

DEPARTMENT OF THE ARMY

NEW ENGLAND DIVISION, CORPS OF ENGINEERS 424 TRAPELO ROAD WALTHAM, MASSACHUSETTS 02254-9149

February 24, 1998

Engineering/Planning Division Evaluation Branch

Ms. Pamela D. Harvey, Acting Deputy Director Division of Wetlands and Waterways Department of Environmental Protection One Winter Street Boston, Massachusetts 02108

Dear Ms. Harvey:

The purpose of this letter is to provide you with information for the Town Brook Local Protection Project located in Quincy, Massachusetts. Your office issued a Water Quality Certificate (WQC) for this project on March 24, 1989.

Condition 14 of the WQC requires continuous monitoring of dissolved oxygen in tunnel water. Monthly reports, including appropriate maintenance and calibration records, must be provided to your Division. Condition 15 requires grab sampling of ten water quality parameters of storm waters discharged from the tunnel. The attached report provides the results of continuous monitoring and grab sampling. This information will be provided to you by the Metropolitan District Commission when we officially turn over project operations. During the project transition, the Corps of Engineers will conduct the monitoring and provide the results to you.

If you have any questions about this information, please contact Mr. Larry Oliver at (781) 647-8347 or Mr. Townsend Barker at (781) 647-8621.

Sincerely,

Richard D. Reardon, P.E. Chief, Engineering/Planning Division

Attachment

Copy Furnished:

Ms. Judy Perry
Division of Wetlands and Waterways
Department of Environmental Protection
One Winter Street
Boston, Massachusetts 02108

9 February 1998 Mr. Barker/cm/78621

MEMORANDUM FOR Chief, Evaluation Branch

SUBJECT: Town Brook Tunnel Water Quality Data

- 1. Attached is water quality data from the first grab sampling, and the automatic monitor at the tunnel inlet, for transmittal to the state. These data show the aeration system is working very well.
- 2. The initial grab samples from the tunnel outlet and Town River were collected on 20 January 1998, when the tunnel was discharging and the tide was low enough to collect good samples. Three samples were collected from the tunnel outlet and composited for nitrogen, phosphorus, and oil and grease analyses. Samples for fecal coliform bacteria analyses were not composited. One sample was collected from Town Brook immediately upstream from the confluence with the tunnel outlet discharge.
- 3. Dissolved oxygen (DO) is the most important water quality parameter in the tunnel, and results from the automatic monitor and grab samples show good to excellent results. The DO was 4.87 ppm when the monitor began collecting data on 24 August 1997 (Julian day 236), but within an hour it was above 5.0 ppm and within 13 hours it was above 6.0 ppm. Since then the DO level has fluctuated a lot, but it has usually been above 6.0, only rarely below 5.0, and never below 4.6 ppm.
- 4. Sharp drops in conductivity indicate storms, as freshwater flows in and displaces the saltwater in the bottom of the tunnel. Monitor data shows storms on 7 October (Julian day 280), 2 November (Julian day 306), 10 November (Julian day 314), 17 November (Julian day 321), and 20 January. Each of these events has been accompanied by a rise in DO. Since the 2 November storm, the DO has been so high as to indicate the aeration system may not be necessary in the winter.
- 5. Grab sample data shows the tunnel discharge water quality as being as good as or better than that in the upstream Town Brook. Phosphorus, and oil and grease were less than the detection limits for both. There were no significant differences in pH or combined nitrate plus Kjeldahl nitrogen. Average DO in the tunnel was slightly higher than in Town Brook, and total suspended solids (TSS)

CENAE-EP-GW

SUBJECT: Town Brook Tunnel Water Quality Data

were lower. Salinity was higher in the tunnel discharge because saltwater enters the tunnel outlet during every high tide, and some of that saltwater is discharged with the freshwater inflow. The biggest difference between the tunnel and the brook was in fecal coliform bacteria, which were much lower in the tunnel. Samples collected on 20 January show the tunnel outlet easily meeting water quality standards for coliform bacteria, but Town Brook exceeding them.

