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Executive Summary 

This study of “Automated Guardrail Inventory and Condition Evaluation” was undertaken as 

part of the Massachusetts Department of Transportation (MassDOT) Research Program. This 

program is funded with Federal Highway Administration (FHWA) State Planning and 

Research (SPR) funds. Through this program, applied research is conducted on topics of 

importance to the Commonwealth of Massachusetts transportation agencies.  

This study is aimed at developing and validating new processes using automated light 

detection and ranging (LiDAR) and video-log imagery to identify and extract locations of in-

service guardrails and evaluate condition and compliance using representative pilot-testing 

road sections. Representative testing sections of interstate and non-interstate roadways, with 

various lengths and guardrail coverages, were selected and analyzed within the study. The 

detailed objectives include:   

• Develop an automated method for determining the presence of guardrails along the

roadway and for extracting critical information, including georeferenced starting and

ending points, terminal types, curb presence, lateral offset (from the edge of the nearest

travel lane to the guardrail), and elevation (from the pavement surface to the tip of the

guardrail).

• Develop an automated method for identifying typical conditional changes for guardrails,

including face dentation, end terminal damage/missing, and guardrail support deficiency.

The research team investigated the feasibility of identifying missing bolts or connection

failure of guardrails using image processing.

The deliverables of this study include a georeferenced (and linearly referenced) guardrail 

inventory for the selected pilot-testing sections, integrating the in-service presence and 

condition information to support evaluation for MASH compliance and network-level 

maintenance strategy.  

The outcome of this study is summarized as follows: 

• A Review of Guardrail Inventory Efforts. The research team conducted a detailed

literature review of available and ongoing research through Transport Research

International Documentation (TRID) on guardrail inventory and condition evaluation

methods and mobile LiDAR applications, as well as the existing effort of guardrail data

collection and inventory that is made by MassDOT.

• Mobile LiDAR Data Acquisition. The research team conducted a comprehensive data

acquisition and data preprocessing using the mobile LiDAR sensor (i.e., Riegl VMZ-

2000) along with the selected, representative, pilot-testing routes.
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o The collected data cover more than 62 miles of different classifications of 

highways. An additional 15 miles of the network near Worcester, MA, covering 

State Route 9, State Route 12, and State Route 122, were scanned to demonstrate 

the overall performance and feasibility of the developed methodology.   

• Guardrail Inventory. The research team developed fully automated LiDAR processing 

algorithms for identifying the locations (starting and ending) along the selected pilot-

testing routes.  

o The overall performance for the inventory algorithm shows precisions of 0.956 

and 0.955 and recalls of 0.957 and 0.944 along the two testing sections on State 

Route 9 and State Route 113, respectively.  

o The productivity (i.e., the processing time) was also evaluated to assess the 

feasibility of applying the proposed method to a statewide process. On average, 

the processing rate for the guardrail inventory algorithm is at approximately 150 

seconds per mile.  

• Guardrail Property Extraction. The research team developed a suite of automated 

algorithms to extract the detailed properties of the inventoried guardrails, including 

terminal types, curb presence, lateral offset (from the edge of the nearest travel lane to the 

guardrail), and elevations (from the pavement surface and ground with curb to the tip of 

the guardrail).  

o For terminal type identification, three categories of terminals can be successfully 

extracted and classified, including buried-in-backslope (BIB) terminal, curved 

terminal (e.g., Modified Eccentric Loader Terminal (MELT), Regent-C, Slotted 

Rail Termina (SRT-350), etc.), flat terminal (e.g., Flared Energy‐Absorbing 

Terminal (FLEAT), Sequential Kinking Terminal (SKT), Extruder Terminal (ET‐

Plus), etc.). Out of the tested 427 terminals, the accuracy of the classification rate 

is 96.4%, with only nine BIB terminals misclassified as curved terminals.  

o For geometry property extraction, the developed algorithms can accurately 

measure the lateral offset and elevations of the guardrail with an average error of 

less than 1/2 inch. Specifically, by identifying the curb presence, the elevations of 

guardrails can be measured from the tip to both the pavement surface and the 

curbed ground with consistent accuracy.  

o The productivity (i.e., the processing time) was also evaluated to assess the 

feasibility of applying the proposed method to a statewide process. On average, 

the processing rate for the guardrail property extraction algorithm is at 

approximately 45 seconds per mile. 

• Guardrail Condition Assessment. The research team developed a suite of automated 

algorithms to assess the conditions of the inventoried guardrails, including face dentation, 

terminal damage/missing, and support deficiency. The research team also investigated the 
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feasibility of identifying missing bolts or connection failure of guardrails using image 

processing.  

o For face dentation and terminal damage/missing, the algorithms are evaluated on 

a 5-mile section along State Route 2, and all of the 16 locations with face 

dentations and 2 locations with deficient supports were successfully located.  

o For terminal damage identification, although no damaged/missing terminals were 

found in the collected data, the terminal classification algorithm has clearly shown 

the feasibility of the algorithm. In this study, any terminals that are not identified 

as BIB, curved or flat terminals will be classified as damaged/missing terminals.  

o For missing/loosened bolt identification, although no missing bolts were found in 

the collected data, the algorithm using datasets collected from previous studies 

has shown the feasibility of automatically identifying the locations of bolts from 

video log images using the developed machine learning algorithm. However, due 

to the configuration of the camera (i.e., the distance between the sensor and the 

guardrail, the current resolution of 1920x1080 may not be sufficient to identify 

missing/loosened bolts, and future studies remain needed to further validate the 

feasibility.  

o The productivity (i.e., the processing time) was also evaluated to assess the 

feasibility of applying the proposed method to a statewide process. On average, 

the processing rate for the guardrail condition assessment algorithm is at 

approximately 60 seconds per mile.  

• Development and validation of the fully automated guardrail inventory and condition 

evaluation methodology. The research team has developed a comprehensive methodology 

for automatically inventorying the locations of the in-service guardrails, extracting the 

corresponding properties and conditions, and leveraging mobile LiDAR point cloud data 

and video log images. A case study covering15 miles of the network (including State 

Route 9, State Route 12, and State Route 122) near Worcester, MA, was developed to 

demonstrate the feasibility of the developed methodology for network-level analysis. The 

resulting inventory geodatabase with all the properties and conditions can be readily used 

for supporting asset management and safety improvement tasks for MassDOT.  
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1.0 Introduction 

This study of “Automated Guardrail Inventory and Condition Evaluation” was undertaken as 

part of the Massachusetts Department of Transportation (MassDOT) Research Program. This 

program is funded with Federal Highway Administration (FHWA) State Planning and 

Research (SPR) funds. Through this program, applied research is conducted on topics of 

importance to the Commonwealth of Massachusetts transportation agencies.  

1.1 Background 

Guardrail is an important boundary infrastructure that provides effective prevention for 

vehicles running out of the road and protects critical roadside properties from consequential 

collisions (Yin et al., 2017). The presence and condition of the installed guardrails are vital 

for roadway safety. Many public transportation agencies, including MassDOT, are 

responsible for a large inventory of guardrails and are responsible for making timely repairs 

or replacements of damaged or missing components. The recent issuance of the Manual for 

Assessing Safety Hardware (MASH) by the American Association of State Highway and 

Transportation Officials (AASHTO) also presents a need for modernization of the inventory. 

For contracts on the National Highway System with a letting date after the (final sunset date: 

December 31, 2019) dates, only safety hardware evaluated using the 2016 edition of MASH 

criteria will be allowed for new permanent installations and full replacements with limited 

exceptions (AASHTO, 2016). State DOTs are actively working with FHWA on the 

implementation of MASH hardware. Therefore, it is critical for state departments of 

transportation, e.g., MassDOT, to develop a comprehensive guardrail inventory to better plan 

and manage MASH upgrades and integrate the guardrail asset class within the State 

transportation asset management plan.  

Many transportation agencies have invested numerous resources and efforts in establishing 

accurate and up-to-date guardrail inventories in their jurisdictions. Although the rich datasets 

of guardrail information have been acquired through these guardrail inventorying efforts, 

these methods, predominantly manual approaches, remain labor-intensive, time-consuming, 

and subjective. Also, many conditional defects may easily be overlooked during the 

windshield survey. Therefore, improving the efficiency and accuracy of the guardrail 

inventory process becomes urgent. 

With the advancement of mobile light detection and ranging (LiDAR) and computer vision, it 

has become feasible for state transportation agencies to leverage the widely available data for 

a cost-effective and efficient method for inventorying and updating guardrail condition 

information. Although some efforts have been made for automation using image processing 
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and LiDAR, they only focused on the locations of the guardrails, where the critical properties 

are still lacking. 2) None of the previous studies focused on the condition of the guardrails. 

Although a certain level of automation has been achieved using LiDAR and imagery, manual 

review and digitization remain essential for visual defect identification. Therefore, exploring 

the feasibility and efficiency of automated guardrail inventory and condition evaluation 

methods, leveraging the emerging LiDAR and computer vision technologies, becomes 

necessary.  

1.2 Objectives and Detailed Tasks 

This study is aimed at developing and validating new processes using automated LiDAR and 

video-log imagery to identify and extract locations of in-service guardrails and evaluate 

condition and compliance using representative pilot-testing road sections. Representative 

testing sections of interstate and non-interstate roadways, with various lengths and guardrail 

coverages, were selected and analyzed within the study. The detailed objectives include:   

• Develop an automated method for determining the presence of guardrails along the 

roadway and for extracting critical information, including georeferenced starting and 

ending points, terminal types, curb presence, lateral offset (from the edge of the nearest 

travel lane to the guardrail), and elevation (from the pavement surface to the tip of the 

guardrail).  

• Develop an automated method for identifying typical conditional changes for guardrails, 

including face dentation, end terminal damage/missing, and guardrail support deficiency. 

The research team investigated the feasibility of identifying missing bolts or connection 

failure of guardrails using image processing.  

The deliverables of this study include a georeferenced (and linearly referenced) guardrail 

inventory for the selected pilot-testing sections, integrating the in-service presence and 

condition information to support evaluation for MASH compliance and network-level 

maintenance strategy. To achieve the proposed objectives of this study, the detailed work 

tasks are listed as follows: 

• Task 1: Review of Guardrail Inventory Efforts. The research team conducted a detailed 

literature review of available and ongoing research through Transport Research 

International Documentation (TRID) on guardrail inventory and condition evaluation 

methods and mobile LiDAR applications, as well as the existing effort of guardrail data 

collection and inventory that is made by MassDOT.  
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• Task 2: Mobile LiDAR Data Acquisition. The research team conducted a comprehensive 

data acquisition and data preprocessing using the mobile LiDAR sensor (i.e., Riegl VMZ-

2000) along with the selected, representative, pilot-testing routes.  

