

Massachusetts 2022 Air Quality Report

July 2023

Department of Environmental Protection
Bureau of Air and Waste
Division of Air and Climate Programs
Air Assessment Branch
Wall Experiment Station
37 Shattuck Street
Lawrence, Massachusetts 01843

ACKNOWLEDGEMENTS

This 2022 Air Quality Report was prepared by the Massachusetts Department of Environmental Protection (MassDEP), Air Assessment Branch (AAB), which collects representative samples of ambient air for several pollutants at monitoring stations located across the Commonwealth. All samples are collected in a precise and scientifically sound manner to properly characterize the quality of the air in the Commonwealth.

The photo on the cover is a view of the Lynn monitoring station at Parkland Avenue, Lynn, MA.

This report is available on MassDEP's web site at

www.mass.gov/eea/agencies/massdep/air/quality/air-monitoring-reports-and-studies.html

Questions about this report may be directed to:

Sean Dunn
Air Assessment Branch
Wall Experiment Station
Lawrence, MA 01843-1343
email: sean.m.dunn@mass.gov

Table of Contents

Section 1 – Ambient Air Monitoring Program	5
1.1 - Program Overview	5
1.2 - National Ambient Air Quality Standards (NAAQS)	8
1.3 - Pollutant Health Effects and Sources	9
1.4 - Monitoring Network Description	11
Section 2 – Attainment of Air Quality Standards	12
2.1 - Attainment Status Summary	12
2.2 - 2022 Ozone Season	14
2.3 - 2022 Particulate Exceedances	16
2.4 - Daily Ozone and PM Forecasts	17
Section 3 – Massachusetts Air Quality Data Summaries	18
3.1 - Ozone Summary	18
3.2 - Sulfur Dioxide (SO₂) Summary	22
3.3 - Nitrogen Dioxide (NO ₂) Summary	25
3.4 - Carbon Monoxide (CO) Summary	28
3.5 - Particulate Matter 10 Microns (PM ₁₀) Summary	31
3.6 - Particulate Matter 2.5 Microns (PM _{2.5}) Summary	34
3.7 - Speciation	39
3.8 - Interagency Monitoring of Protected Visual Environments (IMPROVE)	39
3.9 - Quality Assurance and Quality Control (QA/QC)	40
Section 4 – PAMS/Air Toxics Monitoring	41
4.1 - Photochemical Assessment Monitoring Station (PAMS) Monitoring	41
4.2 - Air Toxics Monitoring	41

List of Abbreviations

	.Air Assessment Branch
	.Air Quality System
AQI	
BC	
BP	.Barometric Pressure
CAA	.Clean Air Act
CFR	.Code of Federal Regulations
CO	.Carbon Monoxide
CO ₂	.Carbon Dioxide
FEM	.Federal Equivalent Method
FRM	.Federal Reference Method
EPA	.United States Environmental Protection Agency
IMPROVE	.Interagency Monitoring of Protected Visual Environments
MassDEP	.Massachusetts Department of Environmental Protection
NAAQS	.National Ambient Air Quality Standards
NATTS	.National Air Toxics Trends Station
NCore	National Core Monitoring Network
NO	
NO _x	.Nitrogen Oxides
	otal Reactive Oxidized Nitrogen
NO ₂	_
NO ₃	
O ₃	. Ozone
PAH	.Polycyclic Aromatic Hydrocarbon
PAH	Polycyclic Aromatic Hydrocarbon Photochemical Assessment Monitoring Stations
PAH PAMS Pb	Polycyclic Aromatic Hydrocarbon Photochemical Assessment Monitoring Stations Lead
PAH PAMS Pb ppb	Polycyclic Aromatic Hydrocarbon Photochemical Assessment Monitoring Stations Lead parts per billion by volume
PAH PAMS Pb ppb	Polycyclic Aromatic Hydrocarbon Photochemical Assessment Monitoring Stations Lead parts per billion by volume parts per million by volume
PAH	Polycyclic Aromatic Hydrocarbon Photochemical Assessment Monitoring Stations Lead parts per billion by volume parts per million by volume Particulate matter ≤ 2.5 microns aerodynamic diameter
PAH	.Polycyclic Aromatic Hydrocarbon .Photochemical Assessment Monitoring Stations .Lead .parts per billion by volume .parts per million by volume .Particulate matter ≤ 2.5 microns aerodynamic diameter .Particulate matter ≤ 10 microns aerodynamic diameter
PAH	Polycyclic Aromatic Hydrocarbon Photochemical Assessment Monitoring Stations Lead parts per billion by volume parts per million by volume Particulate matter ≤ 2.5 microns aerodynamic diameter Particulate matter ≤ 10 microns aerodynamic diameter Precipitation
PAH	.Polycyclic Aromatic Hydrocarbon .Photochemical Assessment Monitoring Stations .Lead .parts per billion by volume .parts per million by volume .Particulate matter ≤ 2.5 microns aerodynamic diameter .Particulate matter ≤ 10 microns aerodynamic diameter
PAH	.Polycyclic Aromatic Hydrocarbon .Photochemical Assessment Monitoring Stations .Lead .parts per billion by volume .parts per million by volume .Particulate matter ≤ 2.5 microns aerodynamic diameter .Particulate matter ≤ 10 microns aerodynamic diameter .Precipitation .Quality Assurance and Quality Control
PAH	.Polycyclic Aromatic Hydrocarbon .Photochemical Assessment Monitoring Stations .Lead .parts per billion by volume .parts per million by volume .Particulate matter ≤ 2.5 microns aerodynamic diameter .Particulate matter ≤ 10 microns aerodynamic diameter .Precipitation .Quality Assurance and Quality Control .Relative Humidity .State Implementation Plan
PAH	Polycyclic Aromatic Hydrocarbon Photochemical Assessment Monitoring Stations Lead parts per billion by volume parts per million by volume Particulate matter ≤ 2.5 microns aerodynamic diameter Particulate matter ≤ 10 microns aerodynamic diameter Precipitation Quality Assurance and Quality Control Relative Humidity State Implementation Plan Sulfur Dioxide
PAH	Polycyclic Aromatic Hydrocarbon Photochemical Assessment Monitoring Stations Lead parts per billion by volume parts per million by volume Particulate matter ≤ 2.5 microns aerodynamic diameter Particulate matter ≤ 10 microns aerodynamic diameter Precipitation Quality Assurance and Quality Control Relative Humidity State Implementation Plan Sulfur Dioxide Sulfate
PAH	Polycyclic Aromatic Hydrocarbon Photochemical Assessment Monitoring Stations Lead parts per billion by volume parts per million by volume Particulate matter ≤ 2.5 microns aerodynamic diameter Particulate matter ≤ 10 microns aerodynamic diameter Precipitation Quality Assurance and Quality Control Relative Humidity State Implementation Plan Sulfur Dioxide Sulfate Solar Radiation
PAH	Polycyclic Aromatic Hydrocarbon Photochemical Assessment Monitoring Stations Lead parts per billion by volume parts per million by volume Particulate matter ≤ 2.5 microns aerodynamic diameter Particulate matter ≤ 10 microns aerodynamic diameter Precipitation Quality Assurance and Quality Control Relative Humidity State Implementation Plan Sulfur Dioxide Sulfate Solar Radiation
PAH	.Polycyclic Aromatic Hydrocarbon .Photochemical Assessment Monitoring Stations .Lead .parts per billion by volume .parts per million by volume .Particulate matter ≤ 2.5 microns aerodynamic diameter .Particulate matter ≤ 10 microns aerodynamic diameter .Precipitation .Quality Assurance and Quality Control .Relative Humidity .State Implementation Plan .Sulfur Dioxide .Sulfate .Solar Radiation .Temperature
PAH	Polycyclic Aromatic Hydrocarbon Photochemical Assessment Monitoring Stations Lead parts per billion by volume parts per million by volume Particulate matter ≤ 2.5 microns aerodynamic diameter Particulate matter ≤ 10 microns aerodynamic diameter Precipitation Quality Assurance and Quality Control Relative Humidity State Implementation Plan Sulfur Dioxide Sulfate Solar Radiation Temperature Ultraviolet radiation
PAH	Polycyclic Aromatic Hydrocarbon Photochemical Assessment Monitoring Stations Lead parts per billion by volume parts per million by volume Particulate matter ≤ 2.5 microns aerodynamic diameter Particulate matter ≤ 10 microns aerodynamic diameter Precipitation Quality Assurance and Quality Control Relative Humidity State Implementation Plan Sulfur Dioxide Sulfate Solar Radiation Temperature Ultraviolet radiation Technical Systems Audit
PAH	Polycyclic Aromatic Hydrocarbon Photochemical Assessment Monitoring Stations Lead parts per billion by volume parts per million by volume Particulate matter ≤ 2.5 microns aerodynamic diameter Particulate matter ≤ 10 microns aerodynamic diameter Precipitation Quality Assurance and Quality Control Relative Humidity State Implementation Plan Sulfur Dioxide Sulfate Solar Radiation Temperature Ultraviolet radiation Technical Systems Audit micrograms per cubic meter
PAH	Polycyclic Aromatic Hydrocarbon Photochemical Assessment Monitoring Stations Lead parts per billion by volume parts per million by volume Particulate matter ≤ 2.5 microns aerodynamic diameter Particulate matter ≤ 10 microns aerodynamic diameter Precipitation Quality Assurance and Quality Control Relative Humidity State Implementation Plan Sulfur Dioxide Sulfate Solar Radiation Temperature Ultraviolet radiation Technical Systems Audit micrograms per cubic meter Volatile Organic Compounds

Section 1 – Ambient Air Monitoring Program

1.1 - Program Overview

Introduction

The Massachusetts Department of Environmental Protection (MassDEP) is responsible for monitoring outdoor air quality in Massachusetts, and for developing plans and regulatory programs to reduce emissions of pollutants that adversely affect public health, welfare, and the environment.