- 6. The second set of grab samples will be collected following a "major storm," as defined in the Water Quality Certification, that occurs during a tide cycle that allows proper samples to be collected.
- 7. Very little useful water quality data have been collected from the automatic monitor at the tunnel outlet because of mechanical difficulties. However, as both the inlet and outlet monitors measure water drawn from the center of the tunnel, results should be the same. We expect to have the monitor at the outlet working properly by the end of February.

8. Questions should be directed to Mr. Barker on x78621.

Attch

H. FARRELL MCMILLAN, P.E.

Chief, Geotechnical & Water Management Branch

CF:

Mr. Barker - 115N

Mr. Buteau - 112S

Mr. MacPherson - 109S

Mr. Fedele - 109S

Engr/Plan Div Files - 112S (disk-GWMB98-wqdata)

TOWN BROOK TUNNEL GRAB SAMPLE DATA 20 January 1998

Station Location	Time	Conductivity (uS/cm)	Temperature Celcius	pН	DO (mg/l)	Fecal Coliforms (per 100 ml)
Tunnel outlet	1030	6700	6.3	6.2	12.4	15
Tunnel outlet	1125	6050	6.3	6.5	13.5	5
Tunnel outlet	1220	5090	6.4	6.6	12.9	3
Town Brook	1225	2100	3.9	6.7	12.6	1000

Parameter	Tunnel Outlet	Town Brook	
	(Composite Sample)	(Single Sample)	
Nitrate - N (ppm)	1.2	0.85	
Total Kjeldahl - N (ppm)	0.36	0.50	
Nitrate + Kjeldahl - N	1.56	1.35	
Phosphorus (ppm)	< 0.01	< 0.01	
Oil & Grease (ppm)	< 0.50	< 0.62	
TSS (ppm)	<5	11	
Salinity (ppt)	⋄ 5 .	<2	

TOWN BRO	OOK LOCA	L FLOOD P	ROTECTIO	ON PROJECT	. TOWN BR	OOK TUNNE	L
QUINCY, M					,		
WATER QL	JALITY DA	TA				2/5/98	
						2,0,00	
The following	ng table is i	water quality	data collec	cted from Tow	n Brook Tur	nel using the	auto-
				in the pumpl			
				e Contractor.			
	_ 	after each m			THE WELL	sampling dev	
JITOGRO RO	Zan Bration (I Gabiiii	000010111011	l oyolo.			
				CONDUC-	DISSOL.	BARO.	BATT.
YEAR	DAY	TIME	TEMP.	TIVITY	OXYGEN	PRES	VOLTS
1 1 1 1 1	(Julian)	(Military)	(F)	(mS)	(mg/L)	(mmHg)	(volts)
	(oundit)	(1411111217)	<u>'' /</u>	(110)	(///g/L/	(1111119)	(10113)
1997	236	22	61.6	21.3	4.87	757	13.32
1997	236	112	61.6	21.7	5.33	757	13.3
1997	236	212	61.7	22.1	5.14	756	13.28
1997	236	312	61.5	22	5.03	756	13.26
1997	236	412	61.4	22	4.99	756	13.26
1997	236	512	61.7	22.5	5.3	756	13.25
1997	236	612	61.4	22.3	5.01	756	13.24
1997	236	712	61.6	22.7	5.65	756	13.24
1997	236	812	61.4	22.9	5.44	756	13.24
1997	236	912	61	24.1	4.95	757	13.24
1997	236	1012	61.1	24.2	5.09	756	13.24
1997	236	1112	61.2	24.2	5.34	756	13.24
1997	236	1212	61.2	24.5	5.45	756	13.24
1997	236	1312	61.7	24.5	6.05	756	13.24
1997	236	1412	61.3	25	5.83	756	13.25
1997	236	1512	62.6	25.7	8.28	756	13.26
1997	237	22	61.7	23.7	7.57	758	13.27
1997	238	22	62.7	22.2	9.03	762	13.24
1997	239	22	62.3	22.2	8.38	765	13.24
1997	240	22	62	22.5	8.19	764	
1997	241	22	61.5	22.5	7.72	754 756	13.24 13.21
1997	241	22	63.8	22.5	7.72	757	13.21
1997	242	22	63.1	20.1	6.79	760	13.26
1997	244	22	62.8	20.9	6.76	763	13.24
1997	244	22	63.1	20.9	6.76	765	13.24
1997	245	112	63.4	20.2	6.39	765	13.24
1997	245	212	63.6	19.5	6.54	765	13.23
1997	245	22	64	18.8	5.9	758	13.23
1997	246	112	64.1	19	6.33	757	13.2
1997	246	212	64.1	19.1	6.57	757	13.2
1997	247	212	64.2				13.2
1997	247	112	64.4	18.6 18	6.03 6.19	759 759	13.29
1997	247	212	64.4	18.6	6.48	759	
1997	247	312	64.5	18.6			13.28
1001	247	22		·	6.54	758	13.29
1007	ALA	44	63.7	18.4	6.48	759	13.37
1997			62.0	40	2.45	750	40.00
1997 1997 1997	248 248	112 212	63.9 64	18 18.2	6.45 6.7	759 759	13.36 13.36

