I-91 VIADUCT STUDY

Springfield, Massachusetts

Working Group Meeting #11

One Financial Plaza 1350 Main Street 3rd Floor, Community Room A Springfield, Massachusetts

July 31, 2018

Welcome & Introductions

- Michael Clark Project Manager (MassDOT)
- Ethan Britland Project Manager (MassDOT)
- Mark Arigoni, L.A. Principal-in-Charge (MMI)
- Van Kacoyannakis, P.E. Traffic (MMI)
- John Hoey QA/QC (MMI)
- Sarah Paritsky Public Involvement (Regina Villa)

Agenda

- Welcome and Introductions
- Study Progress & Alternatives Review
- Refresher of the WGM#10
 - Evaluation Criteria Workbook/Comments
- Draft Final Recommendations
- Next Steps

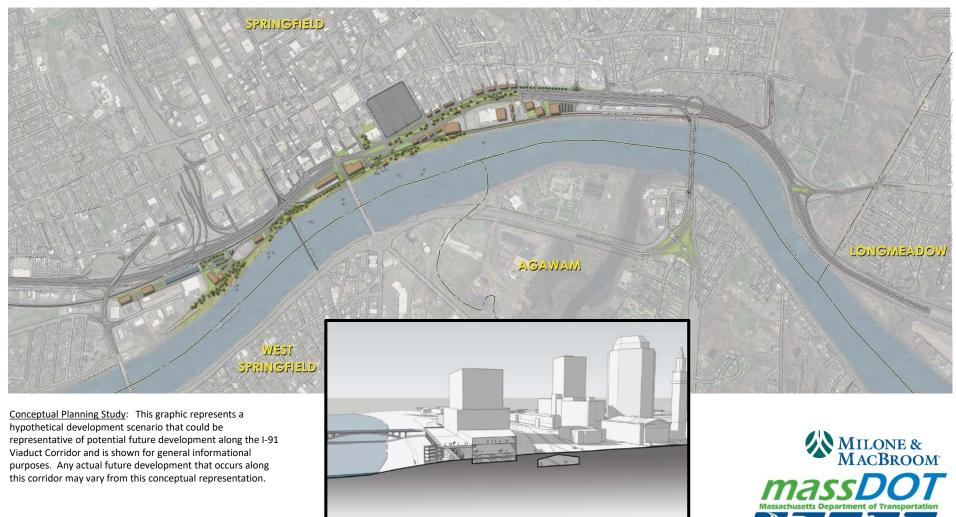
I-91 Viaduct Study Goals, Objectives, and Evaluation Criteria

- Mobility and Connectivity maintain and improve the efficient function of I-91, I-291, associated ramps, and key intersections in the study area, encouraging mode shift through improved bike/ped functionality
- Safety improve bike/ped and vehicular safety throughout the study area, as well as public safety adjacent to the viaduct
- Environmental Effects improve air quality, reduce noise impacts, and decrease environmental impacts such as wetlands incursion and pavement footprint
- Land Use and Economic Development enhance access to existing development parcels and establish new development parcels, while creating more attractive, economically viable riverfront connections
- Community Effects provide fair and equitable treatment for Environmental Justice populations and improve the visual perception of the viaduct
- Cost estimate construction and long-term maintenance costs

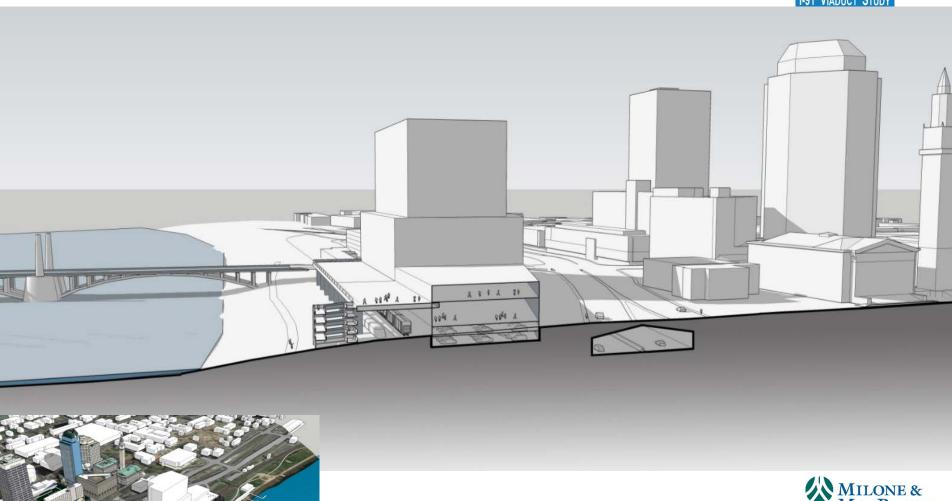

Project Review: Alternatives Development

- Ten alternatives initially developed
- Ten Working Group Meetings (WGMs)
- Two Public Meetings
- Three alternatives advanced for analysis
 - Sunken Highway following Current Alignment
 - Sunken Highway following Modified Alignment
 - Reconstructed Elevated Highway
- Detailed Evaluation Criteria Analysis: Alternatives developed to achieve most favorable outcomes for community, environmental impacts, engineering complexity, ease of implementation, and costs