MassDEP's Air Assessment Branch (AAB) operates a network of air monitoring stations throughout the Commonwealth. During 2022, MassDEP operated 23 monitoring stations located in 19 cities and towns. MassDEP also received data from the Wampanoag Tribe of Gay Head (Aquinnah), which operates an air monitoring station on Martha's Vineyard.

MassDEP submits ambient air quality data to the national Air Quality System (AQS) database that is administered by the U.S. Environmental Protection Agency (EPA). Continuous monitoring data is sent to the AirNow website, https://www.airnow.gov/, which reports data from all U.S. monitoring stations. MassDEP's MassAir Online website provides air quality information and allows users to click on a map of the state to find current air quality data from the MassDEP continuous air monitoring network. MassAir Online is found at www.mass.gov/eea/agencies/massdep/air/quality/. EPA also makes historical AQS data for all U.S. monitoring stations available at https://www.epa.gov/outdoor-air-quality-data.

Why is Air Quality Data Collected?

Ambient air quality data is used for several purposes, including to:

- Provide information about air quality to the public;
- Provide short-term and long-term information regarding air pollution and public health;
- Verify compliance with National Ambient Air Quality Standards (NAAQS);
- Assess the effectiveness of current air pollution control regulations and programs;
- Support development of policies and regulations aimed at reducing air pollution;
- Support long-term trend analysis and special research; and
- Fulfill requirements to report ambient air quality data to EPA.

What is Monitored?

MassDEP monitors parameters in the following categories:

Criteria pollutants for which EPA has established NAAQS. The criteria pollutants monitored are:

- sulfur dioxide (SO₂)
- ozone (O₃)
- carbon monoxide (CO)
- nitrogen dioxide (NO₂)
- lead (Pb)

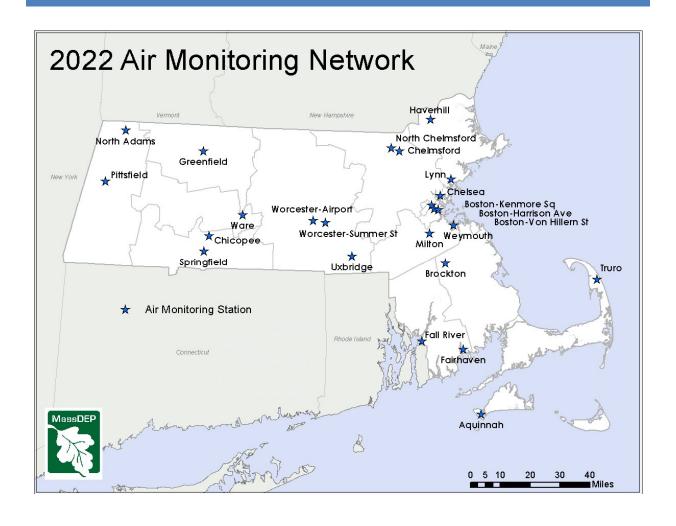
- particulate matter ≤10 microns (PM₁₀)
- particulate matter ≤ 2.5 microns (PM_{2.5})

Non-criteria pollutants do not have NAAQS but can contribute to the formation of ozone and particulate matter and/or be toxic. The non-criteria pollutants monitored include:

- nitric oxide (NO)
- total nitrogen oxides (NOx)
- total reactive oxidized nitrogen (NOy)
- volatile organic compounds (VOCs) ozone precursors and reaction product chemicals
- black carbon (i.e., soot)
- toxics health-relevant VOCs, semi-volatile organic compounds (SVOCs), carbonyls and metals
- speciated particulates elements (e.g., metals), sulfates, nitrates, and carbon (total and organic)

Meteorological parameters monitored include:

- wind speed/wind direction (WS/WD) and vector (WSv/WDv)
- relative humidity (REL)
- temperature (TEMP)
- barometric pressure (BP)
- solar radiation (SUN)
- precipitation (PRECIP)
- ultraviolet radiation (TOTAL UV)


Monitoring Station Locations

Monitoring stations are sited to provide data for various purposes and must meet EPA siting criteria. Some are located where maximum pollutant concentrations are expected, while others are positioned in areas that will provide data that is representative of larger geographical areas. Local topography and pollutant source areas are factors that determine how well a particular monitor's location will represent a region.

Networks of monitors are located throughout the state. These networks are designed to reflect pollutant concentrations for all of Massachusetts. Section III of this report contains data summaries for each pollutant measured and maps showing the monitor locations for each network. Appendix A contains a list of monitoring stations.

The map on page 7 shows Massachusetts cities and towns where air monitors were located during 2022.

Air Monitor Locations

1.2 - National Ambient Air Quality Standards (NAAQS)

Below are the current NAAQS for criteria pollutants set by EPA. Primary Standards are designed to protect public health, including the health of sensitive populations such as asthmatics, children, and the elderly. Secondary Standards are designed to protect public welfare, including protection against decreased visibility, damage to crops, vegetation, and buildings.

	National Ambient Air Quality Standards									
Polluta	ant	Primary/ Secondary	Averaging Time	Level	Form					
Carbon			8-hour	9 ppm	Not to be exceeded more than once					
Monoxide		primary	1-hour	35 ppm	per year					
Lead		primary and secondary	Rolling 3-month average	0.15 μg/m ³	Not to be exceeded					
		primary	1-hour	100 ppb	98 th percentile of 1-hr daily maximum concentrations, averaged over 3 years					
Nitrogen D	loxide	primary and secondary	Annual	53 ppb	Annual Mean					
Ozone		primary and secondary	8-hour	0.070 ppm	Annual fourth-highest daily maximum 8-hr concentration, averaged over 3 years					
		primary	Annual	12 μg/m³	annual mean, averaged over 3 years					
	PM _{2.5}	secondary	Annual	15 μg/m³	annual mean, averaged over 3 years					
Particle Pollution	F 1V12.5	primary and secondary	24-hour	35 μg/m³	98 th percentile, averaged over 3 years					
	PM ₁₀	primary and secondary	24-hour	150 μg/m ³	Not to be exceeded more than once per year on average over 3 years					
Sulfur Dia	Sulfur Dioxide		1-hour	75 ppb	99 th percentile of 1-hr daily maximum concentrations, averaged over 3 years					
Sullul Dio			3-hour	0.5 ppm	Not to be exceeded more than once per year					

 $\mu g/m^3$ = micrograms per cubic meter

ppm = parts per million

ppb = parts per billion

1.3 - Pollutant Health Effects and Sources

Ozone (O₃)

- Tropospheric O₃ (ground-level) and Stratospheric O₃ (upper atmosphere) are the same chemical compound, just found at different places in the atmosphere. Stratospheric O₃, found at greater than 30,000 feet above the surface of the earth, is beneficial to all life because it filters out the sun's harmful UV radiation before it reaches the earth's surface. Ground-Level O₃ on the other hand is a health and environmental problem. This report pertains exclusively to ground-level O₃.
- O₃ is a respiratory irritant that can reduce lung function and resistance to infection. It can cause asthma attacks, nasal congestion, and throat irritation. It can inflame and damage (possibly permanently) cells that line the lungs and aggravate chronic lung diseases. In addition, several studies have found a strong link between increases in ground-level O₃ and increased risk of premature death.
- O₃ is toxic to vegetation, inhibiting growth and causing leaf damage.
- O₃ deteriorates materials such as rubber and fabrics.
- Ground-level O₃ is unique in that it is formed by the reactions that occur between certain precursor pollutants in the presence of intense, high-energy sunlight during the hot summer months. The complexity of the process and the amount of time needed to complete these reactions can result in the buildup of ground-level ozone concentrations far downwind from the original source of the precursors.
- Sources of ground-level O₃ precursors, i.e., nitrogen oxides and hydrocarbons, include motor vehicles, lawn and garden equipment, power plants and other industrial sources.

Carbon Monoxide (CO)

- CO binds with hemoglobin in the blood, reducing the amount of oxygen carried to organs and tissues.
- Symptoms of high CO exposure include shortness of breath, chest pain, headaches, confusion, and loss of coordination. The health threat is most severe for those with cardiovascular disease.
- Motor vehicle emissions are the largest source of CO, which is produced from incomplete combustion of carbon in fuels.
- Industrial processes and non-transportation fuel combustion (e.g., boilers, lawn and garden equipment) also are sources of CO.

Sulfur Dioxide (SO₂)

- SO₂ combines with water vapor to form acidic aerosols harmful to the respiratory tract, aggravating symptoms associated with lung diseases such as asthma and bronchitis.
- SO₂ is a primary contributor to acid deposition. Impacts of acid deposition include acidification of lakes and streams, damage to vegetation, damage to materials, and diminution of visibility.
- SO₂ is a product of fuel combustion (e.g., the burning of coal and oil that contains sulfur). Sources include power plants and business and residential sources burning heating oil.

Nitrogen Dioxide (NO₂)

- NO₂ lowers resistance to respiratory infections and aggravates symptoms associated with asthma and bronchitis.
- NO₂ contributes to acid deposition. Impacts of acid deposition include acidification of lakes and streams, damage to vegetation, damage to materials, and diminution of visibility.
- NO₂ and nitric oxide (NO) contribute to the formation of ozone.
- NO₂ is formed from the oxidation of NO. Major sources of NO are fuel combustion, space heating, power plants and motor vehicles.

Particulate Matter (PM₁₀ and PM_{2.5})

- Particulate matter is tiny airborne particles or aerosols, which include dust, dirt, soot, smoke, and liquid droplets. Fine particulate matter (mostly below 2.5 microns in size) are not only the result of direct emissions but can be formed in the atmosphere by chemical reactions involving gaseous pollutants.
- The numbers 2.5 and 10 refer to the particle size (equal to or less than that size), measured in microns, which are collected by the monitors. Several thousand PM_{2.5} particles could fit on the period at the end of this sentence.
- The small size of these particles allows easy entry into the human respiratory system. Long-term exposure causes the particles to accumulate in the lungs and affects breathing and produces respiratory symptoms. The small particles can migrate through the lungs and into the circulatory system and potentially produce cardio-vascular symptoms, as well as impacts from toxic components contained in the particulate matter.
- Particulate matter causes soiling and corrosion of materials.
- Particulate matter contributes to atmospheric haze that degrades visibility.
- Sources of particulates include wood smoke, industrial process emissions, motor vehicles, incinerators, power plants, and other fuel combustion sources.