				CONDUC-	DISSOL.	BARO.	BATT.
YEAR	DAY	TIME	TEMP.	TIVITY	OXYGEN	PRES	VOLTS
	(Julian)	(Military)	(F)	(mS)	(mg/L)	(mmHg)	(volts)
1997	249	22	63.4	17.7	6.64	761	13.3
1997	250	22	63.3	18.5	6.42	760	13.24
1997	250	112	63.2	18.3	6.27	759	13.25
1997	250	212	63.2	18.4	6.32	759	13.25
1997	250	312	63.4	18.2	6.52	759	13.24
1997	251	22	63.5	18.3	6.49	758	13.22
1997	251	112	63.5	18.4	6.56	758	13,22
1997	252	22	63.2	18.3	6.34	761	13.32
1997	252	112	63.3	18.3	6.47	761	13.32
1997	252	212	63.3	18.3	6.53	761	13.3
1997	253	22	63	18.2	6.37	763	13.31
1997	253	112	63	18.2	6.43	763	13.32
1997	253	212	63	18.2	6.52	763	13.31
1997	254	22	62.6	18.2	6.15	764	13.34
1997	254	112	62.8	18.2	6.22	764	13.33
1997	254	212	62.8	18	6.32	764	13.33
1997	254	312	62.9	18	6.52	763	13.33
1997	255	22	62.5	18	5.68	761	13.33
1997	255	112	62.7	18	6.12	761	13.31
1997	255	212	62.7	17.3	5.92	761	13.3
1997	255	312	62.7	18.7	6.31	761	13.29
1997	255	412	62.7	17.6	6.14	761	13.29
1997	255	512	62.8	17.3	6.34	761	13.29
. 1997	255	612	62.9	17.4	6.4	761	13.29
1997	255	712	62.8	17	5.98	761	13.28
1997	255	812	63.2	17.3	6.69	761	13.28
1997	256	22	63.8	16.5	6.56	761	13.22
1997	257		64.1	17.8	6.61	760	13.22
1997	258		63.5	18.2	6.41	760	13,24
1997	258		64.3	18.4	6.61	760	13.24
1997	259	22	64	18.9	6.16	758	13.21
1997	259	112	64.3	19.1	6.49	758	13.21
1997	259	212	64.7	19.5	6.63	758	13.21
1997	260	22	64.3	19.3	6.34	761	13.24
1997	260	112	64.2	19.5	6.29	761	13,24
1997	260	212	64.2	19.9	6.29	761	13.24
1997	260	312	64.6	20.2	6.59	761	13.25
1997	261	22	64	19.7	6.2	759	13.27
1997	261	112	64.2	19.7	6.37	759	13.27
1997	261	212	64.1	19.9	6.32	759	13.26
1997	261	312	64.2	20.4	6.36	759	13.26
1997	261	412	64.5	20.4	6.64	758	13,26
1997	262	22	64.3	20.2	6.4	761	13.22
1997	262	112	64.4	20.1	6.48	761	13.22
1997	262	212	64.4	20.1	6.48	761	13.22
1997	262	312	64.2	20.3	6.45	761	13.22
1997	262	412	64.2	20.6	6.56	761	13.22
1997	263	22	64.4	20.5	6.72	757	13.22
1997	264	22	65.9	20.2	6.54	757	13.27

