Bordering Land Subject to Flooding 2014 FEMA Study for Concord River Watershed and Climate Change

Thomas Maguire, MassDEP Wetlands Program Circuit Rider Network Presentation - May 22, 2014

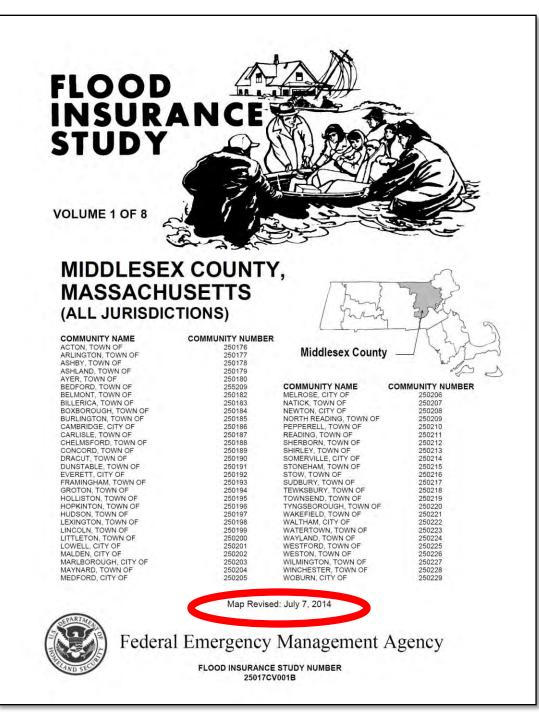
Bordering Land Subject to Flooding

- BLSF is a wetland resource area regulated by the Massachusetts Wetlands Protection Act and regulations (MGL Chapter 131 s. 40 and 310 CMR 10.57)
- Interests protected by the Act in BLSF are flood control, storm damage prevention, and wildlife habitat.
- A Notice of Intent is required to be filed when BLSF is proposed to be altered

BLSF Boundary

310 CMR 10.57(2)(a)3 requires the BLSF boundary:

to be "determined by reference to the <u>most recently</u> <u>available flood profile data</u> ... prepared ... by the Federal Emergency Management Agency (FEMA)."


"Said [BLSF] boundary, so determined, shall be presumed accurate."

"This presumption may be overcome only by credible evidence from a registered professional engineer or other professional competent in such matters."

When no FEMA flood profile data is available, 310 CMR 10.57 specifies other procedures to be followed to locate the boundary

<u>"Most recently</u> available flood profile data" ...

This means most recent data, including FEMA preliminary data, SHALL be used to determine BLSF boundary, unless overcome

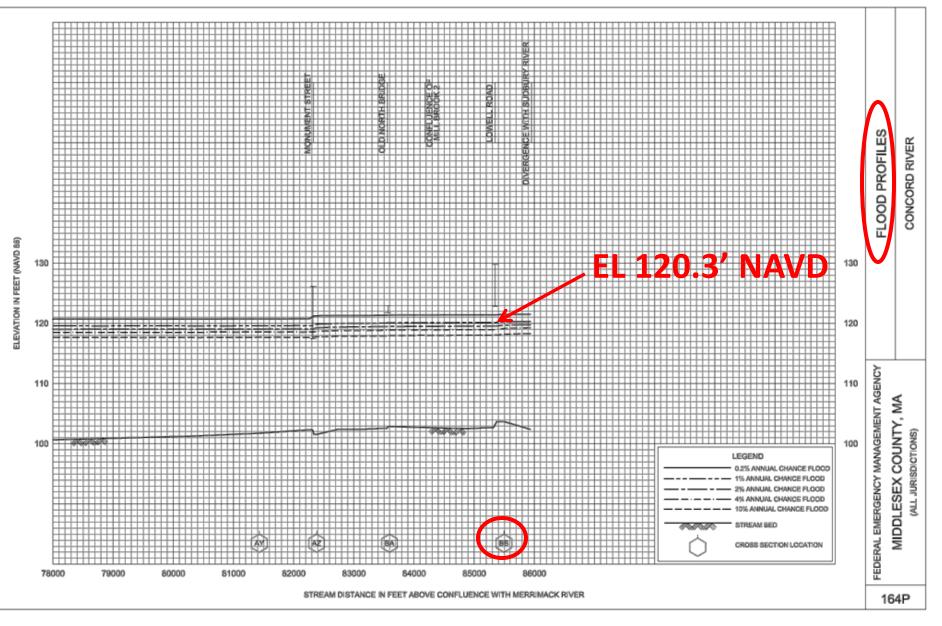
FEMA Study/Map Updates

- Flood Insurance Studies (FIS) and Rate Maps (FIRMs) are periodically updated in Massachusetts
 - Municipal studies are being converted to County studies
 - Datums are being changed from NGVD29 to NAVD88
 - LiDar topography is being incorporated
 - Coastal areas are being restudied
 - Some watersheds are being restudied (e.g. Concord River)
- Having a new flood study/map does not always mean new hydrologic data and hydraulic analysis was incorporated

Concord River Watershed Worcester County FEMA Update

- Revisions were made to incorporate new study of Concord River watershed
- Key dates:

- Preliminary FIRMs/Study Issued: January 10, 2013

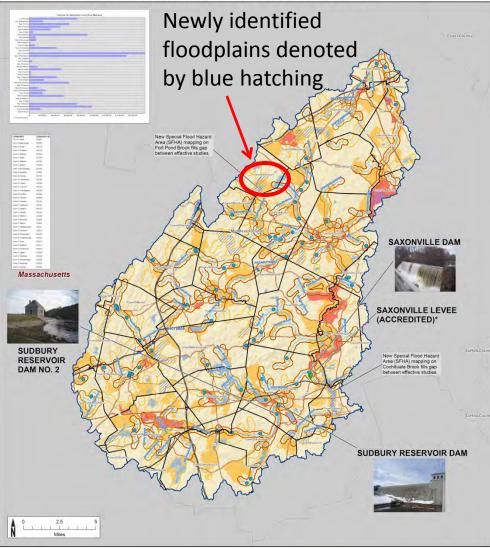

- New study and FIRMs Dated: July 16, 2014

• Applicants and Issuing authorities *shall use most recent FEMA flood profiles*

Concord River Watershed Middlesex County FEMA Update

- Revisions were made to incorporate new study of Concord River watershed
- Key dates:
 - Preliminary FIRMs/Study Issued: January 10, 2013
 New study and FIRMs Dated: July 7, 2014
- Applicants and Issuing authorities *shall use most recent FEMA flood profiles*

What Is A FEMA Flood Profile?