Lead (Pb)

- Lead is an elemental metal that is found in nature.
- Exposure to lead can occur by inhalation or ingestion with food, water, soil or dust particles.
- Children, infants, and fetuses are the most susceptible to the effects of lead exposure.
- Lead causes intellectual disability, brain damage, and liver disease. It may be a factor in high blood pressure and damages the nervous system.
- Lead enters the atmosphere from the incineration of lead containing materials and from the manufacture and processing of lead containing products or materials like storage batteries, smelting and removal of lead-containing paint.

1.4 - Monitoring Network Description

The following describes the ambient air monitoring network in 2022.

Network Size	 24 Monitoring Stations (23 operated by MassDEP and 1 by the Wampanoag Tribe) 20 cities and towns with monitoring stations
Number of Continuous Monitors	Continuous monitors measure air quality 24 hours per day. The data are reported as hourly averages. Criteria pollutant monitors measure pollutants for which NAAQS have been set. 3 - Trace-level CO monitors 11 - NO ₂ , NO and NOx monitors 18 - O ₃ monitors (1 Tribal) 6 - Trace-level SO ₂ monitors 18 - Continuous PM _{2.5} (1 collocated)
	 Meteorological monitors track weather conditions. 14 – Barometric pressure 14 – Relative humidity 14 – Solar radiation 14 – Temperature 13 – Wind speed/wind direction 1 – Wind speed vector/wind direction vector 1 – Precipitation 1 – Ultraviolet radiation Other Monitors 3 – Total Reactive Oxidized Nitrogen (NO/NOy) 1 – Photochemical assessment monitoring station (PAMS). PAMS monitors measure VOCs using an automated gas chromatograph (auto-GC) on an hourly basis during the summer. 7 – Black Carbon
Number of Intermittent Monitors	Intermittent monitors collect discrete samples for a specific time period. The samples are collected every day, every third day, or every sixth day. The data are averaged in 3-hour or 24-hour intervals. Criteria pollutant monitors measure pollutants that have NAAQS. 4 - PM ₁₀ monitors (1 collocated) 6 - PM _{2.5} Federal Reference Method monitors
	 Non-criteria pollutant monitors measure pollutants that do not have NAAQS. 4 - VOCs and carbonyls 2 - Speciation. These monitors measure for PM_{2.5}, nitrates, and organics 1 - PM₁₀ for metals analysis

Section 2 – Attainment of Air Quality Standards

2.1 - Attainment Status Summary

The federal Clean Air Act (CAA) contains timeframes and milestones for states to meet and maintain NAAQS for criteria pollutants, which include carbon monoxide, lead, nitrogen dioxide, ozone, particulate matter, and sulfur dioxide. EPA sets NAAQS at levels to protect public health and the environment. The EPA must review each NAAQS every five years and may update the standards based on new scientific information as well as establish new monitoring requirements. Each state is required to monitor the ambient air to determine whether it meets each standard.

If the air quality in a geographic area meets or is cleaner than the national standard, it is called an attainment area (designated "Unclassifiable/Attainment"); areas that do not meet the national standard are called nonattainment areas. In some cases, EPA is not able to determine an area's status after evaluating the available information and those areas are designated "unclassifiable." Air quality in Massachusetts meets all of the criteria pollutant NAAQS.

If monitoring shows that the air quality does not meet a standard, the state must develop and implement pollution control strategies to attain that standard. Once air quality meets a standard, a state must develop a plan to maintain that standard while accounting for future economic and emissions growth. Taken together, these plans and control strategies constitute the State Implementation Plan (SIP).

Carbon Monoxide

Monitored levels of CO in Massachusetts meet the CO standards. Prior to the mid-1980s, Massachusetts was in nonattainment of the CO standards. However, with the adoption of numerous control programs, CO emissions significantly decreased and monitored levels of CO met the standards beginning in 1987. Massachusetts is designated as Unclassifiable/Attainment for the CO standards. Based on EPA's most recent review of the CO standards, in August 2011 EPA retained the existing primary CO standards of 9 ppm measured over 8 hours, and 35 ppm measured over 1 hour. Since EPA did not change the standards, no new designation process was triggered.

Lead

Monitored levels of lead in Massachusetts meet the lead standards. In October 2009, EPA lowered the lead standards (primary and secondary) from 1.5 μ g/m³ to 0.15 μ g/m³ averaged over a rolling 3-month period. In November 2011, EPA designated all of Massachusetts as Unclassifiable/Attainment for the 2009 standard. Based on EPA's most recent review of the lead standards, in September 2016 EPA retained the existing lead standards. Since EPA did not change the standards, no new designation process was triggered.

Nitrogen Dioxide

Monitored levels of NO₂ in Massachusetts meet the NO₂ standards. In January 2010, EPA established a new 1-hour NO₂ standard of 100 ppb and new near-road monitoring requirements. In January 2012, EPA designated all of Massachusetts as Unclassifiable/Attainment for the 2010 standard. Based on EPA's most

recent review of the NO2 standards, in April 2018, EPA retained the existing primary NO2 standard of 100 ppb measured over 1 hour, and an annual primary and secondary standard of 53 ppb averaged over 1 year. Since EPA did not change the standards, no new designation process was triggered.

Sulfur Dioxide

Monitored levels of SO_2 in Massachusetts meet the SO_2 standards. Based on EPA's most recent review of the SO_2 standards, in June 2010 EPA established a new 1-hour SO_2 standard of 75 ppb. In December 2018, EPA designated all of Massachusetts as Unclassifiable/Attainment for the 2010 standard.

Particulate Matter

There are standards for two types of particulate matter: PM_{10} and $PM_{2.5}$. Monitored levels of PM_{10} and $PM_{2.5}$ in Massachusetts meet the respective standards.

Based on EPA's most recent review of the PM_{2.5} standards, in December 2012 EPA lowered the primary annual PM_{2.5} standard to 12 μ g/m³. The 24-hour PM_{2.5} standard is 35 μ g/m³. In December 2014, EPA designated all of Massachusetts as Unclassifiable/Attainment for the 2012 standard. In January 2023, EPA proposed to revise the primary annual PM_{2.5} standard from its current level of 12 μ g/m³ to within the range of 9 to 10 μ g/m³.

Ozone

In 1979, EPA established an ozone standard (0.12 ppm) based on the maximum 1-hour ozone concentration that occurred each day during the ozone monitoring season. Massachusetts was designated as Nonattainment with this standard.

In 1997, EPA established new 8-hour ozone standards (0.08 ppm) that were designed to be more representative of exposure over time, rather than just the maximum concentration (the 1-hour standard was revoked in 2005). Massachusetts was designated as Nonattainment for these standards at that time. Through a combination of state and regional controls, Massachusetts' air quality attained the 1997 standards by the 2009 attainment deadline.

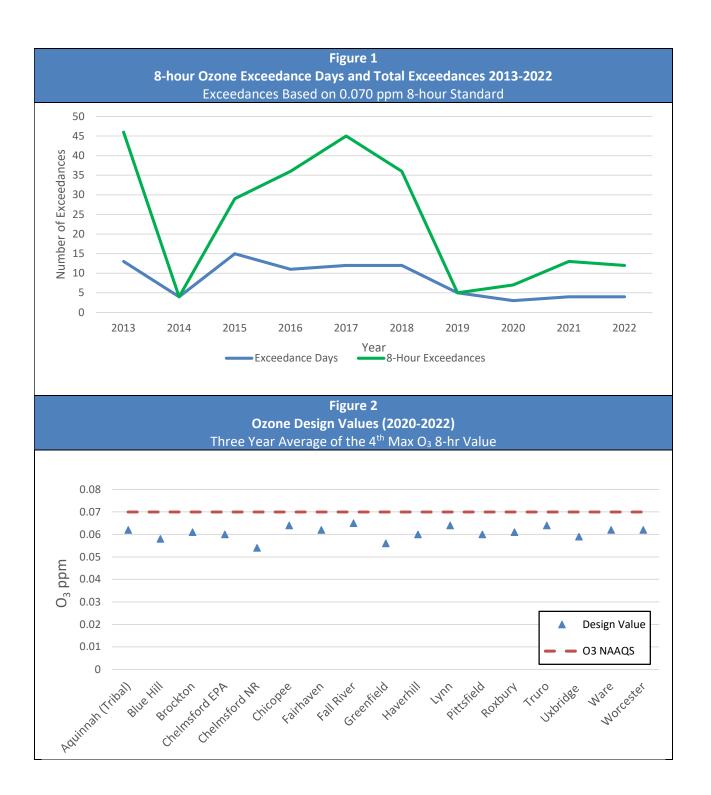
In 2009, EPA lowered the 8-hour ozone standards to 0.075 ppm. In April 2012, EPA designated Dukes County as Nonattainment for the 2009 ozone standards and designated the remainder of Massachusetts as Unclassifiable/Attainment. Dukes County attained the 2009 ozone standard by the 2015 attainment deadline.

In 2015, EPA lowered the 8-hour ozone standards to 0.070 ppm. In December 2017, EPA designated all of Massachusetts as Unclassifiable/Attainment for the 2015 standard. Based on EPA's most recent review of the ozone standards, in December 2020 EPA retained the existing ozone standards. Since EPA did not change the standards, no new designation process was triggered.

2.2 - 2022 Ozone Season

In 2022, there were four days when the 8-hour ozone standard of 0.070 ppm was exceeded in Massachusetts. Based on the most recent three years of data (2020–2022), no monitoring locations violated the 0.070 ppm standard.