				CONDUC-	DISSOL.	BARO.	BATT.
YEAR	DAY	TIME	TEMP.	TIVITY	OXYGEN	PRES	VOLTS
	(Julian)	(Military)	(F)	(mS)	(mg/L)	(mmHg)	(volts)
1997	265	22	63.9	20.5	4.95	767	13.39
1997	265	112	63.9	20.4	5.06	767	13.39
1997	265	212	64	20.3	4.99	767	13.39
1997	265	312	64	20.2	5.08	767	13.4
1997	265	412	64	20.3	5.18	767	13.39
1997	265	512	64.2	20.4	5.38	767	13.41
1997	265	612	63.7	19.9	4.62	767	13.41
1997	265	712	63.8	19.3	4.87	768	13.41
1997	265	812	63.9	20.1	5.35	768	13.41
1997	265	912	63.9	20.3	5.48	768	13.42
1997	265	1012	63.9	20.7	5.58	768	13.41
1997	265	1112	64	20.5	5.86	767	13,4
1997	265	1212	64.1	20.4	5.98	767	13.39
1997	265	1312	64.1	20.6	6.06	766	13.37
1997	265	1412	64.1	20.5	6.03	765	13.37
1997	265	1512	64.1	20.3	6.06	764	13.34
1997	265	1612	64.1	19.9	5.86	764	13.34
1997	265	1712	64.1	20.6	6.12	764	13.31
1997	265	1812	64	19.7	6.16	764	13.31
1997	265	1912	63.9	19.4	6.45	763	13.31
1997	265	2012	63.8	19.3	6.52	764	13.32
1997	266	2012	63.5	19.3	7.08	762	13.37
1997	267	22	62.5	17.5	7.31	759	13.37
1997	268	22	62	18.8	7.31	760	13.45
1997	269	22	61.4	19	7.09	751	13.45
	270	22	61.3	19.7	6.42	761	13.39
1997	270	112	61.2	19.7	6.81	761	13.38
1997	271	22	61	19.5	6.23	765	13.30
1997	271	112	61	19.9	6.32		13.41
1997	271	212	61	19.8	6.78	765 765	13.41
1997	272	22	60.8	+			
1997	272	112	· · · · · · · · · · · · · · · · · · ·	19.5	6.26	755	13.41
1997	272	212	60.8 60.7	19.6	6.37	753	13.4
		·		19.6	6.58	752	13.4
1997	273	22	61.1	19,4	6.25	745	13.39
1997	273	112	61.1	19.5	6.35	745	13.37
1997	273	212	61.1	19.7	6.41	744	13.38
1997	210	. 012	61	19.7	6.76	744	13.37
1997		22	60.9	19	6.68	746	13.37
1997	275	22	60.4	20,2	6.44	759	13.47
1997	275	112	60.4	20.1	6.64	759	13.47
1997	276	22	59.9	20.3	6	762	13.49
1997	276	112	59.9	20.3	6.12	762	13,48
1997	276	212	60	20.3	6.26	762	13.48
1997	276	312	59.9	20.3	6.51	761	13.48
1997	277	22	59.6	20.7	6.57	763	13.49
1997	278	. 22	59.6	20.9	6.3	763	13.43
1997	278	112	59.6	20.8	6.16	763	13.43
1997	278	212	59.6	20.8	6.19	763	13.41
1997	278	312	59.5	20.7	6.59	763	13.41