Refresher of Three Alternatives

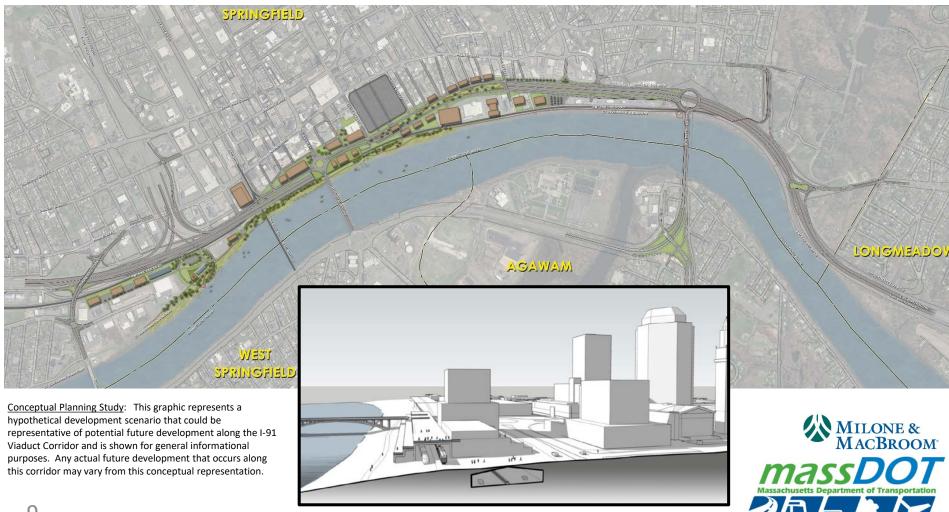

- Sunken, Tunnel, or Combination(s) following current I-91 Alignment
- Sunken, Tunnel, or Combination(s) following modified I-91 Alignment (section of combined rail and highway corridor)
- 3. Reconstructed Elevated Structure (Modern Viaduct)

Alternative No.1

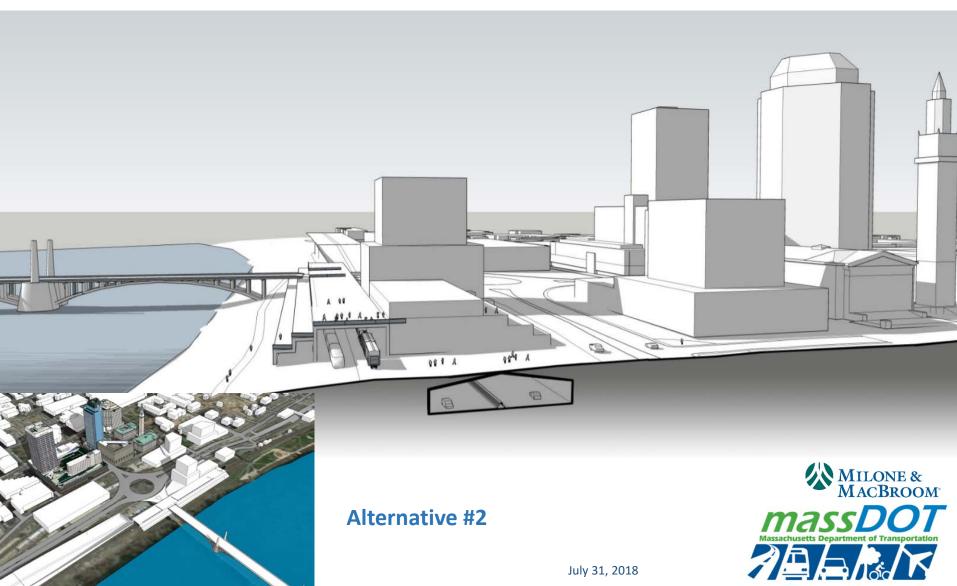

Sunken following current I-91 Alignment

7

Conceptual Planning Study: This graphic represents a hypothetical development scenario that could be representative of potential future development along the I-91 Viaduct Corridor and is shown for general informational purposes. Any actual future development that occurs along this corridor may vary from this conceptual representation.

