kips)
- \(E \) = Manufacturers rated energy of the hammer, at stroke observed in field, in foot – pounds
- \(\log(10N) \) = Logarithm to the base 10 of the quantity 10 multiplied by \(N \), the number of hammer blows per inch at final penetration (blows per inch).

The above formula is applicable only when:

(a) A follower is not used.
(b) The hammer is operated within the range established by the manufacturer.
On projects designed using the Service Load Design Method (Allowable Stress Design), a Design Safety Factor of 3.5 is to be used when using this formula to determine the required Ultimate Pile Capacity. For example, if a Design Capacity of 50 tons is required, then an Ultimate Pile Capacity of 175 tons should be used in the formula to determine the necessary hammer blow count. On projects designed using the Strength Design Method (Load Factor Design), the Performance Factor and Factored Design Capacity specified on the plans shall be used when using this formula to determine the required Ultimate Pile Capacity. For example, if a Factored Design Capacity of 35 tons is required and the Performance Factor specified on the plans is 0.35, then an Ultimate Pile Capacity of 100 tons should be used in the formula to determine the necessary hammer blow count.

The above formula may be modified by the Engineer if they deem it necessary on the basis of information obtained from a loading test or dynamic field measurements during pile driving.

B. Wave Equation Method.

When required in the contract documents, the ultimate pile resistance shall be determined by the Engineer based on a wave equation analysis. Piles shall be driven with the approved driving equipment to the ordered length or other lengths necessary to obtain the required ultimate pile resistance. Jetting, preaugering or other methods to facilitate pile penetration, shall not be used unless specifically permitted either in the contract documents or approved by the Engineer after a revised driving resistance is established from the wave equation analysis. Adequate pile penetration shall be considered to be obtained when the specified wave equation resistance criteria is achieved within 5 ft of the tip elevation based on ordered length. Piles not achieving the specified resistance within these limits shall be driven to penetrations established by the Engineer.

The Contractor is required to perform a wave equation analysis upon each pile type, each pile size, at each significant variation in soil profile, and at each pile driven for the static load test as shown on the plans. When dynamic load tests are required than a wave equation analysis must be performed for each pile to be dynamic load tested by the “Pile Driving Analyzer” (PDA) as determined by the Department. The wave equation analysis shall be made as outlined in the FHWA publication *Design and Construction of Driven Pile Foundations*.

If more than one driving system is proposed by the Contractor, a wave equation analysis shall also be made for each driving system. The driving system, as detailed on the “Pile Driving and Equipment Data Form,” shall be completed by the Contractor and furnished for use as wave equation input data.

No change in driving equipment will be permitted after an evaluation by the Wave Equation Method without prior approval of the Engineer and a revaluation of the driving system. The Engineer may modify the results from the Wave Equation Analysis, if they deem it necessary on the basis of information obtained from loading tests or dynamic field measurement.

The wave equation analysis will be performed by an engineer, registered with the Commonwealth of Massachusetts as a Professional Engineer and experienced in such work. The Contractor’s engineer shall be experienced in the performance of the wave equation analysis and its function as related to pile capacity determination. The Contractor’s engineer conducting the wave equation analysis shall be thoroughly familiar with the Geotechnical report for the project, the subsurface conditions at the site, and with the proposed foundation design.
The Contractor shall submit a written report with a summary of each wave equation analysis to the Department at least 2 weeks prior to pile driving. That submission shall include a copy of the entire Wave Equation Analysis Program (WEAP) in the form specified in Design and Construction of Driven Pile Foundations. The summary in the report will contain the plotted curves of ultimate resistance vs. blowcount and compressive stresses vs. blowcount and tensile stresses vs. blowcount for each WEAP output for each embedded length and for several stroke-lengths if a variable stroke (diesel) hammer is used.

The Contractor’s engineer conducting the wave equation analysis shall also be the same engineer to conduct the dynamic load tests with the PDA when the Contractor is required to perform such dynamic load tests.

940.62: Pile Load Tests

A. General.

The piles to be tested shall be driven in accordance with the requirements under the item for the type of pile to be used on the project. These tests shall be made before driving production piles.

Each pile to be tested shall be driven to the design load as determined by either the Formula in 940.61: Driven Pile Capacity, Paragraph A, or a Wave Equation Analysis in accordance with 940.61: Driven Pile Capacity, Paragraph B and, at the discretion of the Engineer, by dynamic pile measurements in accordance with 940.62: Pile Load Tests, Paragraph C.

B. Static Tests.

Static pile load tests shall be conducted in accordance with ASTM D1143, “Standard Method of Testing Piles under Static Axial Compressive Load,” except as modified herein.

1. General.

The top elevation of the test pile shall be determined immediately after driving and again just before load testing to check for heave. Any pile which heaves more than ¼ in. shall be redriven or jacked to the original elevation prior to testing. Unless otherwise specified in the contract, a minimum 3 day waiting period shall be observed between the driving of any anchor piles or the load test pile and the commencement of the load test.

Tell-tales shall be installed in all test piles to determine the percent of the applied test load being transferred to the bearing stratum. Number and location of tell-tales shall be as shown on the plans.

The Department will furnish levels and the personnel necessary to make all evaluations. All measuring devices and gauges that will be required, other than levels, shall be furnished by the Contractor.

Readings of settlement and rebound shall be referred to a fixed benchmark and shall be made using at least 2-micrometer dial extensometers graduated to 0.001 in. and located 90° apart along the axis of the exposed portion of the pile. Readings shall be taken at intervals specified in Sections 4, 5, or 6, Test Procedures. Readings shall be taken from gauges mounted on a reference beam supported at each end by reliable supports located at least 10 ft from the center of the test pile.
In addition to these readings, elevations to the nearest one-thousandth of a foot by use of an Engineers’ level and rod shall be recorded. The entire measuring installation shall be protected from direct sunlight, frost action and other disturbances that might affect its reliability.

The head of each test pile shall be cut-off level or shall be capped in such a manner as to produce a plane, horizontal bearing surface.

All records obtained during the test shall be the property of the Department. Furnishing and driving the piles, complete in place, will be paid for under the item for the type of piles on which the test is made.

Before starting the work, the Contractor shall submit to the Engineer, for approval, a written description of the equipment and method which the Contractor intends to use. The method must be of an approved type and shall be altered as necessary to meet the approval of the Engineer.

2. Load Application.

The method of applying the load to the pile will be at the option of the Contractor, provided the method is adaptable to accurate measuring of the applied load, and the method avoids eccentric loading on the pile. The first increment of load shall include allowance for weight of the equipment. Hydraulic Jacks shall be of an approved type and capable of supplying a minimum jacking capacity equal to the maximum test load plus 20%. The Contractor shall provide a load cell, subject to the approval of the Engineer, which is capable of determining load transfer to the test pile. The load cell shall have a capacity equal to the jack capacity and shall be calibrated by a certified testing laboratory. In addition, the Contractor shall provide a calibration certificate from a certified testing laboratory relating pressure gauge reading to jack load. The Contractor shall submit to the Engineer both calibration certificates prior to load testing.

3. Reaction Loads.

The total reaction load shall be not less than 250% of the design load for both the short duration and maintained load tests and 400% of the design load for the quick load test method.

Any one of the following devices for applying the vertical loads may be used:

a. Load Supported Directly by Pile. A loading platform or box shall be supported on top of the pile to be tested. The construction of the box and the application of the loads shall be such that no lateral forces will be applied to the top of the pile and no impact will occur as the loads are placed. In cases where the test pile is in an excavation below the natural ground surface, an extension column of structural steel or steel pile may be used to extend from the pile head up to the test box.

b. Load from Weighted Box or Platform Applied to Pile by Hydraulic Jack. A test box or test platform resting on cribbing shall be constructed over the pile and loaded with suitable material. A hydraulic jack with a recently calibrated pressure gauge shall be interposed between the pile head and the load box and load applied to the pile by operating the jack.

c. Load Applied to Pile by Hydraulic Jack Acting Against Anchored Reaction Members. Two or more piles to be used as anchor piles shall be driven at a minimum distance of 5 ft from the test pile. A girder of sufficient strength to act as a reaction beam shall be fastened to the upper ends of the anchor piles. A hydraulic jack with a recently calibrated pressure gauge
shall be interposed between the head of the test pile and the underside of the reaction beam and the test load applied to the pile by operating the jack.

d. **Test Procedures.** The Contractor shall use the load sequence specified under “Short Duration Load Test” unless otherwise directed by the Engineer or the Contract Documents to use the load sequence specified for “Quick Load Test” or “Maintained Load Test.”

The application of the test load shall not begin sooner than 72 hours after placing concrete in Cast-in-place and Steel pipe piles and no sooner than 48 hours after other type piles are driven.

A single pile shall be load-tested to not less than twice the design load. When 2 or more piles are to be tested as a group, the total load shall be not less than 1.5 times the design load for the group.

4. **Short Duration Test.**

The load sequence shall be as follows:

a. Apply 25% of the design load every one-half hour up to the greater of the following: 200% of design load; to an applied load which transfers 100% of design load to the bearing strata as determined from tell-tale measurements but not greater than 90% of the reaction load. Longer time increments may be used, but each time increment should be the same.

b. At the maximum applied load, maintain the load for a minimum of one hour and until the settlement (measured at the lowest point on the pile at which measurements are made) over a one-hour period is not greater than 0.01 in.

c. Remove 25% of the applied load every 15 minutes until zero load is reached. Longer time increments may be used, but each should be the same.

d. Measure rebound at zero load for a minimum of one hour. In no case shall a load be changed if the rate of settlement is not decreasing with time. For each load increment or decrement, take readings at the top of the pile and on the internal instrumentation at 1-, 2-, 4-, 8-, and 15-minute and at 15-minute intervals thereafter.

Provided that the design load does not exceed one hundred percent (100%) of the load transferred to the bearing stratum at the maximum test load, the design load from this test type shall be the greater of the following:

1. **Design Load Based on Settlement During Loading:**

 1. For Piles 24 in. or less in diameter, 50% of the applied test load which cause a gross settlement at the pile cutoff grade equal to the sum of: a) the theoretical elastic compression of the pile in inches, assuming all the load on the butt is transmitted to the tip, plus b) 0.15 in., plus c) one hundred twentieth of the pile tip diameter or pile width in inches, i.e.,

 \[
 S_f = S + (0.15 + \frac{D}{120})
 \]

 Where:

 \[
 S_f = \text{Settlement at failure, in inches}
 \]

 \[
 D = \text{Pile diameter or width, in inches}
 \]

 \[
 S = \text{Elastic deformation of pile length, in inches}
 \]

 2. For Piles greater than 24 in. in diameter or width:

 \[
 S_f = S + \frac{D}{30}
 \]
If the settlement is so small that the load-settlement curve does not intersect the failure criterion, the maximum test load shall be taken as the failure load.

2. **Design Load Based on Net Settlement After Rebound:**

50% of the applied test load which results in a net settlement of the top of the pile of ½ in., after rebound for a minimum of one hour at zero load.

5. **Maintained Load Test.**

The test loads shall be applied in at least five increments equal to 50, 100, 150, 175 and 200% of the design load. All intermediate load steps shall be maintained constant for a period of two hours. During the loading cycle, the contemplated design load and twice the design load, shall be maintained constant until settlement does not exceed 0.02 in. in 12 consecutive hours, or until the pile has failed as determined by the Engineer. The loading period for twice the design load shall be no less than 24 hours.

The total test load shall be removed in decrements not exceeding 25% of the total test load. Each step of unloading shall be maintained constant for a period of 4 hours.

During loading, record readings of time, load, and movement at intervals not exceeding 10 minutes during the first one-half hour, 30-minute intervals up to 2 hours at 1-hour intervals up to 12 hours and 2-hour intervals thereafter.

During unloading, take readings at intervals not exceeding 20 minutes for the first hour and 1 hour intervals thereafter. Take a final rebound reading 4 hours after all load has been removed.

The design load shall be determined in accordance with the procedures specified in the Short Duration Load Test.

6. **Quick Load Test.**

This load test shall be performed on individual piles only.

The load shall be applied in increments of 5 to 10 tons and shall not exceed 10% of the design load. The time interval between readings shall be 2.5 minutes or as otherwise specified. Add load increments until continuous jacking is required to maintain the test load or until the capacity of either the loading apparatus or reaction load is reached. Hold the failure load or maximum applied load for not less than 5 minutes. Unload the pile in no less than four equal increments.

Record time, load, and movements immediately, before and after the application or removal of each load increment. Take a final rebound reading 15 minutes after removing all loads. The design load shall be determined in accordance with the procedures specified in the Short Duration Load Test.

7. **Static-Cyclic (Express) Load Test.**

This load test can apply to a compression test, tension test, or both, on a pile and provide the ultimate capacity of the pile. The load test is carried out in four “loading-unloading” cycles, at a constant loading rate, conducted continuously without allowing for settlement stabilization.

The loading frame should be designed to handle at least two times the estimated ultimate pile capacity. The displacement and load readings from the top of the pile are to be taken continually by a data acquisition system.
The load sequence shall be as follows:

a) For a compression test; apply continuously a load at a rate between 20 to 40 kips/minute until failure is observed and an additional settlement equal to 0.1 in. is achieved with total pile settlement equal or exceeding 1 in. A failure is defined when displacement increases without an increase in the pile’s load at or below the ratio of 0.1 kips/0.1 in./ft pile embedment for all compression tests. Unload the pile at a constant rate between 60 to 80 kips/minute until zero load. Carry out additional three load-unload cycles to the maximum load that was achieved in the first cycle.

b) For a tension test, apply a load at a rate of 15 to 30 kips/minute and unload at a rate of 30 to 60 kips/minute. Failure is defined when displacement increases without an increase in the pile’s load at or below the ratio of 0.05 kips/0.1 in./ft pile embedment for all tension tests.

c) For all tests, pile top load and displacement are measured at intervals of loads equal to 10% of the estimated ultimate pile capacity but no more than 20 kips for a compression test and 10 kips for a tension test. The readings need to allow for accurate definition of the load-unload interception. The use of electronic data acquisition is recommended. If dial gages are used, the gages should not be adjusted at the end of the first cycle and the zero load reading at the end of the first cycle (first zero reading of the second cycle) will be subtracted from the readings of the second cycle.

The pile design load on this test is based on the measured ultimate capacity of the pile. The ultimate capacity of the pile is defined as the average of the three intersection points formed by the load-unload curves.

C. Dynamic Load Tests.

1. Dynamic Load Test Preparation.

Dynamic measurements will be taken by the Engineer during driving piles designated as Dynamic Load Test (DLT) piles.

Prior to placement in the leads, the Contractor shall make each designated concrete and/or timber pile available for taking of wave speed measurements and for predrilling the required instrument attachment holes. When wave speed measurements are made, the piling shall be in a horizontal position and not in contact with other piling. The Engineer shall furnish the equipment, materials, and labor necessary for drilling holes in the piles for mounting the instruments. The instruments will be attached near the head of the pile with bolts placed in masonry anchors for the concrete piles or through drilled holes on the steel piles.

The Contractor shall provide the Engineer reasonable means of access to the pile for attaching instruments after the pile is placed in the leads. If, in the opinion of the Engineer, the instruments cannot be installed before pile is placed in the leads, then a platform with minimum size of 4 ft x 4 ft (16 ft²) designed to be raised to the top of the pile while the pile is located in the leads shall be provided by the Contractor. It is estimated that the Engineer will need approximately 1 hour per pile to install the dynamic load test equipment.

The Contractor shall furnish electric power for the dynamic load test equipment. The power supply at the outlet shall be 10 amp, 115VAC, 55 to 60 Hz, only. Field generators used as the power source shall be equipped with functioning meters for monitoring voltage and frequency levels.
The Contractor shall furnish a shelter to protect the dynamic load test equipment from the elements. The shelter shall have a minimum floor size of 8 ft x 8 ft (64 ft²) and minimum roof height of 7 ft. The inside temperature of the shelter shall be maintained above 45°F. The shelter shall be located within 50 ft of the test location.

The pile shall be driven to the depth at which the dynamic analyzer indicates that the ultimate pile resistance shown in the contract plans has been achieved unless directed otherwise by the Engineer.

The stresses in the piles will be monitored during driving with the dynamic analyzer to ensure that the pile stresses determined do not exceed the values which would cause pile damage. The point of impending damage in steel piles is defined herein as a compressive driving stress of 90% of the yield point of the pile material. For concrete piles, tensile stresses shall not exceed 3 multiplied by the square root of the concrete compressive strength, f_c, plus the effective prestress value, $(3\sqrt{f_c} + \text{prestress})$ and compressive stresses shall not exceed 85% of the compressive strength minus the effective prestress value ($0.85 \times f_c - \text{prestress}$). For timber piles, the compressive driving stress shall not exceed three times the allowable static design strength listed on the plans. If necessary, the Contractor shall reduce the driving energy output of the hammer in order to maintain stresses below these values. If non-axial driving is indicated by dynamic analyzer measurements, the Contractor shall immediately realign the driving system.

When directed by the Engineer, the Contractor shall wait 12 to 24 hours and then after the instruments are reattached, retap the dynamic load test pile. It is estimated that the Engineer will require approximately 0.5 hours to reattach the instruments. A cold hammer shall not be used for the redrive. The hammer shall be warmed up before redrive begins by applying at least 20 blows to another pile. The maximum amount of penetration required during redrive will be 6 in. or the maximum total number of hammer blows required will be 50, whichever occurs first. After retapping, the Engineer will either provide the cut-off elevation or specify additional pile penetration and testing.

2. **Dynamic Load Test by Contractor.**

When directed in the Contract documents, dynamic measurements will be taken by the Contractor during pile driving and shall be subject to the Department’s field review. Those piles to be tested will be designated as dynamic load test piles or “DLT” on the plans and shall be located by the Department. Preliminary location of piles to be tested are subject to revision by the Engineer. The piles to be static load tested and approximately 10% of the remaining driven piles will be tested by this method unless otherwise directed by the Engineer.

The dynamic tests are to be made by the Contractor’s engineer who shall be registered with the Commonwealth of Massachusetts as a Professional Engineer. The same Contractor’s Engineer conducting the wave equation analysis shall perform the dynamic load tests. Each dynamic test shall also include a “CAP-WAP” analysis in order to closely model actual field conditions. The damping, quake and soil resistance distribution values will be provided by the Contractor’s Engineer. The Contractor’s Engineer shall be experienced in the use of the Pile Driving Analyzer (PDA) and its purpose as related to pile capability determination. The Contractor’s Engineer will also be proficient in the interpretation of the PDA and “CAP-WAP” data and shall determine the tested pile’s capacity based upon this data.
The Contractor shall submit to the Department a written report with a summary of results upon completion of each PDA test including “CAP-WAP” analysis. A copy of the entire PDA and “CAP-WAP” analysis output will be submitted to the Department for review along with the Contractor’s report of each PDA and “CAP-WAP” test. The PDA and “CAP-WAP” output will not substitute for a written report which includes a summary of the results but will be submitted with such a report.

The Contractor shall submit evidence of the engineer’s proficiency to the Department at least 2 weeks in advance of the work to allow the Department adequate time for review and approval or comments. No pile driving will be allowed until written approval has been received from the Engineer.

A. PDA Equipment.

The equipment to perform the dynamic tests shall be a Mode GC pile driving analyzer by Goble, Rausche, Likins and Associates, Inc., 4423 Emery Industrial Parkway, Cleveland, Ohio 44128, phone (216) 831-6131, or approved equal. The equipment shall be complete with all pertinent peripheral equipment necessary to complete and record the test data and complete the analysis of pile capacity.

B. Pile Testing Program.

At least 2 weeks prior to initiating the pile driving operation, the Contractor shall submit a “pile testing program” outline to the Department for review and approval. The following procedure is suggested as an example of a pile testing program which incorporates the wave equation analysis and the dynamic pile driving analysis including the “CAP-WAP” portion of the dynamic testing.

The testing should be performed by experienced engineers. The scope and sequence of testing services is suggested as follows:

1. Perform initial wave equation analysis based on subsurface conditions, pile type, pile capacity, and pile driving equipment to be utilized. See the previously referenced FHWA Manual for examples of the WEAP analysis procedure from static analysis to parameter selection. Submit written report of each wave equation analysis with complete print-out to the Department for review.

2. Drive piles to be static load tested first at locations specified on the plans using the driving criteria established by the wave equation. That driving criteria, however, is subject to change due to actual hammer performance and expected soil strength changes. Dynamic testing with the “PDA” shall be made during the driving of all piles to be static load tested.

3. After performing dynamic load testing on the piles to be static load tested, evaluate static load test piles after a minimum waiting period, to be determined by the Engineer, by restriking the piles with simultaneous dynamic testing by the Pile Driving Analyzer. Restrike testing is considered essential for service load capacity determinations if they are to include setup/relaxation effects since the analyzer gives the pile capacity at the time of testing.

4. The remaining 10% of the piles at each abutment which have been designated for PDA testing should be tested during additional construction control visits. They should be tested on initial installation and restrike, as soil conditions dictate at the discretion of the Engineer. Other than these tests, the Engineer will determine if further dynamic tests should be made when the hammer system is replaced or modified, etc.
5. Perform supplementary, rigorous laboratory wave analysis of the measured data using “CAP-WAP” on all of the piles tested to verify and refine field results, and upon restrike testing.

6. Submit to the Department a written report including a written summary of results in addition to a copy of the actual print-outs. This report will show all pertinent information, upon completion of the PDA testing and “CAP-WAP” analysis of each pile.

7. Based on field results, the following will be reviewed, analyzed and the results of this analysis will be printed in a report by the Contractor’s Engineer:
 a. Driving stresses (compression or tension)
 b. Hammer system efficiency
 c. Pile structural damage/integrity
 d. Bearing capacity

8. It should be recognized that each site has unique and often unforeseen characteristics. Judgements are to be made, even during the testing program by the Contractor’s experienced engineer performing the test as to deletions or additions to a “standard” program which will result in the most benefit to the foundation design.

940.63: Test Piles (Indicator Piles)

Test piles shall be driven when shown on the plans at the locations and to the lengths specified by the Engineer. All test piles shall be driven with impact hammers unless specifically stated otherwise on the plans. In general, the specified length of test piles will be greater than the estimated length of production piles in order to provide for variation in soil conditions. The driving equipment used for driving test piles shall be identical to that which the Contractor proposes to use on the production piling. Approval of driving equipment shall conform with the requirements of these specifications. The Contractor shall excavate the ground at each test pile to the elevation of the bottom of the footing before the pile is driven.

In the absence of a wave equation analysis, test piles shall be driven to a penetration of 0.5 in. or less after 10 consecutive hammer blows unless the Engineer provides a hammer blow count established by wave equation analysis within a range of tip elevations or unless the driving criteria is established by the dynamic formula.

Test piles which do not attain the bearing value specified above at a depth of 1 ft above the estimated tip elevation shown on the plans shall be allowed to “set up” for 12 to 24 hours as directed by the Engineer before being redriven. A cold hammer shall not be used for redrive. The hammer shall be warmed up before driving by applying at least 20 blows to another pile. If the bearing value is not attained on redriving, the Engineer may direct the Contractor to drive a portion or all of the remaining test pile length and repeat the “set up” redrive procedure. Test piles driven to plan grade and not having the bearing required, shall be spliced and driven until the required bearing is obtained.

A record of driving of test piles will be prepared by the Contractor which includes the number of hammer blows per foot for the entire driven length, the as driven length of test pile, cutoff elevation, penetration in ground, and any other pertinent information requested by the Engineer. The Contractor shall provide the information listed in the “Pile Driving and Equipment Form” to the Engineer for inclusion in the record. If redrive is necessary, the Engineer shall record the number of hammer blows per in. of pile movement for the first foot of redrive. The Contractor shall not order
piling to be used in the permanent structure until test pile data has been reviewed and pile lengths are authorized by the Engineer.

940.64: Determinations of Required Pile Driving Resistance and Depth of Penetration

Practical Refusal.

Unless otherwise specified practical refusal will be considered attained when ten blows of an adequate hammer, operating at the number of blows per minute for which the hammer is rated by the manufacturer, are required to produce a total penetration of ½ in. Driving should then cease, provided that the pile has not hit an obstruction and has been driven to the depth at which the borings indicate refusal material or bedrock.

When piles are not either required or directed to be driven to bedrock or refusal, the Engineer shall determine the required driving resistance for safe bearing values and shall establish minimum tip elevations or acceptable bearing stratum depending on subsurface condition. The required driving resistance will be established as described in 940.61: Driven Pile Capacity.

When determining the final driving resistance of the pile, the hammer shall be operated at a speed not less than 90% of the maximum blows per minute specified by the manufacturer. The final driving resistance shall be appropriately adjusted to the actual hammer energy delivered as specified by the manufacturer for the operating speed.

When directed by the Engineer, the Contractor shall make dynamic field measurements to demonstrate the percentage of the hammers rated energy is transferred to the pile head.

940.65: Procedure for Driving

A. General.

No piles shall be driven except in the presence of the Engineer. Where practicable, piles shall be driven continuously to the required penetration and bearing capacity. When the continuous installation of a pile has been stopped for any reason, the pile advancement shall be started in a manner which will not damage the pile. Any pile which cannot be advanced or which is damaged in the process, shall be rejected and either cut-off and repaired or replaced at the discretion of the Engineer. Rejected piles shall be replaced or repaired at no cost to the Department. Unless specified otherwise by the Engineer, any pile restarted shall be advanced no less than 3 in. before determining the final driving resistance.

The order of placing individual piles in pile groups shall be either starting from the center of the group and proceeding outwards in both directions or starting at the outside row and proceeding progressively across the group.

If any driven pile is raised more than ½ in. by the subsequent driving of adjacent piles, it shall be redriven to the required final resistance to penetration with no compensation for the additional driving.

Cast-in-place and steel pipe piles shall not be filled with concrete until all piles within a footing have been checked for uplift and redriven where necessary unless otherwise directed by the Engineer.

All piles shall be driven a minimum of 10 ft into original ground unless otherwise directed by the Engineer.
B. Accuracy of Driving.

The tops of piles at cut-off elevation shall be within 6 in. of plan locations. No pile shall be nearer than 4 inches from any edge of the cap. Any increase in size of cap to meet this edge distance requirement shall be at the Contractor’s expense.

Piles shall be installed so that the axial alignment of the top 10 ft of the pile is within 4% of the specified alignment. For piles that cannot be inspected internally after installation, an alignment check shall be made before installing the last 5 ft of pile or after installation is completed provided the exposed portion of the pile is not less than 5 ft in length. The Engineer may require that driving be stopped in order to check the pile alignment. If the location and/or alignment tolerances specified are exceeded, the extent of overloading shall be investigated and if, in the judgement of the Engineer, corrective measures are necessary, suitable measures shall be designed and constructed by the Contractor at no cost to the Department. Pulling laterally on piles to correct misalignment shall not be permitted.

C. Obstruction.

If conditions during driving indicate that the pile is hitting an obstruction and the obstruction is not in embankment that has been placed under the contract the following shall apply:

1. If the elevation of the top of the obstruction is less than 5 ft below the elevation of the bottom of the footing, the Contractor shall drive through the obstruction or shall use whatever means are necessary to remove or circumvent the obstruction without any additional compensation.

2. If the elevation at the top of the obstruction is 5 ft or more below the elevation of the bottom of the footing, the Contractor shall use a combination of water jet and hammer to drive through the obstruction without any additional compensation.

3. If the use of the combination water jet and hammer (2) above does not allow pile to be driven through the obstruction, upon approval by the Engineer, the Contractor shall exercise one of the following options:
 a. Drive all surrounding and adjacent piles to the hang-up pile or piles to determine the approximate size of the obstruction;
 b. Employ the services of a test boring or other such exploratory method.

4. After the approximate size of the obstruction is obtained, the Engineer will determine whether the obstruction is to be removed or if the footing will be redesigned leaving the obstruction in place.

5. If it is determined that the obstruction (3) above is to be removed, the Contractor shall be paid for the work of removing the obstruction under Subsection 9.03: Payment for Extra Work.

6. No allowance on any kind other than (5) above and as provided in Subsection 8.09: Delay and Suspension of Work will be allowed for the above.

940.66: Splices

A. General.

Full length piles shall always be used where practical.
B. Timber Piles.

Splicing of timber piles will not be permitted.

C. Steel Pipe Piles and Steel H Piles.

Where these piles have to be extended, the spliced connection shall be a continuous full penetration butt-weld. The butt-welding shall be made to develop the full strength of the pile, both in bearing and in bending. Welding shall conform to the applicable provisions of 940.61: Driven Pile Capacity.

Butt-weld splicing of piles other than as shown on the plans will not be permitted without express written consent of the Engineer.

Welded splice connections for pipe piles shall be made with a welding or backup ring. Preheat requirements for the welding of pipe piles shall be as specified for ASTM A36 steel.

D. Precast-Prestressed Concrete Piles.

Splices shall develop 100% of the pile strength both in direct stress and in bending. Splices for concrete piles shall be made by the cement-dowel method. Details of the cement-dowel splice shall be shown in the plans. Mechanical splices for concrete or steel piles may be approved by the Engineer if the splice can transfer the full pile strength in compression, tension and bending. Piles shall have only 1 splice per pile. Splices in the lower 40 ft of the pile will not be permitted.

940.67: Defective Piles

The procedure incident to the driving of piles shall not subject them to excessive and undue abuse, producing: injurious splitting, splintering and brooming of the wood; deformation of steel; breakage and cracking in precast-prestressed concrete piles.

Manipulation of piles to force them into proper position will not be permitted when considered to be excessive by the Engineer. Piles damaged by reason of internal defects, by improper handling, driving, defective welds or piles driven out of proper location, shall be corrected at the Contractor's expense by one of the following methods approved by the Engineer for the piles in question.

1. The pile shall be withdrawn and replaced by a new and if necessary, a longer pile.
2. A second pile shall be driven adjacent to the defective or low pile.

Damaged steel piles may be spliced at some point such that the completed pile shall be satisfactory.

After the shells for cast-in-place piles and pipe for pipe piles have been driven, they shall be inspected and will be classified defective if any of the following are discovered:

1. The casing shows signs of buckling.
2. The diameter varies more than 15% from the original value.
3. The point of the casing deviates more than 10% of the length of the pile below plan cut-off elevation from the design alignment.
4. The casing deviates more than 6% of its length from a straight line connecting the midpoints of the ends of the casing. This requirement shall be taken as satisfied if some segment of the bottom of the casing is visible. If the bottom of the casing is out of sight, the shape and alignment of the casing shall be surveyed with a suitable instrument supplied by the Contractor and approved by the Engineer.
5. The inside of the casing shows any signs of water or soil.

The Contractor shall provide sufficient lights and other equipment necessary to inspect each shell throughout its length.

Precast-prestressed concrete piles which break within 10 ft of ground shall be, at the discretion of the Engineer, either replaced or cut-off and spliced at no cost to the Department. Piles which break below 10 ft from ground surface shall be rejected and replaced by the Contractor at no cost to the Department. The Engineer may elect to use dynamic measurements to aid in evaluating pile integrity.

940.68: Cutoffs

A. Timber Piles.

The tops of piles shall be sawed off to a true plane at the grades shown on the plans. All cuts and abrasions on treated piles shall be repaired in accordance with AWPA Standard M4.

Nail holes shall be filled by driving galvanized nails flush with the surface of the pile.

B. Steel or Cast-In-Place Piles.

After driving has been completed the steel or cast-in-place piles shall be cut off at the directed grade. Cutting of piles shall not be done until it is certain that further operations will have no effect on the previously driven piles.

Temporary capping devices shall be provided for cast-in-place and steel pipe piles immediately upon cutoff to prevent soil and water from entering driven piles prior to placing concrete.

C. Precast-Prestressed Concrete Piles.

Precast-prestressed concrete piles shall be cut-off at the grades specified in the contract documents. Piles shall not be cut-off until it is certain that further pile driving operations will have no effect on the driven piles.

940.69: Placing and Protecting Concrete Filled Piles

No concrete shall be placed in a shell or pipe until all piles within a footing have been satisfactorily driven, inspected and approved by the Engineer. No concrete shall be placed except in the presence of the Engineer.

Prior to placing concrete in each pile, 1 ft³ of mortar, having a slump of not more than 3 in., shall be deposited in the bottom of the pile.

Concrete shall then be deposited in the casing through a funnel having a neck not more than 1.5 ft long and not more than 7 in. in diameter. The funnel shall be provided with supports at the neck to permit air to escape during the concrete placing operation.

Placing of concrete in each pile shall be continuous and in a manner which will assure complete filling of the casing. The slump of the concrete shall be from 3 to 5 in.
Special care shall be exercised in filling the casing to prevent honeycomb and air pockets from forming. Internal vibrators and other means shall be used to the maximum depth practicable, as determined by the Engineer, to consolidate the concrete.

During cold weather the pile heads and surrounding ground shall be covered by straw or other suitable protection to prevent frost from damaging the concrete itself or heaving the ground.

During the hot weather pile heads shall be protected by suitable covering material.

COMPENSATION

940.80: Method of Measurement

The length of piles to be paid for shall be the total length in place, measured from the tip of the pile to the plane of the plan cut-off elevation.

Timber pile cut-offs will be measured by the foot and the length to be paid for will be the difference between the length of piles approved by the Engineer on the schedule submitted by the Contractor and the length of piles in place, but will not include any lengths cut-off for correction of damaged ends or for piles rejected by the Engineer.

Precast-prestressed piles will be measured by the foot from the tip of the pile including any steel extension installed for protection (to the plan cut-off elevation) and any extensions required to reach the cutoff elevation.

940.81: Basis of Payment

Timber piles will be paid for at the contract unit price per foot under the item for Untreated Treated Timber Piles, left in place, or under the item for Treated Timber Pile, left in place.

If timber piles furnished according to the approved schedule of length prove inadequate to sustain the required load, the Engineer may in writing make changes in the schedule previously approved by them and the piles ordered and driven according to the revised schedule will be paid for at the contract unit price per foot.

If as a result of the revised schedule or as a result of timber pile cutoff being used as piles, any of the timber piles which have been purchased by the Contractor in accordance with the approved schedule, cannot be used elsewhere on the project, such piles not used will be paid for under the provisions of Subsection 9.03: Payment for Extra Work, except that no profit or overhead will be allowed and subject to an allowance for their fair salvage value of the piles. In no case will payment for these piles exceed 50% of the bid price per foot of either treated timber piles or untreated timber piles.

Payment for cut-off allowance on treated and untreated timber piles will be made at 50% of the respective bid price per foot. The cut-off shall become the Contractor’s property.

Timber test piles, whether used in the structure or driven outside the structure, will be paid for at the contract unit price for each pile driven under the item for Timber Test Pile. When the test pile is not used in the structure, the price shall also include full compensation for the removal of the test pile or cutting off 2 ft below finished grade of ground and backfilling the hole with suitable material.
Steel piles will be paid for at the contract unit price per foot under the item for Steel Piles, complete in place.

Cast-in-place concrete and steel pipe piles will be paid for at the contract unit price per foot under the items Cast-in-Place Concrete Piles and Steel Pipe Piles, complete in place, including the concrete and steel reinforced cement.

Piles driven as Test Piles or for Load Tests, if incorporated in structures, will be paid at the contract unit price for the length in place under the item for the type of pile.

No payment will be made for the cut-off of precast-prestressed or steel piles.

Pile shoes will be paid per each on piles accepted for payment by the Engineer.

All costs for splicing piles shall be included in the contract unit price per foot for the respective pile item, which price shall also include full compensation for delays incurred by splicing of piles or by any other operations in connection with the work on piles.

Pile loading tests will be paid for at the contract unit price for each pile tested under the item for a specific load sequence.

The contract price shall also include full compensation for any interruptions to pile driving or other operations in the vicinity of the pile loading tests. The test at each pile shall be considered completed when all materials and equipment used in the test have been removed.

If a pile load test is applied to a steel pipe pile, cast-in-place concrete pile, or precast-prestressed concrete pile, then the contract price for a load test shall also include full compensation for cutting the pile to the grade necessary to properly incorporate the pile in the structure or, if it is not to be incorporated in the structure, for cutting the pile to the grade necessary to avoid its interference with the proposed construction.

The cost of performing Wave Equation Analysis shall be included in the contract unit price per foot of pile.

Payment for initial and restrike dynamic pile measurements will be at the contract unit price per pile tested. The price shall include costs for all sensory and wiring devices, monitoring equipment; the setting up and checking of equipment, monitoring personnel; costs associated with Contractor’s down time during regular working hours while setting-up equipment and making dynamic measurements.
940.82: Payment Items

940. Untreated Timber Piles ... Foot
941. Treated Timber Piles .. Foot
942.* Steel Pile, HP _x_ .. Foot
943.* Steel Pipe Pile _-inch OD... Foot
945. Cast-in-Place Concrete Piles ... Foot
946.12 Precast-Prestressed Concrete Pile - 12 Inch Foot
946.14 Precast-Prestressed Concrete Pile - 14 Inch Foot
946.16 Precast-Prestressed Concrete Pile - 16 Inch Foot
946.18 Precast-Prestressed Concrete Pile - 18 Inch Foot
946.20 Precast-Prestressed Concrete Pile - 20 Inch Foot
947.1 Timber Test Pile .. Each
948.1 Short Duration Load Test ... Each
948.2 Maintained Load Test .. Each
948.3 Quick Load Test ... Each
948.31 Static-Cyclic (Express) Load Test ... Each
948.4 Dynamic Load Test Preparation .. Each
948.41 Dynamic Load Test by Contractor ... Each
948.5 Pile Shoes .. Each
999.940 Untreated Timber Pile Cut-off ... Foot
999.941 Treated Timber Pile Cut-off .. Foot

*Designation by size and weight.

SUBSECTION 945: DRILLED SHAFTS

DESCRIPTION

945.20: General

This work shall consist of excavating and constructing drilled, cast-in-place reinforced concrete shafts installed in accordance with these specifications and the details and dimensions shown on the plans.

Drilled shafts shall consist of reinforced concrete sections that are cast-in-place against in situ soil or rock or a casing. Permanent casings are designed as part of the drilled shaft and shall remain in place after concrete placement is completed. Temporary casings shall be installed to facilitate drilled shaft construction and removed during or after concrete placement. The embedment length of the drilled shafts may be modified by the Engineer, pending results of any subsurface investigation taken and/or load testing performed as an initial part of the work, as approved by the Engineer.
MATERIALS

945.40: General

Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

- Cement Concrete .. M4.02.00
- Reinforcing Steel .. M8.01.0
- Epoxy Coated Reinforcing Bars ... M8.01.7
- Galvanized Reinforcing Bars .. M8.01.8
- Mechanical Reinforcing Bar Splicer ... M8.01.9
- Steel Casings .. M8.05.6
- Cross Hole Sonic Testing Access Pipes ... M8.22.0
- Drilling Slurry .. M9.40.0

CONSTRUCTION METHODS

945.50: Personnel Qualifications

Drilled shaft construction personnel must be experienced in this type of work. Experience shall be relevant to anticipated subsurface materials, water conditions, shaft size, and special construction techniques required. Prior to the Preconstruction Conference, the Contractor shall submit the following information to verify the firm’s experience and the qualifications of personnel scheduled to perform the drilled shaft construction:

1. Submit a list of at least 3 projects successfully completed in the last 5 years, which used drilled shaft construction. Include a brief description and reference for each project listed.
2. Provide the names and detail the experience of the on-site supervisors and drill operators for the Project. On-site supervisors shall have at least 2 years of experience in drilled shaft construction, and drill operators shall have at least 1 year of experience.
3. A signed statement that the Contractor has inspected both the project site and all the subsurface information including any soil or rock samples made available in the contract documents.

Work on any drilled shafts shall not begin until the qualifications have been approved. The Engineer may suspend the drilled shaft construction if the Contractor substitutes unapproved personnel during construction. Requests for substitution of field personnel shall be submitted to the Engineer for approval. Additional costs resulting from the suspension of work will be the Contractor’s responsibility, and no extension in contract completion date resulting from the suspension of work will be allowed.

The Contractor shall have on site during all drilled shaft construction activity a minimum of one person who has fulfilled the qualifications required for drilled shaft field inspector certification. The representative will be responsible for the Contractor's QC of the drilled shafts during all phases of construction. The Contractor’s QC representative shall have proof of certification as a Drilled Shafts Inspector by the NETTCP or an equivalent certification program approved by the Department.
945.51: Drilled Shaft Installation Plan

The Contractor shall submit an installation plan for review and approval of the Engineer at least 30 days prior to the anticipated date of beginning drilled shaft work. This plan shall provide the following:

1. The sequence of drilled shaft construction as it relates to the overall construction plan and the sequence of shaft construction in bents or groups.

2. A review of equipment suitability based on the Contractor's understanding of the site subsurface conditions. Include a project history of the drilling equipment that demonstrates the successful use of the equipment for drilled shafts of equal or greater size in similar subsurface conditions. List proposed equipment with manufacturer's specification and catalog data including cranes, drills, augers, bailing buckets, casing oscillators, casing twisters, vibratory hammers, final cleaning equipment, desanding equipment, slurry pumps, core sampling equipment, tremies or concrete pumps, casing, etc.

3. Details of shaft excavation methods in soils and rock, including sloping bedrock and methods of removing any obstructions such as boulders or foundations, including a disposal plan for excavated material. Include details of methods used to perform final cleaning of the excavation and checking the cleanliness and soundness of the rock socket sidewalls and bearing surface.

4. Include details of the methods and materials used to fill or eliminate all voids between the plan shaft diameter and excavated shaft diameter, or between the casing and surrounding soil, if permanent casing is specified. Include a disposal plan for any water or contaminated concrete expelled from the top of the shaft (if applicable).

5. Details of the proposed method(s) for ensuring drilled shaft stability during excavation and concrete placement.

6. Method of monitoring plumbness and location of the shaft during construction.

7. Details for the use of drilling slurry including methods to mix, circulate, de-sand, maintain and dispose of the slurry (if applicable). Include a discussion of the suitability of the proposed drilling slurry in relation to the anticipated subsurface conditions.

8. A plan for QC of drilling slurries, if their use is proposed. In the QC plan, include property requirements, required tests and test methods to ensure the synthetic slurry performs as intended. Submit to the Engineer the name and current phone number of the synthetic slurry manufacturer's representative who will provide technical assistance during construction.

9. Reinforcing steel shop drawings and details of reinforcement placement, including bracing, centering and lifting methods and the method for supporting the reinforcement on the bottom of the shaft excavation. Include details for ensuring the reinforcing cage position is maintained during construction. Include details for attaching the crosshole sonic logging test access tubes to the reinforcing cage.

10. Evidence that the proposed materials and concrete mix design conform to all applicable Specifications.

11. Details of concrete placement, including proposed operational procedures for pumping and/or tremie methods and methods of curing and protecting the concrete. Include details for grout placement in the crosshole sonic logging test access tubes after testing is completed (if applicable).
12. Detailed procedures for permanent casing installation and temporary casing installation and removal, including casing dimensions.

13. Two copies of “Drilled Shaft Inspector's Manual” from the International Association of foundation Drilling (ADSC) and the Deep Foundation Institute (DFI) shall be supplied to the Engineer. These manuals shall become the property of the Department.

The Engineer shall approve or reject the drilled shaft installation plan after receipt of all submissions. The Contractor shall provide any additional information and submit a revised plan, if requested, for review and approval. All procedural approvals given by the Engineer will be subject to trial in the field and will not relieve the Contractor of the responsibility to satisfactorily complete the work. The Contractor shall submit requests for modification of adopted procedures to the Engineer.

All portions of proposed construction shall be described on shop drawings and submitted to the Engineer for approval. No work shall commence prior to receiving the written approval of the proposed methods and equipment by the Engineer. This approval shall be considered in no way as relieving the Contractor of the responsibility to satisfactorily complete the work in accordance with the Plans and Specifications.

A Preconstruction Meeting shall be conducted when so requested by the Engineer. Such meeting is held among the Department, the Contractor and the Drilled Shaft Subcontractor to review special requirements for the drilled shaft work, including installation plans, acceptance and rejection criteria, and project documentation.

945.52: Borings

When required in the contract documents, soil borings and/or rock cores shall be conducted at the specified locations and to the indicated size and depth, as approved by the Engineer. The boring logs shall be reviewed by the Contractor and shall be submitted to the Engineer for approval prior to mobilizing drilled shaft equipment. All work shall be performed in accordance with Subsection 190: Borings.

945.53: Trial Drilled Shaft

When required in the contract documents, a trial shaft shall be constructed by the Contractor. A trial shaft may be required on projects where unusual and variable subsurface conditions exist, when the dry method of construction is proposed, and/or when excavations are performed in open water areas.

The Contractor shall demonstrate the adequacy of their methods, techniques and equipment by successfully constructing a trial shaft in accordance with the plans and these requirements. This trial shaft shall be drilled to the maximum depth of any production shaft and away from production shafts as shown on the plans or as directed by the Engineer. Failure by the Contractor to demonstrate the adequacy of methods and equipment shall be reason for the Engineer to require modifications in equipment and/or method by the Contractor to eliminate unsatisfactory results. Any additional trial holes required to demonstrate the adequacy of altered methods or equipment shall be at the Contractor's expense. The same methods and equipment used to construct the approved trial shaft shall be used to construct the production shafts.
The trial shaft holes shall be filled with unreinforced concrete in the same manner that production shafts will be constructed and shall be cut off 2 ft below finished grade and left in place. The disturbed areas at these shafts shall be restored as nearly as practical to their original condition.

945.54: Protection of Existing Structures

The Contractor shall control their operations to prevent damage to existing structures and utilities. Preventive measures shall include, but are not limited to, selecting construction methods and procedures that will prevent caving of the shaft excavation, monitoring and controlling the vibrations from construction activities such as the driving of casing or sheeting, drilling of the shaft, or from blasting, if permitted. The Contractor shall be responsible for selecting and using equipment and procedures that keep deformations of adjacent structures within acceptable levels as determined by the Engineer.

945.55: General Methods and Equipment

The Contractor’s methods and equipment shall have adequate capacity including power, torque and down thrust to excavate a hole of both the maximum diameter and to a depth of 25% beyond the depths shown on the plans. The permanent casing method shall be used only at locations shown on the plans or when authorized in writing by the Engineer. The Contractor shall provide all equipment and tools as necessary to construct the shaft excavation to the size and depth required. Drilling tools should contain vents to stabilize hydrostatic pressure above and below the tool during insertion and extraction.

A. Dry Method.

The dry method shall be used only at sites where conditions are suitable to permit construction of the shaft in a relatively dry excavation and where the sides and bottom of the shaft can be visually inspected by the Engineer during the excavation and prior to placing the concrete. The dry method shall only be approved when a trial shaft excavation demonstrates that: less than 6 in. of water accumulates above the base over a one-hour period without pumping; the sides and bottom of the hole remain stable without caving and sloughing over a 4-hour period following completion of excavation; any loose material or water can be removed prior to inspection and concrete placement.

B. Wet Method.

The wet method consists of using water or slurry (mineral or polymer) to maintain stability of the drilled hole while advancing the excavation to final depth, placing the reinforcing cage, and concreting the shaft.

Slurry should be introduced when the depth of the drilled hole is still above the piezometric level and not after the inflow of water is detected and/or sloughing has begun. This method may involve desanding and cleaning the slurry and final cleaning of the excavation by means of bailing bucket, air lift, submersible pump or other approved devices.

The wet method may also be used in combination with the casing method.
C. Casing Construction Method.

The casing method may be used at sites where the dry or wet methods are inadequate to prevent hole caving or excessive deformation of the hole. The casing may be either placed in a predrilled hole or advanced through the ground by twisting, driving, or vibration before being cleaned out. When the casing is placed in a predrilled borehole, the temporary stability of the hole may need to be assured by using drilling slurry. The rising column of fluid concrete must force the slurry that is trapped in the annular space behind the casing out as the casing is being pulled.

The casing method may not be permitted at specified depths that are designated for mobilization of side resistance.

945.56: Drilled Shaft Excavation

A. General.

The Contractor shall use excavation techniques that are technically adequate and cost effective to meet the geologic conditions encountered at the site. Excavation for drilled shafts shall be made so that the sidewalls of the hole are stable at all times.

Drilled shafts shall be excavated to the dimensions and elevations shown or as directed. Materials removed from the shaft excavations and slurry shall be disposed of according to the applicable federal, state and local regulations and shall not be discharged into any stream, waterway, or storm water drainage system.

If approved by the Engineer, a partially excavated shaft may be left open overnight, provided that the excavation:

- Is stabilized at the bottom, sides and surface to prevent soil caving or swelling or a reduction of soil strength; and
- Is covered at the surface to protect the public.

Excavation shall not commence immediately adjacent to a concreted drilled shaft for a minimum of 24 hours after completing the shaft concrete pour.

The Contractor shall extend the drilled shaft tip elevations when so indicated by the results of the load test and/or the Engineer determines that the material encountered during excavation is unsuitable or differs from that anticipated in the design of the drilled shaft.

Drilled shaft excavation is excavation accomplished with conventional tools such as earth augers, casing twisters, drilling buckets, and overreaming (belling) buckets attached to drilling equipment of the size, power, torque, and down thrust (crowd) approved for use by the Engineer.

Should the Engineer have reason to believe that the drilled shaft excavation techniques or workmanship have been deficient, so that the integrity of any excavation is in question, work on that drilled shaft shall be stopped. Drilled shaft excavation will not be allowed to resume until the deficient excavation techniques or workmanship have been changed to the satisfaction of the Engineer.
B. Clean Out.

Appropriate means, such as a cleanout bucket or air lift, shall be employed to clean the bottom of the drilled shaft excavations. No more than 1 in. of loose or disturbed material will be allowed at the bottom of the excavation for end-bearing drilled shafts. No more than 3 in. of loose or disturbed material will be allowed at the bottom of the excavation for skin friction drilled shafts. All drilled shafts shall be assumed to be end-bearing shafts. Shaft cleanliness will be determined by the Engineer.

The Engineer shall be notified of completion of each drilled shaft excavation to permit inspection before proceeding with construction.

The drilled shaft dimensions and alignment shall be verified with approved methods. Final shaft depths shall be measured with a suitable weighted tape or other approved method after final cleaning. The drilled shaft excavation may be extended if the Engineer determines that the subsurface materials encountered are not capable of providing the required bearing capacity or differ from those anticipated in the design of the drilled shafts.

If caving occurs during any construction procedure, the construction operation shall be stopped, the Engineer shall be notified, and the shaft excavation shall be stabilized by approved methods.

C. Rock Socket Excavation.

Rock socket excavation is excavation that requires rock-specific tools and/or procedures to accomplish hole advancement, such as rock augers and core barrels. All excavation performed below the depth where rock socket excavation is authorized shall be considered rock socket excavation regardless of the density, strength, hardness, or changes in type or character of materials encountered.

D. Obstruction Excavation.

Obstructions are defined as impenetrable objects that cannot be removed or excavated using conventional rock or soil augers, drilling buckets, casing twisters, and cause a significant decrease in the rate of excavation advancement as compared to before the obstruction was encountered or shafts in close proximity advanced using the same techniques and equipment. The Engineer will consider the equipment, techniques, and level of effort by the Contractor and shall be the sole judge of the significance of any reduced rate of shaft advancement and the classification of obstruction excavation. Special procedures/tools needed to remove obstructions may include: core barrels, chisels, boulder breakers, downhole hammers, hand excavation, temporary casing, and increasing the hole diameter. Blasting shall not be permitted. The Contractor shall specifically log the depth and rate of removal of the obstruction.

Those obstructions located within 5 ft of the top level of the ground surface during shaft drilling at shaft locations shall be removed at the expense of the Contractor. Such obstructions may include man-made materials such as old foundations, utilities, tunnels, and natural materials such as boulders and wood.

Drilling tools that are lost in the excavation shall not be considered obstructions and shall be promptly removed by the contractor without compensation. All costs due to lost tool removal shall
be borne by the Contractor including but not limited to, costs associated with the repair of hole degradation due to removal operations or an excessive time that the hole remains open.

The rate of occurrence of obstruction encounters during the excavation and construction of drilled shafts may vary considerably from what is inferred from the boring logs due to sampling limitations of the boring(s), sampling bias due to the diameter differences between the drilled shaft and the boring(s), and spatial variability of the soil deposit.

The Engineer shall be present to evaluate the occurrence of obstructions, to authorize, and to approve the designation of such. Sloping bedrock and/or higher than anticipated bedrock, as inferred from the borings, shall not be considered obstruction excavation.

E. Casings.

Casings shall be steel, clean, watertight, and of ample strength to withstand handling and installation induced stresses and the pressure from both concrete and surrounding earth materials. The outside diameter (O.D.) of casings shall not be less than the specified size of shaft. Casings may be either placed in a predrilled hole or advanced through the ground by twisting, driving or vibration before being cleaned out.

Permanent casings shall be used only at locations shown on the plans or upon approval by the Engineer. The casing shall be continuous between top and bottom elevations.

Temporary casings shall be provided to aid shaft alignment and position, to prevent sloughing of the shaft excavation, and to prevent excessive deformation around the hole unless the Contractor demonstrates to the satisfaction of the Engineer that the casing is not required.

As the temporary casing is withdrawn, the level of concrete (and drilling fluid/slurry, if used) shall be maintained with a sufficient head to prevent any water and/or other extraneous materials from entering the drilled shaft. In addition to the foregoing, the level of concrete in the temporary casing shall be maintained a minimum of 5 ft from the bottom of the casing. As the casing is withdrawn, care shall be exercised to maintain an adequate level of concrete within the casing so that fluid trapped behind the casing is displaced upward and discharged at the ground surface without contaminating or displacing the shaft concrete.

F. Drilling Slurry Installation.

If synthetic drilling slurry is selected, a manufacturer's representative shall be available to provide technical assistance at the site prior to use of the slurry. The manufacturer's representative shall remain available during construction to adjust the slurry mix for the specific site subsurface conditions.

All in-hole drilling slurry shall meet the required Specifications prior to concrete placement. The slurry shall be cleaned, re-circulated, de-sanded or replaced to maintain the required slurry properties. The level of slurry in the excavation shall be maintained at not less than 5 ft above the groundwater level for all slurries. The slurry level shall be maintained a sufficient distance above all unstable zones to prevent bottom heave, caving or sloughing.

Slurry shall feed continuously into the shaft excavation as drilling progresses so that a stable excavation is maintained. A self-priming pump shall be used to reclaim the slurry. A functioning standby pump shall be kept on-site and available during the drilling operation.
G. Drilling Slurry Inspection and Testing.

All drilling slurries shall be mixed and kept thoroughly hydrated in an appropriate storage facility. Sample sets shall be collected from the storage facility and tests shall be performed to ensure the slurry conforms to the specified material properties before introduction into the drilled shaft excavation. A sample set shall be composed of samples taken at mid-depth and within 24 in. of the bottom of the storage facility. All slurry shall be sampled and tested in the presence of the Engineer. Final cleaning of the excavation and placement of concrete will not be allowed until the test results indicate the slurry properties are as specified.

A minimum of two sets of slurry tests shall be performed per eight-hour work shift, the first test being done at the beginning of the shift. Field conditions may require more frequent testing to ensure acceptable slurry properties. Copies of all slurry test results shall be provided to the Engineer on request.

945.57: Construction Quality Control

A. Location and Survey.

Drilled Shafts shall be located and staked by the Contractor who shall maintain and be responsible of all location and elevation stakes.

The Contractor shall maintain a construction method log during shaft excavation and concreting of each drilled shaft. This record shall be available for the Engineer's inspection as directed. The log shall contain for each shaft the following information:

- Shaft number, date and time of installation.
- Description and approximate top and bottom elevation of each soil or rock material, and final tip elevation.
- Level and variation of the piezometric surface.
- Excavation procedures and method used to stabilize the sides of shaft and any seepage of groundwater.
- Quantity, type of obstruction material, and drilling rate.
- Diameter of the as-built shafts.
- Plumbness and deviation of shaft location.
- Type, diameter, and length of any casing left in place.
- Time, method, and duration of placement of concrete.
- A chart showing quantity of concrete placed versus depth or elevation of top of concrete in shaft during placement.
- Other pertinent data relative to the installation.

B. Construction Sounding.

The Contractor shall provide to the Engineer access and equipment for checking the dimensions and alignment of each permanent shaft excavation. After excavation is complete, the bottom of the shaft shall be measured and sounded with a steel rod (AW) and/or a weighted tape. A check of the bearing surface by sounding shall be made in the presence of the Engineer, who shall determine if the drilled shaft excavation is acceptable. The bearing surface shall be sounded again immediately before placing concrete.
No more than 1 in. of loose or disturbed material will be allowed at the bottom of the excavation for drilled shafts designated as end-bearing and no more than 3 in. of loose or disturbed material will be allowed at the bottom of the excavation for drilled shafts designated as deriving their capacity from skin friction. Shaft cleanliness will be determined by the Engineer, based on visual inspection for dry shafts and other methods deemed appropriate for wet shafts. In addition, for dry excavations the maximum depth of water shall not exceed 3 in. prior to concrete placement.

C. Construction Tolerances.

The following construction tolerances apply to drilled shafts:

1. The drilled shaft shall be within 3 in. of plan position in the horizontal plane at the plan elevation for the top of the shaft.
2. The vertical alignment of a shaft excavation shall not vary from the plan alignment by more than ¼ in. per ft of depth or 2% of plumb for the total length of shaft.
3. After all the concrete is placed, the top of the reinforcing steel cage shall be no more than 6 in. above and no more than 3 in. below plan position. The top elevation of the shaft shall be within 2 in. of the plan top of shaft elevation.
4. The bottom of the shaft excavation shall be perpendicular to the axis of the shaft within 1 in. per foot of shaft diameter.
5. When the shaft steel reinforcement is to extend into the structural column or cap, all plan, vertical, and elevation tolerances shall meet the structural column or cap requirements.

Drilled shaft excavations constructed in such a manner that the concrete shaft cannot be completed within the required tolerances are unacceptable. Correction methods shall be submitted by the Contractor for the Engineer’s review and approval before continuing with any drilled shaft construction. Correction procedures are dependent on analysis of the effect of the degree of misalignment and improper positioning.

D. Scheduling and Restrictions.

Drilled shaft excavation and cement concrete placement shall be scheduled so that each drilled shaft is cast immediately after drilling operations are complete. After the first drilled shaft on a project has been accepted, no significant change in construction methods, equipment, or materials used shall be made in the construction of subsequent shafts. Construction of subsequent shafts shall not proceed until the first drilled shaft has been approved by the Engineer. Drilling may commence on a subsequent shaft at an approved location provided that the cement concrete placement operation on the previous drilled shaft is in progress and there are sufficient workers present to complete all required operations.

For a minimum period of 24 hours after completion of the cement concrete placement operation in a newly constructed shaft, including withdrawal of casing if applicable, none of the following operations shall be permitted within 15 ft of the newly constructed shaft:

- Excavation for adjacent shafts;
- Construction of footings;
- Application of equipment loads; or
- Introduction of vibrations with a peak particle velocity of greater than ¼ in. per second.
945.58: Steel Reinforcement Configuration and Placement

Steel reinforcement shall not be placed until the Engineer has approved the results of all borings and load tests for drilled shafts.

The clear spacing between bars of the steel reinforcement cage shall be at least 5 times the size of the maximum coarse aggregate size of concrete. Hooks at the top of the steel reinforcement cage shall not be bent outward if there is any chance that temporary casing will be used. Similarly, interior hooks must be designed to permit adequate clearance for a concrete tremie pipe, i.e., 12 in. minimum.

The assembled steel reinforcement cage outside diameter must be at least 10 in. smaller than the drilled hole diameter. This clear space is necessary both to permit free flow of concrete up the annular space between the cage and the hole perimeter and to provide adequate concrete cover over the steel reinforcement cage.

The steel reinforcement in the shaft shall be tied and supported so that the steel reinforcement will remain within the allowable tolerances given above. Concrete spacers or other non-corrosive durable spacing devices shall be used at sufficient intervals not exceeding 10 ft up the shaft to insure concentric spacing for the entire steel reinforcement cage length. The spacers shall be of adequate dimension to insure a minimum 5 in. annular space between the outside of the steel reinforcement cage and the side of the excavated hole or casing. The spacing of the spirals and/or ties may be adjusted slightly to accommodate the rotation of the centering devices. Cylindrical concrete feet, or approved alternate bottom supports, shall be provided to ensure that the bottom of the cage is maintained 3 in. above the base.

The steel reinforcement cage, consisting of longitudinal bars, spirals and/or ties, cage stiffener bars, spacers, centralizers, and other necessary appurtenances, shall be completely assembled and placed as a unit immediately after the shaft excavation is inspected and accepted. The steel reinforcement cage shall be supported by positive methods to prevent its displacement during concrete placement.

945.59: Cement Concrete Placement

A. General.

Cement concrete placement shall be performed in accordance with the applicable portions of Subsection 901: Cement Concrete and in accordance with the requirements herein. Cement concrete quantities over the theoretical amount required to fill any excavations for the shafts dimensioned on the plans shall be furnished at the Contractor’s expense.

The bottom of the shaft shall be sounded immediately before placing concrete. Cement concrete placement for a drilled shaft shall start within 2 hours after the excavation has been completed and approved and the steel reinforcement has been placed and approved. If cement concrete placement is not begun within 2 hours, then the steel reinforcement cage shall be removed and inspected. The Contractor shall remove any caked slurry or soil from the steel reinforcement cage before returning the cage to the shaft, re-clean the bottom, re-circulate, and test the slurry prior to resetting cage. Cement concrete shall be placed in a manner to prevent segregation. Cement concrete placement shall be a continuous operation except for the time interval necessary to remove temporary casings, tremie pipe sections, and to change concrete trucks.
The cement concrete shall remain in a workable plastic state through the placement period. Prior to cement concrete placement the Contractor shall provide test results of both a trial mix and slump test conducted by an approved testing laboratory to demonstrate that the cement concrete meets the above requirements.

If the drilled shaft excavation cannot be pumped free of seepage water at the time of cement concrete placement, the cement concrete shall be placed under water with a tremie pipe or pump hose. Cement concrete placement shall proceed continuously from the bottom of the shaft to the top of shaft elevation shown.

Shaft cement concrete may be placed without mechanical vibration in those areas of the drilled shaft that are not formed or are below the ground line or the water surface.

If caving occurs during concrete placement, the shaft will be rejected, and a repair plan shall be submitted by the Contractor to the Engineer for approval.

Should a delay in cement concrete placement occur because of a delay in cement concrete delivery or other factors, the placement rate shall be reduced to maintain a flow of fresh concrete into the shaft excavation. A maximum of 60 minutes shall be allowed between cement concrete placements. No cement concrete older than 90 minutes from batch time shall be placed. Procedures for cement concrete placement shall ensure that the cement concrete within the shaft becomes a monolithic, homogeneous unit. The exposed top of concrete shall be cured a minimum of 7 days by covering with wet burlap overlain with plastic sheets. The burlap shall be kept continuously wet during the entire 7-day cement concrete cure period.

B. Tremie Cement Concrete.

Tremies may be used for cement concrete placement in either wet or dry holes. Tremies used to place cement concrete shall consist of a tube of sufficient length, weight, and diameter to discharge cement concrete at the shaft base elevation. The tremie shall not contain aluminum parts that will have contact with the concrete. The tremie inside diameter shall be at least 6 times the maximum size of aggregate used in the cement concrete mix but shall not be less than 8 in. for tremie pipe or 4 in. for pump hose. The inside and outside surfaces of the tremie shall be clean and smooth to permit both flow of cement concrete and unimpeded withdrawal during concreting. The wall thickness of the tremie shall be adequate to prevent crimping or shear bends that restrict cement concrete placement. An alternate delivery system that can be used in case of failure of the primary delivery system shall be provided.

Tremie cement concrete shall be placed so that mixing with groundwater or slurry is avoided. The tremie tube shall be fitted with a valve or plug to prevent the cement concrete placed initially from contacting water before a sufficient head of concrete has been obtained. The bottom of the tremie tube shall be kept a minimum of 5 ft below the top of the in-place concrete at all times once the cement concrete has reached a depth of 5 ft. The initial placement of the tremie pipe shall be within 12 in. from the bottom of the shaft.

The tremie used for wet excavation concrete placement shall be watertight. Underwater placement shall not begin until the tremie is placed to the shaft base elevation. Plugs shall either be removed from the excavation or be of material approved by the Engineer that will not cause a defect in the shaft if not removed. The discharge end of the tremie shall be constructed to permit the free radial flow of concrete during placement operations.
If concrete is placed under water, all displaced water shall be disposed of in an approved manner. When groundwater, the drilling water or slurry in the shaft excavation is to be removed by pumping during concrete placement, a standby pump shall be kept available on-site.

C. **Pumped Cement Concrete.**

Concrete pumps and lines may be used for concrete placement in either wet or dry excavations. All pump lines shall have a minimum 4 in. diameter and be constructed with watertight joints. Cement concrete placement shall not begin until the pump line discharge orifice is at the shaft base elevation.

Cement concrete shall be placed in a continuous operation so that the cement concrete always flows upward within the shaft. The delivery hose or pipe shall be withdrawn slowly as the elevation of the fresh concrete rises in the shaft. The discharge end of the pipe or hose shall be kept at least 5 ft below the surface of the cement concrete after the cement concrete has reached a depth of 5 ft. When lifting the pump line during concreting, the Contractor shall temporarily reduce the line pressure until the orifice has been repositioned at a higher level in the excavation. During cement concrete placement, markings on the tremie pipe or pump hose or a sounding device or other appropriate method shall be provided and maintained to determine the relative elevations of the fresh cement concrete surface and the bottom end of the pipe or hose.

For wet excavations, a plug or similar device shall be used to separate the concrete from the fluid in the hole until pumping begins. The plug shall either be removed from the excavation or be of a material, approved by the Engineer, which will not cause a defect in the shaft if not removed.

If for any reason, the tremie/pump line is removed during concrete placement, the line must be resealed at the bottom and once again embedded sufficiently below the level of concrete at which the tremie pipe was removed prior to continuation of the pour. Concrete placement can then be continued until fresh uncontaminated concrete has overflowed the top of the shaft. All contaminated concrete must be removed exposing the clean concrete in the shaft.

D. **Free Fall Concrete.**

The free fall placement of cement concrete shall only be permitted in dry holes. The maximum height of free fall placement shall not exceed 25 ft.

Drop chutes shall be used to direct placement of cement concrete to the base of the excavation, where the maximum depth of water shall not exceed 3 in., without hitting either the steel reinforcement cage or hole sidewall. Drop chutes shall consist of a smooth tube of either one-piece construction or sections that can be added and removed. Cement concrete may be placed through either a hopper at the top of the tube or side openings as the drop chute is retrieved during concrete placement. The drop chute shall be supported so that the free fall of the concrete measured from the bottom of the chute is less than 25 ft at all times.

If placement cannot be satisfactorily accomplished by free fall in the opinion of the Engineer, the Contractor shall use either tremie or pumping to accomplish the placement of cement concrete.

E. **Casing Removal.**

If a temporary casing is used during drilled shaft construction, casing removal shall not start until the level of fresh cement concrete within the casing has reached a depth of 10 ft.
As the temporary casing is withdrawn, a minimum 5 ft head of concrete above the bottom of the casing shall be maintained.

The elevation of the top of the steel reinforcement cage and the elevation of the top surface of the shaft cement concrete shall be checked before and after temporary casing extraction. Any upward or downward movement of the steel reinforcement cage or any large downward movement of the surface of the concrete during casing extraction shall be cause for rejection of the shaft. A slight downward movement of the casing while exerting downward pressure or hammering or vibrating the casing will be permitted to facilitate extraction. Casing that cannot be extracted during or immediately after the cement concrete placement operation shall also be cause for rejection of the shaft. A repair plan (or a structural evaluation for temporary casing not extracted from the shaft excavation) for all rejected shafts shall be submitted to the Engineer for approval.

The tops of permanent casings shall be removed to the top of the drilled shaft or the finished ground line, whichever is lower. The tops of permanent casings for shafts constructed in a permanent body of water shall be removed to the low water elevation.

945.60: Inspection

A. General.

Nondestructive Evaluation (NDE) tests shall be performed on all completed drilled shafts as directed by the Engineer. Such tests may include cross-hole acoustic tests, sonic echo tests, and other specified NDE tests.

B. Cross-hole Sonic Testing.

Cross-hole sonic logging (CSL) is a down-hole ultrasonic test method used to evaluate the condition of the concrete within drilled shafts. The test shall meet ASTM D6760 requirements as modified herein.

This method involves using a piezo-electric transducer (emitter), to generate a signal that propagates as a sound wave (sonic) within the concrete, and another transducer (receiver) is used to detect the signal. Both transducers are placed into a vertical steel pipe filled with water that acts as a coupling medium between the transducer and the tube. These pipes are attached to the reinforcement cage.

The transducers are lowered to the bottom of their respective pipes and placed in the same horizontal plane. The emitter transducer generates a sonic pulse that is detected by the receiver in the opposite pipe. While the pulses are generated, the two transducers are simultaneously raised within the pipes until they reach the top of the drilled shaft. This process is repeated for each possible pipe combination.

The existence of a flaw or defect (void, soil inclusion, or necking within the shaft) will slow down the signal. The signal arrival times are plotted with depth to generate a log for the particular pipe combination. In addition, the energy of each signal (integration of the amplitude with time) is also plotted with depth. Lower energy or longer arrival times would indicate the occurrence and location of the defects.
1. Requirements.

Provisions for sonic testing shall be made for all shafts. The testing subcontractor and test method to be used for sonic testing shall be approved by the Engineer. A record of experience of the testing subcontractor shall be submitted to the Engineer along with written description of the testing procedures, operation manuals for the testing equipment, and samples of previous test results indicating both sound and defective shaft.

2. Installation of Pipes.

The Contractor shall furnish and install a minimum of four 1.5-in. to 2-in. internal diameter steel pipes to provide access for sonic testing in each drilled shaft. The pipes shall be installed such that all internal joints are flush.

If the number and placement of the pipes are not called out in the construction drawings, then the following guidelines shall be used:

<table>
<thead>
<tr>
<th>Table 945.60-1: Pipe Requirements Based Upon Shaft Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft Diameter ≤5 ft</td>
</tr>
<tr>
<td>5 ft < Shaft Diameter ≤8 ft</td>
</tr>
<tr>
<td>Shaft Diameter >8 ft</td>
</tr>
</tbody>
</table>

The steel pipes shall be connected so that the transducers can pass through unobstructed. The tubes shall be clean from any corrosion or dirt to ensure a good bond between the tube and concrete. The pipes shall be watertight (including at joints) and capped at the bottom and the top. The top cap must be removable (i.e. threaded) for access of the transducers during testing.