While ozone concentrations have trended downward over the past several decades due to air pollution control programs, ozone concentrations vary each year due to varying weather patterns. In general, the chemical reactions that produce elevated ozone concentrations occur when high energy sunlight (present on hot summer days) facilitates the react of ozone "precursor" pollutants – VOCs and NOx, which results in ozone formation. Typically, Massachusetts ozone exceedances occur when a high-pressure area well south of New England creates a broad southwesterly airflow which contains precursors from the upwind coastal urban corridor to New England. This is where reactions in the atmosphere result in elevated levels of ozone. This typical pattern also moves slowly, promoting heat wave conditions that can last several days, allowing pollutants to build up.


Difference Between Ozone Exceedances and Violations

An ozone exceedance occurs when monitored ozone concentrations exceed the ozone NAAQS. Ozone monitoring data is collected as an hourly average of continuous data which is then used to determine the highest 8-hour average value for the day. An exceedance of the 8-hour standard is an 8-hour averaged value that is greater than 0.070 ppm. An ozone exceedance occurs when a monitor records ambient levels of ozone above the standard. Monitoring an ozone exceedance does not mean that a violation of the ozone standard has occurred, because a violation of an ozone standard (as opposed to an exceedance) is based on three-year averages of data at each monitor.

An ozone violation of the 8-hour standard is determined using the annual 4th-highest daily maximum eight-hour ozone value at each monitor. A violation requires a three-year average of the annual 4th-highest daily maximum eight-hour value that is greater than 0.070 ppm. In other words, the eight-hour values for each day during a year for a specific monitor are ranked from highest to lowest. Then, the 4th-highest value for three consecutive years is averaged. If the three-year average is greater than 0.070 ppm, a violation of the 8-hour standard has occurred at that monitoring site.

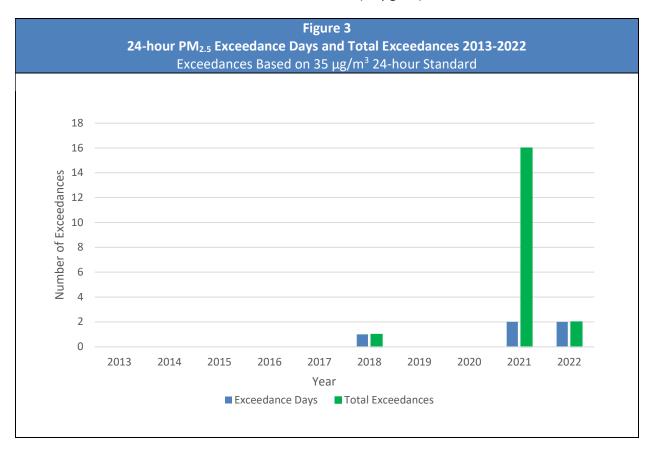

Ozone Exceedance Days and Total Exceedance Trends

Figure 1 shows the number of 8-hour exceedance days and the total number of exceedances for the past ten years. Note that years 2013-2015 show what exceedances would have been had the 0.070 ppm 8-hour standards been in effect. Figure 2 shows the most recent ozone design values (i.e., the 4th highest 8-hour ozone value averaged over three years) relative to the 2015 ozone NAAQS. Monitoring sites with less than three years of data, and therefore no three-year averages, are not included in Figure 2.

2.3 - 2022 Particulate Exceedances

In 2022, there were two exceedances of the 24-hour $PM_{2.5}$ standard (35 $\mu g/m^3$). The Lynn monitor exceeded the standard on August 19, 2022, and the Greenfield monitor exceeded the standard on December 31, 2022. The exceedances were attributed to local forest fire smoke and wood smoke, respectively. Despite these exceedances, there was no violation of the $PM_{2.5}$ NAAQS standard at either site since the 98^{th} percentile 24-hour values averaged over three years did not exceed $35 \mu g/m^3$. None of MassDEP's $PM_{2.5}$ monitors exceeded the annual standard ($12 \mu g/m^3$).

2.4 - Daily Ozone and PM Forecasts

MassDEP provides the public with daily air quality forecasts for ozone from April through September and for fine particles all year-round using weather maps and meteorological factors to predict whether or not conditions will result in elevated pollution levels. The daily air quality forecasts are available from www.mass.gov/eea/agencies/massdep/air/quality/. EPA web sites that contain regional and national pollution forecasts using data that is provided by participating states are located at www.epa.gov/region01/airquality/forecast.html and https://airnow.gov/. The table below describes the ratings used in the daily air quality forecasts.

	Air Quality In	dex (AQI): Ozone
Index Values	Levels of Health Concern	Cautionary Statements
0-50	Good	None
51-100	Moderate	Unusually sensitive people should consider reducing prolonged or heavy exertion outdoors.
101-150	Unhealthy for Sensitive Groups	Active children and adults, and people with lung disease, such as asthma, should reduce prolonged or heavy exertion outdoors.
151-200	Unhealthy	Active children and adults, and people with lung disease, such as asthma, should avoid prolonged or heavy exertion outdoors. Everyone else, especially children, should reduce prolonged or heavy exertion outdoors.
201-300	Very Unhealthy	Active children and adults, and people with lung disease, such as asthma, should avoid all outdoor exertion. Everyone else, especially children, should avoid prolonged or heavy exertion outdoors.

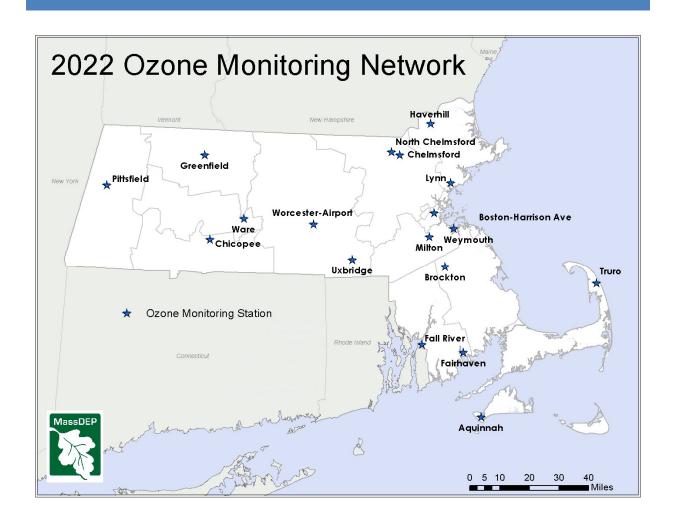
Air Qu	ality Index (AQI): Particle Pollution
Index Values	Levels of Health Concern	Cautionary Statements
0-50	Good	None
51-100	Moderate	Unusually sensitive people should consider reducing prolonged or heavy exertion.
101-150	Unhealthy for Sensitive Groups	People with heart or lung disease, older adults, and children should reduce prolonged or heavy exertion.
151-200	Unhealthy	People with heart or lung disease, older adults, and children should avoid prolonged or heavy exertion. Everyone else should reduce prolonged or heavy exertion.
201-300	Very Unhealthy	People with heart or lung disease, older adults, and children should avoid all physical activity outdoors. Everyone else should avoid prolonged or heavy exertion.

Section 3 – Massachusetts Air Quality Data Summaries

3.1 - Ozone Summary

2022 Ozone Data Summary

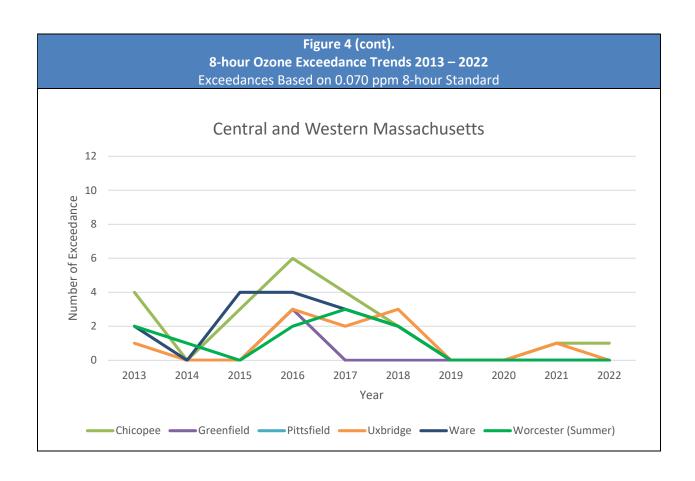
A summary of the data collected during the 2022 ozone season (March 1 – September 30) is shown below (in parts per million). MassDEP operated 17 ozone monitors during 2022. The Wampanoag Tribe operated one ozone monitor in Aquinnah on Martha's Vineyard.


O ₃ 2022			1 ST	2 ND	3 RD	4 TH	8-HR
			MAX	MAX	MAX	MAX	MAX>0.070
CITY	COUNTY	ADDRESS	8-HR	8-HR	8-HR	8-HR	STD
Aquinnah (Tribal)	Dukes	Herring Creek Drive	0.070	0.070	0.068	0.064	0
Boston	Suffolk	Harrison Avenue	0.074	0.067	0.060	0.060	1
Brockton	Plymouth	Clinton Street	0.071	0.067	0.062	0.061	1
Chelmsford EPA	Middlesex	Technology Drive	0.061	0.059	0.059	0.059	0
Chelmsford NR	Middlesex	Manning Road	0.058	0.055	0.054	0.054	0
Chicopee	Hampden	Anderson Road	0.072	0.065	0.065	0.064	1
Fairhaven	Bristol	School Street	0.084	0.071	0.068	0.067	2
Fall River	Bristol	Globe Street	0.078	0.071	0.069	0.069	2
Greenfield	Franklin	Barr Avenue	0.067	0.063	0.060	0.058	0
Haverhill	Essex	Washington Street	0.067	0.066	0.064	0.063	0
Lynn	Essex	Parkland Avenue	0.067	0.067	0.065	0.063	0
Milton	Norfolk	Canton Avenue	0.069	0.059	0.056	0.056	0
Pittsfield	Berkshire	Silver Lake Blvd	0.066	0.066	0.064	0.063	0
Truro	Barnstable	Collins Road	0.078	0.073	0.071	0.069	3
Uxbridge	Worcester	E. Hartford Ave	0.072	0.065	0.063	0.061	1
Ware	Hampshire	Skyline Drive	0.066	0.063	0.063	0.063	0
Weymouth	Norfolk	Monatiquot Street	0.077	0.073	0.063	0.063	2
Worcester	Worcester	Airport Drive	0.067	0.063	0.063	0.063	0

Primary and Secondary NAAQS: 8-hour = 0.070 ppm

¹st, 2nd, 3rd, 4th MAX 8-HR = Maximum 8-hour value for the 1st, 2nd, 3rd and 4th highest day

⁸⁻HR MAX > 0.070 STD = Number of measured daily 8-hour maximum values greater than the 0.070 ppm 8-hour standard


Ozone Monitor Locations

8-hour Ozone Exceedance Trends

Figure 3 shows the trend for each ozone monitor for the past ten years based on the 0.070 ppm 8-hour standard.