FLOODING SOURCE		FLOODWAY		BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD88)				
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Concord River (continued) AR AS AT AU AV AW AX AY AZ BA BB AR AS AT AU AV AZ BA BB AR AS AT AU AV AX AY AZ BB BB AR AS AT AU AV AZ BA BB BB AR AS AT AU AV AZ BA BB AR AS AT AU AV AZ BA BB AR AS AT AU AV AZ BA BB BB AR AS AT AU AV AZ BA BB BB AR AS AT AU AV AV AZ BB BB AR AS AT AU AV AV AZ BB BB AR AS AT AU AV AV AV AV AV AZ BB AR AS AT AU AV AV AV AV AV AV AV AV AV AV	60,443 65,823 67,500 69,822 71,553 74,744 77,896 81,430 82,381 83,593 85,496 60,443 65,823 67,500 69,822 71,553 74,744 77,896 81,430 82,381 83,593 85,496	320 1,183 905 574 540 2,546 2,004 347 169 844 173 320 1,183 905 574 540 2,546 2,004 347 169 844 173	5,904 13,093 11,719 7,008 7,668 25,572 20,261 3,965 2,395 7,841 2,347 5,904 13,093 11,719 7,008 7,668 25,572 20,261 3,965 2,395 7,841 2,347	1.0 0.6 0.6 1.1 0.8 0.3 0.3 1.8 2.5 1.3 2.6 1.0 0.6 1.1 0.8 0.3 0.3 1.8 2.5 1.3 2.6 1.0 0.6 1.1 0.8 0.3 1.8 2.5 1.3 2.6 1.1 0.8 0.3 1.8 2.5 1.3 2.6 1.1 0.8 0.3 1.8 2.5 1.3 2.6 1.1 0.8 0.3 1.8 2.5 1.3 2.6 1.1 0.8 0.3 1.8 2.5 1.3 2.6 1.1 0.8 0.3 0.3 1.8 2.5 1.3 2.6 1.1 0.8 0.3 0.3 1.8 2.5 1.3 2.6 1.1 0.8 0.3 0.3 1.8 2.5 1.3 2.6 1.1 0.8 0.3 0.3 1.8 2.5 1.3 2.6 1.1 0.8 0.3 0.3 1.8 2.5 1.3 0.3 1.8 2.5 1.3 0.3 1.8 2.5 1.3 2.6 1.1 0.8 0.3 1.8 2.5 1.3 2.5 1.3 2.5 1.3 2.5 1.3 2.5 1.3 2.5 1.3 2.5 1.3 2.5 1.3 2.5 1.3 2.6 1.3 2.5 1.3 2.5 1.3 2.6 1.3 2.5 1.3 2.6	119.4 119.5 119.5 119.5 119.6 119.6 119.6 119.9 120.1 120.3 119.4 119.5 119.5 119.5 119.5 119.6 119.6 119.6 119.6 119.9 120.1 120.3	119.4 119.5 119.5 119.5 119.6 119.6 119.6 119.6 119.9 120.1 120.3 119.4 119.5 119.5 119.5 119.5 119.6 119.6 119.6 119.6 119.6 119.9 120.1 120.3	120.2 120.2 120.3 120.3 120.3 120.3 120.4 120.7 120.9 121.2 120.2 120.2 120.2 120.3 120.3 120.3 120.3 120.3 120.3 120.4 120.7 120.9 121.2	0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.9 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.8 0.8 0.8 0.9
FEDERAL EMERGENCY MANAGEMENT AGENCY MIDDLESEX COUNTY, MA (ALL JURISDICTIONS)				FLOODWAY DATA				
				CONCORD RIVER				

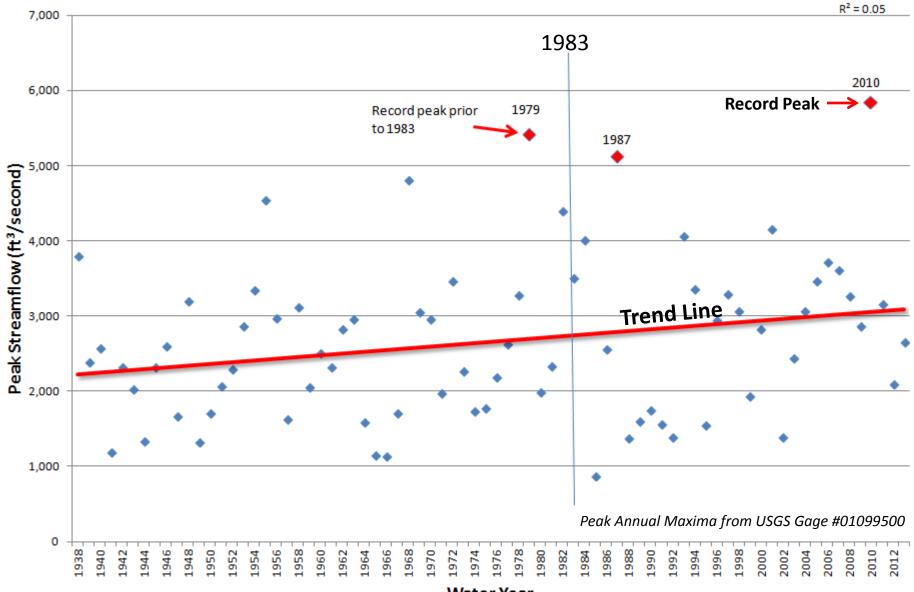
What Methods Did FEMA Use to Update Flood Study in the Concord River Watershed?