The pipes shall be attached to the interior of the reinforcement cage or as specified in the contract documents. However, if the clear spacing between longitudinal bars is less than 5 in., the pipes shall be offset from the rebar cage by 3 in. toward the center of the shaft. The pipes shall be located in a symmetric pattern depending on the size of the shaft and the number of pipes. Tie wire or spacers shall be used to attach the pipes to the reinforcement cage so that they remain as vertical and parallel as possible during cage installation. The pipes shall extend from 6 in. above the bottom of the shaft to 3 ft above the top of the shaft, or ground surface, whichever is higher. The pipes shall not be placed on the bottom of the shaft.

The pipes shall be full of clean water prior to cement concrete placement. The caps must be sealed to prevent debris from entering the pipes after the water is placed. The pipes must be handled with care during installation and capping (i.e. no twisting or impacting). After completion of CSL testing and upon approval of the Drilled Shaft by the Engineer, the water shall be removed from the pipes to be completely filled with a cement or sand-cement grout.

The Sonic Logging equipment furnished by the Contractor shall consist of the following components:

- Ultrasonic emitter and receiver probes capable of producing records with good signal amplitude and energy through concrete.
• A measurement wheel or other suitable linear measuring device to record the depth of the transducers.
• A microprocessor-based system, with data filtering/amplification and synchronized triggering of records with pulses, that is capable of permanent recording of data, display of individual records, and printing of logs.
• The Contractor shall also furnish all necessary supplies, support equipment, power, and provide reasonable access to the shaft top for performance of the sonic logging.

Completed drilled shafts shall be tested between 1 and 7 days after placing of cement concrete. Information on the drilled shafts to be provided to the CSL consultant shall include: Shaft bottom and top elevations, pipe lengths and positions, and construction dates including cement concrete placement.

Sonic Logging shall be performed between all possible tube combinations. Tests shall be performed in the same horizontal plane in all pairs of pipes directly across from each other. Tests involving different horizontal planes would be conducted if requested by the Engineer or when necessary to further evaluate defects.

The probes shall be raised simultaneously from the bottom of the pipes by winch ensuring that all slack is taken out of the cables before the analyzer is switched on. The speed of ascent should be less than 1 ft per second. A depth wheel or similar measuring device shall be used to provide accurate depth measurements. Measurements shall be taken at 0.2 ft intervals or as otherwise directed by the Engineer.

5. Results of Testing.

The Contractor shall provide a CSL Report signed by a Professional Engineer providing the results and recommendations for acceptance or correction of each shaft tested. The report shall include the following:

• The cross-hole sonic logs with potential defects indicated.
• Records of the initial pulse arrival time and energy/amplitude vs. depth for each pipe combination.
• Related interpretation and discussion of the results.

Defects identified by longer arrival times or lower energy signals shall be promptly reported to the Engineer. Any further tests required by the Engineer to evaluate the extent of the defects shall be duly carried out.

6. Acceptance.

Any indicated drilled shaft defects shall require further integrity testing. The Engineer may require other nondestructive tests upon evaluation of the data. These tests may include cross-hole tomography, Single-hole Sonic Logging, Pulse Echo Method, or others.

If the additional tests and records are inconclusive, the Engineer may require coreholes of the defective shaft, at the expense of the Contractor. If the cores show defects in the shaft, these defects shall be repaired at the Contractor’s expense by methods acceptable to the Department.
945.61: Drilled Shaft Load Tests

A. General.

When the contract documents include load testing of shafts, the load test shall be completed before construction of any production drilled shafts. The Contractor shall construct a test shaft in accordance with the provisions of the specifications. The Department’s Geotechnical Engineer shall be notified at least 2 working days prior to the start of the load test.

The load test can be performed when 75% of the design compressive strength of the concrete for the drilled shaft is achieved as determined from cylinder breaks. The Contractor shall allow 10 working days for analysis of the load test data by the Engineer before estimated drilled shaft tip elevations are provided for production shafts.

Static load tests shall conform to the requirements of ASTM D1143 (vertical load testing-quick test method) and ASTM D3966 (lateral load testing) or as modified herein.

Other types of Load Tests may be included in a project’s Special Provisions. A detailed Testing Plan, in conformance with the specification requirements, shall be submitted to the Engineer for review and approval.

The number and locations of load tests shall be shown on the plans and/or as designated by the Engineer. The load test shafts shall be loaded to a load equal to 3 times the test shaft design load, or to plunging failure, whichever occurs first. Plunging failure is defined as a deflection of the shaft head equal to 5% of the shaft diameter.

B. Osterberg Cell (O-cell) Load Test.

1. Description.

This work shall consist of furnishing all materials and labor necessary for conducting an Osterberg Cell Load Test and reporting the results of the test. The Osterberg Cell, herein called the O-cell, is a calibrated bi-directional loading device capable of applying loads upward and downward, when embedded in a drilled shaft. The drilled shaft used for the load test shall be instrumented by the Manufacturer of the O-cell as directed by the Engineer.

2. Manufacturer’s Representative.

The Contractor may obtain the services of a licensed Professional Engineer, with O-cell load testing experience, to conduct the test in compliance with these specifications, record all data and furnish reports of the test results to the Engineer. If so, the Manufacturer’s Representative shall be present on site during the initial installation and testing of the shaft.

3. Instrumentation and Materials.

The Contractor shall supply all instrumentation and materials required to install the O-cell, conduct the load test and remove the load test instrumentation and apparatus as required. Instrumentation and materials include, but are not limited, to the following:

a. One (1) or more O-Cell with appropriate capacity and diameter for the test shaft.
b. Two (2) circular steel base plates, which shall be 2 in. thick and welded to the top and bottom of the cell. Also, a beam or pipe, as required by the manufacturer, to support its placement in the test shaft.

c. High strength pumpable grout with a minimum compressive strength of 4,000 psi at the time of testing. The quantity necessary to place a 1- to 3-in. bed below the bottom of the cell will be required. Type III cement may be substituted upon approval of the Engineer.

d. Materials sufficient to construct a stable reference beam system, for monitoring deflection of the shaft, supported at a minimum distance of 3 shaft diameters from the center of the shaft.

e. Materials sufficient to construct a protected work area (such as a tent or shed for protection from direct sun and inclement weather) of sufficient size to accommodate the entire load test apparatus, instrumentation and personnel performing the test.

f. Electric power, as required for lights, welding, instrumentation, etc.

g. Tell-tale extensometers connected to the upper and lower plates of the O-cell, and strain gages applied in pairs at approved intervals throughout the shaft length. The instrumentation shall be able to provide the distribution of stresses along the shaft length and to distinguish bottom displacement from top displacement of the tested shaft.

h. Clean water from an approved source to mix with a water-soluble oil to be provided by the manufacturer's representative, to form the hydraulic fluid pressure used to pressurize the O-cell.

4. Equipment.

The Contractor shall supply equipment required to install the O-cell, conduct the load test, and remove the load test apparatus. Equipment includes but is not limited to:

a. Welding equipment and certified welding personnel, as required to assemble the test equipment, attach pipes, plates and fittings to the O-cell.

b. A suitable pressurized gas source consisting of either an air compressor or of compressed nitrogen.

c. Equipment and operators for handling the O-cell and piping during the installation of the cell and during the conducting of the test, including but not limited to a crane or other lifting device(s) for the cell piping, manual labor, and hand tools as required by the manufacturer's representative.

d. Equipment and labor sufficient to erect the protected work area and monitoring reference beam system, to be constructed to the requirements of the Engineer and the manufacturer's representative.

5. Procedures.

The O-cell, piping and other attachments will be assembled and made ready for installation under the direction of the manufacturer of the load cell in a suitable area, adjacent to the test shaft, to be provided by the Contractor.

When a reinforcing steel cage is required for the test shaft, the O-cell assembly shall be welded to the bottom of the cage in conjunction with the construction of the cage. If a rebar cage is not required, the load cell and piping shall be supported during installation by suitable means such as two channel beams attached on each side.
When excavation for the test shaft has been completed, inspected, and accepted by the Engineer, a seating layer of concrete or grout shall be placed, by an approved method, at the base of the shaft. The Contractor shall then install the O-cell under the direction of the manufacturer and the Engineer such that the cell is resting firmly in the bed of grout or concrete. The Contractor shall use utmost care in handling the test equipment assembly so as not to damage the instrumentation during installation. Alternatively, the O-cell and its support system can be lowered to near-bottom of the shaft and the center pipe from the cell can be used to grout the space between the cell and the bottom of the shaft so as to firmly seat the cell.

After installation of the cell, the drilled shaft shall be concreted in a manner specified above. However, the Contractor may use high early cement (Type III) in the mix to reduce the time between concreting and testing, when approved by the Engineer.

The load sequence shall be as follows:

a. Apply 5% of the anticipated ultimate capacity of the test shaft, in load increments at 5-minute intervals until the maximum capacity of the cell is reached or until the shaft has failed as determined by the Engineer.

b. At the maximum load or failure load (as determined by the Engineer), maintain the load for a minimum of ½ hour.

c. Remove the load in 10% load increments at 5-minute intervals until zero load is reached.

d. At each load increment, or decrement, movement indicators shall be read at a minimum of 1-, 2- and 4-minute intervals while the load is held constant.

During the period required to perform the load test, no drilling or excavation operations on any shaft may be performed. If test apparatus shows signs of negative effects due to other construction activities, such activities shall be halted for the duration of the test. After completion of the load test the contractor shall remove any equipment, material, waste, etc., which are not to be part of the finished structure.

The contractor will supply 3 copies of a report for each load test detailing the load-movement curves and test data. The report shall be reviewed and approved by the Geotechnical Engineer.

945.62: Defective Drilled Shafts

Defective drilled shafts are defined as exhibiting flaws that result in inadequate performance (deflections criteria) or unsafe performance (capacities criteria) under the shaft design loads, as determined by the Engineer, based on the shaft construction records, NDE, and load test data.

The Contractor shall submit a plan for remedial action to the Engineer for acceptance. Modifications to the structural integrity and/or load transfer mechanism caused by the remedial action shall require that calculations and working drawings stamped by a Professional Engineer registered in the Commonwealth of Massachusetts for all elements affected, be provided. All labor and materials necessary to complete the remedial work shall be furnished without cost to the Department.
COMPENSATION

945.80: Method of Measurement

Drilled shaft excavation will be measured for payment on a length basis by the foot of completed drilled shaft excavation of the diameter shown on the plans measured along the centerline of the shaft from the bottom to the top of the completed shaft excavation or to the mud line if under water, less the measured length of obstruction excavation and less the measured length of rock socket excavation. Measurement shall be to the nearest 0.1 ft.

Rock socket excavation will be measured for payment on a length basis by the foot of completed rock socket excavation of the diameter shown on the plans measured from the highest point of encountered rock within the rock socket to the bottom of rock socket. Measurement shall be to the nearest 0.1 ft.

Obstruction excavation, after designation as obstruction excavation by the Engineer, will be measured for payment on a length basis by the foot of completed obstruction excavation of the shaft diameter indicated on the plans. Measurement shall be to the nearest 0.1 ft.

Trial drilled shafts that are accepted, including backfill when required, will be measured for payment by the foot of completed trial drilled shaft of the diameter shown on the plans measured along the centerline of the trial shaft from the bottom of completed trial shaft to the top of the completed trial shaft or to the mud line if under water. Measurement shall be to the nearest 0.1 ft.

Drilled shafts, of the cement concrete and steel reinforcement as shown on the plans, will be measured for payment on a length basis by the foot of completed drilled shaft of the diameter shown on the plans measured along the centerline of the shaft from the bottom of the rock socket or shaft excavation to the top of the completed shaft or to the mud line if under water. Measurement shall be to the nearest 0.1 ft.

Permanent casing will be measured for payment on a length basis by the foot of permanent casing of the diameter shown on the plans measured along the centerline of the shaft from the bottom to the top of the permanent casing. Measurement shall be to the nearest 0.1 ft.

CSL access pipes will be measured on a length basis by the number of feet of pipes installed and grouted (upon acceptance of testing) regardless of whether sonic testing is performed.

CSL sonic testing shall be measured on an each basis per shaft tested.

Osterberg load cell axial load testing shall be measured on an each basis per shaft tested.

Conventional axial load testing shall be measured on an each basis per shaft tested.

945.81: Basis of Payment

Drilled shaft excavation will be paid at the contract unit price per foot of completed drilled shaft excavation of the diameter shown on the plans. Payment for drilled shaft excavation shall be considered complete compensation for temporary casing, water control, removal from the site and disposal of excavated materials, using slurry as necessary, tools and drilling equipment to excavate the shaft, and furnishing all other labor, materials and equipment necessary to complete the drilled shaft excavation. If larger diameter drilled shaft excavation than that specified on the plans is
performed at the Contractor’s option, no additional compensation will be provided to perform this oversized drilled shaft excavation.

Rock socket excavation will be paid at the contract unit price per foot of completed rock socket excavation of the diameter shown on the plans. Payment for rock socket excavation shall be considered full compensation for water control, removal from the site and disposal of excavated materials, drilling equipment, procedures to excavate the rock socket to the required depths, and all labor, materials, equipment, and tools necessary to complete the rock socket excavation. If larger diameter rock socket excavation than that specified on the plans is performed at the Contractor’s option, no additional compensation will be provided to perform this oversized rock socket excavation.

Obstruction excavation, after designation as obstruction excavation by the Engineer, will be paid at the contract unit price per foot of completed obstruction excavation of the shaft diameter indicated on the plans. Payment for obstruction excavation shall be considered full compensation for water control, removal from the site and disposal of excavated materials, drilling equipment, procedures to excavate the obstruction to the required depths, and all labor, materials, equipment, and tools necessary to complete the obstruction excavation. If larger diameter obstruction excavation than that specified on the plans is performed at the Contractor’s option, no additional compensation will be provided to perform this oversized obstruction excavation.

Trial drilled shafts that are accepted will be paid at the contract unit price per foot of completed trial drilled shaft of the diameter shown on the plans. Payment for trial drilled shafts shall be considered full compensation for the excavation of the trial shaft hole through whatever materials are encountered to the authorized bottom of trial shaft, including obstructions, temporary casings, backfilling the hole with unreinforced concrete, restoring the site as required, and all other incidentals necessary to complete the trial drilled shaft. If larger diameter trial drilled shaft than that specified on the plans is performed at the Contractor’s option, no additional compensation will be provided to perform this oversized trial drilled shaft.

Drilled shafts, of the diameter, cement concrete and steel reinforcement as shown on the plans, will be paid at the contract unit price per foot of completed drilled shaft. Payment for drilled shafts shall be considered full compensation for all cement concrete, steel reinforcement, labor, materials, equipment, and all other incidentals necessary to complete the drilled shaft. This payment shall include all cement concrete and steel reinforcement that extends into rock sockets, if any, and all steel reinforcement that is embedded in the shaft and extends above the top of the shaft to the point where it connects to any steel reinforcement that is not embedded in the drilled shaft. Bracing, centering devices, and support devices for the steel reinforcement cage shall be considered incidental to the work. If a larger diameter drilled shaft than that specified on the plans is constructed at the Contractor’s option, no additional compensation will be provided to perform this oversized drilled shaft construction.

Permanent casing shall be paid at the contract unit price per foot of permanent casing of the diameter shown on the plans furnished and installed in the drilled shafts. Payment for permanent casing shall be considered full compensation for all labor, materials, equipment, and all other incidentals necessary to complete the permanent casing.
CSL access pipes shall be paid at the contract unit price per foot of access pipe installed. Payment for CSL access pipes shall be considered full compensation for the supply and installation of the pipe and the grouting of the pipes after testing.

CSL sonic testing shall be paid at the contract unit price per shaft tested. No payment shall be made for supplementary sonic logging testing required to further evaluate any shaft defects detected by the initial CSL sonic test. Payment for CSL sonic testing shall be considered full compensation for the performance of the test, including all labor, equipment, and materials incidental to the test instrumentation, data collection, and report.

Osterberg load cell axial load testing shall be paid for at the contract unit price per each Osterberg load cell axial load test completed and accepted. Payment for Osterberg load cell axial load testing shall be considered full compensation for the performance of the load test, including all labor, equipment, and materials incidental to the test instrumentation, data collection and report (and subsequent removal of test apparatus and appurtenances) prepared under the direction of the Engineer and the manufacturer’s representative.

Conventional axial load testing shall be measured on an each basis per shaft tested.

945.82: Payment Items

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>945.1*</td>
<td>Drilled Shaft Excavation *Feet Diameter</td>
<td>Foot</td>
</tr>
<tr>
<td>945.2*</td>
<td>Rock Socket Excavation *Feet Diameter</td>
<td>Foot</td>
</tr>
<tr>
<td>945.3*</td>
<td>Obstruction Excavation *Feet Diameter</td>
<td>Foot</td>
</tr>
<tr>
<td>945.4*</td>
<td>Trial Shaft *Feet Diameter</td>
<td>Foot</td>
</tr>
<tr>
<td>945.5*</td>
<td>Drilled Shaft *Feet Diameter</td>
<td>Foot</td>
</tr>
<tr>
<td>945.6*</td>
<td>Permanent Casing *Feet Diameter</td>
<td>Foot</td>
</tr>
<tr>
<td>945.71</td>
<td>Cross Hole Sonic Testing Access Pipes</td>
<td>Foot</td>
</tr>
<tr>
<td>945.72</td>
<td>Cross Hole Sonic Test</td>
<td>Each</td>
</tr>
<tr>
<td>945.81</td>
<td>Osterberg Load Cell Axial Load Test</td>
<td>Each</td>
</tr>
<tr>
<td>945.82</td>
<td>Conventional Axial Load Test</td>
<td>Each</td>
</tr>
</tbody>
</table>

* = as per Department Standard Nomenclature.

SUBSECTION 950: SHEETING

DESCRIPTION

950.20: General

This work shall consist of furnishing and placing lumber, wood or steel sheeting of the kinds and dimensions required, complying with these specifications, where indicated on the plans or where directed. All dimensions specified for lumber are nominal dimensions.
MATERIALS

950.40: General

Materials shall meet the requirements specified in the following Subsections of Division III.

Materials:
- Lumber Sheeting
- Wood Sheeting
- Steel Sheeting

CONSTRUCTION METHODS

950.60: General

Work shall not be started until all materials and equipment necessary for their construction are either on the site of the work or satisfactorily available for immediate use as required. Sufficient labor and equipment shall be employed to insure the completion of the excavation, placing of the concrete and backfilling in the shortest possible time.

Where no other direction is given, sheeting shall be driven to such depth that the footing may be lowered at least 2 ft below the elevation shown on the plans without any change in the sheeting as driven.

Sheeting that is to be paid as sheeting left in place shall be driven to a minimum depth of 5 ft below the proposed bottom of the concrete footings unless otherwise directed. After sufficient progress has been made on the construction the sheeting shall be cut off at the tops of the footings or as otherwise directed.

950.61: Placing of Sheeting

The sheeting shall be securely and satisfactorily braced to withstand all pressures to which it may be subjected and be sufficiently tight to prevent any flow of water or material into the space in which concrete is deposited. The bottom edge of each piece of lumber and wood sheeting shall be so sharpened as to lead the toe of the sheeting away from the excavation. Jetting may be done only with the approval of the Engineer, but it will not be permitted when excess of water may endanger railroad tracks or other structures.

Where sheeting is to be used as a form for placing concrete the sheeting shall be driven entirely outside the neat lines shown on the plans for the concrete.

When, in the Engineer's judgment, the foundations must be altered to such an extent that changes must be made in the depths to which sheeting has been driven, or the area enclosed by the sheeting must be changed, the Contractor shall make the directed changes in accordance with the provisions of Subsection 9.03: Payment for Extra Work.

950.62: Cut-Off

The sheeting shall be driven down or cut off to the elevation shown on the plans or directed by the Engineer. No sheeting may be left so as to create a possible hazard to navigation of a stream, safety of the public, obstruction to flow of water, or a hindrance to traffic of any kind.
950.63: Care Near Railroads
When sheeting is driven adjacent to railroad tracks, the Contractor shall keep on the work site, quickly available for use, such equipment and operators needed to immediately burn or cut off any sheeting that cannot be driven into the clear before the arrival of trains.

950.64: Disposal of Cut-off and Waste Materials
No cut-off shall be allowed to float away in a stream or left in such a manner as to obstruct the flow of water.

All cut-off will become the property of the Contractor and shall be removed by them from the site.

At the option of the Contractor, steel sheeting cut-offs may be used as sheet piling or pans of sheet piling. If welding is used, such welds shall be full butt-welds designed to develop the full strength of the sheet pile, both in bearing and bending, and shall conform with any of the prequalified joints shown in the specification for welded Highway and Railroad Bridges of the American Welding Society.

950.65: Defective Work
The responsibility for the exact satisfactory construction and maintenance of sheeting complete in place shall rest with the Contractor and any work done which in the performance of incidental construction is not acceptable for the intended purpose shall be either repaired or removed and reconstructed by the Contractor at their expense.

COMPENSATION

950.80: Method of Measurement
The items of Lumber Sheeting, Wood Sheeting, or Steel Sheeting will be a pay item only if indicated on the plans or in the Special Provisions to be left in place or when ordered left in place by the Engineer as a permanent part of the foundation. Otherwise the Contractor may remove or abandon the sheeting, but only to the extent permitted by the Engineer.

Lumber or Wood Sheeting, when indicated on the plans or in the Special Provisions to be left in place or when ordered by the Engineer to be left in place as a permanent part of the foundation, will be measured by the MBF of lumber or wood sheeting. The quantity to be paid for will be the area of sheeting left in place multiplied by the nominal thickness.

Steel sheeting, when indicated on the plans or in the Special Provisions to be left in place or when ordered by the Engineer to be left in place as a permanent part of the foundation, will be measured by the pound. The weight of the quantity to be paid for shall be calculated on the basis of 22 psf of wall in place. No additional compensation will be allowed if a heavier sheeting is used unless such heavier sheeting is specified in the Special Provisions, or shown on the plans.

950.81: Basis of Payment
Steel sheeting, when indicated on the plans, in the Special Provisions, or when ordered by the Engineer, to be left in place as a permanent part of the foundation, will be paid for at the contract unit price per pound under the item for Steel Sheeting. The contract unit price per pound shall also include full compensation for anchors, when required, for the sheeting.
Lumber or Wood when indicated on the plans or in the Special Provisions to be left in place or when ordered by the Engineer in writing to be left in place as a permanent part of the foundation will be paid for at the contract unit price per MBF for Lumber Sheeting or Wood Sheeting.

No direct payment will be made for any sheeting not indicated on the plans or in the Special Provisions or not ordered in writing by the Engineer to be left in place as a permanent part of the foundation. Such sheeting will be considered as incidental work necessary for the proper prosecution and protection of the work during construction operations and compensation therefor shall be included in the prices bid for the various items of work for which the sheeting was used. If the Contractor elects to leave such sheeting in place with the approval of the Engineer, no payment will be made for same as sheeting left in place.

For purposes of partial payment, except as noted below, the sheeting item will be considered 90% done when the sheeting has been completely driven and the area within the sheeting is ready for such work as may be required to be done therein. Tile sheeting item will be considered completed when the sheeting has been cut at the required elevation.

950.82: Payment Items

- 950. Lumber Sheeting ... MBF
- 951. Wood Sheeting ... MBF
- 952. Steel Sheeting .. Pound

SUBSECTION 955: TREATED TIMBER

DESCRIPTION

955.20: General

Treated timber shall be used where indicated on the plans and where directed.

MATERIALS

955.40: General

Material shall meet the requirements specified in the following Subsections of Division III, Materials:

- Wood Products ... M9.05.1
- Wood Preservative ... M9.05.5
- Fastenings ... M8.01.5
- Tar Paper ... M9.06.2

CONSTRUCTION METHODS

955.60: General

Treated timber shall be carefully handled, stored, and fabricated in accordance with AWPA M4 without sudden dropping, breaking of outer fibers, bruising or penetrating the surface with tools. It shall be handled with rope slings. Cant hooks, peaveys, pikes or hooks shall not be used. Borings,
cuts, holes and other machining of wood shall be done prior to preservative treatment whenever possible. All cuts, holes, and injuries such as abrasions which occur after preservative treatment shall be field treated in accordance with AWPA M4. The Contractor shall provide the Engineer with a written copy of AWPA M4 Treatment Specification before any field treatment work is performed.

A washer, of the size and type specified, shall be used under all bolt heads and nuts which would otherwise come in contact with timber. The nuts of all bolts shall be effectively locked after they have been finally tightened.

Fastenings shall conform to M8.01.5: Anchor Bolts, Nuts and Washers for anchoring bridge bearings.

Stringers and other members supporting planking shall be capped with tar paper.

955.61: Inspection

All materials will be inspected either at the place of manufacture or upon arrival at the site where it is to be used. All materials not conforming in every detail with the requirements of these specifications will be rejected and removed from the work by the Contractor.

COMPENSATION

955.80: Method of Measurement

All treated timber used will be measured by MBF, in place.

The quantities will be measured according to the following dimensions:

For wheel guards, sleepers, blocking, bracing, isolated timbers and similar lumber, the nominal size of the timber and the actual length in place.

For platforms, decks and similar lumber, the nominal thickness of plank and the overall area, with no deduction for directed spaces between planks.

No allowance will be made for waste or cut-off.

955.81: Basis of Payment

Treated timber will be paid for at the contract unit price per MBF measured under the item for Treated Timber complete in place.

955.82: Payment Items

955. Treated Timber ... MBF
SUBSECTION 960: STRUCTURAL STEEL AND MISCELLANEOUS METAL PRODUCTS

DESCRIPTION

960.20: General

This section shall apply to the furnishing, fabrication, erection and coating of all structural steel and metal work in the contract.

MATERIALS

960.40: General

Materials shall meet the requirements specified in the following Subsections of Division III - Materials:

- Structural Steel ... M8.05.0
- Stud Shear Connectors .. M8.04.1
- Steel Pins ... M8.04.2
- High Strength Bolts... M8.04.3
- Bronze Self-Lubricating Bearing Plates.. M8.11.0
- Iron Casting .. M8.03.0
- Paints and Protective Coatings .. M7.00.0
- Steel Baffles & Drainage Troughs.. M8.05.3

If a Contractor proposes to use steel from sources other than a mill, the source must be approved by the Engineer. The Contractor shall supply the Engineer with a description of the proposed facility along with the method used by the facility to segregate, identify and otherwise assure the Engineer that the supplied material is in conformance with the specifications. All sources must supply the actual mill test reports prior to the start of fabrication. Material shall be identified with the MassDOT contract number, material specification, and heat number.

CONSTRUCTION METHODS

960.60: Shop Drawings

After the contract has been awarded, and before any shop work is commenced, the Contractor shall submit complete sets of prints of the shop drawings as specified in Subsection 5.02: Plans and Detail Drawings.

On projects that contain more than one bridge, each bridge will be considered separately in submitting shop drawings.

Shop work may commence on each bridge when the entire set of shop drawings for that bridge are approved.

On projects which contain complicated steel structures such as a viaduct, long span bridge, etc., the Contractor shall submit a schedule showing how they intend to divide the steel structure into sections. After this schedule is approved, shop work may commence on each section as the shop drawings for that section are approved.
Fabrication shall not begin until the drawings are approved. Work performed prior to shop drawing approval is at the contractor’s risk and may require additional inspection, NDT, or partial disassembly/reassembly to satisfy the Verification Inspector.

960.61: Design, Fabrication and Erection

All structural steel and appurtenant material shall be designed, fabricated, coated and erected in accordance with these specifications, the AASHTO Standard Specifications for Highway Bridges, and the AASHTO/AWS Bridge Welding Code (ANSI/AASHTO/AWS D1.5). All aluminum material shall be designed, fabricated and erected in accordance with these specifications, the AASHTO Standard Specifications for Highway Bridges, and the AWS Structural Welding Code - Aluminum (ANSI/AWS D1.2). All stainless-steel material shall be designed, fabricated, and erected in accordance with these specifications, the AASHTO Standard Specifications for Highway Bridges, and the AWS Structural Welding Code – Stainless Steel (ANSI/AWS D1.6). All steel tubular material shall be designed, fabricated, and erected in accordance with these specifications, the AASHTO Standard Specifications for Highway Bridges or the AASHTO Standard Specifications for Highway Signs, luminaries, and Traffic Signals, and the AWS Structural Welding Code - Steel (ANSI/AWS D1.1).

FABRICATION.

Fabricators.

Fabricators shall be approved for work in one or more of the following three categories; Major Bridge Structures, Simple Bridges and Miscellaneous Steel Fabrication, or Poles, Sign Supports, Etcetera. Fabricators approved to perform work in the Major Bridge Structures category are also approved to perform work in the Simple Bridges and Miscellaneous Steel Fabrication category. Fabricators of major bridge structures including rolled beams with coverplates, girders, and more complex work shall meet the requirements of AISC Category Major Steel Bridges with the Fracture Critical Endorsement if applicable. Fabricators of simple bridges and miscellaneous steel, which includes rolled beams without coverplates, steel products such as expansion joints, bridge rail, etcetera shall meet the requirements of AISC Category Simple Steel Bridges. Fabricators of poles and sign supports shall meet the requirements of AISC Category Simple Steel Bridges. A list of approved fabricators may be obtained from the MassDOT website at www.mass.gov/dot.

Fabricators wishing to be approved by the Department shall submit the following:

1. Description of facility including history, capacity and equipment.
2. QC Manual
3. Table of Organization
5. Welder and Welder Operator Qualification Test Records.
6. Resumes of supervisory personnel and resumes of all personnel involved in quality assurance, QC and testing.
7. Copy of American Institute of Steel Construction Quality Program Certificate.

After receiving the material listed above, the Engineer shall review it and conduct a shop inspection before approval may be granted.

The Contractor shall submit a shop schedule to the Engineer. The shop schedule shall be provided sufficiently in advance for the Engineer to determine the level of verification inspection required.
and to arrange for the inspector’s attendance. The shop schedule shall include the date fabrication will begin, the approximate date it will be completed, and hours of operation including time and date work is to be performed on all shifts. A revised schedule may be submitted at any time. No material shall be fabricated until the shop schedule has been reviewed. No work shall be performed on second and third shifts unless specifically indicated on the shop schedule.

The Contractor will be required to submit to the Department’s Inspector, for approval, three certified copies of the mill test reports for each heat number of steel and aluminum furnished. These certificates shall certify compliance with the specifications and shall give the chemical and physical analysis of the metal. Any cost involved in furnishing the certificates shall be considered incidental to the work. These reports shall be given to the Verification Inspector in advance of shipping so that this inspector has sufficient time to properly review the reports. No material shall be shipped until the reports are reviewed and approved by the Verification Inspector.

Written procedures shall be submitted by the Contractor and approved by the Engineer for the following fabrication processes: material traceability; hot bending; welding; cambering and heat curving; shop assembly/laydown; postheat and stress-relieving; shop installation of fasteners; and blast cleaning and coating. These procedures may be standardized and are not required to be resubmitted for each project.

Inspection.

QC inspection and testing is the responsibility of the fabricator and shall be performed by a sufficient number of qualified inspectors to guarantee product integrity. QC inspection shall be performed throughout the entire fabrication process from receiving material to shipping the final product.

QC Inspectors at the fabricating shop shall be certified by the American Welding Society in accordance with the provisions of the Standard for Qualification and Certification of Welding Inspectors (AWS QC1). At least one inspector on each shift shall be a Certified Welding Inspector (CWI). The Engineer, upon written request from the fabricator, may accept other certifications or experience and training consistent with AWS QC1. Assistant inspectors may be used to perform specific inspections under direct supervision of a QC Inspector. For projects requiring greater than 1,500 ft2 of steel surface to be painted, the inspector shall have completed, as a minimum, NACE Level I certification or received other formal training acceptable to the Engineer.

Verification Inspectors will be employed by, and act on behalf of, the Department. The inspector has the authority to act for the Engineer on matters relating to quality including inspection and testing, within the scope of the contract. Verification Inspectors will be assigned at the discretion of the Engineer. The presence or absence of the Verification Inspector does not relieve the Contractor of QC responsibility.

The fabricator shall provide facilities, for the Verification Inspectors, in direct proximity to the work. These facilities shall include a secured office with a desk and chair for each inspector, a file cabinet provided with a lock, a plan rack and a table adequate to review plans and drawings. The office shall have a minimal floor area of 120 ft2. The office shall contain a telephone with an outside line suitable for modem communication and a system of heating and cooling that will maintain a temperature of 68°F to 72°F. The fabricator shall also supply ready access to fax and copy machines and adequate parking.
The fabricator shall maintain adequate inspection records. Such records shall be signed by the QC Inspector and provided to the Verification Inspector. No material shall be shipped to the job site until the QC Inspector certifies that the material has met all provisions of the Contract. Such certificate shall be endorsed by the Verification Inspector who then shall place their stamp on the material. The Verification Inspector shall affix their stamp only when the material is ready for shipment and properly loaded on trucks or rail cars. Material delivered to the job site without such stamp affixed will be considered rejected and immediately returned to the Contractor.

Process.

Steel shall be blast cleaned prior to starting fabrication. Fabrication includes, but is not limited to, drilling, cutting, and welding. The blast cleaning shall conform to the SSPC SP10 “Near-White Blast Cleaning.”

Heat numbers shall be transferred, in the presence of the Verification Inspector, to all pieces that are to be major component parts of a main member. Main members are considered to be all webs, flanges, coverplates, floorbeams, stringers and diaphragms on horizontally curved girders as well as any other members as specified on the drawings. Heat numbers are not required to be transferred to component parts of secondary members or to minor components of a main member, i.e. stiffeners, clip angles, etc.

For primary members, the plate components and splice plates shall be cut with the direction of rolling parallel to the direction of primary stresses. For those plates thicker than \(\frac{5}{8} \) in., plane \(\frac{3}{16} \) in. off sheared edges that remain exposed after fabrication.

Welding shall not commence until the welding procedures and welder certifications have been approved by the Engineer. All welding procedures shall conform to the applicable welding code, (i.e. AASHTO/AWS Bridge Welding Code, the AWS Structural Welding Code - Aluminum, AWS Structural Welding Code - Reinforcing Bars, etc.) as determined by the Engineer. Shop welders shall be certified in accordance with the applicable AWS Welding Code as determined by the Engineer. All field welders shall be certified by the Department and possess the Department’s Welder Qualification Test Record and the Welder Qualification Certificate.

Material fabricated that does not meet the plans and specifications will not be incorporated into the work. Repair procedures, other than those allowed under the Bridge Welding Code, shall be submitted by the Contractor to the Engineer for approval.

Structural rolled beams shall be cambered to the amount shown on the plans with a tolerance of -0, \(+\frac{1}{2} \) in. for beams 50 ft or less. For beams greater than 50 ft, the plus tolerance of \(\frac{1}{2} \) in. shall be increased by \(\frac{1}{16} \) in. for each 10 ft or fraction thereof in excess of 50 ft.

Plate girders shall be cambered to the amount shown on the plans with a tolerance as specified in the AASHTO/AWS Bridge Welding Code.

The beams and girders shall be handled and stored in such a manner that they will have the required camber after erection.

When steel beams or girders are to be spliced in the field, they shall be assembled in the no load position in order that the assembly, including camber, alignment, accuracy of punched holes and fit of beam or girder ends may be done in accordance with the requirements of the type of splice.
When members are assembled with the webs vertical, they shall be supported at intervals no greater than 20 ft. The requirements of AASHTO for shop assembly shall apply. Reaming of holes shall be performed in accordance with AASHTO. Hand held reamers shall not be used.

All detrimental material, such as oil, grease, dirt, slag, etc. shall be removed from unpainted portions of all weathering steels prior to shipping. Fascia beams/girders shall be reblasted to remove staining and heat marks.

All structural parts shall be provided with adequate drain holes at points where water could otherwise accumulate. Dimensions indicated at expansion joints and similar construction are determined for a temperature of 50°F. The proper adjustments for temperature must be made by the Contractor when the structure is placed at any other temperature.

If steel expansion joint assemblies are used, they must be properly fitted in the shop, after coating, and shipped with a device for maintaining proper spacing and fit as shown on the plans. Bolts on shipping device must be loosened within one hour after concrete is placed, so that movement may take place. The device shall be removed after concrete has set on both sides of the assembly.

Storage and Shipping.

Fabricated material shall be handled with chain softeners and stored in a manner that protects it from damage, facilitates subsequent inspections, and does not compromise the safety of personnel. Proper consideration shall be given to guard against lateral buckling of unsupported beams and girders. Material shall be stored above the ground on skids or other supports. Fabricated material shall be kept free of dirt, grease and other foreign matter and shall be stored in a way to facilitate drainage when stored outside.

Marking and shipping shall conform to AASHTO Division II Section 11. Hold down softeners shall be used to prevent chain marks on the material during shipment. Structural members shall be shipped in the upright position. Structural members shipped on truck beds or supported on dollies shall not cantilever behind same in excess of 25% of their length. Other shipping configurations shall require calculations by a licensed professional engineer that demonstrate that the member will not be overstressed during shipment. The calculations shall use a load, including impact, of not less than 300% of the dead load.

Connections Using High Strength Bolts.

The certification, testing, installation and inspection for all high strength bolts shall conform to the requirements of the current edition of the AASHTO Standard Specifications for Highway Bridges, except as amended herein.

A. Documentation.

Mill Test Reports shall be furnished for all mill steel used in the manufacture of bolts, nuts or washers. These reports shall indicate the place where the material was melted and manufactured.

The manufacturer shall furnish Manufacturers Certified Test Reports for the items supplied. These reports shall show the relevant information required. The manufacturer performing the rotational-capacity test shall include in the test report:

1. The lot number of each item tested.
2. The rotational-capacity lot number.
3. The results of all tests.
4. The location and date of tests.
5. A statement that the Manufacturer’s Certified Test Report for the items are in conformance to this specification and the appropriate AASHTO specifications.
6. The location where the bolt assembly components were manufactured.

The Distributor shall include the Manufacturer’s Certified Test Reports for the various bolt assembly components. The rotational-capacity test may be performed by the distributor (in lieu of the manufacturer) and reported on a Distributor Certified Test Report. This report shall show all the information required on the Manufacturers Certified Test Report. The Distributor shall certify that the manufacturer’s reports are in conformance to this specification and the appropriate AASHTO specifications.

B. Installation.

All bolting shall be performed using the calibrated wrench method or the turn of the nut method in accordance with the current edition of AASHTO. Regardless of the tightening method used, particular care should be exercised so that the snug tight condition is achieved. In addition, the rotational-capacity tests described in M8.04.3: High Strength Bolts shall be performed at the job site on each rotational-capacity lot number prior to the start of bolt installation. Hardened washers are required as part of the test even though they may not be required in the actual bolt assembly.

A Skidmore-Wilhelm Calibrator or an acceptable equivalent tension measuring device shall be required at each job site during erection. The Contractor shall submit to the Engineer a certification that the calibration device has been checked by qualified personnel acceptable to the Engineer within the previous thirty days. The device must also be checked for accuracy upon completion of the work on the project and proof of this certification must be submitted to the Engineer.

C. Shipping.

Bolts, nuts and washers from each rotational-capacity lot shall be shipped in the same container. If there is only one production lot number for each size of nut and washer, the nuts and washers may be shipped in separate containers. Each container shall be permanently marked with the rotational-capacity lot number such that identification will be possible at any stage prior to installation. Bolts, nuts and washers shall remain in their original container(s) until installation. If it is necessary to place the bolts in a different container, these new containers shall be labeled with all appropriate information and be shipped with a copy of the original documentation. The new containers shall be stamped by the Verification Inspector prior to shipping to the job site.

Nondestructive Testing.

Personnel performing radiographic, magnetic particle and dye penetrant tests shall be certified by a Level III technician who shall have attained certification by examination. Personnel performing radiographic, magnetic particle and dye penetrant tests shall be qualified in accordance with the current edition of the American Society for Nondestructive Testing, Recommended Practice SNT-TC-1A. Only individuals qualified for NDT Level II and certified as noted above may perform these tests.
When ultrasonic testing is required, it shall be performed by technicians who meet the Level II qualifications above and who shall be qualified by a written examination and performance test administered by the Engineer. The Engineer, at their discretion, may accept other properly documented certifications and tests.

Nondestructive testing shall be performed by the Contractor in accordance with the procedures and standards set forth in the AASHTO/AWS Bridge Welding Code or other applicable code. The Department reserves the right to perform additional testing at its own cost during fabrication and up to final acceptance of the project. All welding must meet acceptable quality standards which are defined by the acceptance criteria for the particular test method.

All nondestructive testing shall be witnessed by the Department’s Verification Inspector. Certification that all tests were performed in the presence of the Inspector shall be furnished to the Engineer. In addition to that required by the Bridge Welding Code, all radiographs shall be identified as to date, bridge number and girder or beam number. All costs for these tests, including necessary rework and repair, shall be at the Contractor’s expense. A copy of all NDT reports shall be given to the Verification Inspector.

Heat Cambering and Curving.

A. General.

The Maximum allowable temperatures when applying heat to the steel is 1,200°F for AASHTO M 270M/M 270 Grades 250, 345 and 345W (Grades 36, 50 and 50W) steels and 1,100°F for AASHTO M 270M/M 270 Grades HPS345W and HPS485W (HPS50W and HPS70W) steels.

Bending and curving may be accelerated by the use of external forces (preload). The stresses induced due to the preload (including loads induced by the member weight) shall be limited to 25 ksi. Calculations showing the maximum external force to apply shall be submitted to and approved by the Engineer. The Contractor shall show the relationship between the maximum allowable external force and the maximum allowable stress. The external force shall be applied before heating and not increased by external means during heating or cooling. Jacks shall not impede contraction during the cooling phase and they shall not produce local buckling.

Heat patterns shall be marked on the steel prior to heating. The steel shall be brought to the appropriate temperature as rapidly as possible. Heating torches shall be manipulated to avoid overheating of the steel. Care shall be taken to avoid the buckling of relatively thin, wide plates.

The temperature of the steel shall be monitored with temperature sensitive crayons, pyrometers or infrared non-contact thermometers. The temperature shall be measured 5 to 10 seconds after the heating flame leaves the area to be tested. After the steel has cooled to 600°F, rapid cooling with dry compressed air or a water mist is permitted. Care shall be taken to avoid burns when using the water mist.

The steel shall be cooled to below 250°F before applying another set of heat patterns. When using V-heat patterns, a location may be reheated after applying at least three sets of heating patterns at other locations.
II.521 2020 Edition

B. Heat Curving for Sweep

When the radius is less than 1,000 ft, heat curving shall be performed with the web in the horizontal position or preload to induce stress prior to heating when curving with the web in the vertical position. When heating with the web vertical, the member shall be sufficiently supported so that the member will not deflect laterally, overturn or twist. Intermediate safety catch blocks shall be provided to prevent buckling or excessive local deformations.

C. Heat Curving for Camber

The member shall be supported when heating with the web in the vertical position. The supports shall be spaced to take maximum advantage of the dead load of the member and shall be placed prior to heating. If the web is in the horizontal position, care shall be taken when applying the external force and safety catch blocks shall be used to prevent sudden spring back of the beam in case the jacks slip.

ERECITION.

Within sixty days of the date of the Notice to Proceed, the Contractor shall submit an erection procedure. The submitted method of erection is subject to review, comment, and approval by the Engineer. The method must be submitted with a detailed procedure which includes drawings and calculations sufficient to enable the Engineer to determine the adequacy of the proposed method.

The method and all submissions shall be prepared under the supervision of a professional engineer, registered in Massachusetts, who is familiar with these Specifications, AASHTO, the work, and experienced in this technical field. All submitted sheets shall be stamped by the supervising Engineer.

As a minimum the following information shall be included in the submittal:

1. Plan showing the location of all roadways, utilities, railroad tracks and other appurtenances in areas of erection.
2. The location of cranes, both horizontally and vertically, and their operating radii.
3. Lifting equipment information including rating data. Information shall include counter weights to be used and boom capability. The manufacturer's rated capacity of the crane and of all lifting and connecting devices shall be adequate for 125% of the total pick load including spreaders and other material except that in the areas within the potential influence area of the crane where railroad, vehicular or pedestrian traffic has access, the rated capacity shall be adequate for 150% of the total pick load. The limits of the potential crane influence area shall be taken as circular areas with radii matching the boom length and radius points located at the boom pivot point. Crane capacity rating charts and the rated capacity of all lifting and connecting devices shall be clearly shown in the submittal. The 125% or 150% factors of safety are to be used in addition to any factors of safety used by the manufacturer to calculate the rated capacity.
4. The type, size and arrangements of slings, shackles or other lifting and connecting devices including relative technical data.
5. The order of lifts, repositioning of equipment and counterweights, and location and method of attaching deadmen.
6. Methods and materials for temporary structures or the strengthening or bracing of a member (either temporarily or permanently) for erection purposes.
The stresses shall be investigated at each stage of erection with allowance for wind pressure determined by Table 960.1.

Table 960.61-1: Wind Pressure Allowances

<table>
<thead>
<tr>
<th>Height of Members Above Ground (ft)*</th>
<th>Wind Pressure (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beams & Girders</td>
</tr>
<tr>
<td>15</td>
<td>21.0</td>
</tr>
<tr>
<td>30</td>
<td>25.5</td>
</tr>
<tr>
<td>50</td>
<td>28.0</td>
</tr>
<tr>
<td>100</td>
<td>32.0</td>
</tr>
<tr>
<td>300</td>
<td>39.0</td>
</tr>
</tbody>
</table>

*For heights not given wind pressures shall be interpolated.

Curved girders and long span straight girders shall be stabilized with falsework, temporary braces, or holding cranes until a sufficient number of adjacent girders are erected with all diaphragms and cross frames connected to provide necessary lateral stability. All trusses shall be erected on falsework. The falsework shall provide for proper camber and alignment and shall be properly designed, constructed, and maintained for the loads that will be imposed upon it. When erecting trusses, the falsework shall be left in place until all connections are bolted and accepted by the Engineer. Care shall be taken in the use of falsework and other temporary supports to insure that the temporary elevation of structural steel provided by the falsework is consistent with the deflections that will occur as the structure is completed.

In instances where falsework is required by the contract or proposed as part of the erection procedure, it shall be properly designed, constructed, and maintained for the loads that it will bear. Plans for falsework along with necessary engineering data shall be submitted to the Engineer for review, comment, and approval under the same guidelines as the erection procedure. Plans, details, and calculations shall be submitted to the Engineer in those instances where changes in an existing structure are necessary to maintain traffic.

The Contractor shall keep a full record of piles driven for falsework. If the Contractor does not make a pile loading test, the pile bearing formulas of 940.61: Driven Pile Capacity shall be used to determine the bearing values.

Erection drawings shall show bolting or welding procedures necessary to complete erection. Procedures shall include sequence and method of connecting main members and secondary members. For stringer and girder spans, the following minimum information shall be included in the notes, modified as necessary to conform to design and erection requirements for each structure:

1. Splices and field connections of main stress carrying members shall be made with a minimum of 50% of the holes filled with approved high strength bolts and erection pins before the external support system is released. At least one-half of this percentage shall be bolts, tightened to specification requirements. The bolts and pins shall be installed uniformly throughout the connection except that erection pins shall be used in the extreme corners of all main connections.
2. Members to be assembled on the ground before erection shall be blocked to their proper “no load profile” and 100% of the approved high strength bolts shall be installed and tightened to specification requirements before erecting the member.
3. All diaphragms and crossframes shall be installed between stringer lines as the work progresses.
4. Dimensions indicated at expansion joints and similar construction are determined for a temperature of 50°F. Proper adjustments must be made when the structure is placed at any other temperature.

After the erection of beams and girders has been completed, expansion bearing sole plates shall be re-aligned so that they will be centered at 50°F.

960.62: Preparation of Bridge Seats

The bridge seats for the bearing devices shall be prepared in accordance with 901.65: Finishing and Curing, Paragraph A.3: Preparation of Bridge Seat Bearing Areas.

960.63: Painting

General.

The paint system used shall be approved by NEPCOAT. Prior to the start of painting, each batch of paint shall be sampled, tested and approved in accordance with Section M7: Paints, Protective Coatings.

For contracts requiring greater than 1,500 ft² of painted steel surfaces, the contractor or subcontractor performing surface preparation, and field coating of structural steel in the field must be prequalified by the Department in the Painting (Structural) category. For surface preparation and painting in the shop a current AISC Sophisticated Paint Endorsement (SSPE) or SSPC QP3 certification is required.

The prime coat shall be applied in the shop. The remaining coats may be applied in the shop or in the field at the Contractor’s option.

Structural steel meeting AASHTO M 270M/M 270 Grade 345W (50W), Grade 485HPS (70HPS) and other weathering steels shall not be painted except when and where specifically called for on the plans. When weathering steel is painted, the finish coat color shall conform to Federal Standard 595B, “Colors Used in Government Procurement”, color chip no. 30045.

All structural steel surfaces excluding the surfaces of weathering steel that is to remain uncoated, shall receive three coats of paint. All surfaces of this steel that come in contact with concrete shall be painted with the prime coat only. If the entire paint system is applied in the shop, the steel surfaces in contact with concrete shall receive all three coats. Surfaces not in contact but inaccessible after assembly erection shall be painted in the shop with the prime coat followed by one coat of coal tar epoxy polyamide paint (M7.05.21) having after application a minimum dry film thickness of 8 mils.

The flange surfaces to which shear studs are to be field welded shall receive a mist coat of the prime coat, having after application a minimum dry film thickness of 1 to 1.5 mils.
The faying surfaces of all field bolted splices and other faying surfaces, except weathering steel in areas where no paint is specified, shall have the faying surfaces painted with the prime coat only. This prime coat shall have a slip coefficient of Class B.

Application of organic zinc, epoxy, and urethane systems shall not be done when the relative humidity is above 85% or when the surface temperature of the steel is less than 5°F above the Dew Point. Paint shall not be applied when the surface temperature is below 40°F or when the surface temperature is above 125°F.

Paint shall not be applied when, in the Engineer's judgment, conditions are or will become unsatisfactory for application and proper cure. All changes as to the application parameters other than specified must be the manufacturer's and presented in writing and approved by the Engineer. Ambient conditions should be closely monitored so that proper cure/drying is achieved prior to recoat. In no case shall a succeeding coat of paint be applied before the previous coat has cured/dried sufficiently for recoat as per manufactured data sheet.

Measurement of the ambient conditions shall be done in accordance with ASTM E337 Test Method for "Measuring Humidity with a Psychrometer" (the Measurement of Wet and Dry bulb Temperatures).

All coats of paint shall be from the same manufacturer. The colors of the shop coat, second coat, and the top coat shall have a definite color contrast between them. The prime coat shall be tinted red or green so as to contrast with the blast cleaned steel.

The application contractor is required to conduct and document QC inspection of the cleaning and painting operations including, at a minimum, measurements of ambient conditions, surface profile, surface cleanliness, coating material acceptability, dry film thicknesses, and visual inspection for coating defects. The data shall be recorded in an applicator log maintained at the painting site and be available for the Owner's review during working hours. This applies to the application of all three coats.

The Contractor shall supply mechanical paint mixers on the job. Paints shall be mixed in clean containers and agitated thoroughly before drawing off paint through a strainer into the painter's buckets or spray machines. Paint shall be kept thoroughly stirred in spray pots or containers during application and the zinc rich primers shall have continuous agitation.

Paints specified are formulated ready for application and if for any reason it is necessary to thin the paint, the method used shall not produce a dry film thickness less than that specified. The method used to thin the paint and the thinner used.

The steel shall not be shipped from the shop to the field in less than 2 days after the application of the last coat of paint.

Bolts nuts and washers shall be solvent cleaned and dried prior to painting.

The contractor shall take appropriate precautions to avoid damaging the coating during erection.

After erection and after the finish coat of paint has been applied, the date (year, month) of painting and the bridge and BIN numbers shall be stenciled on the bridge as directed by the Engineer. The characters shall be 3 in. in height and be furnished by the Contractor at their expense.
Prime Coat.

Steel shall not be painted until shop fabrication is complete. All welds shall be cleaned thoroughly in accordance with good practice and shall have a suitable surface to accept the primer. There shall be no evidence of oil, grease, dirt or other foreign matter on the steel. All surfaces shall be returned to an SSPC SP10 condition. The steel shall have a surface profile of 25 µm (1 mil) minimum and 75 µm (3 mils) maximum measured with a profile depth tape and micrometer. Profile depth tape measurements shall be retained and submitted for the Engineer’s approval. The abrasive cleaning material shall meet the requirements of SSPC-AB 1, “Mineral and Slag Abrasives”, SSPC-AB2, “Cleanliness of Recycled Ferrous Metallic Abrasives”, or SSPC-AB 3, “Newly manufactured or Re-Manufactured Steel Abrasives”, and the condition and cleanliness of the recycled abrasives shall be checked daily or as directed by the Engineer.

All sharp corners shall be broken prior to final cleaning (profiling) and prime painting. Sharp corners may usually be removed by a single pass with a grinder. Thermal cut edges (TCE) to be painted shall be ground before final cleaning (profiling).

To provide adequate film thickness in areas or places prone to breakdown, edges, corners, bolts, nuts, and welds shall be striped by brush painting. The paint when applied, shall be so manipulated under the brush as to produce a uniform even coating, conforming to the dry film thickness, as specified by the manufacturer on the surface being painted. Stripe coating of the primer shall be completed prior to the application of the full prime coat. The steel shall then receive one shop coat having after application a minimum dry film thickness of 75 µm (3 mils). Paint shall not be applied to shop contact surfaces. Machined finished surfaces, except abutting joints and base plates, shall be coated with a material suitable to the Engineer.

Intermediate and Finish Coat.

The steel painted in the shop or field shall receive an intermediate coat having after application a minimum dry film thickness of 100 µm (4 mils). Within 24 hours of the application of the intermediate coat, the steel shall receive the finish coat having after application a minimum dry film thickness of 75 µm (3 mils). The manufacturers’ recommendations for recoating shall be followed.

When the erection of the steel is fully complete and the intermediate and finish coats are to be put on in the field, all adhering rust, scale, concrete, dirt, laitance, grease, welding flux and slag, white rust or other foreign matter shall be removed from the steel. Immediately after cleaning of the steel has been done to the satisfaction of the Engineer and prior to the application of the first field coat of paint, all steel surfaces that require painting (bolts, welds, etc.); the base metal that has become exposed; or any surface from which the shop coat has become defective shall be thoroughly covered with one coat of the same paint used in the shop. The minimum dry film thickness after application shall be 75 µm (3 mils).

When the erection of the steel is fully complete and the intermediate and finish coats were put on in the shop, all adhering rust, scale, concrete, dirt, laitance, grease, and other foreign matter shall be removed from the steel. Damaged coating shall be touch-up with the same finish coat that was used in the shop. Exposed steel surfaces including but not limited to bolts and weld metal shall be thoroughly cleaned as stated above and painted in the field with the primer, intermediate and finish coats. The minimum dry film thickness shall be 75 µm (3 mils) for the primer.
Minor coating defects, handling damage and other occasional nonconformances, and destructive test sites shall be repaired in accordance with SSPC-PA 1 and/or the manufacturer’s recommendations. The applicator shall submit repair procedures for substantial damage, significant defects, or widespread (gross) nonconformances in the coating for the Engineer’s approval. Repairs to the topcoat must result in an acceptable, uniform gloss and color. The Engineer shall have final authority concerning the coating’s uniformity and acceptable appearance.

In order to avoid subsequent discoloring or staining due to dripping or running of concrete, the field coats of paint shall not be started until all concrete nearby has been placed and all forms have been removed. Concrete, stone, masonry and other parts of the structure that are not to be painted shall be fully protected by covers during the painting operations. Full protection shall be provided in the field for all private property.

Environmental Protection Requirement for Field Painting.

The Contractor shall design, install, and maintain a containment system in accordance with 961.67: Containment.

960.64: Galvanizing

The following shall be hot dipped galvanized in accordance with Section M7: Paints, Protective Coatings:

1. Diaphragms, cross frames, utility supports and bottom lateral bracing elements that are composed of non-weathering steels or weathering steels designated to be coated.
2. All sole plates and masonry plates (except sole plates for sliding elastomeric bearings).

Galvanized members requiring shop fabrication and assembly shall be cut, welded, and/or drilled prior to galvanizing. Members to be milled shall be galvanized prior to milling. A thin layer of a rust inhibitor shall be applied to the milled surface.

Galvanized members that are to be welded after galvanizing shall be masked 1 in. (25 mm) on either side of the weld line prior to galvanizing. After welding, the weld areas shall be cleaned in accordance with the SSPC-SP3 “Power Tool Clean” and coated with “High Zinc Dust Content” paint meeting M7.04.11. The galvanizing shall be repaired in accordance with ASTM A780 “Repair of Hot Dip Galvanizing”. The paint shall be applied such as to achieve a dry film thickness of a minimum of 3 mils (76.2 µm) and not more than 5 mils (127 µm). Application methods shall be in accordance with the manufacturer’s recommendations.

960.65: Metallized Sole Plates for Sliding Elastomeric Bearings

This work shall consist of surface preparation and the application of thermal sprayed metal coating (metallizing) on structural steel sole plates for sliding elastomeric bearings. The metallizing process shall consist of melting metal and spraying it on to a prepared surface by means of compressed gas. All steel surfaces shall be metallized with the exception of the area over which the stainless-steel mating surface is to be welded to the sole plate and the 1-in. wide strips where the sole plate is to be welded to the flange.

The surface preparation shall be accomplished in accordance with the requirements of the SSPC SP1 for Solvent Cleaning and SP10 for Near White Blast Cleaning. The surface preparation shall result in a 50 to 100 µm (2 to 4 mils) blast profile as determined by the Engineer. The average
surface profile produced by the contractor’s surface preparation procedures will be determined at
the beginning of the work and as required by the Engineer using a profile depth tape and
micrometer. Profile depth tape measurements shall be retained and submitted for the Engineer’s
approval. Single measurements less than 50 µm (2 mils), or greater than the specified maximum for
the metallizing system used will be considered unacceptable. Areas having unacceptable
measurements will be further tested to determine the limits of the deficient area. If unacceptable
profiles are provided, work will be suspended. The Contractor shall submit a plan for the necessary
adjustments to ensure the correct surface profile on all surfaces. The contractor shall not resume
work until authorized by the Engineer.

The abrasives used shall be hard and sharp in order to produce an angular surface profile.
Acceptable abrasives include but are not limited to, angular aluminum oxide, angular steel grit and
angular crushed slag. Silica sand shall not be used. Steel shot and other abrasives producing a
rounded surface profile are not acceptable. However, the steel can be preblasted with shot provided
that the entire surface is reblasted with angular abrasives. All metallizing shall occur within 4 hours
of completion of blast cleaning.

The thickness of the metallizing shall be 200 to 250 µm (8 to 10 mils), measured as specified by
SSPC-PA2. All metallizing work shall be performed by a company with at least five years of
experience in the field of metallizing structural steel.

The spray requirements shall be according to the SSPC CS-Guide 23.00 “Guide for Thermal Spray
Coatings (Metallizing) of Aluminum, Zinc, and Their Alloys and Composites for the Corrosion
Protection of Steel” and the ANSI/AWS C2.18 “Guide for the Protection of Steel with Thermal
Sprayed Coatings of Aluminum and Zinc and their Alloys and Composites.”

To produce the required thickness and uniformity, a minimum of two passes are required,
overlapping and at right angles to each other. The gun shall be held at such a distance from the
work surfaces that the metal is still plastic on impact, 5 to 9 in. The coating shall be firmly adherent
and free from uncoated spots, lumps, or blisters, and have a fine sprayed texture.

The Contactor is required to provide facilities to protect the finished metallized surface from
damage during the blasting and thermal spraying work operations on adjacent areas. All damaged
areas shall be properly repaired and remetallized by the contractor. Surfaces not intended to be
metallized shall be suitably protected from the effects of cleaning and metallizing operations. To the
maximum extent practicable, metallizing shall be applied as a continuous film or uniform thickness
free of pores. All thin spots or areas missed in the application shall be remetallized.

After field welding the sole plate to the flange the weld shall be cleaned and painted with a high zinc
content paint in accordance with 960.64: Galvanizing.

960.66: Stud Shear Connectors

General.

Welding of stud shear connectors shall conform to the latest edition of the AASHTO/AWS Bridge
Welding Code.

All stud shear connectors applied to flanges of beams or girders shall be field installed.
Workmanship.

At the time of welding, the studs shall be free from any rust pits, scale, oil or other deleterious material that would adversely affect the welding. The area of the beams or girders to which the studs are welded shall be free of rust and scale.

The arc ferrules shall be kept dry. Any ferrules that show signs of moisture shall be oven dried at 250°F for two hours before use.

After welding, the studs shall be free of any discontinuities that would interfere with their intended function.

Longitudinal and lateral spacing of studs with respect to each other and to edges of beam or girder flanges may vary a maximum of 1 in. from the location shown on the drawings. The clear distance between studs shall not be less than 4 diameters center to center. The minimum distance from the edge of a stud base to the edge of a flange shall be the diameter of the stud plus $\frac{1}{8}$ in., but preferably not less than 1.5 in.

Preproduction Testing.

Before production welding begins and at the beginning of each shift thereafter, testing shall be performed on the first two studs that are welded for each particular set-up, size and type of stud. All test studs shall be welded in the same position as required in production.

The test studs shall be visually examined and shall exhibit a full 360-degree flash.

The test welds shall also be mechanically tested by bending the studs approximately 30 degrees. The weld or stud shall not fail.

If either of the above tests fail, two more studs shall be welded to separate material and tested again.

Technique.

Stud shear connectors shall be welded to steel beams or girders with automatically timed stud welding equipment connected to a suitable power source of direct current electrode negative (DCEN) power. If two or more stud welding guns are to be operated from the same power source, they shall be interlocked so that only one gun can operate at a time and so that the power source has fully recovered from making one weld before another weld is started. The power source shall be adequate to meet the requirements of the size of stud being welded.

While in operation the welding gun shall be held in position without movement until the weld metal has solidified.

When the temperature of the base metal is below 32°F, one stud in each 100 studs welded shall be bent 15° in addition to the first two bent. Welding shall not be done when the base metal temperature is below 0°F.

Operator Qualification.

The equipment operator is qualified by passing the preproduction test.
Production Welding.

Studs on which a full 360° weld is not obtained may be repaired, at the option of the contractor, by adding the minimum size fillet weld in place of the missing flash. The repair shall extend at least \(\frac{3}{8} \) in. beyond each end of the discontinuity being repaired.

Removal of unacceptable studs in tension areas:

1. Base metal from which an unacceptable weld is removed shall be ground smooth.
2. If the base metal has been pulled out during removal of the stud, the area shall be repaired using an approved SMAW welding procedure and ground smooth.

Removal of unacceptable studs in compression areas:

1. If the failure is in the shank or weld fusion zone, a new stud may be welded adjacent to it in lieu of repair or replacement.
2. If the base metal is pulled out, the repair is the same for tension areas except that if the depth of the discontinuity is less than \(\frac{1}{16} \) in., the discontinuity may be faired by grinding.

Base metal shall be preheated to: 50°F for base metal thickness up to and including ¾ in.; 70°F for base metal thickness up to and including 1.5 in.; 150°F for base metal thickness up to and including 2.5 in.

If the reduction in the height of the studs as they are welded becomes less than normal, welding shall be stopped immediately and not resumed until the cause has been corrected.

Inspection.

If visual inspection reveals any stud which does not show a full 360° flash or which has been repaired by welding, such stud shall be bent 15° off the vertical. For studs showing less than a 360° flash, the direction of bending shall be opposite to the lack of weld. Studs that crack either in the weld or shank shall be replaced.

Studs that are tested and show no sign of damage may be left in the bent position.

The Engineer, at their option, may select additional studs to be subject to the bend test specified above.

If during the progress of work, inspection and testing indicate, in the judgment of the Engineer, that the stud shear connectors are not satisfactory, the Contractor will be required at their expense to make such changes in the welding procedure, welding equipment and type of stud as necessary to secure satisfactory results.

COMPENSATION

960.80: Method of Measurement

Payment will be based only on computed weights (masses) of steel complete in place in the structure. No additional allowance in mass will be made for the shop coat of paint or for any other coat of paint or other protective covering.

The weight of the rolled shapes and of the plates, regardless of the width of the plates, shall be computed on the basis of their nominal mass and of their dimensions as shown on the approved...
shop drawings, deducting for cope and cut, and for all open holes that are not to be filled with rivets, bolts or plug welded.

Steel for expansion assemblies at the roadway level of bridges and similar structures (whether or not attached to the structural steel of the deck) and bronze or other metal for expansion bearings, drainage troughs and baffles, shall be included in the mass to be paid for as structural steel. Where no separate items are in the contract for galvanized nose angles on piers, or curb plates or angles in bridge curbs, such steel will be paid for by the pound as structural steel, with no additional compensation for the galvanizing.

The computed weights shall not include the weight of welds. The density of the various metals shall be assumed as follows:

- Steel (Structural, Cast, Galvanized) .. 490 pcf
- Cast Iron .. 450 pcf
- Bronze ... 542 pcf

The weight of the nuts and heads of bolts shall be included in the computed weight, assuming the weight to be as shown in Table 960.80-1.

Payment for bolt heads and nuts will be made by the pound. Where rivets are used in the permanent construction, the heads of the rivets shall be considered, for purpose of payment, as bolt heads for bolts equal in diameter to the rivets, regardless of the material of which they are composed or the materials to which they fasten.

All permanent washers will be paid for by the pound. The shank of a bolt will be considered as part of the material through which it passes and will be paid for as that material. No allowance or payment will be made for that part of a bolt shank that extends through and past the nut.

| Table 960.80-1: Assumed Weight of Nuts and Heads of Bolts |
|---------------------------------|-------------------------------|
| Diameter of Bolt (in.) | Weight per 100 Bolts (Heads & Nuts) (lb) |
| ½ | 4 |
| ⅜ | 7 |
| ⅜ | 12 |
| ⅝ | 18 |
| 1 | 26 |
| 1 ⅛ | 36 |
| 1 ⅜ | 48 |

960.81: Basis of Payment

The furnishing, fabricating, erecting and coating of all structural steel and all metal work for the structure not otherwise provided for, will be paid for at the contract unit price per pound under the item for structural Steel, complete in place.

To avoid delay in computation of the weight for partial and final payment, the Contractor shall submit their computations for the steel shown on each of the approved shop drawings as soon as
practicable after the sheet has been approved. The computation by the Contractor shall show the weight for each member, except that duplicate members may be grouped together.

960.82: Payment Items

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>960</td>
<td>Structural Steel</td>
<td>Pound</td>
</tr>
<tr>
<td>960.1</td>
<td>Structural Steel – Coated Steel</td>
<td>Pound</td>
</tr>
<tr>
<td>960.11</td>
<td>Structural Steel – Uncoated</td>
<td>Pound</td>
</tr>
<tr>
<td>960.12</td>
<td>Structural Steel - M270 Grade 70HPS & 50HPS</td>
<td>Pound</td>
</tr>
<tr>
<td>999.960</td>
<td>Structural Steel on Hand</td>
<td>Pound</td>
</tr>
</tbody>
</table>

SUBSECTION 961: MAINTENANCE PAINTING OF STEEL BRIDGES

DESCRIPTION

961.20: General

This work consists of the surface preparation and painting of all steel, including but not limited to, the beams (girders), bearings, diaphragms, cross frames, hand railings, drainage systems, utility supports and lamp posts. The work also includes environmental protection and waste disposal.

The Contractor shall implement and maintain programs and procedures that comply with the requirements of this specification and all applicable standards and regulations. The Contractor shall comply with all applicable regulations even if the regulation is not specifically referenced herein. If a Federal, State or local regulation is more restrictive than the regulation of this specification, follow the more restrictive requirements.

Work shall also consist of the removal of all graffiti from concrete surfaces and the removal and disposal of debris on abutments and pier caps.

The Contractor shall provide the Engineer safe access and support to all parts of the structure for interim and final inspection of the bridge during cleaning and painting operations. This support shall include the necessary traffic controls, scaffolding, fall protection and lighting.

All Contractors and Subcontractors performing lead-based paint removal, containment and collection, surface preparation, and coating of structural steel must be prequalified by the Department in the Painting (Structural) category.

MATERIALS

961.40: Materials

Coatings systems shall conform to the requirements of M7.02: Structural Paint.

961.41: Inspection Equipment

Prior to the start of any cleaning or painting operations, the contractor shall furnish the following inspection equipment to the Engineer:
4 Wet Film Thickness Gauges (notch type, as specified in ASTM D4414, procedure A)
1 Dry Film Thickness Gauge - type two, with memory and download capabilities (Posi-Tector 6000, Elecometer 345, Quanix or approved equal)
1 Sling Psychrometer with two replacement thermometers (Bacharach, Taylor, Ertco or approved equal)
1 National Weather Bureau psychrometric tables
1 Magnetic Surface Temperature Thermometer, calibrated/certified, range 0°F to 150°F
1 Spring loaded micrometer for reading surface profile tape
* Course and x-course profile replica tape
1 Surface Profile Comparator, comprised of, 10x flash light magnifier and 1 grit/slag disc or coupon, Keane-Tator, Elcometer, Clemtex or approved equal.
* Quantitative soluble contaminants test kit (Bresle, Chlor*Test, or approved equal)
1 Inspection mirror, telescopic with a mirror surface of 10 in.²
* Blotter Paper for compressed air testing
9V lantern
1 High/Low Recording Thermometer (for paint storage area)
Incline Manometer
Velometer
1 Light Meter
1 SSPC VIS 1 Standards
1 SSPC VIS 3 Standards
* A quantity sufficient for required testing.

All equipment shall be in usable condition and complete with all necessary components and instructions for the proper calibration and function. Equipment found to be incomplete or unable to be field calibrated, shall be immediately replaced. All equipment shall remain the property of the Contractor upon completion of the project.

CONSTRUCTION METHODS

961.60: Surface Precleaning

Pressure washing is required for all surfaces of the structure that are to be painted. Prior to pressure washing, the Contractor shall remove all accumulated debris from abutments, pier caps, girder flanges and other areas of collection. Debris may include but are not limited to, sand, gravel, bituminous materials and bird droppings. The method of removal shall allow for the collection and proper disposal of the debris.

All water used for pressure washing shall be potable and supplied by the Contractor.

Water from pressure washing operations shall be collected, filtered, and tested for toxic metals.