3.2 - Sulfur Dioxide (SO₂) Summary

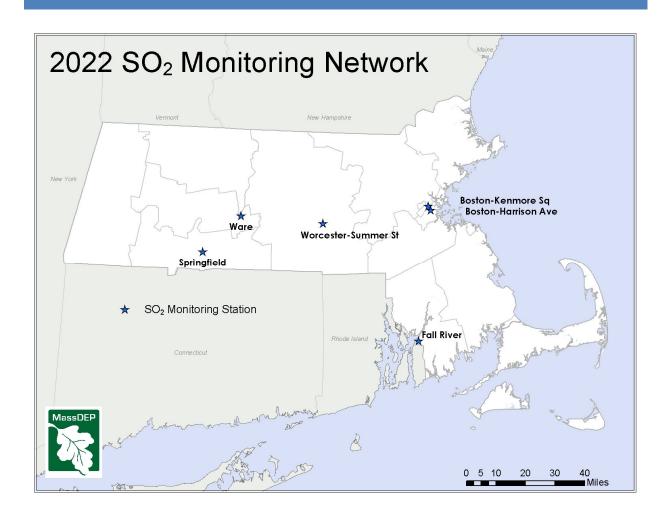
2022 SO₂ Data Summary

A summary of the 2022 SO_2 data is shown below (in parts per billion). MassDEP operated six SO_2 monitors during 2022. All values are well below applicable NAAQS.

SO ₂ 2022			1 ST	2 ND	99 TH		1 ST	2 ND
			MAX	MAX	PCTL	ARITH	MAX	MAX
CITY	COUNTY	ADDRESS	1-HR	1-HR	1-HR	MEAN	24-HR	24-HR
Boston	Suffolk	Kenmore Square	2.0	1.9	1.9	0.01	1.5	1.2
Boston	Suffolk	Harrison Avenue	5.1	3.6	3.1	0.36	1.3	1.2
Fall River	Bristol	Globe Street	5.5	4.2	3.4	0.57	1.3	1.2
Springfield	Hampden	600 Liberty Street	1.9	1.4	1.3	0.14	0.8	0.8
Ware	Hampshire	Skyline Drive	1.7	1.4	1.3	0.21	0.8	0.8
Worcester	Worcester	Summer Street	3.2	2.5	2.2	0.37	1.0	1.0

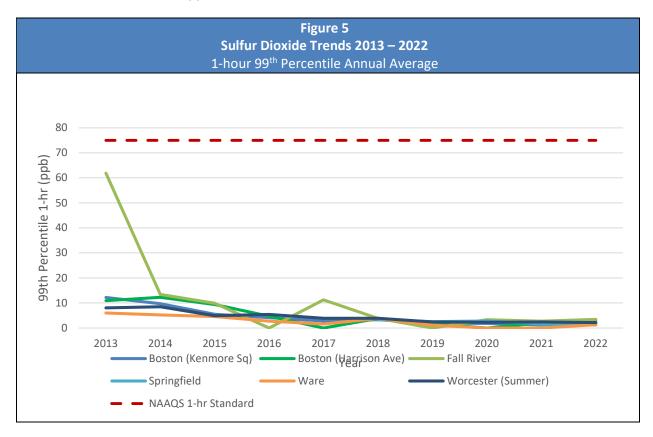
Primary NAAQS: 1-hour = 75 ppb

Secondary NAAQS: 3-hour = 0.5 ppm (500 ppb)


1st, 2nd MAX 1-HR = First and Second highest 1-hour value

99th PCTL 1-HR = 99th Percentile of the 1-hour maximum value

ARITH MEAN = Annual mean


1st, 2nd MAX 24-HR = First and Second highest 24-hour value

Sulfur Dioxide Monitor Locations

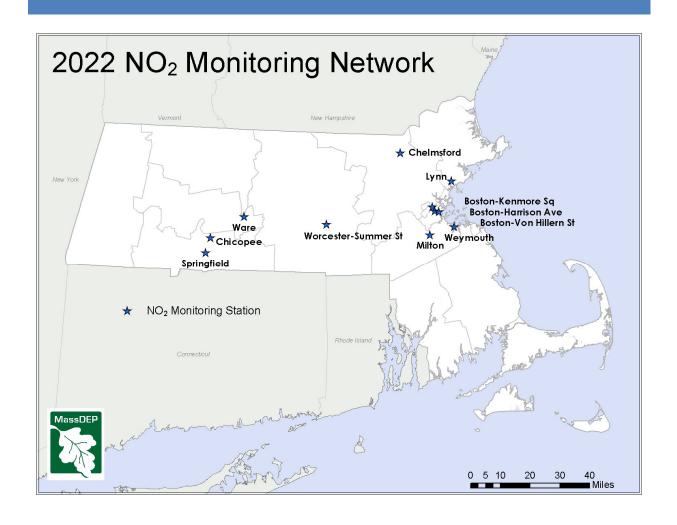
SO₂ Trends

Figure 4 shows the trend of the 1-hour 99^{th} percentile for each SO_2 monitor for the past 10 years relative to the 1-hour standard of 75 ppb.

3.3 - Nitrogen Dioxide (NO₂) Summary

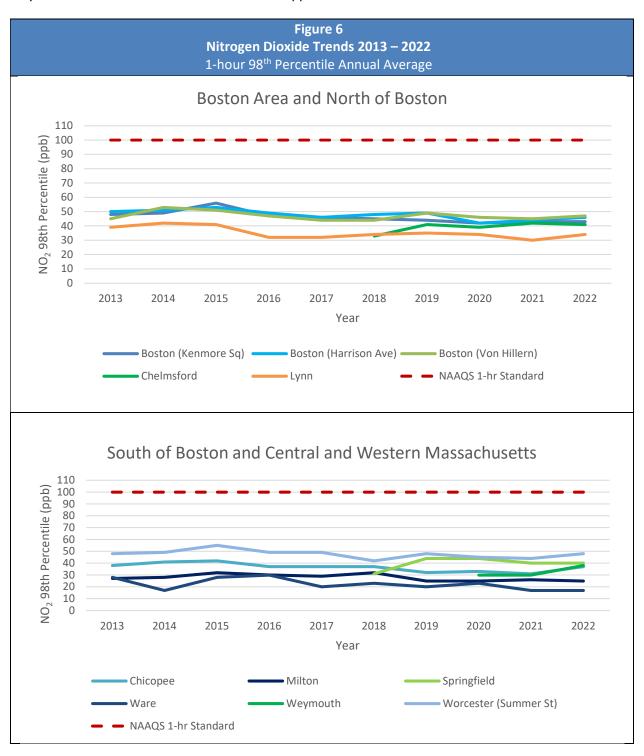
2022 NO₂ Data Summary

A summary of the 2022 NO₂ data is shown below (in parts per billion). MassDEP operated eleven NO₂ monitors during 2022. All values are well below applicable NAAQS.


NO2 2022			1 st MAX	2 nd MAX	98 th PERCENTILE	ARITH
CITY	COUNTY	ADDRESS	1-HR	1-HR	VALUE	MEAN
Boston	Suffolk	Kenmore Square	56.0	55.0	43.0	11.51
Boston	Suffolk	Harrison Avenue	64.0	59.0	46.0	9.97
Boston	Suffolk	Von Hillern Street	62.0	60.0	47.0	11.25
Chelmsford	Middlesex	Manning Road	49.0	45.0	41.0	11.47
Chicopee	Hampden	Anderson Road	45.0	41.0	37.0	5.18
Lynn	Essex	Parkland Avenue	39.2	35.8	34.3	5.43
Milton	Norfolk	Canton Avenue	44.0	35.0	25.0	3.01
Springfield	Hampden	Liberty Street	53.0	45.0	40.0	9.51
Ware	Hampshire	Skyline Drive	30.0	28.0	17.0	1.94
Weymouth	Norfolk	Monatiquot Street	51.0	49.0	38.0	5.23
Worcester	Worcester	Summer Street	59.0	56.0	48.0	10.10

Primary NAAQS: 1-hour = 100 ppb

Primary and Secondary NAAQS: Annual mean = 53 ppb 1st, 2nd MAX 1-HR = First and Second Highest 1-hour Value


ARITH MEAN = Annual Mean

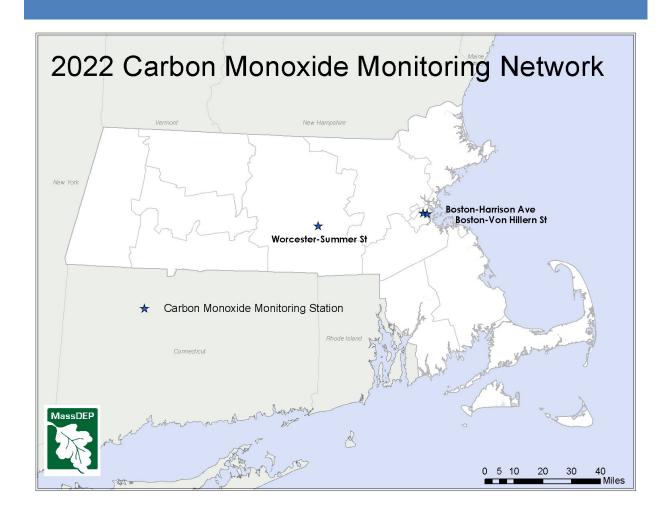
Nitrogen Dioxide Monitor Locations

NO₂ Trends

Figure 5 shows the trend of the 1-hour 98th percentile annual average for each NO₂ monitor over the past 10 years relative to the 1-hour standard of 100 ppb.

