

Board Report:

LiDAR for Airport Obstruction Analysis & 3D Ortho-mosaic Imagery

Monday October 28, 2019

Presented to: Board of Directors

Presented by: ■ Aeronautics Division > Dr. Jeff DeCarlo

Light Detection And Ranging (LiDAR)

- LiDAR measures distance to a target by illuminating it with a pulsed laser light
- The reflection of that pulse is then used to detect and record the precise time of the LiDAR event
- The data collected can be used to make digital 3D-images of the target, referred to as a 3D Point Cloud
- LiDAR/UAS is increasingly used in transportation infrastructure projects and provides many tangible benefits
- These benefits include reduced inspection and survey times, improved inspection effectiveness, increased safety and lower operating costs
- The Aeronautics Division's Drone Pilot Program (DPP) is developing a LiDAR/UAS initiative to survey airport airspace (approach surfaces) to identify existing or potential hazards to air navigation

<u>Light Detection And Ranging (LiDAR)</u> Continued

- LiDAR vs. Photogrammetry Both can create 3D scans
- LiDAR uses lasers to make measurements, while photogrammetry is based on captured images that can be processed and combined to enable measurements

Туре	Pros	Cons
LiDAR	 High Vertical resolution/accuracy High point density on vertical targets Penetrates through high canopy High accuracy surveying large areas Less flight time Works both day/night Corridor/vertical mapping 	 Higher technical requirements (cost) Does not work on water surfaces Images can be distorted (fuzzy) due to multi-passes of UAS. Higher weight and power consumption
Traditional Photogrammetry	 Lower costs Time-tagged images Geo-Tagged High horizontal accuracy Low-Power Supports for multi-spectral sensors 	 Low point density within area with low texture Low vertical accuracy Low point density on vertical features/foliage Low accuracy on large area More flight time required Long (data) processing time

3D Ortho-mosaic Imagery

- Ortho-mosaics are aerial images composed of multiple photographs stitched together using photogrammetry that have been geographically corrected for accuracy
- 3D Ortho-mosaics provide extreme detail to support real- time decision making for key infrastructure improvements
- MassDOT's enterprise license with ESRI (external software vendor) provides access to base maps, layers and imagery that serve as a tool for data management and data analytics
- GeoDOT's Pictometry Viewer offers oblique and aerial photogrammetry of each airport including historical imagery for airport applications
- Imagery is updated annually for both ESRI and Pictometry

3D Ortho-mosaic Imagery Continued

- Aeronautics yearly pavement maintenance asbuilt drawings are completed in Google Earth which can be layered into GeoDOT
- Aeronautics is currently working with APTech (engineering consultant) to provide the required tri-annual analysis of our airport pavement condition
- The shape files from the pavement analysis can be incorporated into GeoDOT along with metadata to provide dashboards on pavement metrics