• Task 3: Data Processing for Identifying Guardrail Locations. The research team 

developed computer-aided LiDAR processing algorithms for identifying the locations 

(starting and ending) along the selected pilot-testing routes. The productivity (i.e., the 

processing time) was also evaluated to assess the feasibility of applying the proposed 

method to a statewide process. 

• Task 4: Data Processing for Extracting Guardrail Properties. The research team 

developed computer-aided algorithms to extract the detailed properties of the inventoried 

guardrails from Task 3, including terminal types, curb presence, lateral offset (from the 

edge of the nearest travel lane to the guardrail), and elevation (from the pavement surface 

to the tip of the guardrail). The productivity (i.e., the processing time) was also evaluated 

to assess the feasibility of applying the proposed method to a statewide process. 

• Task 5: Data Processing for Evaluating Guardrail Conditions. The research team 

developed computer vision algorithms to evaluate the conditions of the inventoried 

guardrails from Tasks 3 and 4, including face dentation, end terminal damage/missing, 

and guardrail support deficiency. The research team also investigated the feasibility of 

identifying missing bolts or connection failure of guardrails using image processing. 

Besides safety improvement applications, the research team also demonstrated the 

possible application in asset management using the derived guardrail locations and 

conditions. The productivity (i.e., the processing time was also evaluated to assess the 

feasibility of applying the proposed method to a statewide process.  

• Task 6: Reporting of Results. The research team prepared the final report and the 

corresponding PowerPoint-based project presentation with all the technical details. 

1.3 Organization of this Report 

This report is organized as follows. Section 1 introduced the background, research needs, 

objectives, and detailed work tasks of this research project. Section 2 presents the 

methodology for processing the mobile LiDAR data for inventory and condition information 

extraction. Section 3 presents the results of the developed algorithms. Section 4 summarizes 

the findings and results of this project and recommends the future study.  
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2.0 Research Methodology 

The research methodology for this study consisted of four main parts: a review of existing 

technologies, the collection of mobile LiDAR and video log image data, and the processing 

of the mobile LiDAR and video log image data. Subsection 2.1 presents an overview of the 

research methodology. Subsection 2.2 presents the details of the mobile LiDAR and video 

log image data acquisition, followed by Subsections 2.3 through 2.5 that describe the 

algorithms for automated guardrail extraction, properties extraction, and condition evaluation 

using mobile LiDAR point clouds and video log images. It should be noted that all the 

relevant literature reviews are presented in the corresponding subsections.  

2.1 Methodology Overview 

In this study, a complete data processing methodology for guardrail inventory from raw 

LiDAR and video log image data acquisition to GIS integration. The methodology consists of 

five key steps, including data acquisition, guardrail location identification, guardrail property 

extraction, guardrail condition evaluation, and the final guardrail inventory and GIS 

integration. Figure 2.1 shows an overview of the research methodology. The subsequent 

sections present the detailed methods and algorithms developed in this study for each key 

step of this complete data processing methodology. 

 

Figure 2.1: Overview of data processing methodology 
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2.2 Data Acquisition  

The data acquisition system used in this study is an integrated mobile LiDAR system, RIEGL 

VMZ-2000, which consists of three primary components, including the LiDAR sensor, the 

precise positioning system, and the camera system. (Left: Overview; Middle: Camera and 

Mobile LiDAR; Right: Control panel) 

Figure 2.2 shows the overview of the data acquisition system used in this study. The LiDAR 

sensor is used to acquire the point cloud of the roadway, including guardrails. Each point 

consists of the precise position information that is derived from the integrated precise 

positioning system. The integrated precise positioning system is used to acquire accurate 

coordinates that are composed of a global positioning system (GPS) and an inertial 

measurement unit (IMU). The camera system (FLIR Ladybug 5+ camera) is used to capture 

video log images that are registered to the LiDAR sensor. In this study, the point cloud data 

acquired by the LiDAR sensor was used for all the data processing steps, including location 

identification, property identification, and condition evaluation, while the video log images 

acquired by the camera system were used for property extraction and condition evaluation.  

The current LiDAR sensor can produce 400,000 measurements per second in both the line scanning mode 

and the radar scanning mode. For the application of the corridor scanning with the best point cloud 

density, the vertical line scanning mode was selected. (Left: Overview; Middle: Camera and Mobile 

LiDAR; Right: Control panel) 

Figure 2.2 shows the vertical configurations for the line scanning mode. For the vertical 

configuration, the scanning line of the LiDAR sensor is aligned perpendicular to the ground 

when the vehicle makes a longitudinal motion. The scanning line forms a 100° vertical fan to 

cover the road surface, especially the roadside objects. To acquire the point could with better 

homogeneity of point cloud densities, the frequency of the LiDAR sensor and the LiDAR 

heading angle were configured at 75 Hz (i.e., lines per second) and 135° (i.e., the angle to the 

vehicle driving direction), respectively.  

   

(Left: Overview; Middle: Camera and Mobile LiDAR; Right: Control panel) 

Figure 2.2: Integrated data collection vehicle 
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2.3 Guardrail Extraction using Mobile 

LiDAR 

The objective of guardrail extraction is to identify the location of guardrails along the 

roadway by identifying their corresponding starting and ending points. This subsection 

presents the details of the developed guardrail extraction algorithm in this study, including a 

brief literature review (2.3.1) on previous research that is relevant to this study, the detailed 

descriptions of the features used for the algorithm development (2.3.2), an overview of the 

algorithm (2.3.3), and the newly developed point cloud segmentation, vertical profile-based 

filtering, point re-population, and the guardrail tracking methods (2.3.4-2.3.7).  

2.3.1 Literature Review 

Because of the criticality of the guardrail infrastructure, local transportation agencies 

invested their effort and resources in establishing the guardrail inventory for effective 

management, e.g., the Georgia Department of Transportation (GDOT) (Wang et al., 2016) 

and the Michigan Department of Transportation (MDOT) (Dye Management Group, 2014). 

Among these efforts, Vermont Agency of Transportation (VTrans, 2019), the guardrail 

location information was collected in the field using hand-held global position system (GPS) 

data loggers or ArcGIS collector devices. Although detailed guardrail information could be 

collected using the field survey methods, it is extremely labor-intensive and time-consuming. 

Therefore, some agencies, e.g., Idaho Transportation Department (ITD) (Mason et al., 2005), 

used digital imaging data for inventory purposes that could provide the guardrail’s location 

and other information (e.g., condition, etc.). While such a system provides better efficiency 

for data collection, some critical information, e.g., the geometry of guardrails, is challenging 

to acquire accurately. There remains a need for transportation agencies to employ an 

automated guardrail inventory method with efficiency and accuracy so that reliable guardrail 

information may be collected timely. 

Research on automated guardrail detection is limited and mostly focuses on vision or radio 

detection and ranging (radar)-based approach. The preliminary guardrail detection research 

was conducted using vision-based methods (Balali and Golparvar-Fard, 2015; Wang et al., 

2016). For example, Seibert et al. (2013) extracted the guardrail from the camera data using a 

texture-based area classification for localizing the border and a structure from motion to 

identify raised structures, e.g., the guardrail. Although these methods have good 

performances on guardrail detection, 3-D geometry measurement may be inaccurate due to 

camera calibration. As radar sensors can accurately capture near field geometry, radar-based 

data was employed in guardrail detection and condition extraction (Adam et al., 2011; 

Lundquist et al., 2009; Mwakalonge et al., 2014). Chipengo (2018) proposed a novel 

guardrail system for high-pedestrian density areas based on the physical properties of 

guardrail radar returns. However, the moving vehicles may affect the accuracy of this 
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approach (Zhu et al., 2019a). Some researchers attempted to fuse both vision and radar data 

(Broggi et al., 2005; Kim and Song, 2016; Zhu et al., 2019b) to achieve better robustness and 

accuracy. Among these studies, Alessandretti et al. (2007) developed a vehicle and guardrail 

detection system fusing radar and vision data, which extracted the region of interest for 

guardrails from the image and superimposed it on the radar data through cross-sensor 

registration. Although these methods (Alessandretti et al., 2007; Broggi et al., 2005) showed 

accurate results that may lead to a more efficient guardrail inventory practice compared to a 

manual survey in the field, the approach only works well at low speed because the errors of 

parameter measurement may occur when the extrinsic parameters change due to vehicle 

speed up, or road roughness. 

With the popularity and affordability of the LiDAR sensor, there is an increasing number of 

successful applications of the point cloud data in roadway and roadside object extraction, 

e.g., cars (Zhao et al., 2020), trains (Zhangyu et al., 2021), pedestrians (Tang et al., 2017), 

traffic sign (Riveiro et al., 2015), pavement marking (Lin et al., 2021), sidewalk (Hou and Ai, 

2020), curb (Zhang et al., 2018), etc. These methods took advantage of several uniquely 

distinguishable features of the objects, such as shapes, e.g., plane and edges, photometry 

responses, e.g., reflectance and retroreflectivity, and geometrical measurements. e.g., length, 

width, and continuity of the objects. However, research using LiDAR point cloud for 

guardrail inventory has been limited. Zhu and Guo (2018)  proposed a beam guardrail 

detection algorithm containing feature extraction based on height feature and corner feature 

and clustering steps in LiDAR data. Jiang et al. (2016) developed a corrugated beam 

guardrail detection method based on guardrail sweeps, which contain bounding box, corner 

count, and height features, in mobile laser scanning data. These methods shared a similar 

processing pipeline that included the segmentation of the point cloud data into lines sequence 

and then extracted guardrail points based on an approximate two-dimensional (2-D) view. 

However, the limitations of these methods were evident as they could not accurately capture 

the local 3-D features of the guardrail that were overly simplified as line-based features 

during the segmentation. To overcome such a drawback, guardrail blocks were extracted 

based on the clustering outcome, e.g., density-based spatial clustering of applications with 

noise (DBSCAN). Gao et al. (2020) proposed a rapid extraction approach for urban road 

guardrails using a multi-level filter with a modified DBSCAN clustering based on the 

subsampling point cloud. This approach achieves a good precision of 96.8% for two types of 

guardrails. However, not whole guardrail points are captured by this approach due to the 

processing step – subsampling, so some of the local features may be missing. Vidal et al. 