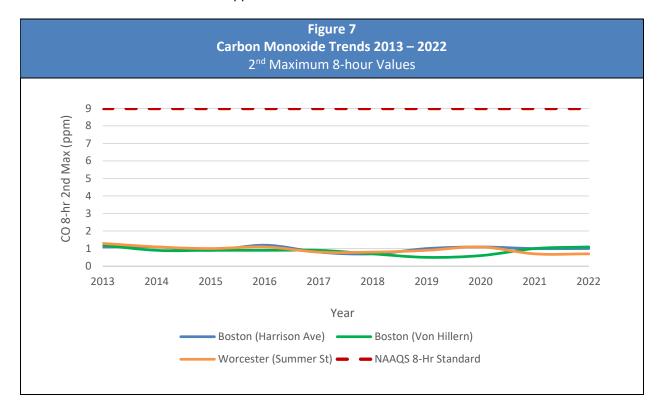
3.4 - Carbon Monoxide (CO) Summary

2022 CO Data Summary


A summary of the 2022 CO data is shown below (in parts per million). MassDEP operated three CO monitors during 2022. All values are well below applicable NAAQS.

CO 2022			1 ST	2 ND	1 ST	2 ND
			MAX	MAX	MAX	MAX
CITY	COUNTY	ADDRESS	1-HR	1-HR	8-HR	8-HR
Boston	Suffolk	Harrison Avenue	1.694	1.568	1.3	1.0
Boston	Suffolk	Von Hillern Street	5.054	2.632	1.8	1.1
Worcester	Worcester	Summer Street	1.278	1.205	0.9	0.7

Primary NAAQS:


- 8-hour = 9 ppm
- 1-hour = 35 ppm
- 1st, 2nd MAX 1-HR = First and Second highest 1-hour value
- 1st, 2nd MAX 8-HR = First and Second highest 8-hour value

Carbon Monoxide Monitor Locations

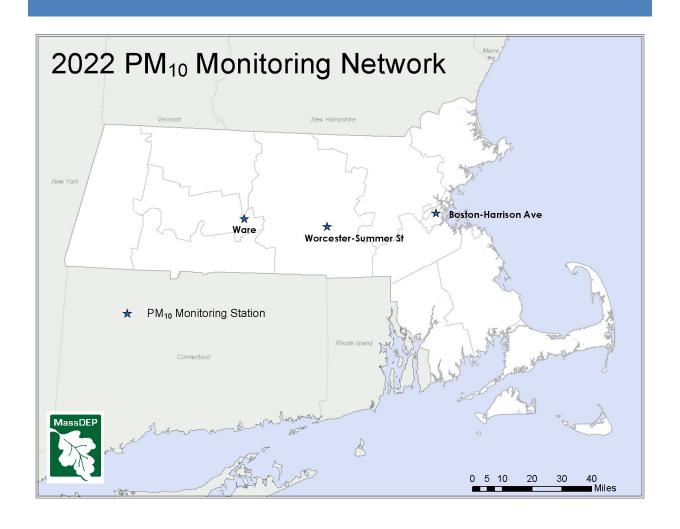
CO Trends

Figure 6 shows the trend of the 2^{nd} maximum 8-hour average for each CO monitor over the past 10 years relative to the 8-hour standard of 9 ppm.

3.5 - Particulate Matter 10 Microns (PM₁₀) Summary

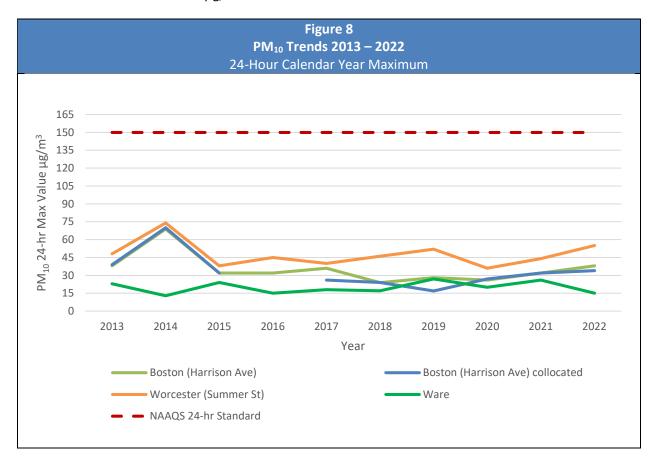
2022 PM₁₀ Data Summary

A summary of the 2022 PM_{10} data is shown below (in $\mu g/m^3$). MassDEP operated four PM_{10} monitors in 2022. All values are well below applicable NAAQS.


PM ₁₀ 2022			1ST	2ND	3RD	4TH	DAYS	
			MAX	MAX	MAX	MAX	MAX	ARITH
CITY	COUNTY	ADDRESS	24-HR	24-HR	24-HR	24-HR	>STD	MEAN
Boston	Suffolk	Harrison Avenue	38	34	32	31	0	12.8
Boston	Suffolk	Harrison Avenue*	34	31	29	24	0	12.4
Ware	Hampshire	Skyline Drive	15	14	13	12	0	7.4
Worcester	Worcester	Summer St	55	45	41	27	0	13.7

Primary and Secondary NAAQS: 24-hour = 150 μ g/m³

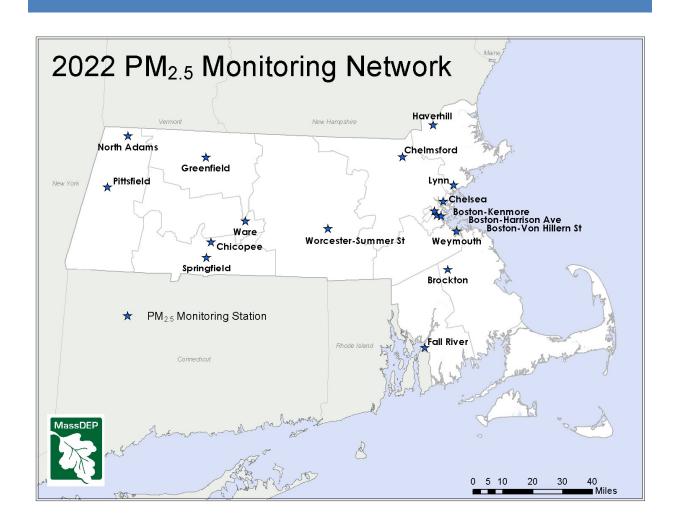
^{* =} Collocated monitors


 $^{1^{}st}$, 2^{nd} , 3^{rd} , 4^{th} 24-HR MAX = First, Second, Third and Fourth highest 24-hour values for the year ARITH MEAN = Annual mean

PM₁₀ Monitor Locations

PM₁₀ Trends

Figure 7 shows the 2022 calendar year 24-hour maximum concentration for each PM_{10} monitor relative to the 24-hour standard of 150 $\mu g/m^3$.


3.6 - Particulate Matter 2.5 Microns (PM_{2.5}) Summary

During 2022, MassDEP operated six Federal Reference Method (FRM) filter based PM_{2.5} monitors and 18 Federal Equivalent Method (FEM) continuous PM_{2.5} monitors.

FRM monitors require the manual set-up and collection of filters that measure 24-hour samples every three or six days. The filters are weighed prior to placement in the field and then weighed again after the sample is collected to determine the amount of PM_{2.5} collected on the filter.

FEM monitors measure PM_{2.5} on an hourly basis. MassDEP operates FRM and FEM monitors side-by-side at some locations for comparison. In general, FEM monitors provide slightly higher values than FRM monitors, which may be due to measurement of fresh hourly PM_{2.5} samples with FEM versus slightly aged 24-hour samples with the FRM filter method.

PM_{2.5} Monitor Locations

2022 PM_{2.5} FRM Data Summary

A summary of the 2022 PM_{2.5} FRM data is shown below (in $\mu g/m^3$).