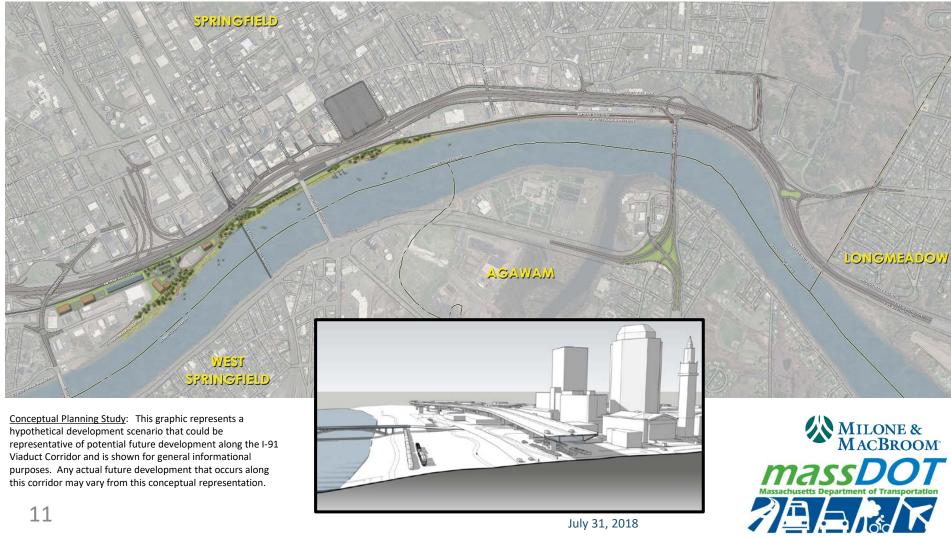


Alternative No. 2

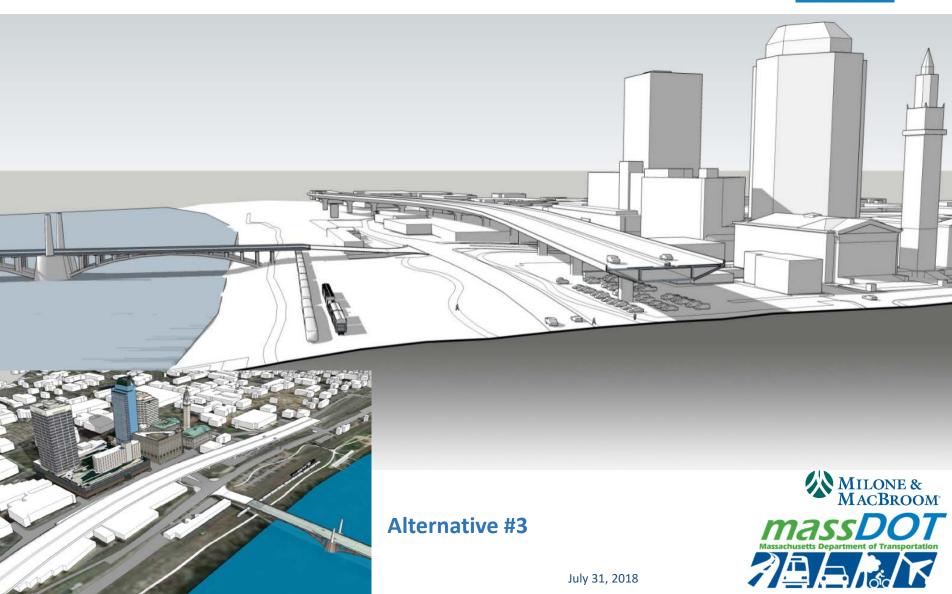


Sunken following modified I-91 Alignment

Conceptual Planning Study: This graphic represents a hypothetical development scenario that could be representative of potential future development along the I-91 Viaduct Corridor and is shown for general informational purposes. Any actual future development that occurs along this corridor may vary from this conceptual representation.