(2020) proposed a guardrail and barrier extraction and classification method based on their 

geometry using Region of Interest (ROI) and DBSCAN. Although this parameter-dependent 

method has better results than other methods since the geometrical parameters can be 

predefined based on the norms in the specific road, it still has a lot of work to do when being 

implemented on different types of roads. 
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In summary, the automated guardrail extraction methods have been limited. While some 

attempts have been made using imaging and radar sensors, the performance remained to be 

improved due to the limited accuracy of image-based detection and radar-based 

measurements. Although others attempted to employ LiDAR point cloud for better guardrail 

detection with promising results, two challenges remain in the existing methods, especially 

for a network-level application: 1) Although the current methods used partial local 

geometrical guardrail features, it is still a task to fully consider these 3-D local geometry 

features to enhance the accuracy; 2) Most of the current methods focus on a road or a 

segment of the road, it still has lots of further work to be implemented in the network-level 

roads for the transportation infrastructure inventory purpose.  

2.3.2 3-D local features of guardrail 

The 3-D local features of the guardrail (as shown in Figure 2.3) include four types of 

features: corrugation feature, vertical profile feature, connectivity feature, and continuity 

feature. The details of four types of features are described as follows: 

 
Figure 2.3: Examples of 3-D local guardrail features  
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• Corrugation feature: Surface corrugation of the guardrail is, by design, a critical safety 

feature to absorb impact energy to reduce the caused damage (Hou et al., 2014). 

Meanwhile, corrugation also renders a unique 3-D local feature that is visible in the point 

cloud. The vertical surface corrugation of the guardrail beams can be visually 

distinguished by the periodical, uneven surface compared to other common roadway and 

roadside objects, which either renders a local, co-planer feature, pavements, or forms 

randomly distorted surfaces, e.g., vegetation, pedestrians, etc. As captured in the point 

cloud (shown in Figure 2.3(b)), such a periodical pattern of the guardrail’s surface 

corrugation can be modeled based on the change of directions of the local surface normal 

vectors. These graduate changes of directions can be potentially used to distinguish 

guardrails from roadway objects with flat surfaces (e.g., pavements, sidewalks, etc.) 

whose normal directions remain the same and from other roadway and roadside objects 

with randomly distorted surfaces (e.g., vegetation, pedestrians, etc.) whose normal 

directions change significantly. 

• Vertical profile feature: Vertical profile feature (as shown in Figure 2.3(a)) includes 

height and local profile feature. The height feature of the guardrail is the installation 

height regulated and standardized by local construction directives and norms. These 

directives and standards could provide the minimum and maximum height requirements. 

As a result, the guardrail has a different height from low-height objects, e.g., curbs, etc., 

and high-height objects, e.g., traffic signs, trees, etc. Besides, for the local profile feature, 

because of the variant point cloud density caused by the corrugated shape, the beam 

points have a bimodal height distribution that is different from others (e.g., curb, traffic 

sign pole, tree trunk, etc.), that have unimodal height distributions. 

• Connectivity feature: The connectivity feature dictates the adjacency of the beam and 

spacer as well as the post, as shown in Figure 2.3(c). Since the point cloud structure is 

irregular and unorganized, the geometry connection of point-to-point is unique. The 

spacer and post points are closer to the beam points than other points belonging to non-

guardrail objects, e.g., curbs, traffic signs, etc. The connectivity feature reflects the 

immediate connection between the beam points and the spacer points as well as the post 

points. The spacer and post can be extracted based on the connectivity feature and the 

outcome of beam detection. 

• Continuity feature: The continuity feature is the longitudinal connectivity of the beam, as 

shown in Figure 2.3(d). The beams that are designed to install in some specific area to 

protect critical roadside properties, e.g., bridges, buildings, etc., from collisions are 

linearly distributed along the roadway. The beams have such significant continuity 

feature that is different from the discrete point-based distribution transportation 

infrastructures, e.g., traffic signs, parking meters, etc. 
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2.3.3 Method Overview 

To leverage the four unique local features for guardrails captured in the point cloud data, 

including the corrugation feature, vertical profile feature, connectivity feature, and continuity 

feature, a fully automated algorithm is developed that consist of four corresponding steps: 

Difference of Normal (DoN)-based segmentation, vertical profile-based filtering, guardrail-

associated point re-population, and guardrail tracking. The overview of the four-step is 

illustrated in Figure 2.4. While all four local features are used to identify guardrails in the 

point cloud data, the proposed method tailors a processing sequence based on the 

significance and uniqueness of these features for better performance. 

DoN-based segmentation is introduced first to extract the points that render the corrugation 

feature effectively. Then a vertical profile-based filtering process is applied to effectively 

remove the points with heights that are unlikely to follow the installation specification for 

guardrails and the points with consistent densities that are different from the variant density 

of the beam point cloud. The guardrail-associated point re-population is then utilized to 

reclaim the points associated with the spacer and post components of guardrails that are not 

always captured in their full forms. Finally, the extracted points are further tracked based on 

their positions (left and right-hand side of the road) and longitudinal adjacency. 

 

Figure 2.4: Proposed automated guardrail extraction method 
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2.3.4 DoN-based segmentation 

DoN-based segmentation (Ioannou et al., 2012) takes full advantage of the corrugation 

feature of the guardrail surfaces. It deals with the non-planar surface of the unorganized point 

cloud by estimating the changes in the surface’s normal directions in different local regions. 

Intuitively, in the flat regions of the point cloud, the normal directions of the regions do not 

vary, while in the corrugated regions of the point cloud, the normal directions for the regions 

significantly change as the surface distorts. DoN is defined as the difference between two 

normal values estimated at two different scales (defined by a smaller radius and a larger 

radius) in the point cloud to capture such a phenomenon. The normal value evaluated at a 

given radius describes the underlying geometric properties (e.g., flatness, etc.) of the surface 

at the scale of the radius. Normal values evaluated with a large radius represent the geometry 

of the large-scale surface, while normal values evaluated with a small radius reflect the 

geometry of the local-level surface as well as noise. Consequently, the difference in the 

normal values at the two radii represents how much the local corrugation makes the local 

normal directions depart from the larger-scale flatness. There are no significant differences 

for the DoN values of the flat surfaces, e.g., pavement, sidewalk, etc., at different radii pairs, 

regardless two radii values are different or the same. The DoN values of the randomly 

distorted surfaces, e.g., vegetation, pedestrians, etc., change significantly at any radii pairs. 

As a unique feature, the DoN values of the corrugated surfaces of the guardrail change 

regularly at some radius pairs with a smaller radius and a larger radius. In this study, the DoN 

operator 𝛥�̂� is introduced to estimate the surface geometry, defined as: 

𝜟�̂�(𝒑, 𝒓𝟏, 𝒓𝟐) =
�̂�(𝒑, 𝒓𝟏) − �̂�(𝒑, 𝒓𝟐)

𝟐
 

where 𝑟1, 𝑟2 ∈ ℝ, 𝑟1 < 𝑟2, and �̂�(𝑝, 𝑟) is the surface normal estimated at any point 𝑝, given 

the support radius 𝑟. The magnitude of the 𝛥�̂� vector is always within [0,1] since each DoN 

is the normalized sum of two unit-normal vectors. 

Four steps, which include DoN estimation, DoN-based filtering, plane removal, and 

Euclidean clustering, are designed to remove the objects with flat surfaces as well as 

randomly distorted surfaces and collect and cluster the guardrail candidate points in the DoN-

based segmentation. Figure 2.5 shows the flowchart of the DoN-based segmentation method 

and the intermediate output corresponding to each step. 

• DoN estimation: The surface normal values are estimated through Principal Component 

Analysis (PCA) with re-orienting normals based on a given viewpoint (Rusu, 2009). 

Then, the DoN value of each point in the point cloud data is obtained through the 

estimated surface normal values as well as the equation above with the proper small and 

large radii pair. It should be noted that the selection for the radii pair is critical, as it 
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defines the scales of the regions at which the corrugation feature can be revealed. The 

sensitivity study of the radii pair is presented in a later section. 

• DoN-based filtering: Since the DoN values of the randomly distorted surfaces change 

significantly, this step is introduced to remove the objects (e.g., vegetation, etc.) with 

such surfaces based on the given DoN threshold (Ioannou et al., 2012). The point cloud 

data of the pavement and its surrounding infrastructures, e.g., guardrail and curb, etc., are 

collected from the filtered point cloud data. 

• Plane removal: This step is utilized to remove the objects (e.g., pavement, sidewalk, etc.) 

with the flat surfaces through the Random sample consensus (RANSAC) method 

(Fischler and Bolles, 1981) from the outcomes of the DoN-based filtering. The flat 

surfaces are detected by fitting the plane model iteratively in the RANSAC method from 

the point cloud data. 

• Euclidean clustering: The purpose of this step is to cluster the discrete points collected 

from the previous steps. Then these generated clusters through Euclidean clustering 

(Rusu, 2009) could be used for the subsequent guardrail extraction steps. These generated 

clusters are parts of some objects, e.g., guardrails, sign poles, tree trunks, etc. 

 

Figure 2.5: Proposed DoN-based segmentation method 
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2.3.5 Vertical profile-based filtering 

After the DoN-based segmentation, the point cloud is segmented into clusters within which 

the points share similar DoN properties (e.g., corrugation surface). However, many noise 

clusters, e.g., curb, pavement, tree, etc., may also render similar properties to guardrail 

beams. Therefore, it is necessary to filter these candidate clusters further and retain those 

truly associated with guardrails. Since guardrails are installed at a specified height above the 

ground to ensure the best protection and prevention functionality as defined in the guardrail 

installation manuals (MassDOT, 2017), the height feature can be used as a strong criterion to 

remove noise clusters. Besides, because of the variant density caused by the corrugated shape 

of the beam, this local profile feature is utilized to remove the noise clusters with consistent 

densities. The following two specific properties are introduced to robustly identify the 

vertical profile feature, including the height thresholds (to efficiently reject point cloud 

clusters that are located at an impossible height above the ground to be a guardrail) and the 

height distribution (to effectively reject point cloud clusters that may share similar heights as 

a guardrail, but have a wider spread of points along the vertical direction, e.g., walls, etc.). 