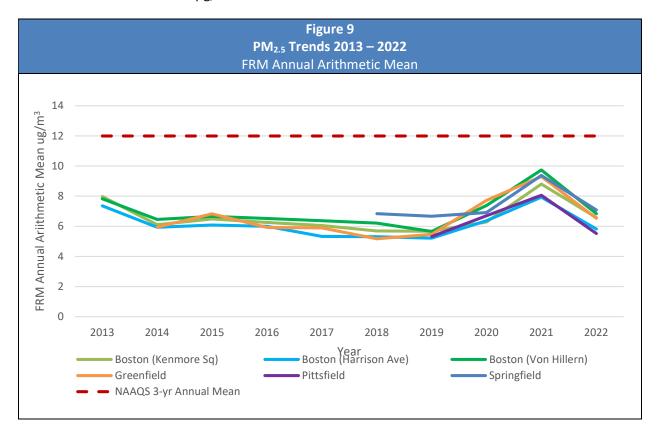
PM _{2.5} FRM 2022			1 ST	2 ND	3 RD	4 TH	98 TH	
			MAX	MAX	MAX	MAX	PECENTILE	ARITH
CITY	COUNTY	ADDRESS	24-HR	24-HR	24-HR	24-HR	24-HR	MEAN
Boston	Suffolk	Kenmore Square	17.2	16.7	14.9	13.1	16.7	6.58
Boston	Suffolk	Harrison Avenue	16.3	14.0	13.8	13.5	13.8	5.82
Boston	Suffolk	Von Hillern Street	15.5	14.9	14.5	12.8	14.9	6.84
Greenfield	Franklin	Barr Avenue	30.7	19.7	19.7	19.2	19.7	6.53
Pittsfield	Berkshire	Silver Lake Blvd	15.4	15.3	14.4	13.2	15.3	5.52
Springfield	Hampden	Liberty Street	15.9	15.2	15.0	15.0	15.2	7.08

Primary NAAQS: Annual Mean = $12.0 \mu g/m^3$

Primary and Secondary NAAQS: 24-hour (98th percentile) = 35 $\mu g/m^3$

Secondary NAAQS: Annual Mean = 15.0 μg/m³

1st, 2nd, 3rd, 4th 24-HR MAX = First, Second, Third, and Fourth highest 24-hour values for the year


98th PERCENTILE 24-HR = 98th Percentile value for the year

ARITH MEAN = Annual mean

^{* =} Collocated monitors

PM_{2.5} FRM Trends

Figure 8 shows trends of the annual arithmetic mean for each $PM_{2.5}$ FRM monitor over the past 10 years relative to the standard of 12 $\mu g/m^3$.

2022 PM_{2.5} FEM Data Summary

A summary of the 2022 $PM_{2.5}$ FEM data is shown below (in $\mu g/m^3$).

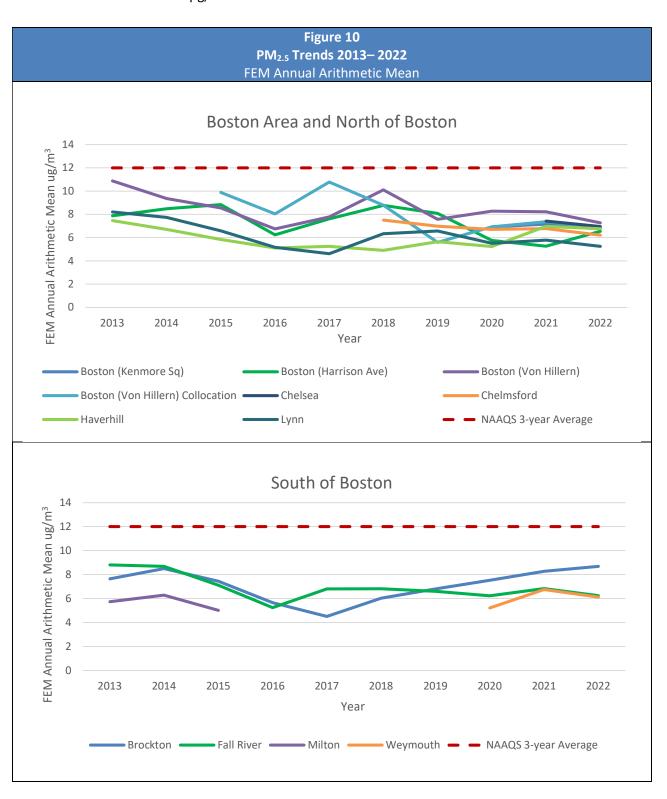
FEM 2022			1 ST	2 ND	3 RD	4 TH	98 TH	
			MAX	MAX	MAX	MAX	PECENTILE	ARITH
CITY	COUNTY	ADDRESS	24-HR	24-HR	24-HR	24-HR	24-HR	MEAN
Boston	Suffolk	Kenmore Sq	18.7	17.4	17.2	16.5	15.6	6.78
Boston	Suffolk	Harrison Ave	17.9	17.5	16.2	15.5	14.7	6.54
Boston	Suffolk	Von Hillern St	20.5	20.2	20.1	20.1	17.0	7.27
Boston	Suffolk	Von Hillern St*	18.9	18.9	18.7	18.7	16.2	6.88
Brockton	Plymouth	Clinton Street	19.3	18.6	18.5	18.3	16.5	8.68
Chelsea	Suffolk	Willow St	20.7	19.2	18.6	17.5	16.7	6.96
Chelmsford	Middlesex	Manning Road	20.0	16.5	16.0	16.0	14.8	6.21
Chicopee	Hampden	Anderson Road	20.1	19.0	18.0	17.6	16.1	6.19
Fall River	Bristol	Globe Street	17.9	17.4	17.1	16.6	14.0	6.24
Greenfield	Franklin	Barr Avenue	38.4	31.1	28.7	22.3	18.5	7.24
Haverhill	Essex	Washington St	26.2	21.7	20.0	19.7	16.7	6.76
Lynn	Essex	Parkland Ave	40.3	23.6	18.2	16.4	13.6	5.24
North Adams	Berkshire	Holden Street	19.5	19.0	18.8	16.8	15.1	5.81
Pittsfield	Berkshire	Silver Lake Blvd	24.7	18.6	18.1	17.1	14.8	6.75
Springfield	Hampden	Liberty Street	22.9	21.2	20.7	19.9	19.4	7.86
Ware	Hampshire	Skyline Drive	22.4	21.0	18.8	16.2	14.6	6.51
Weymouth	Norfolk	Monatiquot St	17.2	15.9	14.4	14.0	13.0	6.12
Worcester	Worcester	Summer Street	21.0	18.6	18.4	18.0	17.9	8.61

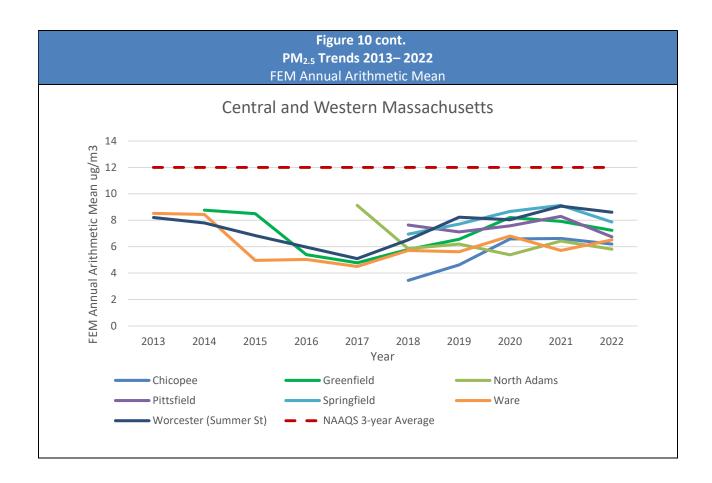
Primary NAAQS: Annual Mean = $12.0 \mu g/m^3$

Primary and Secondary NAAQS: 24-hour (98th percentile) = 35 μg/m³

Secondary NAAQS: Annual Mean = $15.0 \mu g/m^3$

1st, 2nd, 3rd, 4th 24-HR MAX = First, Second, Third, and Fourth highest 24-hour values for the year


 98^{th} PERCENTILE 24-HR = 98^{th} Percentile value for the year


ARITH MEAN = Annual mean

^{* =} Collocated monitors

PM_{2.5} FEM Trends

Figure 9 shows trends of the annual arithmetic mean for each PM_{2.5} FEM monitor over the past 10 years relative to the standard of 12 μ g/m³.

3.7 - Speciation

MassDEP collects PM_{2.5} samples at Boston (Harrison Avenue) and Chicopee as part of EPA's Chemical Speciation network (CSN). The CSN is a complement to the PM_{2.5} monitoring network and its objectives include the assessment of trends, developing emission control strategies, aiding in the interpretation of health studies by linking health effects to PM_{2.5} constituents, and identifying air pollution sources that affect the area around the monitoring station.

Speciation involves analysis of particulate matter to determine its chemical composition and to identify air pollution sources that affect the area around the monitoring station. Pollutants analyzed include elements (e.g., metals), sulfates, nitrates, and carbon (total and organic). Speciation samples are sent to UC Davis Air Quality Research Center for analysis and reporting.

3.8 - Interagency Monitoring of Protected Visual Environments (IMPROVE)

IMPROVE is a nationwide program designed to assess air quality at rural locations where air pollution may affect visibility over long distances (e.g., mountain ranges or scenic vistas). During 2022, the National Park Service operated an IMPROVE sampler at the Truro monitoring site, and the Wampanoag Tribe operated an IMPROVE sampler at its Martha's Vineyard monitoring site. These samplers acquire PM_{2.5} filter samples for speciation analysis to determine effects on visibility. Data can be viewed at the IMPROVE web site at http://vista.cira.colostate.edu/improve/Data/data.htm.

3.9 - Quality Assurance and Quality Control (QA/QC)

To ensure that all air quality data is of acceptable and consistent quality, MassDEP has developed standard operating procedures (SOPs) based on federal requirements that include quality control and quality assurance protocols that systematically assess the entire sample collection and data handling system on an ongoing basis. Ambient air monitoring quality assurance requirements are contained in the Federal Regulations at 40 CFR Part 58, Appendix A – E. Each year MassDEP certifies compliance with the federal requirements. A few of the considerations that affect sample collection data quality are:

- Site Placement
- Intake Probe Material
- Intake Probe Height
- Shelter Conditions
- Spacing from roadways and trees

For data analysis, there are quantitative statistics and qualitative descriptors used to interpret the degree of acceptability and utility of data. Examples of these data quality indicators are:

- Representativeness
- Precision and Bias
- Detectability
- Completeness
- Comparability

MassDEP's Air Assessment Branch maintains a Quality Control Group that reviews daily and historical monitored data for validity, tracks precision results, finalizes hourly values, and submits air data and quality results to EPA's database in. Computer software tools, report queries, and "eyes on" data reviews all are used to validate data before it is submitted to EPA.

There also is a Quality Assurance Group that ensures samples are collected correctly and conducts performance audits throughout the air monitoring network to verify data validity. The EPA also conducts its own performance audits on MassDEP samplers and every three years conducts a thorough Technical Systems Audit (TSA). The latest TSA was conducted in 2022.