- Hydrology:
 - 1983 USGS Regression Equations for MA rural areas (Water Supply Paper 2214 by S. William Wandle, Jr.)
 - 1983 USGS Regression Equation for U.S. urban areas (Water Supply Paper 2207 by V.B. Sauer and others)
 - Results compared to schematic HEC-HMS rainfall/runoff model
 - Results compared/calibrated to stream flow recorded at USGS gages in watershed
 - Discharges reduced below certain reservoirs to account for storage effects in Sudbury River sub-watershed
- Hydraulics:
 - New bridge/culvert surveys incorporated
 - LiDar topography incorporated (reported resolution 0.03 foot vertical).
 - New HEC-RAS model developed

Flood Risk Map: Concord, 01070005

MAP SYMBOLOGY				WATERSHED LOCATOR	Risk Mapping, Assessment,
Base Data Corporate Limits Mayor Roads Intersites Watershed Boundary State Boundary	Flood Data	Flood Risk Very Law Low Madum High Very High	Access of Miligation Internet Access of Miligation Internet Access of Miligation Internet Access of Miligation Internet Bit Constrainting Constrainting Bit Co	Massachusetts 01010005	And Planning (Risk MAP) FRM FLOOD MISK MAP CONCORD RIVER WATERSHED WWW PLOOD MISK MAP CONCORD RIVER WATERSHED CONCORD RIVER CONCORD RIVER WATERSHED CONCORD RIVER CONCORD RIVER WATERSHED CONCORD RIVER CONCORD RIVER C

2014 FEMA Flood Insurance Study

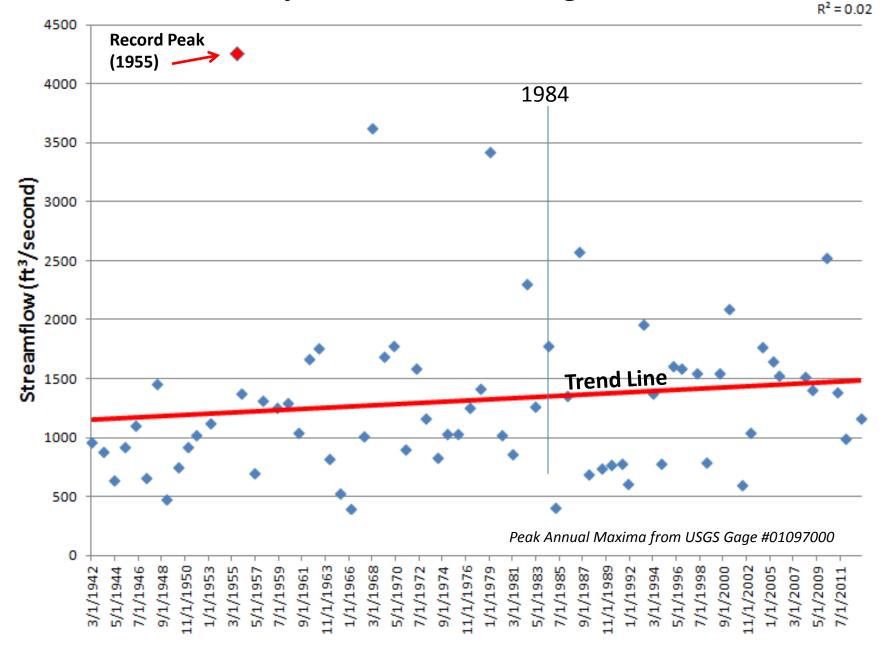

- Concord River
 Watershed: Study
 reports that the 1%
 frequency discharge at
 USGS gages increased an
 average of 123%
 through 2010 above the
 - gage discharges through 1983. (Vol. 1, p. 91)
- Assabet River discharges: Study reports they were increased by an average ratio of 1.22 (2010/1984, Vol. 1, p. 93)

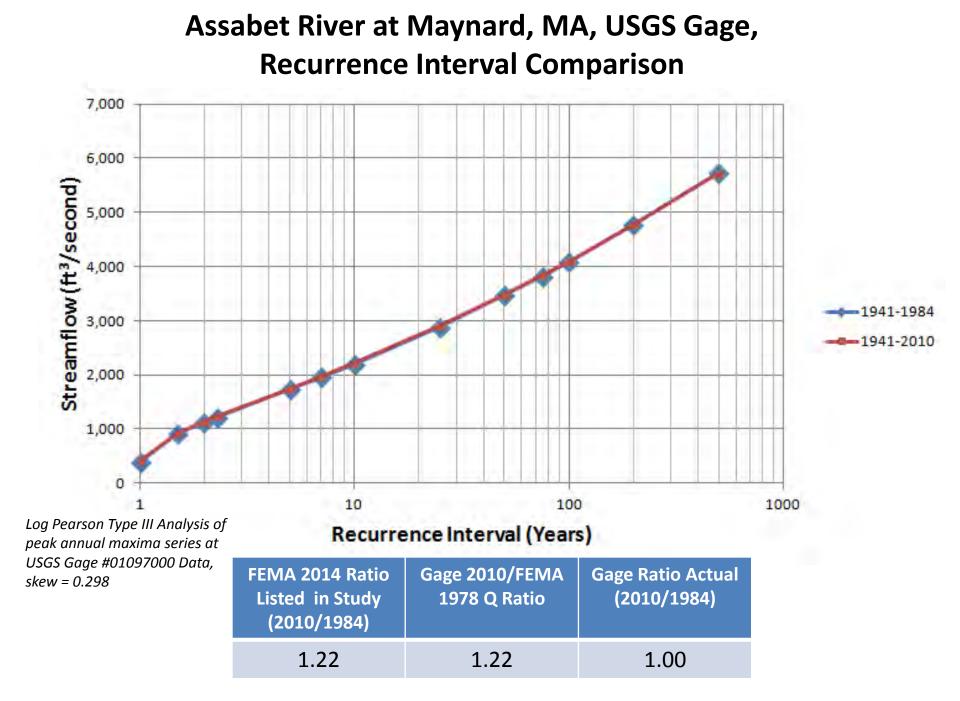
But...

- Concord River discharges used for hydrologic inputs in the 2014 FEMA study were not increased (Vol. 1, p. 93 reports average ratio of peak discharges through 2010 to peak discharges through 1983 studies was 1.00)
- Sudbury River discharges used for hydrologic inputs in the 2014 FEMA study were decreased (Vol. 1, p. 93 reports average ratio of peak discharges through 2010 to peak discharges through 1972 based on a NRCS model was 0.77)