		<u> </u>		CONDUC-	DISSOL.	BARO.	BATT.
YEAR	DAY	TIME	TEMP.	TIVITY	OXYGEN	PRES	VOLTS
	(Julian)	(Military)	(F)	(mS)	(mg/L)	(mmHg)	(volts)
1997	279	22	59,9	20.8	6.67	761	13.38
1997	280	22	59.8	0.712	9.11	761	13.3
1997	281	22	59.9	0.783	9.26	766	13.32
1997	282	22	59.5	20.7	5.99	769	13.41
1997	· · · · · · · · · · · · · · · · · · ·	112	59,5	20.6	6.23	769	13.41
1997		212	59.5	20.7	6.42	769	13.4
1997	282	312	59.5	20.7	6.52	769	13.4
1997	283	22	59.3	20.8	6.59	765	13.38
1997	284	22	59.6	21.1	7.32	765	13.31
1997	285	22	59.5	21.7	6.78	768	13.38
1997	286	22	59.3	22.1	6.89	768	13,43
1997	287	22	59.1	21.7	7.44	766	13.39
1997	288	22	59	22.6	7.12	765	13.39
1997	290	22	59.1	23.4	7.3	765	13.47
1997		1105	58.9	23	7.42	765	13.5
1997	291	22	58.8	23.4	7.32	764	13.49
1997	292		58.4	23.8	7.44	764	13.51
1997	293	22	58.1	24.2	7.45	755	13.56
1997	294	22	57.9	24.3	7.49	756	13.55
1997	295	22	57.8	24.4	7.37	758	13.58
1997	296	22	57.4	24	6.69	760	13.6
1997	297	22	57.2	24.2	6.78	760	13.66
1997	298	22	57.1	23.8	6.67	762	13.61
1997	299	22	56.2	23.6	6.49	761	13.64
1997	300	22	56.4	23.9	5.97	761	13.65
1997	300	112	56.4	23.4	6.17	760	13.64
1997	300	212	56.4	23.4	6.52	759	13.63
1997	301	22	56.2	23.3	5.77	748	13.61
1997	301	112	56.1	23.3	5.92	748	13.59
1997	301	212	56	23.4	6.26	748	13.59
1997	301	312	55.7	23.5	6.72	749	13.59
1997	302	22	56.1	23.1	6.13	759	13.66
1997	302	112	56.1	23.1	5.97	759	13.65
1997	302	212	55.7	22.5	6.36	759	13.64
1997	302	312	55.7	22.8	6.34	760	13.64
1997	302	412	55.6	22.7	6.57	760	13.63
1997	303	22	55.9	22.5	6.19	761	13.63
1997	303	112	55.7	22.6	6.2	761	13.61
1997	303	212	54.7	20.8	6.98	761	13.6
1997	304	22	55	21.8	6.31	766	13.59
1997	305	22	54.6	21.8	6.6	765	13.55
1997	306	22	56.3	0.207	11.54	747	13.52
1997	307		56.6	7.5	9.65	752	13.46
1997	308	22	56.2	12.66	8.27	762	13.51
1997	309		56	14.43	7.93	763	13.53
1997	310	22	55.9	15.3	7.94	771	13.57
1997	311	22	55.6	16.4	8.14	768	13.61
1997	312	22	55.5	16.7	7.62	760	13.62
1997	313	22	52.8	9.83	9.36	752	13.64