Section 4 – PAMS/Air Toxics Monitoring

4.1 - Photochemical Assessment Monitoring Station (PAMS) Monitoring

Ground-level ozone is a secondary pollutant and is not emitted directly to the atmosphere from a stack or tailpipe, but forms in the atmosphere from the photochemical reactions of other pollutants such as VOCs and NOx. The PAMS program was established to gather information on the ozone formation process to help agencies identify effective ozone pollution control strategies. In 2022, MassDEP operated one PAMS station in Lynn.

Instruments at the Lynn site measure pollutants and meteorological parameters that are specific to the photochemical processes by which ozone is created in the atmosphere at ground level. In addition to the relevant NAAQS pollutants (e.g., ozone, NO₂), the Lynn site monitors VOCs every six days throughout the year and on an hourly basis during the hottest part of the summer (June, July, and August). Meteorology is a critical component of ozone formation, and the Lynn PAMS site has a full complement of meteorological sensors including wind speed, wind direction, temperature, relative humidity, barometric pressure, solar radiation, ultraviolet radiation, precipitation, and atmospheric mixing heights.

4.2 - Air Toxics Monitoring

Toxic air pollutants are known or suspected to cause cancer or other serious health effects. Air toxics include certain VOCs and toxic metals (e.g., arsenic, cadmium). The Boston (Harrison Avenue) monitoring site is designated as a National Air Toxics Trends Station (NATTS) and monitors multiple toxic air pollutants, including VOCs, carbonyls, metals, black carbon and polycyclic aromatic hydrocarbons (PAHs). Data from this site is compared with data from a network of similar sites across the country to identify transport, trends, and site-specific characteristics of these pollutants. The table below summarizes the 2022 metals data.

2022	BOSTON (Harrison Ave)						
METAL	Max Value μg/m³	Mean μg/m³					
Antimony	0.00482	0.00145					
Arsenic	0.00165	0.00036					
Beryllium	0.00003	0.00001					
Cadmium	0.00018	0.00006					
Chromium	0.00976	0.00602					
Cobalt	0.00056	0.00010					
Lead	0.00910	0.00240					
Manganese	0.02310	0.00464					
Mercury	0.00002	0.00000					
Nickel	0.03420	0.00120					
Selenium	0.00067	0.00020					

MassDEP monitors VOCs in Boston (Harrison Ave), Chelsea, Lynn and Weymouth. The table below summarizes 24-hour concentrations of target VOCs measured at these locations in 2022.

	Boston		Chelsea		Lynn		Weymouth	
	Max	Mean	Max	Mean	Max	Mean	Max	Mean
Compound	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
formaldehyde	3.40	2.01	5.60	2.42	4.50	2.49	5.00	1.62
acetaldehyde	1.60	0.72	2.00	0.82	1.40	0.73	2.15	0.71
chloromethane	0.86	0.55	0.83	0.55	0.73	0.54	0.65	0.54
vinyl chloride	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1,3-butadiene	0.07	0.02	0.08	0.02	0.04	0.01	0.03	0.01
butane	1.95	0.63	12.23	1.89	1.40	0.41	5.68	1.08
ethylene oxide	0.55	0.07	1.00	0.06	0.65	0.06	1.20	0.10
bromomethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
chloroethane	0.04	0.01	0.02	0.01	0.03	0.01	0.02	0.01
acrolein	0.30	0.13	0.43	0.14	0.50	0.19	0.53	0.11
trichlorofluoromethane	0.26	0.21	0.23	0.21	0.23	0.21	0.22	0.21
acrylonitrile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
pentane	2.00	0.34	4.62	1.64	0.62	0.19	0.92	0.30
1,1-dichloroethene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
dichloromethane**	22.04	1.94	0.17	0.10	0.12	0.09	0.11	0.09
trans-1,2-dichloroethene	0.02	0.00	0.01	0.00	0.01	0.00	0.01	0.00
1,1-dichloroethane	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00
methyl-t-butyl ether	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
methyl ethyl ketone	0.88	0.26	0.70	0.19	1.05	0.28	0.73	0.28
hexane	0.22	0.08	0.88	0.19	0.17	0.06	0.20	0.09
chloroform	0.03	0.02	0.03	0.02	0.03	0.02	0.03	0.02
1,2-dichloroethane	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01
1,1,1-trichloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
benzene	0.32	0.13	0.33	0.14	0.23	0.12	0.23	0.10
carbon tetrachloride	0.09	0.08	0.09	0.08	0.09	0.08	0.08	0.08
cyclohexane	0.10	0.03	0.40	0.08	0.10	0.03	0.12	0.05
1,2-dichloropropane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
trichloroethylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2,2,4-trimethylpentane	0.25	0.08	1.21	0.12	0.15	0.05	0.18	0.07
heptane	0.14	0.04	0.37	0.10	0.10	0.03	0.14	0.05
cis-1,3-dichloropropene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
trans-1,3-dichloropropene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

	Boston		Che	elsea	Lynn		Weymouth	
	Max	Mean	Max	Mean	Max	Mean	Max	Mean
Compound	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
1,1,2-trichloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
toluene	0.66	0.22	0.64	0.26	1.27	0.38	0.37	0.15
1,2-dibromoethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
octane	0.06	0.02	0.30	0.07	0.06	0.02	0.13	0.04
tetrachloroethylene	0.10	0.01	0.15	0.01	0.00	0.00	0.05	0.00
1,1,1,2-tetrachloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
chlorobenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ethylbenzene	0.10	0.03	0.16	0.06	0.05	0.05	0.08	0.03
m&p-xylenes	0.33	0.09	0.64	0.20	0.19	0.06	0.23	0.07
bromoform	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00
styrene	0.03	0.01	0.35	0.11	0.06	0.02	0.01	0.00
1,1,2,2-tetrachloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
o-xylene	0.11	0.03	0.23	0.07	0.06	0.02	0.06	0.03
alpha-pinene	0.08	0.02	0.05	0.02	0.11	0.03	0.10	0.03
1,3,5-trimethylbenzene	0.02	0.01	0.07	0.01	0.02	0.01	0.01	0.00
1,2,4-trimethylbenzene	0.08	0.02	0.18	0.04	0.04	0.02	0.04	0.02
m-dichlorobenzene	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
p-dichlorobenzene	0.03	0.00	0.02	0.00	0.00	0.00	0.02	0.00
o-dichlorobenzene	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00
n-butylbenzene	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00
1,2,4-trichlorobenzene*	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00
naphthalene*	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01

^{*} Flagged in AQS - Identification of the analyte is acceptable; however, the reported value is an estimate. N/A - Not available

Appendix A 2022 Monitoring Stations

City/Town	Address	Parameters Monitored						
AQUINNAH*	HERRING CREEK RD	O3, IMPROVE						
BOSTON	KENMORE SQUARE	NO2, NO, NOx, SO2, PM2.5						
BOSTON	1159 HARRISON AVENUE	O3, NO2, NO, NOx, NOy, SO2, CO, PM2.5, PM10, PM Coarse, PM2.5 Speciation, Black Carbon, Toxics, Carbonyls, WS/WD, WSv/WDv, TEMP, SUN, REL, BP						
BOSTON	19 VON HILLERN ST	NO2, NO, NOx, CO, PM2.5, Black Carbon, WS/WD, TEMP, SUN, REL, BP						
BROCKTON	170 CLINTON ST	O3, PM2.5						
CHELMSFORD	11 TECHNOLOGY DR	03						
CHELMSFORD	5 MANNING RD	NO2, NO, NOx, PM2.5, O3, Black Carbon						
CHELSEA	75 WILLOW ST	PM2.5, VOCS, Carbonyls						
CHICOPEE	ANDERSON RD	O3, NO2, NO, NOx, PM2.5, PM2.5 speciation, WS/WD, TEMP, SUN, REL, BP						
FAIRHAVEN	30 SCHOOL ST	O3, WS/WD, TEMP, SUN, REL, BP						
FALL RIVER	659 GLOBE ST	O3, SO2, PM2.5						
GREENFIELD	16 BARR AVE	O3, PM2.5, Black Carbon, WS/WD, TEMP, SUN, REL, BP						
HAVERHILL	685 WASHINGTON ST	O3, PM2.5, WS/WD, TEMP, SUN, REL, BP						
LYNN	390 PARKLAND AVE	O3, NO2, NOy, PM2.5, VOCs, Carbonyls, WS/WD, TEMP, SUN, REL, BP, PRECIP, TOTAL UV						
MILTON	1904 CANTON AVENUE	O3, NO2, NO, NOx, TEMP, SUN, REL, BP						
NORTH ADAMS	86 HOLDEN STREET	PM2.5, Black Carbon						
PITTSFIELD	25 SILVER LAKE DR	O3, PM2.5, Black Carbon, WS/WD, TEMP, SUN, REL, BP						
SPRINGFIELD	600 LIBERTY STREET	NO2, NO, NOx, SO2, PM2.5, Black Carbon						
TRURO	6 COLLINS ROAD	O3, WS/WD, TEMP, SUN, REL, BP, IMPROVE						
UXBRIDGE	366 E. HARTFORD AVE	O3, WS/WD, TEMP, SUN, REL, BP						
WARE	36 SKYLINE DRIVE	O3, NO2, NO, NOx, NOy, SO2, PM2.5, PM10, WS/WD, TEMP, SUN, REL, BP						
WEYMOUTH	59 MONATIQUOT ST	O3, NO2, NO, NOx, PM2.5, WS/WD, TEMP, SUN, REL, BP, VOCS, Carbonyls						
WORCESTER	375 AIRPORT DRIVE	O3, WS/WD, TEMP, SUN, REL, BP						
WORCESTER	SUMMER STREET	NO2, NO, NOx, SO2, CO, PM2.5, PM10						
	-							

^{*}Tribal Site