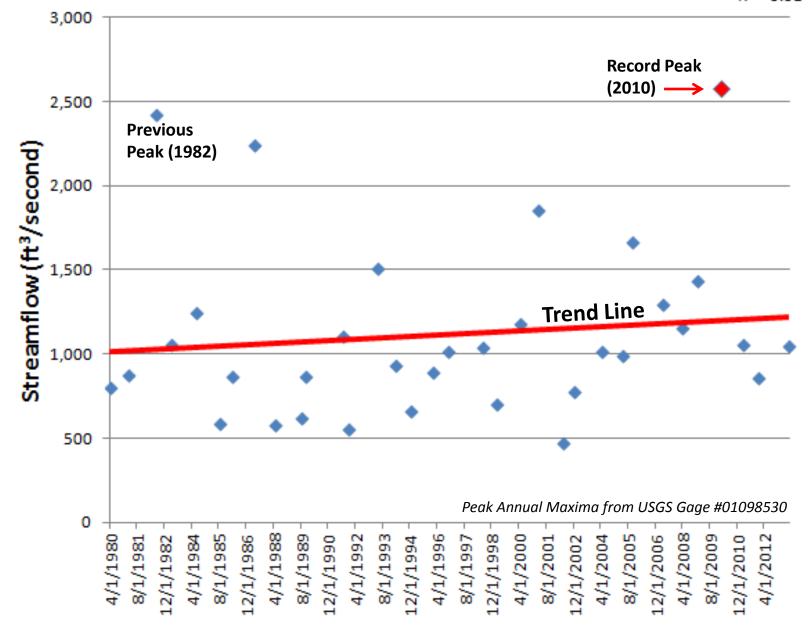
How do the findings in the 2014 FEMA study for Concord River watershed compare to actual data recorded at USGS gages in the watershed?

Concord River at Lowell, MA, USGS Gage, 1938 to 2013

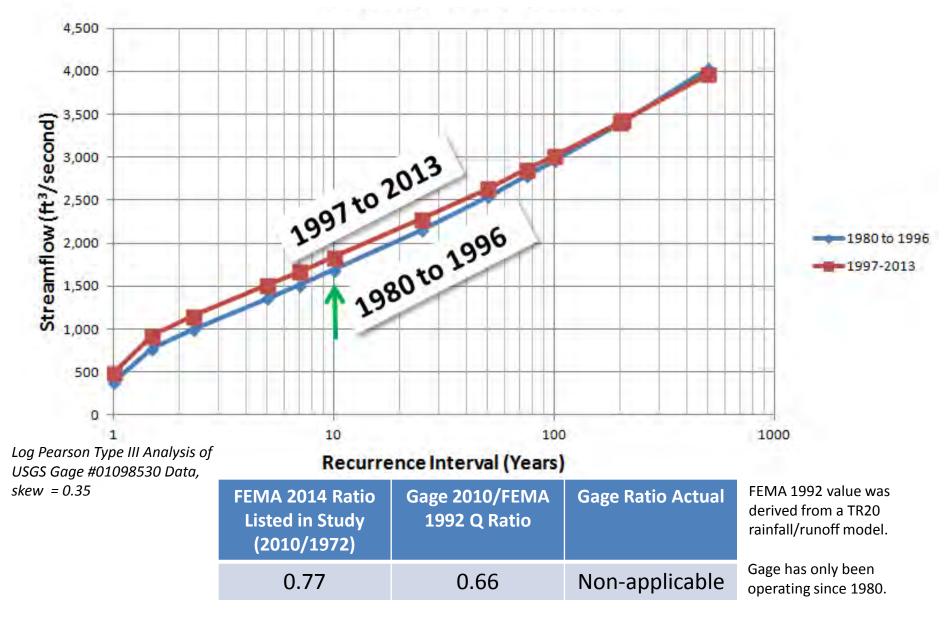


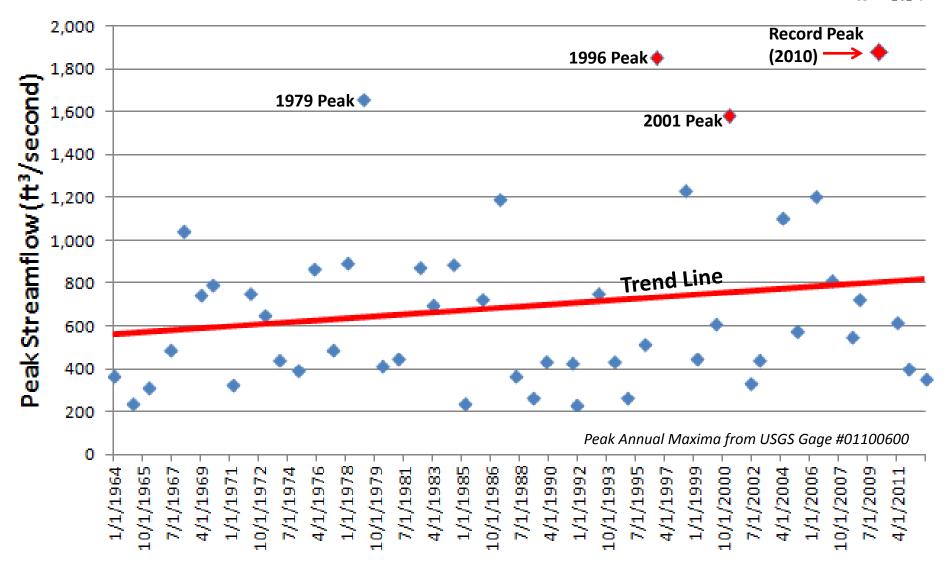

Water Year

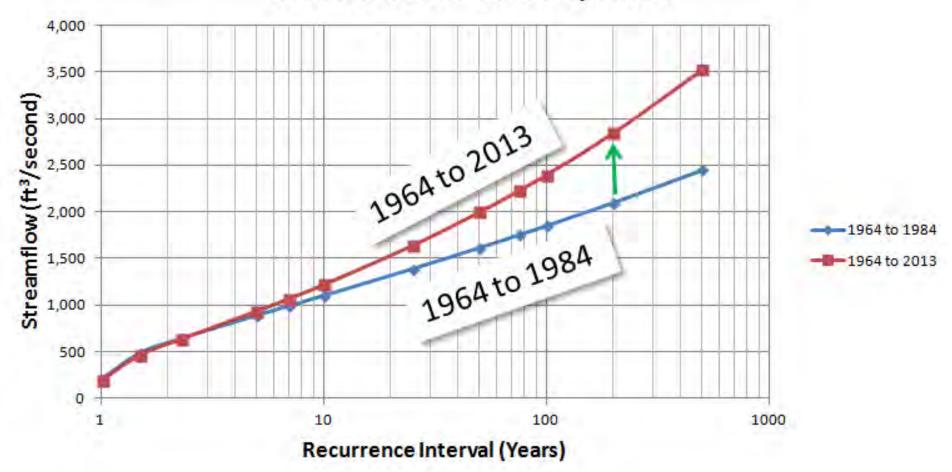
8,000 7,000 6,000 1938 to 2013 Streamflow (ft³/second) 5,000 1938 to 1983 4,000 1938 to 1983 1938 to 2013 3,000 2,000 1,000 0 10 100 1000 1 **Recurrence Interval (Years)** Log Pearson Type III Analysis of peak annual maxima series at Gage 2010/FEMA FEMA 2014 Ratio **Gage Ratio** USGS Gage #01099500 Data Listed in Study 1992 Q Ratio Actual (2010/1983)(2010/1983)1.01 1.00 1.06