• Height Threshold: The height threshold is defined as the average height of the candidate 

cluster above the ground. Therefore, the guardrail height thresholds are determined based 

on the requirements regulated and standardized by the installation specifications. For 

example, there is a minimum height requirement of 26.5 inches (0.673 m) for the W-

beam guardrail defined in the installation specification, e.g., MassDOT Highway 

Division – Engineering Directive (MassDOT, 2017). The guardrail height maximum 

threshold ℎ𝑡𝑚𝑎𝑥 and minimum threshold ℎ𝑡𝑚𝑖𝑛 are defined as: 

ℎ𝑡𝑚𝑎𝑥 = ℎ𝑚𝑎𝑥 − ℎ𝑐𝑙/2 

ℎ𝑡𝑚𝑖𝑛 = ℎ𝑚𝑖𝑛 + ℎ𝑐𝑙/2 

where ℎ𝑚𝑎𝑥 and ℎ𝑚𝑖𝑛 are the maximum and minimum height requirements regulated by 

the local construction directives and norms. ℎ𝑐𝑙 is the minimum cross-section length 

requirement of the guardrail regulated by the local construction directives and norms. 

Combing through the heights of the centroids of the guardrail candidate clusters, the 

height thresholds are utilized to filter most noise clusters with higher heights, e.g., the 

pole of a traffic sign, tree trunk, etc., as well as others with lower heights, e.g., curb, etc. 

o Removal of noise cluster with high height: if ℎ𝑐 > ℎ𝑡𝑚𝑎𝑥, the noise cluster with 

high height is removed. 

o Removal of noise cluster with low height: if ℎ𝑐 < ℎ𝑡𝑚𝑖𝑛, the noise cluster with 

low height is removed. 

where ℎ𝑐 is the height of the centroid of the guardrail candidate cluster. 
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• Height Distribution: The height distribution is defined as the height distribution of each 

point within the candidate cluster off the ground. Some noise objects, e.g., walls, bushes, 

etc., may share a similar average height as guardrails. The height distribution of their 

associated points in these clusters is significantly different from those associated with 

guardrail clusters. For a guardrail cluster, the height distribution of the points has a 

bimodal distribution, as shown in Figure 2.6(a), because of the sparse points caused by 

the corrugated shape. Few points contribute to the height numbers in the valley bottom of 

the height distribution since the middle of the beam point cloud has a sparser density than 

the densities of the top and bottom parts caused by the corrugated shape. Different from 

the guardrail cluster, the noise cluster, e.g., wall, etc., has a unimodal height distribution 

(shown in Figure 2.6(b)) since it has a consistent density.   

 

Figure 2.6:Vertical profile and point clusters 

2.3.6 Guardrail-associated point re-population 

Depending on the data collection configurations, guardrail beams are usually the 

predominant component captured in the point cloud, while guardrail spacers and posts can 

only be captured partially. However, it remains important not to exclude these important 

components from extraction, especially for supporting guardrail inventory purposes (e.g., 

condition evaluation). While independently identifying these components with incomplete 

shapes may be challenging, their immediate connectivity to guardrail beams can be leveraged 

to retrieve the associated points better. Therefore, a guardrail-associated point re-population 

step is introduced based on a voxel search on an octree structure of the point cloud (Meagher, 

1982). The basic idea of the re-population process is to seek the points that are associated 

with posts and spacers with the proximity of voxels defined in the octree data structure, and it 

relies on the condition that the majority of the guardrail-associated points, i.e., guardrail 

beam, has been extracted from previous steps. 

The octree data structure is built in the original input point cloud data. The space is 

recursively subdivided into eight octants. Each final subspace is called a voxel (as shown in 
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Figure 2.7). The voxel size is set based on the rule that this subspace includes as many 

ignored guardrail points in the previous step as possible, especially in the guardrail boundary 

area. If the voxel size is too large, interfering point data will be re-populated; otherwise, 

many points associated with post and spacers will be missed. The voxel size represents the 

search buffer around the extracted guardrail beam-associated points (seed points). Given the 

voxel size’s criticality, the voxel size’s sensitivity was also analyzed (in the later section). In 

each voxel, the neighbor points (blue points as shown in Figure 2.7) of each extracted point 

that is associated with guardrail beams (red points as shown in Figure 2.7) in the extracted 

guardrail cluster are searched based on the original input point cloud data. If any points 

(green points as shown in Figure 2.7) are not within the voxels containing guardrail beam 

points, they are not extracted as guardrail-associated points. The re-population process will 

not be complete until all the seed points are visited. Some points may be retrieved multiple 

times in the voxel search (single voxel shown in Figure 2.7). These duplicate points are 

removed based on their 3-D coordinate values. 

 

Figure 2.7: Voxel search on octree structure 

2.3.7 Guardrail tracking 

The objective of the guardrail tracking step is to find the complete track of the guardrail 

based on the continuity feature of the guardrail. Guardrail tracking includes two sub-steps, 

including 1) guardrail position identification and 2) guardrail continuity determination (as 

shown in Figure 2.8(a) and (b), respectively). The vehicle trajectory is introduced to aid two 

steps since the guardrails are distributed along the roadway. The assumption of the vehicle 

trajectory holds true as LiDAR point cloud data is always captured with its corresponding 

vehicle trajectories. Therefore, this step uses the vehicle trajectory data. However, for any 

point cloud data without vehicle trajectories, similar information may be extracted from 

pavement marking information along the road, and the following steps remain valid. 
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The positions (i.e., left/right side of the road) of the extracted guardrail-associated clusters 

need to be identified. An algorithm based on the cross product of the vehicle trajectory and 

the extracted guardrail-associated point clusters (Zill and Cullen, 2006) is introduced to 

determine the positions. For the 2-D vehicle trajectory and guardrail cluster that are projected 

into the horizontal plane (𝑥𝑜𝑦 plane in the Cartesian coordinate system), there are two 

random points 𝐴(𝑥1, 𝑦1) and 𝐵(𝑥2, 𝑦2) in the 2-D vehicle trajectory and one random point 

𝑃(𝑥0, 𝑦0) in the guardrail cluster (as shown inFigure 2.8(a)). Then, the position of point 𝑃 

based on the signed line 𝐴𝐵 from 𝐴 to 𝐵. There are two vectors 𝐴𝐵⃗⃗⃗⃗  ⃗(𝑥2 − 𝑥1, 𝑦2 − 𝑦1) and 

𝐴𝑃⃗⃗⃗⃗  ⃗(𝑥0 − 𝑥1, 𝑦0 − 𝑦1). The cross product of 𝐴𝐵⃗⃗⃗⃗  ⃗ × 𝐴𝑃⃗⃗⃗⃗  ⃗ is defined as, 

𝐴𝐵⃗⃗⃗⃗  ⃗ × 𝐴𝑃⃗⃗⃗⃗  ⃗ = |𝐴𝐵⃗⃗⃗⃗  ⃗||𝐴𝑃⃗⃗⃗⃗  ⃗|sin𝜑 

where 𝜑 is the angle between 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐴𝑃⃗⃗⃗⃗  ⃗. 

The position of 𝑃 depends on 𝐴𝐵⃗⃗⃗⃗  ⃗ × 𝐴𝑃⃗⃗⃗⃗  ⃗ when |𝐴𝐵⃗⃗⃗⃗  ⃗||𝐴𝑃⃗⃗⃗⃗  ⃗| ≠ 0. Geometrically, the position of 

𝑃 depends on the 𝑧-component of 𝐴𝐵⃗⃗⃗⃗  ⃗ × 𝐴𝑃⃗⃗⃗⃗  ⃗ based on the right-hand rule. Consequently, the 

identification rule is as follows, 

• Left side: If (𝑥2 − 𝑥1)(𝑦0 − 𝑦1) − (𝑦2 − 𝑦1)(𝑥0 − 𝑥1) > 0, 𝑃 is on the left side of the 

signed line 𝐴𝐵. The guardrail cluster is on the left side of the road accordingly. 

• Right side: If (𝑥2 − 𝑥1)(𝑦0 − 𝑦1) − (𝑦2 − 𝑦1)(𝑥0 − 𝑥1) < 0, 𝑃 is on the right side of the 

signed line 𝐴𝐵. The guardrail cluster is on the right side of the road accordingly. 

The steps mentioned above will be robustly extracted guardrail-associated points. 

Unfortunately, due to the nature of the LiDAR point cloud data collection, occlusion that 

blocks the line of sights, e.g., cars, may frequently occur and can artificially break the 

continuity of guardrails captured in the data. Therefore, the guardrail clusters, if broken, need 

to be connected into one guardrail section. A guardrail continuity determination rule is 

proposed in this study. The guardrail points are projected into the vehicle trajectory based on 

a linear reference system (Scarponcini, 2002), as shown in Figure 2.8(b). The guardrail 

position (the left/right side of the road) is identified through the proposed guardrail position 

identification method. Then, the whole guardrail cluster is projected into new guardrail 

clusters along the vehicle trajectory. On the same side, two neighboring clusters will be 

connected as the same guardrail if the distance 𝑑𝑖,𝑗 between the closest point pair, i.e., 𝑃𝑝𝑖 of 

projected cluster 𝑖 and 𝑃𝑝𝑗 of the projected cluster 𝑗 is within a distance threshold 𝛥𝑑, which 

can be set as the maximum occlusion that may occur during the data collection. In this study, 

9.0m (6.56 ft) is used as 𝛥𝑑 based on the double average car length . 
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• Same guardrail: if 𝑑𝑖,𝑗 ≤ 𝛥𝑑, two clusters belong to the same guardrail. 

• Different guardrails: if 𝑑𝑖,𝑗 > 𝛥𝑑, two clusters belong to different guardrails. 

 

Figure 2.8: Guardrail tracking—2-D profiles 

2.4 Guardrail Property Identification using 

Mobile LiDAR and Image Processing 

The objective of guardrail property extraction is to identify detailed properties of the 

extracted guardrail, including guardrail type (e.g., terminal and beam types) and geometry 

information (e.g., curb presence, guardrail elevation, and lateral offset). This subsection 

presents the details of the developed guardrail property identification algorithm in this study, 

including a brief literature review (2.4.1) on previous research that is relevant to this study, 

an overview of the algorithm (2.4.2), and the newly developed terminal and beam type 

identification algorithms and the geometry measurement methods (2.4.3 and 2.4.4, 

respectively).  