Pressure washing shall not be performed more than seven days prior to the start of surface preparation. Prior to the start of surface preparation, the Engineer will inspect the cleaned surface to ensure that it is acceptable. The Contractor shall reclean unacceptable surfaces in the specified manner.

Portable pressure washing equipment shall be operated at a minimum of 3,000 psi, a water temperature of 200°F and a minimum consumption of 6 gallons per minute shall be used to clean all surfaces to be painted of visible and non-visible contaminants. Pressure washers shall be
equipped with gauges to ascertain operating pressure and temperature. The use of an oscillating or rotary type nozzle is recommended for all washing.

The Contractor shall use a water-based, phosphate free, biodegradable cleaner, which has a pH of 9 to 11. The cleaner shall also be, non-flammable and non-reactive. RMS shall approve all cleaning solutions. Each pressure washing unit shall have a cleaning compound supply tank with the ability to control the amount of solution being supplied to the feed water. Cleaning solutions shall be used in strict accordance with the manufacturer’s written recommendations.

All dirt, oil, grease, tar, road salt, bird dropping residue, chalky paint and other dissolvable debris and contaminates shall be removed by pressure washing. Excessive deposits of cleaning liquids remaining on surfaces that will not drain shall be flushed off with clean, fresh water without detergent. In as much as a certain amount of liquid will remain on horizontal surfaces after cleaning, the cleaning process shall be followed through systematically from top to bottom. The last pass on any surface shall be made with clean fresh water without detergent to remove surplus solution.

The Contractor shall be solely responsible for damages arising from pressure washing operations. Expansion joints or open areas that will allow debris or water to pass shall be covered or sealed to protect vehicle and/or pedestrian traffic.

Under no circumstances will surface preparation or painting be started over cleaned surfaces until the surface is free of standing water and dry to the touch, and then only after the approval of the Engineer.

961.61: Surface Preparation

All equipment, materials and vehicles brought to the site by the Contractor shall be clean and free of debris. A visual assessment of cleanliness shall be made by the Engineer prior to locating equipment at the contract location(s).

All portions of the structure that could be damaged by surface preparation, abrasive residue, and painting operations, (e.g., utilities, bearings, machined surfaces, electric motors, wiring, and neoprene pads) shall be protected prior to the start of cleaning and painting operations. Any damage or reduced service life caused by the failure to protect areas or components of the structure shall be repaired or replaced at the Contractor expense.

The Contractor shall immediately report to the Engineer any cracks, section loss or other potential problems found during surface preparation.

After surface preparation all surface imperfections/discontinuities (e.g., sharp fins, sharp edges, weld spatter, burning slag, scabs. slivers, laminations, etc.) that remain shall be completely removed by grinding to the satisfaction of the Engineer. The Contractor shall restore surface profile if degraded by grinding.

Alternate methods of surface preparation that will provide the specified surface cleanliness and profile may be submitted to the Engineer for review for approval.

Prior to full operation of surface preparation, an acceptance standard for the preparation method(s) shall be prepared by the Contractor and approved by the Engineer. The surface for the standard (or control) should be a flat portion of the surface actually to be cleaned and shall be
located by the Engineer. The Engineer shall be the final authority in regard to determining whether or not a prepared surface meets the requirements of this specification.

To establish this standard, SSPC VIS-1 and VIS-3, shall be used as guides. An area not less than 2 ft x 2 ft shall be prepared to meet the requirements of the surface preparation method(s) to be utilized. After approval and at the option of the Engineer, the prepared standard will be sealed with a clear protective paint to preserve its appearance. Upon completion of the surface preparation and application of the primer, the standard will be re-prepared and coated in accordance with these specifications.

All laminar and stratified rust that has formed on the existing steel surfaces shall be removed. Pack rust formed along the perimeter of mating surfaces of connected plates or shapes of structural steel shall be removed to the extent feasible without mechanically detaching the mating surface. Extensive pack rust, buckled plates, and loose or missing bolts shall be brought to the attention of the Engineer before painting. Any pack rust remaining shall be tight and intact when examined after scraping with a dull putty knife.

A best effort with the specified methods of cleaning shall be performed in limited access areas. The equipment being used for the majority of the cleaning may need to be supplemented with other commercially available equipment, such as angle nozzles, to properly clean the limited access areas. The acceptability of the best effort cleaning in these areas is at the sole discretion of the Engineer.

961.62: Surface Cleaning Requirements for Overcoating

All steel except as defined under section entitled “Cleaning of the Bearing Areas” shall be spot cleaned SSPC SP-3 Power Tool Cleaning or SSPC SP-14 Industrial Blast Cleaning, the method of surface preparation shall be chosen by the Contractor. Regardless of the method used for cleaning, remaining old paint shall be feather edged so that the repainted surface will have a reasonably smooth appearance.

All steel within the width of the pier caps and abutments and a length from the end of the stringer to a distance 5 ft beyond the centerline of the bearing (from the top of the pier caps and abutments to the bottom of the bridge deck) shall be abrasive blast cleaned to meet the requirements of SSPC SP-10 “Near White Metal Blast.” This requirement is waived at bearing areas located at intermediate piers where there are no deck joints directly above.

961.63: Surface Cleaning Requirements for Full Removal

All surfaces to be painted shall be abrasive blast cleaned to meet the requirements of SSPC SP-10 “Near White Metal Blast” using recyclable steel abrasives.

A. Surface Profile.

Abrasive blast cleaned surfaces shall have a uniform profile of 25.4 to 76.2µm (1 to 3 mils). Verification of the profile height will be performed in accordance with ASTM D4417 Method C. If surface profile requirements of the coating manufacturer differ from those specified, the Contractor shall comply with the coating manufacturers requirements. Profile replica tape shall be filed with the project inspection records. The profile shall be measured three times in random locations at least every 500 ft² of prepared surface or as directed by the Engineer. The measured profile shall be approved by the Engineer.
B. Abrasives.

All abrasives brought to the site shall be stored in a clean and dry environment. The Contractor shall select the type of abrasive. Expendable abrasives shall be in accordance with SSPC AB-1, class “A.” Recycled steel grit shall be in accordance with SSPC AB-2, and recyclable steel abrasives shall be in accordance with SSPC AB-3.

The selected abrasive shall be sufficient to produce a profile within the range specified. The profile shall be uniform and of sufficient angularity as to be acceptable by the paint manufacturer for the application of primer. The Engineer with the use of a surface profile comparator will randomly inspect angularity of the profile.

All abrasives will be maintained clean, dry and uncontaminated. The abrasive shall be tested daily for grease, oil or non-abrasive residue with a “vial test” using the following method:

A sealable jar is filled with distilled water, a sample of abrasive taken from the storage hopper or pressure vessel and is then added to the jar. The vial is shaken for one minute and allowed to set for five minutes. The vial is observed. If any oil or grease is floating on the top of the water or a cloudy condition exists, the abrasive will be considered contaminated.

Contaminated abrasives will not be used for surface preparation. Abrasive found to be contaminated shall be disposed of or recycled.

The use of proprietary additives to water or abrasive to generate a non-hazardous waste is not permitted.

C. Compressed Air.

All compressed air sources shall have properly sized and operational oil and moisture separators. Prior to the connection of the air to the blast pot(s), a desiccant filter drying unit or air dryer shall be installed. They shall allow air at the nozzle for blast cleaning, painting, or blow off to be oil free and moisture free. Compressed air shall have sufficient volume and pressure to accomplish the associated work effectively and efficiently.

A blotter test will be performed at the start of each day or shift by the Engineer to ensure that compressed air is free of oil and moisture. The Contractor shall supply all blotter paper. The compressed air will be tested for contaminants in accordance with ASTM D4285 “Detecting Oil or Water in Compressed Air.”

D. Substrate Cleanliness.

Upon completion of blast cleaning and prior to inspection, the Contractor shall vacuum and/or blow down under full ventilation and containment all surfaces to be inspected, providing areas for testing and to aid visual inspection of the substrate.

The prepared surface will be tested by the Engineer for chloride contamination using the required test kit and the manufacturer’s instructions for extracting and quantifying chloride levels. All test areas will be recorded for re-testing purposes.

A minimum of 5 tests per 1,000 ft² or fraction thereof completed in a given day shall be conducted at project start up. If results greater than 7 µg/cm² are detected, the surface shall be recleaned as specified and retested at the same frequency. If acceptable results are achieved on three
consecutive days in which testing is conducted, the test frequency may be reduced to one test per 1,000 ft² providing the preparation method remains unchanged. If unacceptable results are encountered, or the methods of preparation are changed, testing shall resume at a frequency of 5 tests per 1,000 ft². After testing and approval, the test areas shall be blast cleaned to the specified level of cleanliness and profile.

961.64: Paint

Paints and solvents are hazardous due to their flammability and potential toxicity. Proper safety precautions shall be observed to protect against these recognized hazards. Proper ventilation and handling shall be employed during mixing and application to insure that vapor concentrations do not exceed the published Permissible Exposure Limits (P.E.L.) and the Lower Explosion Limit (L.E.L.).

Prior to the application of any coating, all dust and debris shall be removed by vacuuming and/or blowing down under full ventilation and containment. Painting of the approved area will not be allowed until the area has been properly ventilated to remove all airborne dust.

Surface preparation and subsequent paint application shall be so programmed that dust and other contaminants from the cleaning process will not fall on surfaces about to receive paint, or on wet, newly painted surfaces.

Approved surfaces will not be allowed to stand uncoated longer than eight hours unless some form of protective environmental procedure is utilized, e.g., dehumidification. If substrate is found to have degraded, it will be recleaned in the specified method at the Contractors expense.

All surface preparation will be reviewed and approved by the Engineer prior to painting operations.

The finish coat shall be Federal Standard Color #14223, green.

The colors of the prime, intermediate and finish coats shall have a definite color contrast between them and be subject to the approval of the Engineer.

Minimum and maximum dry film thickness shall be in accordance with the latest manufacturer’s data sheet for each product applied.

A. Storage, Testing and Sampling.

The Contractor shall provide a suitable facility for the storage of paint that will be in accordance with the latest requirements of OSHA. This facility must provide protection from the elements and insure that the paint is not subjected to temperatures outside the manufacturer’s recommended extremes. Storage of the paint must be located in reasonable proximity to the painting location. The Contractor’s facility for the storage of paint and its location at the site are subject to the approval of the Engineer.

Before the Contractor will be permitted to use any paint, the material provided for application shall have been sampled, tested and approved in accordance with Section M7: Paints, Protective Coatings. RMS requires a minimum of 14 days after the receipt of samples to test and approve.
B. Mixing and Thinning.

Before the paint is applied, each component shall be mechanically mixed to ensure complete disbursement of the pigment. Mixing of components shall be accomplished by mechanical mixing or agitation, boxing or hand mixing of components will not be allowed. Any special precautions or requirements for mixing by the manufacturer shall be followed. Paint shall be kept thoroughly mixed in spray pots or containers during application. The pot life shall not be exceeded, or attempts made to extend pot life with the addition of solvent.

If it is necessary for any reason to thin paint it will be done in the presence of the Engineer, in accordance with the manufacturer's recommendations. Thinning must be performed using a measuring cup marked in ounces or milliliters. Other methods, such as eyeballing, are not acceptable. Thinner shall be supplied from the same manufacturer as the paint system.

For multi-component paints, the mixing of half or partial kits is not allowed. If the need for small quantities of paint is anticipated, the contractor should order materials accordingly.

C. Application.

All necessary precautions shall be taken to protect pedestrians, vehicles, concrete areas, and any other areas not to be painted. All paint overspray, mist and or dust shall be collected and filtered with collection equipment.

Prior to the application of any coating material, the Engineer's approval must be obtained. All surfaces painted prior to the Engineer's approval, shall require the complete removal of the coating applied. All labor, materials, and associated costs with the removal of any unapproved coating shall be done at the Contractor's expense to the satisfaction of the Engineer in accordance with these specifications.

Applied coatings shall not exhibit, runs, sags, holidays, wrinkling, pinholes, nap hair, topcoat gloss or color variations, or other film discontinuities.

Repair of unacceptable areas that involve removal of the coating system or part of it, shall require surface preparation and coating equal to that specified. Repair procedures used for any unacceptable coating shall be those supplied by the paint manufacturer and approved by the Engineer.

Application of full coats of paint shall be accomplished by spray equipment. Spray equipment shall meet the requirements of the coating manufacturer and be in proper working order.

Application by brush and roller will be limited to stripe coating, inaccessible areas and the application of the spot coat of primer. Brushes and roller covers recommended by the coating manufacturer shall be used. Areas brushed and rolled will have a uniform thickness and be free of defects and excessive coating thickness.

All coating shall be applied according to the latest manufactures written requirements. The maximum re-coat times of the primer, intermediate and finish coats shall not be exceeded.

Application of organic zinc, epoxy, and urethane systems shall not be done when the relative humidity is above 85% or when the surface temperature of the steel is less than 5°F above the Dew
Point. Paint shall not be applied when the surface temperature is below 40°F or when the surface temperature is above 125°F.

Application of moisture cure urethane systems shall not be done when the relative humidity is above 95% or when the surface temperature of the steel is less than 3°F above the Dew Point and rising. Paint shall not be applied when the surface temperature is below 35°F or when the surface temperature is above 125°F.

If requested by the Engineer, the Contractor shall provide written instructions from the coating manufacturer indicating the length of time that each coat must be protected from cold or inclement weather (e.g., exposure to rain) during its curing or drying period.

Paint shall not be applied when, in the Engineer’s judgment, conditions are or will become unsatisfactory for application and proper cure. All changes as to the application parameters other than specified must be the manufacturer’s and presented in writing and approved by the Engineer. Ambient conditions should be closely monitored so that proper cure/drying is achieved prior to recoat. In no case shall a succeeding coat of paint be applied before the previous coat has cured/dried sufficiently for recoat as per manufactured data sheet.

If required, contaminated surfaces, e.g., bird droppings, road debris shall be cleaned in accordance with SSPC- SP 1 Solvent Cleaning method 4.1.1.

Measurement of the ambient conditions shall be done in accordance with ASTM E337 Test Method for "Measuring Humidity with a Psychrometer" (the Measurement of Wet and Dry bulb Temperatures).

After Full Removal

The primer will be applied at a coverage rate that will result in a minimum dry film thickness recommended by the manufacturer, when measured in accordance with SSPC PA-2.

The primer shall not be cleaned of over spray or debris by wire brushing or methods that would burnish the surface.

When the primer has cured sufficiently for recoat, all bridge components to be painted shall receive a full intermediate coat.

To provide adequate film thickness in areas or places prone to breakdown, edges, corners, rivet heads, bolts, nuts, and welds shall be striped by brush painting. Stripe coating of the intermediate coat shall be completed prior to the application of the full intermediate coat.

Prior to the application of the finish coat, bearing areas as defined shall receive an additional intermediate coat at 3 mils Dry Film Thickness (DFT), spray applied. The additional coating will be applied from the end of the beam to a distance of 5 ft including all steel between the abutment cap and the bottom of the bridge deck and including end diaphragms.

All steel within the width and length of the intermediate pier(s) from the center of the pier to a distance of 5 ft in each direction on the stringers including all steel between the pier cap and the bottom of the bridge deck shall also receive additional second spray applied intermediate coating at 3 mils DFT, with the exception of the intermediate piers where there are no deck joints directly above.
When the intermediate coat has cured sufficiently for recoat, all bridge components to be painted shall receive the finish coat by spray application.

All prepared surfaces shall receive three full coats of paint (primer, intermediate, finish) and the additional (bearing area) intermediate coat of a system selected from the NEPCOAT “B” list, Protective Coatings for New and 100% Bare Existing Steel for Bridges.

All areas prepared by spot cleaning shall be spot primed with the selected systems primer. Spot priming shall be completed by brush and roller to provide complete coverage of irregular or pitted surfaces.

Areas spot cleaned in accordance with 961.62: Surface Cleaning Requirements for Overcoating shall be painted with an approved 2 or 3 coat NEPCOAT system selected from the "M" list, Protective Coatings for Previously Painted Existing Steel Bridges.

Overcoat - Two Coat Systems

When the primer has cured sufficiently for recoat, all bridge components to be painted shall receive a full finish coat by spray application.

Overcoat - Three Coat Systems

When the primer has cured sufficiently for recoat, all bridge components to be painted shall receive a full intermediate coat by spray application and when sufficiently cured a full finish coat by spray application.

Bearing areas cleaned in accordance with 961.62: Surface Cleaning Requirements for Overcoating, Part A., Cleaning of the Bearing Areas shall receive three full coats of paint. Application shall be in accordance with the Full Removal portion of this section. The coating system shall be selected from the NEPCOAT “B” list, Protective Coatings for New and 100% Bare Existing Steel for Bridges. Interface between different paint systems shall be vertically masked during the final coat to provide a neat edge on the fascia girders.

D. Measurement of Paint Thickness.

The Engineer will measure wet and dry film thickness with the following methods and standards.

Wet Film Thickness: Will be measured during application with a notch type wet film thickness gauge every 50 ft², in accordance with, ASTM D4414 Standard Practice for Measurement- Wet Film Thickness by V Notch Gages, procedure A.

Dry Film Thickness: Will be measured using a type II gauge. The prime, intermediate and the finish coats, shall be measured in accordance with SSPC PA-2, Measurement of Dry Coating Thickness with Magnetic Gages. The Engineer has the option to measure the dry film thickness of overcoated surfaces with the use of a Tooke gage or similar type instrument. Repair to areas cut to determine the DFT of new coatings will be done at the Contractor’s expense.

E. Bridge Identification Markings.

After the application of the finish coat of paint, the Contractor shall stencil the 3-character BIN, completion date (month and year), and the letter “F” to designate full clean and paint or “O” to designate clean and paint (overcoat). The information shall be applied on the steel in black on a
white base measuring 30 in. by 5 in., square, utilizing 2-in. numbers, when and as directed by the Engineer.

961.65: Worker Protection

The DEP and EPA regulate coatings containing toxic metals and the residue generated from the removal process as a hazardous waste. The Contractor shall comply with all Federal, State and municipal laws, regulations and ordinances that require the Contractor to provide for a safe and healthful work area for work to be performed by the Contractor under this Contract.

The Massachusetts Department of Labor and Workforce Development, Division of Occupational Safety, and the Federal Occupational Safety and Health Administration (OSHA) regulate the exposure to paint and debris containing toxic metals by workers involved in the removal of bridge coatings. Coatings removed from highway structures that contain toxic metals, has been shown to have serious health effects on workers if regulations and caution are not observed.

The existing structure(s) and components may be coated with a lead-based paint. Therefore, the Contractor shall be required to sample the existing coatings to determine the percent of lead and if other toxic metals are present. Within 30 days of the notice to proceed the Contractor shall submit a sampling protocol to the Engineer for approval. Upon approval of the protocol the Contractor shall sample and have analyzed in accordance with 310 CMR 30.155B (EPA SW846 Method 1311) the existing coatings.

The results of the testing shall be utilized in the development of the “Compliance Program” to protect workers from lead and toxic metals as required by Federal and State regulations. The remaining portion of this specification focuses on lead but requires the Contractor and the Certified Industrial Hygienist (CIH) to address other toxic metals.

The Contractor shall provide the Massachusetts Department of Labor and Workforce Development’s, Division of Occupational Safety, a written notification of the project. The notification shall be received at least ten days prior to the beginning of any contract operations and include: its location, start date and anticipated completion date. The Contractor shall also comply with all registration, license, and permit requirements.

Equipment noise in excess of 90 decibels or other local ordinances as measured at the closest residential, commercial or recreational area, shall be lowered by the contractor to a maximum of 90 decibels or other local ordinances. The use of sound barriers, mufflers or other equipment and materials used to lower noise levels shall be approved by the Engineer prior to installation and provided and installed at no additional cost to MassDOT.

A. Compliance Program.

The Contractor shall develop a written program under the direction and approval of a Certified Industrial Hygienist (CIH) to establish and implement practices and procedures for protecting the health of those employees exposed to lead. The Compliance Program shall establish methods for complying with any Federal, State or local regulations.
B. Services for MassDOT Representatives

The Contractor shall provide to not more than three representatives of the MassDOT, all the work place and worker protection requirements that the Contractor is required by law and regulations to provide to their own employees in order to maintain a safe and healthful work place.

Without limiting the Contractor’s responsibilities under the prior paragraph, the Contractor shall provide to not less than three representatives of the MassDOT Department the following services:

1. Training: an initial and annual refresher training as required by the appropriate OSHA standards; Hazard Communication training (29 CFR 1926.59), including proper handling and disposal of hazardous waste.

2. Blood Tests: initial and periodic blood and zinc protoporphyrin (ZPP) sampling and analysis, and medical surveillance as required by OSHA health and safety standards for lead; verify that laboratories that conduct blood analysis meet the qualification requirements established by OSHA; conduct blood sampling and analysis within one month prior to the start of work and at a minimum of once every 2 months for the first 6 months of exposure, and a 6 months intervals thereafter; conduct blood tests within 5 days of separation and upon completion of the person’s project activities that involve exposure to lead, even if this occurs prior to the completion of the Contractor’s work on the project; supply the Massachusetts Blood Lead Registry (MBLR) and Engineer with the results of all blood tests prior to commencement of work; subsequent blood lead test results shall be supplied to MBLR and the Engineer within ten days of receipt; only certified laboratory copies of test results from OSHA-CDC approved laboratories may be submitted to MassDOT and the Department of Labor and Industries, Division of Occupational Hygiene, with more frequent testing to be done as required, in accordance with this specification and 29 CFR 1926.62; evaluate effectiveness of protection practices whenever a 10 µg/dl blood lead level increases between two results, or a single result in excess of 20 µg/dl.

3. Physical Exams: provide all physical examinations as required by the appropriate OSHA standard for lead.

4. Respirators and Protective Clothes: provide respirators to those who enter areas where airborne exposures exceed or are expected to exceed the Permissible Exposure Limit (PEL) or Threshold Limit Value (TLV); provide protective clothing and equipment to those whose exposure exceed the PEL or TLV.

5. Lavatory and Hand Washing Facility: provide clean lavatory and hand washing facilities in accordance with OSHA sanitation standard 29 CFR 1926.51 and provide showers when the exposure limit exceed the PEL or TLV.

C. Signs and Daily Logbook.

Signs warning that lead paint removal operations are being conducted shall be posted at all approaches to the work areas and in areas where workers will be exposed to concentrations above the PEL. At a minimum, such signs shall include the words:
The lettering shall be black block, no smaller than 3 in. tall, and on a white, yellow, or orange background. Caution ribbons shall also be used where appropriate.

A daily sign in/out log which identifies persons by name, address, and affiliation, or work classification for all employees with the project, and the times of arrival and departure must be maintained at the work site, and submitted to the Engineer on a weekly basis when lead paint removal operations are being performed.

961.66: Environmental Protection and Monitoring

The Contractor shall comply with all Federal, State and municipal laws, regulations and ordinances that require protection of the environment, including laws and regulations whose purpose is to prevent contamination and pollution of the air, water and soil in and surrounding the work site, where lead paint being removed from a bridge under this contract is subject to abatement, containment, transportation and disposal.

A. Air Quality.

Baseline Monitoring

Pre-project monitoring shall be performed for a minimum of two days while no paint removal work is underway in order to establish baseline levels. Emissions from the project site will not be penalized by existing baseline levels. If the baseline levels are highly variable, the Engineer may require that periodic or full-time upwind monitoring be conducted. Include provisions for such monitoring in 961.69: Submittals, Paragraph B.

High Volume Ambient Air Monitoring

High volume ambient air monitoring shall be conducted in strict accordance with the requirements of 40 CFR 50, 310 CMR 7.00, and the equipment manufacturer's instructions.

The Contractor shall submit methods and procedures for locating the monitors, calibrating and conducting baseline and project monitoring, and completion of chain of custody forms. Include the name and qualifications of the State-certified laboratory proposed for use, and the test methods that will be utilized for the analysis of the filters.

Conduct the following monitoring activities under the observation of the Engineer: locating and calibration of the monitors, daily removal and replacement of the filters, and completion of the chain of custody forms.

TSP Lead Monitoring

The monitoring shall be in accordance with 40 CFR 50 for 5 out of the first 10 days at the beginning of each project location while paint removal, containment movement, and cleanup activities are
underway. Monitoring during paint application is not required, and if performed, will not be counted as one of the 5 days of project monitoring.

The monitors shall be placed at the point of maximum environmental impact (usually downwind of the cleaning operation) and other locations of potential public or environmental exposure. Monitors shall be moved to maintain this condition due to shifting wind patterns.

For TSP-lead monitoring, emissions in excess of the value attained by the following formula or exceeding 150% of background levels shall be cause to shut down the project until the work activities and/or containment are modified to provide better control of emissions.

\[DA = \left(\frac{90}{PD} \right) \times 1.5 \, \mu g/m^3 \]

Where:
- \(DA \) = the Daily Allowance in \(\mu g/m^3 \)
- \(PD \) = the number of preparation or paint disturbance days anticipated in a 90 day period

The above calculation provides an allowance criteria for a 24-hour period. In order to convert this value to an allowance corresponding to the hours worked, do the following:

\[ADA = DA \times \left(\frac{24}{H} \right) \]

Where:
- \(ADA \) = the Adjusted Daily Allowance in \(\mu g/m^3 \)
- \(DA \) = the daily allowance in \(\mu g/m^3 \)
- \(H \) = the hours work in 24 hours

If the emissions are unacceptable at the end of the 5 days of monitoring, or a trend of exceedances is apparent from the 5 days of monitoring, the monitoring shall continue at the contractor’s expense until 5 days of acceptable monitoring limits have been obtained.

After the initial 5 days of monitoring, if visible emissions are in excess of the stated duration for 2 days, additional monitoring shall be required for a period of 2 consecutive days of TSP monitoring. If the emissions are unacceptable after the 2 days of monitoring, the monitoring shall continue at the contractor’s expense until 2 days of acceptable monitoring limits have been obtained.

The Contractor shall conduct additional ambient air monitoring after periods of prolonged shutdown or following any significant changes in work practices.

Laboratory Analysis and Report

The Contractor shall have all filters analyzed for lead using a State-certified laboratory. The analysis shall be conducted in accordance with 40 CFR 50. The Contractor shall provide the Engineer with verbal results of the laboratory analysis within 72 hours after the monitoring was performed, with a written summary report within seven days.

Visible Emissions

The Contractor shall conduct visible emissions assessments in accordance with 40 CFR 60, Appendix A, Method 22. This assessment is based on total visible emissions regardless of the opacity of the emission.
Visible emissions are permitted at the following duration provided they do not extend beyond the established regulated areas. Random airborne emissions of a cumulative duration of no more than 1% of the workday are permitted. This amounts to a duration of 5 minutes in an 8-hour workday. Visible emissions in excess of this criterion are cause for immediate project shut down until the cause of the emissions is corrected.

The visible emissions assessment will account for all locations where emissions of lead dust might be generated, including but not limited to, the containment or work area, dust collection and waste recovery equipment as applicable and waste containerizing areas. Observations and corrections of visible emissions and releases of dust debris are an ongoing daily requirement.

B. Soil Quality.

The Contractor shall not contaminate the soil. An approved impervious covering must be placed on the ground under the work and decontamination areas and under waste containers. In the event that it is not practical to place tarpaulins directly on the ground, shielding devices must be supported by suitable frame works to prevent falling contaminants from escaping.

Prior to the start of any work, the Contractor and the Engineer shall make a site inspection to determine the cleanliness of the area. Clean-up procedures that are required as a result of soil contamination caused by the Contractor shall be the responsibility of the Contractor. The Contractor shall pay all associated costs of the cleanup including, Licensed Site Professional services and documentation.

The Contractor shall perform a pre-job and post-job soil analysis for lead. The Engineer will select locations for sampling within the likely dispersion zone of airborne dust or spills of debris.

The number of sites will be sufficient to properly characterize project conditions. Particular attention will be paid to wind direction, height of the structure, and the dust-producing nature of the operation when selecting the sites. Samples around equipment, in debris containerizing areas, inside and around regulated areas, beneath and around the structure being prepared and other locations of potential public or environmental exposure will be included.

The Contractor shall collect samples prior to the commencement of activities in a given area (e.g., collect samples in equipment staging areas prior to mobilization in those areas, and collect samples around the structure prior to the erection of the containment). A plot plan showing actual locations of sample sites shall be given to the Engineer. Samples shall be collected in the identical locations upon completion of all project activities.

Sample Removal Criteria

The Contractor shall comply with the following minimum requirements for the collection of each sample:

a) Tools and resealable containers for the collection and storage of the samples shall be comprised of a material that will not contaminate the samples.

b) Place a 1 ft² template at each sample site. Remove plugs of ground (soil) measuring ¾ in. in diameter and ½ in. in depth from the four corners of the template and from the center. Place the 5 plugs into a single sample container. This represents a single sample from the test site.
Massachusetts Department of Transportation – Highway Division
Standard Specifications for Highways and Bridges

II.545 2020 Edition

c) Clean the sampling tool with deionized water and move the template 3 in. in any direction and collect a duplicate sample (5 plugs). Package the sample in a separate container.
d) Accurately measure and document the specific location of each sample site in order for the precise locations to be resampled upon project completion.
e) Identify each sample container with the following minimum information: date of collection, contract number, specific location of the sample, and name and signature of the person removing the sample. Complete a chain of custody record.

Repeat the procedure at each sampling location, cleaning the sampling tool prior to each use.

Acceptance Criteria for Ground (Soil) Analysis

The soil samples shall be analyzed for lead in accordance with EPA Method 3050 or approved equivalent method by a State-certified laboratory.

The ground (soil) is considered to have been impacted by project activities based on increases over the geometric mean pre-job lead concentration. If the geometric mean pre-job total lead concentration is less than 200 ppm, an impact is considered to have occurred if the post-job geometric mean lead concentration is an increase of 100 ppm or more. If the pre-job concentration is greater than 200 ppm, an impact is considered to have occurred if the post-job geometric mean lead concentration exceeds the pre-job geometric mean plus 2 standard deviations, or an increase of 100 ppm occurs, whichever is greater.

The Contractor shall provide the Engineer with verbal results of the laboratory analysis within 7 calendar days, and a written summary report within 14 calendar days after the sampling was performed.

C. Water Quality.

The Contractor shall take all necessary precautions to prevent debris due to paint related activities from entering the water. Any notification and clean-up procedures required to abate lead contamination in sediments or water shall be the responsibility of the Contractor. The Contractor shall protect all drains to prevent debris from entering the storm sewer system.

For bridges over water, the Contractor shall provide water booms, a method for anchoring the water booms and a procedure for removing the debris that inadvertently enters the water.

961.67: Containment

The Contractor shall design, install, and maintain a containment to retain water, debris, and paint used during cleaning, surface preparation, and coating operations. The containment shall be designed to reduce worker exposure to lead, protect vehicular traffic, pedestrians, and the surrounding environment.

Table 961.67-1 outlines the minimum requirements for containment design for various activities, such as: cleaning, surface preparation, and paint application. Containment classifications and descriptions are based on SSPC – Guide 6, Guide for Containing Debris Generated During Paint Removal Operations.
Table 961.67-1: Minimum Requirements for Containment Design

<table>
<thead>
<tr>
<th></th>
<th>Dry Abrasive Blasting, Class 1A</th>
<th>Power Washing or Wet Abrasive Blasting, Class 1W</th>
<th>Power Tool Cleaning (both vacuum-assisted and not), Class 2P</th>
<th>Coating Application, Class 3A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Materials</td>
<td>A1 Rigid or A2 Flexible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetrability</td>
<td>B1 Air Impenetrable</td>
<td>B1 Air Impenetrable and B3 Water Impenetrable</td>
<td>B1 Air Impenetrable</td>
<td>B1 Air Impenetrable</td>
</tr>
<tr>
<td>Support Structure</td>
<td>D1 Fully Sealed</td>
<td>D1 Fully Sealed</td>
<td>D2 Partially Sealed</td>
<td>D2 Partially Sealed</td>
</tr>
<tr>
<td>Entryway</td>
<td>E2 Re-sealable Door</td>
<td>E2 Re-sealable Door</td>
<td>E3 Overlapping Door</td>
<td>E3 Overlapping Door</td>
</tr>
<tr>
<td>Air Make-Up</td>
<td>F1 Controlled Air</td>
<td>F2 Open Air Supply</td>
<td>F2 Open Air Supply</td>
<td>F2 Open Air Supply</td>
</tr>
<tr>
<td>Input Air Flow</td>
<td></td>
<td>G2 Natural Input Air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Pressure</td>
<td>H1 Instrumentation and H2 Visual Verification</td>
<td>H3 Not Required</td>
<td>H3 Not Required</td>
<td>H3 Not Required</td>
</tr>
<tr>
<td>Air Movement</td>
<td>I1 Minimum Specified</td>
<td>I2 Not Specified</td>
<td>I2 Not Specified</td>
<td>I2 Not Specified</td>
</tr>
<tr>
<td>Exhaust Dust Filtration</td>
<td>J1 Air Infiltration</td>
<td>J2 Not Required</td>
<td>J2 Not Specified</td>
<td>J1 Air Infiltration</td>
</tr>
</tbody>
</table>

A. Engineering.

The Contractor shall provide plans and calculations detailing the proposed method of containment and ventilation. The plans shall include an elevation view of the containment enclosure clearly showing any encroachments on the surroundings. The vertical clearance shall be maintained above any active travel lanes.

The plans shall contain details of the method of sealing joints, the entrance/exit openings, air intake points (including filters, louvers, and baffles), type/placement of lighting systems, and connections to the bridge. Methods of attachment that require welding, drilling, bolting, or any methods requiring alteration of the structure or part of it, are not allowed.

The Contractor shall analyze the bridge to determine its ability to safely support the proposed containment system, vehicular traffic, and the Contractor's vehicles and equipment. The following calculations are required: the maximum dead and live load imposed on the bridge by the containment system, and the maximum allowable load for the floor/platform. The calculations shall include an analysis of the stresses in all affected members and applicable load rating capacities for Type H, Type 3, and Type 3S2 AASHTO truckloads. The stress limits for all loads shall not exceed 120% of the inventory level allowable stress.
If the containment system is suspended from the bridge, each connection to the bridge shall have a tension load cell attached. A multi-channel digital load indicator shall be connected to all load cells and located in an accessible area. The Contractor shall report load readings to the Engineer at scheduled intervals (or at times) directed by the Engineer. The load indicator shall be capable of storing peak load readings.

All containment systems shall be analyzed to determine the amount of stress applied to the bridge as a result of wind loads on the containment. The Contractor shall calculate an “allowable wind speed” which will be used, in the field, to determine the threshold for dismantling the containment system.

B. Material Requirements.

All tarps, drapes and plastic sheeting materials used for containment or ground cover shall be fire-retardant and impermeable to air and water. All materials shall be in good condition.

C. Lighting.

Light at the steel surface within the enclosure shall be maintained by the Contractor at a minimum of 30 fc as measured by a light meter. Such lighting shall be maintained throughout the surface preparation, painting, and inspection activities. The use of explosion-proof lighting is mandatory.

The Contractor shall maintain, as fully operational and functional, all existing lighting systems including navigation lights, aerial lighting, and roadway or parking lot lighting.

If existing lighting will be concealed, the Contractor shall install temporary lighting. A temporary lighting plan shall be included in the Contractor’s submittal and forwarded to the Coast Guard or FAA, if appropriate, for approval in advance of the work.

D. Field Operations.

All debris and abrasive, which have accumulated, as the result of surface preparation shall be vacuum cleaned at a frequency specified in the Contractor’s containment submittal, or more frequently if directed by the Engineer. Prior to removal or relocation to another point along the structure, all debris must be removed from the containment materials and equipment. The level of cleanliness shall be such that wind or physical contact during handling and transportation does not dislodge debris or dust.

E. Ventilation.

When negative pressure is required within a containment system, the designed system shall maintain a minimum negative pressure as measured by 0.76 mm (0.03 in.) of water column relative to external ambient air. Air velocity within the enclosure shall meet the minimum requirements of 30 m/min (100 ft/min) crossdraft and 18 m/min (60 ft/min) downdraft. Submittals shall include a description of the dust collection and filtration equipment, including the equipment data sheets and airflow capacity.

961.68: Handling of Hazardous Waste and Reporting Release Programs

The Contractor shall submit a plan to the Engineer detailing all aspects of waste management including an Emergency Response Contingency Plan in accordance with 310 CMR 30.00 and 310 CMR 40.00. The plan shall detail the methods for the collection, handling, sampling, testing, site
storage, and disposal of wastewater, lead paint and related debris. The Contractor and the Department are the co-generators of the waste. The Department will provide the EPA identification number and the Contractor is responsible for all other waste management.

A. Waste Sampling, Testing and Classification.

All waste streams generated as part of the work shall be tested by TCLP for all eight metals to determine proper disposal. The Engineer shall be the final authority on what shall be tested for possible contamination. Four samples representative of each waste stream shall be collected and tested in accordance with 310 CMR 30.155B (EPA SW846 Method 1311)

The Engineer must be notified of the date and time of sample collection prior to sampling activities. The Contractor, in the presence of the Engineer, shall perform sampling for testing and a State certified laboratory shall perform testing. Chain of custody must be adhered to for sample removal. TCLP test results certified by the testing laboratory shall be provided to the Engineer. The following information must be contained in the laboratory report as a minimum:

- Contract number
- Bridge Identification Number (BIN)
- Identification of the waste stream analyzed
- Number of samples collected and tested
- Dates of sampling and testing
- Defined laboratory test procedures
- The names and signatures of sampling technicians and laboratory technicians
- Summary of test results

The Contractor shall provide the Engineer with an original signed copy of the report no later than 10 days after the samples have been collected.

Non-hazardous waste shall not be mixed with hazardous waste. The DEP requires that a mixture of non-hazardous waste with hazardous waste must be treated as hazardous.

All debris cleaned and collected from abutments, pier caps, girder flanges and other areas of collection shall be disposed of properly. Debris which include, but not limited to, sand, gravel, bituminous materials and bird excrement shall be packaged and stored separately from waste generated as a result of surface preparation. A representative sample of the debris shall be analyzed to determine its classification prior to disposal.

All wastes generated through the use of steel abrasives shall be treated as hazardous and identified as such to the treatment facility.

B. Waste Handling, Packaging, and Storage.

Lead paint and related debris must be collected daily and placed in DOT approved containers of good integrity (i.e. no dents, holes, missing lids or locking mechanisms, etc.). The Contractor shall inspect drums weekly and the results recorded in an on-site logbook accessible to the Engineer. Containers shall be closed and clearly labeled to identify the contents. Hazardous wastes must be labeled with the words “HAZARDOUS WASTE,” the name of the waste, the hazards associated with the waste, and the date when accumulation began in the container. The hazardous waste label shall also include the generators’ name, address, and EPA identification number.
Containers shall be stored in a safe and suitable location at the job site. Storage shall be in a manner that protects the public and the environment (i.e. on a level impervious base, away from waterways, etc. Storage area(s) shall be approved by the Engineer prior to generating wastes.

Storage areas shall be labeled with the words “HAZARDOUS WASTE.” Appropriate security (i.e. fencing, locked gated, etc.) must be maintained at the site to avoid injury, theft or vandalism with regards to hazardous waste. Once a container in the work area is full, it shall be moved to the secure storage area within 3 days. If a suitable location for hazardous waste storage does not exist on-site, the Contractor shall find an alternate storage site. The alternate storage shall only be allowed with documented permission by the Engineer and the DEP. Evidence of improper storage and handling shall be cause for immediate shutdown until corrective action is taken.

Storage of hazardous waste on site is limited to 90 days with the start date of initial accumulation in each container. The Engineer is to be informed one week in advance of the planned date(s) when hazardous waste is to be removed from the job site.

C. **Waste Transportation and Disposal.**

Hazardous waste shall only be removed from the site by DEP licensed haulers in the presence of the Engineer. Only EPA licensed Treatment Storage Disposal Facilities (TSDF) shall accept the hazardous waste. The Contractor shall submit the name, address, phone number, name of contact person and the EPA identification number of the TSDF. Before the start of work, the Contractor shall provide the Engineer with a letter of intent from the TSDF stating that they agree to accept and treat said waste in accordance with all state and federal regulations. All hazardous waste manifests must be signed by the Engineer upon removal of the waste. The Contractor shall provide the Engineer with a Certificate of Disposal upon receipt from the TSDF. The Engineer must receive a signed manifest copy directly from the TSDF.

D. **Reportable Releases to the Environment.**

The Contractor’s on-site emergency response contingency plan shall outline steps to take in the event of a hazardous waste spill or release including procedures for notification to DEP in accordance with 310 CMR 30.00 and 310 CMR 40.00.

The Contractor is advised that a discharge of one or more pounds of lead with a particle size of 0.1 mm (4 mils) or less to the atmosphere, water or soil, within a 24-hour period, is considered to be a reportable release in accordance with 310 CMR 40.00 (40 CFR 300 and 40 CFR 302).

961.69: **Submittals**

The Contractor shall submit the following written programs and plans to the Engineer within 30 days of the Notice to Proceed. No work shall commence until the Engineer has approved all submittals with the exception of the Worker Health & Safety Program, which will only be received by the Engineer. Reception of the Worker Health & Safety Submittal does not constitute approval by the MassDOT.

A. **Worker Health & Safety Program.**

The Contractor shall provide a site-specific compliance program prepared under the direction and approval of a Certified Industrial Hygienist (CIH), in accordance with 29 CFR 1926.62 and 29 CFR 1910.134.
The program shall describe all engineering, administrative, housekeeping and protective equipment that will be used to reduce the exposure of the employees to a level less than the PEL.

The program shall provide the name, address, accreditation, and qualifications for the Certified Industrial Hygienist and the firm(s) that will be utilized for monitoring, testing and analysis. The name and qualifications of the project's competent person shall be included along with an emergency contact person. The Program shall include the following elements:

- Employee Training Program
- Hazard Communication Training Program
- Medical Surveillance and Medical Removal Program
- Procedures for Exposure Monitoring / Initial Assessment
- Respiratory Protection Program
- Recordkeeping
- Protective Clothing and Equipment
- Personal Hygiene Facilities and Equipment
- Housekeeping

B. Environmental Protection and Monitoring Program.

The written program shall ensure the protection of the environment from project activity in accordance with this specification and 40 CFR 50 and 310 CMR 7.00.

The program shall detail programs for monitoring activities and provisions for complying with the results of any monitoring and analysis that is conducted. Included shall be a statement that corrective action will be implemented immediately in the event of unacceptable monitoring results. The program shall include the following elements:

- Procedures for High Volume Air Sampling
- Methods for monitoring and Establishing Baseline Levels
- Methods for Establishing Regulated Areas
- Assessment of Visible Emissions and Releases
- Methods for Sampling and Analysis for soil, waste water and debris

C. Containment.

The Contractor shall provide a written plan and drawings for the method employed for surface preparation, containment and ventilation. The submittal shall be approved and stamped by a Professional Engineer registered in the Commonwealth of Massachusetts. The submittal shall include the following:

- Methods and equipment to be used for precleaning (washing) and surface preparation
- Location of equipment and impact on traffic
- Engineering Calculations: Load-bearing capacity, Wind load and Ventilation
- Connection Details
- Lighting plan
- Drawings and Plans for installing, moving, and removing the containment.
- Provisions for Emergency breakdown of containment.
Provisions for moving the containment out of navigation lanes when working over active waterways.
Provisions for the containment of debris that might escape when working over land, streams, rivers, lakes, or other bodies of water.
Descriptions and product data or cut sheets for all containment system materials and all equipment to be used.
Confirmation that appropriate notification and coordination with other organizations or agencies such as the Coast Guard and Railroad have been accomplished with regard to right of ways, containment clearances, and other project restrictions.

D. Hazardous Waste, Handling & Reporting of Release Programs.

The written program shall establish the procedures that will be followed for the proper handling, packaging and disposal of all waste generated during contract activities. The program shall be in accordance with applicable EPA regulations, the requirements of this specification and 310 CMR 30.00 & 310 CMR 40.00. The program shall include the following elements:

- Methods for Sampling, Testing and Classification
- Methods for Handling, Packaging and Storage
- Identification of Transporter and Treatment Storage and Disposal Facility
- Methods for Reporting Releases into the Environment
- Emergency Response Contingency Plan

COMPENSATION

961.80: Method of Measurement

The above work will be measured as a complete unit. For purpose of estimating partial payments, the work will be separated into distinct phases as listed below and the value of each will be assigned a percentage of the lump sum:

<table>
<thead>
<tr>
<th>Phase</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment</td>
<td>30%</td>
</tr>
<tr>
<td>Clean, Collect and Prime</td>
<td>35%</td>
</tr>
<tr>
<td>Intermediate Coat</td>
<td>10%</td>
</tr>
<tr>
<td>Finish Coat</td>
<td>10%</td>
</tr>
<tr>
<td>Final Inspection</td>
<td>15%</td>
</tr>
</tbody>
</table>

Partial payment for each phase will be based on the length of work completed, divided by the total length of the structure to be painted, or as determined by the Engineer.

Final inspection will be paid after the completion of punch list items, cleaning of the site(s), the removal of all equipment, materials and the removal of contaminated and hazardous waste generated during the cleaning operations.

961.81: Basis of Payment

The work will be paid at the contract price per Lump Sum which shall include full compensation for all labor, equipment, worker protection, environmental compliance, materials, tools, rigging, and all incidentals necessary to complete the work as specified.
Incidental to this work is the removal and replacement of, anti-missile fencing, protective screening, signs and sign supports. The Contractor shall determine if anti-missile fencing, protective screening, signs and sign supports are to be removed to facilitate complete cleaning and painting of the structure as specified. Removal shall be accomplished prior to cleaning activities and will be subject to the approval of the Engineer.

961.82: Payment Items

- 961.1* Clean and Paint (Overcoat) Bridge No. ________ ... Lump Sum
- 961.2* Clean (Full Removal) and Paint Bridge No. ________ .. Lump Sum

* - number assigned to the bridge being painted.

SUBSECTION 970: BITUMINOUS DAMP-PROOFING

DESCRIPTION

970.20: General

Bituminous damp-proofing to be applied as shown on the plans shall consist of a cut-back asphalt, a protective seal coat emulsion or an asphalt emulsion. If material other than that specified herein is permitted to be used, the method of application shall conform to the published specifications of the manufacturer.

MATERIALS

970.40: General

Materials shall meet the requirements specified in the following Subsections of Division III, Materials.

- Cut-Back Asphalt... M3.02.0
- Emulsified Asphalt.. M3.03.0
- Protective Seal Coat Emulsion.. M3.03.3

CONSTRUCTION METHODS

970.60: General

Concrete surfaces shall be allowed to dry for a period of at least 5 days after the removal of forms before damp-proofing is applied.

Surfaces to be damp-proofed shall be made reasonably smooth and free from all projections and holes. All holes in concrete surfaces shall be satisfactorily filled with 1 part cement to 2 parts sand mortar before damp-proofing is applied. Concrete surfaces shall be properly cured before being damp-proofed. Surfaces shall be dry and immediately before the application of the damp-proofing shall be thoroughly cleaned of dust and all loose material. Damp-proofing shall not be done during wet weather, nor when the weather conditions as to temperature otherwise are unsatisfactory.
The material for damp-proofing shall be mopped or sprayed on the designated surfaces as directed and in amounts necessary to obtain a 2 coat coverage of not less than 5 gal of asphaltic material per 100 ft² of area.

The initial coat of damp-proofing shall be allowed to dry thoroughly before a second coat is applied. The final coat shall be thoroughly dry before any fill is placed against it.

COMPENSATION

970.80: Method of Measurement

Damp-proofing will be measured by the actual area of surface covered in square yards.

970.81: Basis of Payment

Bituminous damp-proofing will be paid for at the contract unit price per square yard of surface under the item for Bituminous Damp-Proofing, complete in place.

970.82: Payment Items

970. Bituminous Damp-Proofing... Square Yard

SUBSECTION 971: ASPHALTIC BRIDGE JOINT SYSTEM

DESCRIPTION

971.20: General

The work shall include the furnishing and installation of a polymeric binder and aggregate system composed of specially blended, polymer modified asphalt and selected aggregate, placed into a prepared joint blockout as shown on the plans. The system shall provide a flexible waterproof bridge joint capable of accommodating a total movement of up to 2 in. from maximum expansion to maximum contraction, and maintain a continuous load bearing surface. Incidental to this system shall be the placement of the non-sag joint sealer and backing rod through the safety curb and sidewalk deck joint as shown on the plans.

MATERIALS

971.40: General

Materials shall meet the requirements specified in the following Subsections of Division III, Materials:
CONSTRUCTION METHODS

971.60: General

A qualified employee of the manufacturer or an installer certified by the manufacturer and approved by the Department shall be at the job site prior to the beginning of the joint construction process to instruct the work crews in proper joint construction procedures and shall remain on the job site for the duration of the joint installation.

The minimum ambient air temperature during installation shall be 40°F and rising.

The Contractor shall produce uniform and parallel surfaces in the forming and placement of the blockout area within the reinforced concrete deck slabs as detailed on the plans. The formed blockout area shall be protected by the Contractor to prevent any edge damage by any site equipment throughout the ongoing construction process.

The Contractor shall produce the required gap width within the full depth of the joint as dimensioned on the plans. If the existing curb stones bridge the existing sidewalk and safety curb joint gaps, they shall be modified by saw cutting a smooth face which shall be aligned and placed to maintain the uniform joint gap.

Immediately prior to placing any binder, the blocked out section and the joint gap shall be inspected full depth and any debris shall be removed. Immediately thereafter the blockout, sidewalk and safety curb gap, and road surface 6 in. either side of the blockout shall be thoroughly cleaned and dried using a hot compressed air (H.C.A.) lance capable of producing flame-retarded air stream at a temperature of at least 2,000°F. The lance’s blast orifice shall be capable of producing 150 psi of pressure.

The backer rod shall be installed in the sidewalk and safety curb gap to the proper depth to ensure a correct width/depth ratio as specified by the manufacturer. The backer rod shall be set in accordance with the plans. There will be no splicing of the backer rod at the curb lines.

The binder shall be melted and heated to the application temperature in a double jacketed, hot oil, heat transfer kettle, or as recommended by the manufacturer. The kettle shall be equipped with a continuous agitation system and temperature controls that can accurately maintain the material temperatures.

The binder shall be poured into the joint gap. The binder shall overfill the roadway joint gap to allow the binder to be spread onto the adjacent concrete deck in order to form a bond breaker between the deck and the bridge plate.

For sidewalk, curb, and median joint gaps a non-sag polyurethane joint sealer compatible with the asphaltic binder shall be used.
The bridge plate shall be centered and placed over the entire length of the roadway joint gap. The plate shall be secured by placing locating pins through the pre-drilled holes into the joint gap backer rod. The bridge plate sections shall not overlap.

The horizontal and vertical surfaces of the joint blockout joint shall be coated immediately with hot binder before pouring hot binder over the floor area of the joint. The coating shall be continuous and adhere to the surfaces.

The aggregate shall be heated to a temperature of 300°F to 390°F in a suitable rotating drum blending unit with a heat source attached or by a secure H.C.A. lance to remove moisture. Temperature of the aggregate shall be controlled by a hand held calibrated digital temperature sensor or other means as approved by the Engineer.

The heated aggregate and polymeric binder shall be combined in the blending unit with sufficient binder to thoroughly coat each aggregate individually while avoiding an excess of binder. In no instance shall the amount of the binder added to the blending unit be less than 15% by weight. The binder used for coating is not included in the above percentage.

The coated aggregate shall be placed in the blockout in layers and raked level as recommended by the joint material manufacturer.

The final layer shall be raked level and compacted flush with adjacent deck surface. This layer shall be compacted to the point of refusal with a 1.5-ton to 2.5-ton roller to ensure the proper density and interlocking of the aggregate in the layer.

Immediately following the compaction, the surface of the joint and surrounding road shall be dried and cleaned using the H.C.A. lance.

Sufficient binder shall immediately be spread over the joint and adjacent road surface to fill surface voids and seal the surface stone. The finished joint shall then be dusted with a fine, dry aggregate to prevent tackiness.

QUALITY CONTROL

971.70: General

The Contractor shall have sufficient mixers and personnel at the site to assure continuous and timely installation of the joint.

The Manufacturer shall document and submit the successful performance of their material in a similar Asphaltic Bridge Joint System.

The Installer shall have previously demonstrated the ability to have successfully produced a joint of similar nature and shall provide documentation of a working joint to the Department.

The Contractor shall furnish Certified Test reports, Materials Certificates and Certificates of Compliance for the asphaltic polymeric binder, the aggregate, and the joint sealer. The backer rod and locating pins require Certificates of Compliance.
COMPENSATION

971.80: Method of Measurement

Item 971. Asphaltic Bridge Joint System will be paid for at the contract unit bid price per foot, as measured between curb lines complete in place.

Item 971.1 Asphaltic Bridge Joint System will be paid for at the contract unit bid price per cubic foot. The volume measurement shall consist of the product of (1) the distance between the curbs along the length of the joint times (2) the width of the asphaltic plug joint noted on the plans times (3) the average depth of the installation across the centerline of the joint.

The joint treatment at the safety curb, sidewalk and median shall be considered incidental to the work to be done under these items.

971.81: Basis of Payment

Payment shall be considered full compensation for installation of the Asphaltic Bridge Joint System including all labor, material, equipment, manufacturer’s representative and all items incidental to the satisfactory completion of the work.

Removal of existing joints and materials will be paid for under separate Item.

971.82: Payment Items

971. Asphaltic Bridge Joint System ... Foot
971.1 Asphaltic Bridge Joint System ... Cubic Foot

SUBSECTION 972: STRIP SEAL BRIDGE JOINT SYSTEM

DESCRIPTION

972.20: General

The work shall consist of furnishing and installing strip seal bridge joint systems. This system shall consist of structural steel components, bolts, nuts, washers, lock washers, expansion anchors, preformed neoprene seal and lubricant-adhesive, and elastomeric concrete, all combined in the manner required by the Contract Documents so that a fully operational, waterproof system will seal the joint over which it is installed.

MATERIALS

972.40: General

Materials shall meet the requirements specified in the following Subsections of Division III, Materials:
CONSTRUCTION METHODS

972.60: General

The joint system shall be installed in strict accordance with the manufacturer’s instructions and this Subsection. In the event of a conflict, the more stringent requirement shall rule. A representative of the strip seal joint manufacturer shall be present throughout the installation. The representative shall be fully conversant in all respects with the correct installation methods. The representative shall be responsible to advise both the Engineer and the Contractor, that the proper installation method is being followed.

972.61: Preparation of Surfaces, Handling, and Storage

The preformed recess or blockout that is to receive the joint system shall be air blown or vacuum-cleaning such that all loose or foreign matter is removed prior to installation of the system. The blockout shall be constructed to the dimensions shown on the approved shop drawings. The concrete substrate must be clean (free of dirt, coatings, rust, grease, oil and other contaminants), sound, and durable. New concrete must have been cured for a minimum of 14 days and all laitance removed. Suitable preparation methods include sandblasting, chipping and scarification.

The joint system shall be stored, inspected and handled in accordance with the manufacturers requirements and approved by the Engineer. No material shall be dropped, thrown, or dragged upon the ground. Material shall be kept clean, properly drained and stored on proper supports above the ground. All material shall be adequately shored, braced, or clamped to resist lateral forces that might occur. Permanent distortion of the steel extrusions will be cause for rejection of material. Galvanizing shall be in accordance with M7.10.0: Galvanized Coatings and 960.64: Galvanizing and shall be done before other coatings are applied.

972.62: Pre-Installation Inspection

Immediately prior to installation, the steel extrusions shall be inspected by the Engineer for proper alignment and anchor effectiveness. No bends or kinks in the steel extrusions shall be allowed, nor shall the straightening of such bends or kinks be allowed. Steel extrusion segments exhibiting bends or kinks shall be removed from the work site and replaced with new steel extrusion segments at the Contractor’s expense. Anchorage bars or studs and their welds shall be inspected visually. Any anchorage bars or studs that do not have complete attachment weld shall be replaced.

972.63: Field Preparation

In order for the steel extrusion segments to be installed properly, they must be set at a width that is directly dependent upon the ambient temperature at the start of installation, as shown on the shop drawings. Before casting the elastomeric concrete, the setting dimension shall be adjusted under the direction of the Engineer to correspond to the proper ambient temperature setting as shown on
the approved shop drawings. The width setting shall be accomplished through the use of mechanical devices supplied by the strip seal bridge joint system fabricator. After the steel extrusions have been set to their proper line and grade and securely attached to their supports, the mechanical devices shall be removed.

972.64: Field Splicing of Steel Extrusions

If the system is to be installed in sections, the manufacturer will ship the joint with the appropriate ends beveled for field welding in accordance with the field splice detail shown on the approved shop drawings and the approved welding procedure specifications. Once the first joint section is installed and the elastomeric concrete has been cast, the adjacent length shall be field welded.

972.65: Placement and Finishing of Elastomeric Concrete

Prior to the placement of elastomeric concrete in the prepared blockout, the inside bottom faces of the steel extrusions shall be aligned and spaced using the manufacturer’s support devices. The steel extrusions shall not be unsupported or cantilevered into the joint blockout.

Foam backer rod shall be placed inside the seal cavities of the steel extrusions prior to the placement of the elastomeric concrete. The backer rod will remain inside the steel extrusions until such time as the neoprene seal is about to be placed inside the extrusions.

The equipment used for the mixing and placement of the elastomeric concrete shall be supplied by the manufacturer or shall be approved by the manufacturer. The mixing and placement of elastomeric concrete shall be in accordance with the joint manufacturers written instructions. Proper consolidation of the elastomeric concrete shall be achieved around all embedded elements. A minimum clearance of ½ in. between the bottom of the steel extrusions and the concrete substrate shall be consistent throughout the length of the joint ensuring proper flow and consolidation of the elastomeric concrete. Bonding agent must be used as a primer on the properly prepared joint blockout prior to the installation of the elastomeric concrete. The aggregate component and the liquid component of the elastomeric concrete shall be thoroughly mixed until all aggregate is completely coated (approximately 1 minute). This mix shall then be poured into the properly prepared blockout.

972.66: Installation of Neoprene Seal

The neoprene seals shall be field installed in continuous lengths spanning the entire roadway width. The neoprene seal shall be prefabricated in the shop to the final dimensions of the joint. Field splices or repairs of the neoprene seal shall not be permitted. To ensure proper fit of the seal and increase the ease of installation, dirt, spatter or standing water shall be removed from the steel extrusion using a brush, scraper or compressed air. Prior to installation, the neoprene strip seal lugs shall be thoroughly coated with a lubricant-adhesive that is approved and supplied by the strip seal joint manufacturer.

972.67: Watertight Integrity Test

At least five workdays after the joint system has been fully installed, the Contractor shall test the entire (full length) joint system for watertight integrity to the satisfaction of the Engineer. The entire joint system shall be covered with water, either ponded or flowing, for a minimum duration of 15 minutes. The concrete surfaces under the joint shall be inspected, during this 15 minute
period and also for a minimum of 45 minutes after the supply of water has stopped, for any
evidence of dripping water or moisture. Water tightness shall be interpreted to be no dripping
water on any surface on the underside of the joint.

Should the joint system exhibit any evidence of water leakage, the Contractor shall locate the
place(s) of leakage and take all measures necessary to stop the leakage. All methods proposed by
the Contractor to stop the leakage shall be approved by the Engineer. This work shall be done at the
Contractor’s expense. A subsequent water integrity test shall be performed subject to the same
conditions and consequences as the original test.

COMPENSATION

972.80: Method of Measurement

Item 972. Strip Seal Bridge Joint System will be paid for at the contract unit price per foot, as
measured along the joint centerline between curb lines complete in place.

The additional plates, angles, and all related hardware required at the safety curb, sidewalk and
median shall be considered incidental to the work to be done under this item.

972.81: Basis of Payment

Payment shall be considered full compensation for installation and testing of the Strip Seal Bridge
Joint System including all labor, material, equipment, manufacturer’s representative and all items
incidental to the satisfactory completion of the work.

Removal of existing joints and materials will be paid for under a separate Item.

972.82: Payment Items

972. Strip Seal Bridge Joint System ... Foot

SUBSECTION 975: METAL BRIDGE RAILINGS AND PROTECTIVE SCREENS

DESCRIPTION

975.20: General

Work under this item shall consist of furnishing and erecting metal bridge railing and protective
screens in accordance with the plans and specifications.

MATERIALS

975.40: General

Materials shall meet the requirements specified in the following Subsections of Division III,
Materials:
The contractor will be required to submit specifications showing the chemical and physical analyses to the Department for approval.

CONSTRUCTION METHODS

975.60: Shop Drawings

The Contractor shall furnish the Engineer with complete detail or shop drawings of the proposed work in accordance with the requirements of Subsection 5.02: Plans and Detail Drawings. No material for the bridge railings and protective screens shall be fabricated before the approval of the detail or shop drawings by the Engineer.

975.61: Fabrication

Fabrication of the Metal members can only be performed by fabricators who are approved by the Department as specified in 960.61: Design, Fabrication and Erection. All steel, except for the pickets and the anchor plates shall be blast cleaned prior to fabrication in accordance with 960.61: Design, Fabrication and Erection, Paragraph C. The blast cleaning shall conform to Steel Structures Painting Council Surface Preparation Specification “Near White Blast Cleaning,” SSPC-SP10. Aluminum components shall be cleaned of any foreign matter. In assembly and during welding, the component parts of built up members shall be held by sufficient clamps or by other adequate means to keep parts straight and in close contact.

Welding and fabrication of steel shall conform to the AASHTO Standard Specifications for Highway Bridges and the ANSI/AASHTO/AWS D1.5 Bridge Welding Code. If the members are tubular sections, the fabrication and welding shall conform to the ANSI/AWS D1.1 Structural Welding Code-Steel. Welding and fabrication of aluminum shall conform to AASHTO and the ANSI/AWS D1.2 Structural Welding Code-Aluminum.

After welding aluminum members, all exposed joints in the rail or cap plate elements shall be finished by grinding or filing to produce a neat appearance. All welding of aluminum members shall be completed prior to anodizing.

Prior to galvanizing, the fabricator shall ensure that all rail and rail components are smooth and without sharp protrusions that would present an injury hazard to pedestrians. Any drain holes necessary to ensure safe galvanizing shall be drilled by the fabricator.

975.62: Setting Railing and Protective Screens

Anchor bolts for Type II Protective Screen and Aluminum Handrail shall be tightened ⅓ turn past snug-tight conditions. Anchor bolt nuts for the S3-TL4 steel bridge railing shall be tightened ⅛ turn past snug-tight conditions and shall have between ³⁄₁₆ in. and ⅜ in. of exposed thread after tightening.
A. Aluminum.

The three-rail aluminum railing and Protective Screen Type II posts shall be set plumb except in those locations where roadway grade is less than 1.50% in which case they shall be set normal to the grade. Handrail posts shall be set to normal grade. Longitudinal members shall follow the grade of the coping. During the erection of the railing and protective screens, care shall be taken to insure proper grade and alignment in order to prevent springing or bending of the railing and protective screens during erection. Where required on curves, the rails shall be accurately formed to the required radius.

Protective Screen Type I and Type II components shall be carefully adjusted prior to fixing in place to insure proper matching or interlocking at abutting joints, and correct alignment and camber throughout their length. Holes for field connections to be drilled in the field shall be drilled with the screen railing in place in the structure at the proper grade and alignment. Field welding of aluminum components shall not be allowed.

Base plates shall be set on ⅛-in. thick molded fabric bearing pads. If additional shimming of the base plates is required, the shims shall be made from fully annealed aluminum alloy sheets or plates.

The anchor cages for Protective Screen Type II and Aluminum Handrails shall be accurately set as shown on the drawings. The ferrules shall have a plastic cap in the bottom to act as a seal and shall have a temporary bolt installed while the concrete is being placed. Caps shall be installed in the tops of the ferrules if the temporary bolts are removed prior to erecting the posts. Protective Screen Type I posts shall be attached with extruded aluminum clamps to the steel tabs on the back of the steel bridge railing posts.

B. Steel.

The post shall be set plumb except in those locations where the roadway grade is less than 1.50% in which case they shall be set normal to the grade. The rails shall follow the profile grade of the bridge at the vertical dimensions shown on the plans. When the bridge is on a vertical curve, the bridge rail shall be shop cambered to follow the profile grade of the bridge. The rails may follow chords for shallow curves if the deviation at the post from the theoretical curve is ±½ in. or less. Care shall be taken for bridge railing layouts with both horizontal and vertical curves or angles. Field bending of the tube sections will not be allowed.

Base plates shall be set on ⅛-in. thick molded fabric bearing pads. If additional shimming of the base plates is required, the shims shall be of the same material as the base plates. The edges of the base plates shall be caulked to make a water tight joint.

975.63: Galvanizing

The galvanizing bath for structural components, excluding hardware, shall contain nickel (0.05% to 0.09% by weight).

Galvanized members requiring shop assembly shall be welded and drilled prior to galvanizing. The fabricator shall ensure that all welds are cleaned thoroughly in accordance with the AASHTO/AWS Bridge Welding Code and AASHTO M 111M/M 111 and shall have a suitable surface to accept the galvanizing.
All bolts, screws, nuts and washers shall be hot dipped galvanized in accordance with AASHTO M 232M/M 232 or mechanically galvanized in accordance with ASTM B695. The screws may be electroplate galvanized.

The posts, base plates, rails, pickets, angles and splice tubes shall be galvanized after fabrication in accordance with AASHTO M 111M/M 111.

975.64: Painting

Aluminum bridge railing shall not be painted.

Galvanized hardware need not be shop painted; however, any part of the bolts, screws, nuts and washers that are accessible after installation shall be painted in the field in accordance with 975.65: Touch-up and Repairs.

Prior to painting, the galvanizer shall ensure that all rails and rail components are smooth and have a suitable surface for accepting the paint. All runs shall be removed by grinding.

The galvanized surface shall be prepared for painting by one of the following methods.

Method 1: The two-coat paint system shall be applied within 12 hours of galvanizing. The surface shall be blast cleaned immediately before painting (maximum of 8 hours) in accordance with requirements of SSPC SP7 “Brush-Off Blast Cleaning” or other method producing equivalent results and uniform profile, to achieve a 1.0 to 1.5 mil anchor profile as indicated by Keane Tator Surface Profile Comparator or similar device. All detrimental material, i.e., dirt, grease, other foreign matter, shall be removed prior to blasting.

Method 2: The two-coat paint system shall be applied within 15 days of galvanizing. In preparation for the two-coat painting system, the surface shall be blast cleaned in accordance with the requirements of SSPC SP7 “Brush-Off Blast Cleaning,” or other method producing equivalent results and uniform profile, to achieve a 1.0 to 1.5 mil anchor profile as indicated by a Keane Tator Profile Comparator or similar device. All detrimental material such as oil, grease, dirt, other foreign matter, shall be removed prior to blast cleaning. The blast cleaning shall be performed prior to the formation of “white rust” on the galvanized surface. If “white rust” is detected, the steel shall be stripped and re-galvanized in accordance with these specifications.

The preparation shall be followed by a pretreatment of zinc or iron phosphate. The phosphate shall be applied to the blast cleaned material within eight hours of blast cleaning. Phosphating shall be applied in accordance with the manufacturer's recommendations. The material shall be painted within twelve hours of phosphating. The applicator shall submit the procedure for phosphating to the Engineer for approval prior to performing the work.

The phosphating applicator shall maintain a record of in-process quality checks on the solutions.

The prime coat material shall be a polyamide epoxy applied to a minimum dry film thickness of 3.0 mils and force cured as given below for the finish coat.

The finish coat material shall be a two component, catalyzed aliphatic urethane applied by airless spray to a minimum dry film thickness of 3.0 mils.
The color and the corresponding Color Number as found in Federal Standard 595B, "Colors Used in Government Procurement," shall be stated on the Plans. The fabricator shall submit to the Engineer for approval, paint chips of the intended color prior to any work being done under this heading.

All finish coat material shall be applied under conditions within the following tolerances:

- Air Temperature: 50°F to 90°F
- Surface Temperature: 50°F to 90°F
- Humidity: 65% maximum

The finish coat shall be cured in a booth maintained at 150°F for 2 to 4 hours.

Should the coating system fail within one year after the project has been accepted, the damaged coating shall be repaired by the Contractor at no cost to the Department. The method of repair shall be acceptable to the Department.

975.65: Touch-up and Repairs

Should any damage occur to the coating during shipping or handling at the job site, the contractor shall repair and touchup any damaged areas to the satisfaction of the Engineer and the following:

Touch-up of the galvanizing before the finish coat is applied shall be accomplished by applying a galvanizing repair paint in accordance with M7.04.11. The dry film thickness of the applied repair paint shall not be less than 3.0 mils. Applications shall be in accordance with the Manufacturer's instructions.

Field touch-up procedures shall conform to the recommendations of the company that performed the initial painting. Touch-up of the finish coat shall be by applying a coating of a two-part urethane, as supplied by the company that performed the initial painting, to achieve a dry film thickness of at least 3.0 mils. Prior to the application of the paint, remove all damaged coatings down to a solidly adhered coating and apply galvanizing repair paint as a primer. Allow the primer to dry for at least four hours.

The Contractor shall also use the touch-up paint material to paint the galvanized hardware used in the field erection of the railing that has not been finish coated previously.

All paint used for touch-up and repair shall be the same manufacturer's brand and lot number as was used in the shop.

The Contractor shall be careful to not damage the anodized aluminum surfaces. Protective Screen Type I and Type II fabric shall be wrapped to prevent damage during shipment and storage. Touch-up coating shall be applied by spray to the fabric after installation. Touch up of the anodized surface will be at the Contractor's expense and shall be subject to the approval of the Engineer.

975.66: Inspection

Inspection may be done at the mill and or fabricating plant by the Engineer or the Engineer’s representative (Verification Inspector). The Contractor shall give 3 business days' notice to the Engineer prior to starting the work so that the Department may arrange for inspection. The contractor shall give the same notice when material is being shipped between the fabricator, galvanizer and painter so that inspection may be arranged. No material shall be shipped to a project
until the Verification Inspector affixes their stamp to the material. Material shipped without such stamp shall be rejected and immediately removed from the job site.

COMPENSATION

975.80: Method of Measurement

Metal bridge railings and protective screens shall be measured by the foot from end to end of the top rail. Curved portions shall be measured along the centerline of the top rail.

975.81: Basis of Payment

Metal bridge railing and protective screens shall be paid for at the contract unit price per foot under the item of railing or screen required, complete in place.