		1		CONDUC-	DISSOL.	BARO.	BATT.
YEAR	DAY	TIME	TEMP.	TIVITY	OXYGEN	PRES	VOLTS
	(Julian)	(Military)	(F)	(mS)	(mg/L)	(mmHg)	(volts)
1997	314	22	52.4	0.418	11.46	747	13.63
1997	315	22	52.8	5.48	10.25	754	13.64
1997	316	22	52.7	8.45	9.76	758	13.68
1997	317	22	52.1	10.36	9.61	760	13.76
1997	318	22	51.2	11.47	9.76	762	13.77
1997	319	22	42.1	1.395	13.38	748	13.81
1997	320	22	45.1	5.77	11.89	754	13.82
1997	321	22	46.4	8.11	11.1	758	13.84
1997	322	22	46.8	9.06	10.76	765	13.84
19 97	323	22	47.2	9.89	10.44	765	13.81
1997	324	22	47.2	10.61	10.64	758	13.8
1997	325	. 22	47.2	11.13	10.68	764	13.8
1997	326	22	47.7	11.53	10.29	760	13.71
1997	327	22	46.4	1.78	11.87	762	13.76
1997	328	22	46.2	6.1	11.4	757	13.82
1997	329	22	46.4	7.64	11.08	763	13.85
1997	330	22	46.2	8.26	11.31	755	13.85
1997	331	22	47.2	9.56	9.7	743	13.71
1997	332	22	46.7	10.04	10.36	763	13.81
1997	333	22	46.9	11.05	9.34	755	13.82
1997		22	46.4	11.68	10.42	758	13.79
1997	335	22	45.6	12.34	10.75	744	13.78
1997	336	. 22	44.5		11.34	746	13.85
1997	337	22	44	8.49	11.33	756	13.85
1997	338	22	44.1	8.72	11.27	756	13.78
1997	·	22	44.7	8.96	11.1	748	13.73
1997	1 	. 22	44.6	9.87	11.32	745	13.76
1997	341	22	44.7	10.68	11.08	747	13.81
1997		22	44.9	11.45	10.81	752	13.82
1997	0.10	22	44.9	11.98	10.48	761	13.8
1997	244	22	44.7	12.53	10.4	758	13.82
1997	 	22	44.7	12.85	10.61	754	13.8
1997	346	22	44.5	13.34	10.88	763	13.87
1997	347	22	44.5	14	10.82	756	13.84
1997	348	22	44.5	14.45	10.79	753	13.81
1997	349	22	44.3	14.9	10.8	759	13.89
1997	350	22	44.3	15.3	10.24	760	12.53
1997	351	22	43.9	16.1	10.77	756	12.55
1997	352	22	44	16.6	10.78	758	12.57
1997	353	22	44.3	16.8	10.82	759	12.55
1997	354	22	44.9	17.1	10.05	757	12.55
1997	355	22	45	17.5	10.34	761	12.52
1997	256	22	45.1	17.6	10.01	768	12.47
1997	357	. 22	45.2	17.6	10.16	765	12.45
1997	358	22	45.4	17.8	9.9	759	12.43
1997	·	22	45.8	18.1	9.51	764	12.44
1997	360	22	45.9	17.9	9.38	752	12.43
1997	361	22	46.2	18	9.22	757	12.43
1997	362	22	46.1	18.2	9.35	749	12.42