Concord River at Lowell, MA, USGS Gage, Recurrence Interval Comparison

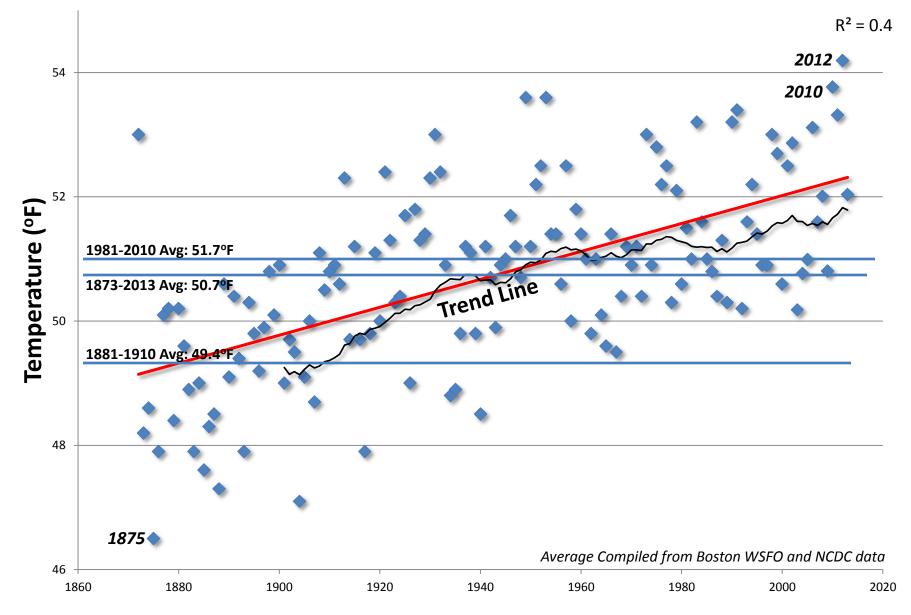
Assabet River at Maynard, MA, USGS Gage, 1938 to 2013



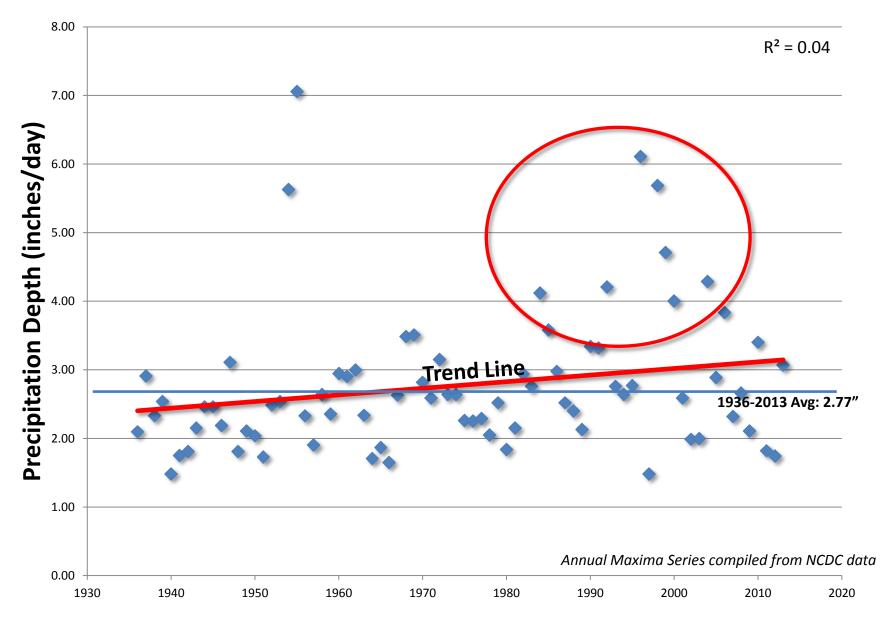

Sudbury River, Saxonville, MA, USGS Gage, 1980 to 2013 $_{R^2=0.01}$


Sudbury River at Saxonville (Framingham), MA, USGS Gage, Recurrence Interval Comparison

Shawsheen River at Wilmington, MA, USGS Gage, 1964-2013 R² = 0.04



Shawsheen River at Wilmington, MA USGS Gage, Recurrence Interval Comparison



Log Pearson Type III Analysis of USGS Gage #01100600 Data

Boston, MA: Temperature Average Annual 1873 to 2013

Boston, MA: Precipitation, Annual Daily Maxima

USGS Regression Equations

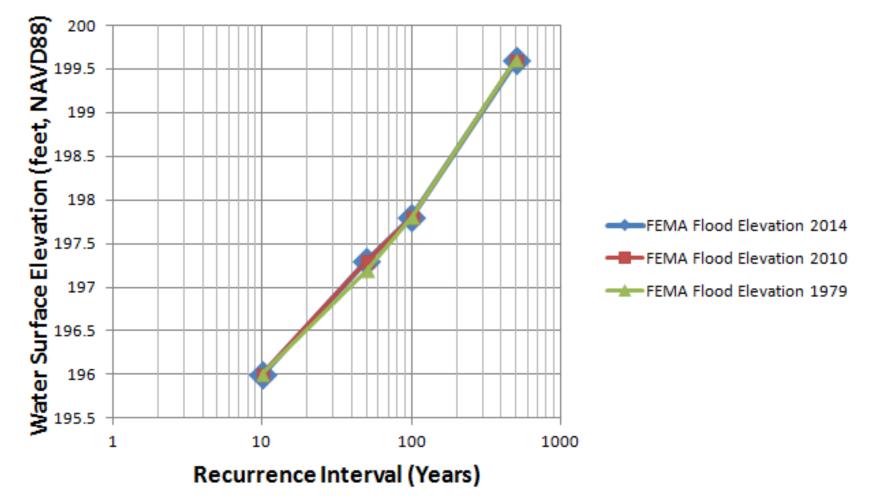
 The Wandle 1983 USGS regression equations used in the FEMA 2014 study have been shown to <u>no longer reflect current conditions.</u>