2.4.1 Literature Review 

In the MASH (AASHTO, 2016), the guardrail inventory should include the location and 

design details of the installations so that the information can be matched to the crash data for 

evaluation. For the design details of the guardrail installations, the National Cooperative 

Highway Research Program (NCHRP) Report 490 - In-Service Performance of Traffic 

Barriers (Ray et al., 2003) provides the installation characteristics, including length, post 

numbering, post spacing, rail height, lateral offset, nearest hazard, side slopes, hardware 

description, lane and shoulder widths, horizontal and vertical curvature, and special features, 

etc. In this study, the proposed method mainly focuses on the location and some of these 

characteristics, including the length, height, offset, etc. Other guardrail installation 

characteristics will be considered in further research.   
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The current guardrail inventory conducted by the local agencies collected limited guardrail 

geometric parameters. Some spatial information (e.g., height, lateral offset, etc.) is always 

inaccurate or missing by either using the estimated field measurements due to the unsafe 

operation on-site or leveraging video log imagery and GIS due to the incomplete data type. 

Therefore, in this study, the proposed automated geometry measurement method can provide 

not only the required parameters, e.g., guardrail location, height, length, and lateral offset 

(from the edge of the pavement to the guardrail), but also other parameters, e.g., cross-

section height, etc. This 3D geometric information could be utilized for different purposes, 

e.g., asset management, maintenance, and safety analysis. 

2.4.2 Method Overview 

Properties of guardrails are critical to their functionality and efficacy. The objective of this 

guardrail property identification method is to extract these critical properties by leveraging 

the results for the extracted guardrails from the previous step (as presented in 2.3) and the 

additional rich information from the collected data from the LiDAR and camera systems. In 

this study, two categories of properties were concentrated, including the terminal type of the 

guardrail and the geometrical measurements of the guardrail. Figure 2.9 shows the overview 

of the proposed method for extracting these critical guardrail properties.  

 
Figure 2.9: Overview—proposal guardrail property extraction 

2.4.3 Guardrail Terminal Type Identification 

A guardrail terminal (also called end treatment) refers to the starting point of the guardrail 

that is designed to clearly mark the delineation of the installed guardrail and is a critical 

component for absorbing energy if any impacts occur. Figure 2.10 shows examples of the 

guardrail terminals that are documented in the FHWA roadside terminal list for their frequent 

use in the field (AASHTO, 2011). Although some of the designs do not meet the criteria of 

different testing protocols, e.g., NCHRP 350, MASH, etc., unfortunately, they are still in 

service in the field due to the backlog of a complete inventory. It can be observed that, with 

different required performance characteristics and in compliance with testing protocols, the 
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design characteristics, materials, and structures of guardrail terminals vary significantly. As 

identified in the literature review, few attempts have been made to automate the process due 

to such a challenge. In this study, the research team aimed at two general yet significant 

features that are universally applied to most terminal designs, including the object markers 

(i.e., OM sign) and the bending curvature of the terminal, except for the buried-in-backslope 

(BIB) terminal design. Therefore, to identify the clearance markers, the research team 

introduced a high-performance traffic sign detection method developed by Tsai et al. (2017) 

that has been validated in the implementation of interstate sign inventory efforts by the 

GDOT. To identify the bending curvature of the terminal, the research team introduced a 

surface normal variance criterion for classifying different types.  

 
Figure 2.10: Guardrail terminal shapes 

2.4.3.1 OM Sign Identification 

The objective of the OM sign identification algorithm is to identify the region of the possible 

guardrail terminals in the collected video log images and then cross-referenced to the 

extracted guardrail location from the LiDAR point cloud data so that the corresponding point 

cloud clusters associated with guardrail terminals can then be extracted for the subsequent 

terminal classification algorithm. It should be noted that the mobile LiDAR system and the 

camera system have already been calibrated by the vendor (i.e., RIEGL), which means that 

each point from the LiDAR point cloud has a unique projection to an image pixel from the 

video log image.  
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Therefore, the cross-referencing process only requires a direct projection between the 

extracted guardrail region from the 3D point cloud to the video log image. Figure 2.11, 

adopted from (Ai, 2013), shows an illustration of the projection process (where A represents 

a point within the point cloud, and the Earth-Center Earth-Fixed (ECEF) reference system 

refers to the Massachusetts state plane in this study). If an OM sign is identified within the 

projected region in the video log image, the points that are associated with the regions of the 

detected OM sign are extracted for the subsequent terminal classification algorithm. If no 

OM signs are identified within the project region in the video log image, a BIB terminal or a 

missing terminal type is assigned to the extracted guardrail.  

 

Figure 2.11: Projection process: camera system and LiDAR point cloud  

In this study, the traffic sign detection method developed by Ai and Tsai (2016) was applied 

to automatically extract regions of interest (ROIs) for the OM sign from video log images. 

The developed algorithm can achieve a detection rate of more than 85% for all types of 

traffic signs under different roadway conditions. Thanks to the unique pattern and color of 

the OM sign and the need for processing only a smaller region of the video image, a 

detection rate of more than 95% was achieved in this study. To achieve full coverage of OM 

signs, manual intervention is needed to identify the remaining approximately 5% of the 

undetected traffic signs, which are often associated with signs with faded color or damaged 

surfaces.  
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2.4.3.2 Curvature Identification 

The objective of the curvature identification algorithm is to identify the degree of the surface 

bending at a guardrail terminal. By distinguishing the degree of bending, different types of 

guardrail terminals can be classified. As shown in the bounding boxes in Figure 2.12, there 

are three types of bending patterns that exist in the in-service guardrails, including the curved 

surface (circular bending), the flat surface (no bending), and the buried surface (i.e., BIB 

terminal only). As the BIB terminal has already been identified from the OM sign detection 

step, this curvature identification algorithm focuses on distinguishing the curved and flat 

surfaces. 

 
Figure 2.12: Bending patterns of guardrail terminals 

As shown in Figure 2.12, the small clusters of points are distributed along the surface of the 

corresponding guardrails, which renders the curved, flat, and special surfaces, respectively. 

For the curved surface, the normal directions of its associated points will point toward 

different directions that trace the curved surface, whereas, for the flat surface, the normal 

directions of its associated points will point toward a single direction that is perpendicular to 

the flat surface. Therefore, the curvature identification algorithm is developed by computing 

the normal directions of the LiDAR points that are associated with the extracted terminal and 

then by summarizing the distribution of the computed normal directions.  

For each point x in the point cloud, k nearest neighbors xi (i.e., all the points within a ball 

volume defined by the distance r) of the point x are selected 𝑥𝑖|‖𝑥𝑖 − 𝑥‖ < 𝑟. To compute 

the local normal of the point x, a plane pi is identified that minimizes the sum of square 

distances between all the points within the set xi and the plane pi.  

𝑚𝑖𝑛∑𝑑𝑖𝑠𝑡(𝑥𝑖, 𝜋)
2

𝑛

𝑖=1

 

In this study, the plane is identified using a local plane fitting method through principal 

component analysis (PCA) (Huang et al., 2009). The PCA computation is applied to every 

point within the point cloud that is within the guardrail terminal cluster. Therefore, a 

distribution of local normal directions is derived for each terminal-associated cluster. If the 
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distribution of the computed normal directions shows a “uniform pattern,” a curved surface is 

identified; if the distribution of the computed normal directions shows a “single peak 

pattern,” a flat surface is identified. In this study, the subcategories of guardrail terminals 

defined by FHWA and AASHTO (2011) were not further explored due to the limited data 

samples. However, the proposed curvature identification algorithm is general enough to be 

applied to other types of guardrails. 

In addition to the terminal type, the identification of beam types was also explored based on 

the curvature of the surface along with the vertical profile of the guardrail beam, using the 

same PCA approach. Instead of identifying the distribution of normal from the point cloud 

that is associated with the guardrail surface, the distributions of normal were computed from 

the point cloud that is associated with a short section of the guardrail beam. In this study, w-

beam, thrie-beam, double w-beam, and double thrie-beam were distinguished.   

2.4.4 Guardrail Geometry Measurement 

The current guardrail inventory conducted by the local agencies collected limited guardrail 

geometry parameters. Some spatial information (e.g., height, lateral offset, etc.) is always 

inaccurate or missing by either using the estimated field measurements due to the unsafe 

operation on-site or leveraging video log imagery and GIS due to the incomplete data type. 

Therefore, in this study, the proposed automated geometry measurement method can provide 

not only the required parameters, e.g., guardrail location, height, length, and lateral offset 

(from the edge of the pavement to the guardrail), but also other parameters, e.g., cross-

section height, etc. This 3D geometric information could be utilized for different purposes, 

e.g., asset management, maintenance, and safety analysis. Figure 2.13 shows the details of 

how these geometry properties are defined in this study.  

  

Figure 2.13: Guardrail geometry properties 

The proposed automated geometry measurement method includes the following steps: 

• Guardrail boundary detection: the boundary points of the guardrail beam can be 

identified by comparing the angles of the query point 𝑝𝑞 and its neighbors in a given   
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radius area (Rusu 2009). 𝑝𝑞 is identified as the boundary point, defined as 

max (𝛼 =  𝜃𝑖+1 − 𝜃𝑖) ≥ 𝛼𝑡ℎ 

where 𝜃𝑖+1 and 𝜃𝑖 are the angles between the lines formed by the points 𝑝𝑖+1 and 𝑝𝑖 in 

the neighborhood with 𝑝𝑞; 𝛼𝑡ℎ is the maximum given threshold angle, with a value of 

𝜋/2 giving good results in most cases. The extracted guardrail boundary points are 

subsequently used for conducting the measurement of the guardrail's dimensions. 

• Guardrail location identification: the location can be identified based on the 

georeferenced starting and ending points. The delineation of the guardrail is then 

determined by the distance of the two extreme vertical boundaries derived from the 

extracted guardrail boundary points. The details of the guardrail identification process 

have been presented in Subsection 2.3.  

• Guardrail length measurement: the length represents the length of the covered section 

along the roadway; it is defined by the total length of the guardrail that is projected into 

the roadway. The guardrail length is measured based on the guardrail beam boundary 

points. All the beam boundary points are projected into the vehicle GPS trajectory in the 

𝑥𝑜𝑦 plane, Cartesian coordinate system (Beam projected points in the vehicle GPS 

trajectory, as shown in Figure 2.14(a). The length 𝐿𝑖 is the total accumulation of the 

single Euclidean distance 𝑙𝑖 of two neighboring points, which are projected into the 

vehicle's GPS trajectory.  

𝐿𝑖 =∑𝑙𝑖

𝑛

𝑖=1

 

• Guardrail cross-section height measurement: the guardrail cross-section height is a set of 

all the single height ℎ𝑖
𝑐𝑠, that is, the Euclidean distance of each lower beam boundary 

point and its corresponding nearest upper beam boundary point (as shown in Figure 2.14 

(c)). 