				CONDUC-	DISSOL.	BARO.	BATT.
YEAR	DAY	TIME	TEMP.	TIVITY	OXYGEN	PRES	VOLTS
	(Julian)	(Military)	(F)	(mS)	(mg/L)	(mmHg)	(volts)
1997	363	2 2	45,3	19.1	9.82	762	12.34
1997	364	22	45.6	19.1	9.26	738	12.33
1997	365	22	43.3	11.66	11.34	742	12.32
1998	1	22	43.8	15.3	10.33	764	12.26
1998	2	22	30.4	10.71	12.9	762	12.21
1998	3	22	44.5	17.1	10.14	765	12.24
1998	4	22	44.9	17.8	9.69	762	12.26
1998	5	22	45	18.3	9.8	773	12.24
1998	6	22	45.2	18.5	10.02	76 6	12.22
1998	7	22	45.6	18.8	9.45	764	12.2
1998	8	22	45.9	18.5	8.81	760	12.16
1998	9	22	44.6	18.7	9.75	752	12.13
1998	10	22	44.9	16.3	9.29	755	12.1
1998	11	22	45.5	14.85	9.78	761	12.08
1998	12	22	45.8	16.6	8.58	764	12.05
1998	13	22	45.7	17	8.9	767	12.01
1998	14	22	45.6	17.1	9.56	761	11.99
1998	15	22	45.4	17.5	9.54	771	11.95
1998	16	22	45.4	17.5	9.62	760	11.92
1998	17	22	41.9	16.7	9.78	753	11.9
1998	18	22	43	15	10.51	759	11.86
1998	19	22	43.3	15.8	10.03	761	11.84
1998	20	22	46.1	1.92	11.99	758	11.82

To: Pamela Harvey@Legal,Glenn Gilmore@MA,Philip DiPietro@brp ww@DEP NERO,Brad Chase@DMF@FWE Gloucester/Leigh Bridges@DMF@FWE,Steven Lipman@Commissioner

From: Judith Perry

Cc: Bcc:

Subject: Town Brook storm water tunnel releases (Quincy)

Attachment:

Date: 2/27/98 10:05 AM

The Corps or Engineers has provided the first water quality data from the new storm water tunnel at Town Brook, in response to conditions in a 1989 Water Quality Certification. (The WQC designated Glenn Gilmore to receive this info, but the Corps was requested to send it to Pam Harvey. Maybe future reports from the Corps and later from MDC should go to Phil DiPietro as Boston-South basin chief?)

Anyway, the data looks very good as far as D.O. is concerned. I will send you all copies of the data and cover letter. (Please let me know if anyone else should receive this also)

As background, we were concerned that the tunnel 4000 ft long x 12 ft diameter deep underground for flood storage (and periodic discharge) contain high BOD and very low DO after long storage. An aeration system was proposed and the WQC required it. I spoke to one of the Corps staff involved with the tunnel operation recently (Townsend Barker) and he explained the aeration system. The system is not quite like the one proposed, but it appears to be very effective. Basically, a pump automatically withdraws a sample of water once a day from the deep tunnel, sampling from near the floor and the roof of the tunnel and brings it up to the surface for automatic analysis. If the DO is below 6 mg/l, the pump keeps withdrawing water and releasing so it cascades back to the bottom. The data shows that the sampling (and pumping) was more frequent on some days than on others and that the data generally shows DO above 6 mg/l. There is also a backup system that provides air injection, if the cascade should fail. Computer control for all this is at the Corps offices. You could call up and ask them to sample the tunnel water on the spot! there is a redundant sampling system. The one housed at the tunnel outlet does not work, but the one at the tunnel inlet provided data. Both systems sample from the same part of the center of the tunnel.

The WQC also required grab samples of the tunnel discharge during a storm event in the first month of operation. Data was provided and it looks good, but a discharge was not sampled until a storm January 20, 1998. Tunnel sampling and presumably operation started August 24, 1997. The Corps plans to sample a major storm discharge from the tunnel as per WQC shortly.

Because of the fish run in Town Brook, the WQC (condition 16) required that no tunnel discharge occur between march 15 and May 15 unless DEP had

received at least two months of DO monitoring data showing that the tunnel aeration system works. The data just received provides about five months of good data, I believe.

The WQC requires (condition 14) that DWPC/DEP receive continuous monitoring data monthly. We might consider waiting until after MDC takes over the tunnel operation and then issuing a sunset clause or reduced frequency of reporting to DEP on this, assuming DO of tunnel water is taken care of by the aeration systems in place.

I think we need to respond to the data with a letter to the Corps saying that (per condition 16) the tunnel discharge may occur during March 15 to May 15 based on the good DO data received.

Please direct comments to me or Pam Harvey.