

RCCC Capacity Model & Productivity Analysis

Findings and Recommendations

DRAFT

- Background and Key Questions
- Project Approach
- **■** Findings and Conclusions
 - Provisioning Process Flows
 - Average Work Time
 - Order Processing Productive Time (%)
- **■** Recommendations
- Next Steps
- Appendices

- Background and Key Questions
- Project Approach
- **■** Findings and Conclusions
 - Provisioning Process Flows
 - Average Work Time
 - Order Processing Productive Time (%)
- **■** Recommendations
- Next Steps
- Appendices

The purpose of this initiative was to develop capacity models and capture "actual" productivity at the RCCCs by conducting observations and interviews at selected centers.

— Background —

- The situation...
 - The previous RCCC model was developed in November '99 to support Y2000 budgeting with the following attributes:
 - linked to Corporate Volume Forecasts
 - based on a "top down" approach
- The complication...
 - The previous model did not reflect the RCCC realities and limits the ability of management to explain budget variances, resource needs and corrective actions
 - did not differentiate productivity differences between products
 - did not include factors such as "rework", absenteeism
 - did not explain expense drivers
- The conclusion...
 - A structured approach was taken to
 - develop event based models that will enable RCCC Directors to understand expense and productivity drivers, explain budget variances and assess management decisions/corrective actions.
 - calibrate/validate models with historical actual CY 2000 data.
 - incorporate models into Wholesale financial and performance management process.
- The question...
 - What is the average work time and order processing productive time (%) for each product?

We focused on the following scope and critical objectives during this initiative.

— Objectives & Scope —

Objectives

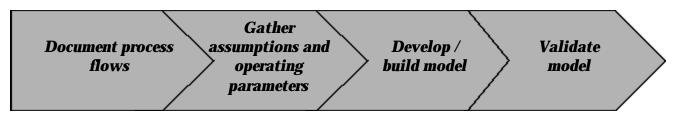
- Calculate Average Work Time (AWT):
 - What are the RCCC process flows for each key event?
 - What is the AWT for each key event?
- Determine order processing productive time (%) including Rework %, absenteeism
- Develop capacity models
- Validate models with historical data

Scope

■ Product

- Hot Cuts
 - Project Hot Cuts
 - Hot Cuts w/ IDLC
 - Partial IDLC
- LNP w/ Fallout
- Snapbacks / Returns
- DID

■ Event


- Work Distribution
- CTR1
- CTR2
- Date Due (DD)
- Push Outs
- Cancels

- Background and Key Questions
- Project Approach
- **■** Findings and Conclusions
 - Provisioning Process Flows
 - Average Work Time
 - Order Processing Productive Time (%)
- **■** Recommendations
- Next Steps
- Appendices

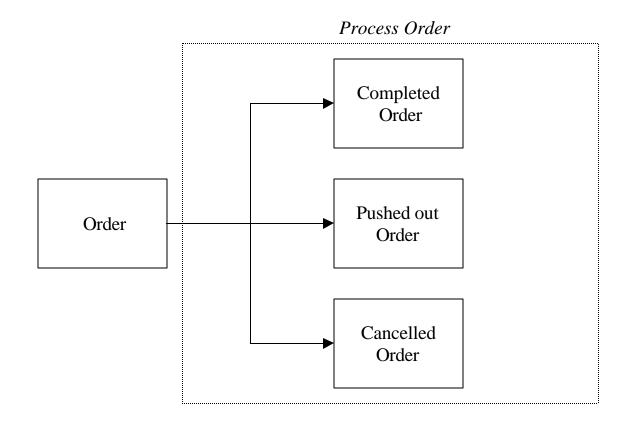
We used the following approach to determine AWT and order processing productive time (%) across the centers.

- Refine and review documented process flows Document nondocumented process flows
- Identify all products/events coordinated by the RCCC
- Conduct "stop watch" observations to determine:
- AWT
- process adherence
- Gather historical data (e.g., cancel %, fallout %, rework%, absenteeism, OT)
- Analyze refine assumptions

- Define theoretical relationships
- Build/develop model
- Incorporate assumptions and operating parameters
- Test model "Planned" versus "Actuals (historical)"
- Refine assumptions and operating parameters, as required