• Guardrail height measurement: the height is the vertical distance from the top of the 

beam to the paved or unpaved surface below the guardrail. In this study, the guardrail 

height from the beam top to the ground surface is a set of all the single height ℎ𝑖
𝑔

, as 

shown in Figure 2.14(d), that is the nearest Euclidean distance of each upper beam 

boundary point and the estimated plane of the ground surface extracted using the 

RANSAC-based method (Canaz Sevgen and Karsli, 2020). If the curb exists, the 

guardrail height from the beam top to the curb top is a set of all the single height ℎ𝑖
𝑐, as 

shown in Figure 2.14(d), that is the nearest Euclidean distance of each upper beam 

boundary point and the estimated plane of the curb top extracted through the elevation-

based method (Zhao and Yuan, 2012). 
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• Guardrail lateral offset measurement: both the upper and lower boundary points are 

projected into the horizontal plane (x-o-y plane) in the Cartesian coordinate system. Then, 

these boundary points are merged if the boundary points are in the same square. The 

square size is selected based on the mean distance of these points. The lower projected 

boundary points are chosen if the upper and lower projected points if these points are in 

the same square. The guardrail’s lateral offset is a set of all single lateral offset 𝑙𝑖
𝑙𝑜, that 

is, the Euclidean distance of each merged boundary point in the 𝑥𝑜𝑦 plane and its 

corresponding nearest point in the road boundary that is extracted by combining the 

intensity-based method (Hata and Wolf, 2014) from the ground-level point cloud data (as 

shown in Figure 2.14 (b)) through RANSAC-based extraction (Canaz Sevgen and Karsli, 

2020). 

 

Figure 2.14: Automated geometry measurement method 
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The guardrail, consisting of a large, consistent, and linear beam, can be measured based on 

the same interval for the length 𝐿𝑖, cross-section height 𝐻𝑖
𝑐𝑠, height 𝐻𝑖, lateral offset 𝐿𝑖

𝑙𝑜, 

depending on the specific situations. The length 𝐿, average cross-section height 𝐻𝑎
𝑐𝑠, average 

height 𝐻𝑎, average lateral offset 𝐿𝑎
𝑙𝑜 are calculated based on 𝐿𝑖, 𝐻𝑖

𝑐𝑠, 𝐻𝑖$ and 𝐿𝑖
𝑙𝑜 of 𝑛 

subsections, defined as, 

{
 
 
 
 

 
 
 
 L =∑𝐿𝑖

𝑛

𝑖=1

𝐻𝑎
𝑐𝑠 =

∑ 𝐻𝑖
𝑐𝑠𝑛

𝑖=1

𝑛

𝐻𝑎 =
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𝑛
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𝐿𝑎
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2.5 Guardrail Condition Assessment using 

Point Cloud and Computer Vision 

The objective of guardrail condition assessment is to identify detailed conditions of the 

extracted guardrail, including face dentation, end terminal damage or missing, and guardrail 

support deficiency. This subsection presents the details of the developed guardrail condition 

assessment algorithms in this study, including a brief literature review (2.5.1) on previous 

research that is relevant to this study, an overview of the algorithm (2.5.2), and the newly 

developed condition assessment algorithms for face dentation (2.5.3),  end terminal damage 

or missing terminals (2.5.4), support deficiency (2.5.5) and the exploration of missing bolt 

identification (2.5.6).  

2.5.1 Literature Review 

The research team did not find any previous literature that is directly relevant to automated 

methods for assessing guardrail conditions. Instead, some practical guidelines and processes 

for field inspection have been identified. For metal beam barrier rail elements, some 

quantitative repair criteria (Gabauer and Gabler, 2009), including barrier deflection, damage 

to posts, post deflection, missing bolts, etc., are used by the transportation agencies. Most 

agencies use barrier deflection, the most prevalent quantitative repair criterion, with the 

FHWA-endorsed 6-inch threshold (FHWA, 1996; Fitzgerald, 2008). One or more broken or 

cracked posts are the thresholds for the damage to posts by most agencies. For post 

deflection, most agencies inspect longitudinal distances that are out of alignment, while 

Pennsylvania uses post angle (PennDOT, 2022). For metal beam barrier connections, most 
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maintenance assessment criteria rate a barrier as deficient if one or more bolts are missing, 

but none of the quantitative maintenance criteria use a threshold for missing bolts (Gabauer 

and Gabler, 2009).  

2.5.2 Method Overview 

Deteriorated and damaged guardrails will significantly affect the durability and the original 

functionality of these critical safety assets. The condition assessment method developed in 

this study is to identify several conditions by leveraging the results for the extracted 

guardrails from the previous steps (as presented in 2.3) and the additional rich information 

from the collected data from the LiDAR and camera systems. In this study, several 

algorithms were developed to automatically identify the conditions of guardrails, including 

face dentation, damaged and missing terminal, and deficient support. In addition, the 

feasibility of identifying missing bolts through video log images was also explored. Figure 

2.15 shows the overview of the proposed method for assessing these critical conditions.  

 
Figure 2.15: Proposed guardrail condition assessment method 

2.5.3 Face Dentation Identification 

The objective of the developed face dentation identification algorithm is to automatically 

identify the beam distortion, often caused by direction crash impacts. Figure 2.16 (bounding 

boxes) shows an example of face dentation as shown in the LiDAR point cloud data and the 

corresponding video log image data. It can be observed that the dentation partially flattens 

the surface so that the original wave pattern (e.g., W-shape and thrie-shape) of the guardrail 

beam is no longer present. To automatically identify these dentations along the extracted 

guardrails and quantify their distortion, the developed algorithm introduces a two-step 

processing for investigating the longitudinal profile of the guardrail and for investigating the 

vertical profile, respectively.  
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Figure 2.16: Face dentation—LiDAR and video log image 

• Longitudinal Profile Evaluation: For each extracted guardrail (as presented in Subsection 

2.3), the lateral offset measurement (as presented in Subsection 2.4) is reconducted to 

generate the longitudinal profile. When a face dentation is observed, the longitudinal 

profile often demonstrates a local, outward distortion. More importantly, these distortions 

are easily reflected by the sudden change in the lateral offset measurements. Therefore, 

by identifying the sudden change of the lateral offset measurement, the candidates for 

face dentations are identified. Figure 2.17 shows an example of the distortion in the 

extracted longitudinal profile along a w-beam where the arrows represent the offset from 

the profile to the edge of the travel lane at a one ft. interval. It can be noticed that the 

minor face dentation shows a rapid change in the longitudinal profile, and the 

corresponding points in the LiDAR point cloud are then labeled as a potential face 

dentation for the vertical profile evaluation.  

 

Figure 2.17: Longitudinal profile at a face dentation 

In this study, the smoothness of the longitudinal profile is introduced to reveal 

distortions, which are computed based on the first-order derivative. Although 

investigating the longitudinal profile can efficiently narrow down to the locations where 

potential face dentations may exist, due to the noise in the lateral offset measurements, 

not all of the identified locations by this longitudinal profile evaluation step exist actual 

dentations. For example, as shown in Figure 2.18, two locations were identified: 1) the 
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one circled in yellow is not a face dentation but a hinge connection that appears to be 

bending, and 2) the one circled in red is a true face dentation. This longitudinal profile 

evaluation step will label both locations as candidates. Therefore, a subsequent vertical 

profile evaluation is needed.  

 

Figure 2.18: Identified sections with face dentations 

• Vertical Profile Evaluation:  For the candidate locations where face dentations may exist, 

a vertical profile evaluation will be conducted to compare the actual vertical profile at 

this location with a vertical profile that is known to be dentation free. To achieve this 

goal, the elevation profile (as presented in Subsection 2.4) is reconducted to generate the 

vertical profile. The vertical profile will be extracted at two locations, including the 

candidate location identified by the longitudinal profile evaluation and a “neighborhood” 

location that is known dentation free (i.e., a nearby location where the longitudinal profile 

evaluation does not label candidates; 10 ft. away from the identified candidate location in 

this study). It can be observed that the vertical profile at the red location shows a 

significant shapeshift that is indicative of a face dentation, whereas the vertical profile at 

the red location does not show any significant shapeshift, which means that no face 

dentation is present. 

 

In this study, a Hausdorff (Rockafellar and Wets, 2005) distance function is defined to 

measure the shapeshift between the vertical profile at the candidate location and the one 

that is known dentation free. The Hausdorff distance measures how far two subsets (i.e., 

both vertical profiles) are from each other. For every point a of A, find its smallest 

distance to any point b of B; finally, keep the smallest distance found among all points a.  

𝐷(𝐴, 𝐵) = min
𝒂∈𝑨

{min
𝒃∈𝑩

{𝑑(𝑎, 𝑏}} 

2.5.4 Damaged/Missing Terminal Identification 

The objective of automatically identifying damaged/missing terminals is to locate the 

guardrails whose beams have an incomplete or distorted terminal. Therefore, the research 

team re-introduced the terminal classification method for identifying damaged and missing 

terminals. As presented in Subsection 2.4, if no OM signs are identified in the video log 
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image within the projected region of the extracted guardrail-associated point cloud, a BIB 

terminal or a missing terminal type is assigned to the extracted guardrail. To differentiate the 

BIB terminal and a damaged/missing terminal, the elevation of the unidentified terminal (i.e., 

BIB or damaged/missing terminal) was evaluated. For the BIB terminal, since the entire 

beam is extended into the ground, the elevation of the terminal is often neglectable, while a 

damaged/missing terminal will render a comparable elevation as the installed beam for the 

rest of the guardrail. In this study, no damaged/missing terminal was identified in the selected 

testing sections. However, Figure 2.19 shows examples where different situations other than 

BIB terminal were identified as damaged/missing terminals, especially the cases where 

occlusions were observed, e.g., vegetation, mailbox, and data collection artifacts. 

 

Figure 2.19: Misidentified damaged or missing terminals 

2.5.5 Support Deficiency Identification 

Figure 2.20 shows a sample dataset for a typical LiDAR scan in this study for the roadside 

features, including guardrails. It can be observed that, due to the occlusion of the guardrail 

beams and the scanning angle of the LiDAR sensor, only a limited portion of the guardrail 

supports can be captured from the point cloud. Therefore, the research team focused on the 

support deficiency as the missing in this study, and the research team proposed to measure 

the interval of installed supports and then identify the missing support based on the identified 

abnormal interval.  