See:

- Zariello and Carlson 2009, Characteristics of the April 2007 flood at 10 stream-gaging stations in Massachusetts, USGS Scientific Investigations Report 2009-5068
- Zariello, Ahearn, and Levin, 2012, Magnitude of flood flows for selected annual exceedance probabilities in Rhode Island through 2010, USGS Scientific Investigations Report 2012-5109 (investigated flooding probabilities in southeast Massachusetts, in addition to Rhode Island)

FEMA 2014 to FEMA Prior Study Comparison Locations

- •Stow, Gleasondale Road (Rt. 62), Elizabeth Brook
- •Lowell, Rogers St., Concord River
- •Billerica, Boston Road (Rt. 129/3A), Concord River
- •Bedford, Rt. 225 Bridge, Concord River
- •Concord, Old North Bridge, Concord River
- •Wayland, Boston Post Road, Sudbury River
- •Maynard, Waltham St., Assabet River

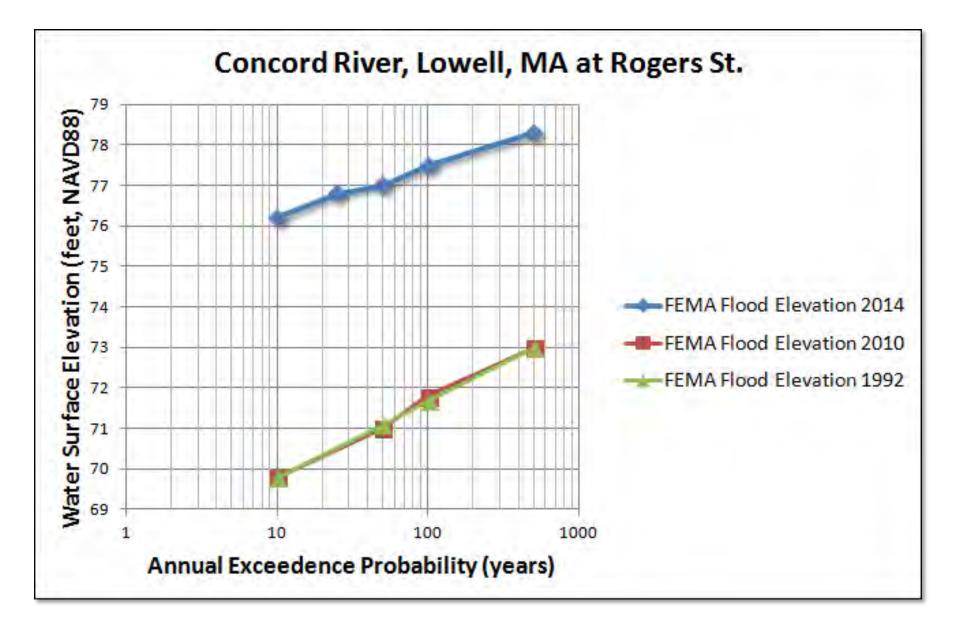

Elizabeth Brook, Stow, at Gleasondale Rd.

Elizabeth Brook, Stow Hydrology - What Happened ?????

Location Gleasondale Road (Rt. 62)	Area	10-yr (ft ³ /s)	50-yr (ft ³ /s)	100-yr (ft ³ /s)	500-yr (ft ³ /s)
1979 FEMA	17.8 mi ²	446	760	918	1,324
2010 FEMA	17.8 mi ²	446	760	918	1,324
2014 FEMA	17.8 mi ²	446	760	918	1,324
Change FEMA 2014-1979	0%	0%	0%	0%	0%

Hydraulics - What Happened ?????

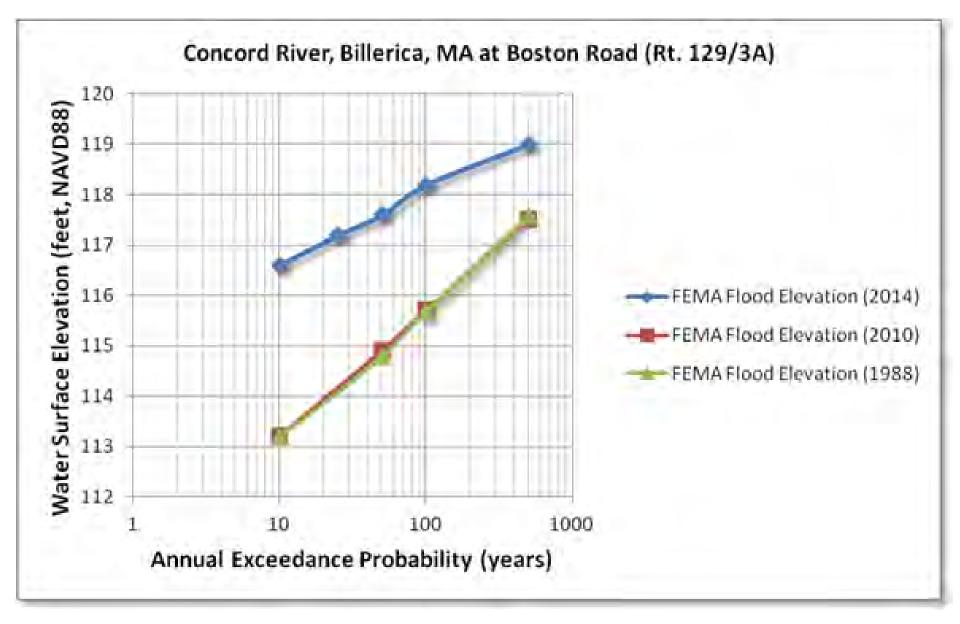
Elizabeth Brook 1, Stow, MA at Gleasondale Rd. (Rt. 62)



Rogers St., Concord River, Lowell Hydrology - What Happened ?????