975.82: Payment Items

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>975.1</td>
<td>Metal Bridge Railing (3 Rail), Steel (Type S3-TL4)</td>
<td>Foot</td>
</tr>
<tr>
<td>975.2</td>
<td>Metal Bridge Railing (3 Rail), Aluminum (Type AL-3)</td>
<td>Foot</td>
</tr>
<tr>
<td>975.3</td>
<td>Protective Screen Type I</td>
<td>Foot</td>
</tr>
<tr>
<td>975.4</td>
<td>Protective Screen Type II</td>
<td>Foot</td>
</tr>
<tr>
<td>975.5</td>
<td>Aluminum Handrail</td>
<td>Foot</td>
</tr>
</tbody>
</table>

SUBSECTION 983: REVETMENT

DESCRIPTION

983.20: General

Revetment shall consist of slope protection of the required type at the location shown on the plans and in accordance with these specifications and in close conformity with the lines and grades shown on the plans or established by the Engineer.

983.21: Classification

A. Dumped Riprap.

This work shall consist of angular shaped stones dumped in place to form a well graded mass with a minimum of voids, in location where damage may be caused by water conditions and below water level as a foundation for slope paving.

B. Riprap.

This work shall consist of a protective covering of angular shaped stones laid on slopes in front of abutments, wingwalls, piers and elsewhere as required, to insure protection of structures and embankments.

C. Slope Paving.

Slope paving shall consist of angular shaped stones, having a reasonably flat face, carefully placed on slopes to insure their protection.
D. Special Slope Paving under Bridges.

This special slope paving is intended for use on slopes under bridges where not in contact with flowing water and shall consist of quarry stone, precast concrete blocks or cement concrete laid on slopes in uniform courses under bridges.

E. Channel Paving and Grouted Channel Paving.

Channel Paving, of the type specified, shall be placed as protective covering along the slopes around culvert inlets or outlets, around foundations, bridge berms and dikes.

F. Modified Rockfill.

This work shall consist of slope protection of ditches and at ends of cross-culverts.

MATERIALS

983.40: General

Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

- Dumped Riprap .. M2.02.2
- Modified Rockfill ... M2.02.4
- Riprap... M2.02.0
- Slope Paving... M2.06.0
- Special Slope Paving under Bridge (Quarry Stone) ... M2.06.1
- Special Slope Paving under Bridge (Precast Concrete Blocks) .. M4.05.3
- Channel Paving.. M2.06.2
- 4,000 psi, 1.5-inch, 565 Cement Concrete ... M4.02.00
- Reinforcing Steel ... M8.01.0
- Joint Filler .. M3.05.3
- Joint Sealer ... M3.05.0
- Crushed Stone for Drainage Foundation ... M2.01.1
- Mortar .. M4.02.15

CONSTRUCTION METHODS

983.60: General

Areas to be protected by revetment shall be free of brush, trees, stumps and other organic material and be dressed to a smooth surface. All soft or spongy material shall be removed to the depth shown on the plans or as directed by the Engineer and replaced with approved materials.

A toe trench as shown on the plans shall be dug and maintained until the revetment is placed.

Protection for structure foundations shall be provided as early as the foundation construction permits. The area to be protected shall be cleaned of waste materials and the surface to be protected prepared as shown on the plans.
Where shown on the plans a foundation shall be placed on the area before the stone is placed. The foundation will be specified as either gravel borrow or crushed stone and at least 12 in. in thickness.

983.61: Dumped Riprap

Stone for riprap shall be placed on the prepared slope or area in a manner which will produce a reasonably well graded mass of stone with the minimum practicable percentage of voids and minimum thickness of 2 ft. Riprap protection shall be placed to its full course thickness at one operation and in such a manner as to avoid displacing the underlying material. Placing of riprap protection in layers or by dumping into chutes or by similar methods likely to cause segregation will not be permitted.

The larger stones shall be well distributed, and the entire mass of stone shall conform approximately to the gradation specified in M2.02.2: Dumped Riprap. All material going into riprap protection shall be so placed and distributed that there will be no large accumulations of either the larger or smaller sizes of stone.

It is the intent of these specifications to produce a fairly compact riprap protection in which all sizes of material are placed in their proper proportions. Hand placing or rearranging of individual stones by mechanical equipment may be required to the extent necessary to secure the results specified.

Unless otherwise authorized by the Engineer, the riprap protection shall be placed in conjunction with the construction of the embankment with only sufficient lag in construction of the riprap protection as may be necessary to allow for proper construction of the portion of the embankment protected and to prevent mixture of embankment and riprap material.

In no case will the elevation of the embankment be greater than 5 ft above the elevation of the riprap material.

983.62: Riprap

The stones shall be placed upon an approved bed of gravel, crushed stone or other acceptable material, to the lines and grades shown on the plans and as directed.

Each stone shall be carefully placed by hand or machine, on a prepared bed, normal to the slope and firmly bedded thereon.

The larger stones shall be placed closely together and the intervening spaces filled with smaller stones in such a manner that the entire surface will form a compact mass.

983.63: Slope Paving

The stones shall be placed upon an approved bed of gravel, crushed stone or other acceptable material, to the lines and grades shown on the plans and as directed. The larger stones shall be placed closely together throughout the surface and the interstices carefully chinked with smaller stones. All stones shall be securely bedded, with the exposed surfaces approximately parallel to and within 6 in. of the slope shown on the plans. When the paving cannot be laid to the required line and grade below water, a suitable foundation of dumped riprap shall be constructed.
983.64: Special Slope Paving Under Bridges

A. General.

This type of slope paving shall consist of either quarry stone, precast concrete blocks or cement concrete and shall be firmly bedded on a 6-in. gravel foundation. The finished paving shall have a continuous surface of uniform appearance, approximately parallel to and within 3 in. of the slope shown on the plans.

B. Quarry Stone or Precast Concrete Blocks.

The paving shall be laid in uniform courses with broken joints not exceeding 2 in. in width. The joints shall then be filled with sand or fine gravelly material to within 2 in. of the paved surface. Cement mortar (M4.02.15: Cement Mortar) shall then be placed in the joints to the top of the paved surface.

C. Cement Concrete.

The paving shall be placed as specified in Subsection 901: Cement Concrete; the surface shall be finished as specified in 901.68: Joints, Paragraph C.

983.65: Channel Paving and Grouted Channel Paving

All stones shall be placed upon an approved bed to the lines and grades shown on the plans and as directed. The larger stones shall be placed as closely together as possible throughout the surface. All stones shall be securely bedded and laid so that the exposed surfaces will be approximately parallel to and within 3 in. of the grade shown on the plans. The finished paving shall present a continuous uniform surface of stonework.

Grouting, when required, shall be done after the paving is completely in place. The paving stones shall be sprinkled with water immediately before placing the grout. The grout shall conform to M4.02.15: Cement Mortar.

983.66: Modified Rockfill

Stone shall be placed on the prepared area in a manner which will produce a reasonably well graded mass with a minimum practical percentage of voids and a minimum thickness of 1 ft. The stone will be placed to its full thickness in one operation and in such a manner as to avoid displacing the underlying material.

It is the intent of these specifications to produce a fairly compact Rockfill protection in which all sizes of material are placed in their proper proportions.

Hand-placing or rearranging of individual stones by mechanical equipment may be required to the extent necessary to secure the results specified.

Unless otherwise authorized by the Engineer, the Modified Rockfill shall be placed in conjunction with the adjacent construction as shown on the plans.
COMPENSATION

983.80: Method of Measurement

The quantity of Dumped Riprap, Riprap and Modified Rockfill shall be the weight of the stones.

Slope Paving, Special Slope Paving under Bridges, Channel Paving and Grouted Channel Paving will be measured in place by the square yard on the surface of the paved slope as constructed.

983.81: Basis of Payment

No deduction from the excavation pay quantities will be made for stone taken from excavation and used in any type of revetment, provided that any additional filling material made necessary by such use shall be furnished as specified in Subsection 4.09: Rights In the Use of Materials Found on the Work.

Excavation below the original ground surface at the toe of slopes when required in the construction of revetment, unless otherwise shown on the plans, will be paid for under the item for Class A Trench Excavation, but where the excavation is made along the slopes of an existing or proposed channel, such excavation will be paid for under the Item for Channel Excavation.

Excavation in cuts when required in the construction of revetment, will be paid for at the contract unit price per cubic yard under the Item of Earth Excavation or Bridge Excavation, whichever is applicable.

Gravel Borrow required in the construction of revetment will be paid for under the contract unit price per cubic yard for Item 151. Gravel Borrow, complete in place.

Crushed stone when required for foundation revetment will be paid for at the contract unit price per ton for Crushed Stone for Drainage Foundations.

The tonnage of Dumped Riprap, Riprap and Modified Rockfill will be paid for at the contract unit price per ton for the kind of stone required, complete in place.

Slope Paving, Special Slope Paving under Bridges, Channel Paving and Grouted Channel Paving will be paid at the contract unit price per square yard, complete in place.

983.82: Payment Items

983. Dumped Riprap ... Ton
983.1 Riprap ... Ton
984. Stone and Stone Chips for Waterway Revetments, Groins, Jetties
 Breakwaters and Mounds... Ton
985. Slope Paving ... Square Yard
986. Modified Rockfill ... Ton
987. Special Slope Paving under Bridge – Option ... Square Yard
987.1 Special Slope Paving under Bridge – Quarry Stone ... Square Yard
987.12 Special Slope Paving under Bridge – Quarry Stone (Grouted) Square Yard
987.2 Special Slope Paving under Bridge – Precast Concrete Blocks Square Yard
987.3 Special Slope Paving under Bridge – Cement Concrete Square Yard
988. Channel Paving ... Square Yard
988.1 Grouted Channel Paving .. Square Yard
SUBSECTION 995: BRIDGE STRUCTURE

DESCRIPTION

995.20: General

Work included in this section shall consist of constructing bridge structures in accordance with the designs and to the lines and grades shown on the plans, and in accordance with these specifications complete in place including the furnishing and installation of all materials that are part of the structures. The work also includes approach slabs, wing walls and retaining walls when specified. The work under this section does not include the various classes of excavation, hot mix asphalt pavement, any work on piles, backfill, revetments, temporary structure, removal of present superstructure, cofferdams, control of water, or other items noted in the contract.

MATERIALS

995.40: General

The materials to be used shall be in accordance with the applicable sections of these specifications and/or the Special Provisions for each respective item included in the construction of the structure.

CONSTRUCTION METHODS

995.60: General

The method of construction shall be in accordance with the applicable sections of these specifications and the Special Provisions for each respective item.

COMPENSATION

995.81: Basis of Payment

The above work will be paid for at the contract lump sum price under the respective item of “Bridge Structures.” Where more than one structure is included in the Contract the following provisions shall apply to each structure. The schedule is for the purpose of estimating partial payments, and it shall not affect the contract terms in any way.

Except as stipulated in the following paragraphs, the payment shall be a lump sum for each bridge structure complete in place. In general, payment will include the full compensation for all concrete (including approach slabs, and all concrete sidewalks adjacent to the wingwalls), prestressed concrete beams and deck beams, steel reinforcement for structures, structural steel, shear connectors, bituminous damp-proofing, membrane waterproofing, protective course, curbing, edging, scuppers, drains, bridge railings, concrete penetrant sealer, and incidental work such as flashings, waterstops, fillers, tile under sidewalk; brickwork at parapet walls, crushed stone for weep holes, fastenings, painting and other materials, equipment and labor that are indicated or implied as part of the construction for the bridge structure. Payment for each bridge structure includes all work indicated on the plans under one bridge number even though two or more structures may be included under one bridge number, due to a wide center reservation or some other physical feature. Walls, other than wingwalls or connecting walls between the structures, will not be included for payment under an item for Bridge Structure.
When the Engineer orders changes from the contract plans of a bridge structure, the cost of such changes will be negotiated based on the provisions of Subsection 4.03: Extra Work and Subsection 9.03: Payment for Extra Work.

Where more than one structure is included in the contract under separate items, the foregoing paragraphs apply to each structure separately, and only to the structure for which changes are ordered.

Placing concrete on the deck in excess of that shown on the plans, to compensate for camber of structural steel, will not be considered a change from the plans. Full compensation for the additional concrete is included in the lump sum bid price.

Basis for Partial Payments.

Within 10 days after Notice to Proceed, the Contractor shall submit, in duplicate, for approval by the Engineer, a schedule of quantities and unit prices for the major components of the respective items for Bridge Structure as listed in the Special Provisions. The approval of the schedule by the Engineer shall not be considered as a guarantee to the Contractor that the quantities shown on the schedule are the approximate quantities actually included in the structure as indicated on the plans. The schedule is only for the purpose of estimating partial payments, and it shall not affect the contract terms in any way.

The volume occupied by the tile under the sidewalk shall be considered as an equivalent volume of cement concrete. Fillers, flashings, brickwork at parapet walls, tar paper, fastenings, painting and other materials and work shall be included with the appropriate components.

The schedule shall list the item, the quantity and the unit of measurement, the Contractor's price per unit, the amount for the item, and the total that the Contractor bid for the lump sum.

Each schedule applies only to the respective bridge structure. Similar materials and constructions at other locations are not included in the schedule.

995.82: Payment Items

995. Bridge Structure Bridge No. () ... Lump Sum

SUBSECTION 996: NOISE BARRIER STRUCTURE

DESCRIPTION

996.20: General

Work included in this section shall consist of constructing noise barrier structures in accordance with the plans and these specifications to provide a satisfactory structure, complete in place.

MATERIALS

996.40: General

All structural steel shall be new and in conformance with Subsection 960: Structural Steel and Miscellaneous Metal Products.
Materials shall meet the requirements specified in the following Subsections of Division III, Materials:

- Anchor bolts: M8.01.5
- Galvanizing: M7.10.0
- Paint and protective coatings: M7.
- Reinforcement steel: M8.01.0
- Epoxy coating for reinforcing bars: M8.01.07
- 4,000 psi, ¾-inch, 565 Cement Concrete: M4.02.00
- Elastomeric bearing pads: M9.14.5
- Joint sealer: M9.14.4
- Backer rod: M9.17.2

CONSTRUCTION METHODS

996.60: General

The method of construction shall be in accordance with the plans and these specifications.

The Contractor shall submit shop drawings in accordance with Subsection 5.02: Plans and Detail Drawings. The shop drawings shall include all pertinent dimensions, reinforcing steel, pick points and precasting details.

The Contractor shall submit an erection procedure in accordance with 960.61: Design, Fabrication and Erection.

All open excavations shall be suitably covered or filled in to the satisfaction of the Engineer at the end of the shift.

996.61: Weep Holes

Weep holes, if required, shall be located as shown on the plans or as directed by the Engineer. They shall be located to avoid reinforcing steel. The Contractor shall propose a method for locating rebar that is satisfactory to the Engineer.

The weep holes shall be cored in a manner which results in a smooth bore hole and which does not break or chip either panel surface at the edge of the hole.

COMPENSATION

996.80: Method of Measurement

The Noise Barrier Structure shall be measured by the square foot, one face. The length of each wall section shall be measured centerline of post to centerline of post. The height of each wall panel shall be measured vertically from the bottom of the lowest panel to the top of the wall panel.

Noise Barrier Foundations shall be measured vertically by the foot, from the bottom of the shaft to the top of the concrete.

Weep Holes for Noise Barrier Structure shall be measured by each hole installed.
996.81: Basis of Payment

The above work will be paid for at the contract unit price under the respective item of Noise Barrier Structure, Noise Barrier Foundation, and Weep Hole for Noise Barrier Structure.

Payment for Noise Barrier Structure shall include all panels including coloring, surfacing and anti-graffiti protection application, post assemblies including galvanizing and painting, signs, access doorways, hand holes, bearing pads, caulking, hardware, brick, plates, nuts, washers, temporary post supports, grout and mortar, and any and all incidental work necessary to construct the structure complete in place.

Payment for Noise Barrier Foundation shall include all earth support, water control, grouting of pre-cast foundations concrete, reinforcing steel, anchor bolts, and any and all incidental work necessary to construct the foundations complete in place and ready to accept the posts.

Payment for Weep holes for Noise Barrier Structure will be made at the contract unit price each, complete in place.

Payment for excavation, test pits, crushed stone, geotextile fabric and clearing and grubbing shall be made under the respective items.

996.82: Payment Items

945.101 Drilled Shaft Excavation 3.0 Foot Diameter .. Foot
945.201 Rock Socket Excavation 3.0 Foot Diameter ... Foot
945.301 Obstruction Excavation 3.0 Foot Diameter ... Foot
996.1 Noise Barrier Structure Square .. Foot
996.11 Noise Barrier Foundation ... Foot
996.2 Weep Hole for Noise Barrier Structure .. Each
DIVISION III:
MATERIALS SPECIFICATIONS

Section M: Materials
Section M1: Soils and Borrow Materials
Section M2: Aggregates and Related Materials
Section M3: Asphaltic Materials
Section M4: Cement and Cement Concrete Materials
Section M5: Pipe, Culvert Sections and Conduit
Section M6: Roadside Development Materials
Section M7: Paints, Protective Coatings
Section M8: Metals and Related Materials
Section M9: Miscellaneous Materials
SECTION M: MATERIALS

Approval and Acceptance.

All materials must be approved prior to incorporation in the work. Approval of materials shall be in accordance with the applicable requirements of Subsection 5.03: Conformity with Plans and Specifications and Section 6.00: Control of Materials. Materials may be approved at the source of manufacture or at the project site. Information regarding the origin, composition and/or manufacture of any material shall be furnished if requested by the Engineer.

Approval and acceptance of any material intended for use in the work of the Department is contingent upon the particular material conforming to a designated specification. All questions relating to materials will be resolved by RMS or its duly authorized representative.

The Department maintains a QCML of commonly used materials that meet these specifications.

Sampling and Testing.

Materials will be sampled and tested in accordance with the designated Standards. The applicable edition of the Standard shall be as stipulated in Subsection 1.03: Defined Terms.

Sampling of materials will be performed by Department personnel, personnel authorized by the Department or personnel under Department supervision.

Certification.

Materials accepted on certification as stipulated in Subsection 6.01: Source of Supply and Quality fall into two categories:

1. Those accepted on a particular certification and sampling frequency.
2. Those accepted on certification alone.

A listing of materials falling into one or the other of the above categories will be furnished upon request to RMS.
SECTION M1: SOILS AND BORROW MATERIALS

M1.00.0: General

All Soils and borrow materials shall conform to the requirements of the specifications as designated hereinafter.

M1.01.0: Ordinary Borrow

Ordinary Borrow shall consist of a material satisfactory to the Engineer and not specified as gravel borrow, sand borrow, special borrow material or other particular kind of borrow.

This material shall have the physical characteristics of soils designated as group A-1, A-2-4 or A-3 under AASHTO M 145. It shall have properties such that it may be readily spread and compacted for the formation of embankments.

The use of PGA meeting the requirements of M2.01.8: Processed Glass Aggregate may be homogeneously blended with the borrow material up to an addition rate of 10 % by mass in areas that will not be exposed, providing the AASHTO M 145 physical characteristics are maintained.

M1.02.0: Special Borrow

Special Borrow shall consist of one of the following:

a) A native in-situ soil that is classified under AASHTO M 145 as A-3, or that portion of A-1 and A-2 with less than 12% passing the No. 200 sieve as determined by AASHTO T 11 and T 27.

b) A crushed rock, either obtained from ledge excavation on the project or other approved sources, that meets the following requirements:

Percent of wear LA abrasion test ... 50% Maximum
Plasticity Index ... 6% Maximum

Table M1.02.0-1: Gradation Requirements for Special Borrow

<table>
<thead>
<tr>
<th>Sieve Designation</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 in.</td>
<td>100</td>
</tr>
<tr>
<td>2 in.</td>
<td>90-100</td>
</tr>
<tr>
<td>No. 4 mesh</td>
<td>20-65</td>
</tr>
<tr>
<td>No. 200 mesh</td>
<td>0-12</td>
</tr>
</tbody>
</table>

The use of PGA meeting the requirements of M2.01.8: Processed Glass Aggregate may be blended with either special borrow material outlined above. An addition rate of 10% by mass in areas where the borrow will not be exposed will be allowed, providing the physical characteristics are maintained. The PGA will be blended so as to produce a homogeneous borrow material.

M1.03.0: Gravel Borrow

Gravel Borrow shall consist of inert material that is hard, durable stone and coarse sand, free from loam and clay, surface coatings, and deleterious materials.
Gradation requirements for gravel shall be determined by AASHTO T 11 and T 27 and shall conform to the following:

Table M1.03.0-1: Gradation Requirements for Gravel Borrow

<table>
<thead>
<tr>
<th>Sieve Designation</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>½ in.</td>
<td>50-85</td>
</tr>
<tr>
<td>No. 4</td>
<td>40-75</td>
</tr>
<tr>
<td>No. 50</td>
<td>8-28</td>
</tr>
<tr>
<td>No. 200</td>
<td>0-10</td>
</tr>
</tbody>
</table>

Maximum size of stone in gravel shall be as follows:

- M1.03.0 Type a: 6 in. largest dimension
- M1.03.0 Type b: 3 in. largest dimension
- M1.03.0 Type c: 2 in. largest dimension
- M1.03.0 Type d: 1.5 in. largest dimension

The gradation for Gravel Borrow for Bridge Foundations shall have at least 70% passing the ¾-in. sieve.

The use of PGA meeting the requirements of M2.01.8: Processed Glass Aggregate may be homogeneously blended with the processed gravel up to an addition rate of 10% by mass, providing the subbase material will not be exposed. The resulting blend will meet the physical requirements of gravel borrow types a, b, c and d specified above.

M1.03.1: Processed Gravel for Subbase

This specification covers the quality and gradation for subbase material of crusher run gravel.

Gravel shall consist of inert material that is hard, durable stone and coarse sand, free from loam and clay, surface coatings and deleterious materials.

The coarse aggregate shall have a percentage of wear, by the Los Angeles Abrasion Test, of not more than 50.

The gradation shall meet the following requirements:

Table M1.03.1-1: Gradation Requirements for Processed Gravel for Subbase

<table>
<thead>
<tr>
<th>Sieve Designation</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 in.</td>
<td>100</td>
</tr>
<tr>
<td>1 ½ in.</td>
<td>70-100</td>
</tr>
<tr>
<td>⅜ in.</td>
<td>50-85</td>
</tr>
<tr>
<td>No. 4</td>
<td>30-60</td>
</tr>
<tr>
<td>No. 200</td>
<td>0-10</td>
</tr>
</tbody>
</table>

The approved source of bank-run gravel material shall be processed by mechanical means. The equipment for producing crushed gravel shall be of adequate size and with sufficient adjustments.
to produce the desired materials. The processed material shall be stockpiled in such a manner to minimize segregation of particle sizes. All processed gravel shall come from approved stockpiles.

The use of PGA meeting the requirements of M2.01.8: Processed Glass Aggregate may be homogeneously blended with the processed gravel up to an addition rate of 10% by mass, providing the subbase material will not be exposed. The resulting blend will meet the physical requirements of processed gravel specified above.

M1.04.0: Sand Borrow

Sand Borrow shall consist of clean inert, hard, durable grains of quartz or other hard durable rock, free from loam or clay, surface coatings and deleterious materials. The allowable amount of material passing a No. 200 sieve as determined by AASHTO T 11 shall not exceed 10% by weight.

The maximum particle size for Sand Borrow shall be as follows:

- M1.04.0 Type a: ... ¾ in.
- M1.04.0 Type b: ... ⅜ in.

The use of PGA meeting the requirements of M2.01.8: Processed Glass Aggregate will be allowed at an addition rate of 10% mass to type b sand borrow. This addition is allowed providing the material will not be exposed, that the blended material is homogeneous and that the physical requirements specified for Sand Borrow above are maintained.

M1.04.1: Sand Borrow for Subdrains

Sand for use in subdrain installations shall conform to the requirements of M1.04.0: Sand Borrow with the following grading limitations, as determined by AASHTO T 11 and T 27:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Minimum Percent by Weight Passing Through</th>
<th>Maximum Percent by Weight Passing Through</th>
</tr>
</thead>
<tbody>
<tr>
<td>½ in.</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>⅜ in.</td>
<td>85</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>No. 16</td>
<td>35</td>
<td>80</td>
</tr>
<tr>
<td>No. 50</td>
<td>10</td>
<td>55</td>
</tr>
<tr>
<td>No. 100</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

M1.05.0: Loam Borrow

Loam Borrow shall be fertile, friable soil obtained from naturally well-drained areas or shall be the product of a commercial sand and gravel processing facility. It shall be uncontaminated by salt water, foreign matter, or substances harmful to plant growth. Loam Borrow shall be free of debris rocks, clods, and any other extraneous matter greater than 2 in. in diameter.

Loam Borrow shall have the following mechanical analysis:
Table M1.05.0-1: Gradation Requirements for Loam Borrow

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 10</td>
<td>85-100</td>
</tr>
<tr>
<td>No. 40</td>
<td>35-85</td>
</tr>
<tr>
<td>No. 200</td>
<td>10-35</td>
</tr>
<tr>
<td><20 µm</td>
<td><5</td>
</tr>
</tbody>
</table>

Testing shall be on material that has passed the No. 10 sieve. Loam Borrow shall contain 4% to 10% organic matter as determined by the loss on ignition of oven-dried samples. Lawn areas shall have an organic content of at least 4%. Organic content for lawn areas shall be at least 4%; for woody plantings, organic content shall be 7% to 10%. Salinity (electrical conductivity) shall be less than 0.1 S/m as determined by a 1:2 (by volume) soil-to-water mix. Salt test samples shall not be oven-dried. The acidity range of the Loam Borrow shall be pH 5.5 to 7.0.

The Contractor shall provide testing submittals as follows:

- One 25-lb representative sample per source of loam
- For sources providing >1,000 yd³, one additional 25-lb representative sample for each 1,000 yd³ unit of soil

In addition, five random representative 25-lb samples of on-site stockpiles of delivered loam shall be collected and packaged in the presence of the Engineer.

The Contractor shall deliver samples to testing laboratories and shall have the testing report sent directly to the Engineer.

Testing and analysis will be at the Contractor’s expense. Soil samples shall be dry. Tests for particle gradation, organic content, and pH shall be performed by an Agricultural Experiment Station testing laboratory or other testing laboratory approved by the Engineer. Soil analysis tests shall show recommendations for soil additives to correct soils deficiencies, and for additives necessary to accomplish particular planting objectives noted. University of Massachusetts Agricultural Extension Service methods for soil and soil additive analysis shall be used.

No Loam Borrow shall be delivered to the site until the review and approval of loam test results by the Engineer.

M1.06.0: Organic Soil Additives

The Contractor shall submit for approval a written list of all vendors of manufactured compost that will be used on the project, including locations of compost facilities and feedstock materials. All vendors shall submit certified results of regular periodic testing by an approved testing facility. Certification shall be per Department approved compost certification programs.

In addition, the Contractor shall provide representative 1-gallon samples from each proposed source for testing and analysis. The Contractor shall deliver samples to testing laboratories and shall have the testing report sent directly to the Engineer. Tests for levels of toxic elements and compounds shall be performed by a private testing laboratory approved by the Engineer. Tests for soil chemistry and pH may be performed by an Agricultural Experiment Station testing laboratory or other testing laboratory approved by the Engineer.
Compost shall be a well-decomposed humus material derived from the aerobic decomposition of biodegradable matter, free of viable weed seeds and other plant propagules (except airborne weed species), foreign debris such as glass, plastic, et cetera and substances toxic to plants. Compost shall be suitable for use as a soil amendment and shall support the growth of ornamental nursery stock and turf establishment. Compost shall be in a shredded or granular form and free from hard lumps. Food and agriculture residues, animal manure, or other biosolids that meet the above requirements and are approved by the DEP are acceptable as source materials.

The level of toxic elements and compounds in organic matter shall be below the DEP Type I standards for sludge and the EPA standards for Class A "Exceptional Quality Sludge", whichever is more stringent. Levels of pathogens shall be below both federal and state thresholds.

Composted material with an unpleasant odor, such as that of ammonia or fecal material shall be rejected by the Engineer.

Compost shall have the following properties:

- maximum particle size of 1 in.; and
- stability =<10 mg CO2 - C/g BVS day; or
- ≤10°C above ambient temperature (deWar self-heating test); or
- ≥6 using Solvita test kit.

The Solvita test kit shall be procured by the Contractor, and the compost samples shall be tested on site in the presence of the Engineer for the following:

- moisture content between 35% and 55%
- pH range between 5.5 and 7.5
- minimum organic matter content of 40% (minimum dry weight)
- maximum electrical conductivity of 0.4 S/m
- maximum of 1% foreign matter
- C:N ratio range of 11-25:1

An extended list of commercial sources of compost material is available from the Division of Consumer Programs, Bureau of Waste Products, Massachusetts Department of Environmental Protection.

M1.07.0: Topsoil

Topsoil shall consist of fertile, friable, natural topsoil, reasonably free of stumps, roots, stiff clay, stones larger than 1 in. in diameter, noxious weeds, sticks, brush or other litter.

Prior to stripping the topsoil from the construction project, it shall have demonstrated by the occurrence upon it of healthy crops, grass or other vegetative growth, that it is reasonably well drained and capable of supporting plant growth. Material classified as Topsoil can only be obtained within the project limits.

M1.08.0: Impervious Soil Borrow

Impervious Soil shall have the physical characteristics of one of the following, under AASHTO M 145:
2. A-2 soils containing more than 20% by weight passing the No. 200 sieve; or
3. Peats and other highly organic soils.

The Impervious Soil shall be reasonably free of stumps, brush, and stones larger than 3 in. in diameter.

Material excavated near salt water to be used as impervious soil will be tested for salt content. The maximum soluble salt index shall be 100.

M1.09.0: Reclaimed Pavement Borrow Material

Reclaimed Pavement Borrow material shall consist of crushed asphalt pavement and/or crushed cement concrete, and gravel borrow meeting M1.03.0: Gravel Borrow. The material shall be free of loam, clay, and deleterious materials such as brick, reinforcing steel, wood, paper, plaster, lathing, and building rubble, etc.

The coarse aggregate shall have a percentage of wear not greater than 50 as measured by the Los Angeles Abrasion Test.

Gradation requirements shall be determined by AASHTO T 11 and T 27 except the material shall not be oven dried. It shall be air dried, fan dried at low speed, or other low temperature heat so as not to liquefy the asphalt or cause the asphalt to adhere to the sieves. Water used for the No. 200 sieve analysis shall be cold tap water.

The gradation shall meet the following requirements:

<table>
<thead>
<tr>
<th>Sieve Designation</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 in.</td>
<td>100</td>
</tr>
<tr>
<td>1 ½ in.</td>
<td>70-100</td>
</tr>
<tr>
<td>¾ in.</td>
<td>50-85</td>
</tr>
<tr>
<td>No. 4</td>
<td>30-60</td>
</tr>
<tr>
<td>No. 50</td>
<td>8-24</td>
</tr>
<tr>
<td>No. 200</td>
<td>0-10</td>
</tr>
</tbody>
</table>

The portion of materials passing the No. 40 sieve shall have a liquid limit not greater than 25 and a plasticity index not greater than 6. The reclaimed pavement borrow shall be compacted to a minimum of 95% of AASHTO T 180 proctor density. Liquid limits shall be determined by AASHTO T 90.

Reclaimed pavement borrow material shall be processed by mechanical means and blended to form a homogeneous material. The equipment for producing crushed material shall be of adequate size and have sufficient adjustments to produce the desired materials. Blended materials that are stockpiled for more than 3 months shall be reworked to a uniform material and retested prior to use however, the Engineer may require additional testing any time the materials appear excessively hard, wet and/or segregated. The processed materials shall be stockpiled in such a manner as to
minimize segregation of particle sizes. All reclaimed pavement borrow material shall come from approved sources and stockpiles.

The amount of combined crushed asphalt pavement and crushed cement concrete shall not exceed 50% by volume as determined by visual inspection, and/or by laboratory tests required by the Engineer.

M1.10.0: Pavement Milling Mulch

Pavement milling mulch shall consist of recently milled asphalt concrete pavement. The milled material shall meet the following gradation requirements as determined by AASHTO T 11 and T 27:

<table>
<thead>
<tr>
<th>Square Opening Sieve</th>
<th>Percent Passing by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ½ in.</td>
<td>100</td>
</tr>
<tr>
<td>1 in.</td>
<td>85-100</td>
</tr>
<tr>
<td>½ in.</td>
<td>10-98</td>
</tr>
<tr>
<td>No. 4</td>
<td>0-70</td>
</tr>
<tr>
<td>No. 200</td>
<td>0-12</td>
</tr>
</tbody>
</table>

| Table M1.10.0-1: Gradation Requirements for Pavement Milling Mulch |
SECTION M2: AGGREGATES AND RELATED MATERIALS

M2.01.0: Crushed Stone

Crushed stone shall consist of one or the other of the following materials:

1. Durable crushed rock consisting of the angular fragments obtained by breaking and crushing solid or shattered natural rock, and free from a detrimental quantity of thin, flat, elongated* or other objectionable pieces. A detrimental quantity will be considered as any amount in excess of 15% of the total weight.

2. Durable crushed gravel stone obtained by artificial crushing of gravel boulders or fieldstone with a minimum diameter before crushing of 8 in.

*Thin or elongated pieces are defined as follows: Thin stones shall be considered to be such stones whose average width exceeds 4 times their average thickness. Elongated stones shall be considered to be such stones whose average length exceeds 4 times their average width.

The crushed stone shall be reasonably free from clay, loam or deleterious material and not more than 1.0% of satisfactory material passing a No. 200 sieve will be allowed to adhere to the crushed stone. Where crushed stone is to be used for surfacing, this requirement shall be not more than 0.5% of satisfactory material passing a No. 200 sieve.

The crushed stone shall have a maximum percentage of wear as determined by the Los Angeles Abrasion Test (AASHTO T 96) as follows:

1. For Hot Mix Asphalt... 30% **
2. For Cement Concrete Aggregate.. 45% ***
3. Crushed Stone for Subbase.. 45%
4. Special Borrow Ledge ... 45%

**Crushed stone for this use shall consist of crushed or shattered natural rock only. Crushed gravel stone will not be permitted.

***Except for 5,000 psi or greater cement concrete and prestressed concrete which shall be 30%.

The crushed stone shall be uniformly blended according to the grading requirements for the respective stone sizes shown in Table M2.01.0-1.
Table M2.01.0-1: Tabulation of Stone Sizes

Percent by Weight Passing Through

<table>
<thead>
<tr>
<th>Square Opening Sieve</th>
<th>M2.01.1 & M2.02.2</th>
<th>M2.01.3</th>
<th>M2.01.4</th>
<th>M2.01.5</th>
<th>M2.01.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ½ in.</td>
<td>1 ¼ in.</td>
<td>¾ in.</td>
<td>½ in.</td>
<td>¾ in.</td>
<td></td>
</tr>
<tr>
<td>2 ½ in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 in.</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ½ in.</td>
<td>95-100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ¾ in.</td>
<td></td>
<td>85-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 in.</td>
<td>35-70</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¾ in.</td>
<td>0-25</td>
<td>10-40</td>
<td>90-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>½ in.</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⅛ in.</td>
<td>0-8</td>
<td>10-50</td>
<td>85-100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>No. 4</td>
<td>0-5</td>
<td>0-15</td>
<td>20-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 8</td>
<td></td>
<td>0-5</td>
<td>0-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 16</td>
<td></td>
<td></td>
<td></td>
<td>0-5</td>
<td></td>
</tr>
</tbody>
</table>

M2.01.7: Dense Graded Crushed Stone for Sub-base

This Specification covers the quality and gradation requirements for a sub-base material combining crusher-run coarse aggregates of crushed stone (trap only, meeting M2.01.0,1), and fine aggregates uniformly premixed with a predetermined quantity of water.

Coarse aggregate shall consist of hard, durable particles of fragments of stone. Materials that break up when alternately frozen and thawed or wetted and dried shall not be used.

Coarse aggregate shall have a percentage of wear, by the Los Angeles test, of not more than 45.

Fine aggregate shall consist of natural or crushed sand.

The composite material shall be free from clay, loam or other plastic material, and shall conform to the following grading requirements:

Table M2.01.7-1, Gradation Requirements for Dense Graded Crushed Stone for Sub-base

<table>
<thead>
<tr>
<th>Sieve Designation</th>
<th>Percentage by Weight Passing Square Mesh Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 in.</td>
<td>100</td>
</tr>
<tr>
<td>1 ½ in.</td>
<td>70-100</td>
</tr>
<tr>
<td>¾ in.</td>
<td>50-85</td>
</tr>
<tr>
<td>No. 4</td>
<td>30-55</td>
</tr>
<tr>
<td>No. 50</td>
<td>8-24</td>
</tr>
<tr>
<td>No. 200</td>
<td>3-10</td>
</tr>
</tbody>
</table>
Sampling and testing shall be in accordance with the following standard AASHTO methods:

- Sieve Analysis .. T 27
- Passing No. 200 Sieve ... T 11

The use of PGA meeting the requirements of M2.01.8: Processed Glass Aggregate will be allowed at a maximum addition rate of 10% mass, providing the blended material is homogeneous and the physical requirements of dense graded crushed stone are maintained.

M2.01.8: Processed Glass Aggregate

PGA shall be manufactured from an approved supplier of crushed cullet. The material shall consist of recycled glass food or beverage containers free of debris such as paper, metals, fabrics, toxins, clay, loam, or other materials that would be associated with the glass recycling process. A maximum of 5% mass of the material may be produced from china dishes, ceramics, plate glass or other glass products. The material will have a nominal aggregate size of ⅜ in. and meet the following gradation requirements.

Table M2.01.8-1: Gradation Requirements for Processed Glass Aggregate

<table>
<thead>
<tr>
<th>Sieve Designation</th>
<th>Percent by Mass Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>⅜ in.</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>70-100</td>
</tr>
<tr>
<td>No. 8</td>
<td>35-88</td>
</tr>
<tr>
<td>No. 16</td>
<td>15-40</td>
</tr>
<tr>
<td>No. 50</td>
<td>4-12</td>
</tr>
<tr>
<td>No. 200</td>
<td>0-5</td>
</tr>
</tbody>
</table>

The percent wear as determined by the Los Angeles Abrasion Test, Class C or D will be a maximum of 40%.

M2.02.0: Riprap

Riprap shall be sound, durable rock which is angular in shape. Rounded stones, boulders, sandstone or similar soft stone or relatively thin slabs will not be acceptable. Each stone shall weigh not less than 50 lb and at least 75% of the volume shall consist of stones weighing not less than 500 lb each. The remainder of the stones shall be so graded that when placed with the larger stones the entire mass will be compact.

M2.02.1: Rockfill

Stone for rockfill shall be sound, angular in shape, free from structural defects and comparatively free of chemical decay. From 50% to 70% of the stones shall weigh not less than 500 lb each and remainder shall weigh not less than 50 lb each.

M2.02.2: Dumped Riprap

Stone used for dumped riprap shall be hard, durable, angular in shape, resistant to weathering and shall meet the gradation requirement specified. Neither breadth nor thickness of a single stone...
should be less than one-third its length. Rounded stone or boulders will not be accepted unless authorized by special provisions.

Stone shall be free from overburden, spoil, shale, and organic material and shall meet the following gradation requirement specified:

<table>
<thead>
<tr>
<th>Size of Stone (lb)</th>
<th>Maximum Percent of Total Weight Smaller Than Given Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>300</td>
<td>80</td>
</tr>
<tr>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>*25</td>
<td>10</td>
</tr>
</tbody>
</table>

*No more than 5% by weight shall pass a 2 in. sieve.

Each load of riprap shall be reasonably well graded from the smallest to the maximum size specified. Stones smaller than the specified 10% size and spalls will not be permitted in an amount exceeding 10% by weight of each load.

Control of gradation will be by visual inspection. The Contractor shall provide at the locations specified a mass of rock of at least 5 tons meeting the gradation for the class specified. The sample at the construction site may be a part of the finished riprap covering. At the quarry, an additional sample shall be provided. These samples shall be used as a frequent reference for judging the gradation of the riprap supplied. Any difference of opinion between the Engineer and the Contractor shall be resolved by dumping and checking the gradation of two random truckloads of stone. Mechanical equipment, a sorting site and labor needed to assist in checking gradation shall be provided by the Contractor at no additional cost to the Department.

M2.02.3: Stone for Pipe Ends

Stone for pipe ends shall be sound, durable rock which is angular in shape. Rounded stones, boulders, sandstone or similar stone or relatively thin slabs will not be acceptable. Each stone shall weigh not less than 50 lb not more than 125 lb and at least 75% of the volume shall consist of stones weighing not less than 75 lb each. The remainder of the stones shall be so graded that when placed with the larger stones the entire mass will be compact.

M2.02.4: Modified Rockfill

Modified rockfill shall consist of hard, durable angular shaped stones which are the product of the primary crushing of a stone crusher. Rounded stone, boulders, sandstone and similar soft stone or relatively thin slabs will not be acceptable.

Stone shall be free from overburden, spoil, shale, organic material and meet the following gradation requirements:
Table M2.02.4-1: Gradation Requirements for Modified Rockfill

<table>
<thead>
<tr>
<th>Size of Stone (in.)</th>
<th>Passing Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>95-100</td>
</tr>
<tr>
<td>4</td>
<td>0-25</td>
</tr>
<tr>
<td>2 ½</td>
<td>0-5</td>
</tr>
</tbody>
</table>

M2.03.0: Granite Rubble Block

Rubble pavement blocks shall be granite, basically light grey in color, free from seams and other structural imperfections or flaws which would impair its structural integrity, and of a smooth splitting appearance. Natural color variations characteristic of the deposit from which the paving blocks are obtained will be permitted.

Rubble pavement blocks shall be not less than 4 in. nor more than 12 in. in length, not less than 3.5 in. nor more than 4.5 in. in width and depth. Rubble blocks shall be rectangular in shape with one good face.

Opposite faces of rubble blocks shall be approximately parallel and adjoining faces shall be approximately at right angles to each other. Blocks shall be dressed so that they may be laid with 1 in. to 1.5 in. joints.

M2.04.0: Aggregate for Sand Blasting

Aggregate to be used for sand blasting shall be an approved material currently used in the industry. It shall be graded to produce the profile requirements of the material being cleaned and shall meet the applicable requirements of OSHA, EPA, and DEP.

M2.05.0: Stone Screenings

Stone Screenings shall be that product from a stone crusher that completely passes a No. 4 sieve and not less than 40% passes a No. 8 sieve.

M2.06.0: Slope Paving

Stone for slope paving shall be sound, angular in shape and free from structural defects. Each stone shall have one reasonably flat face and a thickness perpendicular to the face of not less than 6 in., which shall be the least dimension of the stone.

Approximately 60% of the stones shall vary from 2 ft³ to 3 ft³ each in volume and the remainder of the stones shall each be from 1 ft³ to 2 ft³ in volume.

M2.06.1: Special Slope Paving Under Bridge (Quarry Stone).

Quarry stone shall consist of granite or other similar durable stone. The exposed surface of the stones shall range from roughly square to rectangular shape, with split or quarry face finish and uniform in color. The stones shall be from 12 in. to 28 in. long, 10 in. to 14 in. wide and from 3 in. to 6 in. thick.
M2.06.2: Channel Paving

Stones for Channel Paving and Grouted Channel Paving shall be sound, approved quality angular blocks, as nearly rectangular or cubical as practicable. Rounded stones or relatively thin slabs will not be acceptable. At least 75% of the volume shall consist of stones weighing at least 200 lb each. The remainder of the stones shall be so graded that when placed with the larger stones a compact mass will result.
SECTION M3: ASPHALTIC MATERIALS

M3.00.0: General

Asphaltic materials (also referred to as bituminous materials) include liquid asphalts as well as Hot HMA mixtures and other related materials. All asphaltic materials shall conform to the requirements of the specifications as designated.

The sampling of liquid asphalt materials shall be in accordance with AASHTO R 66. The following procedure shall be followed in obtaining liquid asphalt samples from pressure distributors or tankers used for the transport of liquid asphalt materials:

1. Distributors and tankers shall be equipped with approved sampling valves. The sampling valves on tankers shall be installed in the rear bulkhead approximately \(\frac{1}{3} \) of the height from the bottom. The sampling valves on pressure distributors may be located in the side of the tank somewhere in the middle third of the tank depth.
2. At least 1 gal of material shall be drained off through the sampling valve and discarded before the sample is obtained.
3. Sample containers shall be new, clean and sealed with a tight-fitting cap. Washing of sample containers with solvents or water will not be permitted.

M3.01.0: Performance Graded Asphalt Binder

PGAB delivered to a project or to an HMA plant must be accompanied by a BOL signed by the asphalt binder Supplier’s authorized representative in accordance with AASHTO R 26. Shipments of material not accompanied by a BOL will not be accepted for use in the work.

The PGAB Supplier and the Contractor shall perform random QC sampling and testing of PGAB as specified in 450.65: Quality Control Sampling and Testing Requirements, Paragraph F(1). The Contractor shall furnish, to the Engineer, the PGAB Supplier’s BOL for each truckload of asphalt binder shipped to the project or HMA plant. The Contractor shall also submit to the Engineer the Supplier’s COC along with copies of the COA showing the certified AASHTO M 320 test results for each Supplier Lot of PGAB. The COA shall meet the requirements of AASHTO R 26. The Contractor shall maintain a copy of the COA for each Lot of PGAB used, with a copy attached to each sample obtained for testing.

The Contractor shall assist the Engineer in obtaining random Department Acceptance samples of PGAB from the HMA plant in accordance with AASHTO R 66 and as specified in 450.74: Acceptance Sampling & Testing, Paragraph C. Each sample shall be labeled with the PGAB grade, Supplier source and Lot number, sampling location, quantity represented, project name, plant, date, and the sampling inspector. When the PGAB is used for HMA production under Subsection 450: Hot Mix Asphalt Pavement the sample shall be obtained from an in-line sample valve located between the asphalt tanks and mixing chamber at a sampling location downstream of all additive injection ports.

The Engineer will test the Department Acceptance samples for verification of the PGAB grade. The material shall conform to the specification requirements for the applicable performance grade as specified herein. Material not conforming to specification requirements shall be subject to corrective action, production suspension, rejection, or removal as determined by the Engineer.
The blending of binder of different grades or binder from different Suppliers at the HMA plants is strictly prohibited without the Engineer’s approval. Contractors may switch to another approved source of binder, upon written notification to the Engineer, and by certifying that the tank to be utilized has been drained to an un-pumpable condition. The binder tanks at the HMA production facility shall be managed in a manner which prevents contamination.

Contractors who modify, blend PG binders, or add additives to the PGAB at the HMA production facility will be reclassified as a Supplier and shall be required to certify the binder in accordance with AASHTO R 26.

A copy of the COA for each Lot shall be provided in accordance with AASHTO R 26. The data reported shall meet the requirements of the specific binder specification:

- For AASHTO M 320 – Table 1
- For AASHTO M 332 – Table 1
- For Crumb Rubber Modified Asphalt ASTM D6114-09 – Table 1

M3.01.1: Standard Asphalt Binder Grade

The asphalt binder for HMA mixtures shall be a PGAB which meets the specification requirements of AASHTO Standard M 320. PGAB shall be provided by an Approved Supplier in accordance with AASHTO R 26. Approved Suppliers shall be listed on the QCML.

The standard PGAB Grade of PG64-28 shall be used.

M3.01.2: Modified Asphalt Binder Grades

When specified by the contract documents, the PGAB shall be modified in accordance with the following:

A. Polymer Modified Asphalt Binder

The polymer modified asphalt binder shall be a PGAB which meets the specification requirements of AASHTO M 332, however “E” grades will not be subject to the $J_{n\text{rdiff}}$ difference requirement. PGAB shall be provided by an approved Supplier in accordance with the AASHTO R 26. The modified PGAB Grade of PG64E-28 shall be used.

B. Crumb Rubber Modified Asphalt Binder

The modified binder shall be in accordance with ASTM D6114-09, Type II. Virgin PGAB for the crumb rubber modified asphalt shall be a PG 58-28 or PG 64-28 provided by an approved Supplier in accordance with the AASHTO R 26. The grade selected shall be based on laboratory testing by the asphalt-rubber Manufacturer.

The granulated rubber shall be vulcanized rubber product from the ambient temperature processing of scrap, pneumatic tires. The granulated rubber shall meet the gradation found in Table M3.01.2-1.
Table M3.01.2-1: Crumb Rubber Gradation

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent by Weight Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 10</td>
<td>100</td>
</tr>
<tr>
<td>No. 16</td>
<td>90-100</td>
</tr>
<tr>
<td>No. 30</td>
<td>25-75</td>
</tr>
<tr>
<td>No. 80</td>
<td>0-20</td>
</tr>
</tbody>
</table>

The use of crumb rubber of multiple types from multiple sources is acceptable provided that the overall blend of crumb rubber meets the gradation requirements. The length of the individual rubber particles shall not exceed ⅛ in. The rubber shall be certified by the crumb rubber Manufacturer.

The percent of crumb rubber shall be a minimum of 15% by weight of binder. The temperature of the asphalt shall be between 350°F and 400°F at the time of addition of the granulated crumb rubber. The asphalt and crumb rubber shall be combined and mixed together in a blender unit and reacted in the distributor for a period of time as required by design. The temperature of the asphalt-rubber mixture shall be above 325°F during the reaction for a period of one hour.

M3.01.3: Asphalt Binder Grade for Recycled Asphalt Materials

For any HMA mixture containing recycled asphalt materials, a binder that is softer than the standard asphalt binder shall be utilized in the mixture to account for the amount and stiffness of the recycled binder in accordance with Table M3.01.3-1.

Table M3.01.3-1: PGAB Grades for HMA Containing RAP/RAS

<table>
<thead>
<tr>
<th>Amount of RAP in Mixture</th>
<th>Virgin PGAB Grade</th>
<th>Resulting PGAB Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤25% RAP by Weight of Mixture</td>
<td>Project Specified Grade</td>
<td>Project Specified Grade</td>
</tr>
<tr>
<td>>25% to 40% RAP by Weight of Mixture</td>
<td>Follow AASHTO M 323 Appendix X1</td>
<td>Project Specified Grade</td>
</tr>
<tr>
<td>≤5% RAS by Weight of Mixture</td>
<td>Follow AASHTO PP 78</td>
<td>Project Specified Grade</td>
</tr>
</tbody>
</table>

If greater than 25% RAP or any quantity of RAS are used in an asphalt mixture, the virgin PGAB grade when blended with the RAP binder shall meet the binder grade specified by the project. The resulting final PGAB grade shall be in accordance with Table M3.01.3-1. Only PGABs meeting the requirements of AASHTO M 320 or M 323 will be used.

The type and amount of virgin asphalt binder to be used in the HMA mixture shall be included as part of the LTMF. The Contractor shall submit certified test results from an AASHTO accredited laboratory showing the testing of the individual binders and the blending.

M3.01.4: Warm Mix Asphalt Additive

All HMA shall be modified using a WMA additive. The WMA additive shall be evaluated by NTPEP and be listed on the QCML. No WMA foaming technology which requires the mechanical injection of steam or water into the liquid asphalt will be permitted.
For HMA placed on bridge decks, the WMA additive shall not be used to lower the mixing and compaction temperatures. The mixing and compaction temperatures specified for the binder prior to addition of the WMA additive shall be used.

The WMA additive must be compatible with polyphosphoric acid modified binders, polymer modified binders, and anti-stripping agents. The WMA additive shall be introduced in accordance with the Manufacturer’s dosing rates and approved blending methods.

The HMA mixture design shall incorporate the requirements of AASHTO R 35 Appendix X2: Special Mixture Design Considerations and Practices for Warm Mix Asphalt (WMA). Laboratory mixing and compaction temperatures shall be reduced per the WMA Manufacturer’s recommendations, however, the optimum laboratory compaction temperature for unmodified asphalt binders shall be less than 260°F. Target laboratory mixing and compaction temperatures shall be submitted to the RMS for review prior to performing a mix design.

When the asphalt binder is modified with the WMA additive at the HMA plant, all WMA additive equipment shall be fully automated and integrated into the plant controls and shall record actual dosage rates on the plant printouts. The Contractor’s QSM shall provide mixture production and placement alterations due to the WMA additive and shall incorporate the modification of asphalt binders when the WMA additive is blended with the asphalt binder at the plant. This plan shall specifically address WMA metering requirements, tolerances and other QC measures.

M3.01.5: Asphalt Anti-Stripping Additive

An anti-stripping additive may be required in a HMA mixture to increase the resistance of the asphalt binder coating to stripping in the presence of water. An anti-stripping additive may be a liquid anti-strip or hydrated lime.

The Engineer may verify the effectiveness of the anti-strip used in a HMA mixture. When added at the dosage rate recommended by the Manufacturer to a HMA mixture showing moisture susceptibility, the anti-strip shall cause an improvement to the mixture’s moisture susceptibility. This shall be determined by testing specimens with and without the liquid anti-strip additive in accordance with AASHTO T 324. If the antistrip does not show an improvement in the moisture susceptibility the additive will not be permitted for use.

The Manufacturer shall certify that the material is in accordance with this specification. The Manufacturer shall submit a COC for each Lot in accordance with Division 1 Section 6.0. The COC shall also include the:

- Brand name and designation.
- Composition or description of the anti-strip additive.
- Manner in which the material will be identified on the containers.

A. Hydrated Lime

The hydrated lime for HMA shall conform to the requirements of AASHTO M 303.

B. Liquid Anti-Strip

The anti-strip Manufacture shall submit product documentation, including the recommended dosage rate, to RMS for approval. Approved anti-strip additives shall be listed on the QCML.
Anti-stripping additives shall be an organic chemical compound free from inorganic mineral salts or inorganic mineral soaps. The anti-strip additive shall be chemically inert to asphalt binder and shall not appreciably alter the specified characteristics of the asphalt binder. When blended with asphalt binder, it shall be stable and withstand storage at a temperature of 400°F for extended periods without loss of effectiveness.

M3.01.6: Asphalt Release Agents

Approved asphalt release agents will be listed on the QCML. The asphalt release agent shall not be detrimental to the HMA and shall not dissolve asphalt binder when applied to the truck bed. Dilution by diesel or other petroleum products will not be permitted.

Asphalt release agents shall be evaluated by NTPEP. Release agents shall meet the following minimum requirements:

1. **7-Day Stripping Test** - No stripping or discoloration when used in full strength and diluted forms.
2. **Mixture Slide Test** - 10.0 grams retained, maximum.
3. **Asphalt Performance Test** - Able to pull the cooled binder from the metal plate without adherence, a minimum of three pours.
4. **Flash Point, ASTM D93** - Have a flash point greater than 400°F on the undiluted product and contain no flammable materials, solvents, or petroleum elements.

The Manufacturer shall submit a COC for each Lot of asphalt release agent in accordance with Section 6.00: Control of Materials. The COC shall also include the:

1. Brand name and designation
2. Composition or description of the release agent
3. Manner in which the material will be identified on the containers

The Manufacturer shall certify that the material is in accordance with this specification. In addition, the Manufacturer shall furnish information for any dilution requirements, including the minimum dilution rate and special application requirements.

M3.02.0: Cutback Asphalts

These materials shall be blends of asphalt cements and suitable solvents. They shall be homogeneous, free from water and conform to the requirements of AASHTO M 81 for the rapid curing type and AASHTO M 82 for the medium curing type.

M3.03.0: Asphalt Emulsions

M3.03.1: Anionic Emulsified Asphalt

These materials shall be homogeneous and shall show no separation after mixing within thirty days after delivery. They shall conform to the requirements of AASHTO M 140. Anionic emulsion used for tack coat shall be grade RS-1h.
M3.03.2: Cationic Emulsified Asphalt

This material shall be a homogeneous asphalt emulsion. It shall remain homogeneous for a minimum of three months. It shall conform to the requirements of AASHTO M 208. Cationic asphalt emulsion used for tack coat shall be grade CRS-1h.

M3.03.3: Protective Seal Coat Emulsion

This material shall be a homogeneous emulsion consisting of coal tar pitch dispersed in water by means of a mineral colloid meeting the requirements of ASTM D5727. Any separation or coagulation of its components shall be capable of being overcome by moderate stirring. It shall contain no asphaltic materials or chemical emulsifiers.

M3.05.0: Hot Poured Joint Sealer

This sealer shall meet the requirements of ASTM D6690 Type II. Products shall be evaluated by the NTPEP as an HMA Crack Sealer (CS) and be listed on the QCML.

M3.05.1: Asphalt-Fiber Joint and Crack Sealer

This material shall consist of a blend of asphalt cement (PG64-28) and polyester fibers. The asphalt-fiber blend shall consist of 6% fiber by weight of asphalt binder.

M3.05.2: Preformed Bituminous Joint Filler for Concrete

This material shall be a non-extruding and resilient bituminous type preformed expansion joint filler. It shall conform to the requirements of AASHTO M 213.

M3.05.3: Hot Applied Hot Mix Asphalt Crack Sealer

This specification covers a hot applied crack sealer suitable for use in cement concrete and hot mix asphalt pavement. This sealer shall meet the requirements of ASTM D6690 Type II. Products shall be evaluated by the NTPEP as an HMA Crack Sealer (CS) and be listed on the QCML.

M3.06.1: Coated Glass Fabric

This material shall be a coated glass fabric composed of inorganic glass fibers smoothly woven into an open mesh cloth. The coating shall be uniform and compatible with asphalt base or tar base compounds. The finished material shall be free of visible external defects such as ragged or untrue edges, breaks, dents or cracks. It shall conform to the following requirements:

Coated Glass Fabric

Selvage: The selvage shall have a width of between $\frac{1}{8}$ in. and $\frac{1}{2}$ in., inclusive.
Table M3.06.1-1: Coated Glass Fabric Requirements

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width of Roll</td>
<td>36 in. ±2 in.</td>
<td>48 in. ±2 in.</td>
</tr>
<tr>
<td>Gross Weight per Roll</td>
<td>5 lb</td>
<td>6 lb</td>
</tr>
<tr>
<td>Average Net Mass per Square Yard</td>
<td>1.5 oz</td>
<td></td>
</tr>
<tr>
<td>Coating on Fabricated Material per Square Yard</td>
<td>0.2 oz</td>
<td></td>
</tr>
</tbody>
</table>

Uncoated Glass Fabric

Table M3.06.1-2: Uncoated Glass Fabric Requirements

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Dry Weight per Square Yard</td>
<td>1.4 oz</td>
<td></td>
</tr>
<tr>
<td>Composition of Fabric</td>
<td>100% Glass Fibers</td>
<td></td>
</tr>
<tr>
<td>Thread Count per Inch of Width:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warp</td>
<td>20 ± 1</td>
<td>24 ± 1</td>
</tr>
<tr>
<td>Filling</td>
<td>20 ± 1</td>
<td>24 ± 1</td>
</tr>
</tbody>
</table>

Where double strength fibers are used for the filling, the minimum requirement shall be 10 (-0, +1) to 12 (-0, +2).

Breaking Strength (ASTM D146, D5034, and D5035)

- Warp: 75 lb, minimum
- Filling 75 lb, minimum

*To prevent the coated glass fabric from slipping out from between the jaws of the tension testing machine, insert a thin strip of soft gasket rubber between the fabric and each of the four jaws of the machine before clamping in position.

M3.09.0: Asphalt Pipe Coating

The material shall conform to the requirements of AASHTO M 190.

M3.11.0: Hot Mix Asphalt

M3.11.1: General

All HMA mixtures shall meet the requirements of the Superpave volumetric mix design system as well as the following. Asphalt mixtures shall be composed of the following:

- Mineral aggregate
- Mineral filler (if required)
- PGAB
The use of recycled materials shall be at the Contractor's option in accordance with these specifications. And as permitted, recycled materials shall be limited to:

- RAP
- RAS
- PGA

Each HMA pavement course placed shall be comprised of one of the mixture types listed in Table M3.11.1-1.

Table M3.11.1-1: HMA Pavement Courses & Mixture Types

<table>
<thead>
<tr>
<th>Pavement Course</th>
<th>Mixture Type</th>
<th>Mixture Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friction Course</td>
<td>Open-Graded Friction Course – 9.5 – Polymer</td>
<td>OGFC-P</td>
</tr>
<tr>
<td></td>
<td>Open-Graded Friction Course – 9.5 – Asphalt Rubber</td>
<td>OGFC-AR</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 4.75</td>
<td>SSC – 4.75</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 4.75 – Polymer</td>
<td>SSC – 4.75 – P</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 9.5</td>
<td>SSC – 9.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 9.5 – Polymer</td>
<td>SSC – 9.5 – P</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 12.5</td>
<td>SSC – 12.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 12.5 – Polymer</td>
<td>SSC – 12.5 – P</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 19.0</td>
<td>SSC – 19.0</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Surface Course – 19.0 – Polymer</td>
<td>SSC – 19.0 – P</td>
</tr>
<tr>
<td></td>
<td>Asphalt Rubber Gap Graded – 12.5</td>
<td>ARGG – 12.5</td>
</tr>
<tr>
<td>Intermediate Course</td>
<td>SUPERPAVE Intermediate Course – 12.5</td>
<td>SIC – 12.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Intermediate Course – 12.5 – Polymer</td>
<td>SIC – 12.5 – P</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Intermediate Course – 19.0</td>
<td>SIC – 19.0</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Intermediate Course – 19.0 – Polymer</td>
<td>SIC – 19.0 – P</td>
</tr>
<tr>
<td>Base Course</td>
<td>SUPERPAVE Base Course – 25.0</td>
<td>SBC – 25.0</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Base Course – 37.5</td>
<td>SBC – 37.5</td>
</tr>
<tr>
<td>Leveling Course</td>
<td>SUPERPAVE Leveling Course – 4.75</td>
<td>SLC – 4.75</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Leveling Course – 9.5</td>
<td>SLC – 9.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Leveling Course – 12.5</td>
<td>SLC 12.5</td>
</tr>
<tr>
<td>Bridge Surface Course</td>
<td>SUPERPAVE Bridge Surface Course – 9.5</td>
<td>SSC-B – 9.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Bridge Surface Course – 9.5 – Polymer</td>
<td>SSC-B – 9.5 – P</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Bridge Surface Course – 12.5</td>
<td>SSC-B – 12.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Bridge Surface Course – 12.5 – Polymer</td>
<td>SSC-B – 12.5 – P</td>
</tr>
<tr>
<td>Bridge Protective Course</td>
<td>SUPERPAVE Bridge Protective Course – 9.5</td>
<td>SPC-B – 9.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Bridge Protective Course – 9.5 – Polymer</td>
<td>SPC-B – 9.5 – P</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Bridge Protective Course – 12.5</td>
<td>SPC-B – 12.5</td>
</tr>
<tr>
<td></td>
<td>SUPERPAVE Bridge Protective Course – 12.5 – Polymer</td>
<td>SPC-B – 12.5 – P</td>
</tr>
</tbody>
</table>
M3.11.2: Aggregate for Hot Mix Asphalt

A. Coarse Aggregate

The coarse mineral aggregate shall be clean, hard, durable, crushed rock consisting of the angular fragments obtained by breaking and crushing shattered natural rock, reasonably free from thin and/or elongated pieces, free from dirt or other objectionable materials. It shall be surface dry and shall have a moisture content of not more than 0.5 percent after drying. Aggregates from multiple sources of supply shall not be mixed or stored in the same stockpile.

B. Fine Aggregate

The fine aggregate shall consist of one of the following:

1. 100% Natural Sand.
2. 100% Stone Sand.
3. A blend of sand and stone screenings, the proportions of which shall be approved by the Engineer.
4. A blend of natural sand and stone sand.

Natural sand shall consist of inert, hard, durable grains of quartz or other hard, durable rock, free from topsoil or clay, surface coatings, organic matter or other deleterious materials.

Stone sand shall be a processed material prepared from stone screenings to produce a consistently graded material conforming to specification requirements.

Stone screenings shall be the product of a secondary crusher and shall be free from dirt, clay, organic matter, excess fines or other deleterious material.

C. Consensus Properties

Aggregates utilized in HMA mixtures, including RAP if used in the mixture, shall be tested for conformance with the Consensus Property requirements outlined in AASHTO M 323 Sections 6.2 to 6.6 and Table M3.11.2-2 below.

D. Source Properties

The coarse aggregate utilized in asphalt mixtures shall be clean, crushed rock consisting of the angular fragments obtained by breaking and crushing shattered natural rock. It shall be free from dirt or other objectionable materials. The coarse aggregate, including RAP if used in the mixture, shall be tested for conformance with the requirements indicated in Table M3.11.2-3. The specific gravity of each aggregate component shall be determined as specified in Table M3.11.2-4 below.

To determine the bulk specific gravity of RAP aggregate the method outlined in FHWA Publication Number FHWA-HRT-11-021 “Reclaimed Asphalt Pavement in Asphalt Mixtures: State of the Practice” shall be used. The following excerpt is the method to be followed:

If the source of RAP is known and original construction records are available, the bulk specific gravity (BSG) value of the virgin aggregate from the construction records may be used as the BSG value of the RAP aggregate. However, if original construction records are not available, the recommended procedure for estimating BSG of the RAP aggregate is a simple three-step process as follows:
1. Determine the maximum theoretical specific gravity of the RAP mixture, G_{mm}^{RAP}, according to AASHTO T 209.

2. Calculate the effective specific gravity of the RAP aggregate, G_{se}^{RAP}, using G_{mm}^{RAP}, the asphalt content of the RAP mixture (P_b) and an assumed asphalt specific gravity (G_b) as follows:

$$G_{se}^{RAP} = \frac{100 - P_b}{100/G_{mm}^{RAP} - P_b/G_b}$$

Where: $G_b = 1.030$

3. The asphalt absorption, P_{ba}, shall be assumed to be 0.5%. Use this value to estimate the BSG of the RAP aggregate, G_{sb}^{RAP}, from the calculated G_{se}^{RAP}.

$$G_{sb}^{RAP} = G_{se}^{RAP} \left(\frac{P_{ba} \times G_{se}^{RAP}}{100G_b} + 1\right)$$

E. Recycled Asphalt Pavement

RAP shall meet the requirements of M3.11.2: Aggregate for Hot Mix Asphalt, Paragraphs C, and D as well as the following. RAP shall consist of the material obtained from state highways or streets by crushing or milling existing HMA pavements. This material shall be transported to the HMA production facility yard and processed through an appropriate crusher so that the resulting material will contain no particles larger than the maximum aggregate size of the HMA mixture in which it will be used.

The RAP shall be stockpiled on a free draining base and kept separate from the other aggregates. RAP stockpiles shall be covered in a manner that prevents the intrusion of water but also allows the flow of air. The RAP stockpiles shall have a reasonably uniform gradation from fine to coarse and shall not be contaminated by foreign materials. The RAP used in the HMA mix production shall have a moisture content such that the final HMA contains no more than 0.5% moisture.

The use of RAP will be permitted at the option of the Contractor and provided that the end product is in conformance with the approved JMF. The proportion of RAP to virgin aggregate shall be in accordance with Table M3.11.2-1 and M3.01.3: Asphalt Binder Grade for Recycled Asphalt Materials.
Table M3.11.2-1: Maximum Allowed RAP Content by Mix Type

<table>
<thead>
<tr>
<th>Mix Type</th>
<th>Maximum Amount of RAP Allowed (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friction Course (OGFC)</td>
<td>0</td>
</tr>
<tr>
<td>Friction Course (ARGG)</td>
<td>10</td>
</tr>
<tr>
<td>Surface Course</td>
<td>15</td>
</tr>
<tr>
<td>Leveling Course</td>
<td>15</td>
</tr>
<tr>
<td>Bridge Surface Course</td>
<td>15</td>
</tr>
<tr>
<td>Bridge Protective Course</td>
<td>15</td>
</tr>
<tr>
<td>Intermediate Course</td>
<td>40</td>
</tr>
<tr>
<td>Base Course</td>
<td>40</td>
</tr>
</tbody>
</table>

F. Recycled Asphalt Shingles

RAS shall consist of only the by-product materials obtained from the roofing shingle manufacturing process. Post-consumer shingle waste and re-roofing shingle scrap will not be allowed. The Contractor or the plant shall provide certification from the roofing shingle manufacturer that RAS material provided is a by-product of the shingle manufacturing process. This material shall be transported to the HMA production facility yard and processed through an appropriate crusher so that the resulting material will contain no particles larger than 0.5 in. The material shall be stockpiled on a free draining base and kept separate from the other aggregates. The material contained in the processed stockpile shall not be contaminated by foreign materials. RAS stockpiles shall be covered in a manner that prevents the intrusion of water but also allows the flow of air.

RAS may be used in HMA leveling courses, HMA intermediate courses, and HMA base courses at a maximum rate of 5% by weight. When RAS is used in HMA mixtures containing RAP or other recycled materials, the RAS will be considered as part of the overall allowable weight of recycled materials in the mixture.

G. PGA

The use of PGA meeting the requirements of M2.01.8: Processed Glass Aggregate may be added at a maximum addition rate of 10% by weight. This addition will only be allowed in base and intermediate mixtures. PGA in mixes containing RAP will be considered as part of the overall allowable mass of RAP in the mix. If PGA is used in the mix, a separate aggregate bin shall be used and the use of lime as an anti-stripping agent shall be required.
Table M3.11.2-2: Aggregate Consensus Property Requirements

<table>
<thead>
<tr>
<th>Traffic Level</th>
<th>Design ESALs (Millions) (1)</th>
<th>Fractured Faces, Coarse Aggregate (2) % Minimum</th>
<th>Uncompacted Content of Fine Aggregate % Minimum</th>
<th>Sand Equivalent % Minimum</th>
<th>Flat and Elongated (2) % Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>All Courses (except Base Course) Base Course</td>
<td>All Courses (except Base Course) Base Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td><0.3</td>
<td>55/--</td>
<td>--/--</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>0.3 to <10</td>
<td>85/80(3)</td>
<td>60/--</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>≥10</td>
<td>95/90</td>
<td>80/75</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

(1) The anticipated project traffic level expected on the design lane over a 20-year period. Regardless of the actual design life of the roadway, determine the design ESALs for 20 years.

(2) This criterion does not apply to 4.75 mm nominal maximum size mixtures.

(3) 85/80 denotes that 85% of the coarse aggregate has one fractured face and 80% has two or more fractured faces.

(4) For 4.75 mm nominal maximum size mixtures designed for traffic levels below 0.3 million ESALs, the minimum Uncompacted Void Content is 40.