 

Figure 2.20: Partially collected guardrail support 
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Similar to the vertical profile evaluation approach (as presented in Subsection 2.4), vertical 

profiles are automatically generated along each extracted guardrail beam. Figure 2.21 shows 

examples of the vertical profile that is with and without supports. It can be observed that the 

vertical profile with support shows two distinct clusters that correspond to the guardrail beam 

and the partial guardrail support, while the vertical profile without support only contains a 

single cluster that corresponds to the guardrail beam. Therefore, the research team proposes a 

binary indicator for each extracted guardrail. Each code of the binary indicator represents a 

sampled vertical profile (at a 1 ft. interval in this study), which is computed by all the points 

within the 1 ft. interval. If the vertical profile contains a second cluster, then the code “1” is 

labeled, whereas if the vertical profile does not contain a second cluster, then the code “0” is 

labeled. Therefore, the installation interval of the guardrail supports can be measured by 

counting the distance between the two consecutive vertical profiles that are coded “1”. With 

the installation intervals identified for each extracted guardrail beam, a distribution of the 

interval can be generated. Any interval that is greater than the typical interval (defined as an 

interval that is larger than 1.5 times the average interval) will be identified as missing 

support.  

 

Figure 2.21: Vertical profiles with and without a support 

2.5.6 Exploration of Missing Bolt Identification 

The objective of identifying missing bolts is twofold: 1) to identify locations of bolts and bolt 

holes (if missing), and 2) to determine if a missing or loosened bolt exists. Due to the small 

dimension of the bolts installed in guardrails, they cannot be typically captured in the LiDAR 

point cloud data but clearly in the high-resolution video log image. In this study, due to the 

limited examples of missing/loosened bolts collected from the tested sections, the research 

team instead explored the feasibility of identifying missing bolts using an existing algorithm 

and dataset in the structural analysis developed by Yuan et al. (2021). The algorithm is 
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further applied to the video log images collected in this study for performance evaluation. 

Figure 2.22 shows the network adopted from work by Yuan et al. (2021)using Mask RCNN. 

 

Figure 2.22: Mask RCNN-based bolt identification algorithm 

The framework was proposed in two stages, including the stage for generating object 

proposals and the second stage for classified proposals to generate bounding boxes and 

masks. In this study, only the mask branch was implemented for identifying the detailed 

contours of each bolt. In addition, instead of only segmenting the bolts, the research team 

proposed to segment the entire scene for the guardrail so that other components of a guardrail 

can be extracted. Mask RCNN uses the original ResNet architecture for encoding images (He 

et al., 2018). In this study, the original 300 photos used in the study by Yuan et al. (2021) and 

an additional 500 video log images from the camera system were prepared for the dataset of 

training and testing with augmentations (including shift, rescaling, and brightness 

adjustment). Figure 2.23 shows an example of the segmented results.  

 

 

Blue: Metal beam; Yellow: Wood post; White: Bolt 

Figure 2.23: Example of the segmentation results  
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While the detection results for in-service bolts showed promises in accurately identifying the 

locations, it was identified that a higher resolution was required to identify the detailed 

condition of the bolts (e.g., loosened or missing). Using the video log images from the 

camera system, depending on the distance between the system and the guardrail, it remains a 

challenge to capture the detailed conditions. In addition, at a closer data collection distance, 

the point cloud data was anticipated to capture the geometrical changes for missing or 

loosened bolts (i.e., missing small bumps on the surface of the guardrail beams). 

Unfortunately, it is not always ideal to maintain a close data collection distance to reveal the 

subtle changes. 



34 

 

This page left blank intentionally. 



35 

 

3.0 Results 

The results for this study consisted of two main parts: the results from individual algorithm 

evaluation for guardrail inventory, property extraction, and condition assessment, and an 

overall performance evaluation for a network-level analysis. Subsections 3.1, 3.2, and 3.3 

present the evaluation results that correspond to guardrail extraction, guardrail property 

identification, and guardrail condition assessment. In this study, given the limited number of 

testing sections, the parameter sensitivity and the overall inventory results, and the guardrail 

property extraction results were comprehensively evaluated, compared with manual ground 

truths, whereas the condition assessment results were evaluated with limited samples and 

visual ground truths.  

3.1 Guardrail Inventory Algorithm 

In this study, the radii pairs, with a scale from 0.0m to 5.0m based on the interval of 0.1m, 

were used in the DoN calculation of the ground truth points of the guardrail. The guardrail 

covers a length of 123.14m (0.077 miles) with 44,256 points (Figure 3.1) in a typical area on 

State Route 113, Dunstable, MA, with a length of 539.18m (0.335 miles) and total points of 

9,719,695, as well as including some typical objects, e.g., vehicle, intersection, building, 

forest zone, etc.

 

Figure 3.1: Experimental test areas 
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3.1.1 Parameters Sensitivity Analysis 

In this study, the sensitivity of two sets of critical parameters needs to be evaluated to maximize 

the overall performance of this proposed method, including the radii values for the DoN-based 

segmentation step and the voxel sizes in the guardrail-associated point re-population step. This 

section presents the sensitivity analysis for these parameters.  

• Sensitivity analysis of radii pair. The proper radii pair r1 and r2 is important for the DoN-

based segmentation results. The radii values are used to define the scales of the region 

where the flatness and surface distortion are investigated so that the local corrugation 

feature may be revealed. Inspired by the selection algorithm based on the aggregate 

statistics (median and variance) for the ground truth points of the target object, median 

and variance are introduced to select the proper radii pair. The median of DoNs is the 

typical DoN value, which represents how much the local corrugation typically makes the 

local normal direction depart from the large-scale flat surface. The higher median of 

DoNs means most of the guardrail points have higher DoN values so that such points 

could be detected based on their higher DoN values, which are different from the points 

on the large-scale flat surface. Variance depicts the rate of DoN divergence that reflects 

how much the local corrugation makes the local normal direction different from the 

randomly distorted surface. Low variance means there are not many fluctuations in the 

DoN distribution of the guardrail points, which is different from the points in the 

randomly distorted surface. Therefore, the primary criteria for radii selection are to 

identify the radii pair that leads to high median DoN values (orange area as shown in 

Figure 3.2(a)) and low variance values (blue area as shown in Figure 3.2(b)). The 

overlapped regions with high median values and low variance values correspond to all 

the performing radii pairs. However, since the DoN calculation in a large-scale region 

requires a longer computation time, the radii pair with lower values (i.e., covering a 

smaller computation region for DoNs) was selected for processing the whole dataset (red 

circle shown in Figure 3.2(a)).  

In this study, the proper radii pair is 0.2m and 1.2m, with the median value of 0.669 and 

the variance value of 0.027 according to the criteria. As a result, using the selected radii 

pair, most guardrail-associated points can be detected with efficient computational cost. It 

should be noted that the selection of the radii pair for computing DoNs can be sensitive to 

the density of the point cloud and the corresponding scanning pattern. Therefore, it is 

recommended that the sensitivity of the radii pair needs to be conducted for other point 

cloud datasets following the above-mentioned transferable analysis. 



37 

 

 

Figure 3.2: Sensitivity analysis for radii pairs 

• Sensitivity analysis of voxel size. To analyze how the voxel size may affect the 

performance of the guardrail-associated points re-population, different voxel sizes from 

0.1m to 2.0m were evaluated. Two areas on State Route 113, Pepperell, MA (as shown in 

Figure 3.1(b)), were selected as the testing area. The metrics – precision and recall were 

introduced to analyze the performance of different voxel sizes in the step of the guardrail-

associated points re-population. Precision is the proportion of the Predicted Positive cases 

that are correctly Real Positives, while recall measures the coverage of Real Positive 

cases by the method which predicts the Positive. Precision and recall are defined as, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where TP and FP are the True and False Positives (i.e., the number of Predicted Positives 

that are correct and incorrect, respectively); TN and FN are the True and False Negatives 

(the number of Predicted Negatives that are correct/incorrect). 

 

The results in the two areas are shown in Figure 3.3(a) and (b), respectively. For Areas 1 

and 2, precision and recall are close when voxel size is between 0.2m and 0.3m. More 

points associated with spacers and posts were re-populated, and fewer interfering points 

were identified as guardrail-associated points. On the contrary, more points associated 

with spacers and posts were not detected when the voxel size was smaller, e.g., 0.1m, 
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which is attributed to the comparable dimensions of spacers and posts captured in this 

study. Also, more interfering points were detected when the voxel size was larger, e.g., 

0.8m, when the voxel started to include points beyond the guardrail beams’ proximity. 

Consequently, the best voxel size should be between 0.2m and 0.3m. Unlike the 

sensitivity results for the radii pair, because the dimensions for spacers and posts, 

especially lateral and vertical attachment to the guardrail beams, are universally defined 

and remain unchanged, the recommended voxel size between 0.2m and 0.3m is 

transferable for other point cloud datasets. 

 

 

(a) 

(b) 

Figure 3.3: Sensitivity analysis for voxel sizes 
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3.1.2 Overall Performance 

To evaluate the overall performance of the proposed methods, point cloud data collected 

from two different areas – Area 3 on State Route 113, Dunstable, MA, and Area 4 on State 

Route 9, Williamsburg, MA, were used in this study.  

• The radii pair 𝑟1 and 𝑟2 are set as 0.2m and 1.2m in DoN-based segmentation. The 

distance threshold 𝛥𝑑 is set as 9.0m based on the double average car length in the 

guardrail tracking step. 

• In Area 3, there is a 2787.06m (1.732 miles) road with a 263.09m (0.163 miles) guardrail, 

including 78,027 points (green lines as shown in Figure 3.1(d)). Precision is 0.956, and 

recall is 0.957. The length covering rate is 97.9%. In the Area 4, there is a 

1572.05m(0.977 mile) road with 580.23m (0.361 miles) guardrail including 417,227 

points (yellow lines as shown in Figure 3.1( (a)). Precision is 0.955, and recall is 0.944. 

The length covering rate is 100%. 

3.2 Guardrail Property Identification 

To evaluate the overall performance of the proposed method for guardrail property 

identification, all of the extracted results from Subsection 3.1.1 were used for the subsequent 

process of extracting the corresponding properties.  