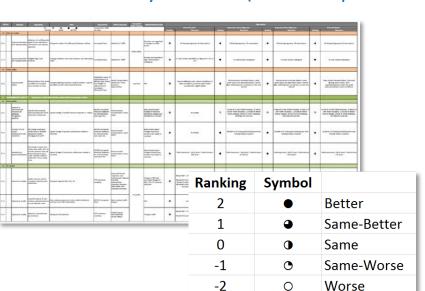


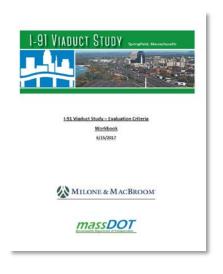
Alternative No. 3



Reconstructed Elevated Structure (Modern Viaduct)

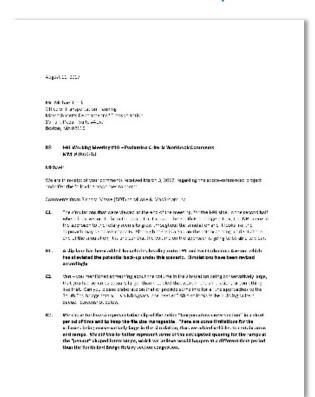
Conceptual Planning Study: This graphic represents a hypothetical development scenario that could be representative of potential future development along the I-91 Viaduct Corridor and is shown for general informational purposes. Any actual future development that occurs along this corridor may vary from this conceptual representation.

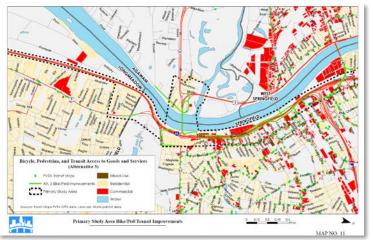




WGM#10 - Evaluation Criteria / Comments

- A workbook was developed to function as a stand alone document providing information to support ratings shown in the Evaluation Criteria.
- Comments were generated by the working group following WGM #10.
- Responses to comments were provided and posted to the study website (handout provided)





WGM#10 - Evaluation Criteria / Comments

- The Evaluation Criteria was further developed and refined based on comments provided following the WG meeting in June (2017)
- Mapping & Ratings (Harvey Ball/Numeric) were reviewed and revised as necessary.

Ranking	Symbol		
2	•	Better	
1	•	Same-Better	
0	•	Same	
-1	O	Same-Worse	
-2	0	Worse	

Comparison of Alternatives

Note that Build Alternative cost estimates include component improvements

	Sunken Highway Following Current Alignment	Sunken Highway Following Modified Alignment	Reconstructed Elevated Highway	
Mobility and Connectivity	Some reduction in number of merge, diverge, and weave locations	Highest reduction in number of merge, diverge, and weave locations	Some reduction in number of merge, diverge, and weave locations	
	Improvement in vehicular travel time along I-91 and study area	Minimal change in vehicular travel time along I-91 and decline in study area	Improvement in vehicular travel time along I-91 and smaller improvement in study area	
Safety	Reduction of on-ramps/off- ramps improves bike/ped conditions	Reduction of on-ramps/off- ramps improves bike/ped conditions	Reduction of on-ramps/off- ramps improves bike/ped conditions	
	Redesign of 15 crash clusters	Redesign of 15 crash clusters	Redesign of 15 crash clusters	
Environmental Effects	Slight increase in VMT and decrease of air quality	Slight increase in VMT and decrease of air quality	Virtually no change in VMT or air quality	
	27,000 square feet of wetlands impacts	27,000 square feet of wetlands impacts	27,000 square feet of wetlands impacts	
	Reduced noise impacts	Reduced noise impacts	Similar noise impacts	
Land Use and Economic Development	468,800 square feet of space over highway created	553,800 square feet of space over highway created	13,800 square feet of space over highway created	
	Potential for \$2.2 million in annual tax revenue at full build-out	Potential for \$3.5 million in annual tax revenue at full build-out	Potential for \$300,000 in annual tax revenue at full build-out	
Community Effects	Potential for greenspace and better connection to Riverfront	Potential for greenspace and better connection to Riverfront	Potential for activation of space underneath viaduct	
	10-15 year construction duration	10-15 year construction duration	8-12 year construction duration	
Cost (in 2040 dollars)	\$3.78 billion	\$3.74 billion	\$3.14 billion	

All alternatives
compared against
Rehab Option
Rehabilitation of
viaduct under current
alignment at existing
elevation

Cost - \$695 million

Cost Estimates

Alternative	Rehab	Alt. 1	Alt. 2	Alt. 3	Associated Projects
Order of Magnitude Construction Cost (in 2040 dollars)	\$695 M	\$3.78 B	\$3.74 B	\$3.14 B	\$826 M

Alt. 1 – Sunken in Current Alignment Alt. 2 – Sunken in New Alignment Alt. 3 – Reconstructed Elevated

All Alternative costs include I-91 SB/I-291 NB and I-291 SB/I-91 NB ramp systems, which may require replacement prior to expected lifespan of viaduct