Table M3.11.2-3: Aggregate Source Property Requirements

<table>
<thead>
<tr>
<th>Source Property Test</th>
<th>Test Method</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toughness</td>
<td>AASHTO T 96</td>
<td>Maximum Loss <30%</td>
</tr>
<tr>
<td>Soundness</td>
<td>AASHTO T 104</td>
<td>Maximum Loss <10%</td>
</tr>
<tr>
<td>Deleterious Materials</td>
<td>AASHTO T 112</td>
<td>Maximum Permissible <0.5%</td>
</tr>
</tbody>
</table>

Table M3.11.2-4: Aggregate Specific Gravity Test Method

<table>
<thead>
<tr>
<th>Aggregate Type</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>AASHTO T 85</td>
</tr>
<tr>
<td>Fine</td>
<td>AASHTO T 84 or ASTM D7370</td>
</tr>
<tr>
<td>Mineral Filler</td>
<td>AASHTO T 100</td>
</tr>
<tr>
<td>RAP</td>
<td>From FHWA-HRT-11-021</td>
</tr>
</tbody>
</table>

M3.11.3: Performance Graded Asphalt Binder

The PGAB utilized in the HMA mixture shall be specified by the Contract and shall comply with the requirements of M3.01.0: Performance Graded Asphalt Binder.

M3.11.4: Hot Mix Asphalt Mixture Design

The Contractor shall be responsible for development of all HMA mixture designs. All HMA surface courses, intermediate courses, base courses, leveling courses, bridge surface courses, and bridge protective courses shall be supported by volumetric mixture designs using the Superpave mixture
design system. All Superpave HMA designs shall be developed in accordance with the following AASHTO standards, as modified herein:

1. AASHTO M 323
2. AASHTO R 35
3. AASHTO T 312

OGFC and ARGG mixtures shall be designed in accordance with Subsections M3.11.4: Hot Mix Asphalt Mixture Design, Paragraphs G and H, respectively

A. Development of LTMF

The Contractor shall develop and submit a LTMF for each HMA mixture type, which is to be proposed as a JMF, a minimum of 60 days prior to HMA production. Each LTMF shall be submitted with supporting documentation and adequate amount of blended aggregate material and PGAB in order to verify the LTMF.

Once verified by the Department, the LTMF may become the JMF for a project. Two or more JMFs per HMA type may be approved for a particular plant, however, only mixture conforming to one JMF is permitted to be produced and placed on any given day.

B. Estimated Design Traffic

The estimated traffic level to be used for HMA mix designs shall be specified by the contract. The traffic level shall be expressed in Equivalent Single Axle Loads (ESALs) for the design travel lane over a 20-year period in million 18-kip ESALs.

C. Specific Gravity Requirements

The individual aggregate specific gravities shall be included with the LTMF. The Contractor shall provide samples of each aggregate material a minimum of 60 days prior to production for each LTMF to the Department for verification specific gravity of each stockpile.

D. Superpave Aggregate Gradation Requirements

The combined aggregate blend for each Superpave HMA mixture shall conform to the Gradation Control Point requirements specified in M3.11.4-1. The results of the selected optimum design aggregate structure shall be plotted on a 0.45 power chart and included with the LTMF.

The combined aggregate gradation shall be classified as coarse-graded when it passes below the Primary Control Sieve (PCS) control point as defined in M3.11.4-2. All other gradations shall be classified as fine graded.

When a Superpave Surface Course - 19.0 (SSC - 19.0) is specified in the contract, the LTMF aggregate gradation shall provide a fine-graded HMA mixture as defined in Table M3.9.

E. Gyratory Compaction Criteria

Each asphalt mixture shall be designed and controlled during production using an approved gyratory compactor which meets the requirements of AASHTO T 312. Compaction shall be in accordance with the requirements of AASHTO T 312. The density of each HMA mixture shall be evaluated at the initial number of gyrations ($N_{initial}$), the
design number of gyrations \((N_{\text{design}}) \), and the maximum number of gyrations \((N_{\text{max}}) \). The gyratory-compacted specimens for each LTMF shall meet the density requirements specified in M3.11.4-3 below.

F. Superpave Volumetric Design Requirements.

Each Superpave HMA mixture shall be designed in accordance with the volumetric mixture design specifications contained in AASHTO M 323 and procedures contained in AASHTO R 35, as modified herein. Each HMA mixture LTMF shall be tested for conformance with the following volumetric properties:

1. Air Voids at \(N_{\text{design}} \) (\(V_a \))
2. Voids in the Mineral Aggregate at \(N_{\text{design}} \) (\(V_{\text{MA}} \))
3. Voids Filled with Asphalt at \(N_{\text{design}} \) (\(V_{\text{FA}} \))
4. Fines to Effective Asphalt Ratio (\(P_{0.075} / P_{\text{be}} \))

The volumetric property test results shall be submitted with the LTMF for each Superpave HMA mixture. The required minimum or maximum criteria for each of the volumetric property tests are specified in Table M3.11.4-3, Table M3.11.4-4, and Table M3.11.4-5.

Table M3.11.4-1: Superpave Aggregate Gradation Control Points

<table>
<thead>
<tr>
<th>Sieve (in.)</th>
<th>#4</th>
<th>⅛ in.</th>
<th>⅜ in.</th>
<th>⅝ in.</th>
<th>⅞ in.</th>
<th>1 in.</th>
<th>1 ½ in.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>¾</td>
<td></td>
<td></td>
<td>100</td>
<td>90</td>
<td>100</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>½</td>
<td>100</td>
<td></td>
<td></td>
<td>90</td>
<td>100</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>⅝</td>
<td>95</td>
<td>100</td>
<td>90</td>
<td>100</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>90</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#8</td>
<td>32</td>
<td>67</td>
<td>28</td>
<td>58</td>
<td>23</td>
<td>49</td>
<td>19</td>
</tr>
<tr>
<td>#16</td>
<td>30</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>6</td>
<td>13</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table M3.11.4-2: Superpave Aggregate Gradation Control Points

<table>
<thead>
<tr>
<th>Sieve (in.)</th>
<th>#4</th>
<th>⅛ in.</th>
<th>⅜ in.</th>
<th>⅝ in.</th>
<th>⅞ in.</th>
<th>1 in.</th>
<th>1 ½ in.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>¾</td>
<td></td>
<td></td>
<td>100</td>
<td>90</td>
<td>100</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>½</td>
<td>100</td>
<td></td>
<td></td>
<td>90</td>
<td>100</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>⅝</td>
<td>95</td>
<td>100</td>
<td>90</td>
<td>100</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>90</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#8</td>
<td>32</td>
<td>67</td>
<td>28</td>
<td>58</td>
<td>23</td>
<td>49</td>
<td>19</td>
</tr>
<tr>
<td>#16</td>
<td>30</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>6</td>
<td>13</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table M3.11.4-2: Gradation Classification

<table>
<thead>
<tr>
<th>Nominal maximum aggregate size</th>
<th>⅜ in.</th>
<th>½ in.</th>
<th>¾ in.</th>
<th>1 in.</th>
<th>1 ½ in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Control Sieve #8</td>
<td>#8</td>
<td>#8</td>
<td>#4</td>
<td>#4</td>
<td>⅜ in.</td>
</tr>
<tr>
<td>PCS control point, % passing</td>
<td>47</td>
<td>39</td>
<td>47</td>
<td>40</td>
<td>47</td>
</tr>
</tbody>
</table>

Table M3.11.4-3: Superpave Asphalt Mixture Design Laboratory Compaction Requirements

<table>
<thead>
<tr>
<th>Traffic Level</th>
<th>Design ESALs (millions)</th>
<th>Number of Gyraions</th>
<th>Percent Density of G_mm from Asphalt Mixture Gyratory Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N_{ini}</td>
<td>N_{des}</td>
<td>N_{max}</td>
</tr>
<tr>
<td>1</td>
<td><0.3</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>0.3 to <10</td>
<td>7</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>≥10</td>
<td>8</td>
<td>100</td>
</tr>
</tbody>
</table>

Table M3.11.4-4: Superpave Volumetric Requirements

<table>
<thead>
<tr>
<th>Nominal Maximum Aggregate Size</th>
<th>Pb</th>
<th>Gmb</th>
<th>G_mm</th>
<th>V_a</th>
<th>VMA</th>
<th>VFA</th>
<th>Dust/P_{be}^{(1)}</th>
<th>Mixture Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#4</td>
<td>⅛ in.</td>
<td>½ in.</td>
<td>¾ in.</td>
<td>1 in.</td>
<td>1 ½ in.</td>
<td>0.9 to 2.0</td>
<td>0.6 to 1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6 to 1.2</td>
<td>0.6 to 1.2</td>
</tr>
</tbody>
</table>

V_{fa} ≥17.0 V_{fa} ≥16.0 V_{fa} ≥15.0 V_{fa} ≥14.0 V_{fa} ≥13.0 V_{fa} ≥12.0

^{(1)} If the aggregate gradation passes beneath the PCS Control Point specified in M 323 Table 5, the dust-to-binder ratio range may be increased from 0.6-1.2 to 0.8-1.6 at the Engineer’s discretion.

^{(2)} Laboratory mixing and compaction temperatures shall be based on the PGAB COA. When additives such as WMA, polymers, and rubber are introduced the mixing and compaction temperatures may be modified from the PGAB COA. Temperature modifications shall be recommended by the binder Supplier and approved at the Engineer’s discretion.
Table M3.11.4-5: Superpave Asphalt Mixture VFA Requirements

<table>
<thead>
<tr>
<th>Traffic Level</th>
<th>Design ESALs (millions)</th>
<th>#4</th>
<th>⅜ in.</th>
<th>⅝ in.</th>
<th>¾ in.</th>
<th>1 in.</th>
<th>1 ½ in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><0.3</td>
<td>70 to 80</td>
<td>70 to 80</td>
<td>70 to 80</td>
<td>67 to 80</td>
<td>64 to 80</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.3 to <10</td>
<td>65 to 78</td>
<td>65 to 78</td>
<td>65 to 78</td>
<td>65 to 78</td>
<td>64 to 78</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>≥10</td>
<td>75 to 78</td>
<td>73 to 76</td>
<td>65 to 75</td>
<td>65 to 75</td>
<td>64 to 75</td>
<td></td>
</tr>
</tbody>
</table>

G. OGFC Design Requirements

Each OGFC asphalt mixture shall be designed in accordance AASHTO PP 77, as modified herein. The combined aggregate gradation shall conform to Table M3.11.4-6 and the mixture shall conform to Table M3.11.4-7.

1. OGFC-P will utilize asphalt binder meeting the requirements of M3.01.2: Modified Asphalt Binder Grades, Paragraph A.
2. OGFC-AR will utilize asphalt binder meeting the requirements of M3.01.2: Modified Asphalt Binder Grades, Paragraph B.

Table M3.11.4-6: OGFC Aggregate Gradation Control Points

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Nominal Maximum Aggregate Size Control Points (% Passing)</th>
<th>⅜ in.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>¾</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>½</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>⅝</td>
<td>85</td>
<td>100</td>
</tr>
<tr>
<td>#4</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>#8</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>#200</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
Table M3.11.4-7: OGFC Mixture Requirements

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{des}, gyrations</td>
<td>50</td>
</tr>
<tr>
<td>P_b, % (Polymer)</td>
<td>≥ 6.5</td>
</tr>
<tr>
<td>P_b, % (Asphalt Rubber)</td>
<td>≥ 7.5</td>
</tr>
<tr>
<td>V_a, %</td>
<td>18 to 22</td>
</tr>
<tr>
<td>$V_{C_{mix}}$, %</td>
<td>$< V_{C_{DRC}}$</td>
</tr>
<tr>
<td>Draindown at Production Temperature, %</td>
<td>≤ 0.3</td>
</tr>
<tr>
<td>Abrasion Loss, %</td>
<td>≤ 15</td>
</tr>
<tr>
<td>TSR, %</td>
<td>≥ 70</td>
</tr>
<tr>
<td>Permeability, in/sec $^{(1)}$</td>
<td>≥ 0.0178</td>
</tr>
</tbody>
</table>

$^{(1)}$ Permeability shall be performed in accordance with the procedure outlined by RMS.

H. ARGG Design Requirements

Each ARGG asphalt mixture shall be designed in accordance with the AASHTO M 323 and procedures contained in AASHTO R 35, as modified herein. The combined aggregate gradation shall conform to Table M3.11.4-8 and the mixture shall conform to Table M3.11.4-9.

ARGG will utilize asphalt binder meeting the requirements of M3.01.2: Modified Asphalt Binder Grades, Paragraph B.

Table M3.11.4-8: ARGG Aggregate Gradation Control Points

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Nominal Maximum Aggregate Size Control Points (% Passing) $^{\frac{1}{2}}$ in.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>Inches</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>$\frac{3}{4}$</td>
<td>100</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>90</td>
</tr>
<tr>
<td>$\frac{3}{8}$</td>
<td>83</td>
</tr>
<tr>
<td>#4</td>
<td>28</td>
</tr>
<tr>
<td>#8</td>
<td>14</td>
</tr>
<tr>
<td>#200</td>
<td>0</td>
</tr>
</tbody>
</table>
Table M3.11.4-9: ARGG Mixture Requirements

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{des} gyrations</td>
<td>10</td>
</tr>
<tr>
<td>P_b, % (Polymer)</td>
<td>≥7.6</td>
</tr>
<tr>
<td>V_a, %</td>
<td>3 to 6</td>
</tr>
<tr>
<td>VMA, %</td>
<td>18 to 23</td>
</tr>
<tr>
<td>Draindown at Production Temperature, %</td>
<td>≤0.3</td>
</tr>
</tbody>
</table>

M3.11.5: Verification of Laboratory Trial Mix Formula

The Contractor shall submit an LTMF in accordance with M3.11.4: Hot Mix Asphalt Mixture Design. The Engineer will perform laboratory verification of each LTMF.

If the Engineer is unable to verify the Contractor’s LTMF in accordance with the applicable LTMF Verification Limits in Table M3.11.5-1, Table M3.11.5-2, or Table M3.11.5-3, then the Engineer will work with the Contractor to resolve the verification issue(s). The Contractor shall not proceed with production and placement of a Control Strip under Subsection 450: Hot Mix Asphalt Pavement until the LTMF is verified by the Engineer.

Table M3.11.5-1: Superpave LTMF Verification Limits

<table>
<thead>
<tr>
<th>Properties</th>
<th>LTMF Verification Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Binder Content (P_b)</td>
<td>Target ± 0.3%</td>
</tr>
<tr>
<td>Gradation Passing #4 and Larger Sieves</td>
<td>Target ± 6.0%</td>
</tr>
<tr>
<td>Gradation Passing #8 Sieve</td>
<td>Target ± 5.0%</td>
</tr>
<tr>
<td>Gradation Passing #16 to #50 Sieve</td>
<td>Target ± 3.0%</td>
</tr>
<tr>
<td>Gradation Passing #100 Sieve</td>
<td>Target ± 2.0%</td>
</tr>
<tr>
<td>Gradation Passing #200 Sieve</td>
<td>Target ± 1.0%</td>
</tr>
<tr>
<td>Bulk Specific Gravity (G_{mb})</td>
<td>Target ± 0.022</td>
</tr>
<tr>
<td>Max. Theo. Specific Gravity (G_{mm})</td>
<td>Target ± 0.020</td>
</tr>
<tr>
<td>Air Voids (V_a)</td>
<td>Target ± 1.0%</td>
</tr>
<tr>
<td>Voids in Mineral Aggregate (VMA)</td>
<td>Target ± 1.0%</td>
</tr>
<tr>
<td>Voids Filled With Asphalt (VFA)</td>
<td>Target ± 5.0%</td>
</tr>
<tr>
<td>Rutting and Moisture Susceptibility</td>
<td>See Table M3.11.5-4</td>
</tr>
</tbody>
</table>
Table M3.11.5-2: OGFC LTMF Verification Limits

<table>
<thead>
<tr>
<th>Properties</th>
<th>LTMF Verification Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Binder Content (P_b)</td>
<td>Target ± 0.3%</td>
</tr>
<tr>
<td>Gradation Passing #4 and Larger Sieves</td>
<td>Target ± 6.0%</td>
</tr>
<tr>
<td>Gradation Passing #8 Sieve</td>
<td>Target ± 4.0%</td>
</tr>
<tr>
<td>Gradation Passing #16 to #50 Sieve</td>
<td>Target ± 4.0%</td>
</tr>
<tr>
<td>Gradation Passing #100 Sieve</td>
<td>Target ± 2.0%</td>
</tr>
<tr>
<td>Gradation Passing #200 Sieve</td>
<td>Target ± 1.0%</td>
</tr>
<tr>
<td>Bulk Specific Gravity (Gmb)</td>
<td>Target ± 0.022</td>
</tr>
<tr>
<td>Max. Theo. Specific Gravity (Gmm)</td>
<td>Target ± 0.020</td>
</tr>
<tr>
<td>Air Voids (V_a)</td>
<td>Target ± 2.0%</td>
</tr>
<tr>
<td>Voids in Mineral Aggregate (VMA)</td>
<td>Target ± 2.0%</td>
</tr>
<tr>
<td>Voids Filled With Asphalt (VFA)</td>
<td>Target ± 5.0%</td>
</tr>
<tr>
<td>Draindown</td>
<td>≤0.3%</td>
</tr>
<tr>
<td>Abrasion Loss</td>
<td>≤15%</td>
</tr>
<tr>
<td>Tensile Strength Ratio</td>
<td>≥70%</td>
</tr>
</tbody>
</table>

Table M3.11.5-3: ARGG LTMF Verification Limits

<table>
<thead>
<tr>
<th>Properties</th>
<th>LTMF Verification Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Binder Content (P_b)</td>
<td>Target ± 0.3%</td>
</tr>
<tr>
<td>Gradation Passing ¾ in. Sieve</td>
<td>Target ± 0.0%</td>
</tr>
<tr>
<td>Gradation Passing #4 to ½ in. Sieve</td>
<td>Target ± 6.0%</td>
</tr>
<tr>
<td>Gradation Passing #8 Sieve</td>
<td>Target ± 5.0%</td>
</tr>
<tr>
<td>Gradation Passing #16 to #50 Sieve</td>
<td>Target ± 3.0%</td>
</tr>
<tr>
<td>Gradation Passing #100 Sieve</td>
<td>Target ± 2.0%</td>
</tr>
<tr>
<td>Gradation Passing #200 Sieve</td>
<td>Target ± 1.0%</td>
</tr>
<tr>
<td>Bulk Specific Gravity (Gmb)</td>
<td>Target ± 0.022</td>
</tr>
<tr>
<td>Max. Theo. Specific Gravity (Gmm)</td>
<td>Target ± 0.020</td>
</tr>
<tr>
<td>Air Voids (V_a)</td>
<td>Target ± 1.0%</td>
</tr>
<tr>
<td>Voids in Mineral Aggregate (VMA)</td>
<td>Target ± 1.0%</td>
</tr>
<tr>
<td>Draindown</td>
<td>≤0.3%</td>
</tr>
<tr>
<td>Rutting and Moisture Susceptibility</td>
<td>See Table M3.11.5-4</td>
</tr>
</tbody>
</table>

Evaluation of Rutting and Moisture Sensitivity

Each HMA mixture, with the exception of Base Courses and OGFC, shall be tested by RMS for rutting and moisture sensitivity in accordance with the requirements of AASHTO T 324 using the Hamburg Wheel-Tracking Device (HWTD).
The Engineer may also require that mixtures meet the requirements of AASHTO T 283 with a minimum tensile strength ratio of 80%.

Table M3.11.5-4: Hamburg Wheel Tracking Device Requirements

<table>
<thead>
<tr>
<th>Traffic Level</th>
<th>Maximum Rut Depth (in.)</th>
<th>Minimum number of passes before Stripping Inflection Point is observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>½</td>
<td>10,000</td>
</tr>
<tr>
<td>2</td>
<td>½</td>
<td>15,000</td>
</tr>
<tr>
<td>3</td>
<td>½</td>
<td>15,000</td>
</tr>
</tbody>
</table>

M3.11.6: HMA for Driveways, Sidewalks, Berm, and Curb

HMA mixtures for driveways, sidewalks, berm, and curb shall conform to the master ranges in Table M3.11.6-1. The PGAB shall conform to M3.01.1: Standard Asphalt Binder Grade. The Contractor shall submit a JMF prior to production which shows the target aggregate gradation and PG asphalt binder content for each HMA mixture for driveways, sidewalks, berm, and curb.

With the approval of the Engineer, the Contractor may substitute a MassDOT approved 9.5 mm or 12.5 mm Superpave Surface Course mixture (Traffic Level 1 or 2) for Driveways and Sidewalks.

The Contractor shall perform QC testing at the start of plant production and in conjunction with the calibration of the plant in order to verify that the JMF can be produced within the Engineering Limits specified in Table M3.11.6-2.

The composition limits in Table M3.11.6-1 are HMA mix design master ranges for aggregate gradation and asphalt binder content. The JMF for each HMA mixture type shall establish a single percentage of aggregate passing each required sieve size, and a single percentage of asphalt binder material to be added to the aggregate.

The JMF shall be submitted in writing by the Contractor to the Engineer at least 30 days prior to the start of paving operations and shall include the following as a minimum:

1. Source of materials
2. Percent of each aggregate stockpile
3. Percent passing each sieve size
4. Combined aggregate specific gravity
5. Percent of asphalt binder
6. Performance grading test results and Certificate of Compliance certifying the PG grade
7. Mixing temperature
8. Compaction temperature
9. Temperature of mix when discharged from the mixer
10. Maximum theoretical specific gravity of the mixture

AASHTO T 195 (Ross Count) with a coating factor of 98% will be used when necessary to evaluate proper mixing time.
The use of recycled materials will be permitted at the option of the Contractor and provided that the end product is in conformance with the designated JMF. The proportion of reclaimed materials (including RAP, PGA, and RAS) in the total mix shall be limited to a maximum of 15%.

All HMA JMFs for sidewalks, wheelchair ramps, driveways, and berm will be submitted to the Engineer for approval. The JMF shall bind the Contractor to furnish paving mixtures not only within the master ranges, but also conforming to the exact formula thus set up for the project, within the Engineering Limits found in Table M3.11.6-2.

For each project, at least one QC sample shall be randomly obtained by the Contractor for every 2,000 tons produced, but not less than one QC sample per day. The Engineer shall also obtain a minimum of one random Acceptance sample for every 2,000 tons produced. The sample will be tested for conformance with the submitted JMF and Engineering Limits. When testing shows the mixture is not in conformance the Engineer will determine the disposition in accordance with Subsection 6.04: Defective Materials.

The JMF for each mixture shall be in effect until modified in writing by the Contractor and approved by the Engineer. Should a change in sources of materials be made, a new JMF must be approved by the Engineer before the new material is used.

| Table M3.11.6-1: Master Ranges for HMA for Driveways, Sidewalks, Berm, and Curb |
|----------------------------------|----------------------------------|----------------------------------|
| Nominal Maximum Aggregate Size Control Points (% Passing) |
Mix Type	Driveways, Sidewalks, and Berm	Berm and Curb Only		
Sieve (in.)	Min	Max	Min	Max
1	-	-	-	-
¾	100	-	-	-
½	95	100	100	-
⅜	87	93	87	93
#4	57	69	62	73
#8	41	45	52	55
#16	30	36	40	45
#30	21	25	28	34
#50	14	17	18	23
#100	9	12	10	14
#200	4	5	6	6
Pb, %	6.0	6.6	7.4	7.6
Table M3.11.6-2: Engineering Limits for Aggregate Gradation and Asphalt Binder Content

<table>
<thead>
<tr>
<th>Sieve Designation / Binder Content</th>
<th>Engineering Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passing No. 4 and larger sieve sizes</td>
<td>JMF Target ± 6%</td>
</tr>
<tr>
<td>Passing No. 8 sieve</td>
<td>JMF Target ± 5%</td>
</tr>
<tr>
<td>Passing No. 16 to No. 50 sieves (inclusive)</td>
<td>JMF Target ± 3%</td>
</tr>
<tr>
<td>Passing No. 100 sieve</td>
<td>JMF Target ± 2%</td>
</tr>
<tr>
<td>Passing No. 200 sieve</td>
<td>JMF Target ± 1%</td>
</tr>
<tr>
<td>Asphalt Binder Content</td>
<td>JMF Target ± 0.4%</td>
</tr>
</tbody>
</table>

M3.11.7: Hot Mix Asphalt Production Facility

All facilities producing HMA must be approved on an annual basis by the Department. All sources of materials used for the production of HMA must be approved by the Department prior to their use. Such materials shall include:

1. Coarse aggregate
2. Fine aggregate
3. Mineral filler
4. Performance graded asphalt binder
5. Modifiers and/or additives

HMA production operations shall follow industry accepted best management practices including:

1. Aggregate handling and stockpile management
2. Recycled asphalt pavement handling and stockpile management
3. PGAB storage
4. Plant process controls
5. Silo loading
6. Truck loading

The plant shall meet the requirements of AASHTO M 156 as well as the following provisions. HMA plants meeting these requirements and which have been approved by RMS shall be listed on the QCML.

An adequate quantity of each size aggregate, mineral filler and asphalt binder shall be maintained at the HMA plant site at all times while the plant is in operation to ensure that the plant can continuously produce mixtures that meet these specifications. The quantity of such materials shall never be less than one day's production capacity.

A. Scales

Plant and truck scales shall be certified:

1. At the start of each construction season, prior to use for MassDOT projects.
2. At intervals of not more than 90 calendar days.
3. Whenever the plant changes location.
4. At any time as requested by the Engineer.
B. Calibration of Plant Equipment

The plant’s systems shall be calibrated:

1. At the start of each construction season, prior to use for MassDOT projects.
2. Whenever there is a significant change to the material.
3. Whenever a plant component supply system affecting the ingredient proportions has been repaired, replaced, or adjusted.
4. At any time as requested by the Engineer.

C. Automatic Recordation

Recordation equipment shall be provided. Each recorder shall include an automatic printer system. The printer shall be so positioned that the digital display and the printer can be readily observed within the plant’s control room by the Engineer and the plant operator, simultaneously. The delivery ticket shall be printed with an original and at least one copy. The original shall be furnished to the Engineer at the paving site and the copy to the Engineer at the plant. The delivery ticket format shall be approved by RMS and will include the following information:

1. Company / plant location.
2. MassDOT contract number and/or distinct project name.
3. MassDOT mix ID number and/or distinct mix description.
4. Percentage of RAP in the mixture.
5. Percentage of asphalt binder in the mixture.
6. Date and time of loading.
7. Sequential load number for the contract for a 24-hour period.
8. Total weight of mix in truck (pay weight).

The following mixture production information shall also be provided:

For Batch Plants

1. Date mixed.
2. Time of batching.
3. Tare weight of aggregate weigh box.
4. Tare weight of PGAB weigh bucket.
5. Moisture content of recycled materials.
6. Target and actual cumulative or net weights as batched for each bin with a batch total for all net ingredients.
7. Target and actual weight of PGAB.
8. Total weight of mix in truck (pay weight).

Note: This information shall be included on the delivery ticket when the mix is batched directly into a truck. When the mix is batched and stored in a silo the information may be separate from the delivery ticket however it must be provided to the Engineer at the plant.

For Drum Plants

1. Percent of mixture as well as the target and actual production rate for each individual mix component including:
 a. Aggregate
b. Mineral Filler
c. PGAB
d. Recycled materials
e. Additives

2. Moisture content of aggregates and recycled materials.
3. PGAB temperature.
4. Target and actual mix temperature.
5. Target and actual mix production rate.

Note: This information is not required to be included on the delivery ticket however it must be provided to the Engineer at the plant.

D. Surge and Storage Silo Holding Time

The mixtures shall not be stored in surge and storage bins longer than the following:

1. Unheated and not insulated ... 2 hours
2. Unheated and insulated with heated gate .. 15 hours
3. Insulated and heated .. 24 hours

Note: In order to prevent excessive drain down, OGFC shall not be stored in a surge or storage bin for longer than 2 hours. ARGG shall not be stored for more than 6 hours.

E. Air Quality

The plant shall be designed and operated to meet all current Federal and State air quality requirements.

F. Equipment Failure

If at any time the automatic proportioning or recording system becomes inoperative, the plant will cease all HMA production. Work will only be allowed to restart once all automatic controls and recording systems are functional.

M3.11.8: HMA Plant Facility Inspection

The Engineer shall have access at any time to all parts of the plant for:

1. Inspections of the conditions and operations of the plant.
2. Confirmation of the adequacy of the equipment in use.
3. Verification of the character and proportions of the mixture.
4. Determination of temperatures being maintained in the preparation of the mixture.
5. Inspection of incidental related procedures.

M3.12.0: Hot Mix Asphalt Materials Testing Laboratory and Equipment

M3.12.1: Contractor Quality Control Laboratory

All Contractor QC testing shall be performed in laboratories that are approved by RMS and qualified through the NETTCP LQP or accredited through the AAP. All laboratories shall maintain a QSM in accordance with the outline maintained by RMS.
1. Laboratories that perform HMA mix designs or QC testing under Subsection 450: Hot Mix Asphalt Pavement shall at a minimum be qualified as a NETTCP LQP Category 2 laboratory.
2. Laboratories performing only QC testing shall be qualified as a NETTCP LQP Category 3 laboratory.

Contractors who do not produce mixtures under Subsection 450: Hot Mix Asphalt Pavement will not be required to have their own laboratory at the production facility but will be required to either test at their central laboratory or hire a consultant testing company to perform the QC testing required in the specification. The Contractor will still be required to maintain a QSM.

The Contractor's QC laboratory shall be qualified to perform all testing required by M3.12.2-1 as well as contract specifications.

Laboratories meeting these requirements, and which have been approved by the RMS, shall be listed on the QCML.

The Contractor's QC Manager shall have overall responsibility for ensuring that all laboratories utilized for QC are in compliance with the requirements of the NETTCP LQP. This includes providing required AASHTO, ASTM, and NETTCP reference documents and ensuring that all required equipment and tools are properly functioning and calibrated.

The Engineer shall be permitted unrestricted access to inspect and review the Contractor's laboratory facility.

M3.12.2: Department Acceptance Laboratory at HMA Production Facility

The Engineer shall be provided laboratory working space meeting the requirements of M3.12.1: Contractor Quality Control Laboratory as well as the following. A desk must be located in close proximity to the laboratory but be separated from the ovens, sieve shakers, and anything else that can cause poor air and sound quality. The Engineer's desk and laboratory space will not be shared with any other entity.

If the Engineer is unable to perform their duties either due to lack of working space, poor working conditions, or access to equipment it will be considered a laboratory facility deficiency. The Engineer will advise the Contractor in writing of any noted deficiencies concerning the laboratory facility, equipment, supplies, or testing personnel and procedures. Deficiencies shall be grounds for the Engineer to order an immediate stoppage of work until the deficiencies are corrected.

Along with the required testing capabilities the laboratory facilities shall meet the following:

1. Be kept clean and all equipment shall be maintained in proper working condition.
2. Provide adequate environmental control to the satisfaction of the Engineer and must be able to maintain an inside temperature of 68°F to 86°F during working hours.
3. Adequate ventilation to remove dust and fumes from the laboratory.
4. Hot and cold potable water.
5. First aid kit and emergency eye wash station.
6. Multi-class ABC fire extinguisher.
7. A restroom shall also be made available within 500 ft of the laboratory during all work shifts. The restroom facilities shall be enclosed in a separate room with proper ventilation and comply with applicable sanitary codes as well as:
a. A flush toilet.
b. A sink with hot and cold running water.
c. A sewer or septic tank with connections.
d. Adequate rest room supplies.
e. Maintained environmental control and cleanliness.

The plant, silos, and sample rack shall be in view of laboratory when performing testing under Subsection 450: Hot Mix Asphalt Pavement. The Engineer shall be provided with the following:

A. Computer

The Engineer shall be furnished with a computer with high speed internet access which conforms to the requirements determined by RMS. The minimum requirements shall include:

1. The Engineer is required to have 1 computer at the laboratory.
2. Computers shall be required to have the latest MS Office Professional with all security updates, Antivirus software with all current security updates maintained, and any other software required by RMS.
3. A laser printer with the capability to also scan and copy. The printer shall be compatible and connected to the laboratory's computer.

B. Testing Equipment

The Contractor shall supply the Engineer with the following equipment. This equipment shall only be utilized by the Engineer and shall be labeled as such. It shall be the Contractor's responsibility to maintain and replace equipment as needed.

1. For T 27 and T 30:
 a. 12-in. sieve stack (2 in. to #200) with cover and pan.
 b. Mechanical sieve shaker (only for Subsection 450: Hot Mix Asphalt Pavement Category A Lots).
 c. Electronic balance (only for Subsection 450: Hot Mix Asphalt Pavement Category A Lots).
2. For T 166 and T 209: Complete setup (only for Subsection 450: Hot Mix Asphalt Pavement).
3. For T 312: Gyratory mold.
4. For T 308:
 a. Ignition oven sample basket.
 b. Ignition oven and 2 sample baskets (only for Subsection 450: Hot Mix Asphalt Pavement Category A Lots).
5. Miscellaneous equipment such as sample buckets, scoops, pans, brushes, thermometers, etc.
6. Oven which meets AASHTO R 30 and is capable of storing the sample buckets for 3 samples (only for Subsection 450: Hot Mix Asphalt Pavement A Lots).
7. Supply of sample boxes.
8. Sample rack which is a suitable sampling platform from which the Engineer is able to stand and sample the material in the truck bed adequately and safely. The rack shall:
 a. Be of sturdy construction.
 b. Be able to safely accommodate at least two people at a time (minimum standing area of 4 ft x 4 ft).
 c. Have a safe stairway that is attached to the sampling platform.
d. Be at a height which allows the Technician the ability to reach the HMA in the bed of any size truck safely and efficiently.
e. Have a mounted spot light to allow for sampling at night.
f. Be within 100 ft of the laboratory and visible from the laboratory.
g. Meet applicable OSHA standards.

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Description</th>
<th>Mix Design Laboratory</th>
<th>QC Laboratory</th>
<th>Department Acceptance Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO M 323</td>
<td>Superpave Volumetric Mix Design</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO R 30 (1)</td>
<td>Mixture Conditioning of HMA</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO R 35</td>
<td>Superpave Volumetric Design for Asphalt Mixtures</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO R 47</td>
<td>Reducing Samples of HMA to Testing Size</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AASHTO R 66</td>
<td>Sampling of Asphalt Materials</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO R 76</td>
<td>Reducing Samples of Aggregate to Testing Size</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AASHTO R 79 (2)</td>
<td>Vacuum Drying Compacted HMA Specimens</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO T 2</td>
<td>Sampling of Aggregates</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO T 11</td>
<td>Material Finer Than #200 Sieve by Washing</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AASHTO T 27</td>
<td>Sieve Analysis of Fine and Coarse Aggregates</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AASHTO T 30</td>
<td>Sieve Analysis of Extracted Aggregate</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AASHTO T 84</td>
<td>Specific Gravity and Absorption of Fine Aggregate</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO T 85</td>
<td>Specific Gravity and Absorption of Coarse Aggregates</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO T 96</td>
<td>Coarse Aggregate L.A. Abrasion</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO T 104</td>
<td>Soundness of Aggregates</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO T 166</td>
<td>Bulk Specific gravity of HMA</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AASHTO T 168</td>
<td>Sampling Bituminous Paving Mixtures</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AASHTO T 176</td>
<td>Sand Equivalence</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO T 209</td>
<td>Theoretical Maximum Specific Gravity of HMA</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AASHTO T 255</td>
<td>Moisture Contents of Aggregates</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO T 283 (4)</td>
<td>Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Method</td>
<td>Description</td>
<td>Mix Design Laboratory</td>
<td>QC Laboratory</td>
<td>Department Acceptance Laboratory</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>-----------------------</td>
<td>---------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>AASHTO T 304</td>
<td>Un-compacted Void Content of Fine Aggregate</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO T 305</td>
<td>Draindown in Uncompacted Asphalt Mixtures</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO T 308</td>
<td>Asphalt Binder Content by Ignition Oven</td>
<td>X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO T 312</td>
<td>Density of HMA by Superpave Gyratory</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO T 329</td>
<td>Moisture Control of HMA</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO T 331</td>
<td>Bulk Specific Gravity and Density of Compacted Asphalt Mixtures Using Automatic Vacuum Sealing</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO T 335</td>
<td>Determining the Percentage of Fracture in Coarse Aggregate</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO T 354</td>
<td>Specific Gravity and Absorption of Aggregate by Volumetric Immersion</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM D3549</td>
<td>Thickness of Compacted HMA Specimens</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM D4791</td>
<td>Flat & Elongated Particles in Coarse Aggregate</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Two ovens shall be required; one to heat binder, aggregate, and mixing tools to mixing temperature and one to condition the loose mixture at the compaction or conditioning temperature.

(2) Optional test.

(3) Required for OGFC and ARGG.

(4) Required for OGFC.
SECTION M4: CEMENT AND CEMENT CONCRETE MATERIALS

M4.00.00: General

All cement, cement concrete, and related materials shall be sampled and tested in accordance with the applicable AASHTO, ASTM or other designated methods. Cement as defined in this specification shall mean cementitious material as specified in the following sections.

M4.01.0: Portland Cement

Portland Cement shall conform to the requirements of AASHTO M 85.

M4.01.1: Blended Hydraulic Cements

Blended hydraulic cements shall conform to the requirements of AASHTO M 240M/M 240.

M4.01.2: Fly Ash

Fly ash shall conform to AASHTO M 295.

M4.02.00: Cement Concrete

Cement concrete shall be composed of specified proportions by weight of cement, aggregates, water and approved additives to form a homogeneous composition.

Cement concrete shall be designated by class according to strength, cement factor, coarse aggregate size, entrained air content, slump, and by weight for light-weight concrete. The classes of concrete to be used shall be designated on the plans or in the specifications for the particular work. The Contractor will furnish to the Engineer, for approval, a specific JMF for the particular uniform combination of materials and sources of supply to be used on each project complete with test results from trial batches. A new JMF shall be supplied anytime any source of material has been changed.

<table>
<thead>
<tr>
<th>Class 28-Day Compressive Strength</th>
<th>Minimum Cement Content (Pounds per Cubic Yard for Coarse Aggregate)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 ½ in.</td>
</tr>
<tr>
<td>2,500 psi</td>
<td>425</td>
</tr>
<tr>
<td>3,000 psi</td>
<td>470</td>
</tr>
<tr>
<td>3,500 psi</td>
<td>520</td>
</tr>
<tr>
<td>4,000 psi</td>
<td>565</td>
</tr>
<tr>
<td>5,000 psi</td>
<td>660</td>
</tr>
<tr>
<td>% Entrained Air (±1.5%)</td>
<td>5.0</td>
</tr>
</tbody>
</table>

All concrete shall contain a water reducing admixture.

Concrete which will be subjected to conditions of severe exposure will be 4,000 psi with air-entrained content of 7.0% ±1.5% when so specified. Concrete that is used to construct drilled shafts shall have an entrained air content of 4.0% ±1.5%.
The use of an approved additive other than air entraining (AASHTO M 154/M 154) or water reducer (AASHTO M 194/M 194, Type A) shall require written approval of the Engineer and additives shall not affect a change in the minimum cement content. The minimum cement content can be changed only with the prior written approval of the Engineer.

Alkali Silica Reactivity - Resistant Portland Cement Concrete

All cement concrete and precast/prestressed concrete products shall be alkali silica reactivity-resistant. Proportion Portland cement concrete mixes to include materials that meet either the aggregate requirement or Alkali-Silica Reactivity (ASR) mitigation criteria listed below. Provide cement mill test reports from certified laboratories that show the materials’ source, composition and the cement alkali content expressed as sodium oxide equivalent(s) not to exceed 1.4%. Certified test reports according to test procedures as specified in Table A will be required to be submitted with the trial batch submission to RMS for approval every year or whenever the source of material is changed.

Select non-reactive aggregates that meet all the criteria of Table M4.02.00-2. Mitigate the mix as described below when nonreactive aggregates are unavailable. If non-reactive aggregates are used for portland cement concrete mix, 15% by weight of the cementitious content shall be fly ash meeting AASHTO M 295, Type F.

Select a material or a combination of materials that meet the criteria shown in Table M4.02.00-3 to mitigate ASR when concrete mixes must be proportioned with reactive aggregates. Perform verification test according to AASHTO T 303 and ASTM C295 to determine the effectiveness of the resulting mix design against ASR. Use the same proportion of cement and pozzolan for each test mixture as that proposed for the actual mix design. Provide the Department with certified documentation of the mixtures' effectiveness to control ASR.

Table M4.02.00-2: Tests and Criteria for Proposed Aggregates

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO T 303: Accelerated Detection of Potentially Deleterious Expansion of Mortar Bars Due to Alkali-Silica Reaction</td>
<td>Mean mortar bar expansion at 14 days. Perform a polynomial fit (1) of 4, 7, 11, and 14 days to determine reliability of results</td>
<td>0.08% maximum metamorphic aggregate; 0.10% maximum all other aggregates. Repeat AASHTO T 303 if r² is less than 0.95.</td>
</tr>
<tr>
<td>ASTM C295: Petrographic Examination of Aggregates for Concrete</td>
<td>Optically strained, microfractured, or microcrystalline quartz</td>
<td>5.0% maximum (2)</td>
</tr>
<tr>
<td></td>
<td>Chert or chalcedony</td>
<td>3.0% maximum (2)</td>
</tr>
<tr>
<td></td>
<td>Tridymite or cristobolite</td>
<td>1.0% maximum (2)</td>
</tr>
<tr>
<td></td>
<td>Opal</td>
<td>0.5% maximum (2)</td>
</tr>
<tr>
<td></td>
<td>Natural volcanic glass</td>
<td>3.0% maximum (2)</td>
</tr>
</tbody>
</table>

(1) Use a second order polynomial of %Exp = A₀ + A₁ SQRT(t) + A²t. See publication SD92-04-F.
(2) Based on the total aggregate sample.
Table M4.02.00-3: Mitigation Methods for ASR in Portland Cement Concrete

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
<th>Cementitious Material Percentage (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low alkali cement (2)</td>
<td>AASHTO M 85</td>
<td>100%</td>
</tr>
<tr>
<td>Fly ash - Class F</td>
<td>AASHTO M 295</td>
<td>15% minimum to 30% (4) maximum</td>
</tr>
<tr>
<td>Silica Fume (5)</td>
<td>AASHTO M 307</td>
<td>6% ± 1% (6)</td>
</tr>
<tr>
<td>Slag Grade 100 and 120</td>
<td>AASHTO M 302</td>
<td>25% minimum to 50% maximum</td>
</tr>
</tbody>
</table>

(1) Measure this minimum content of cementitious material as percent by weight of cement plus pozzolan.
(2) This single criterion is not effective in all cases in remediating ASR. Low alkali cement (0.60% maximum (3)) must be used in combination with other pozzolanic materials in Table B.
(3) Na₂O equivalent = %Na₂O + 0.658 (%K₂O)
(4) Fly ash, Type F, shall replace 15% by weight of the design cement content, and any additional fly ash will be considered as fine aggregate.
(5) Silica fume shall only be used in silica fume cement concrete.
(6) The total amount of Type F fly ash and silica fume shall constitute 20% by weight of the design cement content, and any additional fly ash shall be considered as fine aggregate.

M4.02.01: Cement

Cement for concrete shall be the kind and type designated on the plans or in the specifications for the particular work. If no type is specified either Type I, IA, IP, IP-A or Type II, IIA shall be furnished except that cement for exposed bridge deck concrete or concrete exposed to sea water shall be Type II or IIA.

When high early strength concrete is required it shall be obtained by using Type III or by adding an accelerator meeting AASHTO M 194M/M 194.

Cement shall not exhibit a flash set or cause an abnormal initial rise of temperature when mixed with water. It shall maintain its full plasticity and fluidity during the period required for placing the concrete.

The temperature of the cement at the time of mixing shall not exceed 150°F.

When tested at the mill, no cement shall be shipped to the work until it has passed the 7-day test, unless otherwise directed. At least 12 days from the time of sampling shall be allowed to the completion of the required 7-day test.

Each shipment, regardless of quantity, shall be accompanied by a certified Mill Test Report, three copies of which shall be furnished to the Engineer before the cement may be incorporated in the work. Cement furnished without a current Mill Analysis Report shall not be used in the work until the Engineer has had sufficient time to make appropriate tests and has approved the cement for use. A current Certificate of Compliance for concrete admixtures, fly ash, silica fume, and slag based on test results shall be available for the inspector prior to production.

Cement of a uniform color shall be used in all exposed concrete of any structure.
M4.02.02: Aggregates

A. Fine Aggregates

Sand shall be composed essentially of clean, hard, strong, durable and impermeable particles, resistant to wear and frost, inert to cement and water, reasonably free from structurally weak grains, organic matter, loam, clay, silt, salts, mica or other fine materials that may affect bonding of the cement paste. Sand shall be taken from a natural deposit. The sand particles shall be relatively spherical in shape and shall have gritty surfaces.

Sand for cement concrete shall be properly washed to satisfactorily remove deleterious materials and surface coatings and shall be stockpiled after washing for a period as long as necessary to drain off all excess water.

The sand shall conform to the following requirements:

Table M4.02.02-1: Sand Composition Requirements

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Maximum Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay Lumps and Friable Particles</td>
<td>T 112</td>
</tr>
<tr>
<td>Coal and Lignite</td>
<td>T 113</td>
</tr>
<tr>
<td>Materials Passing No. 200 Sieve</td>
<td>T 11</td>
</tr>
<tr>
<td>Organic Impurities</td>
<td>T 21</td>
</tr>
<tr>
<td>Soundness (Na₂SO₄) – 5 Cycles</td>
<td>T 104</td>
</tr>
</tbody>
</table>

* Sand when tested for mortar making properties as specified above shall produce a compressive strength, at any period of time, equal to or greater than that developed by mortar of the same proportions and consistency made of the same cement and sand after the sand has been treated in a 3% solution of sodium hydroxide in accordance with AASHTO T 71.

Sand not conforming to the requirement specified above for organic impurities, shall be rejected unless the 28-day strength tests show the color is due to impurities not detrimental to the strength of the concrete.

The sieve analysis of the sand shall show it to be well graded and conforming to the following:

Table M4.02.02-2: Sieve Analysis for Sand

<table>
<thead>
<tr>
<th>Sieve Designation</th>
<th>Fine Aggregate Minimum</th>
<th>Fine Aggregate Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>⅜ in.</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>No. 4</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>No. 16</td>
<td>45</td>
<td>80</td>
</tr>
<tr>
<td>No. 50</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>No. 100</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>No. 200</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

The fineness modulus of fine aggregate shall be not less than 2.5 and not greater than 3.0. For the purpose of determining the degree of uniformity, a fineness modulus determination will be made.
upon representative samples from any one source. Fine aggregate from any one source having a variation in fineness modulus greater than 0.20 either way from the representative sample will be rejected.

Samples for tests of fine aggregate will be taken under the direction of the Engineer from approved storage piles at the site of the batch plant or from approved storage piles at the producing pit.

The fineness modulus of fine aggregate shall be determined by adding the cumulative percentages, by weight, of materials retained on U.S. Standard Sieves numbered 4, 8, 16, 30, 50, 100 and dividing by 100.

Fine aggregate failing to pass the minimum requirements for material passing the No. 50 and/or No. 100 sieves may be used, provided an approved inorganic fine material is added to correct the deficiency in grading.

Sand for cement mortar shall conform to the requirements specified above except that the compressive strength shall not be less than 85% of that developed by mortar of the same proportions and consistency made of the same cement and sand after the sand has been treated in a 3% solution of sodium hydroxide in accordance with AASHTO T 71. The sieve analysis shall conform to the following requirements:

<table>
<thead>
<tr>
<th>Sieve Designation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 8</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>No. 50</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>No. 100</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>No. 200</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

B. **Coarse Aggregates**

Physical Characteristics.

Coarse aggregate for cement concrete shall consist of crushed rock or screened gravel, and shall be composed essentially of clean, hard, strong, and impermeable particles, resistant to wear and frost, and free from deleterious amounts of organic matter, loam, clay, salts, mica, and soft, thin, elongated, laminated or disintegrated stone, and it shall be inert to water and cement. Where finishing of the concrete is to be done by hammering or any other method that breaks the surface of the concrete, only crushed rock shall be used for coarse aggregate.
The aggregates shall conform to the following requirements:

Table M4.02.02-4: Coarse Aggregate Composition Requirements

<table>
<thead>
<tr>
<th></th>
<th>AASHTO Test Method</th>
<th>Maximum Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay Lumps & Friable Particles</td>
<td>T 112</td>
<td>2.0</td>
</tr>
<tr>
<td>Chert (Less than 2.40 Sp. Gr. SSD)*</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>Sum of Clay Lumps, Friable Particles and Chert (Less than 2.40 Sp. Gr. SSD)*</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>Material Finer than No. 200 Sieve</td>
<td>T 11</td>
<td>1.0</td>
</tr>
<tr>
<td>Coal and Lignite</td>
<td>T 113</td>
<td>0.5</td>
</tr>
<tr>
<td>Percent of Wear (Los Angeles Abrasion Test) for ≥ 5,000 psi concrete</td>
<td>T 96</td>
<td>30</td>
</tr>
<tr>
<td>Percent of Wear (Los Angeles Abrasion Test) for < 5,000 psi concrete</td>
<td>T 96</td>
<td>45</td>
</tr>
<tr>
<td>Sodium Sulphate Solution Soundness (5 Cycles)</td>
<td>T 104</td>
<td>10</td>
</tr>
</tbody>
</table>

* These limitations apply only to aggregates in which chert appears as an impurity.

Gravel stone shall be thoroughly washed to remove impurities if surfaces are coated with dust.

A deleterious amount of thin and elongated stones will be considered any amount in excess of 15% of the total weight. Thin stones shall be considered to be such stones whose average widths exceeds 4 times their average thickness. Elongated stones shall be considered to be such stone whose average length exceeds 4 times their average width.

C. Sieve Analysis

When tested by U.S. Standard laboratory sieves, coarse aggregate for cement concrete shall be blended from stone sizes to meet the graduation requirements for each designation listed below. The limits shown in the table define master ranges of variation for general application and are minimum and maximum in each case. To insure uniformity of material used on any one job or project, the range of variations may be reduced to 50% of the range upon determination of the character and source of the materials that the Contractor proposes to furnish.
Table M4.02.02-5: Sieve Analysis for Coarse Aggregate

<table>
<thead>
<tr>
<th>Designation and Nominal Sieve Size</th>
<th>1 ½ in.</th>
<th>¾ in.</th>
<th>¼ in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ½ in.</td>
<td>90</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>¾ in.</td>
<td>35</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>½ in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>¼ in.</td>
<td>10</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>No. 4</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>No. 8</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>No. 16</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Stone retained on the largest sieve shall be within an oversize tolerance of ¼ in.

1.5-in. aggregate shall be proportioned in two or more sizes, separately weighed in the mix. The combined grading as proportioned in the mix shall meet the grading requirements for 1.5-in. coarse aggregate, as determined by actual test.

¾-in. aggregate may be proportioned in two sizes or processed to the specified gradation.

For use in mass concrete the Engineer may allow the use in 1.5-in. aggregate of not more than 30% of coarse aggregate passing 2.25-in. and retained on 1.5-in. sieve, provided such aggregate is separately proportioned as an additional size.

M4.02.03: Lightweight Aggregates

Lightweight aggregates for Structural Concrete shall meet AASHTO M 195.

M4.02.04: Water

Water for use in cement concrete shall be clean, clear and free from deleterious amount of oil, acid, alkali, salts and organic matter.

The water shall exhibit no deleterious effect upon the strength, setting, or soundness of the cement. It shall conform to the following requirements:

1. pH: 3.0 to 11.7
2. Total Solids.
 a. Organics: 0.01% Maximum
 b. Inorganics: 0.10% Maximum
 c. Sulphate: 0.05% Maximum

Testing of the water shall be in accordance with AASHTO T 26.
M4.02.05: Cement Concrete Additives

Air-entraining admixtures, Water-reducer, Retarders, etc., shall conform to the following Specifications:

1. Air-entraining admixtures: AASHTO M 154M/M 154
2. Retarders: AASHTO M 194M/M 194
3. Water Reducers: AASHTO M 194M/M 194

Calcium Chloride, or any other admixture containing chloride salts, shall not be used in any Cement Concrete.

M4.02.06: Proportioning

Concrete shall be proportioned with the specified minimum cement content for each class and shall be mixed to the required consistency as determined by standard slump test AASHTO T 119M/T 119.

A. Proportioning by Weight.

Cement and aggregates shall be proportioned by weight in an approved manner. Scales shall be calibrated and sealed by the proper authority within the preceding year, or following any reassembly, or as the Engineer may direct.

B. Scope of Control for Proportioning.

The responsibility of the Department is confined to the inspection of the following four factors controlling the mix:

1. Minimum Cement Content and Minimum Strength.

The cement proportion is subject to adjustment and approval by the Engineer in order to insure compliance with minimum strength requirements. Standard field test specimens (AASHTO T 23) shall be taken on the job and the Contractor shall be required to add additional cement as directed by the Engineer if the test specimens fail to meet the requirements of M4.02.13: Test Specimens.

No claims shall be allowed for extra cement or extra concrete due to variations in materials, proportioning, dimensions, shrinkage, waste and similar causes. The Contractor is advised to anticipate a normal loss in yield of 1% or 2% due to the foregoing causes.

The volume of plastic concrete in a given batch shall be determined from the total weight of the batch divided by the actual weight per cubic foot of the concrete. The total weight of the batch shall be calculated as the sum of the weights of all materials including water. The weight per cubic foot shall be determined in accordance with the Method of Test for Weight per Cubic Foot Yield and Air Content (Gravimetric) of Concrete (AASHTO T 121M/T 121).

2. Consistency.

The Contractor shall uniformly regulate the consistency of the mix to the slump directed by the Engineer. The Engineer may reject all batches not conforming to this requirement and the Contractor shall receive no additional compensation.
The general requirements in regard to consistency are as follows:

- Mass Concrete ... 2 ± ½ in. slump
- Exposed Bridge Deck Concrete .. 2.5 ± ½ in. slump
- Reinforced Concrete ... 3 ± 1 in. slump
- Very Constricted Placement Conditions .. 4 ± 1 in. slump
- Pump Concrete ... 4 ± 1 in. slump
- Tremie Concrete ... 6 ± 1 in. slump
- Drilled Shaft Concrete (Permanent Casing or Dry Uncased Placement)........ 5 ± 1 in. slump
- Drilled Shaft Concrete (Dry Temporary Casing Placement) 7 ± 1 in. slump
- Drilled Shaft Concrete (Tremie or Slurry Placement) .. 8 ± 1 in. slump

When the specified slump is 3 in. or less, the tolerance shall be ± ½ in. When the specified slump is greater than 3 in., the tolerance shall be ± 1 in. The Engineer will specify the lowest slump with which it is practicable to properly place and consolidate the mix within the forms.

3. Workability.

The Engineer may vary the proportion of fine aggregate in order to regulate the workability or density of the mix, making an equivalent change in the course aggregate to keep the yield constant.

4. Air Content.

The air content of the concrete by volume shall be as shown in the table above when tested in accordance with AASHTO T 152. A tolerance of ± 1.5% in the above percentages will be allowed.

C. Automatic Proportioning Plants.

All plants shall be equipped with an approved automatic weighing, cycling and monitoring system installed as part of the batching equipment. Each plant shall include equipment for accurate proportioning batches containing the various components by weight or by volume for admixtures and water in the proper sequence and for controlling the sequence and timing of mixing operation. The automatic proportioning system shall be capable of consistently delivering each constituent within the tolerances indicated in M4.02.07: Measuring Materials. Interlocks shall be provided which will hold or delay the automatic batch cycling whenever the batched quantity of any component is not within the specific weight tolerance, when any aggregate bin becomes empty or when there is a malfunction in any portion of the control system. The weight setting and time controls shall be so equipped that they may be locked when directed by the Engineer.

The weighing equipment shall be so arranged that the batch plant operator can conveniently observe all scales from their operation station.

The Controls shall be set so that:

1. The batcher inlet gates cannot be opened while the discharge gates are open.
2. The batcher discharge gates cannot be opened:
 a. Until the full batch weights are registered on the scales;
 b. While the weigh hopper is being filled;
 c. If batch weights are over or under the delivery tolerances specified on M4.02.07: Measuring Materials.
3. A new batch cannot be weighed until the hopper is entirely empty of the previous batch and all scales have returned to zero.

Discharge chutes shall be so arranged that they are not suspended from any part of the weighing system and so that no materials will lodge therein or be lost on discharge.

Each weighing unit shall include a springless dial which shall indicate the scale load at all stages of the weighing operation from zero to full capacity.

If at any time the automatic proportioning system becomes inoperative, the plant will be allowed to batch materials manually for a period not in excess of 2 working days. Manual batching for longer periods will require written permission of the Engineer. All plant scales shall be tested at the expense of the producer by a competent scale technician as follows:

1. Annually prior to use in Department work.
2. At any time ordered by the Engineer.

D. Admixture Dispensing Systems.

Plants shall be equipped with a separate dispensing system necessary to incorporate each of the required admixtures into the concrete. At least two admixture dispensing systems shall be required for plants supplying structural concrete.

E. Recording the Batching.

All concrete batching plants equipped with automatic proportion systems shall have digital recording instruments approved by the Engineer which shall be so located as to be readily accessible and readable to the operator from their normal work station. The recording instruments shall be designed to record the quantities of each aggregate component, cement, fly ash (when used), water and the presence of admixture for each batch of concrete produced. All records of batches shall show the batch number, the day, the month, year, and time of day to the nearest minute for each batch and they shall be imprinted on the record so that each batch may be permanently identified. The Department shall be provided with a clear and legible copy of all batch records.

Cement, fly ash, and aggregate component weight quantities shall be recorded separately. Water may be recorded by weight or volume.

Weights and/or volumes shall be recorded as indicated on the batching scale or meter within an accuracy of ±1 scale or meter graduation. The minimum recorder resolution shall be equivalent to or less than minimum gradation on the scale or meter, unless otherwise approved by the Engineer. When the automation system is capable of producing other than standard size batches (full, half or quarter cubic yard increments), the recordation requirements shall be in accordance with written directives from the Engineer.

Each plant site shall be equipped with an approved instrument capable of automatically applying a time-date stamp to each delivery ticket as the delivery vehicle departs from the plant site.

M4.02.07: Measuring Materials

Materials shall be measured in accordance with AASHTO M 157, Section 8, with the following exceptions:
All wash water shall be removed from truck mixers and truck agitators prior to charging with a fresh load.

Water may be held back at the plant by up to 5.0 gallons per cubic yard of concrete mixed. The use of this water on the project is at the direction of the Engineer and must be verified through sight glass increments or in-line meter readings and then the amount will be written on the ticket. Absolutely no additional water may be utilized on site for slump adjustment purposes. If after placing all the allowable hold-back water and mixing the proper time, the concrete mixture still does not attain the proper slump, the Engineer will reject the truckload.

M4.02.08: Plant and Equipment

The plant and equipment shall be subject to approval by the Engineer to insure satisfactory prosecution of the work without delay.

A. Batching Plant.

1. Bins with adequate separate compartments for fine aggregates and for each required size of coarse aggregate shall be provided in the batching plant. Each compartment shall be designed to discharge efficiently and freely into the weighing hopper. Means of control shall be provided so that, as the quantity desired in the weighing hopper is being approached, the material may be added slowly and shut off with precision. Weighing hoppers shall be constructed so as to eliminate accumulation of tare materials and to discharge fully.

2. Fly ash shall be stored at the batch plant in a separate storage or holding bin and it shall be protected from rain and moisture.

3. Scales for weighing aggregates and cement shall be of either the springless-dial type or the load cell type and shall indicate the load at all stages of the weighing operation from zero to full capacity. They shall conform to the applicable sections of the current edition of the National Bureau of Standards Handbook 44, Specifications, Tolerances and other Measuring Devices, except as may be otherwise specified. They shall be accurate within one half of 1% under operating conditions. Ten 50-lb weights shall be available at the plant at all times for checking accuracy. All exposed fulcrums, clevises, and similar working parts of scales shall be kept clean. When beam-type scales are used, provisions shall be made for indicating to the operator that the required load in the weighing hopper is being approached; the device shall indicate within the last 200 lb of load and within 50 lb overload. All weighing and indicating devices shall be in full view of the operator while charging the hopper and the operator shall have convenient access to all controls.

4. The materials, including admixtures, shall be proportioned by automatic proportioning devices, approved by the Engineer. The automatic proportioning equipment shall be installed in an area enclosed for protection against dust and inclement weather.

B. Testing Facilities.

A weatherproof building or room shall be furnished at the site of the producing plant suitable for the housing and use of equipment necessary to carry on the various tests required and for recording and processing test results. This building shall be for the exclusive use of the Engineer or their representative for testing and recording purposes. The building or room shall have a least dimension of 7 ft and a minimum of 220 ft². Windows and doors shall be adequately screened and satisfactory lighting and heating shall be provided for a 24 hour day and be supplied with water.
The room shall have adequate ventilation and be air conditioned in the warm months to provide a minimum of 75°F. A table, chairs, desk, work bench, file cabinet, electronic calculator, and a minimum of two 5-lb fire extinguishers shall be provided.

If the Engineer permits, the testing facility may be part of another building in which case it shall be entirely partitioned off from the remainder of such building.

Testing equipment conforming to current AASHTO standards and meeting the approval of the Engineer shall be furnished as follows and installed in the building for use in testing the materials (and mixtures) supplied by the Plant for the work:

- 1 Fine Aggregate Sieve Shaker, power driven, for 8-in. minimum diameter sieves.
- 1 Each of the following standard 8-in. minimum diameter square opening sieves: No. 4, No. 8, No. 16, No. 30, No. 50, No. 100, and No. 200, with pan and cover.
- 1 Sample Splitter with a minimum capacity of 1 ft³. It shall be of the clam shell type and the chute width shall be adjustable from a minimum of ½ in. up to 2 in.
- 1 Solution Balance, 20-kg capacity, weighing directly to 1 g, with two weighing beams and a taring beam; tare capacity to be 2 kg; weight beams to read 1,000 g by 100 g divisions and 100 g by 1 g divisions. Additional matching weights (one 1-kg, two 2-kg, one 5-kg, and one 10-kg) shall be provided to fulfill the capacity of 20 kg. The platform to be 11-in. diameter. An electronic, direct reading, top loading, 20-kg minimum capacity, balance with a precision of 0.1 g may be substituted for the solution balance.
- 1 Approved Scale with a minimum capacity of 2,000 g and with a sensitivity of 0.50 g. An electronic, top-loading, balance, with a capacity of 2,000 g minimum, and reading to 0.1 g may be used in place of the scale.
- 1 Approved Dial Thermometer, range of 50°F to 500°F.
- 1 Approved Hot Plate.

Approval of a plant will be contingent upon approval of the aforementioned requirements for Plant Laboratory, including the building and appurtenances, furnishings, facilities including heat, light, power and water, the testing equipment and any other incidentals.

M4.02.09: Mixers and Agitators

A. Mixers may be stationary mixers or truck mixers. Agitators may be truck mixers or truck agitators. Each mixer and agitator shall have attached thereto, in a prominent place by the manufacturer, a metal plate or plates on which is plainly marked the various uses for which the equipment is designed, the volume of the drum, the capacity of the drum or container in terms of the volume of mixed concrete and the speed of rotation of the mixing drum or blades. Stationary mixers shall be equipped with an acceptable timing device that will not permit the batch to be discharged until the specified mixing time has elapsed. Truck mixers shall be equipped with counters by which the number of revolutions of the drum or blades may readily be verified. The counters shall be read at the time of starting and ending of mixing at mixing speeds.

B. The truck mixer when loaded with concrete shall not contain more than 63 % of the gross volume of the drum. The mixer shall be capable of combining the ingredients of the concrete into a thoroughly mixed and uniform mass and of discharging the concrete with a satisfactory degree of uniformity.
C. The stationary mixer, when loaded at the manufacturer's guaranteed mixing capacity, and the concrete mixed for the time prescribed, shall be capable of combining the ingredients of the concrete into a thoroughly mixed and uniform mass and discharging the concrete with satisfactory uniformity.

D. The agitator, when loaded not to exceed 80% of gross drum volume, shall be capable of maintaining the mixed concrete in a thoroughly mixed and uniform mass and of discharging the concrete with a satisfactory degree of uniformity.

M4.02.10: Mixing and Delivery

A. Ready-mixed concrete shall be mixed and delivered to the point designated by the Engineer by means of one of the following combinations of operations.

1. Mixed completely in a stationary mixer and the mixed concrete transported to the point of delivery in a truck agitator or in a truck mixer operating at agitator speed or in non-agitating equipment when approved by the Engineer.

2. Mixed completely in a truck-mixer at the point of delivery under the supervision of the Engineer, who shall certify on a delivery slip that they observed the complete mixing of the concrete.

B. Truck mixers and truck agitators shall be operated within a capacity not to exceed 63% or 80% respectively of the gross volume of the drum and at a speed of rotation for mixing or agitating as designated by the manufacturer of the equipment. A truck mixer or truck agitator used for transporting concrete that has been completely mixed in a stationary mixer shall be operated within the limits of capacity and speed of rotation designated by the manufacturer for agitating, except that the agitator capacity in no event exceed 80% of the gross drum volume.

C. When a stationary mixer is used for the complete mixing of the concrete, the mixing time for mixers having a capacity of 10 yd³ or less shall be not less than 60 seconds. For mixers of more than 10 yd³ capacity, the mixing time shall be determined by the Engineer. The time is valid provided mixer efficiency tests prove the concrete is satisfactory for uniformity and strength. Mixing time shall be measured from the time all cement and aggregates are in the drum. The batch shall be so charged into the mixer that some water will enter in advance of cement and aggregates, and all water shall be in the drum by the end of the first one-fourth of the specified mixing time.

D. When a truck mixer is used for complete mixing, each batch of concrete shall be mixed for not less than 70 nor more than 100 revolutions of the drum or blades at the rate of rotation designated by the manufacturer of the equipment on the metal plate on the mixer as mixing speed. Additional mixing, if any, shall be at the speed designated by the manufacturer of the equipment as agitating speed. All materials including mixing water shall be in the mixer drum before actuating the revolution counter for determination of number of revolutions of mixing.

E. When a truck mixer or truck agitator is used for transporting central-mixed concrete, or when all ingredients including water have been added to the truck mixer at the batching plant, the drum shall be constantly rotated at the agitating speed designated by the manufacturer of the equipment, both during transport and while on the project prior to discharge, except during the period required for mixing.

F. When a truck mixer or truck agitator is used for transporting concrete, the concrete shall be delivered to the site of the work and discharge shall be completed within 90 minutes after
the addition of the cement to the aggregates. Each batch of concrete delivered at the job site shall be accompanied by a time slip issued at the batching plant, bearing the time of charging of the mixer drum with cement and aggregates. In hot weather or under conditions contributing to quick stiffening of the concrete or when the temperature of the concrete is 85°F or above, the time between the introduction of the cement to the aggregates and discharge shall not exceed 1 hour. When a truck mixer is used for the complete mixing of the concrete, the mixing operation shall begin within 30 minutes after the cement has been added to the aggregate.

When it is determined that more than 90 minutes will be required to batch and completely discharge the load, an alternate method of delivery and mixing will be permitted. The truck mixer will be charged at the batching plant with reasonably dry aggregates and cement but no mixing water. The required amount of mixing water shall be carefully introduced into the truck mixer at the job site and the batch of concrete mixed as outlined above. Under such conditions one hour shall be allowed for the discharge of the load, computed from the time the mixing water has been added to the batch and the mixing begun.

The concrete when discharged from truck mixers and truck agitators, shall be of the consistency and workability required for the job. The rate of discharge of the plastic concrete from the mixer drum shall be controlled by the speed of rotation of the drum in the discharge direction with the discharge gate fully open.

All wash water shall be removed from truck mixers and truck agitators prior to charging with a fresh load.

G. When approved by the Engineer, central-mixed concrete which is designed for the purpose may be transported in suitable non-agitating equipment.

1. When non-agitating equipment is used for transportation of concrete:
 a) Bodies of equipment shall be smooth, water-tight, metal containers equipped with gates that will permit control of the discharge of the concrete. Covers meeting the approval of the Engineer shall be provided for protection against the weather.
 b) The concrete shall be delivered to the site of the work in a thoroughly mixed and uniform mass and discharged with a satisfactory degree of uniformity. Slump tests of representative samples taken during the discharge shall not differ by more than 2 in. Discharge shall be completed within 30 minutes after introduction of the mixing water to the cement and aggregates.

2. Concrete delivered in outdoor temperatures lower than 40°F shall arrive at the work having a temperature not less than 60°F nor greater than 90°F.

H. Concrete may be tempered only once before the initial set with the permission of the Engineer and only with an approved superplasticizer to bring the slump back to within the specification. The concrete shall be mixed thoroughly according to the manufacturer’s recommendation. Concrete shall not be re-tempered by adding water. Any batch of concrete that does not conform to the specification with respect to delivery time, temperature, slump or entrained air content shall be rejected.

M4.02.11: Storage and Handling of Materials

All materials shall be stored and handled in an approved manner.
A. **Cement.**

Cement shall be fully protected against moisture and any cement damaged by exposure shall not be used.

Cement shall be emptied directly from the shipping packages into the skip of the mixer, except when bulk cement is used. The cement discharge chute at the aggremeter shall be so arranged that there will be no possibility of loss of cement in passing through it.

B. **Aggregates.**

Aggregates in stockpiles shall be placed on firm well-drained ground. The piles shall be of such shape and size that materials may be handled and stored without becoming dirty or mixed with deleterious substances. Aggregates from different sources or of different grading shall be kept in separate stockpiles.

Coarse aggregate will be handled and stored to produce minimum segregation of sizes. Fine aggregate will be handled in such a way as to prevent the loss of fines. Aggregate shall be induced into the aggremeter in an approved manner complying with required gradation.

Storage and handling of aggregates shall be done in a manner to ensure a uniform moisture content satisfactory for proper control of the consistency of the mix. Frozen aggregates shall not be used.

Aggregates shall be taken continuously from one source in filling the compartments of the batcher bin, and no change of source of any of the aggregates shall be permitted without the consent of the Engineer.

The Department reserves the right to prohibit the use of aggregates from any plant, pit quarry or deposit where the character of the material method of operation or rate of production is inadequate.

When aggregate is proportioned in the batching plants and transported by trucks to the paving mixer, the compartments in the trucks shall be of sufficient size to prevent spilling from one compartment to another either in transit or when emptying the load into the skip of mixer.