Location Concord River at Corporate Limit	Area	10-yr (ft ³ /s)		100-yr (ft ³ /s)		
1992 FEMA	405 mi ²	3,700	5,300	6,000	7,800	
2014 FEMA	Not Listed – Text Indicates No Change					
USGS Gage (1938-2013)	400 mi ² (4,126	5,607	6,244	7,753	
Change FEMA 2014-1992		0%	0%	0%	0%	

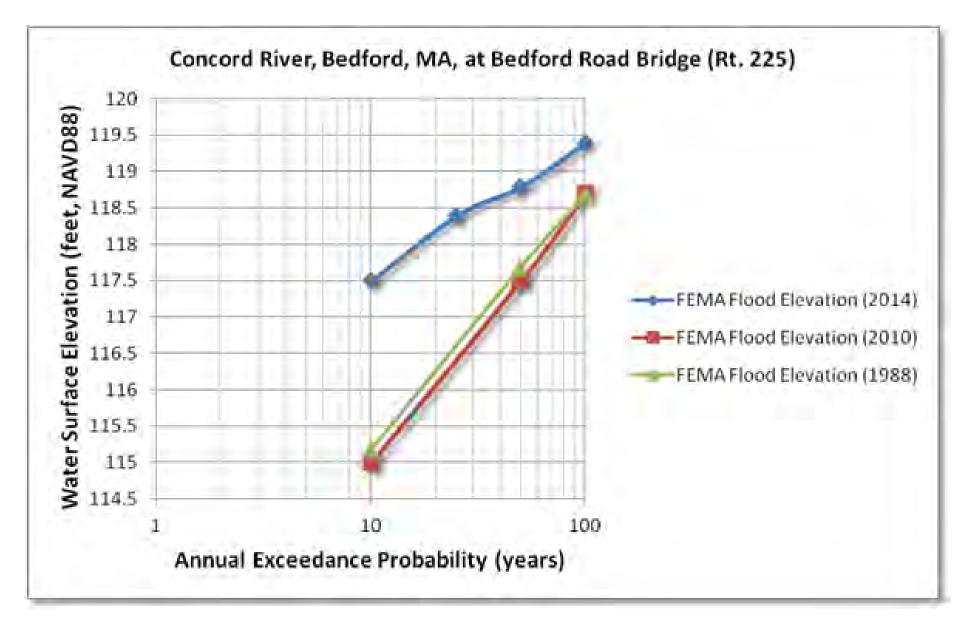
Hydraulics - What Happened ?????



Concord River, Billerica Hydrology - What Happened ?????

Location Talbot Mill Dam	Area	10-yr (ft ³ /s)	50-yr (ft ³ /s)	100-yr (ft ³ /s)	500-yr (ft ³ /s)
1985 FEMA	370 mi ²	2,940	4,660	5,675	8,395
2014 FEMA	370 mi ²	2,940	4,660	5,675	8,395
USGS Gage (1938-2013)	Adjusted to 370 mi ² from gage area	3,817	5,186	5,776	7,172
Change FEMA 2014-1985	0%	0%	0%	0%	0%

Hydraulics - What Happened ?????

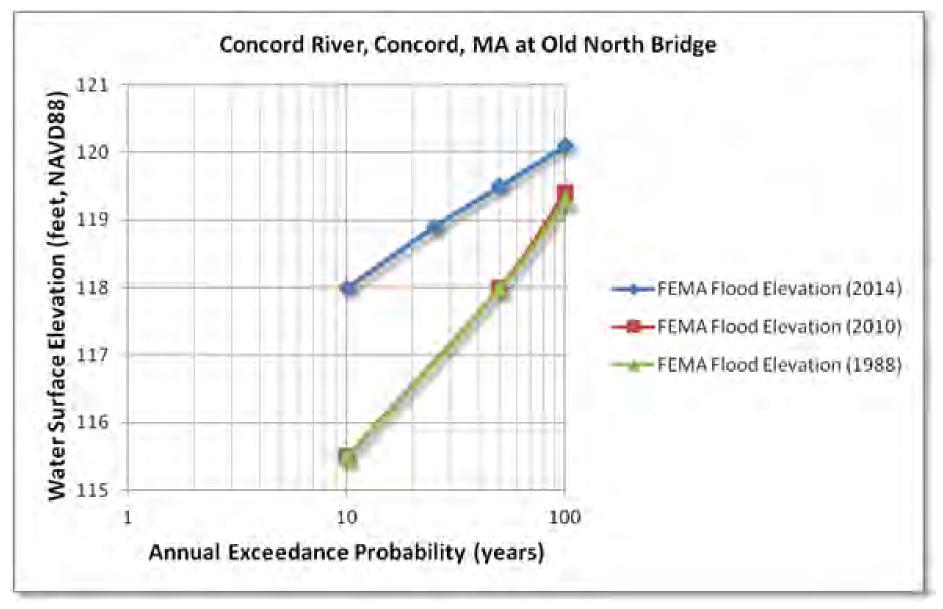


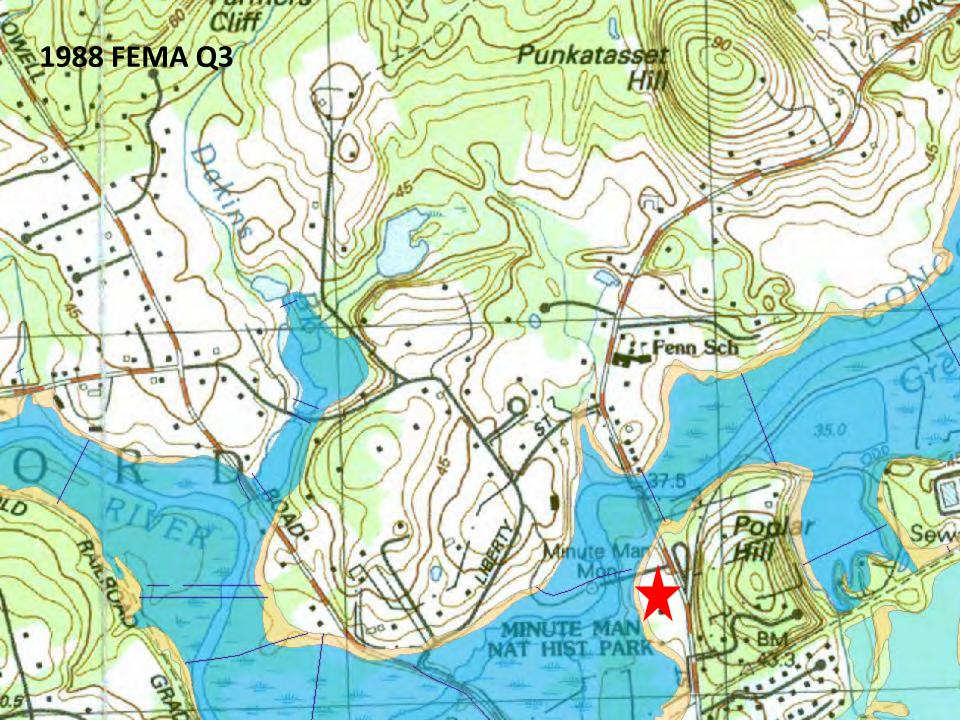
Rt. 225 Bridge, Bedford, MA Concord River (2014)