Component breakdowns for Build Alternatives:

- I-91 through downtown core (Alts. 1/2) \$2.475-2.5 billion
- I-91 through downtown core (Alt. 3) \$1.875 billion
- I-91/I-291 interchange (all) \$407-424 million
- I-91 northern touchdown (all) \$33 million
- E/W Columbus Avenue frontage road improvements \$155-160 million

Components which can be constructed regardless of Alternative:

- Longmeadow Curve \$213 million
- South End Bridge \$206 million
- US-5/MA-57 interchange in Agawam \$157 million
- I-291 SB to I-91 SB entrance \$152 million
- Plainfield Street improvements (north of I-291) \$76 million
- CT Riverwalk/Bikeway improvements \$20 million
- Under viaduct improvements (approx.) \$2 million

Draft Final Recommendations

- Viaduct Rehabilitation emerged as the most sensible option for a long-term repair project
- Several options for short and mid-term improvements
 - Longmeadow Curve improvements
 - I-291 SB to I-91 SB ramp relocation
 - Route 20 improvements in Springfield
 - Short-term alternatives in and around viaduct
- Municipal (local cities and towns) and regional parties (PVPC) should work with MassDOT to initiate the project development process
 - For locally-owned infrastructure, municipalities and PVPC pursue with support from MassDOT
 - For MassDOT infrastructure, MassDOT District 2 pursue with local support

Short and Medium-Term Alternatives

- Related projects outside of the Viaduct which serve study goals and objectives
- Can be implemented as stand-alone projects or in logical groups
- Dependent upon current project needs and available or programmed funding opportunities

Longmeadow Curve Improvements

Longmeadow Curve Improvements

- Construction of collector-distributor roads along I-91 mainline and roundabouts at South End Bridge and U.S. Route 5
 - Ability to access I-91 southbound from US-5 in Longmeadow
- Elimination of weaving hazards along I-91 mainline
- Elimination of US-5/MA-57 rotary in Agawam for operational and safety improvements
- Creation of pedestrian access from Forest Park to Connecticut Riverwalk and Bikeway in Springfield across South End Bridge to Agawam

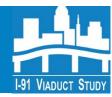
Estimated 2040 costs:

Longmeadow Curve - \$213 million South End Bridge - \$206 million US-5/MA-57 interchange in Agawam - \$157 million Bicycle/pedestrian bridge - \$20 million

I-291 Southbound to I-91 Southbound On-Ramp Relocation

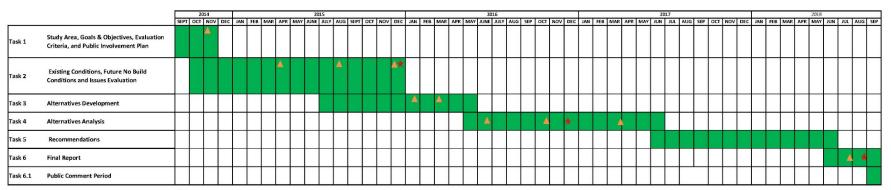
- Shifts on-ramp from left-hand entrance onto I-91 to right-hand entrance
- Eliminates weaving movements from on-ramp to Exit 7 towards Memorial Bridge
- Restriping with deck replacement project to discourage weaving movements
- Estimated 2040 cost \$152 million

Route 20 Improvements in Springfield


I-91 VIADUCT STUDY

- New bridges over I-91 and railroad tracks
- Third lane of westbound vehicular travel
- Bicycle and pedestrian improvements
- Intersection reconstruction at Main Street and Avocado Street
- Initiate the project development process

Short Term Improvements


- Safety and aesthetic improvements underneath viaduct
- Improvements or relocation of pedestrian bridge behind former Luxe Burger/BHOF
- Improvements to walkway underneath railroad to riverfront north of State Street
- Improve at-grade pedestrian crossing to riverfront south of State Street (active crossing)
- Add sidewalk to west side of US-5 in Springfield link Forest Park with Longmeadow
- All cost estimates for improvements at less than \$2 million in 2018 dollars

Project Schedule

Working Group Meeting
Public Meeting

Next Steps

- Final Public Informational Meeting
- Draft Report Published for Public Comment
- Final Report issued after 30 day public comment period

Questions & Comments

Contacts:

Michael Clark, Project Manager

Phone: 857-368-9800

Email: michael.clark@state.ma.us

Ethan Britland, Project Manager

Phone: 857-368-8840

Email: ethan.britland@state.ma.us

Study Website Link:

www.mass.gov/i-91-viaduct-study

Thank you for your continued participation and commitment to the project.