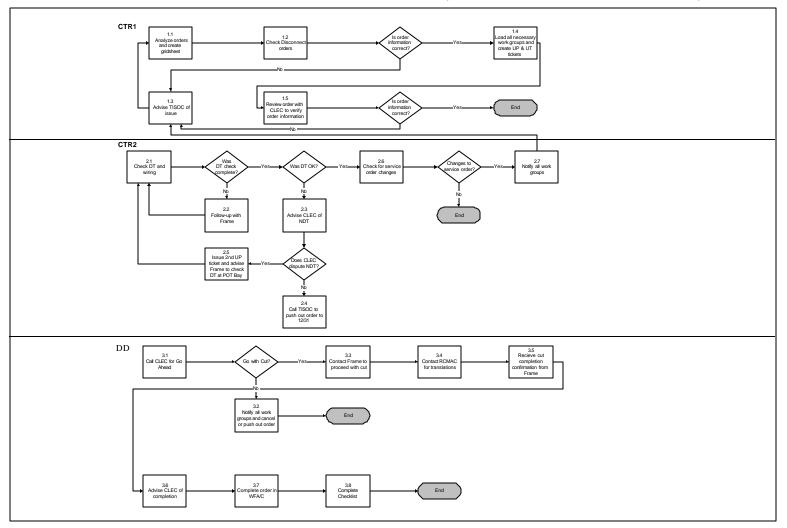
Deliverables

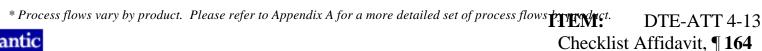
- · Process flows
- Assumptions Detailed Worksheets by product
- Capacity Models
- Formulaic Expressions
- Validation Results



- Background and Key Questions
- Project Approach
- **■** Findings and Conclusions
 - Provisioning Process Flows
 - Average Work Time
 - Order Processing Productive Time (%)
- **■** Recommendations
- Next Steps
- Appendices

Process flows for all Bell Atlantic products and services were documented after conducting interviews with subject matter experts.


— High Level Provisioning Process Flow —



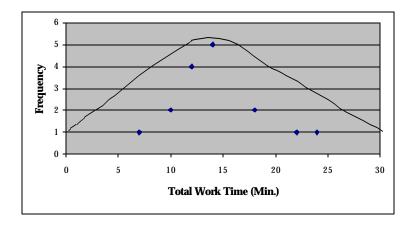
An example of a typical internal process flow for a Standard Hot Cut Order is shown below.

— Standard Hot Cut Order Process Flow (CTR1, CTR2 & DD Events)* —

- Background and Key Questions
- Project Approach
- **■** Findings and Conclusions
 - Provisioning Process Flows
 - Average Work Time
 - Order Processing Productive Time (%)
- Recommendations
- Next Steps
- Appendices

Our objective was to calculate the AWT for each event within each product.

— Average Work Time—


- For the purposes of this study, Average Work Time (AWT) is defined as the actual time spent processing an order.
 - The start point is when the service rep. opens the order.
 - The stop point is when the service rep. completes all of the event activities.
 - AWT includes any necessary wrap-up paperwork .
 - AWT does not include time that is not spent processing this service order (e.g., lunch, breaks, answering a question regarding another order).

We used the following approach to determine the AWT for each event within each product.

How was AWT calculated?

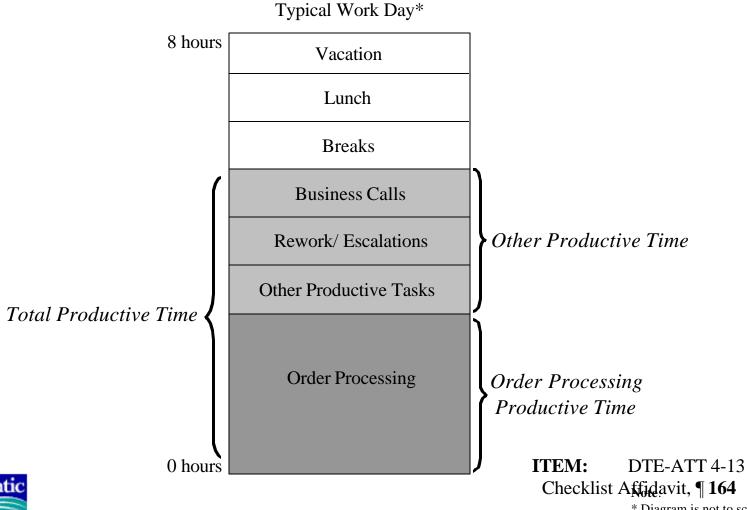
- A sample of orders were taken for each event within each product type.
- The order processing time and elapsed time between activities were recorded.
- The AWT for the sample was calculated using the Trim Mean Function, a statistical analysis function in Microsoft Excel.
 - The trim mean of the observations for each event was calculated.
 - A 95% confidence level was used.

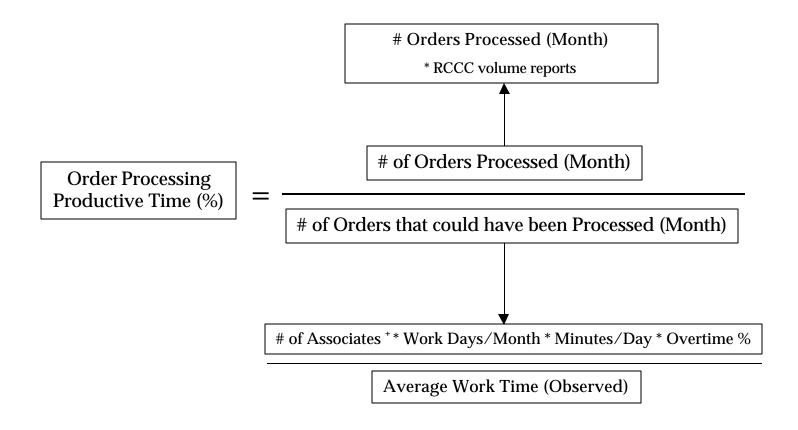
Average Work Time (Trim Mean) = 12 (Example of AWT calculation)*

ITEM: DTE-ATT 4-13
Checklis Note ffidavit, ¶ 164
Actual data was not used in this example

The table below outlines the results of the North average work time calculations.