M4.02.13: Test Specimens

A. Samples of concrete shall be obtained in accordance with AASHTO R 60. Slump, air content and temperature shall be measured and recorded when concrete cylinders are fabricated.

B. For the purpose of determining the flexural or compressive strength of concrete, the Engineer reserves the right to cast test beams or cylinders as they deem necessary.

The Contractor shall furnish concrete and such assistance as the Engineer may require.

After the fabrication of concrete cylinders by the Engineer, the concrete cylinders shall be protected and cured on the project by the Contractor in accordance with AASHTO T 23 and as directed by the Engineer without additional compensation. The Contractor shall furnish and maintain, without extra compensation, a protected environment to provide initial curing of all concrete cylinders at the project. The protective environment shall be available at each site where concrete is placed and then maintained by the Contractor until such time that all concrete cylinders have been transported to the laboratory for testing. The Engineer
Massachusetts Department of Transportation – Highway Division
Standard Specifications for Highways and Bridges

shall approve each protective environment prior to the beginning of any project concrete placement.

The protective environment shall be shielded from direct sunlight and radiant heating devices. The protective environment shall be capable of maintaining the temperature for the stored concrete cylinders in the range between 60°F and 80°F and loss of moisture from the cylinders shall be prevented.

When moving the concrete cylinders into the protective environment, precautions shall be taken to avoid any damage to the freshly made concrete cylinders. If the top surface is marred during movement to the protective environment, refinish immediately.

The protective environment for the concrete cylinders shall consist of tightly constructed, firmly braced wooden boxes, damp sandpits, temporary building at construction sites, wet burlap covered in plastic in favorable weather, or heavyweight closed plastic bags. Other suitable methods may be used, upon approval by the Engineer, provided that the foregoing requirements limiting concrete cylinder temperature and moisture loss are met.

Storage temperature shall be regulated by means of ventilation, or thermostatically controlled cooling devices, or by using heating devices such as stoves, light bulbs, or thermostatically controlled heating elements. A temperature record of the concrete cylinders shall be established by means of maximum-minimum thermometers.

After finishing the concrete cylinders, they shall be covered and placed immediately into the protective environment where they will remain undisturbed for the initial curing period.

Concrete cylinders that are to be transported to the laboratory for standard curing before 48 hours shall remain in the molds in a moist environment until they are received in the laboratory, demolded and placed in standard curing. Concrete cylinders that will be transported to the laboratory for standard curing after 48 hours age may be cured in the protective environment provided that the loss of moisture is prevented until the time of transportation and testing. Concrete cylinders shall be demolded no later than 48 hours.

28-day and 56-day concrete cylinders shall be transported to the laboratory for standard curing and testing by the Department personnel within six days of the time of cylinder fabrication. 7-day cylinders shall be transported to the laboratory as soon as possible but not until at least 8 hours after final set (Setting Time may be measured by AASHTO T 197M/T 197).

When the sequence of the construction operation is dependent upon the development of strength in concrete previously placed the specimens taken for this purpose shall be further cured after 24 hours as required in Section 9 of AASHTO T 23 by the Contractor, without additional compensation, under the direction of the Engineer.

C. Consistency tests shall be made when designated by the Engineer. Determination of air content shall be made as designated by the Engineer if air-entraining cement or an air-entraining admixture is used. If the measured consistency or air-content falls outside the limits specified, a check test shall be made. In the event of a second failure, the Engineer may refuse to permit the use of the load of concrete represented.
D. Methods of testing ready-mixed concrete shall be in accordance with the following AASHTO methods:

1. Sampling Fresh Concrete (AASHTO T 141).
2. Weight Per Cubic Foot, Yield and Air Content (Gravimetric) of Concrete (AASHTO T 121M/T 121).
3. Flexural Strength of Concrete (Using Simple Beam with Third Point Loading) (AASHTO T 97).
5. Making and Curing Concrete Compression and Flexure Test Specimens in the Field (AASHTO T 23).
7. Air Content of Freshly Mixed Concrete by the Pressure Method (AASHTO T 152).
8. Air Content of Freshly Mixed Concrete by the Volumetric Method (AASHTO T 196M/T 196).

E. Strength tests will be performed to determine concrete strength compliance for the project. The concrete cylinders must be fabricated in accordance with the sampling schedule as specified in the Materials Manual; the number of concrete cylinders fabricated will depend on the number of ages at which they are to be tested. Test cylinders shall be cured under controlled conditions as described in Article 9.3 of AASHTO T 23 and tested at the age of 28 days and/or other ages as specified. A test is defined as the average strength of two concrete cylinders of the same age, fabricated from a sample taken from a single batch of concrete.

F. Individual strength tests shall not fall below the specified strength (f_c) by more than 500 psi. If the 28-day cylinder breaks fail to meet the specified strength, 56-day cylinder breaks shall be accepted as proof of reasonably close conformity with the specification. If the 56-day cylinder breaks fail to meet the specified strength, the Contractor may request permission to core the concrete to verify its strength. Coring may only be done with the permission of the Department, at locations chosen by the Department and within 2 weeks of being notified that the 56-day cylinder breaks have failed. The Department shall specify a minimum of 3 core locations. Core results shall be evaluated in accordance with ACI procedures whereby the average of all core breaks must exceed 85% of the specified design strength and no single core break may be less than 75% of the specified design strength. The Contractor may request permission to core the concrete immediately after the failure of 28-day cylinder breaks, rather than waiting for 56-day cylinder tests, if waiting for later tests will compromise the project’s schedule. All concrete represented by the compression test that indicates a compressive strength of more than 500 psi below the specified 28-day strength will be rejected and shall be removed and replaced with acceptable concrete. However, the Contractor may, at their own expense, obtain and submit evidence as outlined below, acceptable to the Engineer, that the strength and quality of the concrete placed in the work is acceptable, then the concrete will be permitted to remain in place and the contractor will be paid at a reduced price as outlined below.

G. If three consecutive standard concrete cylinders tests (AASHTO T 22) taken on the jobs from the same plant for the same mix design of concrete fail to meet the strength requirement, the plant shall submit remedial actions for all future production until the source of the problem can be identified and corrected, or new trial batches can be performed. When the average of three consecutive tests, falls to less than 150 psi above the
specified strength or any single test falls more than 200 psi below the specified strength, the
plant shall make corrective changes in the materials, mix proportions or in the concrete
manufacturing procedures before placing additional concrete of the same mix design. Such
changes shall be subjected to the approval of the Engineer prior to use.

H. Evaluation and Acceptance of Concrete. The strength of the concrete will be considered
satisfactory provided that the average of all sets of three consecutive test results of the
same concrete mix equal to or exceed the required specified strength $f_{c'}$, and no individual
test result falls below the specified strength $f_{c'}$ by more than 500 psi.

Non-destructive testing will not be permitted in lieu of compressive strength tests of concrete
cylinders, air content tests by the pressure method, slump or other test for evaluation and
acceptance on concrete placed on the projects. Coring is the only acceptance method to determine
the in-situ characteristics of concrete. The size of the core shall be 4-in. finished diameter for
concrete with ¾-in. or less aggregate and 6-in. finished diameter for concrete with aggregate
greater than ¾ in. The length of the concrete core, when capped, shall be as nearly as practicable
twice its diameter and a strength correction factor in accordance with AASHTO T 24 must be
determined based on the ratio of Length to Diameter (L/D). Cores with L/D ratio less than 1 shall
not be tested. Wipe off the surface of the drilled cores and allow the remaining surface moisture to
evaporate. When the surfaces appear dry but not more than an hour after drilling, place cores in
separate plastic bags or non-absorbent containers and seal to prevent moisture loss. Allow the
cores to remain in the sealed plastic bags or non-absorbent containers for at least 5 days after last
being wetted before making the compression test.

A request for strength analysis by coring shall be approved by the Engineer prior to beginning the
work. Coring will not be permitted if the Department determines it would be harmful to the
integrity of the structure, Cores shall be obtained by the Contractor and witnessed by the Engineer
in accordance with AASHTO T 24M/T 24 and delivered to RMS for testing in accordance with
AASHTO T 22. The test results will be considered proof of in-situ concrete strength and will
supersede all other strength data for the concrete represented by that placement. Cores shall be
obtained no later than two weeks after the 56 day cylinder breaks have failed. All reinforcing steel
shall be located with a pachometer around the proposed coring locations prior to the coring
operation. The Department shall approve the location to be cored. And all cost associated with the
coring operation including the repair of cored area shall be the responsibility of the contractor. The
Contractor shall patch the core holes with low slump mortar, similar to that used in the concrete,
immediately after coring, to the satisfaction of the Engineer. Acceptance by core method requires
that the average compressive strength of three cores from the same concrete placement exceeds 85
percent of the specified design strength with no single core less than 75% of the specified design
strength.

These cores may be subjected to petrographic analysis, if deemed necessary by the Engineer and at
the expense of the Contractor, to determine if there is microscopy evidence that identifies the
constituents of concrete, possible reasons for the strength deficiency of the in-situ concrete, if any,
and to provide a basis for assessing the quality and long term durability of the in-situ concrete. The
results of the petrographic analysis will be considered in conjunction with the results of concrete
cylinders to determine if the concrete can remain in place or has to be removed.
Concrete that meets the strength requirements through the 28-day, the 56-day break or the core break shall be considered in reasonably close conformance with the specifications and no credit shall be taken.

Concrete with cylinder or core compressive strength (fc) which fails to meet acceptance level requirements shall be evaluated for structural adequacy at the Contractors’ expense. The Department shall review all production records, the concrete test records, petrographic analysis report, field notes, and the placement records for the concrete in question. If the Engineer determines the material is found to be adequate to remain in place, payment shall be adjusted in accordance with the following formula:

\[
P = \frac{2(fc - f\dot{c})(UP)(Q)}{f\dot{c}}
\]

Where:
- \(P \) = pay adjustment for substandard concrete
- \(f\dot{c} \) = specified minimum compressive strength at 28 days
- \(fc \) = substandard concrete cylinder compressive strength at 28 days
- \(Q \) = quantity of concrete represented by the acceptance cylinders tested
- \(UP \) = unit contract price or the lump sum breakdown price per cubic yard
- \(f\dot{c} \) = for the class of concrete involved complete in place

M4.02.14: Precast Units

Precast concrete units shall be manufactured of air-entrained 4,000 psi, \(\frac{3}{4} \)-inch, 610-lb cement concrete, true to line, plane and dimensions, in accordance with the following special requirements:

A. Plant Requirements.

The precast manufacturing plant shall be approved by the Department prior to manufacturing, and be certified by either the NPCA Plant Certification Program or the PCI Plant Certification Program for the category of product being produced. The cement concrete production and precast product fabrication shall be produced at a single plant site operated by a single company.

The units shall be manufactured in an approved enclosed building under the Engineer’s control and inspection with a guaranteed provision to meet the requirements for curing and protecting the concrete as specified.

The concrete shall be proportioned as specified in M4.02.06: Proportioning and mixed in accordance with M4.02.10: Mixing and Delivery. No delay or shutdown of over 30 minutes duration in continuous filling of individual forms will be allowed. The units shall be cast true to line and dimensions, free from checking, cracking, voids, surface honeycombing and without requiring additional rubbing or patching.

All steel reinforcement (bars or welded wire fabric) shall be epoxy coated (M8.01.7: Epoxy Coated Reinforcing Bars) or galvanized steel (M8.01.8: Galvanized Reinforcing Bars), conforming to the respective materials specifications.
B. Forms.

As specified below metal or wood forms of tight, rigid construction, true to shape, and with smooth finish shall be used. Concrete forms may be used if approved by the Engineer. The forms shall be oiled in any approved manner. Re-use of old, worn, or misshapen forms, will not be allowed.

- Bounds ... Wooden or wooden-faced; Metal or metal-faced
- Catch Basins & Manholes Metal or metal-faced
- Cribbing .. Metal or metal-faced
- Curb ... Wooden or wooden-faced
- Curb corners .. Wooden or wooden-faced
- Edging ... Wooden or wooden-faced
- Railings ... Wooden or wooden-faced
- Posts ... Wooden or wooden-faced; Metal or metal-faced
- Box Culverts ... Metal
- Light Foundations ... Metal
- Median Barrier .. Metal
- Retaining Walls ... Metal
- Noise Barrier Panels ... Metal
- Pull Boxes .. Metal
- Handholes .. Metal

C. Vibration.

Vibrators shall be provided and used as specified in 901.63: Handling and Placing Concrete, Paragraph C, and as directed by the Engineer. Prolonged vibration shall be avoided in order to prevent surface finish susceptible to crazing. Units showing surface checking or crazing will be rejected.

D. Protection and Curing.

The units shall be cured either by steam or water for a sufficient length of time for the concrete to obtain the minimum compressive strength.

1. Steam Curing.

Two to four hours after the concrete has been placed and attained the initial set, the first application of steam shall be made. Forms shall be removed after the units have been steam cured for 24 hours.

The steam shall be at 100% relative humidity to provide moisture for proper hydration of the cement. The steam shall be directly applied to the concrete. During the application of steam the ambient temperature shall increase at the rate not to exceed 40°F per hour until a minimum temperature of 130°F is reached.

When discontinuing the steam application, the ambient temperature shall be decreased at the rate of 40°F per hour until a temperature of 20°F above the atmospheric temperature has been attained. The concrete shall not be exposed to temperatures below freezing for a minimum of 6 days after casting.
2. Water Curing.

The units may be water cured with water, saturated material or other acceptable or approved methods that will keep the units moist for a period of 5 days. Under no condition will the use of curing compounds be permitted.

Concrete delivered in outside temperature lower than 40°F shall arrive at work having a temperature not less than 60°F nor greater than 90°F. Water and aggregates shall be heated if necessary but the water shall not be heated above 140°F. The use of direct heating torch in mixer shall not be approved.

3. Protective Coating.

A protective coating approved by the Engineer shall be used on Curb, Curb Corners, Edging, Railings and Posts.

After the concrete is at least 14 days old and thoroughly dry, the surface shall be cleaned to remove all oil, grime and loose panicles which would prevent the protective compound from penetrating the concrete. Immediately before the application of the compound an air blast shall be directed over the surface to be treated so that all dust will be removed and then treated as follows:

The rate and number of applications for each unit shall be in accordance with the manufacturer’s recommendations.

E. Finish and Color.

Edging curb corners, precast fence rails and similar units shall be rub finished in the following manner:

After the concrete has properly hardened, the exposed surfaces shall be rubbed with a No. 16 carborundum stone or an abrasive of approved equal in a manner to fully remove cement enamel finish and expose a durable sand grain finish satisfactory to the Engineer. No cement shall be used in the rubbing process.

The color and finish of these units shall be uniform and shall conform to those of adjacent work in their final position.

F. Testing and Sampling.

Representative test specimens of the concrete shall be taken by the Engineer. No precast units will be shipped to a project until the test specimens cured as required in M4.02.13: Test Specimens show a compressive strength of 4,000 lb.

G. Inspection.

All precast units shall be subject to inspection at the point of manufacture and on the project and any units showing defects or damage before the completion of the project shall be removed and replaced at the expense of the Contractor.

H. QC.

The contractor shall provide QC in the form of personnel, equipment and laboratory and office space.
1. Personnel.

There shall be sufficient personnel trained and certified to perform the tests listed under M4.02.13: Test Specimens, Paragraph D. The certification required shall be the ACI Field Technician Level I certification, or PCI Technician/Inspector Level I or higher.

2. Equipment.

- Air Content Meter Type A or B AASHTO T 152;
- Air Content Meter Volumetric Method AASHTO T 196M/T 196;
- Slump Cone AASHTO T 119M/T 119;
- Cylinder Molds AASHTO M 205M/M 205;
- Concrete Testing Machine AASHTO T 22;
- Screening Sieve: AASHTO T 27, T 11;
- Curing Box AASHTO T 23;
- Portable Temperature Recorders; and
- All other necessary items such as ovens, scales, hot plates, pans, etc. to perform tests.

3. Laboratory.

A room of sufficient size to house all equipment and to adequately perform all these tests. The room shall have either a separate moisture storage room or curing box for concrete cylinders and it shall be thermostatically controlled to maintain 70°F. The laboratory room shall be heated and air conditioned to maintain 70°F. It shall include a desk and file cabinet for proper record keeping, and have good lighting and ventilation. This room shall be kept for testing and QC and not used for any other purpose. An additional desk and file cabinet shall be provided for the exclusive use of the Engineer.

No exception from these requirements will be allowed without the expressed written permission of the Engineer.

M4.02.15: Cement Mortar

Mortar shall be composed of 1 part Portland cement and 2 parts of sand by volume with sufficient water to form a workable mixture. Cement, sand and water shall conform to M4.01.0: Portland Cement, M4.02.02: Aggregates, Paragraph B, and M4.02.04: Water respectively.

M4.02.16: Precast Drainage Structures

Precast manholes and catch basins shall conform to the requirements of AASHTO M 199M/M 199. Special manholes shall meet the requirements of M4.02.14: Precast Units. After curing a minimum of 14 days, the outside surface of the tapered or cone section of precast cement concrete drainage structures shall be dried, cleaned and coated with a coal tar emulsion meeting the requirements of M3.03.3: Protective Seal Coat Emulsion.

M4.02.17: Self-Consolidating Concrete for Precast Concrete Products

Self-Consolidating Concrete (SCC) may be used at the Fabricator’s discretion. SCC is a non-segregating concrete that is sufficiently flowable to fill formwork, spread into place, and encapsulate reinforcing steel, requiring minimal or no mechanical vibration to avoid segregation of
the plastic concrete mixture. The following provision shall apply in addition to the other requirements specified in Section M4: Cement and Cement Concrete Materials.

A. Fine Aggregates.

The fine aggregate portion of a given mix shall not exceed 50% by weight of the total aggregate in the mix.

B. Chemical Admixtures.

Chemical admixtures shall be selected from the QCML, shall be used in accordance with manufacturer's recommendations, and shall be compatible with all mix components. Any type of chemical admixture that is not included in the QCML (such as shrinkage reducing admixtures) shall be used in accordance with the manufacturer's recommendations, shall be compatible with all mix components and shall conform to AASHTO M 194M/M 194 and the following:

1. Air entraining admixtures shall comply with AASHTO M 154M/M 154.
2. VMA shall comply with the ASTM C 494 Type S.
3. High-range water-reducing admixtures (HRWRA) shall comply with the requirements of ASTM C 494 Type F (water-reducing, high range) or G (water-reducing, high range, and retarding) or ASTM C 1017. Such HRWRA can be used in combination with regular water-reducing admixtures or mid-range water-reducing admixtures. High-Range Water-Reducing Admixture (HRWR).
4. All corrosion inhibitors shall comply with AASHTO M 194M/M 194.

C. SCC Mix Design.

Prior to concrete production, the Contractor shall submit a copy of the SCC mix design to RMS for review and approval.

SCC Compressive strength specimens shall be fabricated in accordance to ASTM C1758. Multiple samples from the same batch shall be made simultaneously. Prior to testing for compressive strength, the de-molded cylinders shall be visually examined for evidence of segregation. The results of the observations shall be reported as part of the strength results.

In addition to the testing provided in M4.02.00: Cement Concrete, the following tests shall be performed by qualified staff, in the presence of the Engineer and submitted to RMS for the prequalification of the SCC mix design;
Table M4.02.17-1: Additional Material Acceptance Criteria for SCC Trial Batch Testing

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Target Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filling Ability</td>
<td>Slump Flow (AASHTO T 347)</td>
<td>22 to 29 in.</td>
</tr>
<tr>
<td>Static Stability</td>
<td>Column Segregation (ASTM C1610)</td>
<td>Percent static segregation (S) ≤15%</td>
</tr>
<tr>
<td></td>
<td>Visual Stability Index (AASHTO T 351)</td>
<td>0 or 1</td>
</tr>
</tbody>
</table>

Note: Slump flow values outside of the above range will be considered, provided mock-ups performed during the trial batch process demonstrate full consolidation of concrete without segregation as approved by the Engineer.

D. Production Sampling and Testing.

In addition to production sampling and testing defined in M4.02.00: Cement Concrete, the following testing shall be performed during production. These tests shall apply whether performed by MassDOT for acceptance or by the Contractor for QC. Sampling and testing requirements shall be performed in accordance with the specifications for the precast concrete unit.

Table M4.02.17-2: Additional Material Criteria for SCC Production Testing

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Target Value</th>
<th>Testing Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filling Ability</td>
<td>Slump Flow (AASHTO T 347)</td>
<td>±2 in. of Trial Batch Slump Flow Target Value and within Range of 22 to 29 in</td>
<td>1 per Sublot</td>
</tr>
<tr>
<td>Static Stability</td>
<td>Visual Stability Index (AASHTO T 351)</td>
<td>0 or 1</td>
<td>1 per Sublot</td>
</tr>
</tbody>
</table>

M4.04.0: Mortar for Prestressed Concrete Deck Beams

The mortar shall conform to the following specification:

General.

The purpose of this specification is to describe a 2-component, polymer-modified, cementitious, fast-setting, free flow mortar for filling keyways between adjacent box beams.
Materials.

The polymer-modified cementitious system shall consist of a factory pre-proportioned, 2-component system whose components conform to the following requirements:

a) Component A shall be a liquid polymer emulsion of an acrylic copolymer base and additives. This acrylic copolymer shall have the following properties:

- pH .. 4.5 to 6.5
- Minimum film forming temperature Approximately 68°F
- Tear Strength .. Approximately 990 psi to 1,420 psi
- Elongation at break ... 500% to 900%
- Particle size range .. Less than 0.1 micron

b) Component B shall be a blend of a selected Portland Cement, specially graded aggregates, organic accelerator, and admixtures for controlling setting time, water reducers for workability and a corrosion inhibitor.

c) The component ratio A:B shall be 1:7.2 by weight. The system shall not contain chlorides, nitrates, added gypsum, added lime, or high alumina cements. The system shall be non-combustible, either before or after cure.

Typical Properties of Mixed Components.

- Application Time (Working Time): 15 minutes after components have been mixed
- Finishing Time: ... 20 to 60 minutes after combining components
- Color: ... Concrete Gray
- Flow Test: ... 100% to 200%

Typical Properties of Cured System.

- Abrasion Resistance: 6 times greater than Control
- Bond Strength (Pulloff method): 100% concrete substrate failure
- Modulus of Elasticity: .. 4.5 x 10^6
- Surface Scaling (Deicing salt freeze/thaw): No deterioration after 120 cycles
- Compressive Strength (4 hours 50% RH): 100 psi minimum
- Compressive Strength (28 days 50% RH): 5,300 psi minimum
- Flexural Strength (28 days 50% RH): 1,200 psi minimum
- System shall conform to EPA/USPHS Standards for surface contact with potable water.
- The system shall not produce a vapor barrier.
- The system shall be thoroughly compatible with concrete.

M4.05.0: Cement Concrete Brick

Cement concrete brick shall be machine made solid segments conforming to the requirements of ASTM C139, except that the minimum average compressive strength for 5 representative bricks shall be 3,000 psi. The minimum compressive strength for one individual brick shall be 2,500 psi. Dimensional requirements shall be the same as for M4.05.2: Clay Brick.
M4.05.1: Cement Concrete Blocks

Cement concrete blocks shall be machine made solid segments, conforming to the requirements for Concrete Masonry Units for Construction of Catch Basins and Manholes. ASTM C139, supplemented by the following requirements:

The blocks shall be 6 in. in width for basins and manholes of 9 ft or less in depth, 8 in. in width below a depth of 9 ft when used in structures having a depth greater than 9 ft.

The permissible dimensional variation for nominal size shall be in accordance with ASTM C139. The inside and outside surfaces of the blocks shall be carved to the necessary radius and so designed that the interior surfaces of the structures shall be cylindrical, except the top batter courses which shall be designed to reduce uniformly the inside section of the structure to the required top size and shape. The blocks used in the top courses shall be designed to produce a surface 8 in. in width upon which to seat the frame, and the curb inlet when one is used. Blocks shall be so designed that only full-length units are required to lay any one course.

Blocks shall be sampled and tested in accordance with ASTM C140. The minimum average compressive strength for 5 representative blocks shall be 3,000 psi. The minimum compressive strength for one individual block shall be 2,500 psi.

M4.05.2: Clay Brick

Clay brick shall conform to the requirements of ASTM C32 with the following exceptions:

The size of brick furnished shall be 7.75 in. long by 3.75 in. wide by 2.25 in. deep.

All dimensions shall be nominal.

The average of the absorption of 5 representative samples shall not exceed 15% and the individual absorption of any one sample shall not exceed 17.5%. The average compressive strength of 5 representative samples shall not be less than 3,000 psi and the compressive strength of any one sample shall not be less than 2,500 psi.

M4.05.3: Precast Concrete Block for Slope Paving

Precast blocks shall be solid segments, conforming to requirements for Concrete Masonry Units for Construction of Catch Basins and Manholes, ASTM-C139, supplemented by the following requirements:

The thickness shall be 4 in., the width shall be 12 in., and the length 16 in. Blocks shall be sampled and tested in accordance with ASTM C140. Dimensional tolerances shall be in accordance with ASTM C139.

M4.05.4: Sidewalk Brick

Sidewalk brick shall conform to the requirements of ASTM C902 except that the absorption shall be 5% maximum when subjected to 5 hours of submersion in boiling water.
M4.05.5: Epoxy-Resin Base Bonding System for Concrete

This specification covers two-component, epoxy-resin bonding systems for application to Portland cement concrete. The materials shall meet AASHTO M 235M/M 235 Type III, IV, or V. The Type, Grade and Class shall be specified for each individual application.

M4.06.1: High Performance Cement Concrete

High Performance (HP) Cement Concrete shall meet the requirements of M4.02.00: Cement Concrete in Table M4.06.1-1 and shall be modified by the addition of silica fume, calcium nitrite, and an admixture of either fly ash or slag cement or a combination of fly ash and slag cement. The Contractor may elect to use fly ash, slag cement, or a combination thereof provided that the permeability and strength provisions contained herein are satisfied and the RMS has approved the trial batches and mix design. Changing the mix design shall not be accepted and approved by RMS without the preparing, testing, and approval of trial batches for the revised mix design.

<table>
<thead>
<tr>
<th>28 Day Compressive Strength</th>
<th>Maximum Coarse Aggregate Size (in.)</th>
<th>Total Cementitious Content (lb per yd³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,000 psi</td>
<td>¾</td>
<td>585</td>
</tr>
<tr>
<td>5,000 psi</td>
<td>¾</td>
<td>685</td>
</tr>
<tr>
<td>5,000 psi</td>
<td>¾</td>
<td>710</td>
</tr>
</tbody>
</table>

The concrete placed shall be air entrained (6.5 ± 1.5%) High Performance Cement Concrete with a target slump of 4 in. The permitted slump range shall be 2 to 6 in., except for concrete to be pumped, which shall have a permitted slump range of 3 to 6 in. Silica fume shall constitute of 6±1% (dry weight) of the cementitious content. Fly ash, if used instead of slag cement, shall constitute 15% (dry weight) of the cementitious content. Slag cement, if used instead of fly ash, shall constitute 25% (minimum dry weight) to 40% (maximum dry rate) of the cementitious content. Combinations of fly ash and slag cement may be used provided that the permeability and strength provisions contained herein are satisfied and RMS has approved the mix design and approved the trial batches. The trial batches must have used slag cement and/or fly ash addition rates that are consistent with the mix design’s addition rates. The water-cementitious ratio shall be 0.40 maximum. The cementitious content shall be the sum of the Portland cement, silica fume, fly ash, slag cement, and all other approved pozzolanic admixtures. The water content of all additives shall be included in the water-cementitious ratio.

Calcium nitrite corrosion inhibitors shall conform to AASHTO M 194M/M 194. RMS must approve the material. Acceptance will depend upon the material’s conformance, as documented by certified test results, to all applicable sections of AASHTO M 194M/M 194. The calcium nitrite solution shall contain 30 ± 2% calcium nitrite by weight. The calcium nitrite material shall have neutral set characteristics.

The calcium nitrite shall be added at a rate of 3 gal per yd³ of concrete in order to increase the active corrosion threshold to 9.9 lb of chloride per yd³ of concrete at the reinforcing bar level.

Fly ash shall conform to AASHTO M 295, Type F.
Slag cement shall be Grade 100 and/or Grade 120 and shall conform to AASHTO M 302.

Silica fume shall conform to AASHTO M 307. Pre-blended silica fume cement meeting both AASHTO M 307 and AASHTO M 240M/M 240 Blended Hydraulic Cement may be used for producing Silica Fume Modified Concrete provided that the overall amount of silica fume is $6 \pm 1\%$ (dry weight) of the cementitious content. If pre-blended silica fume cement is proposed for use, the Contractor shall provide certificates from the manufacturer which certify that the silica fume meets the requirements of AASHTO M 307. The Contractor shall obtain a written statement from the manufacturer of the silica fume that it is compatible with the other materials from the sources proposed by the Contractor along with mill analysis test certification demonstrating conformance to the referenced specifications.

The HP Cement Concrete shall be mixed for a minimum of 20 min at mixing speed for a minimum total of 120 revolutions to ensure proper dispersion of the admixtures. The mix shall contain superplasticizer conforming to AASHTO M 194M/M 194 Type F or G, which shall be added in accordance with the concrete technician's recommendations. The amount of superplasticizer added to the cement concrete at the batching facility and at the job site shall be recorded on the delivery slip. The delivery slip shall be signed by the concrete technician. The concrete technician shall be supplied by the silica fume manufacturer and be either an ACI Certified Concrete Technician (minimum Grade I - Field) or a New England Transportation Technician Certification Program - Certified Concrete Technician.

Trial batch testing will be performed on samples of the same contents and proportions as the HP Cement Concrete to be used in the proposed structures. Trial batches shall be prepared using representative concrete at a 6-in. maximum slump. Coulomb tests shall be made on two 4 x 8 in. representative samples that do not contain calcium nitrite and have been moist cured for a maximum of 90 days. Coulomb tests on trial batches shall be performed as early as possible during the construction season in order that the approval process does not delay the anticipated date of HP Cement Concrete placement. An independent AASHTO accredited laboratory shall perform the Coulomb testing. If test results exceed a maximum of 1,500 coulombs, the Contractor, at their expense, shall adjust the mix and resubmit trial batches until a trial batch passes the coulomb test.

Prior to concrete placement, the Contractor shall develop and forward a copy of the HP Cement Concrete design mix to the Department for review and approval. Approval of the design mix must be obtained prior to placement of concrete. The mix design sent to the Department must be accompanied with trial batch information. Trial batches shall be performed in accordance with procedures outlined by the Department. The Contractor shall have technical representatives from the silica fume supplier and the ready-mix producer at the job site during placement of the concrete. The concrete technicians shall each meet the certification requirements as referenced previously in this section. The Contractor will assume these costs.

Appropriate retarders and high range water reducers shall be used as recommended by the ACI certified concrete representative to ensure that potential for the formation of temperature induced plastic shrinkage cracking is minimized.
M4.07.0: Elastomeric Concrete

Elastomeric concrete for use in strip seal bridge joint systems, shall consist of a two component polyurethane material that shall be mixed and placed at the job site. The cured elastomeric concrete shall have the following physical properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Stress @ 5% deflection</td>
<td>ASTM D 695</td>
<td>800 psi minimum</td>
</tr>
<tr>
<td>Resilience @ 5% deflection</td>
<td>ASTM D695</td>
<td>70% minimum</td>
</tr>
<tr>
<td>Impact Resistance @ -20°F, 32°F and 158°F</td>
<td>ASTM D3209</td>
<td>No cracks</td>
</tr>
</tbody>
</table>

M4.08.0: Controlled Density Fill

Controlled Density Fill (CDF) material is a flowable, self-consolidating, rigid setting, low density material that can substitute for compacted gravel in backfills, fills and structural fills. There are two main categories of CDF’s, excavatable and non-excavatable with a sub category of flowable and very flowable. It shall be a mixture of Portland cement, fly ash (if very flowable), sand, and water designed to provide strengths within the range specified.

The categories of CDF’s are:

- Type 1: Very Flowable (Non Excavatable)
- Type 1E: Very Flowable (Excavatable)
- Type 2: Flowable (Non Excavatable)
- Type 2E: Flowable (Excavatable)

The Very Flowable mixes (Type 1 and 1E) shall contain a Minimum of 250 lb of class F Fly Ash or high air (25% plus) and will be self-leveling.

Excavatable mixes (Type 1E and 2E) shall be hand tool excavatable.

Type 1 mixes are intended for permanent installations such as structural fills under structures. It has very flowable characteristics needed for distances and small areas. This type of mix should not be used as a bedding material. It is used to fill small hard-to-reach areas.

Type 1E mixes are excavatable material designed to have very flowable characteristics needed for filling small or far areas that later may need to be removed.

Type 2 mixes are used in areas where size and distance do not need the very flowable characteristic. It is intended for permanent installations such as thick fills under structures.

Type 2E mixes are excavatable mixes where size and distance of the installation do not require the flowable characteristics of a Type 1E mix.

CDF is to be batched at a ready mix plant and is to be used at a high or very high slump of approximately 10 in. to 12 in. It shall be flowable, require no vibration and after it has been placed can, for Types 1E and 2E, be excavatable by hand tools and/or small machines.
The ingredients shall comply with the following:

- Portland Cement ... AASHTO M 85
- Fly Ash ... AASHTO M 295, Class F
- Sand .. M4.02.02: Aggregates
- Air entraining admixtures... M4.02.05: Cement Concrete Additives

- Note 1. In lieu of the slump test, a 6-in. long, 3-in. diameter tube may be filled to the top and then slowly raised. The diameter of the resulting "pancake" may be measured and the range of the diameter shall be 9 in. to 14 in.
- Note 2. The maximum for structural flowable fills may be in the thousands (1,000s) of psi and will depend on the Engineer's requirements.
- Note 3. High air may be used instead of fly ash with an adjustment in sand content.

The following Type 1 and Type 1E mix designs are for information only, the actual mix designs submitted by the ready mix operator, in accordance with standard Department practice, must be confirmed by trial batches.

<table>
<thead>
<tr>
<th>Material</th>
<th>Type 1 Mix Design</th>
<th>Type 1E Mix Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>100 lb</td>
<td>50 lb</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>250 lb</td>
<td>250 lb</td>
</tr>
<tr>
<td>Sand</td>
<td>2,650 lb</td>
<td>2,700 lb</td>
</tr>
<tr>
<td>Water</td>
<td>60 gal</td>
<td>60 gal</td>
</tr>
</tbody>
</table>

Various types of controlled density fill must meet the requirements set forth in the table below:

<table>
<thead>
<tr>
<th>Controlled Density Fill</th>
<th>Type 1 & 2</th>
<th>Type 1E & 2E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Strength @ 28 days</td>
<td>30 psi to 150 psi</td>
<td>30 psi to 80 psi*</td>
</tr>
<tr>
<td>Compressive Strength @ 90 days</td>
<td>200 psi maximum</td>
<td>100 psi maximum*</td>
</tr>
<tr>
<td>Slump</td>
<td>10 in. to 12 in.</td>
<td>10 in. to 12 in.</td>
</tr>
</tbody>
</table>

* May be changed by Design Engineer to fit particular job requirements.
SECTION M5: PIPE, CULVERT SECTIONS AND CONDUIT

M5.00.0: Pipe, Culvert Sections and Conduit

These shall consist of individual sections of the kinds and sizes shown on the plans and as directed. They shall conform to the requirements of the applicable following subsections.

All pipes shall be subject to inspection at the point of manufacture as well as the site of the work. The purpose of the inspection shall be to cull and reject pipes which, independent of the physical tests, fail to con-form to the specification in the particulars of dimension, workmanship, finish, blisters, cracks or fractures.

M5.02.1: Reinforced Concrete Pipe

Reinforced concrete pipe shall conform to the requirements of AASHTO M 170 for Standard Strength Reinforced Concrete Culvert Pipe for Class III Pipe, unless otherwise designated on the plans, except that the steel area for 24-in. pipe shall be 0.10 in.² per ft and circular reinforcement only shall be used in circular pipes. All pipe 24 in. in diameter or smaller shall be of the bell-and-spigot type. Pipes larger than 24 in. in diameter shall be tongue and groove or bell and spigot.

M5.02.2: Reinforced Concrete Pipe Flared Ends

Flared End Sections shall be fabricated to comply with the current construction standard for this item. The method of fabrication and materials used shall conform to the requirements of AASHTO M 170, Class III, except that the three edge bearing tests shall not be required. The flare shall be of the same thickness and materials as the barrel and have steel reinforcement equaling or exceeding the amount shown on the table for AASHTO M 170, Class III, except that a double row of steel will not be required.

M5.03.0: Corrugated Metal Pipe

This pipe shall consist of metallic coated (galvanized or aluminized) corrugated metal pipe and couplings. The coating shall completely cover the inside and outside of all pipe and couplings.

Galvanizing shall conform to M7.10.0: Galvanized Coatings.

Aluminizing shall conform to M7.15.0: Metallized Coatings.

Aluminized and galvanized pipe components shall not be used together in a pipe run.

The pipe shall conform to AASHTO M 36. Pipe 8 in. or less in diameter shall be constructed of sheets not less than 0.052 in. thick. End sections shall be 16 gage for all pipes 24 in. in diameter and under, 14 gage for all 30- and 36-in. diameter pipes and 12 gage for all diameters greater than 36 in. The coating on end sections shall match the coating on the pipe connected to it.

M5.03.1: Perforated Corrugated Metal Pipe

This pipe shall meet the requirements of M5.03.0: Corrugated Metal Pipe and contain perforations conforming to AASHTO M 36, Type III. The pipe shall conform to AASHTO M 36 except that reinforcing the ends of the pipe will not be required.
M5.03.6: Metal End Sections

Metal End Sections shall be fabricated to conform with the current construction standard for this item. The method of fabrication and materials used shall conform to the applicable requirements of AASHTO M 36.

After fabrication of end sections, the entire unit shall be coated with 2 coats of material conforming to M7.04.01.

M5.03.7: Plastic (PVC) Pipe

Plastic (PVC) Pipe shall meet ASTM D1785 Standard Specification for Poly Vinyl Chloride (PVC) and Chlorinated Poly Vinyl Chloride (CPVC) Plastic Pipe, Schedule 40, 80, and 120. The pipe shall be PVC, Type I Schedule 80. Fittings, such as adapters, couplings, etc. shall be the same material as the pipe. Joints shall be made in accordance with ASTM D2855 Recommended Practice for Making Solvent-cemented Joints with Poly (Vinyl Chloride) (PVC) Pipe and Fittings. Cements shall meet ASTM D2564.

M5.03.8: Polymeric Precoated Corrugated Metal Pipe

Polymeric precoated corrugated metal pipe shall conform to the requirements of AASHTO M 246, Type B with the thinner polymeric coating a minimum of 3 mils.

M5.03.9: Slot-Perforated Corrugated Plastic Pipe

This pipe or tubing shall consist of slot-perforated corrugated polyethylene tubing, couplings and fittings. Materials, dimensions, physical properties and fabrication shall be in conformance with AASHTO M 252.

M5.03.10: Corrugated Plastic Pipe

Pipe shall consist of corrugated polyethylene or polypropylene tubing, flare ends, couplings and fittings. Materials, dimensions, physical properties and fabrication shall be in accordance with AASHTO M 294, Type S or D or AASHTO M 330 Type S or D. Perforated pipe shall meet Type SP or DP.

M5.03.11: Porous Concrete Pipe

Porous Concrete Pipe shall meet the requirements of AASHTO M 176M/M 176 for Extra-Strength Porous Concrete Pipe. Aggregates for the concrete may consist of inert carbon material.

M5.04.0: Asphalt Coated Corrugated Metal Pipe Arches

Asphalt coated corrugated metal pipe arches shall consist of corrugated metal pipes which have been reformed to multi-centered pipe having arch shaped tops with a slight outwardly curved integral bottom. The pipe shall be fabricated from standard length culvert sheet and factory riveted to form a continuous length pipe arch.

Asphalt coated corrugated metal pipe arches, including coupling bands, shall conform to the requirement of AASHTO M 36 or AASHTO M 196 for corrugated metal pipe meeting the requirements for base metal, rivets, sampling, testing, brands, corrugations, end finish, weight, bands and workmanship.
FABRICATION

A. Dimensions.

Dimensions, tolerances, and areas shall be in accordance with AASHTO M 36 unless otherwise noted on the plans and/ or called for in the proposal.

The lapped longitudinal seams shall be factory riveted and shall be placed in the top arch and be staggered so as to alternate on each side of the center of the top of the arch by approximately 15% of the periphery.

B. Asphalt Coating.

The insert of the pipe arch shall be coated with asphalt conforming to AASHTO M 190. Type C Coating, so as to form a smooth pavement to widths of 40% of the circumference of the pipe arch. These widths are determined by 40% of the circumference of equivalent diameters. It shall be applied in such a manner that the corrugations are completely filled and that, excepting where the upper edges intersect the corrugations, the pavement has a minimum thickness of ⅛ in. above the crests of the corrugations. The remainder of the inside of the pipe arch and the entire outside shall be uniformly coated with asphalt cement to a minimum thickness of 0.05 in. The thickness shall be measured on the crests of the corrugations. All coupling bands shall be coated to same requirements as the pipe arch except the pavement shall be omitted.

C. Bituminous Materials.

The asphalt cement used for coating shall conform to the requirements in M5.03.0: Corrugated Metal Pipe, Paragraph B.

M5.04.2: Structural Plate for Pipe and Pipe Arches

All materials, including base metal analysis, galvanizing, bolts, nuts, corrugations, gauge determination and acceptance of plates, forming and punching holes, bearing shapes, fabrication and incidental items shall conform to AASHTO M 167M/M 167 and the following:

A. The gauge of plates shall be as specified on the Plans.
B. Bituminous Coating for Metal Surfaces. The bituminous coating shall be a coal tar blend conforming to the requirements of M7.04.01.

M5.04.3: Asphalt Coated Smooth Steel Liner Helically Corrugated Shell Metal Pipe

This pipe shall conform to AASHTO M 36, 8.1.1, Type 1A pipe. The coating shall conform to AASHTO Designation M 190, Type A.

M5.05.3: Ductile Iron Pipe and Fittings

Ductile iron pipe shall conform to the requirements of AWWA C150, C151, C111 and shall be double cement lined and asphalt seal coated in accordance with AWWA C104. The wall thickness shall be Class 52.

Ductile iron fittings for pipes 3 in. through 24 in. in diameter shall be of the compact type and conform to the requirements of AWWA C153 American National Standard for Ductile-Iron compact Fittings, 3 in. through 24 in., for water and other liquids.
Ductile iron fittings for pipes greater than 24 in. and up to 48 in. in diameter shall conform to the requirements of AWWA C110 American National Standard for Ductile-Iron and Gray-Iron Fittings, 3 in. through 48 in., for water and other liquids.

A. Hydrants.

Hydrants shall conform to the requirements of AWWA Standard C502, and/or to the type used by the particular municipality involved as specified in the Special Provisions.

B. Gate Valves.

Gate valves shall conform to the requirements of AWWA Standard C500 and/or to the type used by the particular municipality involved as specified in the Special Provisions.

M5.05.4: Acrylonitrile - Butadiene - Styrene (ABS) Pipe

This type of pipe shall conform to the requirements of AASHTO M 265.

M5.06.0: Copper Tubing

Copper Tubing shall conform to the requirements of ASTM B88, Type k, “annealed.”

M5.07.0: Electrical Conduit-Rigid Nonmetallic (Type NM)

Rigid Nonmetallic Electrical Conduit and associated fittings shall conform to Article 352 of the NEC, NEMA TS2, UL 514B and UL 651.

Unless encased in concrete, all Type NM conduit installed underground shall be Schedule 80 (Electric Polyvinyl Chloride-80).

The walls of the conduit shall have a smooth interior surface free from all substances which may injure any wire or cable covering such as is used on rubber covered or thermoplastic insulated wire or cable.

The bore of the conduit shall be circular in cross section and straight and true so as to pass freely a mandrel 3 ft long and ¼ in. less in diameter than the nominal inner diameter of the conduit.

The bore of bends, elbows, and other fittings shall pass freely a ball of ¼ in. less in diameter than the nominal inner diameter of the conduit. Couplings, elbows, bends, adapters, reducers, increasers and bell ends, shall be of the same material as the conduit.

The minimum acceptable radii dimensions for elbows and bends shall conform to the requirements of the NEC. Joints shall be machined to an accurate taper on both ends to permit a tight joint when assembled with suitable couplings or fittings.

One tapered joint coupling shall be supplied with each length of conduit and each elbow or bend.

At least 85% of the conduit in any lot shall be furnished in standard length; sections of conduit less than 5 ft will not be accepted. A tolerance of ±1 in. is permissible in the conduit lengths specified.

Each length of conduit and all associated fittings shall be clearly and durably marked at least every 10 ft with the manufacturer’s name, trademark, or other descriptive marking by which the fabricator can be identified. The material type, trade size, and UL labelling shall also be included in the marking.
M5.07.1: Electrical Conduit-Rigid Metallic (Type RM)

Rigid Metallic Electrical Conduit and associated fittings shall conform to Article 344 of the NEC and the following:

Class 1 – Type A – UL Standard 6 – Rigid Metal Electrical Conduit.

Class 2 – Type A – UL Standard 1242 – Intermediate Metal Conduit.

Each length of conduit and all associated fittings shall be clearly and durably marked at least every 10 ft with the manufacturer’s name, trademark, or other descriptive marking by which the fabricator can be identified. The material type, trade size, and UL labelling shall also be included in the marking.

M5.07.2: Electrical Conduit-Flexible Metallic (Type FM)

Flexible Metallic Electrical Conduit and associated fittings shall be liquid-tight and conform to Article 350 of the NEC and UL-360.

Each length of conduit and all associated fittings shall be clearly and durably marked at least every 10 ft with the manufacturer’s name, trademark, or other descriptive marking by which the fabricator can be identified. The material type, trade size, and UL labelling shall also be included in the marking. Type FM conduit suitable for direct burial shall also be so marked.

M5.08.0: Pull and Junction Boxes – Metallic

Metallic pull and junction boxes made of cast iron, welded sheet steel or cast aluminum shall conform to UL 514A Metallic Outlet Boxes.
SECTION M6: ROADSIDE DEVELOPMENT MATERIALS

M6.00.0: General

This section describes requirements for materials used for soil amendments, seed, plant material, mulches, and other materials required for the care and establishment of plants.

M6.01.0: Inorganic Amendments

Limestone shall consist of pulverized limestone obtained by grinding either calcareous or dolomitic limestone such that 95% of the material will pass a 20 mesh sieve and at least 50% will pass a 100 mesh sieve. The limestone shall meet the applicable provisions of State and Federal laws which relate to commercial fertilizers.

Sulfur for adjustment of loam pH shall be elemental or flours of sulfur, unadulterated, and shall be delivered in containers with the name of the manufacturer, material, and net weight appearing on each container.

Gypsum for soil structure amendment and de-icing salt mitigation shall be agricultural grade, 80 percent calcium sulphate (CaSO₄ × 2H₂O), in granular or slurry form, with 100% passing a 2 mm screen, and 90% passing through 150 µm screen. Gypsum may be derived from natural sources or from recycled wallboard.

Soil wetting agent shall be a synthetic, non-toxic acrylic polyacrylamide or natural soluble plant extract. Application rates shall be per manufacturer’s recommendations. Submit supplier specifications and certification.

M6.02.0: Fertilizer

Fertilizer shall meet the applicable provisions of State and Federal laws and be furnished in containers plainly marked with the chemical analysis of the product.

Fertilizer for general planting shall be slow release and shall be commercial grade 10-10-10, or sufficient to meet the recommendations for soil amendment. At least 40% of the nitrogen content shall be slow release, phosphorus shall be available phosphoric acid, and potassium shall be water-soluble potash.

M6.03.0: Long Term Seed Mixes for Lawns and Slopes

The seed mixture specified for slopes and shoulder consists of a tough hardy type for use on slopes graded at the rate of 1 vertical to 4 horizontal, and steeper slopes, and on shoulders adjacent to the roadway pavement or as otherwise directed. The mixture for lawn grass plots is of a finer type that will produce finer turf.

Grass seed shall be of the previous year’s crop and in no case shall the weed seed content exceed 1% by mass. All Bluegrass, Fescue, and Ryegrass shall be within top 25% of either of two most recent National Turfgrass Evaluation Program reports. The grass seed shall conform to the requirements of the following tables:
Table M6.03.0-1: Grass Seed Requirements for Lawn Grass Areas

<table>
<thead>
<tr>
<th>Grass Type</th>
<th>Proportion</th>
<th>Germination Minimum</th>
<th>Purity Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creeping Red and/or Chewings Fescue</td>
<td>55%</td>
<td>85%</td>
<td>95%</td>
</tr>
<tr>
<td>Kentucky Blue</td>
<td>30%</td>
<td>85%</td>
<td>90%</td>
</tr>
<tr>
<td>Perennial Rye</td>
<td>5%</td>
<td>90%</td>
<td>98%</td>
</tr>
<tr>
<td>Redtop</td>
<td>5%</td>
<td>85%</td>
<td>92%</td>
</tr>
<tr>
<td>Dutch White Clover</td>
<td>5%</td>
<td>85%</td>
<td>96%</td>
</tr>
</tbody>
</table>

Table M6.03.0-2: Grass Seed Requirements for Slopes and Shoulders

<table>
<thead>
<tr>
<th>Grass Type</th>
<th>Proportion</th>
<th>Germination Minimum</th>
<th>Purity Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creeping Red, Chewings, and/or Hard Fescue</td>
<td>50%</td>
<td>85%</td>
<td>95%</td>
</tr>
<tr>
<td>Kentucky Blue</td>
<td>35%</td>
<td>85%</td>
<td>90%</td>
</tr>
<tr>
<td>Perennial Rye</td>
<td>5%</td>
<td>90%</td>
<td>98%</td>
</tr>
<tr>
<td>Redtop</td>
<td>5%</td>
<td>85%</td>
<td>92%</td>
</tr>
<tr>
<td>Dutch White Clover</td>
<td>5%</td>
<td>85%</td>
<td>96%</td>
</tr>
</tbody>
</table>

Table M6.03.0-3: Grass Seed Requirements for Warm Season Mix

<table>
<thead>
<tr>
<th>Grass Type</th>
<th>Proportion (Pure Live Seed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada Wild Rye</td>
<td>20%</td>
</tr>
<tr>
<td>Switchgrass</td>
<td>20%</td>
</tr>
<tr>
<td>Big Bluestem</td>
<td>15%</td>
</tr>
<tr>
<td>Indiangrass</td>
<td>15%</td>
</tr>
<tr>
<td>Little Bluestem</td>
<td>15%</td>
</tr>
<tr>
<td>Partridge Pea</td>
<td>15%</td>
</tr>
</tbody>
</table>

The seed shall be furnished and delivered premixed in the proportions specified above. All seed shall comply with State and Federal seed laws. Clover shall be pre-inoculated.

Contractor will supply a manufacturer’s Certificate of Compliance to the specifications shall be submitted by the manufacturers with each shipment of each type of seed mix. Certificates will be attached to the seed bags for inspection. These certificates shall include the guaranteed percentages of purity, weed content and germination of the seed, and also the net mass and date of shipment. No seed may be sown until the Contractor has submitted the certificates.

M5.03.1: Short Term Erosion Control Seed

This seed shall consist of a mixture of the previous year’s crop and shall contain the following mixture by weight with 98% purity:
Table M5.03.1-1: Requirements for Short-Term Erosion Control Seed

<table>
<thead>
<tr>
<th>Seed Type</th>
<th>% by Weight</th>
<th>Germination Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter Rye</td>
<td>80 minimum</td>
<td>85%</td>
</tr>
<tr>
<td>Red Fescue (Creeping)</td>
<td>5 minimum</td>
<td>80%</td>
</tr>
<tr>
<td>Perennial Rye Grass</td>
<td>5 minimum</td>
<td>90%</td>
</tr>
<tr>
<td>Dutch White Clover</td>
<td>3 minimum</td>
<td>90%</td>
</tr>
<tr>
<td>Other Crop Grass</td>
<td>0.5 maximum</td>
<td></td>
</tr>
<tr>
<td>Noxious Weed Seed</td>
<td>0.5 maximum</td>
<td></td>
</tr>
<tr>
<td>Inert Matter</td>
<td>1.0 maximum</td>
<td></td>
</tr>
</tbody>
</table>

A manufacturer’s certificate of compliance will be required as specified in M6.03.0: Long Term Seed Mixes for Lawns and Slopes.

M6.04.0: Mulch

Materials to be used in mulching shall conform to the following requirements:

M6.04.1: Hay Mulch

Hay Mulch shall consist of mowed and properly cured grass, clover or other acceptable plants.

M6.04.2: Straw Mulch

Straw Mulch shall be seed free, consisting exclusively of stalks or stems of grain after threshing.

M6.04.3: Wood Chip Mulch

Wood chip mulch shall consist of wood chips produced by cutting branches, limbs of trees, brush or shrubs with chippers or from the chipping of stumps, and shall be free of topsoil, stones, and other extraneous material. The chippers shall be approved for use by the Engineer. Wood chip mulch must be free from long stringy material over 4 in. in length and from live, rot-free wood and bark, except that 35% or less by volume of the wood chip mulch may consist of “slab wood,” chipped to an acceptable size by chippers equipped with a ¼ in. knife set and thoroughly mixed with the live material. Wood Chip Mulch containing an excess of fine particles, such that mulch will blow or wash away, decay too quickly, or percolate too slowly, will not be acceptable. Wood Chip Mulch may be produced on the project from acceptable cuttings. Wood chip mulch containing remnants of invasive species such as Japanese Knotweed and Bittersweet shall not be used.

M6.04.4: Wood Fiber Mulch

Wood Fiber Mulch shall consist of wood fiber produced from clean, whole uncooked wood, formed into resilient bundles having a high degree of internal friction and shall be dry when delivered on the project. Recycled material may be evaluated for acceptance based on evaluation of submitted sample, specifications and certified test results from an approved laboratory, per the requirements of M1.06.0: Organic Soil Additives.
M6.04.5: Aged Pine Bark Mulch

This mulch shall consist of the outer bark of pine trees and a minimum of hardwood bark. Bark shall be processed by removal from the limbs and trunks of trees.

Bark mulch shall be shredded pine bark aged a minimum of 6 months. The mulch shall be dark brown in color, free of chunks and pieces of wood thicker than ¼ in. and shall not contain, in the judgment of the Engineer, an excess of fine particles. Do not use wood chips, recycled, dyed, wood product, or crumb rubber mulch.

Mulch must be free from long stringy material.

M6.05.0: Sod

Sod shall be composed of the grass mixture recommended by the New England Sod Producer’s Association and shall be specified as:

Table M6.05.0-1: Sod Type 1 for Full Sun Turf Areas (6 or More Hours Direct Sunlight in Growing Season)

<table>
<thead>
<tr>
<th>Species</th>
<th>Percent by Turf Area*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kentucky Bluegrass</td>
<td>50% to 80%</td>
</tr>
<tr>
<td>Fine Fescues</td>
<td>10% to 30%</td>
</tr>
<tr>
<td>Perennial Ryegrass</td>
<td>0 to 20%</td>
</tr>
</tbody>
</table>

* All species with >70% of the mix shall have at least 3 varieties; >40% shall have at least 2 varieties.

Table M6.05.0-2: Sod Type 2 for Partial Shade Turf Areas (4 to 6 Hours Minimum Direct Sunlight in Growing Season)

<table>
<thead>
<tr>
<th>Species</th>
<th>Percent by Turf Area*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Fescues</td>
<td>75% to 90%</td>
</tr>
<tr>
<td>Kentucky Bluegrass</td>
<td>10% to 25%</td>
</tr>
<tr>
<td>Perennial Ryegrass</td>
<td>0 to 10%</td>
</tr>
</tbody>
</table>

* All species with >70% of the mix shall have at least 3 varieties; >40% shall have at least 2 varieties.
** Areas receiving less than 4 hours per day of direct sun during growing season should not receive sod.

Table M6.05.0-3: Sod Type 3 for Multi-Use Turf Areas (and 4 to 6 Hours Minimum Direct Sunlight in Growing Season)

<table>
<thead>
<tr>
<th>Species</th>
<th>Percent by Turf Area*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tall Fescue</td>
<td>50% to 90%</td>
</tr>
<tr>
<td>Fine Fescues</td>
<td>20% to 50%</td>
</tr>
<tr>
<td>Kentucky Bluegrass</td>
<td>0 to 20%</td>
</tr>
<tr>
<td>Perennial Ryegrass</td>
<td>0 to 20%</td>
</tr>
</tbody>
</table>

* All species with >70% of the mix shall have at least 3 varieties; >40% shall have at least 2 varieties.
** Areas receiving less than 4 hours per day of direct sun during growing season should not receive sod.
Lawn sods shall have been nursery grown on cultivated agricultural land used specifically for sod purposes. Grasses shall be drought tolerant cultivars.

The sods shall be free of objectionable grassy and broadleaf weeds. Sods shall be considered free of such weeds if less than 5 such plants are found per 10 yd² of area.

The sod shall be machine cut at a uniform minimum thickness of ¾ in. at the time of cutting. Measurement for thickness shall exclude top growth and thatch.

Individual pieces of sod shall be cut to the supplier’s standard width and length. Maximum allowable deviation from standard widths and lengths shall be 5%. Broken pads and torn or uneven ends will not be acceptable.

Sod that has dried out, or that has been unplanted over 3 days (including weekends) since harvest, will be rejected.

M6.06.0: General Planting

The Contractor shall furnish all plants as shown on the plans.

M6.06.1: Nursery Stock – General

All scientific and common plant names of the items specified shall conform to the current edition of Hortus Third, compiled by the staff of the L.H. Bailey Hortorium, Cornell University. These standards shall determine all requirements of acceptable shrub and seedling nursery stock names. All plants will have durable, non-fading labels applied at the nursery that clearly bears the correct botanical name, including cultivar, as well as common name and size. Caliper or spread shall govern over height specifications. The Contractor must obtain written permission from the Engineer for any substitutions of types or sizes specified.

All plants shall be grown in a certified nursery. All plants shall be typical of their species or variety in growth habit. Plant sizes, habit, rootball dimensions, stem and cane count shall conform to the requirements of the American Standards for Nursery Stock (ASNS) standards as a minimum requirement for acceptance. Container sizes shall also be consistent with the guidance per plant size per the ASNS. Each plant shall have plenty of fibrous roots, healthy buds, and shall be free of disease and insect pests. No plant material from cold storage will be accepted. All plant parts shall show active green cambium when cut and shall be densely foliated when in leaf.

Deciduous shrubs shall have 4 to 6 canes coming from the roots and shall have a well-branched root system.

Vines and ground cover shall be minimum 2-year No. 1 stock. Herbaceous plants shall be minimum 1-year No. 1 stock, and clumps shall have not less than 6 buds, eyes, or crowns.

The trunk of each tree shall be free from sunscald, frost cracks, or wounds resulting from abrasions, animal pest, fire or other causes. Pruning wounds shall be no larger than 2 in. and shall show vigorous scar tissue. No trees with double-leaders or twin-heads will be acceptable without the written approval. The plants must be in a vigorous condition and free from dead wood, bruises and other root or branch injuries. Deficient plants may be rejected at any time.
Any species (including all cultivars) listed on the Massachusetts Department of Agricultural Resources Prohibited Plant List shall not be used including but not limited to the following:

- Norway Maple (*Acer platanoides*)
- Sycamore Maple (*Acer pseudoplatanus*)
- Japanese Barberry (*Berberis thunbergii*)
- Autumn Olive (*Eleagnus umbellata*)
- Burning Bush or Winged Euonymus (*Euonymus alatus*)
- Glossy or European Buckthorn (*Frangula alnus*)
- Dames Rocket (*Hesperis matronalis*)
- Yellow Iris (*Iris pseudoacoris*)
- Border Privet (*Ligustrum obtusifolium*)
- Honeysuckle -- Japanese, Amur, Morrow’s, Tatarian, Bell’s (*Lonicera japonica, L. maackia, L. morrowii, L. morrowii x tartarica*)
- Plume grass (*Miscanthus sacchariflorus*)
- Forget-me-not (*Myosotis scorpioides*)
- Reed Canarygrass (*Phalaris arundinacea*)
- Amur Cork Tree (*Phellodendron amurense*)
- Common Buckthorn (*Rhamnus cathartica*)
- Black Locust (*Robinia pseudoacacia*)
- Wild Rose (*Rosa multiflora*)

M6.06.2: Nursery Stock – Balled and Burlapped

All plants that are to be balled and burlapped previous to shipment are designated “B&B.” B&B plants shall be dug so as to retain as many fibrous roots as possible. All B&B plants shall come from soil that will hold a firm root ball and the solidity of the ball shall be carefully preserved. B&B plants shall be wrapped with untreated 8-oz burlap, firmly held in place by a stout cord or wire. Wire containers shall be of adequate size to allow root development for the plant size as per ASNS requirements. Plants prepared with plastic or other non-biodegradable wrappings will not be accepted. Rootballs shall remain intact during all operations. No plant will be accepted if the rootball has been cracked or broken prior to, or during, the process of planting. All plant materials shall be dug with reasonable care and skill immediately prior to shipment.

M6.06.3: Nursery Stock – Container Grown

All container grown plants shall be healthy, vigorous and well rooted in the container in which they are sold. They shall have tops that are of good quality and are in healthy growing condition. No single-stemmed shrubs or sparsely leaved plants will be accepted. The side branches must be generous and well twigged, and the plant as a whole must be well-branched to the ground or typical of the species or cultivar. Container-grown stock shall have been grown in the container long enough for the root system to develop sufficiently to hold the soil together firmly. No plants shall be loose in the container. Container-grown plants shall not be pot bound with spiraling roots or roots growing densely against the sides of the container. The container shall be sufficiently rigid to protect the root mass during shipment and sizes shall be provided in accordance with the ASNS standards. The size of plant, as well as minimum number of stems or canes, will conform to the type of plant per ASNS standards.
The soil medium for container-grown plant material shall be a uniformly blended, stable medium free from weeds, weed seeds, disease organisms, insects, herbicide residue, and all other harmful organisms or materials. The soil shall fill the container to at least 85% of its height, serving as a stable base for the anchorage and support of the plant growing in it. It shall be well-aerated sandy loam or fine sandy loam, per USDA Soil Classification, and of sufficient structure to provide adequate moisture to plants.

The certificate of compliance for container grown plants shall contain, in addition to the requirements listed in 771.40: General, the guaranteed composition of the potting mixture and the date of planting in the container. Plants shall have been grown in the container for a minimum of 12 weeks. A random sample is required from each delivery for soil and root inspection upon request of the Engineer.

M6.06.4: Nursery Stock – Bare-Root

Bare-root material shall be dug during dormancy within 72 hours of shipping and shall be kept moist and stored in a cool, shaded location until planting. All bare-root material shall be accompanied by certification of digging date. The roots of bare-rooted material shall be dipped in soil wetting agent and carefully protected with wet straw, moss or other suitable material that will ensure the arrival of the plants at the site of the work in good condition. All bare-root material shall be installed within 48 hours of arrival on the construction site, and shall be kept moist and out of wind or direct sunlight until planting. Maximum time between digging for shipping and installation shall be one week.

M6.06.5: Nursery Stock – Seedlings

Seedlings shall have well developed root systems and shall be acclimated and suitable in all respects for field planting. All conifers must have dormant buds and secondary needles.

Evergreen seedlings shall be two year transplants, bare rooted.

Lining out stock seedlings shall be two year seedlings.

Root cuttings shall be established in peat pots 2.5 in. deep by 2 in. wide at the open end and tapered to 1 in. wide at the closed end (inside measure).

M6.06.6: Nursery Stock – Trees

Per the requirements of the ASNS, the sizes of trees shall be as called for on the plans and measurements shall be determined by caliper at a point 6 in. above the ground for plants specified up to 4 in. in caliper. Larger minimum caliper shall be measured 12 in. from ground.

Trees for streetscape plantings (i.e. in or adjacent to walkways) shall have a single straight leader not cut back.

They shall have a symmetrical development of strong, healthy branches beginning at least 7 ft from the ground; and below this point, the trunk shall be clean for street trees. Coniferous Evergreens shall be dug before spring “candling” of new growth.

Grafted and budded trees may branch lower and be pruned off 2 ft from the ground where directed. Flowering trees shall be balled and burlapped and kept moist for delivery.
M6.06.7: Nursery Stock – Shrubs, Vines, Groundcover and Perennials

Shrubs shall have the form required per ASNS. Specified spread shall govern over height requirements.

Vines and ground cover in this group shall be 2 year, No. 1 stock.

Herbaceous plants in this group shall be minimum 1 year, No. 1 year stock, and clumps shall have not less than 6 buds, eyes or crowns.

M6.07.0: Delivery and Protection

All plants shall be packed so as to arrive at the delivery point in good growing condition and shall be kept moist for delivery and during transit. Special precautions shall be taken to avoid any unnecessary injury to, or removal of, fibrous roots. Each species or variety shall be handled and packed in the approved manner for that particular plant having regard to the soil and climatic conditions at the time and place of digging, transit and delivery, and to the time that will be consumed in transit. All precautions that are customary in good trade practice shall be taken to ensure the arrival of the plants at the site of the project in good condition for successful growth.

Shipment of plant material shall be scheduled to minimize the time between arrival and installation at the construction site. Plants may be stored at the construction site for up to 3 days on in an approved location that is out of direct sunlight and wind. Contractor shall store plants in wood chips and shall provide watering to maintain containers and root balls in moist condition at all times prior to installation.

M6.07.1: Wrapping for Transport

Wrapping material shall be used for transport only. Wrapping material for root balls shall be 8-ounce jute burlap; plastic is not acceptable. Material for tree trunks shall be 4 to 6 in. wide strips of burlap, paper, cardboard, or plastic manufactured for this purpose. Fastening for the wrapping material shall be either adhesive weather resistant tape or a minimum of 3-ply jute twine. Wrapping must be removed once tree has been installed.

M6.08.0: Materials for Guying and Staking

The stakes shall be unpainted spruce or other suitable wood free from large knots, dimensioned 2x2 by 8 ft in length and sharpened at one end. Binding and guying shall be biodegradable webbing. Stake fastenings shall be 10 penny galvanized nails. Trees shall not be wrapped.

M6.08.1: Temporary Fencing for Tree Protection

Temporary Tree Protection Fence shall be brightly colored polypropylene barricade or wooden snow fencing for tree protection or safety fencing. Fencing shall be a minimum of 4 ft high and supported by steel or hardwood stakes spaced at a maximum of 8 ft on center or by other means acceptable to the Engineer.

M6.08.2: Trunk Cladding for Tree Protection

Cladding for trunk protection shall be 2x4 or 2x3 nominal lumber, at least 6 ft in length, sufficiently tall to protect tree trunk from construction activities, and bound together with wire. Alternatively, trunks may be shielded with sections of corrugated plastic pipe of sufficient diameter and height to
shield trunk from construction activities. Trunk protection shall include burlap, which shall be untreated 8-oz burlap.

M6.08.3: Sheeting for Tree Root Protection

Sheeting for tree root protection shall be minimum ¾-in. thickness plywood, cut and trimmed to required sizes and configurations.

M6.09.0: Water for Irrigation

Water used for irrigation of plant materials shall be free from any substance injurious to vegetation, such as oil, acids, alkalis and salts. Water shall be free from impurities injurious to vegetation.

Submittal shall be required, including anticipated demand, irrigation method, watering schedule, sources of water, and any incidental work required to provide water for the plants.
M7.00.0: General Requirements for Paints and Protective Coatings

A. General.

All paint shall conform to the following general requirements.

1. Materials.

The raw materials used in the following specifications for paints and protective coatings shall conform to the specification designed by ASTM, Federal serial number or AASHTO unless specified otherwise in the individual specification. Subsequent amendments to the specifications quoted shall apply to all raw materials and finished products. No "or equal" substitution for any specified material shall be made without written consent of the Engineer.

2. Proportions.

Paint proportions and percentages given in the following specification are expressed by weight unless stated otherwise.

3. Condition in the container.

Paint and protective coatings shall be homogeneous, free of contaminant and of a consistency suitable for use in the capacity for which it is specified. The finished product shall be well ground and the pigment shall be properly dispersed and suspended in the vehicle according to the requirements of the paint or protective coating. The dispersion shall be of such nature that the pigment does not settle badly, does not cake or thicken in the container, and does not become granular, jelled or curdled. Any settlement of pigment in the paint or protective coating shall be a thoroughly wetted soft mushy mass permitting the complete and easy vertical penetration of a paddle. Settled pigment shall be easily dispersed, with a minimum resistance to the sidewise manual motion of the paddle across the bottom of the container, to form a smooth uniform product of the proper consistency. The manufacturer shall include in the paint the necessary additives for control of sagging, pigment settling, leveling, and other qualities of a satisfactory working material. The paint shall possess satisfactory properties in all respects which affect its application and curing.

4. Packaging.

The finished paint or protective coating shall be furnished in new 5-gal, round, non-tapered containers no thinner than 0.0250 in. unless otherwise specified. The containers shall have the lug type crimp lids with ring seals and be equipped with ears and bails. The containers shall meet U.S. Department of Transportation Hazardous Materials Shipping Regulations. The container must be lined if necessary so as to prevent attack by the paint. The lining must not come off the can as skins.
The following information shall be labeled on each can in a clear legible manner:

a) Name of Manufacturer
b) Place of Manufacture
c) Manufacturer’s Batch Number
d) MassDOT Specification Number
e) Date of Manufacture

Precautions concerning the handling and the application of the paint or protective coating shall be shown on the label.

B. Sampling and Testing.

1. Sampling.

At least one sample, not less than one quart, shall be taken for each batch or less of each kind of paint to be used. Samples must be taken in clean, dry, airtight, widemouth metal cans and the sample must fill the can to within 2 in. from the top. Each sample forwarded RMS shall be accompanied by the name of the manufacturer, the batch number, the specification number and the quantity of paint represented.

Before the Contractor will be permitted to use any paint, the material proposed to be used shall have been sampled, tested and approved.

The manufacturer, as may be required by the Engineer, shall permit access to an inspection of their paint and all operations involved in the manufacture of these materials; shall permit sampling of raw materials and shall furnish such reasonable facilities as the Engineer may require for such inspection.

2. Testing.

Testing of paints will be done at RMS in accordance with the latest methods of Federal Test Method Standard Number 141, ASTM and Methods in use by RMS.

In addition the Department reserves the right to make use of any information or methods of testing to determine the quality of paint and paint materials.