• For terminal type identification, three categories of terminals can be successfully 

extracted and classified, including buried-in-backslope (BIB) terminal, curved terminal 

(e.g., Modified Eccentric Loader Terminal (MELT), Regent-C, Slotted Rail Termina 

(SRT-350), etc.), flat terminal (e.g., Flared Energy‐Absorbing Terminal (FLEAT),  

Sequential Kinking Terminal (SKT), Extruder Terminal (ET‐Plus), etc.). Out of the tested 

427 terminals, the accuracy of the classification rate is 96.4%, with only nine BIB 

terminals misclassified as curved terminals.  

o In addition, the guardrail beam types of the in-service beam along the tested 

section on State Route 113 were also extracted and compared with the completed 

inventory effort by MassDOT. Four types of beam types were compared, 

including the W-Beam, Thrie-Beam, and double W-Beam and, double Thrie-

Beam. The accuracy of the classification is 98.7%, with only less than 1.0% of the 

double W-Beam sections that were misclassified as Thrie-Beam.  

• For geometry property extraction, the developed algorithms can accurately measure the 

lateral offset and elevations of the guardrail with an average error of less than 1/2 inch. 

Specifically, by identifying the curb presence, the elevations of guardrails can be 

measured from the tip to both the pavement surface and the curbed ground with 

consistent accuracy.  
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3.3 Guardrail Condition Assessment  

As presented in previous sections, only a limited amount of testing sections were evaluated in 

this study, and not all types of conditions were captured from the selected testing sections. 

Therefore, although the research team developed a suite of algorithms for identifying face 

dentation, damaged/missed terminal, support deficiency, and missing/loosened bolts, only 

real-world examples of face dentations were found from the selected testing section. 

Therefore, this subsection focuses on presenting the details of the face dentation and support 

deficiency results. While the results for damaged/missed terminal and missing/loosened bolts 

were not validated by real-world point cloud and video log image data, the results for 

terminal classification, support identification and interval measurement, and bolt detection 

are reflective of the performance of the proposed algorithms and their feasibility, 

respectively.  

• The point cloud data collected on State Route 2 were used for evaluating the performance 

of the developed face dentation algorithm. Along the 5-mile section on State Route 2 near 

Fitchburg, out of approximately 2.6 miles of guardrails along the shoulder and 4.0 miles 

of guardrails along the median, there were sixteen small sections containing dentations 

that were identified using the developed algorithm. A full review of the video log images 

verified these identified dentations. Figure 3.4 shows some examples of the different 

magnitude of dentations identified by the developed algorithm.  

 

Figure 3.4: Examples of identified face dentations 

• The point cloud data collected on State Route 2 and State Route 9 were used for 

evaluating the performance of the developed support deficiency algorithm. Only two 

locations were identified using the developed algorithm. A full review of the video log 
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images verified these identified deficient supports. It should be noted that the deficient 

supports were observed to occur with face dentations that indicate a severe impact on the 

guardrail. Figure 3.5 shows the two locations where deficient supports were identified. It 

can be observed that the interval of the support changed due to the missing/tilting of the 

supports.  

 

Figure 3.5: Examples of identified support failures 
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4.0 Implementation and Technology Transfer 

In this study, with feasibility analysis in nature, there was not any immediate implantation or 

technology transfer plan proposed in the original scope of work. However, the research team 

worked closely with MassDOT on a case study, which aimed to demonstrate the capacity of 

the proposed methodology in a network-level analysis. The success of the case study has 

paved the way for future implementation and technology transfer. The network near 

Worcester, MA, including Massachusetts State Route 9, State Route 12, and State Route 122 

(as shown in Figure 4.1), was selected to demonstrate such a network-level performance.  

 
Figure 4.1: Area of network-level guardrail extraction study 

From the results of the network-level guardrail extraction, there are some conclusions, 

including 1) the guardrails can be detected and tracked by the proposed model in different 
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routes with red lines in State Route 9, blue lines in State Route12 and green lines in State 

Route122; 2) the guardrail can be detected and tracked in different types of the area with 

rural area (a) in State Route 9, suburban area (b) in State Route 12 and urban area (c) in State 

Route 122; 3) the proposed model can handle the continuity of the route with long-scale 

guardrails in the area (a) in State Route 9 and short and discretely distributed guardrails in the 

area (b) and (c); 4) the guardrails can be detected and tracked by the proposed model in some 

special area, e.g., tunnels in the area (b) and (c), ramps in the area (b). All the additional 

results, including the corresponding properties and conditions of the extracted guardrails, 

were also in a sampled geodatabase.  

The productivity (i.e., the processing time) was also evaluated to assess the feasibility of 

applying the proposed methodology to a statewide process based on this case study. The 

processing rates for the guardrail inventory, property identification, and condition assessment 

algorithms are at approximately 150 seconds per mile, 45 seconds per mile, and 60 seconds 

per mile, respectively. It is anticipated that a full guardrail inventory with detailed property 

and condition information will only cost a little over 4 min per mile if the developed 

methodology is successfully implemented.  
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5.0 Conclusions 

This study is aimed at developing and validating new processes using automated LiDAR and 

video-log imagery to identify and extract locations of in-service guardrails and evaluate 

condition and compliance using representative pilot-testing road sections. Representative 

testing sections of interstate and non-interstate roadways, with various lengths and guardrail 

coverages, were selected and analyzed within the study. The detailed objectives include:   

• Develop an automated method for determining the presence of guardrails along the 

roadway and for extracting critical information, including georeferenced starting and 

ending points, terminal types, curb presence, lateral offset (from the edge of the nearest 

travel lane to the guardrail), and elevation (from the pavement surface to the tip of the 

guardrail).  

• Develop an automated method for identifying typical conditional changes for guardrails, 

including face dentation, end terminal damage/missing, and guardrail support deficiency. 

The research team investigated the feasibility of identifying missing bolts or connection 

failure of guardrails using image processing.  

The deliverables of this study include a georeferenced (and linearly referenced) guardrail 

inventory for the selected pilot-testing sections, integrating the in-service presence and 

condition information to support evaluation for MASH compliance and network-level 

maintenance strategy. The results show that mobile LiDAR is an effective and efficient 

technology for network-level guardrail inventory with detailed property and condition 

information.  

• A Review of Guardrail Inventory Efforts. The research team conducted a detailed 

literature review of available and ongoing research through Transport Research 

International Documentation (TRID) on guardrail inventory and condition evaluation 

methods and mobile LiDAR applications, as well as the existing effort of guardrail data 

collection and inventory that is made by MassDOT.  

• Mobile LiDAR Data Acquisition. The research team conducted a comprehensive data 

acquisition and data preprocessing using the mobile LiDAR sensor (i.e., Riegl VMZ-

2000) along with the selected, representative, pilot-testing routes.  

o The collected data cover more than 62 miles of different classifications of 

highways. An additional 15 miles of the network near Worcester, MA, covering 

State Route 9, State Route 12, and State Route 122, were scanned to demonstrate 

the overall performance and feasibility of the developed methodology.   

• Guardrail Inventory. The research team developed fully automated LiDAR processing 

algorithms for identifying the locations (starting and ending) along the selected pilot-

testing routes.  
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o The overall performance for the inventory algorithm shows precisions of 0.956 

and 0.955 and recalls of 0.957 and 0.944 along the two testing sections on State 

Route 9 and State Route 113, respectively.  

o The productivity (i.e., the processing time) was also evaluated to assess the 

feasibility of applying the proposed method to a statewide process. On average, 

the processing rate for the guardrail inventory algorithm is at approximately 150 

seconds per mile.  

• Guardrail Property Extraction. The research team developed a suite of automated 

algorithms to extract the detailed properties of the inventoried guardrails, including 

terminal types, curb presence, lateral offset (from the edge of the nearest travel lane to the 

guardrail), and elevations (from the pavement surface and ground with curb to the tip of 

the guardrail).  

o For terminal type identification, three categories of terminals can be successfully 

extracted and classified, including buried-in-backslope (BIB) terminal, curved 

terminal (e.g., Modified Eccentric Loader Terminal (MELT), Regent-C, Slotted 

Rail Termina (SRT-350), etc.), flat terminal (e.g., Flared Energy‐Absorbing 

Terminal (FLEAT), Sequential Kinking Terminal (SKT), Extruder Terminal (ET‐

Plus), etc.). Out of the tested 427 terminals, the accuracy of the classification rate 

is 96.4%, with only nine BIB terminals misclassified as curved terminals.  

o For geometry property extraction, the developed algorithms can accurately 

measure the lateral offset and elevations of the guardrail with an average error of 

less than 1/2 inch. Specifically, by identifying the curb presence, the elevations of 

guardrails can be measured from the tip to both the pavement surface and the 

curbed ground with consistent accuracy.  

o The productivity (i.e., the processing time) was also evaluated to assess the 

feasibility of applying the proposed method to a statewide process. On average, 

the processing rate for the guardrail property extraction algorithm is at 

approximately 45 seconds per mile. 

• Guardrail Condition Assessment. The research team developed a suite of automated 

algorithms to assess the conditions of the inventoried guardrails, including face dentation, 

terminal damage/missing, and support deficiency. The research team also investigated the 

feasibility of identifying missing bolts or connection failure of guardrails using image 

processing.  

o For face dentation and terminal damage/missing, the algorithms are evaluated on 

a 5-mile section along State Route 2, and all of the 16 locations with face 

dentations and 2 locations with deficient supports were successfully located.  

o For terminal damage identification, although no damaged/missing terminals were 

found in the collected data, the terminal classification algorithm has clearly shown 

the feasibility of the algorithm. In this study, any terminals that are not identified 

as BIB, curved or flat terminals will be classified as damaged/missing terminals.  
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o For missing/loosened bolt identification, although no missing bolts were found in 

the collected data, the algorithm using datasets collected from previous studies 

has shown the feasibility of automatically identifying the locations of bolts from 

video log images using the developed machine learning algorithm. However, due 

to the configuration of the camera (i.e., the distance between the sensor and the 

guardrail, the current resolution of 1920x1080 may not be sufficient to identify 

missing/loosened bolts, and future studies remain needed to further validate the 

detailed performance of the developed algorithm.  

o The productivity (i.e., the processing time) was also evaluated to assess the 

feasibility of applying the proposed method to a statewide process. On average, 

the processing rate for the guardrail condition assessment algorithm is at 

approximately 60 seconds per mile.  

The research team has developed a comprehensive methodology for automatically 

inventorying the locations of the in-service guardrails, extracting the corresponding 

properties and conditions, and leveraging mobile LiDAR point cloud data and video log 

images. A case study covering 15 miles of the network (including State Route 9, State 

Route 12, and State Route 122) near Worcester, MA, was developed to demonstrate the 

feasibility of the developed methodology for network-level analysis. The resulting 

inventory geodatabase with all the properties and conditions can be readily used for 

supporting asset management and safety improvement tasks for MassDOT.  
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