AWT per Order for "Normal" Completed Orders (using 95% Conf. Level)					
Products	Work Distribution AWT	CTR1 AWT	CTR2 AWT	Date Due AWT	Total AWT
Standard Hot Cut < 10 lines	4	29	27	21	80
Standard Hot Cut > 10 lines	11	74	45	54	184
100% IDLC	5	53	42	34	134
Partial IDLC	4	32	15	56	107
DID	5	24	17	30	75
Winback	2	0	0	29	30
Projects	630	N/A	N/A	595	1225


AWT per Order for Orders Pushed Out on Date Due (using 95% Conf. Level)					
Products	Work Distribution AWT	CTR1 AWT	CTR2 AWT	Date Due AWT	Total AWT
Standard Hot Cut < 10 lines	4	29	27	36	95
Standard Hot Cut > 10 lines	11	74	45	87	217
100% IDLC	N/A	N/A	N/A	N/A	N/A
Partial IDLC	N/A	N/A	N/A	N/A	N/A
DID	N/A	N/A	N/A	N/A	N/A
Winback	N/A	N/A	N/A	N/A	N/A
Projects	N/A	N/A	N/A	N/A	N/A


- Background and Key Questions
- Project Approach
- **■** Findings and Conclusions
 - Provisioning Process Flows
 - Average Work Time
 - Order Processing Productive Time (%)
- **■** Recommendations
- Next Steps
- Appendices

A portion of an 8 hour work day is spent on productive tasks. In this study, our objective is to determine order processing productive time (%), a component of overall productive time. Order processing productive time (%) is defined as the percentage of available time spent on order processing tasks, excluding such activities as vacation, breaks, business phone calls, rework, escalations, other productive tasks, etc.

We determined order processing productive time (%) by using the following formulaic expressions.

The table below outlines the results of the North order processing productive time (%) study.

Region: North	Productivity			
Product	Order Processing Productive Time (%)	Non-Order Processing Productive Time (%)	Total Productive Time (%)	Average Non Productive Time (%)
Standard HC < 10 Lines	30%	35%	65%	35%
Standard HC > 10 Lines	65%	1%	65%	35%
100% IDLC	35%	31%	65%	35%
Partial IDLC	60%	5%	65%	35%
DID	2%	63%	65%	35%
Winbacks	170%	-105%	65%	35%
Project	84%	-19%	65%	35%

- Background and Key Questions
- Project Approach
- **■** Findings and Conclusions
 - Provisioning Process Flows
 - Average Work Time
 - Order Processing Productive Time (%)
- **■** Recommendations
- Next Steps
- Appendices

The following recommendations are suggested to improve average work time and order processing productive time (%).

Improve AWT	Improve Order Processing Productive Time (%)	Recommendations
		Proprietary to Bell Atlantic.
		ITEM: DTE-ATT 4-13

1. Recommendation Number One

Proprietary to Bell Atlantic.

- Background and Key Questions
- Project Approach
- **■** Findings and Conclusions
 - Provisioning Process Flows
 - Average Work Time
 - Order Processing Productive Time (%)
- **■** Recommendations
- Next Steps
- Appendices

The next step is to identify which areas within the RCCC will be improved in order to enhance RCCC productivity.

— Next Steps —

- Select recommendations that will be applied to improve AWT and order processing productive time (%).
- Implement changes to improve overall productivity within the RCCC organization.

- Background and Key Questions
- Project Approach
- **■** Findings and Conclusions
 - Provisioning Process Flows
 - Average Work Time
 - Order Processing Productive Time (%)
- **■** Recommendations
- Next Steps
- Appendices

- Appendix A Provisioning Process Flows
 - ù Standard Hot Cuts
 - ù Hot Cuts w/ IDLC (100 % & Partial
 - ù Snapbacks/Returns
 - ù DID (CSS Loop)
- Appendix B Average Work Time Results
 - ù North AWT Results
 - ù South AWT Results
- Appendix C Productivity Results
 - ù North Productivity Results
 - ù South Productivity Results
- Appendix D Formulaic Expressions
- Appendix E Productivity Template
- Appendix F: Capacity Models
 - ù North Capacity Model
 - ù South Capacity Model
- Appendix G Observation Data
 - ù North Observation Data
 - ù South Observation Data
- Appendix H Model Data

Appendix Items are Proprietary to Bell Atlantic.