The manufacturer may obtain dry color chips from the Research and Materials Section in order to obtain the proper sample color if they desire or they may submit a wet sample of the paint which they proposes to furnish. If the color of the wet sample is approved, paints matching the wet sample will, as regards to color, be accepted.

The Contractor shall assume all costs arising from the use of patented materials, equipment, devices or processes used or incorporated in the work and agrees to indemnify and save harmless the Commonwealth of Massachusetts and its duly authorized representative from all suits at law or action of every nature for or on account of the use of any patented materials, equipment, device or processes.

A listing of the paints is below. Any copies of individual specifications or a complete set of the specifications for M7.01: Pavement Markings, M7.01: Pavement Markings, M7.03: Enamels, M7.04: Miscellaneous Coatings, and M7.05: Epoxy Protective Coating may be obtained from RMS.
M7.01: Pavement Markings

- M7.01.03 White Thermoplastic Reflectorized Pavement Markings
- M7.01.04 Yellow Thermoplastic Reflectorized Pavement Markings
- M7.01.05 White Traffic Paint
- M7.01.06 Yellow Traffic Paint
- M7.01.08 White High Heat Rapid Drying Traffic Marking Material
- M7.01.09 Yellow High Heat Rapid Drying Traffic Marking Material
- M7.01.10 Fast Drying White Traffic Paint
- M7.01.11 Fast Drying Yellow Traffic Paint
- M7.01.12 Striping Powder
- M7.01.14 Black Non-Reflective Lane Tape
- M7.01.15 Black Traffic Paint
- M7.01.16 White and Yellow Temporary Reflective Lane Tape
- M7.01.18 Preformed Permanent Plastic Pavement Markings or Legends
- M7.01.21 Green Pavement Coatings
- M7.01.23 Fast Drying White Water-borne Traffic Paint
- M7.01.24 Fast Drying Yellow Water-borne Traffic Paint

M7.01.07: Glass Beads

This specification covers the requirements for glass beads which are to be dropped or sprayed on pavement markings.

Glass bead suppliers and approved batch numbers are listed on the QCML.

All glass beads shall meet the requirements of AASHTO M 247, AASHTO T 346 and the following:

1. A minimum of 80% of the glass beads shall be true spheres when tested in accordance with ASTM D1155, Procedure A.
2. The glass beads shall be manufactured from commercial grade soda lime glass cullet meeting EPA and DEP requirements for concentrations of lead and arsenic. The silica content shall be 60% minimum (ASTM C169).
3. Moisture Resistance - The Type 1 and Type 4 glass beads shall be treated with a moisture proof coating and be moisture resistant as tested by AASHTO T 346, Referee Method.
4. Adherence - The Type 4 glass beads shall be coated with a silane-type adherence coating to enhance embedding in, and adherence to, the applied binder film. The coated beads shall emit a yellow-green fluorescence when tested by the Dansyl Chloride test procedure.
5. Intermix glass beads used in the manufacture of thermoplastic pavement markings shall meet the requirements of AASHTO M 247, Type 1 glass beads. A moisture proof coating is optional.

A. Gradation.

The glass beads shall be tested in accordance with ASTM D1214 (By use of U.S. Standard Sieves).

Standard gradation beads shall meet the requirements of AASHTO M 247, Type 1.

Large gradation beads shall meet the requirements of AASHTO M 247, Type 4.
B. Packaging.

The beads shall be packaged in 50-lb or greater polyethylene-lined burlap bags or equal container; such containers guaranteed to furnish dry and undamaged beads. The following information shall be indelibly labeled in a clear and legible manner on each container:

(a) The name of the manufacturer.
(b) The place of manufacture.
(c) The words: "Glass Beads-Traffic".
(d) Size/Type/Coating.
(e) Materials Specification Number.
(f) The date of shipment (month and year).
(g) The batch number.
(h) Net weight.

C. Approval Procedure.

Requests for approval shall be submitted to RMS, accompanied by:

a. Certificate of Compliance stating that the material complies with AASHTO M 247, AASHTO T 346 and all applicable MassDOT requirements;
b. Independent lab test results; and
c. Three bags of glass beads per batch in sample bags meeting the specifications above for verification testing.

M7.02: Structural Paint

Coatings systems shall be non-lead (Pb), non-chromate, low VOC, (450 grams/liter, maximum) systems. Coating systems shall be selected from the NEPCOAT Qualified Products List for Protective Coatings.

M7.03: Enamels

- M7.03.02 Sign and Equipment Enamel

M7.04: Miscellaneous Coatings

- M7.04.01 Coal Tar Protective Coatings
- M7.04.02 Primer, Paint, Exterior, (Undercoat for Wood, Ready Mixed White and Tints)
- M7.04.03 Paint, Zinc Yellow, Iron Oxide Base Ready Mixed (Type II)
- M7.04.04 Paint, Ready Mixed, International Orange
- M7.04.05 Paint, Exterior, Black Ready Mixed
- M7.04.06 Primer Coating, Basic Lead Silico Chromate, Ready Mixed
- M7.04.07 Primer Coating, Zinc Dust-Zinc Oxide (for galvanized surfaces)
- M7.04.08 Enamel Undercoat Interior, Tints and White
- M7.04.09 Paint, Outside, Dull-Black (Formula 104)
- M7.04.10 Primer, Pretreatment (Formula 117 for Metals)
- M7.04.11 Paint, High Zinc Dust Content, Galvanizing Repair
M7.05: Epoxy Protective Coating

- M7.05.01 Epoxy- Polyamide Red Lead Paint
- M7.05.02 Epoxy- Polyamide Green Paint
- M7.05.03 Epoxy - Polyamine Concrete Coating
- M7.05.05 One Coat High Build Epoxy Mastic Coating
- M7.05.11 Epoxy - Polyamide Primer Paint (non-lead)
- M7.05.12 Brown Epoxy - Polyamide Top Coat (non-lead)
- M7.05.13 Green Epoxy - Polyamide Top Coat (non-lead)
- M7.05.15 One Coat Hi Build Mastic Coating
- M7.05.21 Coal Tar Epoxy Polyamide Paint
- M7.05.31 Self-Priming Epoxy Coating

Or those coatings listed in the QCML.

M7.10.0: Galvanized Coatings

Galvanized coatings shall conform to the following requirements:

- ASTM A384 – Standard Practice for Safeguarding Against Warpage and Distortion During Hot-Dip Galvanizing of Steel Assemblies.
- ASTM B6 – Standard Specification for Zinc. A range of 0.05% to 0.09% nickel (by weight) shall be added to the galvanizing bath.
- AASHTO M 111M/M 111 – Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products.
- AASHTO M 232M/M 232 – Zinc Coating (Hot-Dip) on Iron and Steel Hardware.

M7.15.0: Metallized Coatings

The wire used for metallizing shall be zinc or 85/15 zinc/aluminum per ASTM B833, Standard Specification for Zinc Wire for Thermal Spraying (Metallizing). All thermal spray wire must be manufactured domestically.

M7.20.0: Anodized Coatings

Aluminum extrusions to be anodized shall be finished in a dark bronze Architectural Integral-Color Anodized finish conforming to Aluminum Association designation AA-M10-C22-A44. The anodic coating shall be Aluminum Association Architectural Class 1 with a minimum thickness of 0.7 mils and a minimum weight of 35 mg/in².

Prior to production, the finisher shall submit surface smoothness samples and color range samples to RMS for the Engineer’s approval, to establish inspection limits of allowable surface smoothness and allowable color shade range.

Samples of anodized extrusions from production lots, as selected by the Engineer, shall be tested in accordance with ASTM B137, ASTM B244 and ASTM B136.
M7.25.0: Powder Coatings

Aluminum to be powder coated shall be finished in a dark bronze powder coat finish to match the color of the anodized extrusions. The coating shall be a polyester-TGLC (triglycidyl isocyanurate) resin system conforming to the following:

<table>
<thead>
<tr>
<th>Quality</th>
<th>Test</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasion</td>
<td>ASTM D4060</td>
<td>100 mg maximum weight loss</td>
</tr>
<tr>
<td></td>
<td>Taber Abraser CS-10, 1,000 gram load, 1,000 cycles</td>
<td></td>
</tr>
<tr>
<td>Adhesion</td>
<td>ASTM D3359</td>
<td>5A</td>
</tr>
<tr>
<td></td>
<td>Initial - 1,000 hours -</td>
<td>5A</td>
</tr>
<tr>
<td>Gloss</td>
<td>ASTM D523</td>
<td>82% Retention</td>
</tr>
<tr>
<td></td>
<td>60°F - 600 hours</td>
<td>90% Retention (washed)</td>
</tr>
<tr>
<td></td>
<td>60°F - 1,000 hours</td>
<td></td>
</tr>
<tr>
<td>Hardness</td>
<td>ASTM D3363</td>
<td>2H – No Gouge</td>
</tr>
<tr>
<td>Impact</td>
<td>ASTM D2794, Direct</td>
<td>Pass 80 in.-lb.</td>
</tr>
<tr>
<td>Salt Spray Resistance</td>
<td>ASTM B117, ASTM D1654, 1,000 hours unscribed -</td>
<td>Table 2 - 10</td>
</tr>
<tr>
<td></td>
<td>400 hours Scribed -</td>
<td>Table 1 - 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weather</td>
<td>ASTM G23</td>
<td>No film failure</td>
</tr>
<tr>
<td></td>
<td>1,000 hours, 18 minutes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waterspray, 102 minute Light</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Dark Bronze, to match color of anodized aluminum framework</td>
<td>n/a</td>
</tr>
<tr>
<td>Identify</td>
<td>Infrared Fingerprint</td>
<td>Match</td>
</tr>
<tr>
<td>Flexibility</td>
<td>180° bend with ½-in. diameter mandrel within 10 seconds</td>
<td>No breaks, flaking or cracks Tested with a Q-panel with 2 mils or less of coating</td>
</tr>
<tr>
<td>Humidity</td>
<td>ASTM D2247, 1,000 hours</td>
<td>No blister or film failure</td>
</tr>
<tr>
<td>Thickness</td>
<td>n/a</td>
<td>4 ±1 mils</td>
</tr>
<tr>
<td>Mar Resistance</td>
<td>n/a</td>
<td>Good</td>
</tr>
</tbody>
</table>

Aluminum to be powder coated shall be bare and free of oil or any mill coating. The aluminum shall be caustic cleaned to standard near white. A chromic conversion coating shall be applied after caustic cleaning. The finish coating shall be applied immediately after chromic coating as an electrostatically charged dry powder, sprayed onto the grounded aluminum using an electrostatic spray gun. The coated aluminum shall be heated in accordance with the powder manufacturer’s recommend procedure to provide a fully cured finish. The coating thickness after cure shall be a minimum of 3 mils.
Prior to production, the coater shall submit a 3 ft by 1 ft coated sample and color range samples to RMS for the Engineer’s approval to establish inspection limits of allowable coating coverage and color shade range.

All stainless steel fasteners shall be colored by a thermal conversion process to match the dark bronze color of the aluminum extrusions. The finish shall be such that it does not peel, chip or crack. Samples of all fasteners shall be submitted along with material certificates to the Engineer for approval.
SECTION M8: METALS AND RELATED MATERIALS

M8.00.0: General

All structural steel and miscellaneous steel products shall be welded in accordance with the requirements of the AASHTO/AWS Bridge Welding Code (ANSI/AASHTO/AWS D1.5). All aluminum material shall be welded in accordance with the AWS Structural Welding Code - Aluminum (ANSI/AWS D1.2). All stainless steel material shall be welded in accordance with the AWS Structural Welding Code – Stainless Steel (ANSI/AWS D1.6). All steel tubular material shall be welded in accordance with the AWS Structural Welding Code - Steel (ANSI/AWS D1.1). All steel reinforcing shall be welded in accordance with the AWS Structural Welding Code – Reinforcing (ANSI/AWS D1.4).

Aluminum castings shall be of uniform quality and condition, free from cracks, blow holes, porous places, hard spots or shrinkage defects which affect the suitability of the castings for their intended use.

Sampling and Testing. Samples for testing shall be taken in accordance with the applicable ASTM and/or AASHTO specification for the material. Testing will be done in accordance with latest standard procedures of ASTM and/or AASHTO.

M8.01.0: Reinforcing Bars

Reinforcing bars shall consist of deformed bars rolled from new billet steel conforming to the requirements of AASHTO M 31M/M 31, Grade 60. Spiral reinforcement for columns shall be plain steel meeting the requirements of AASHTO M 31M/M 31, Grade 60.

Steel for reinforcing shall be free from imperfections, dirt, loose scale, paint, oil, or other foreign substance that might tend to prevent bonding with concrete. Rust that occurs in scales or that pits the steel will be considered an imperfection. Surface rust will not be considered an imperfection, but the surface shall be brushed to remove loose material.

M8.01.1: Cold Drawn Steel Wire

This material shall conform to AASHTO M 336M/M 336.

M8.01.2: Welded Steel Wire Fabric

This material shall conform to AASHTO M 336M/M 336.

M8.01.3: Steel Bar Mats

This material shall conform to AASHTO M 54M/M 54.

M8.01.4: Tie Bars and Bolts

Tie bars for longitudinal joints shall be either deformed bars of new billet steel (AASHTO M 31M/M 31, Grade 60) or approved tie bolts as shown on the plans which shall conform in all respects to the standard requirements specified for strength and design.
M8.01.5: Anchor Bolts, Nuts and Washers

Bolts, nuts and washers used for anchoring bridge railing base plates to concrete shall be fabricated from steel conforming to the requirements of ASTM A449.

Bolts, nuts and washers used for anchoring bridge bearings to concrete shall conform to the requirements of ASTM F1554 Grade 105 (Grade 724 MPa).

Bolts, nuts and washers used for anchoring signal lighting and sign structures shall conform to the requirements of one of the following:

- AASHTO M 31 Grade 60 / AASHTO M 31M Grade 420
- AASHTO M 31 Grade 75 / AASHTO M 31M Grade 520
- AASHTO M 314 Grade 36 (Grade 379 MPa)
- AASHTO M 314 Grade 105 (Grade 248 MPa)
- AASHTO M 314 Grade 55 (Grade 724 MPa)
- ASTM F1554 Grade 105 (Grade 724 MPa)
- ASTM F1554 Grade 55 (Grade 380 MPa)

Nuts and washers for the above shall be suited to the approved bolts.

High strength bolts, where specified, shall conform to ASTM F3125/F3125M. A galvanized hexagon nut, leveling nut and flat washer shall be furnished with each bolt.

All bolts, nuts and washers, with the exception of those with weathering characteristics, shall be galvanized in accordance with AASHTO M 232M/M 232.

M8.01.7: Epoxy Coated Reinforcing Bars

Epoxy coated reinforcing bars shall be bars conforming to M8.01.0: Reinforcing Bars shall be epoxy coated in accordance with ASTM A775/A775M and tested in accordance to AASHTO T 285.

M8.01.8: Galvanized Reinforcing Bars

Galvanized Reinforcing Bars shall be bars conforming to M8.01.0: Reinforcing Bars and shall be galvanized in accordance with ASTM A767.

M8.01.9: Mechanical Reinforcing Bar Splicer

Mechanical reinforcing bar splicers are devices to join two steel reinforcing bars subject to tension, compression, fatigue, and/or cyclic loading. All mechanical reinforcing bar splicers shall meet the following requirements:
Table M8.01.9-1: Requirements for Mechanical Reinforcing Bar Splicers

<table>
<thead>
<tr>
<th>Description</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate Tensile Strength of Mechanical Coupler System (California Test No. 670)</td>
<td>90% of ultimate tensile strength of reinforcement bars (80,000 psi minimum for AASHTO M 31 Grade 60, 560 MPa minimum for AASHTO M 31M Grade 420). During testing, the ultimate failure of the spliced reinforcing bar system shall occur either in the reinforcing bar being joined or in the splicing device at a minimum of 150% of the yield strength of the reinforcing bar.</td>
</tr>
<tr>
<td>Allowable Slip (California Test No. 670)</td>
<td>0.01 in., maximum for #14 and smaller bars, 0.03 in. maximum for #18 bars</td>
</tr>
<tr>
<td>Yield Strength of Mechanical Coupler System</td>
<td>125% of yield strength of reinforcement bars, minimum</td>
</tr>
</tbody>
</table>

Mechanical reinforcing bar splicers shall be epoxy coated or shall be galvanized and shall be tested with epoxy coated or galvanized reinforcing steel as applicable. The mechanical splicer must be either epoxy coated or galvanized consistent with the reinforcement to be spliced. The final assembly shall be in conformance with the specifications for epoxy coating or galvanizing.

Mechanical reinforcing bar splicers which have been successfully tested and met all of the above requirements shall be placed on the QCML. Only products on the QCML are acceptable for use.

The contract time will not be extended to allow for the testing and approval process required for inclusion on the QCML.

M8.02.0: Drilled Steel Rods

This material shall conform to the requirements of AISI – W1.

M8.03.0: Iron Castings

Gray Iron Castings shall conform to the requirements of AASHTO M 105, Class 35B. Test bars shall conform to the requirements of tension test specimen B with a minimum of 1 in thread on each end. The thread size shall be 1 ⅛ in. – 7 UNC. Ductile Iron Casting for double grates shall conform to the requirements of ASTM A536 Grade 80-55-06. Test bars shall conform to the requirements of standard round tension specimen (2 in gage length) with a minimum of 1 in. thread on each end. The thread size shall be ⅞ in. – 9 UNC.

All iron castings shall conform to the requirements of AASHTO M 306 and shall be manufactured true to pattern in form and dimensions, free from pouring faults, cracks, blow holes and other defects affecting their strength and value for the service intended. The casting shall be boldly filleted at angles and the arises shall be sharp and perfect. The surfaces shall have a workmanlike finish.

M8.03.2: Steel Castings

Type A-3 grates shall be cast to the dimensions shown on the plans and composed of cast steel conforming to the requirements of AASHTO M 103M/M 103, Grade 65-35, full anneal.
Steel castings shall be true to pattern in form and dimensions, without sharp unfiled angles or corners and shall be free from pouring faults, sponginess, cracks, blow holes and other defects in positions affecting their strength and value for the service intended.

Castings shall be shot blasted prior to painting. Painting shall consist of a coating system approved by RMS.

M8.04.1: Stud Shear Connectors

1. **General Requirements.**
 A. Shear connector studs shall be of a design suitable for end welding to steel beams and girders with automatically timed stud welding equipment. Ferrules shall be kept clean and dry and stored at a temperature of 60°F.
 B. An arc shield (ferrule) of heat-resistant ceramic or other suitable material shall be furnished with each stud. The material shall not be detrimental to the welds or cause excessive slag and shall have sufficient strength so as not to crumble or break due to thermal or structural shock before the weld is completed.
 C. Flux for welding shall be furnished with each stud, either attached to the end of the stud or combined with the arc shield for automatic application in the welding operation.
 D. Studs shall not be painted or galvanized.
 E. All studs shall be qualified by AASHTO/AWS D1.5 of the Bridge Welding Code.
 F. Before placing orders for studs, the Contractor shall submit to the Engineer for approval, the following information on the studs to be purchased:
 1. The name of the manufacturer.
 2. A detailed description of the stud and arc shield to be furnished.
 3. A certification from the manufacturer that the stud is qualified as specified in Paragraph 1.E hereinbefore.
 4. A copy of the qualification test report as certified by the testing laboratory.
 G. The studs, after welding, shall be free from any defect or substance which would interfere with their function as shear connectors.

2. **Material Requirements.**

Shear connector studs shall conform to the requirements of the Specification for Cold Finished Carbon Steel Bars and Shafting, AASHTO M 169, cold-drawn bar, Grades 1015, or 1020, either semiskilled or skilled. If flux-retaining caps are used, the steel for the caps shall be of a low carbon grade suitable for welding and shall comply with ASTM A109.

Tensile properties as determined by tests of the bar stock after drawing or of finished studs shall conform to the following requirements:

- Tensile Strength .. 60,000 psi (400 MPa) (min.)
- Yield Strength (as determined by a 0.2% offset method) 50,000 psi (345 MPa) (min.)
- Elongation .. 20% in 2 in. (50 mm) (min.)
- Reduction of area .. 50% (min.)

Tensile properties shall be determined in accordance with the applicable sections of ASTM A370, Mechanical Testing of Steel Products. Tensile tests of finished studs shall be made on studs welded...
III.98 2020 Edition

to test plates. If fractures occur outside of the middle half of the gage length, the test shall be repeated.

Finished studs shall be of uniform quality and condition, free from injurious laps, fins, seams, cracks, twists, bends or other injurious defects. Finish shall be as produced by cold drawing, cold rolling, or machining.

The manufacturer shall certify that the studs as delivered are in accordance with the material requirements of this Section. Certified copies of in-plant QC test reports shall be furnished to the Engineer.

M8.04.2: Steel Pins

Pins more than 9 in. in diameter shall be manufactured from carbon steel conforming to AASHTO M 102M/M 102, Classes B, C and D. Pins 9 in. or less in diameter shall conform to AASHTO M 102M/M 102, Classes B, C and D, or AASHTO M 169, Grades 1016 thru 1030 inclusive.

M8.04.3: High Strength Bolts

Bolts, nuts and washers shall conform to the appropriate material specification ASTM F3125/F3125M, ASTM A563, AASHTO M 292M/M 292 and ASTM F436/F436M as amended herein.

Material.

Hardness for bolts with diameter ½ in. to 1 in. inclusive shall be Brinell HB-minimum of 248; HB-maximum of 311 or Rockwell HRC-minimum of 24; HRC-maximum of 33.

Plain (ungalvanized) nuts shall be grades 2, C, D or C3 with a minimum Rockwell hardness of 89 HRB (or Brinell hardness 180 HB) or heat treated grades 2H, DH or DH3. Galvanized nuts shall be heat treated grades 2H or DH.

For galvanized fasteners, the nuts shall be tapped oversize, the minimum amount required for the fastener assembly. The amount of overtap in the nut shall be such that the nut will assemble freely on the bolt in the coated condition and shall meet the mechanical requirements of ASTM A563, and the rotational-capacity tests herein. Galvanized nuts shall be lubricated with a lubricant containing a dye of any color that contrasts with the color of the galvanizing. Black fasteners must be “oily” to the touch when installed. Weathered or rusted fasteners shall be cleaned and re-lubricated prior to installation.

Testing.

The tests need not be witnessed by a representative of the Department; however, the manufacturer or distributor that performs the tests shall certify that the results recorded are accurate. Documentation shall be in accordance with 960.61: Design, Fabrication and Erection.

Bolts.

Proof load tests in accordance with ASTM F606 Method 1 are required. The minimum frequency of the tests shall be as specified in ASTM F436/F436M.

Wedge tests on full size bolts (ASTM F606) are required. If the bolts are to be galvanized, the tests shall be performed after galvanizing. Minimum frequency of the tests shall be as specified in ASTM F436/F436M.
If galvanized bolts are supplied, the thickness of the zinc coating shall be measured. Measurements shall be taken on the wrench flats or the top of the bolt head.

Nuts.

Proof load tests (ASTM F606) are required. Minimum frequency of tests shall be as specified in ASTM A563 or AASHTO M 292M/M 292. If nuts are to be galvanized, the tests shall be performed after galvanizing, overtapping and lubricating.

If galvanized nuts are supplied, the thickness of the zinc coating shall be measured. Measurements shall be taken on the wrench flats.

Washers.

If galvanized washers are supplied, hardness testing shall be performed after galvanizing. (Coating shall be removed prior to taking hardness measurements.) The thickness of the zinc coating shall be measured.

Assemblies.

Rotational-capacity tests are required and shall be performed on all black or galvanized (after galvanizing) bolt, nut and washer assemblies by the manufacturer or distributor prior to shipping. Washers are required as part of the test even though they may not be required as part of the installation. The rotational capacity test is intended to evaluate the presence of a lubricant, the efficiency of the lubricant and the compatibility of assemblies as represented by the components selected for testing.

This test shall be performed in accordance with the requirements of ASTM F3125/F3125M except as modified herein:

1. Each combination of bolt production lot, nut lot and washer lot shall be tested as an assembly.
2. A rotational-capacity lot number shall be assigned to each combination of lots tested.
3. The minimum frequency of testing shall be two assemblies per rotational-capacity lot.
4. The bolt, nut and washer assembly shall be assembled in a Skidmore-Wilhelm Calibrator or an acceptable equivalent device. For bolts that are too short to be assembled in a Skidmore, a steel joint shall be used.
5. There is a different method for testing short bolts. Bolts are considered short when, after placing in the Skidmore, there is not a sufficient number of threads protruding to fully engage the nut.

Test Methods: Normal Length and Long Bolts

1. Install the bolt assembly in the Skidmore Calibrator making sure that 3 to 5 threads of the bolt are located between the bearing face of the nut and the underside of the bolt head. Spacers and/or washers with holes not exceeding \(\frac{1}{16} \) in. greater than the bolt diameter may be used to achieve the 3 to 5 thread requirement. Tighten the bolt to the snug tight condition. The snug tight tensions are listed in Tables M8.04.3-1 (-0 kN, +9 kN) and M8.04.3-2 (-0 kips, +2 kips).
Table M8.04.3-1: Snug Tight Tensions (SI Units)

<table>
<thead>
<tr>
<th>Bolt Diameter (mm)</th>
<th>13</th>
<th>16</th>
<th>19</th>
<th>22</th>
<th>25</th>
<th>29</th>
<th>32</th>
<th>35</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snug Tension (kN)</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>18</td>
<td>23</td>
<td>27</td>
<td>31</td>
<td>40</td>
<td>45</td>
</tr>
</tbody>
</table>

Table M8.04.3-2: Snug Tight Tensions (US Customary Units)

<table>
<thead>
<tr>
<th>Bolt Diameter (in.)</th>
<th>½</th>
<th>⅝</th>
<th>¾</th>
<th>⅞</th>
<th>1</th>
<th>1 ⅛</th>
<th>1 ¼</th>
<th>⅜</th>
<th>1 ½</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snug Tension (kips)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

2. After the snug tight condition is reached, further tighten the bolts to the following minimum rotation:
 - 240° (⅔ turn) for bolt lengths ≤4 diameters
 - 360° (1 turn) for bolt lengths >4 diameters and ≤8 diameters
 - 480° (1 ⅓ turn) for bolt lengths >8 diameters

3. The tension reached at the above rotation shall be equal to or greater than the turn test tension shown below.

Table M8.04.3-3: Turn Test Tensions (SI Units)

<table>
<thead>
<tr>
<th>Bolt Diameter (mm)</th>
<th>13</th>
<th>16</th>
<th>19</th>
<th>22</th>
<th>25</th>
<th>29</th>
<th>32</th>
<th>35</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn Test Tension (kN)</td>
<td>62</td>
<td>98</td>
<td>142</td>
<td>200</td>
<td>262</td>
<td>285</td>
<td>365</td>
<td>436</td>
<td>525</td>
</tr>
</tbody>
</table>

Table M8.04.3-4: Turn Test Tensions (US Customary Units)

<table>
<thead>
<tr>
<th>Bolt Diameter (in.)</th>
<th>½</th>
<th>⅝</th>
<th>¾</th>
<th>⅞</th>
<th>1</th>
<th>1 ⅛</th>
<th>1 ¼</th>
<th>⅜</th>
<th>1 ½</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn Test Tension (kips)</td>
<td>14</td>
<td>22</td>
<td>32</td>
<td>45</td>
<td>59</td>
<td>64</td>
<td>82</td>
<td>98</td>
<td>118</td>
</tr>
</tbody>
</table>

4. After the turn test tension requirement has been met, one reading of tension and torque shall be taken and recorded. Using a calibrated manual torque wrench, record the torque. For proper torque readings, the nut must be in motion. The measured bolt tension can be read off the Skidmore. The torque value shall conform to the following:

\[
Torque \leq 0.25 \, PD
\]

Where:
- \(Torque = \) measured torque (ft–lb)
- \(P = \) measured bolt tension (lb)
- \(D = \) bolt diameter (ft)

5. Loosen and remove nut and examine the threads on the nut and the bolt. No signs of thread shear failure, stripping, or torsional failure of the bolt shall be evident.

Test Methods: Short Bolts

Procedure for performing rotational capacity test on bolts too short to fit in a tension calibrator is as follows:

Equipment Required

1. Calibrated torque wrench and a spud wrench.
2. Spacers and/or washers with hole size no larger than $\frac{1}{16}$ in. greater than bolt to be tested.
3. Steel section with normal size hole to install bolt. Any available splice hole can be used with a plate thickness that will provide the number of threads under the nut required in step 1 below. Mark off a vertical line and lines $\frac{1}{3}$ of turn, 120°; $\frac{1}{2}$ of a turn, 180°; and $\frac{2}{3}$ of a turn 240°, from vertical in a clockwise direction on the plate.

Procedure

1. Install nut on bolt and measure stick out of bolt when 3 to 5 full threads of the bolt are located between the bearing face of the nut and bolt head. Measure the bolt length, the distance from the end of the threaded shank to the underside of the bolt head.
2. Install the bolt into the hole and install the required number of shim plates and/or washer (one washer under the nut must always be used) to produce the thread stickout measured in step 1.
3. Snug the bolt using a hand wrench. The snug tight tensions are listed under No. 1 of Test Methods – Normal Length and Long Bolts.
4. Match mark the nut to the vertical stripe on the plate.
5. Tighten the bolt by turning the nut using the torque wrench to the rotation listed below. A second wrench must be used to prevent rotation of the bolt head during tightening. Record the torque required to reach this rotation. Torque must be measured with the nut in motion.

<table>
<thead>
<tr>
<th>Bolt Length, as measured in step 1</th>
<th>4 bolt diameters or less</th>
<th>Greater than 4, but not more than 8 bolt diameters</th>
<th>Greater than 8 bolt diameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Rotation</td>
<td>$\frac{1}{3}$ Revolution</td>
<td>$\frac{1}{2}$ Revolution</td>
<td>$\frac{2}{3}$ of a Revolution</td>
</tr>
</tbody>
</table>

The measured torque should not exceed the values listed below. Assemblies which exceed the listed torque have failed the test.

<table>
<thead>
<tr>
<th>Bolt Diameter (in.)</th>
<th>$\frac{1}{2}$</th>
<th>$\frac{3}{8}$</th>
<th>$\frac{5}{8}$</th>
<th>1</th>
<th>1 $\frac{1}{8}$</th>
<th>1 $\frac{1}{4}$</th>
<th>$\frac{7}{8}$</th>
<th>1 $\frac{1}{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque (ft-lb)</td>
<td>150</td>
<td>290</td>
<td>500</td>
<td>820</td>
<td>1,230</td>
<td>1,500</td>
<td>2,140</td>
<td>2,810</td>
</tr>
</tbody>
</table>

6. Tighten the bolt further to the rotation listed below. The rotation is measured from the initial marking in step 4. Assemblies that fail prior to this rotation either by stripping or fracture fail the test.

<table>
<thead>
<tr>
<th>Bolt Length, as measured in step 1</th>
<th>4 bolt diameters or less</th>
<th>Greater than 4, but not more than 8 bolt diameters</th>
<th>Greater than 8 bolt diameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Rotation</td>
<td>$\frac{2}{3}$ Revolution</td>
<td>1 Revolution</td>
<td>1 $\frac{1}{2}$ Revolutions</td>
</tr>
</tbody>
</table>

7. Loosen and remove nut and examine the threads on the nut and the bolt. No signs of thread shear failure, stripping, or torsional failure of the bolt should be evident. Assemblies which have evidence of stripping have failed the test.

M8.05.0: Structural Steel

All structural steel shall conform to the requirements of AASHTO M 270 Grades 36, 50, or 50W or 70HPS.
Orientation of the test bars for the Charpy V-Notch (CVN) test specimens shall be longitudinal to the direction of final rolling. The “H” frequency of testing shall be used. CVN impact testing temperatures shall be in accordance with those specified for Zone 2. CVN tests are required for main members only. Secondary members typically including stiffeners and diaphragms do not require CVN tests.

All welding shall comply with the provisions of the AASHTO/AWS Bridge Welding Code (ANSI/AASHTO/AWS D1.5).

M8.05.1: Steel Piles

Steel piles shall consist of structural steel shapes of the section shown on the plans. The steel shall conform to the requirements of AASHTO M 270 Grade 36 (Grade 250 MPa). Copper bearing steel will not be required.

M8.05.3: Steel Baffles and Drainage Troughs

Steel used for the manufacture of baffles and drainage troughs shall conform to the requirements of AASHTO M 270M/M 270 Grade 50W (Grade 345W) with the additional requirement that the steel shall exhibit a corrosion resistance at least 4 times that of AASHTO M 270M/M 270 Grade 36 (Grade 250) Steel.

M8.05.4: Steel Sheeting

Steel sheeting shall be an approved standard section either new or used, weighing not less than 22 psf of wall. Steel sheeting which is to be left in place shall conform to the requirements of AASHTO M 202M/M 202 (ASTM A328).

M8.05.5: Steel Pipe Piles

This specification covers cylindrical steel pipe of uniform cross section and diameter throughout its length and in which the cylindrical pipe acts as a permanent load-carrying member.

The steel pipe shall be new and shall conform to the requirements of ASTM A252, Grade 2 except where it is in conflict with other parts of the specifications. In such cases those Specifications shall govern.

Pipe having seams of spiral-lap welded construction will not be permitted under this specification. Pipes having spiral welded butt joint construction will not be permitted except where the pipe is concrete filled.

The outside diameter and wall thickness of the pipe shall be as shown on the plans. All piles shall be driven as a closed end pipe and filled with concrete conforming to M4.02.00: Cement Concrete for 4,000 psi, ¾-inch, 610 cement concrete. A steel plate having the same outside diameter as the pipe and a thickness as shown on the plans shall be welded to the bottom of the pipe with a full penetration weld using an approved backing ring, which shall develop the full strength of the pipe in compression and tension.

The bottom end of the pipe shall be beveled in accordance with ASTM A252 and the top end of the pipe shall not be beveled.
Steel reinforcement shall conform to the requirements of M8.01.0: Reinforcing Bars and shall be as detailed on the plans.

M8.05.6: Steel Casing

This specification covers cylindrical steel casings of uniform cross section and diameter throughout its length in which the cylindrical casing acts as either a temporary or permanent load-carrying member.

Permanent steel casings shall conform to the requirements of ASTM A252. Temporary casings shall be of a grade selected by the Contractor. Temporary casings that are used and are in good condition without strength impairing defects are acceptable for use as temporary casings. Permanent casings shall not have been previously used. Temporary casings that are left in place and connected to permanent casings shall meet the requirements of permanent casings.

Casings having seams of spiral-lap welded construction will not be permitted for use as permanent steel casings.

The outside diameter and wall thickness of the permanent steel casings shall be as shown on the plans. When permanent casings are used to carry part of the design load, all joints shall have full-penetration welds. All welds shall be inspected using ultrasonic testing. Any attachment between permanent and temporary casings shall be welded with full penetration welds using an approved backing ring, which shall develop the full strength of the casings in compression and tension.

Temporary casings shall be the responsibility of the Contractor and shall be of sufficient strength to resist the handling, transportation, installation, and external stresses of the subsurface materials.

M8.05.7: Steel Extrusions

Material utilized to produce steel extrusions suitable to mechanically lock elastomeric strip seals shall conform to properties of AASHTO M 270M/M 270 Grade 36 or Grade 50 (ASTM A709 Grade 36 or Grade 50) and shall be hot dipped galvanized after attachment of anchorage devices. Steel extrusions shall have a minimum thickness of ¼ in. as measured from the internal locking mechanism cavity to the top surface of the steel extrusion shape and shall be capable of resisting HS-25 wheel loading. Steel shapes shall be monolithic with the extrusion cavity.

M8.07.0: Guardrail

The materials for this work shall conform to AASHTO M 180 and the following requirements:

The manufacturer of guardrail and guardrail components shall have an audit certificate indicating compliance with the NTPEP Guardrail Technical Committee Project Work Plan.

All steel components and hardware shall be galvanized. All metal fabrication work shall be done in the shop. No punching, cutting or welding shall be done in the field. Fabrication shall include all operations such as shearing, cutting, punching, forming, drilling, milling, bending, welding and riveting. Components of bolted assemblies shall be galvanized separately before assembly. When it is necessary to straighten any sections after galvanizing, such work shall be performed without damage to the zinc coating.

Galvanized surfaces that are abraded or damaged at any time after application of the zinc coating shall be repaired by thoroughly wire brushing the damaged areas and removing all loose and
cracked coating after which the cleaned areas shall be painted with two coats of paint, high zinc dust content, conforming to the requirements of M7.04.11.

A. Posts.

Steel Posts.

Steel posts and channel members for anchor posts shall be fabricated from new structural steel sections conforming to the dimensions and design shown on the plans.

Posts shall conform to the requirements of ASTM A36. Galvanizing shall meet the requirements of M7.10.0: Galvanized Coatings.

Wood Posts.

The posts shall be rough sawn (unplaned) with nominal dimensions as indicated on the plans and with tolerances of 1 in. in length and ¼ in. in width and thickness. All holes in the posts shall be drilled prior to pressure application of the preservative at a wood preserving facility.

The stress grade shall be 1,000 psi or more in extreme fiber bending. Grading for stress-graded timber shall be in accordance with AASHTO M 168.

Prior to treatment, all posts shall be seasoned, conditioned and completely machined in accordance with AWPA M1.

Posts shall be treated with chromated copper arsenate, type C (CCA-C) conforming to AWPA P23, to a minimum retention of 0.60 pcf. Treatment shall be full length under pressure by the empty-cell or full-cell process in accordance with AWPA U1.

Manufacturers shall adhere to the processing and treatment limitations in AWPA T1. No unnecessary cutting of treated posts will be allowed after treatment. All posts with surfaces damaged by cutting, drilling or any other cause shall be field treated with a preservative solution in accordance with AWPA M4.

Certificates of compliance and certificates of inspection bearing the independent inspection agency's verification for each lot of wood must be presented before installation and contain the species of wood, the type of preservative, the retention rate and penetration of the preservative.

The certificates of inspection and compliance do not signify mandatory acceptance of the entire lot. The Department still has the option of rejecting posts (included in any particular lot) that the Engineer considers sub-standard because of unsound knots and shakes, excessive checking or other defects that may be detrimental to the structural integrity of the posts.

The fabricator shall retain an independent inspection agency to inspect and certify the treated posts in accordance with these specifications and AWPA M2, Part A.

All treated posts shall be marked in accordance with AWPA U1 (and M6 as required). (The mark is to include the identifying lot and/or charge number). The post shall also be stamped with the Inspector's identification. The mark is to be placed on the upper side head of the post and located so that it is not obstructed by the offset blocks, rails, or any other appurtenances. The Inspector’s stamp shall be legibly hammer-stamped on the head of the post, in accordance with AWPA M2 and the above.
B. Offset Blocks.

The blocks shall be of the same type throughout the project. Requirements for specific material types are as follows:

- **Wood Offset Blocks:** Wood offset blocks shall meet the requirements of A. Posts, Wood Posts, above. When wood offset blocks are used on wood posts, they shall be the same species as the posts.

- **Plastic Offset Blocks:** Plastic offset blocks shall meet all applicable performance requirements of MASH and be listed on the QTCE. Each block shall be stamped at the factory with the manufacturer’s identification and lot number and conform to the dimensions shown on the plans.

Prior to approval and use of the plastic guardrail offset blocks, the manufacturer shall submit to the Engineer, the manufacturers name, the product brand name and/or model number, a copy of the MASH test results, a Material Safety Data Sheet, and a sample block. Acceptance of the material will be based on the manufacturer's certification.

C. Rail Element and Terminal Sections.

The steel rail element, transition panels, terminal sections and connecting hardware shall conform to AASHTO M 180, Type II, Class A with the following additions:

- The length of the rail shall be according to the plans.

- Each end of the steel rail for every stretch of guard shall be fitted with a terminal section as shown on the plans.

- The projecting heads of all connection and splice bolts shall be button head type so no appreciable projection will obstruct a vehicle sliding along the rail. Steel rail elements with a radius of 150 ft or less shall be shop bent.

- The manufacturers are required to submit a Brand Registration and Guarantee document annually to RMS showing compliance of the Guardrail Components with AASHTO M 180 Specification.

M8.07.1: Guardrail End Treatment

The same type of tangent end or flared end treatment shall be used throughout the project.

All steel components and hardware shall conform to M8.07.0: Guardrail. All metal work shall be done in the shop.

The approach end shall have Type 3 Object Marker sheeting that conforms to the requirements of the MUTCD. The sheeting material shall meet the requirements of M9.30.0: Retroreflective Sheeting.

M8.09.0: Chain Link Fences and Gates

Materials for this work shall conform to the following requirements:
A. General.

All material used shall conform to AASHTO M 181 except as noted herein. The fence fabric shall be Type II - Aluminum Coated Steel or Type IV - Polyvinyl Chloride (PVC) - Coated Steel. All tubular posts and rails, and roll-formed “C” section posts and rails shall be zinc coated steel. All wire shall have a diameter tolerance of ±0.005 in. diameter. For chain link fabric used on bridge protective screens Type I and II see M8.13.3: Aluminum Handrail and Protective Screen Type I and Type II. Spring tension wire shall be aluminum coated steel. Aluminum coated fence fabric and spring tension wire shall be tested in accordance with AASHTO T 213M/T 213. All zinc coated posts, hardware, and fittings shall be in conformance with AASHTO M 232M/M 232. Polyvinyl Chloride (PVC) coated steel fence fabric, posts, rails, gates and accessories shall conform to M8.09.1: Bonded Vinyl Coated Chain Link Fences, Posts, Rails, Fabric, Gates and Accessories. Post caps, rail end and other fittings and appurtenances shall be pressed steel or malleable iron. All materials shall be new and undamaged when installed. Imperfectly coated materials will be rejected.

B. Posts.

Steel round pipe posts and “C” sections shall have a tolerance of ±10% from specified weight and ±5% from specified dimensions.

Type B round pipe shall conform to ASTM A 1011. Roll-formed “C” section shall conform to ASTM F1043.

Galvanized steel Line, End, Corner and Intermediate Posts shall conform to the sizes in Table M8.09.0-1:

<table>
<thead>
<tr>
<th>Post Type</th>
<th>Under 5 Ft in Height</th>
<th>5 Ft and Over in Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Post</td>
<td>1) Round Pipe - 1.90-in. O.D. Type B @ 2.29 lb per ft; or</td>
<td>1) Round Pipe - 2 ³/₈-in. O.D. Type B @ 3.117 lb per ft; or</td>
</tr>
<tr>
<td></td>
<td>2) “C” section - 1 ⅞ x 1 ⅝ in. @ 2.28 lb per ft</td>
<td>2) “C” section-2 ⅛ x 1.70 in. @ 2.64 lb per ft</td>
</tr>
<tr>
<td>End Post and Corner Post</td>
<td>1) Round Pipe - 2 ³/₈-in. O.D. Type B @ 3.117 lb per ft</td>
<td>1) Round Pipe - 2 ²/₈-in. O.D. Type B @ 4.64 lb per ft</td>
</tr>
<tr>
<td>Intermediate Brace Posts</td>
<td>1) Round Pipe - 2 ³/₈-in. O.D. Type B @ 3.117 lb per ft; or</td>
<td>1) Round Pipe - 2 ²/₈-in. O.D. Type B @ 4.64 lb per ft</td>
</tr>
<tr>
<td></td>
<td>2) “C” section - 2 ⅛ x 1.70 in. @ 2.64 lb per ft</td>
<td></td>
</tr>
</tbody>
</table>

Gate posts shall be 4 in. O.D. pipe, Type B with a weight of 6.56 lb per ft.

The galvanizing for “C” sections shall not be less than 2.0 oz per ft² of metal surface as per AASHTO M 232M/M 232. For Type B round pipe the external coating shall be 0.9 oz of galvanizing per ft² minimum, 15 µg of chromate per in.² minimum, plus 0.3 mils minimum of clear cross-linked polyurethane acrylic coating. The internal surface shall be coated with zinc-rich based organic coating containing not less than 87% zinc powder and capable of providing galvanic protection. All round posts shall be fitted with an approved top, so designed as to fit securely over the post and carry the top rail or cable. The base of the top fitting shall carry an apron around the outside of the post.
C. **Top Rail and Spring Tension Wire.**

1) Rail shall have a tolerance of ±10% from specified weight and ±5% from specified dimensions. Steel top rails shall be Type B 1.66 in. O.D. tubular pipe with a weight of 1.83 lb per ft, or 1.625 x 1.25 in. roll-formed “C” section with a weight of 1.40 lb per ft.

 The protective coating for top rails shall meet the requirements of paragraph B above.

 Couplings or expansion sleeves shall be outside sleeve type and at least 6 in. long.

2) Spring tension wire shall be coil spring steel 7 gage (0.177 in.). The base metal shall have a minimum breaking strength of 1,950 lb coated with aluminum applied at a rate of not less than 0.40 oz per ft² of surface area.

D. **Braces and Truss Rods.**

Compression braces shall be the same type and size as top rail. Tension truss rods shall be ⁵⁄₁₆-in. minimum round rods with drop forged turnbuckles, or other approved type of adjustments.

E. **Fence Fabric.**

The fabric shall consist of 9 gage (0.148 in.) wire having a minimum breaking strength of 1,290 lb coated with aluminum applied at the rate of not less than 0.40 oz per ft² of uncoated wire surface. It shall be woven into approximately 2 in. diamond mesh. The width of the fabric shall be specified or shown on current standard drawings. Fabric for chain link fence less than 6 ft in height shall be finished at top and bottom with a "knuckled" selvage. All other fence sizes shall have a knuckled selvage at the bottom and twisted selvage at the top. Barbing shall be done by cutting the wire on the bias.

F. **Bands and Stretcher Bars.**

All bands shall be a minimum of 12 gage (0.106 in.) and at least ¾ in. in width. Tension or stretcher bars shall be no less than ³⁄₁₆ in. x ¾ in. stock. Galvanizing shall conform to the requirements of AASHTO M 232M/M 232.

G. **Tie Wire and Hog Rings.**

Aluminum tie wire shall be a minimum of 6 gage (0.192 in.) round wire Alloy 1350-H19 or equal. Aluminum hog rings shall be a minimum of 11 gage (0.120 in.) round wire Alloy 1350-H19 or equal.

H. **Barbed Wire.**

Barbed wire shall consist of two strands of 0.0985 in. diameter wire with 0.08 in. diameter 4 point barbs approximately 5 in. apart, shall be aluminum coated and conform to the requirements of AASHTO M 280.

Barbed wire Extension Arms shall be at an angle of approximately 45° and shall be fitted with clips or other means for attaching three lines of barbed wire, and with top outside wire approximately 12 in. horizontally from the fence line and the other wires spaced uniformly between the top of the fence fabric and the outside barbed wire.
I. Gates.

Gate frames shall be constructed of galvanized steel of sizes and weights shown below. The corners of the gate frame shall be fastened together and reinforced with suitable fittings designed for the purpose or they may be welded.

Single gate frames 6 ft or less in width shall be 1.66 in. O.D. pipe galvanized steel conforming to Section C of this specification.

Single gate frames over 6 ft wide shall be 1.90 in. O.D. galvanized steel pipe conforming to Section B of this specification.

Cross trussing shall be \(\frac{5}{16} \)-in. galvanized iron adjustable rods.

Chain link fence fabric for filling the gage frame shall conform to Section E of this specification.

Each gate shall be furnished complete with necessary hinges, latch and drop bar locking device designed for the type of gate post and gate used.

Gate sizes shall be as specified with the height conforming to the height of the fence.

J. Drive Anchors and Shoes.

Drive anchors shall be galvanized steel angle iron or extruded aluminum alloy 6061-T6. Minimum dimensions shall be 1 ¼ in. x 1 ¾ in. x \(\frac{1}{16} \) in. The weight of zinc for galvanized components shall be 1.5 oz per ft\(^2\) of metal surface.

Shoes for drive anchors shall be galvanized cast or malleable steel, or extruded aluminum alloy 6061-T6. The weight of zinc for galvanized components shall be 2.0 oz per ft\(^2\) of metal surface.

M8.09.1: Bonded Vinyl Coated Chain Link Fences, Posts, Rails, Fabric, Gates and Accessories

The fence shall have a bonded polyvinyl chloride (PVC) coating over aluminum coated or galvanized steel. All material used shall conform to AASHTO M 181. Polyvinyl chloride coated by dipping, thermal fusion or any other method that meets the requirements of this specification.

The fence fabric shall be PVC coated wire that is woven into a 2 in. diamond mesh. The coating shall not crack, craze, or peel. The color of the PVC coated fabric and accessories shall be medium green as defined in AASHTO M 181.

All materials shall have dimensions and weights as specified in M8.09.0: Chain Link Fences and Gates except as follow:

- Spring Tension Wire......................... 9 gage.
- Ties ... Aluminum 10 gage
- Hog Rings ... Aluminum 11 gage

The bonded PVC coating shall be a minimum of 0.007 in. as determined by measuring the diameter of the coated wire, stripping off the coating, measuring the diameter of the stripped wire and dividing the difference by two.
M8.10.0: Steel Pipe Rail or Fence

Materials for this work shall conform to the following requirements:

A. Rails and Posts.

Steel pipe for rails and posts shall conform to requirements of ASTM A53, Grade B. Galvanized pipe ordered under this specification shall be coated with zinc inside and outside by the hot-dip process. The weight of zinc coating shall be not less than 2.0 oz per ft2 of surface area. For rails and posts, a tolerance of ±10% from the specified weight and ±5% from the specified dimension is allowed.

B. Fittings.

All fittings shall be steel conforming to ASTM A307. They shall be galvanized in accordance with AASHTO M 232M/M 232.

C. Lead Wool.

Lead wool for caulking shall be of standard manufacture and shall be approved for such use by the Engineer.

D. Bitumen.

Bitumen for use with pipe sleeves shall be approved for that use by the Engineer.

M8.10.1: Aluminum Pipe Rail or Fence

Materials for this work shall conform to ASTM F1183 with 2 in. diamond mesh and the following requirements:

A. General: All materials shall be new and free from any surface coatings of paint or other materials. All castings shall be sound, free from blow-holes or other imperfections and have smooth surfaces.

B. Steel anchor bolts, nuts and washers shall conform to M8.01.5: Anchor Bolts, Nuts and Washers.

C. Stainless Steel screws shall conform to ASTM A193, Grade B8.

D. Rails, posts and bases shall conform to ASTM B221, Alloy 6061-T6, or Alloy 6351-TS.

E. Splices and clamp bars shall conform to ASTM B221, Alloy 6061-T6.

F. Rivets shall conform to ASTM B316, Alloy 6061-T6.

G. Aluminum washers shall conform to ASTM B209, Alloy Alclad 2024-T4.

H. End plugs shall conform to ASTM B26, Alloy 55A-F or SG 70 A-F.

I. Aluminum Screen Frame shall conform to ASTM B221, Alloy 6061-T6.

J. Aluminum Screen Fabric shall conform to ASTM B211, Alloy 6061-T94.

M8.11.0: Bronze Self-Lubricating Bearing Plates

The self-lubricating bronze plates shall conform to one of the following materials as called for on the design drawings:

A. Leaded Tin Bronze, conforming to the requirements of ASTM B22, Alloy D, modified to the extent that 1.5 to 2.5 % lead will be required.

B. Tin Bronze, conforming to the requirements of ASTM B22, UNS-C91100.
Finishes and Tolerances

The surfaces of the bronze and steel plates which bear upon each other shall have a surface roughness not exceeding 125 micro inches when measured in accordance with American Standards Association B46.1 for surface roughness, waviness and lay. The lay of the tool marks shall be in the direction of expansion or contraction of the bridge.

The flat surfaces of the bronze and steel plates which bear upon each other shall be flat within 0.5 mil per inch (0.0005 mm per mm) of length and width.

Bronze Bearing plates having radial convex surfaces shall have a negative tolerance of 10 mils (250 µm) maximum and a positive tolerance of 0.000 in. (10 µm) on the specified radius. Concave radial surfaces of steel bearing plates shall have a positive tolerance of 10 mils (250 µm) maximum and a negative tolerance of 0.000 in. (10 µm) on the specified radius.

Lubricated Recesses.

The recesses for the containment of the solid lubricant in the bronze bearing plates shall consist of annular rings or drilled holes with a minimum vertical wall depth of \(\frac{3}{16} \) in. The recesses shall be arranged in a geometric pattern in such a manner that each successive row shall overlap in the direction of motion. The entire area of all bearing surfaces which have provision for motion shall be lubricated by means of these lubricant filled recesses. The total area of these recesses shall comprise not less than 25% nor more than 35% of the total bearing area of the plate.

Lubricant.

The lubricant for filling the recesses shall be of the solid type and shall consist of graphite and metallic lubricants with a lubricating binder. The lubricant shall be compressed into the lubrication recesses by hydraulic pressure of at least five times the design unit loading as shown on the contract drawings to form a dense nonplastic insert which shall project not less than 0.010 in. above the surface of the bronze bearing plate.

Testing.

A self-lubricating bronze test plate measuring not less than 5 in. long by 5 in. wide shall be prepared and shall conform to one of the above materials and all other requirements of the specifications.

An assembly consisting of the fixed self-lubricating test plate and a movable steel plate shall be subjected to the design vertical unit loading specified in the contract drawing. The steel plate shall then be subjected to not less than 100 cycles of horizontal movement at a speed not to exceed 30 cycles per minute. Each cycle shall consist of a forward and return movement of not more than \(\frac{1}{2} \) in. in each direction. The recorded horizontal force divided by the recorded vertical force shall be established as the co-efficient of friction between the sliding surfaces.

The coefficient of friction determined by the foregoing method shall not exceed 0.010. If the tests indicate a coefficient of friction greater than 0.10, the entire lot of solid lubricant shall be rejected.

Where no inspection of materials is arranged for by the Party of the First Part and before such materials are incorporated into the work, the manufacturer of the bronze bearings will be required to certify that the bronze bearing material with lubricant, when tested as hereinbefore described, shall not have a coefficient of friction greater than 0.10. Batches of solid lubricant that successfully
meet the friction coefficient requirements shall be properly identified by the manufacturer with a
lot number and date marked “Approved for use on Commonwealth of Massachusetts projects.”

Preparation of Mating Steel Plates.

The sliding surfaces of the mating steel plates shall be coated, just prior to installation, with a liquid
lubricant recommended and furnished in sealed containers by the manufacturer of the bronze
bearing plates.

Material Certifications.

Certified copies of the chemical analysis and physical properties of the bronze used in
manufacturing of the bearing plates shall be supplied for each project.

Certifications shall be identified with the heat numbers of the bronze, solid lubricant lot numbers,
and a statement that the solid lubricant used in the manufacture of the bronze bearing plates has
successfully passed the test requirements of this specification.

M8.13.0: Bridge Railings, Aluminum, Types AL-1 & AL-3

Materials used in the fabrication of aluminum bridge railings shall conform to the following
requirements:

A. **General:** All materials shall be new and free of paint or other materials. All castings shall be
sound, free from blowholes or other imperfections and have smooth surfaces.

B. **Steel anchor bolts, nuts and washers** shall conform to M8.01.5: Anchor Bolts, Nuts and
Washers.

C. **Stainless Steel screws** shall conform to ASTM A193, Grade B8.

D. **Rails, posts and bases** shall conform to ASTM B221, Alloy 6061-T6.

E. **Splices and clamp bars** shall conform to ASTM B221, Alloy 6061-T6.

F. **Rivets** shall conform to ASTM-B316, Alloy 6061-T6.

G. **Aluminum washers** shall conform to ASTM B209, Alloy Alclad 2024-T4.

H. **End plugs** shall conform to ASTM B26, Alloy 55A-F or SG70 A-F.

I. **Tubular Pickets** shall conform to ASTM B211, Alloy 6063-T5.

M8.13.1: Bridge Railing, Steel, Type S3-TL4

All steel shall be new and fabrication shall conform to 960.61: Design, Fabrication and Erection. The
fabricator shall be approved by the Department in compliance with the requirements of 960.61:
Design, Fabrication and Erection, Paragraph A.

Posts and base plates shall conform to the requirements of AASHTO M 270M/M 270 Grade 50. CVN
tests are required.

Rails shall be made from hollow structural tubing and shall conform to the requirements of ASTM
A500 Grade B or C with a minimum yield (F_y) of 50 ksi. CVN tests are required.

Anchor plates and splice tube plates shall conform to AASHTO M 270M/M 270 Grade 36. CVN tests
are not required.

Picket tubes shall conform to the requirements of ASTM A513 with a certified yield (F_y) of 36 ksi or
ASTM A500 Grade B. CVN tests are not required.
Carrier angles shall conform to the requirements of AASHTO M 270M/M 270 Grade 36. CVN tests are not required.

Round headed bolts shall conform to the chemical and physical requirements of ASTM F3125/F3125M. Rotational capacity tests are not required.

High strength bolts shall conform to M8.04.3: High Strength Bolts.

Anchor bolts shall conform to M8.01.5: Anchor Bolts, Nuts and Washers.

Screws shall be hardened countersunk machine screws.

M8.13.2: Metal Bin-Type Retaining Wall

Metal sheets used in fabricating the retaining wall shall be of U.S. Standard Gauge thickness as specified on the plans, but no unit shall be formed from sheets thinner than 0.062 in. The base metal and coating shall conform to the requirements of AASHTO M 218.

All bolts and nuts used in the erection of the wall shall be galvanized. Bolts shall have a diameter of ⅝ in. and a minimum length of 1 ¼ in., measured from the underside of the bolt head.

M8.13.3: Aluminum Handrail and Protective Screen Type I and Type II

Material used in the fabrication of Handrail and Protective Screen Type I and Type II shall conform to the following requirements (see Subsection 975: Metal Bridge Railings and Protective Screens for anodizing and powder coating requirements):

A. All materials shall be new and free of oil, mill coating, and other materials. All castings shall be sound, free from blowholes or other imperfections, and shall have smooth surfaces.
B. Aluminum extrusions and plates shall conform to ASTM B221, Alloy 6061-T6.
C. Chain link fabric shall conform to AASHTO M 181 Type III (aluminum alloy 6061-T89 or T94). Prior to bending and coating, the wire shall meet the minimum tensile strength of 54 ksi as specified in AASHTO M 181. After fabrication and coating, the minimum tensile strength of the wire shall be 43 ksi.
D. Protective Screen Type II self-tapping screws shall be tempered 410 stainless steel with a hardness of 32 to 35 HRC.
E. Anchor bolts and washers shall conform to ASTM F3125/F3125M. No rotation-capacity testing shall be required. The bolts and washers shall be galvanized in accordance with AASHTO M 232M/M 232. The anchor cage shall be galvanized in accordance with AASHTO M 111M/M 111 or shall be electroplated with zinc in accordance with ASTM B633, Service Condition 1, Type III.
F. Tee Bolts shall conform to ASTM A307 and shall be galvanized in accordance with AASHTO M 232M/M 232. Type 304 stainless steel Tee Bolts may be substituted for the galvanized A307 Tee Bolts.
G. All other fasteners, nuts and washers shall be as called for on the drawings.
H. Protective Screen Type I posts, rails, bars, splices and clamps shall conform to ASTM B211, Alloy 6061-T6.
M8.14.0: Load Transfer Assembly

A. Load transfer assemblies for transverse joints shall consist of slip-bars and a metal device so designed as to hold the slip-bars exactly and firmly in their correct positions during concreting operations. The complete assembly shall conform to the requirements and dimensions as shown on the plans or as approved by the Engineer.

B. The slip-bars shall be fabricated from either plain new billet steel of the grade designated or plain rail steel. They shall be free from burring or other deformations restricting slippage in the concrete.

C. One half the length of each slip-dowel bar of load transfer units shall be rendered bondless with a coat of either a graphite lubricant or a wax base grease.

1. The graphite lubricant shall consist of flake graphite mixed with a vehicle having quick drying characteristics. The graphite paste shall be thoroughly mixed and have the following composition (Percentage by weight).

| Table M8.14.0-1: Graphite Paste Composition |
|---------------------------------|----------|----------|
| Pigment: (Flake Graphite) | 55% | 65% |
| Graphite Carbon | 85% | |
| Passing No. 100 Sieve | 84% | 92% |
| Passing No. 325 Sieve | 46% | 50% |
| Vehicle | 35% | 45% |

Vehicle shall consist of 52% fixed oils; remainder to be volatile thinners and driers.

To prepare lubricant for application, approximately 3 to 4 lb of the graphite paste shall be placed in a suitable container and 40% by weight of 60/40 mixture of carbon tetrachloride and naphtha shall be added thereto. The resulting lubricant shall be thoroughly mixed.

2. The wax base grease shall be applied hot at temperatures of 170°F to 190°F. It shall conform to the following requirements:
 a) Consistency, cone penetration
 at 77°F .. 120-160
 b) Melting point 140°F (minimum)
 c) Stability .. No separation at 200°F to 210°F for 1 hr
 d) Abrasives Free from abrasives
 e) Volatile matter (% by weight) 2% maximum when heated at 210°F ±3°F for 0.5 hr
 f) Drying .. Shall not dry in 14 days
 g) Corrosion ... There shall be no evidence of corrosion on steel
 h) Acidity (pH) .. 5 (minimum)
 i) Adhesion .. Shall not slip, sag or drip at 130°F
 j) Removability Shall be readily removable with a cleaning solvent

M8.15.0: Strand Chuck

The chuck shall be of a design suitable for securely gripping high tensile strand steel without deformation or slippage. It shall be manufactured from a corrosion resistant steel alloy capable of
withstanding repeated use and overload conditions in excess of the ultimate tensile strength of the strand without fatigue or failure. The surface body of the chuck shall be treated to increase corrosion resistance.

M8.16.0: Electrical Wire & Cable

This specification covers all electrical wire and cable for traffic control devices, signals, highway lighting, signs and supports. Unless otherwise specified, all wire and cable herein are for copper conductors rated for 600V, all traffic signal cable conductors shall not be less than No. 14 AWG, solid or stranded and all conductors for mast arm wiring shall be not less than No. 16 AWG stranded.

M8.16.1: Type 1 Traffic Signal Cable (Installed above ground or in Duct)

Traffic signal cable shall be thermoplastic and conform to requirements of IMSA Specification 19-1.

M8.16.2: Type 2 Traffic Signal Cable (Installed above ground or in Duct)

Traffic signal cable shall be thermoplastic and conform to requirements of IMSA Specification 20-1.

M8.16.3: Traffic Signal Cable (Installed above ground)

Traffic signal cable shall be thermoplastic and conform to requirements of IMSA Specification 19-3 or 20-3.

M8.16.4: Type 4 Traffic Signal Cable (Installed above ground)

Traffic signal cable shall be thermoplastic and conform to requirements of IMSA Specification 19-4 or 20-4.

M8.16.5: Type 5 Traffic Signal Cable (Direct Burial)

Traffic signal cable shall be thermoplastic and conform to requirements of IMSA Specification 19-5 or 20-5.

M8.16.6: Type 6 Traffic Signal Wire (TFF or TEW)

Traffic signal head wire shall be color coded No. 18 A WG or larger conforming to requirements of UL Standard UL-62 “Flexible Cord and Fixture Wire” for TFF or TEW listed wire.

M8.16.7: Type 7 General Purpose Wire (RHH, RHW or XHHW)

General Purpose Wire shall conform to requirements of UL Standard UL-44 “Rubber-Insulated Wires and Cable.”

M8.16.8: Type 8 Direct Burial Wire (USE)

Direct burial wire shall be insulated as specified for Type 8 and conform to requirements of UL Standard UL-854 “Service-Entrance Cables” for USE listed cable.

M8.16.9: Type 9 Special Purpose Wire (TW-THW-UF)

Special purpose wire shall be TW or THW conforming to requirements of UL Standard UL-83 “Thermoplastic-Insulated Wires” or UF conforming to the requirements of UL Standard UL-719 “Nonmetallic-Sheathed and Underground Feeder Cables” as specified.
M8.16.10: Type 10 Grounding and Bonding Wire (Solid or Standard, Insulated or Bare)

Ground and bonding wire shall be copper conforming to requirements of ASTM-B3 for soft or annealed copper wire, ASTM-B8 for stranded copper wire.

Where wire is provided with an individual covering, the covering shall be finished a continuous green color or a continuous green color with one or more yellow stripes.

M8.16.11: Shielded Loop Detector Lead-In cable

Two conductor No. 14 AWG, tinned copper stranded (19 x 27) conductors, polyethylene insulated (0.032 in. thick), conductors cabled, aluminum-polyester shield (100% shielding), No. 16 AWG stranded tinned copper drain wire. Chrome vinyl outer jacket (0.035 in. thick), nominal cable outside diameter 0.340 in. and conform to the requirements of IMSA specification 50-2.

M8.16.12: Type 12 Multi-conductor heavy duty portable power cord

This material shall conform to the requirements of Underwriters Laboratories Standard UL-62, Flexible Cord and Fixture wire for Type 50, 600V flexible cord.

M8.16.13: Type 13 Loop Detector Wire THHN with Tube

Loop detector wire shall be PVC insulated, nylon jacketed, loose encased in a PVC or PE tube and conform to requirements of IMSA specification 51-5.

M8.17.0: Ground Rod

Ground Rods shall be nominal ⅝ in. diameter (measured diameter shall not be less than 0.558 in.) by a minimum of 8 ft long copper bonded to steel rod, with bolt type clamps, conforming to the requirements of UL-467.

M8.18.0: Traffic Signal, Highway Lighting and Sign Supports

This section covers the poles, posts, masts, arms and bases for traffic signals, highway lighting and sign supports.

M8.18.1: Traffic Signal Supports

Posts

Steel signal posts shall be 4 in. diameter Schedule 40 seamless pipe conforming to ASTM A53, Grade A or B. Interiors shall be coated as specified in Underwriters Laboratories UL-6 for enameled conduit, or aluminum conduit conforming to M5.07.1: Electrical Conduit-Rigid Metallic (Type RM), Paragraph C.

Aluminum signal posts shall be 4 in. diameter Schedule 40 pipe conforming to aluminum alloy 6063-T6 (ASTM B221, B429 or B241).

Poles and Mast Arms

Structures shall be made of steel. Structural steel material over ½ in. thick that is part of main load carrying tension members shall meet the Charpy V Notch impact requirements of 15 ft-lb at 40°F.

Tapered shafts shall conform to ASTM A595, Grade A, or AASHTO M 270M/M 270 Grade 50.
The arms shall conform to ASTM A595, Grade A; or ASTM A1011/A1011M, or ASTM A500 Grade B. Steel shall have a minimum yield of 50 ksi.

The shaft cap shall conform to ASTM A126, Class A.

All hardware shall be stainless steel or ASTM F3125/F3125M, fully galvanized.

Baseplates and all other standard structural shapes shall conform to AASHTO M 270M/M 270 Grades 36 or 50.

Anchor bolt covers shall meet the requirements of ASTM A181/A181M or ASTM A126, Class A or AASHTO M 103M/M 103, Grade 450-240 (Grade 65-35) or ASTM A36/A36M.

Galvanizing shall be in accordance with Section M7: Paints, Protective Coatings and Pavement Markings.

Bases

Bases shall be the same materials as the poles.

Octagonal bases are for use with posts and shall be cast iron conforming to AASHTO M 105 or cast aluminum alloy conforming to Aluminum Association No. 356.0-T-6 (ASTM B26, B108).

Pedestal bases are for use with posts and poles and shall be made of not less than No. 10 gage steel and galvanized in accordance with Section M7: Paints, Protective Coatings and Pavement Markings or cast aluminum alloy conforming to Aluminum Association No. 356.0 T-6 (ASTM B26, B108).

M8.18.2: Highway Lighting Poles and Arms

Aluminum

Steel

Structural steel material over ½ in. thick that is part of main load carrying tension members shall meet the Charpy V Notch impact requirements of 15 ft-lb at 40°F.

Tapered components shall be fabricated from steel conforming to ASTM A595, Grade A; or ASTM A1011M, Grade 55; or AASHTO M 270M/M 270, Grade 50.

Gussets, flanges, baseplates, wing plates, connecting end plates, and all other standard structural shapes shall conform to AASHTO M 270M/M 270 Grades 36 or 50.

Anchor Bolts

Anchor bolts shall conform to M8.01.5: Anchor Bolts, Nuts and Washers and be fully galvanized in accordance Section M7: Paints, Protective Coatings and Pavement Markings.

M8.18.3: Sign Supports

Structural steel material over ½ in. thick that is part of main load carrying tension members shall meet the Charpy V Notch impact requirements of 15 ft-lb at 40°F.
Supports shall be fabricated from steel conforming to ASTM A595, Grade A; ASTM A1011M, Grade 55; AASHTO M 270M/M 270, Grade 50; ASTM A500, Grade B; or API-5LX-52.

Gussets, flanges, baseplates, wing plates, connecting end plates, and all other standard structural shapes shall conform to AASHTO M 270M/M 270 Grades 36 or 50.

Truss and cantilever beam connections shall be furnished with the necessary beam support clamps. The ends of beams shall have a mounting clevis and closure plate fabricated from steel plate as an assembly.

All structural steel and steel hardware shall be galvanized in accordance with Section M7: Paints, Protective Coatings and Pavement Markings. Anchor bolts, nuts, and washers shall conform to M8.01.5: Anchor Bolts, Nuts and Washers and be fully galvanized in accordance with Section M7: Paints, Protective Coatings and Pavement Markings.

Sign Posts – P5.

A. Square Tube Posts.

Square tube posts shall be square tube fabricated from 12 gage hot-rolled carbon steel conforming to the requirements of ASTM A1011, Grade 50.

Galvanizing shall be in accordance with ASTM A653, Coating Designation G140 with a minimum coating of 1.4 oz per ft2 total of zinc on both sides under triple spot tests; or a minimum coating of 1.15 oz per ft2 total of zinc on both sides under triple spot tests and after all fabrication and re-galvanizing the posts shall be coated with a chromate conversion coating and sealed with an air-dried clear organic polymer topcoat.

Posts shall be welded directly in the corner by high frequency resistance welding or equal and externally scarfed to agree with standard corner radius of 0.15625 in. ±0.015625 in. The corner weld and holes shall be zinc coated after scarfing operations. Holes shall be 0.4375 in. in diameter and shall be placed 1 in. on center.

B. U Channel Posts.

U-channel posts shall be fabricated from re-rolled rail steel or an equivalent steel and shall conform to the mechanical requirements of ASTM A499, Grade 60 and the mechanical requirements of ASTM A1. All steel U-channel posts shall weigh at least 4 lb per ft and be entirely galvanized in accordance with Section M7: Paints, Protective Coatings and Pavement Markings. Holes shall be 0.4375 in. in diameter spaced at 1 in. on center and be punched prior to the galvanizing of the posts.

All bolts, nuts and washers shall conform to the requirements of ASTM A307, Grade A. Bolts, nuts and washers shall be galvanized in accordance with the requirements of Section M7: Paints, Protective Coatings and Pavement Markings.

Steel posts, sign post anchors, anchor sleeves, slipbases, lap splices, and any related hardware shall all be from the same manufacturer. No mixing of brands shall be allowed.

M8.19.1: Aluminum Sign Panels

Aluminum sign panels shall be fabricated from ASTM-B209, Alloy 6061-T6, (0.080 in. thick) with 3 in. minimum diameter amber reflectors affixed thereto.
M8.20.4: Anti-Glare Systems

Anti-Glare Systems shall consist of modular sections consistent in length with standard length of concrete median barrier. Glare blocking shall be accomplished by vertical blades or panels attached to a horizontal base to create the modular units.

The anti-glare system shall be of a type listed on the QTCE.

M8.21.0: Stay-in-Place Bridge Deck Forms

Stay-in-Place Bridge Deck Forms and supports shall be fabricated from steel conforming to ASTM A653 (Grades 33, 37, 40, 50 Class 1 and 2, and 80 English and Grades 230, 255, 275, 340 Class 1 and 2, and 550 Metric) having a coating class of G165 according to ASTM A924.

M8.22.0: Cross Hole Sonic Testing Access Pipes

Steel pipe for cross hole sonic testing access pipes shall be Schedule 40 and shall conform to ASTM A53, Grade B.
SECTION M9: MISCELLANEOUS MATERIALS

M9.00.0: General

All materials in this category shall be sampled and tested in accordance with the standard methods applicable to that particular material.

M9.01.0: Calcium Chloride

Calcium Chloride shall conform to the requirements of AASHTO M 144, Type I or Type II.

M9.01.1: Sodium Chloride

Sodium Chloride to be used for road purposes shall conform to the requirements of AASHTO M 143, except that the grading shall conform to the following:

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>⅜ in.</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>82 (maximum)</td>
</tr>
<tr>
<td>No. 8</td>
<td>50 (maximum)</td>
</tr>
<tr>
<td>No. 30</td>
<td>7 (maximum)</td>
</tr>
</tbody>
</table>

M9.02.0: Herbicides

These specifications cover chemicals used to destroy and/or control the growth of plants both indiscriminately (non-selective herbicides) and selectively (selective herbicides). Only those herbicides currently approved by the State Pesticide Board and the Department may be used.

M9.03.0: Insecticides

These specifications cover chemicals to be used in the control of insects which are harmful to trees and desirable growth. Only those insecticides currently approved by the State Pesticide Board and the Department may be used.

M9.04.0: Curb and Edging

All granite curb and edging shall be basically light gray in color, free from seams and other structural imperfections or flaws which would impair its structural integrity, and of a smooth splitting appearance. Natural color variation characteristic of the deposit from which the curbing is obtained will be permitted.

Whenever curbing is sawed, all surfaces that are to be exposed shall be thoroughly cleaned and any iron rust or iron particles removed by sand blasting or other approved methods satisfactory to the Engineer and any saw mark in excess of ⅛ in. shall be removed.

M9.04.1: Granite Curb

The stones for the several types of granite curb shall be cut to the dimensions and curvature hereinafter stated:
Table M9.04.1-1: Standard Granite Curbstone Dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>Minimum Length</th>
<th>Width at Top</th>
<th>Depth</th>
<th>Minimum Width at Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA1</td>
<td>6 ft</td>
<td>7 in</td>
<td>17 in to 19 in.</td>
<td>4 in. (for ⅔ length)</td>
</tr>
<tr>
<td>VA2</td>
<td>6 ft</td>
<td>7 in</td>
<td>19 in to 21 in.</td>
<td>4 in. (for ⅔ length)</td>
</tr>
<tr>
<td>VA3</td>
<td>6 ft</td>
<td>6 in</td>
<td>19 in to 21 in.</td>
<td>4 in. (for ⅔ length)</td>
</tr>
<tr>
<td>VA4</td>
<td>6 ft</td>
<td>6 in</td>
<td>17 in to 19 in.</td>
<td>4 in. (for ⅔ length)</td>
</tr>
<tr>
<td>VA5</td>
<td>5 ft</td>
<td>6 in</td>
<td>See Plans</td>
<td>5 in. (for ⅔ length)</td>
</tr>
<tr>
<td>VB</td>
<td>3 ft</td>
<td>5 in</td>
<td>15 in to 17 in.</td>
<td>3 ½ in. (for ⅔ length)</td>
</tr>
</tbody>
</table>

Except for the 3 following conditions, 10% of the length of each type of VA curb installed on the project may consist of stones no more than 6 in. shorter than the length specified in either table.

1. Stones used in making closures may be as much as one third shorter than specified in either table, except that for VA5 the closure piece shall have a minimum length of 4 ft.
2. Stones used in making closures on bridge decks at paraffin joints may have one piece, no less than 4 ft between any two paraffin joints or between one paraffin joint and the end of the run of curbing.
3. On curves with radii greater than 100 ft but less than 500 ft, type VA stones may be 4 ft to not more than 6 ft in length.

Type VA stones to be set on a radius of 100 ft or less shall be cut to the required curvature unless otherwise directed and except for making closures shall be of minimum lengths as follows:

Table M9.04.1-2: Minimum Lengths of Curved Granite Curbstone

<table>
<thead>
<tr>
<th>Radius</th>
<th>Minimum Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 ft to 100 ft</td>
<td>6 ft</td>
</tr>
<tr>
<td>25 ft to less than 50 ft</td>
<td>4.5 ft</td>
</tr>
<tr>
<td>Less than 25 ft</td>
<td>3 ft</td>
</tr>
</tbody>
</table>

Type VB stones to be set on a radius of 100 ft or less shall be cut to the required curvature unless otherwise directed.

All VB stones shall have a minimum length of 3 ft regardless of curvature.

The ends of all curved stones shall be cut on radial lines.

Finish

The finish and surface dimensions for the several types of curb shall conform to the following requirements:

A. Type VA Curb.

This type of curbstone shall have a top surface free from wind, shall be peen hammered or sawed to an approximately true plane, and shall have no projections or depressions greater than ⅛ in. The front and back arris lines shall be pitched straight and true and there shall be no projection on the
The back surface for 3 in. down from the top which would exceed a batter of 4 in. in 1 ft, except on VA5 the back surface shall have no projection or depression greater than 1.5 in.

The front face shall be at right angles to the planes of the top and ends and shall be smooth quarry split, free from drill holes and with no projection of more than 1 in. and no depression of more than ½ in. measured from the vertical plane of the face through the arris or pitch line for a distance down from the top of 8 in. for types VA1 and VA4, 10 in. for VA2 and VA3, and the full depth of VA5. For the remaining distance there shall be no projection or depression greater than 1 in. measured in the same manner.

The ends of all stones shall be square with the planes of the top and face so that when the stones are placed end to end as closely as possible no space shall show in the joint at the top and face of more than ½ in. for the full width of the top and for 8 in. down on the face for Type VA1 and VA4, 10 in. for VA2 and VA3, and the full depth of VA5, after which the ends may break back not over 8 in. from the plane of the joint. The arris formed by the intersection of the plane of the joint with the planes of the top and exposed faces shall have no variation from the plane of the top and exposed faces greater than ⅛ in.

B. Type VB Curb.

This type of curbstone shall have a top surface free from wind, shall be pointed, peen hammered or sawed to an approximately true plane and shall have no projections or depressions greater than 0.25 in. The front and back arris lines shall be pitched straight and true.

The front face shall be at right angles to the plane of the top, and shall be smooth quarry split, free from drill holes and with no projection of more than 1.5 in. and no depression greater than 1 in. measured from the vertical plane of the face through the arris or pitch lines for the full depth of the face.

The ends of all stones shall be square with the planes of the top and face so that when stones are placed end to end as closely as possible no space shall show in the joint at the top and face of more than ½ in. for the full width of the top and 8 in. down on the face after which the ends may break back not more than 1 ft from the plane of the joint. On pieces less than 4 ft in length, the ends shall not break back more than 9 in. The arris formed by the intersection of the plane of the joint with the planes of the top and exposed faces shall have no variation from the plane of the top and exposed faces greater than ⅛ in.

M9.04.2: Granite Edgestone

The stones for the several types of edging shall be cut to the dimensions given in Table M9.04.2-1.

<table>
<thead>
<tr>
<th></th>
<th>Type SA</th>
<th>Type SB</th>
<th>Type SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Length</td>
<td>3 ft</td>
<td>2 ft</td>
<td>1 ft</td>
</tr>
<tr>
<td>Maximum Length</td>
<td>6 ft</td>
<td>6 ft</td>
<td>6 ft</td>
</tr>
<tr>
<td>Thickness</td>
<td>5 in. to 8 in.</td>
<td>3 in. to 6 in.</td>
<td>3 in. to 6 in.</td>
</tr>
<tr>
<td>Width of Face</td>
<td>12 in.</td>
<td>11 in. to 13 in.</td>
<td>11 in. to 13 in.</td>
</tr>
</tbody>
</table>
When the edging is used on a curve of 160 ft radius or less the length shall be as directed by the Engineer except that where the edging is to be set on a radius of 10 ft the maximum length shall be 1 ft.

Finish.

Type SA Edging.

The exposed face shall be smooth quarry split to an approximately true plane having no projections or depressions which will cause over 1 in. to show between a 2-ft straight-edge and the face when the straightedge is placed as closely as possible on any part of the face.

If projections on the face are more than that specified they shall be dressed off. The top and bottom lines of the face shall be pitched off to a straight line and shall not show over 0.5 in. between stone and straightedge when straight-edge is placed along the entire length of the top and bottom lines and when viewed from a direction at right angles to the plane of the face, and for the top line only not over ½ in. when viewed from a direction in the plane of the face. The ends shall be square to the length at the face and so cut that when placed end to end as closely as possible no space shall show in the joint at the face of over ¾ in., except that where the edging is to be used on a curve having a radius of 10 ft or less the ends of the stones shall be so cut as to provide a finished joint at the face of not more than ½ in. The arris formed by the intersection of the plane of the face with the plane of the end joint shall not vary from the plane of the face or the plane of the joint more than ¼ in. Drill holes may show on the exposed face but only along the bottom edge. The sides shall not be broken under the square more than 4 in. and the side adjacent to the grass shall not project over 1 in.

Type SB Edging.

The exposed face shall be smooth quarry split to an approximately true plane having no projections or depressions which will cause over 1 in. to show between a 2 ft straight-edge and the face when the straight-edge is placed as closely as possible on any part of the face.

If projections on the face are more than that specified they shall be dressed off. The top and bottom lines of the face shall be pitched off to a straight line and shall not show over 1 in. between stone and straight-edge when straight-edge is placed along the entire length of the top and bottom lines and when viewed from a direction at right angles to the plane of the face, and for the top line only not over 1 in. when viewed from a direction in the plane of the face. The ends shall be square to the length at the face and so cut that when placed end to end as closely as possible, no space shall show in the joint at the face of over 1.5 in., except that where the edging is to be used on a curve having a radius of 10 ft or less the ends of the stones shall be so cut as to provide a finished joint at the face section of not more than ½ in. The arris formed by the intersection of the plane of the face with the plane of the end joint shall not vary from the plane of the face or the plane of the joint more than ¼ in. Drill holes not more than 3.5 in. in length and ½ in. in depth will be permitted. The sides shall not be broken under the square more than 4 in. and the side adjacent to the grass shall not project over 1 in.

Type SC Edging.

The exposed face shall be smooth quarry split to an approximately true plane having no projections or depressions which will cause over ½ in. to show between a 2 ft straight-edge and the face when the straightedge is placed as closely as possible on any part of the face. If projections on the face are more than that specified they shall be dressed off. The top and bottom lines of the face shall be
pitched off to a straight line and shall not show over 1 in. between stone and straight-edge when straight-edge is placed along the entire length of top and bottom lines and when viewed from a direction at right angles to the plane of the face, and for the top line only, not over 1 in. when viewed from a direction in the plane of the face. The ends shall be square to the length at the face and so cut that when placed end to end as closely as possible no space shall show in the joint at the face of over 1.5 in., except that where the edging is to be used on a curve having a radius of 10 ft or less the ends of the stones shall be so cut as to provide a finished joint at the face of not more than ½ in. The arris formed by the intersection of the plane of the face with the plane of the end joint shall not vary from the plane of the face more than ¼ in. Drill holes not more than 3.5 in. in length and ½ in. in depth will be permitted. The sides shall not be broken under the square more than 4 in. and the side adjacent to the grass shall not project over 1 in.

M9.04.4: Stone for Stone Masonry Walls

Stone for stone masonry walls shall consist of sound durable blasted or field stone free from seams, cracks and other structural defects and of an approved and satisfactory quality and shape.

The stone shall consist of angular blasted or field stones having straight edges without re-entrant angles. The faces shall be flat but not necessarily rectangular in shape.

Individual stone shall have, when set in the wall, no face dimension less than 8 in. Stretchers shall have a depth in the wall at least 1.5 times the rise, and a length on the face at least twice the rise. Headers shall have a length on the face at least equal to the rise. Headers shall hold in the heart of the wall the same size as shown on the face and shall extend at least 12 in. more than the stretchers into the backing.

M9.04.5: Granite Curb Inlets

The granite for curb inlet shall conform to M9.04.0: Curb and Edging. It shall have a horizontal bed and the top shall be free from wind. The stone shall be sown or peen hammered on top and the front and back edges shall be pitched true to line. The back face for a distance of 3 in. down from the top shall have no projection greater than 1 in. The front face shall be straight split, free from drill holes, and it shall have no projection greater than 1 in or depression greater than 0.5 in. for a distance of 10 in. down from the top, and for the remaining distance there shall be no depression or projection greater than 1 in. The ends shall be squared with the top for the depth of the face finish and so cut that the curb inlet can be set with joints of not more than ½ in.

The granite curb inlet shall be 6 ft in length ±½ in., from 17 to 19 in. in depth, 6 in. wide at the top and at least 6 in. wide at the bottom.

Curb inlets to be set on a radius of 160 ft or less shall be cut to the curve required, unless otherwise directed by the Engineer. The joints of all curved curb inlets shall be cut on radial lines.

A gutter mouth at least 3 in. in depth and at least 2 ft in length shall be cut in the front face of the stone as shown on the plans.

Granite curb inlets shall match the adjacent curbing in color.

M9.04.6: Granite Curb Corners

The granite for curb corners shall conform to M9.04.0: Curb and Edging and shall have horizontal beds. They shall match the adjacent curbing in size, color and quality. The front arris lines shall extend through one-quarter of a circle having a radius of 2 ft or 3 ft respectively for Type A or Type B Curb Corner. The back arris line shall be straight. The plane of back shall be normal to top.

M9.04.8: Granite Bounds

Granite bounds shall be of sound granite, the top and bottom faces parallel and the front and back shall be straight split. The bounds shall be cut to the dimensions shown on the plans and shall be plain or lettered as indicated on the plans or as directed.

The stone shall be pointed on the top and on three sides and hammer dressed on the face for a distance of not less than 12 in. below the top. The top shall be 6 in. square and shall have a drill hole in the center 1.5 in. in depth and ½ in. in diameter, with the bottom somewhat flared.

M9.04.9: Dry Stone Masonry

Stone for dry stone masonry shall be hard and durable and free from seams or other imperfections and of an approved quality and shape. No stone shall be less than 6 in. in its least dimension. The stone shall be roughly square on joint beds and faces.

M9.05.0: Lumber and Wood Sheeting

Lumber and Wood Sheeting shall be sound Spruce, Douglas fir, white or yellow Lodgepole or Ponderosa pine, or western hemlock plank, planed on one side and either tongue and grooved or splined. Lumber sheeting shall not be less than nominal 4 in. thick. Wood sheeting shall not be less than nominal 2 in. thick.

M9.05.1: Wood Products

Timber shall conform to the requirements of AASHTO M 168, Wood Products, Structural Timber, Lumber, and Piling.

Preservative treatment shall meet the requirements of M9.05.5: Wood Preservatives.

M9.05.5: Wood Preservatives

Preservative treatment shall meet the requirements of AASHTO M 133 and AWPA U1, except that only preservative materials meeting current EPA or DEP regulations will be allowed.

Certificates of compliance and certificates of inspection bearing the independent inspection agencies verification for each lot of wood must be presented before installation and contain the species of wood, the type of preservative, the retention rate and penetration of the preservative.

M9.05.6: Timber Piles

A. **General Requirements.**

Timber piles shall conform to the requirements of ASTM D25 and shall be cut from sound and live trees, preferable during the winter season. Piles shall be free from any defects which will impair their strength or usefulness for the purpose intended or that will prevent proper driving.
Untreated timber piles shall have the bark unpeeled. Treated timber piles shall be clean-peeled so that all of the outer bark and at least 95% of the inner bark well distributed over the outer surface of the pile shall be removed.

All piles shall be cut above the ground swell, shall have a uniform taper from bun to tip end, and shall be free from short kinks. Knots or blemishes shall be trimmed off close and even with the body of the pile. A line from the center of the bun to the center of the tip must lie wholly within the body of the pile.

B. Inspection.

All piles will be subject to inspection before or after shipment to the site, or both, at the option of the Engineer. Any pile that does not conform to all the requirements will be rejected.

C. Specific Requirements.

All treated piles shall have not less than 1 in. of sapwood at any point on the butt end for Douglas-fir and not less than 2 in. of sapwood at any point on the butt end for Southern Pine.

Treated timber piles shall be Douglas-fir treated with ACZA or Southern Yellow Pine treated with CCA-C in accordance AWPA U1. Treated timber piles used in a marine environment shall be Southern Yellow Pine or Douglas-fir treated with creosote in accordance with AWPA U1. Certificates of compliance and certificates of inspection bearing the independent inspection agencies verification for each lot of wood must be presented before installation and contain the species of wood, the type of preservative, the retention rate and penetration of the preservative.

Butt and tip dimension for various lengths of piles shall be as set forth in the following table:

<table>
<thead>
<tr>
<th>Length</th>
<th>Minimum Dimension 3 ft from Butt</th>
<th>Minimum Tip Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 40 ft</td>
<td>12 in.</td>
<td>8 in.</td>
</tr>
<tr>
<td>40 ft and up to 50 ft</td>
<td>12 in.</td>
<td>7 in.</td>
</tr>
<tr>
<td>50 ft and over</td>
<td>13 in.</td>
<td>6 in.</td>
</tr>
</tbody>
</table>

For all piles the maximum dimension 3 ft from the butt shall be 20 in. Measurements are under the bark in all cases. Where the piles are to support a concrete cap, the maximum butt dimensions shall be 6 in. less than the designated width of the concrete cap.

Where piles are to be in line in a bent, all piles in the bent shall be of uniform size to permit the proper fastening of the bracing. Cutting of piles to accommodate the bracing will not be permitted.

M9.06.0: Waterproof Paper Covers

Waterproof paper covers shall conform to the requirements of ASTM C171. The name of the manufacturer shall be marked or imprinted clearly on the paper for proper identification.
M9.06.1: Polyethylene Covers

A. Black Polyethylene Sheeting.

Black polyethylene sheeting suitable for use in covering storage piles of bulk or bag salt, or sand piles which have been blended with salt shall meet the requirements of NBS Product Standard PS-17.

The covers shall be 8 mils in thickness, black in color and contain suitable inhibitors to prevent deterioration due to sunlight and heat.

The sheeting shall be 40 ft in width and 100 ft in length. It shall be folded when packaged into rolls, so that the shipping width is not greater than 10 ft.

B. White Polyethylene Sheeting.

This material shall conform to the requirements of ASTM C171.

C. Reinforced Polyethylene Sheeting.

Reinforced Polyethylene Covers for stockpiles of salt and treated sand shall be reinforced with non-woven nylon or rayon cord, shall have a minimum tear strength of 110 lb in all directions, and shall weigh no less than 20 lb per 1,000 ft². They shall be black in color. The material shall be free from any additive which would reduce its resistance to water penetration or adversely affect the durability of the film. The covers shall contain suitable inhibitors to prevent deterioration due to sunlight and heat. They shall be 40 ft in width and 100 ft in length. They shall be folded when packaged into rolls, so that the shipping width is not greater than 10 ft.

M9.06.2: Tar Paper

Tar impregnated felted paper shall conform to the requirements of ASTM D227.

M9.06.3: Burlap

Burlap shall conform to the requirements of AASHTO M 182, Class 3. It shall not have been used as a container for sugar or other substances deleterious to concrete and shall be in good condition, free from holes, tears, or other defects that would render it unsuitable for curing concrete. It shall be furnished in strips not less than 3 ft nor more than 6 ft in width and not more than 2.5 ft longer than the width of the pavement slab.

M9.06.4: Polyethylene Coated Burlap

The material shall conform to the requirements of ASTM C171.

M9.06.5: Impervious Liquid Membrane

This material shall consist of an impervious liquid conforming to the requirements of ASTM C1315, Type 1 or 2. When tested in accordance with AASHTO T 155, the liquid membrane forming compound shall restrict the loss of water present in the test specimen at the time of application of the curing compound to not more than 0.055 g per cm² of surface after 3 days. When Type I is specified, it shall contain a fugitive dye.
M9.07.0: Plastic Waterstops

Waterstops shall be fabricated from a plastic compound, the basic resin of which shall be polyvinyl chloride. The compound shall contain any additional resins, plasticizers, inhibitors or other materials such that when compounded it shall meet the performance requirements hereinafter specified. No reclaimed polyvinyl chloride shall be used.

Waterstops shall be extruded in such a manner that any cross section shall be dense, homogenous and free from porosity or other imperfections. The cross section of waterstops shall be as shown on Department Standard Sketches.

Physical Requirements.

The waterstops shall meet the following requirements:

1. **Tensile Strength, Die C, ASTM D412** .. Minimum 2,000 psi
2. **Ultimate Elongation, Die C, ASTM D412** ... Minimum 250%
3. **Cold Bend Test (See Appendix I)** .. No Cracking
4. **Impact Resistance (See Appendix II)** ... No Cracking
5. **Resistance to Alkalis (See Appendix III)** .. No Cracking
 - Increase in weight after 7 days .. Maximum 0.25%
 - Increase in weight after 30 days .. Maximum 0.40%
 - Decrease in weight after 7 days ... Maximum 0.10%
 - Decrease in weight after 30 days .. Maximum 0.30%
 - Change in dimensions after 30 days .. Maximum 1.00%
6. **Hardness Durometer (Shore A) ASTM D2240** 75 ± 5
7. **Water Absorption (48 hr) ASTM D570** ... Maximum 0.5% (by weight)

General Requirements.

The waterstops shall be spliced only at jointing made necessary by construction design.

Where joints are required, they shall be made in accordance with the manufacturer’s instructions, without appreciable loss in strength, elasticity or permeability of the material.

The waterstop material shall be practically impervious to water and unaffected by most common acids, alkalis, sea water and mineral oils. The material shall be such that it will not engage in electrolytic action with steel, and will not discolor concrete.

The approved waterstop when properly installed, as in a concrete construction or expansion joint, shall be capable of maintaining a head of 75 ft of water without leakage.

Qualification Samples.

A manufacturer requesting approval of a waterstop shall furnish to RMS a 3-ft length of each type of waterstop they intend to supply and a COA shall be furnished with the samples. The certificate shall state that the material furnished conforms without exception to all the requirements specified herein; and shall also include all qualitative and quantitative test results.
M9.08.0: Preformed Sheet Membrane

Only products pre-approved by the Department will be accepted for use. Chemical composition, physical properties and dimensional requirements of the sheet membrane shall conform to the manufacturer’s specifications for the material.

All accessory materials; such as, flashing, primer, etc., used in the application of the sheet membrane will be considered a part of this specification and shall conform to the manufacturer’s requirements.

M9.10.0: Jointing Materials for Pipes

A. Jute or oakum furnished for use in pipe joints shall be of an accepted grade approved for common usage.
B. Mortar shall conform to the requirements of M4.02.15: Cement Mortar.
C. Rubber ring or plastic gaskets, shall be of tough, flexible, chemical-resistant material, and of such size and shape as to ensure satisfactory pipe joints when incorporated in the work and shall conform to ASTM C443.
D. Mechanical joints shall conform to the requirements of the ASA Specifications A21.11.
E. The yarning material for cast iron bell-and-spigot pipe joints shall be sterilized braided hemp or untarred twisted jute, clean and dry and free from oil, grease, or any other deleterious matter.
F. Clay pipe may also be joined using pipe having factory-cast mating collars of bituminous or plastic resilient materials. These collars shall be of approved bituminous materials with demonstrated ability to make tight joints, of plastic-resilient materials conforming to ASTM C425. Prior to jointing, bituminous joints shall be treated with a satisfactory non-oily solvent; plastic-resilient joints shall be treated with a satisfactory lubricant-adhesive, each supplied by the manufacturer.

M9.11.0: Insulation and Waterproof Jackets

Where water pipe is installed or hung on structures, it shall be covered with insulation conforming to the following requirements:

The insulating material shall be fiberglass, cellular glass, expanded polystyrene, or urethane, and shall be covered with a waterproof jacket as specified. Section lengths and thickness shall depend on the pipe size and the recommendations of the insulation manufacturers. Under no conditions shall the minimum total thickness be less than 3 in., except when urethane is the insulating material and then the total thickness shall be no less than 2 in. Unless the type of insulating material is specified the Contractor may use any one of the foregoing. However, only one type of insulating material shall be used throughout an installation.

M9.11.1: Cellular Glass

Cellular glass insulation shall conform to the requirements of Federal Specification, HH-1-551, Insulation Block and Pipe Covering, Thermal Cellular Glass or revisions thereof.

The following installation accessories shall be part of this specification:

a) Stainless steel strapping, ¾ in. x 0.015 in. and stainless steel clips.
b) Asphalt coated glass fabric, 20 x 20 mesh conforming to M3.06.1: Coated Glass Fabric.
M9.11.2: Fiberglass

Fiberglass insulation shall conform to the requirements of Federal Specification, HH-1-562, Insulation, Thermal, Mineral Wool, Block or Board and Pipe Insulation (Molded Type) Type II, Class 2 and 3, or revisions thereof.

The following installation accessories shall be part of this specification:

a) 1-in. galvanized wire netting.

b) Corrugated aluminum jacket, 0.02 in. thick.

M9.11.3: Polystyrene

Expanded polystyrene insulation shall conform to the requirements of Federal Specification, HH-1-524, Insulation Board, Thermal, Type I, Class 2 or revision thereof.

The following installation accessories shall be part of this specification:

a) Stainless steel strapping, ¾ in. x 0.015 in. and stainless steel clips.

b) Corrugated aluminum jacket, 0.02 in. thick with integral vapor barrier.

c) A suitable polystyrene adhesive.

d) Asphalt coated-glass fabric, 20 x 20 mesh conforming to M3.06.1: Coated Glass Fabric.

M9.11.4: Urethane

Urethane insulation shall conform to the requirements of Federal Specification, HH-1-00530, Insulation Board, Thermal (Urethane), Type II, Class 2 or revisions thereof.

The following installation accessories shall be part of this specification:

a) Stainless Steel Strapping ¾ in. x 0.015 in. and stainless steel clips.

b) Corrugated aluminum jacket 0.02 in. thick with integral vapor barrier.

c) A suitable urethane adhesive.

d) Asphalt coated glass fabric, 20 x 20 mesh conforming to M3.06.1: Coated Glass Fabric.

M9.11.5: Waterproof Jackets

Waterproof jackets for covering insulation on water pipes shall be assembled as specified from any of the following materials or combinations thereof.

a) Asphalt coated glass fabric, 20 x 20 mesh conforming to M3.06.1: Coated Glass Fabric.

b) Stainless steel strapping, ¾ in. x 0.015 in. and stainless steel clips.

c) 1-in. galvanized wire netting.

d) Corrugated aluminum jacket, 0.02 in. thick.

e) Corrugated aluminum jacket, 0.02 in. thick with integral vapor barrier.

f) A polystyrene adhesive.

g) A urethane adhesive.

M9.12.0: Reflectors for Barriers

An oversized yellow reflectorized cluster, diamond shape 24 in. x 24 in., and a 28-in. x 22-in. x ¾-in. thick plywood panel shall be bolted onto barrier as directed.
III.130 2020 Edition

The yellow reflectorized cluster (Type H1-2) shall conform to the requirements of Section 2D of the MUTCD and the approved standard detail sheets.

The 28-in. x 22-in. panel shall be ¾-in. exterior type (Grade A-A, Commercial Standard PS-1).

M9.13.0: Hydrated Lime

Hydrated Lime shall consist of a minimum of 95% calcium and magnesium oxides, pulverized so that at least 99.5% will pass a No. 30 sieve and at least 85% pass a No. 200 sieve.

M9.14.0: Preformed Expansion Joint Filler

This specification covers non-extruding and resilient non-bituminous types of preformed expansion joint fillers and shall conform to AASHTO M 153.

M9.14.1: Preformed Compression Joint Seals (Bridges)

This specification covers the materials requirements for preformed polychloroprene elastomeric joint seals for bridges. The seal consists of a multiple-web design composed of polychloroprene and functions only by compression of the seal between the faces of the joint with the seal folding inward at the top to facilitate compression. The seal is installed with a lubricant adhesive and is designed to seal the joint and reject incompressibles. The compression seal and the lubricant-adhesive shall conform to AASHTO M 297.

M9.14.2: Closed Cell Foam Joint Filler

This specification covers the requirements for closed cell foam used as a joint filler between different components of bridges and walls. Closed Cell Foam Joint Filler shall have a compact closed cell structure composed of synthetic isomeric polymers and shall be gray in color. It shall offer sufficient heat resistance so that it is compatible with hot applied sealing compounds. Closed Cell Foam Joint Filler shall meet the requirements of Section 5.1 through 5.4 of ASTM D1752, with the compression requirement modified to 10 psi minimum to 25 psi maximum. Typical physical properties, as determined using test method ASTM D545, shall be as follows:

- **Compression, 50%** ... 13 psi
- **Extrusion** ... 0.1 in.
- **Recovery** .. 99.21%
- **Water Absorption, Volume** .. 0.246%

The Contractor shall provide certified test data which documents compliance with the required physical properties. The certified test data shall be submitted to the Engineer for approval.

M9.14.3: Polyurethane Joint Sealer

This specification covers the requirements for a cold applied, two component, elastomeric joint sealing compound suitable for use as a joint sealer and/or caulking compound on joints in Portland cement concrete or steel surfaces. This material shall meet ASTM C920.

M9.14.4: Polyurethane Joint Sealer, Non-Sag

This specification covers the requirements for a cold applied, single component elastomeric joint sealing compound for sealing, caulking vertical joints on bridges and other structures. This material shall meet ASTM C920.
M9.14.5: Elastomeric Bridge Bearing Pads

Elastomeric bearing pads shall consist of plain pads (consisting of elastomer only) and laminated bearings (consisting of layers of elastomers restrained at their interfaces by bonded metal laminates). The elastomeric compound shall be composed of 100% low temperature Grade 3 virgin crystallization resistant polychloroprene (neoprene) meeting the requirements of AASHTO M 251 and Division II, Section 18 of the AASHTO Standard Specifications for Highway Bridges. The type of bearing (plain or laminated), hardness, dimensions, design compressive load, design compressive stress, and whether the bearings are subject to shear deformation shall be as specified on the Plans. All bearings shall be tested by a nationally recognized testing laboratory approved by the Engineer to ensure compliance with all applicable requirements of AASHTO M 251.

The Contractor shall provide the Department with written notification 30 days prior to the start of bearing production. The notification shall include the contract number, quantity, type, and size of bearing being produced, manufacturer's name, and the representative who will coordinate production, inspection, sampling, and testing with the Department. At least 30 days prior to the scheduled date of beam erection, the Contractor shall deliver to the job site all bearings called for on the plans plus one additional elastomeric bearing pad of each size and type identified on the Plans. Certified test result data that demonstrates compliance with all applicable requirements of AASHTO M 251 shall also be provided to the Engineer at least 30 days prior to the scheduled date of beam erection. One elastomeric bearing pad of each size and type identified on the Plans shall be randomly sampled from the job site by the Engineer for additional destructive testing at least 30 days prior to the scheduled date of beam erection. No beams shall be erected until the bearings have been accepted by the Engineer.

All components of the elastomeric bearing pad shall be molded together as an integral unit and all surfaces of the steel laminations shall be covered with a minimum of $\frac{3}{16}$ in. of elastomer. The finished pads shall be free of cuts, blemishes, and molding defects. All bearings that are delivered to the job site with exposed steel laminations are rejected. All imperfections or exposed laminations that result in either less than $\frac{3}{16}$ in. of elastomer cover over any surface of the steel laminations shall be repaired by the manufacturer at the point of manufacture. The repair shall consist of sealing the imperfections flush on the finished pad with a bonded vulcanized patch material compatible with the elastomeric bearing pad. Repairs employing caulking type materials or repairing the bearings in the field shall not be permitted.

M9.14.6: Bonded Closed Cell Joint System

The joint seal shall be composed of either closed cell cross linked ethylene vinyl acetate polyethylene copolymer or of closed cell polychloroprene (neoprene). The joint seal shall feature grooves or ribs which run the full length of the joint. The joint seal shall be bonded to the concrete surfaces on each side of the joint using a two-component epoxy based adhesive.

The joint seal shall have the following typical physical properties:

- **Tensile Strength, (ASTM D412)** ... 115 psi, Minimum
- **Elongation @ Break (ASTM D3575)** 200%, Minimum
- **Water Absorption, Volume %** ... 5%, Maximum

The two-component epoxy based adhesive shall conform to ASTM C881, Type I & II, Grade 2, Class B & C, and shall have the following physical properties:
Tensile Strength, (ASTM D638) 3,500 psi, Minimum
Compressive Strength ... 7,000 psi, Minimum
Bond Strength .. 430 psi, Minimum

The Contractor shall provide certified test data which documents compliance with the required physical properties. The certified test data shall be submitted to the Engineer for approval.

M9.15.0: Liquid Penetrant/Sealant

Liquid penetrant/sealant for Portland cement concrete surfaces used to protect concrete surfaces from chloride intrusion shall be a material previously approved by the Department for the purpose intended and listed on the QCML.

M9.16.1: Rubber-Cotton Duck Bearing Pad

The bearing pads shall be manufactured of all new (unused) materials and composed of multiple layers of prestressed duck, 8.1 oz per net square yard, duck warp count 50 ±2 threads per inch and filling count 40 ± threads per inch, 64 plies per inch of finished pad thickness, impregnated and bound with a high quality rubber compound, containing rot and mildew inhibitors and anti-oxidants, compounded into resilient pads of uniform thickness.

The pads shall withstand compressive loads perpendicular to the plane of laminations of not less than 10,000 psi before breakdown. Load deflection properties in accordance with procedures of MIL-C-882 shall be the following maximum percentages of total pad thickness: 10% at 1,000 psi, 15% at 2,000 psi. When loaded to 1,500 psi, permanent set as load is removed in accordance with procedures of MIL-C-882 shall be a maximum of 2.5% of the original “zero point” thickness. Shore Durometer shall not be less than 85 nor more than 95. The ratio of lateral expansion to vertical deflection shall not exceed 0.25 when loaded to 1,500 psi. The material shall not lose effectiveness throughout a temperature range of -65°F to +200°F. No visual evidence of damage or deterioration by environmental effects of sunshine, humidity, salt spray, fungus, and dust in accordance with MIL-E-5272. Thickness shall be as shown on drawings within tolerances of ±5%.

M9.16.2: Molded Fabric Bearing Pad

The preformed pads shall consist of a fabric and rubber body.

The pad shall be made with new unvulcanized rubber and unused fabric fibers in proper proportion to maintain strength and stability.

The surface hardness expressed in standard rubber hardness figures shall be 80 Shore A Durometer ±10 durometer average, the ultimate breakdown limit of the pad under compression loading shall be no less than 7,000 psi for the specified thickness without extrusion or detrimental reduction in thickness.

The pads shall be furnished to specified dimensions with all bolt holes accurately located.

M9.17.0: Asphaltic Binder for Asphaltic Bridge Joint System

The thermoplastic polymeric modified asphalt binder shall conform to physical properties based on the designated ASTM testing methods found in Table M9.17.0-1.
Table M9.17.0-1: Physical Properties of Asphaltic Binder for Asphaltic Bridge Joint Systems

<table>
<thead>
<tr>
<th>Test</th>
<th>ASTM Test Method</th>
<th>Required Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softening Point</td>
<td>D36</td>
<td>180°F minimum</td>
</tr>
<tr>
<td>Tensile Adhesion</td>
<td>D5329</td>
<td>700% minimum</td>
</tr>
<tr>
<td>Ductility at 77°F</td>
<td>D113</td>
<td>400 mm minimum</td>
</tr>
<tr>
<td>Penetration at 77°F, 150 g, 5 sec.</td>
<td>D3407</td>
<td>7.0 mm maximum</td>
</tr>
<tr>
<td>Flow, 5 hours at 140°F</td>
<td>D3407</td>
<td>3.0 mm maximum</td>
</tr>
<tr>
<td>Resiliency at 77°F</td>
<td>D3407</td>
<td>70% maximum</td>
</tr>
<tr>
<td>Asphalt Compatibility</td>
<td>D3407</td>
<td>Pass</td>
</tr>
<tr>
<td>Low Temperature Penetration at 0°F, 200g, 60 sec.</td>
<td>D5 with cone*</td>
<td>1.0 mm minimum</td>
</tr>
<tr>
<td>Flexibility at -10°F</td>
<td>D5329</td>
<td>Pass</td>
</tr>
<tr>
<td>Bond 3 Cycles at -20°F, 50% Elongation</td>
<td>D3405</td>
<td>Pass</td>
</tr>
<tr>
<td>Bond 3 Cycles at 0°F, 100% Elongation</td>
<td>D3405</td>
<td>Pass</td>
</tr>
<tr>
<td>Recommend Installation Range</td>
<td></td>
<td>360°F to 390°F</td>
</tr>
<tr>
<td>Safe Heating Temperature Range</td>
<td></td>
<td>390°F to 420°F</td>
</tr>
</tbody>
</table>

* Use Method D5; however replace the standard penetration needle with a penetration cone conforming to the requirements given in Test Method D217, except the interior construction may be modified as desired. The total moving weight of the cone and attachments shall be 150.0 g ± 0.10.

M9.17.1: Aggregate for Asphaltic Bridge Joint System

The aggregate shall be granite, basalt or gabbro. The aggregate shall be selected, crushed, processed, double-washed and dried at the source. It shall be delivered to job site in prepackaged waterproof containers. The supplier shall certify the above requirements are met.

The aggregate shall be made available in ¾-in., ½-in. and ⅜-in. sizes and shall meet gradation requirements specified by the manufacturer for the joint system.

M9.17.2: Backer Rod

The backer rod shall be closed cell foam expansion joint filler, compatible with polymeric binder and the elevated temperatures of the polymeric binder application. The size of the backer rod shall be in accordance with the manufacturer’s recommendations for the gap width.

The backer rod shall meet ASTM D1752 and have the following typical physical properties using a ½ in. specimen and the test method ASTM D545:

- Compression, 50%: 13.3 psi
- Extrusion: 0.1 in.
- Recovery: 99.21%
- Water Absorption, Volume: 0.246%
M9.17.3 Bridge Plate for Asphaltic Bridge Joint System

The bridge plate shall be AASHTO M 270M/M 270 Grade 36 steel, minimum width and thickness of 8 in. x 0.25 in. and shall be galvanized in accordance with AASHTO M 111M/M 111. Holes for the locating pins shall be 12 in. on center. Locating pins shall be 16d common nails or larger, hot dipped galvanized.

M9.17.4: Neoprene Seals

Neoprene seals shall be composed of flexible, non-reinforced, extruded neoprene compound exhibiting the physical properties listed in Table M9.17.4-1. All neoprene seals shall incorporate a matching locking lug that mechanically snaps into the corresponding extrusion shape cavity to ensure watertightness and proper joint performance. All mitering and/or splicing of the neoprene seal shall be performed under controlled conditions at the place of manufacturer. The neoprene seal shall be supplied and installed in one continuous length without field splices.

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>ASTM D412</td>
<td>2,000 psi</td>
</tr>
<tr>
<td>Tensile Strength, Elongation at Break</td>
<td>ASTM D412</td>
<td>250%, minimum</td>
</tr>
<tr>
<td>Hardness, Durometer Type A</td>
<td>ASTM D2240 Modified</td>
<td>50 to 60</td>
</tr>
<tr>
<td>Oven Aging, 70 hours at 212°F:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of Tensile Strength</td>
<td>ASTM D573</td>
<td>20% loss maximum</td>
</tr>
<tr>
<td>Loss of Elongation</td>
<td>ASTM D573</td>
<td>20% loss maximum</td>
</tr>
<tr>
<td>Maximum Change in Hardness</td>
<td>ASTM D573</td>
<td>-0 to +10 points</td>
</tr>
<tr>
<td>Oil Swell, ASTM Oil #3, 70 hours at 212°F</td>
<td>ASTM D471</td>
<td>45% maximum weight increase</td>
</tr>
<tr>
<td>Low Temperature</td>
<td>ASTM D746</td>
<td>Not Brittle</td>
</tr>
<tr>
<td>Ozone Resistance, 70 hours at 104°F, 20% elongation, 300 pphm, in air, Wipe Surfaces to Remove Contamination</td>
<td>ASTM D1149</td>
<td>No Cracks</td>
</tr>
<tr>
<td>Low Temperature Stiffening, 7 days at 14°F, Hardness, Durometer Type A</td>
<td>ASTM D2240</td>
<td>0 to +15 points change</td>
</tr>
<tr>
<td>Compression Set, 70 hours at 212°F</td>
<td>ASTM D395 Method B</td>
<td>40% maximum</td>
</tr>
</tbody>
</table>

M9.30.0: Retroreflective Sheeting

This specification covers retroreflective sheeting designed to reflectorize traffic control signs, delineators, barricades, and other devices. All retroreflective sheeting shall meet the requirements of ASTM D4956 and AASHTO M 268, and as listed below:
Table M9.30.0-1: Retroreflective Sheeting Requirements

<table>
<thead>
<tr>
<th>Retroreflective Sheeting Application</th>
<th>Allowable Retroreflective Sheeting Classification(s) per ASTM D4956</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A Permanent Sign Panels (per Subsection 828.42: Panels)</td>
<td>Type IV</td>
</tr>
<tr>
<td>Temporary Rigid Sign Panels (flat panel aluminum or plywood substrate)</td>
<td>Type IV, Type VIII, Type IX</td>
</tr>
<tr>
<td>Temporary Roll-Up Signs</td>
<td>Type VI</td>
</tr>
<tr>
<td>Type B Sign Panels (per Subsection 828.42: Panels)</td>
<td>Type VII, Type IX, Type XI</td>
</tr>
<tr>
<td>Traffic Cones</td>
<td>Type VI</td>
</tr>
<tr>
<td>Reflectorized Drums</td>
<td>Type IV, Type VIII, Type IX</td>
</tr>
<tr>
<td>Portable Breakaway Barricades Type III</td>
<td>Type IV, Type VIII, Type IX</td>
</tr>
<tr>
<td>Flexible Delineator Posts</td>
<td>Type IV, Type V, Type VIII, Type IX</td>
</tr>
<tr>
<td>Guardrail End Treatments</td>
<td>Type VIII, Type IX</td>
</tr>
<tr>
<td>Guardrail Terminal Delineators</td>
<td>Type IV, Type VIII, Type IX</td>
</tr>
<tr>
<td>Demountable Reflectorized Delineator, Guard Rail</td>
<td>Type VIII, Type IX</td>
</tr>
<tr>
<td>Impact Attenuator Delineators</td>
<td>Type IV, Type VIII, Type IX</td>
</tr>
</tbody>
</table>

Sheeting shall only be applied to a substrate that is recommended by the sheeting manufacturer.

M9.30.3: Acrylic, Prismatic Reflectors and Embossed Aluminum Frames for Signs

Shall meet the requirements of AASHTO M 290.

M9.30.4: Acrylic Plastic 3.25 Inch Diameter Center-Mount Reflectors

Acrylic plastic 3.25 in. diameter center-mount reflectors shall be a material previously approved by the Department for the purpose intended and listed on the QTCE.

M9.30.6: Temporary Raised Pavement Markers

Temporary raised pavement markers shall consist of a durable plastic or another type of durable material and have the following characteristics.

- Color: (ASTM D1535) White or Yellow.
- Dimensions are to be at least 4 in. wide and a minimum reflective area of 1.5 in.² of retroreflective sheeting meeting M9.30.0, Type C.
- Markers shall contain one way or two way retro reflective faces as required by the Engineer.

Markers shall provide daytime delineation and shall adhere to HMA or PCC surfaces using adhesives and/or methods recommended by the manufacturer. Markers shall be removable from HMA and PCC pavements without the use of heat, solvents, grinding or blasting. After removal, permanent marks, scars or damage to the pavement surface shall be minimal, free from dirt or any other contaminants.
M9.30.7: Guardrail Delineator

Guardrail delineators shall be fabricated from galvanized steel having a minimum coating thickness of 0.9 oz per square foot, polycarbonate plastic or thermoplastic and shall allow a minimum of 8 in.\(^2\) of retroreflective sheeting per face, conforming to M9.30.0: Retroreflective Sheeting.

Guardrail delineators shall be shaped to fit in the valley of the W shape. Circular holes shall be used for the bolt connecting the delineator to the W beam. Adhesive connections shall not be allowed.

M9.30.8: ReflectORIZED Flexible Delineator Post

ReflectORIZED Flexible Delineator Posts shall be used as directed for delineation of roadways and ramps. Only those products previously approved for the purpose intended and listed on the QTCE may be used.

M9.30.9: ReflectORIZED Drum

ReflectORIZED drums shall be plastic and shall meet the requirements of the MUTCD.

Retroreflective sheeting for drums shall meet the requirements of M9.30.0: Retroreflective Sheeting and be 6 in. wide.

ReflectORIZED drums are listed on the QTCE.

M9.30.10: Guardrail Termini Delineator

Guardrail termini delineators shall be fabricated in accordance with the Plans. The panel shall consist of Type A aluminum sign panel. RetroreflectORIZEDed sheeting shall conform to M9.30.0: Retroreflective Sheeting.

M9.30.11: Traffic Cones

Traffic cones shall be orange in color, 36 in. tall and with retroreflective sheeting collars that conform to M9.30.0.

Traffic cones are listed on the QTCE.

M9.40.0: Drilling Slurry

Drilling slurry shall conform to one of the following specifications. Reports of all required tests shall be furnished to the Engineer upon completion of each drilled shaft.

Mineral Slurry.

Mineral slurry shall be premixed thoroughly with water and adequate time, as prescribed by the manufacturer, shall be allotted for hydration prior to introduction into the shaft hole. Slurry tanks of adequate capacity are required for slurry circulation, storage, and treatment. Control tests shall be performed on the mineral slurry by the Contractor to determine density, viscosity, sand content and pH. Properties of mineral slurry (Bentonite or Attapulgite) in water shall meet the range of values found in Table M9.40.0-1.
Table M9.40.0-1: Physical Properties of Mineral Slurry

<table>
<thead>
<tr>
<th>Property</th>
<th>Value Required</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density*</td>
<td>64 to 75 pcf</td>
<td>Mud Density API 13B-1 Section 1</td>
</tr>
<tr>
<td>Viscosity</td>
<td>26 to 50 s per qt</td>
<td>Marsh Funnel and Cup API 13B-1 Section 2.2</td>
</tr>
<tr>
<td>pH</td>
<td>8 to 11</td>
<td>Glass Electrode, pH Meter, or pH Paper</td>
</tr>
<tr>
<td>Sand Content</td>
<td>4.0% by volume maximum</td>
<td>Sand Content API 13B-1 Section 5</td>
</tr>
</tbody>
</table>

* To be increased by 2 pcf in salt water or brackish water.

Tests to determine density, viscosity and pH shall be performed during shaft excavation to establish a consistent working pattern. Four sets of tests shall be made during the first 8 hr of slurry use. When the results show consistent behavior, one set of testing shall be made every 4 hr of slurry use thereafter.

Water Slurry.

The use of water slurry without full length steel casings will only be allowed if approved in writing by the Engineer. In that case, all of the properties of mineral slurry shall be met, except that the maximum density shall not exceed 70 pcf. Mixtures of water and on-site soils shall not be allowed for use as a drilling slurry, since particulate matter falls out of suspension easily and can contaminate the concrete.

Polymer slurry.

Natural or synthetic slurry shall have specific properties at the time of mixing and of concreting that are in conformance with the written recommendations of the manufacturer and the Contractor’s Drilled Shaft Installation Plan. The Contractor shall perform the required tests at the specified frequency and shall provide slurry that complies with the maximum and/or minimum property requirements for the subsurface conditions at the site and with the construction methods that are used. Whatever product is used, the sand content at the base of the shaft excavation shall not exceed 1% when measured by the API sand content test, immediately prior to concreting.

M9.40.1: Well casing Pipe

Well casing pipe shall conform to the requirements for welded and seamless steel pipe, ASTM A53.

M9.40.2: Water Pumps

Water pumps (jet, submersible or shallow well) shall be of a standard commercial quality. The capacity of the pump shall be such that it will be capable of discharging water at the rate and pressure for the pumping depth specified for the installation.

The motor voltage of the pump shall be compatible with the voltage available at the electrical source unless otherwise specified.

The Contractor shall submit for approval to the Engineer five days before placing any purchase orders for the water pump, accessories and electrical equipment, the name of the manufacturer, the specifications for the pump, accessories and electrical equipment that they propose to furnish.
M9.40.3: Chlorine Solution

Chlorine solution used for disinfecting springs, wells and other water systems, shall consist of a solution of water and liquid chlorine, sodium hypochlorite, calcium hypochlorite or chloride of lime.

Liquid forms of chlorine or sodium hypochlorite and powder forms of calcium hypochlorite or chloride of lime shall be used according to the instructions supplied by the manufacturer and as recommended by the DEP.

If sodium hypochlorite is already in solution as a laundry bleach containing 5.25% sodium hypochlorite, it shall be used at the rate of 1 qt per 3,000 gallons of water to be disinfected. The dosage should be sufficient to produce a chlorine taste in the water.

M9.40.4: Plastic Water Pipe, Flexible

Flexible plastic pipe shall be polyethylene plastic pipe schedule 40 or 80 suitable for the transportation of potable water and conform with the requirements of AASHTO M 258. The material grade selected shall be capable of withstanding a minimum sustained water pressure of 160 psi at 73.4°F. Unless otherwise specified or directed by the Engineer the pipe shall be inside diameter controlled. Fittings may be either nylon, copper or bronze. Clamps shall be stainless steel.

M9.40.5: Plastic Water Pipe, Rigid (PVC)

Rigid polyvinyl chloride (PVC) plastic pipe shall be suitable for transportation of potable water and conform with the requirements of AASHTO M 258. The material grade and standard pipe dimension ratio (SDR) shall be capable of withstanding a minimum sustained water pressure of 160 psi at 73.4°F. Fittings shall be PVC plastic conforming with AASHTO M 258. The burst strength of the fittings shall be not less than that of the pipe being furnished.

M9.40.6: Plastic Water Pipe, Rigid (ABS)

Rigid Acrylonitrile-Butadiene-Styrene (ABS) plastic pipe shall be suitable for the transportation of potable water and conform with the requirements of AASHTO M 258. The material grade and SDR shall be capable of withstanding a minimum sustained water pressure of 160 psi at 73.4°F. Fittings shall be ABS plastic conforming with AASHTO M 258. The burst strength of the fittings shall be not less than that of the pipe being furnished.

M9.40.7: Copper Water Tube, Seamless

Seamless copper water tube suitable for general plumbing shall conform to the requirements of AASHTO M 258. Tube material shall conform to ANSI/ASTM 888, Type k.

M9.40.8: Steel Water Pipe, Galvanized

Galvanized steel water pipe shall be the standard weight class conforming to the requirements of AASHTO M 258. Pipe material shall conform with the ASTM A120 option.

M9.50.0: Geotextile Fabrics

Geotextile fabric used for subsurface drainage, separation, stabilization, permanent erosion control, temporary silt fences, or paving fabric shall conform to requirements of AASHTO M 288 for the intended application.
APPENDIX A:
AMENDMENTS TO PREVIOUS VERSIONS
NOTES

For reference only, the following changes have been approved by the Department and incorporated into this edition of the Standard Specifications for Highways and Bridges since the publication of the Supplemental Specifications to the 1988 English Standard Specifications for Highways and Bridges and the 1995 Metric Standard Specifications for Highways and Bridges, dated April 1, 2019.

This Appendix is inclusive of the updates that were published as the Interim Supplemental Specifications, dated September 30, 2019.

Any omissions below are unintentional. In any case(s) where there are differences between the Standard Specifications and the changes listed below, the Standard Specifications shall prevail.

GLOBAL MODIFICATIONS

The following changes have been made throughout the Standard Specifications and may appear in one or more sections:

- Definitions of the most commonly used abbreviations and acronyms have been moved to Subsection 1.02: References, Abbreviations, Acronyms, Measurement Units and Symbols, and the abbreviation or acronym is used throughout the rest of the document.
- All SI (metric) units have been removed with exception to the new definitions of units and symbols in Subsection 1.02: References, Abbreviations, Acronyms, Measurement Units and Symbols, or other sections where SI units are specifically required.
- All gendered pronouns have been removed.
- References to AASHTO standards and specifications that have been converted to dual unit standards have been updated to reflect the most current title.
- The term “reflective sheeting” has been replaced with “retroreflective sheeting” throughout the document.
- The term “power hammer” has been replaced with “impact hammer” throughout the document.
- The terms “drive head,” “pile head,” and “helmet” have been corrected, where necessary, throughout the document.

MODIFICATIONS TO SPECIFIC SECTIONS

DIVISION I: GENERAL REQUIREMENTS AND COVENANTS

SECTION 2.00: PROPOSAL REQUIREMENTS AND CONDITIONS

Subsection 2.04: Preparation of Proposals

“Expedite Proposal” has been deleted from the following paragraph and replaced with “electronic proposal”:

At the designated time of the bid opening the Department will accept, as the official bid, the set of proposal forms generated from the Expedite Proposal file submitted by the bidder which includes the bid item sheets, bid bond submittal acknowledgement, addendum acknowledgement, and affidavit acknowledgement.
Subsection 2.07: Withdrawal of Proposals

“mechanical” has been deleted from the following paragraph and replaced with “mathematical”:

After the deadline for submitting bids, a bidder may submit a written request to withdraw its bid to the Department. The Department will only grant the request on a clear showing to the satisfaction of the Department that the bid amount resulted from bona fide clerical or mathematical error of a substantial nature or from other similar unforeseen circumstances. When the Department grants a request to withdraw a bid, the Department will return the bidder’s bid deposit.

SECTION 4.00: SCOPE OF WORK

Subsection 4.01: Intent of the Contract

The following paragraph has been deleted:

“Copies of all ASTM and AASHTO Specifications will be available for reference at the office of the Engineer.”

Subsection 4.03: Extra Work (Also see Subsection 4.05)

“(Also see Subsection 4.05)” has been deleted from Subsection title.

SECTION 5.00: CONTROL OF WORK

5.04: Coordination of Special Provisions, Plans, Supplemental Specifications and Standard Specifications

Subsection 5.04 has been deleted in its entirety and replaced with **Subsection 5.04: Order of Precedence**:

SECTION 7.00: LEGAL RELATIONS AND RESPONSIBILITY TO THE PUBLIC

Subsection 7.01: Laws to be Observed

Parts E (Invasive Plants), F (Architectural Access Board Tolerances), G (Buy America Provisions), and H (Cargo Preference Act – Use of United States-Flag Vessels) have been added to Subsection 7.01: Laws to be Observed.

Subsection 7.13: Protection & Restoration of Property

The following paragraph has been deleted and replaced with the 4th paragraph in **Subsection 7.13: Protection and Restoration of Property**:

Although the plans may indicate the approximate location of existing subsurface utilities in the vicinity of the work, the accuracy and completeness of the information is not guaranteed by the Department. Before commencing any work or operations which may endanger or damage any subsurface structures, the Contractor shall carefully locate all such structures and conduct their operations in such manner as to avoid damage thereto. The Contractor shall not interrupt live services until new services have been provided. All abandoned services shall be plugged or otherwise made secure.
SECTION 8.00: PROSECUTION AND PROGRESS

Subsection 8.01: Subletting or Assignment of Contract

The following Part (2) has been deleted and replaced with Part (2) of the 3rd paragraph of Subsection 8.01: Subletting or Assignment of Contract:

(2) Chapter 30, General Laws, Section 39L Public construction work by foreign corporations; restrictions and reports.

SECTION 9.00: PROSECUTION AND PROGRESS

Subsection 9.06: Prompt Payment to Subcontractors has been added.

DIVISION II: CONSTRUCTION DETAILS

SUBSECTION 120: EXCAVATION

120.25: Hot Mix Asphalt Pavement Milling

This construction specification has been deleted in its entirety.

120.66: Hot Mix Asphalt Pavement Milling

This construction specification has been deleted in its entirety.

120.80: Method of Measurement

The following paragraph has been deleted:

Pavement Milling will be measured by the square yard to the limits shown on the plans or as directed.

120.81: Basis of Payment

The following paragraph has been deleted:

Pavement Milling will be paid for at the contract unit price per square yard.

120.82: Payment Items

Pay Item 129. “Pavement Milling” has been deleted.

SUBSECTION 150: EMBANKMENT

150.40: General

The following paragraph has been deleted and replaced with the 4th paragraph in 150.40: General:

Reclaimed Pavement Borrow Material meeting Subsection M1.09.0 may be substituted for Ordinary Borrow, Special Borrow or Gravel Borrow under pavement areas and sidewalks.

150.62: Embankment Construction with Materials Other Than Rock

References to AASHTO T 224 have been deleted and replaced with “Annex A of AASHTO T 99.”
150.66: Gravel Borrow for Bridge Foundations

References to AASHTO T 224 have been deleted and replaced with “Annex A of AASHTO T 180.”

SUBSECTION 201: BASINS, MANHOLES AND INLETS

201.81: Basis of Payment

The following sentence has been deleted from the 4th paragraph in 201.81: Basis of Payment:

Crushed stone for weep holes will be included in the price of the structure.

SUBSECTION 230: CULVERTS, STORM DRAINS, AND SEWAR PIPES

230.62: Pipe Joints

The following paragraph has been deleted and replaced with the 1st paragraph in 230.62: Pipe Joints:

The joints of clay, cement concrete and reinforced concrete pipe, shall be formed by caulking into the ball a gasket of jute or oakum and then filling the remainder of the joint with cement mortar.

“Reinforced cement” has been deleted from the 4th paragraph.

SUBSECTION 401: GRAVEL SUB-BASE

401.82: Payment Items

This construction specification has been deleted in its entirety.

SUBSECTION 415: PAVEMENT MILLING

Subsection 415: Pavement Milling has been added.

SUBSECTION 430: CEMENT CONCRETE BASE COURSE

430.63: Joints has been renumbered to 430.63: Joints.

SUBSECTION 460: HOT MIX ASPHALT PAVEMENT

This subsection has been deleted in its entirety and replaced with Subsection 460: Hot Mix Asphalt Pavement for Local Streets.

SUBSECTION 460: HOT MIX ASPHALT FOR PATCHING

This subsection has been deleted in its entirety and replaced with Subsection 472: Temporary Asphalt Patching.

SUBSECTION 470: HOT MIX ASPHALT BERMS

This subsection has been replaced in its entirety.

SUBSECTION 701: SIDEWALKS, WHEELCHAIR RAMPS, AND DRIVEWAYS

This subsection has been replaced in its entirety.
SUBSECTION 702: HOT MIX ASPHALT SIDEWALKS AND DRIVEWAYS

This subsection has been added.

SUBSECTION 740: ENGINEER'S FIELD OFFICE AND MATERIALS LABORATORY
(EACH WITH PERTINENT EQUIPMENT)

740.45: Materials Laboratory Building

This construction specification has been deleted in its entirety.

740.82: Payment Items

Pay Item 744. “Materials Laboratory and Equipment” has been deleted.

SUBSECTION 751: LOAM BORROW AND TOPSOIL REHANDED AND SPREAD

751.61: Placing Loam or Topsoil

In the second paragraph, “subgrade” has been replaced with “ground.”

SUBSECTION 765: SEEDING

765.40: General

The following material requirement has been deleted:

Crownvetch Seed ..M6.03.2

765.64: Seeding Crownvetch

This construction specification has been deleted in its entirety.

765.67: Liability

The following paragraph has been deleted from 765.67: Liability:

The rate of establishment of the crownvetch seeding shall consist of a uniform stand of at least 3 vigorous plants per 25 ft². Before final acceptance, all areas 25 ft² or larger, devoid of suitable crownvetch seedings shall be planted with crownvetch plants as specified in 771.67: Mulching of this specification at the rate of 1 plant per 25 ft².

765.82: Payment Items

Pay Item 765.5 “Seeding Crownvetch” has been deleted.

SUBSECTION 768: HYDRAULIC SOIL STERILANT SPRAYING

Subsection 768 has been deleted in its entirety.
SUBSECTION 801: CONDUIT, MANHOLES, HANDHOLES, PULLBOXES AND FOUNDATIONS

801.80: Method of Measurement

The following paragraph has been deleted and replaced with the 2nd and 3rd paragraphs of 801.80:

Method of Measurement:

Electrical Conduits if each kind and diameter will be measured by the meter between end terminals along the center line of the conduit as actually installed, complete in place and accepted. When conduit ends terminate in pull or junction boxes, measurement shall be to the center line of such pull or junction boxes.

SUBSECTION 815: TRAFFIC CONTROL SIGNALS

815.41: Controllers

This construction specification has been replaced by Special Provisions.

815.43: Mast Arms – Strain Poles and Span Wire Assemblies

This construction specification has been replaced by Special Provisions.

815.44: Posts and Bases

This construction specification has been replaced by Special Provisions.

815.45: Vehicle Signal Heads

This construction specification has been replaced by Special Provisions.

815.46: Pedestrian Signal Heads

This construction specification has been replaced by Special Provisions.

SUBSECTION 828: TRAFFIC SIGNS

828.41: Retroreflector Sheeting has been replaced in its entirety.

828.43: Legends (Type A, B, C, D) has been renamed 828.43: Legends (Type A, B, C).

The following text has been removed from this construction specification and replaced with the first six paragraphs.

The type of legend shall be as specified and shown on the plans except as follows:

a. State and U.S. Route Markers shall have Type C Silk Screen Processed Legends.

b. Interstate Route Markers on Guide Signs on Feeder roads shall have Type B Permanently Applied Legends.

c. Individual Interstate Route Markers shall have Type B Permanently Applied Legends with the required Silk Screen Processed Legend superimposed thereon.

d. Individual Interstate Route Markers on Overhead Signs shall have Type A Demountable Flat Numerals fabricated from Type VII, VIII, IX or X retroreflective sheeting.
828.51: Retroreflective Sheeting

The following paragraph under Part A. Application has been removed from this construction specification and replaced with paragraphs 3 and 4 under Part A:

Pressure sensitive adhesive coated sheeting shall be overlapped at splices not less than 5 millimeters. Heat activated adhesive coated sheeting may be spliced with overlap not less than 5 millimeters or butted with a gap not to exceed 1 millimeter. Only butt splices shall be permitted on signs screen-processed with transparent color. Sheeting applied to extruded sections shall extend over top edges and down side legs a minimum of 2 millimeters. No splices shall be allowed on sign panels 20 square feet or under. For D6 guide sign panels over 20 square feet, splices shall be avoided; however, a maximum of one splice is allowed if necessary.

SUBSECTION 850: TRAFFIC CONTROLS FOR CONSTRUCTION AND MAINTENANCE OPERATIONS

850.21: Roadway Flagger

The first sentence of the first paragraph has been replaced in its entirety.

850.49: Temporary Barrier

This construction specification has been replaced in its entirety.

850.82: Payment Items

Payment Items 853.3 (Temporary Restrained Barrier) and 853.31 (Temporary Restrain Barrier Removed and Reset) have been deleted.

SUBSECTION 901: CEMENT CONCRETE

901.20: General

The following paragraph has been deleted:

Calcium Chloride, or any other admixture containing chloride salts, shall not be used in any Cement Concrete.

901.65: Finishing and Curing

References to AASHTO M 148 have been deleted and replaced with ASTM C1315.

901.66: Placement, Finishing and Curing of Concrete Bridge Decks

References to AASHTO M 148 have been deleted and replaced with ASTM C1315.

SUBSECTION 930: PRECAST CONCRETE BEAMS

Subsection 930 has been deleted in its entirety.

SUBSECTION 940: DRIVEN PILES

940.61: Driven Pile Capacity

Part B of this construction specification has been replaced in its entirety.
SUBSECTION 960: STRUCTURAL STEEL AND MISCELLANEOUS METAL PRODUCTS

960.63: Painting

The following sentence has been removed from the first paragraph:

A copy of the NEPCOAT Qualified Products List may be obtained from the MassDOT website at www.mass.gov/dot.

SUBSECTION 965: MEMBRANE WATERPROOFING AND PROTECTIVE COURSE FOR BRIDGE DECKS

Subsection 965 has been deleted in its entirety.

SUBSECTION 967: MEMBRANE WATERPROOFING AND PROTECTIVE COURSE

Subsection 967 has been deleted in its entirety.

SUBSECTION 975: METAL BRIDGE RAILINGS AND PROTECTIVE SCREENS

975.63: Galvanizing

References to AASHTO M 298 have been deleted and replaced with ASTM B695.

DIVISION III: MATERIALS SPECIFICATIONS

M4.02.05: Cement Concrete Additives

The last paragraph in this material specification has been added.

M4.02.13: Test Specimens

The following text has been removed from this material specification and replaced with the first two paragraphs:

A. Samples of concrete shall be obtained in accordance with the Standard Method of Sampling Fresh Concrete (AASHTO T 141) in the case of individual samples secured to determine uniformity of consistency for approval of the mixer or agitator. In securing individual samples to determine uniformity of consistency, AASHTO T 141 shall be followed but the requirements shall be so modified as to permit obtaining and testing of each of three samples: one at approximately the beginning, one at approximately the midpoint and one at approximately the end of discharge. Slump, air content and temperature shall be measured and recorded when concrete cylinders are fabricated.

B. For the purpose of making tests to determine the flexural or compressive strength of concrete, the Engineer reserves the right to cast such test beams or cylinders as they deem necessary.

M4.03.00: Prestressed Concrete Beams and Piles

This material specification has been deleted in its entirety.
M4.03.01: Drawings
This material specification has been deleted in its entirety.

M4.03.02: Quality Control
This material specification has been deleted in its entirety.

M4.03.03: Concrete
This material specification has been deleted in its entirety.

M4.03.04: Aggregates
This material specification has been deleted in its entirety.

M4.03.05: Steel
This material specification has been deleted in its entirety.

M4.03.06: Pretensioning Strands
This material specification has been deleted in its entirety.

M4.03.07: Forms
This material specification has been deleted in its entirety.

M4.03.08: Placing Tension Strands
This material specification has been deleted in its entirety.

M4.03.09: Draped Pretensioned Strands
This material specification has been deleted in its entirety.

M4.03.10: Mix Design
This material specification has been deleted in its entirety.

M4.03.11: Slump
This material specification has been deleted in its entirety.

M4.03.12: Mixing, Placing and Curing Concrete
This material specification has been deleted in its entirety.

M4.03.13: Test Requirements
This material specification has been deleted in its entirety.

M4.03.14: Transferring Tension to Concrete
This material specification has been deleted in its entirety.
M8.01.1: Cold Drawn Steel Wire
References to AASHTO M 32 have been deleted and replaced with AASHTO M 336M/M 336.

M8.01.2: Welded Steel Wire Fabric
References to AASHTO M 55 have been deleted and replaced with AASHTO M 336M/M 336.

M8.01.5: Anchor Bolts, Nuts and Washers
References to ASTM A325 have been deleted and replaced with ASTM F3125/F3125M.

M8.01.7: Epoxy Coated Reinforcing Bars
References to AASHTO M 284M have been deleted and replaced with ASTM A775/A775M and tested in accordance to AASHTO T 285.

M8.04.3: High Strength Bolts
References to ASTM A325 have been deleted and replaced with ASTM F3125/F3125M.

References to AASHTO M 291M/M 291 have been deleted and replaced with ASTM A563.

References to AASHTO M 293M/M 293 have been deleted and replaced with ASTM F436/F436M.

M8.07.1: Guardrail End Treatment
This material specification has been replaced in its entirety.

M8.09.0: Chain Link Fences and Gates
References to AASHTO A 1011 have been deleted and replaced with ASTM A1011.

References to AASHTO M 305 have been deleted and replaced with AASHTO M 280.

M8.11.0: Bronze Self-Lubricating Bearing Plates
References to AASHTO M 107 have been deleted and replaced with ASTM B22.

M8.13.1: Bridge Railing, Steel, Type S3-TL4
References to ASTM A325 have been deleted and replaced with ASTM F3125/F3125M.

M8.13.3: Aluminum Handrail and Protective Screen Type I and Type II
References to ASTM A325 have been deleted and replaced with ASTM F3125/F3125M.

M8.18.1: Traffic Signal Supports
References to ASTM A325 have been deleted and replaced with ASTM F3125/F3125M.

M9.06.0: Waterproof Paper Covers
References to AASHTO M 171 have been deleted and replaced with ASTM C171.

M9.06.1: Polyethylene Covers
References to AASHTO M 171 have been deleted and replaced with ASTM C171.
M9.06.4: Polyethylene Coated Burlap
References to AASHTO M 171 have been deleted and replaced with ASTM C171.

M9.06.5: Impervious Liquid Membrane
References to AASHTO M 148 have been deleted and replaced with ASTM C1315.

M9.09.0: Bentonite Waterproofing System
This material specification has been deleted in its entirety.

M9.30.0: Retroreflective Sheeting
This material specification has been replaced in its entirety.

M9.30.7: Guardrail Delineator
This material specification has been replaced in its entirety.

M9.30.9: Reflectorized Drum
This material specification has been replaced in its entirety.

M9.30.10: Guardrail Termini Delineator
This material specification has been replaced in its entirety.

M9.30.11: Traffic Cones
This material specification has been replaced in its entirety.