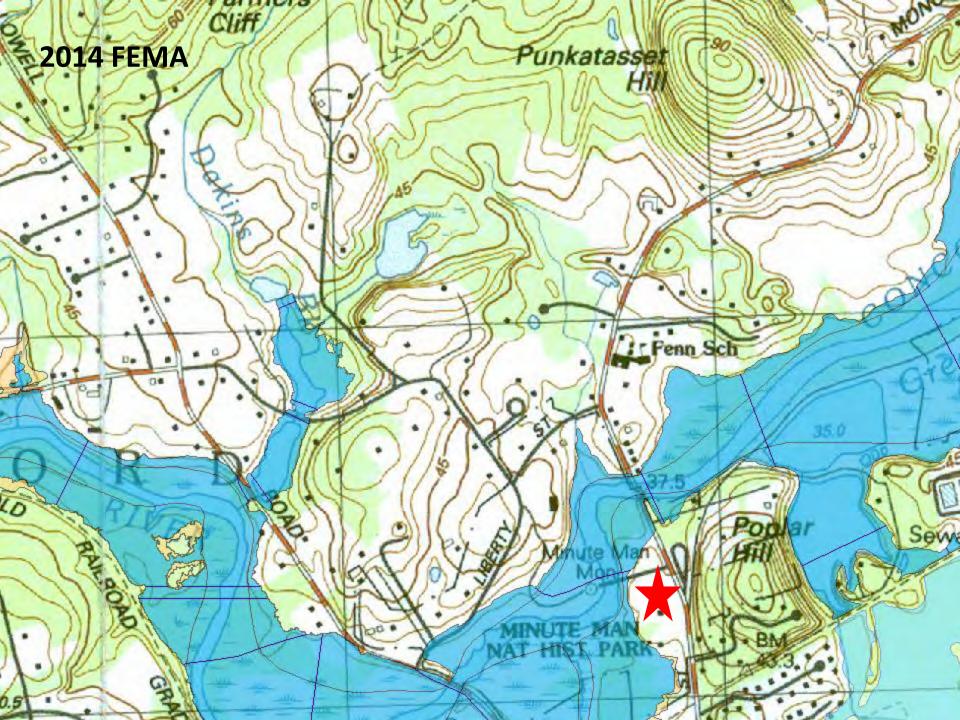

Route 225 Bridge, Concord River, Bedford Hydrology - What Happened ?????

Location US Rt. 3 Bridge	Area	10-yr (ft ³ /s)	50-yr (ft ³ /s)	100-yr (ft ³ /s)	500-yr (ft ³ /s)
1988 FEMA	363 mi ²	2,885	4,577	5,575	8,245
2014 FEMA	363 mi ²	2,885	4,577	5,575	8,245
USGS Gage (1938-2013)	Adjusted to 363 mi ² from gage area	3,744	5,088	5,666	7,036
Change FEMA 2014-1988	0%	0%	0%	0%	0%

Hydraulics - What Happened ?????

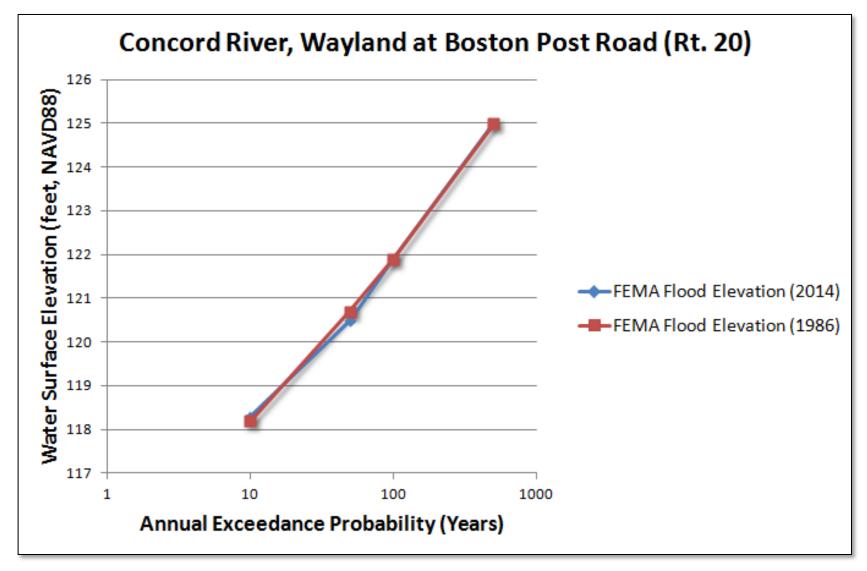



Old North Bridge, Concord, MA Concord River


Old North Bridge, Concord River, Concord Hydrology - What Happened ?????

Location Concord River at Corporate Limit	Area	10-yr (ft ³ /s)	50-yr (ft ³ /s)	100-yr (ft ³ /s)	500-yr (ft ³ /s)
1988 FEMA	352 mi ²	2,930	4,680	5,700	8,430
2014 FEMA	352 mi ²	2,930	4,680	5,700	8,430
USGS Gage (1938-2013)	Adjusted to 352 mi ² from gage area	3,631	4,934	5,495	6,823
Change FEMA 2014-1988	0%	0%	0%	0%	0%

Hydraulics - What Happened ?????



Rt. 20/27/126, Wayland MA Sudbury River (2010)

Sudbury River, Wayland Hydrology - What Happened ?????

Location D.S. Old Sudbury Road	Area	10-yr (ft ³ /s)	50-yr (ft ³ /s)	100-yr (ft ³ /s)	500-yr (ft ³ /s)
1986 FEMA (developed using NRCS TR20)	140.95 mi ²	2,810	4,330	5,080	6,800
2014 FEMA	140.8 mi ²	2,180	3,350	3,940	5,570
USGS Gage (1980-2013)	Adjusted to 140 mi ² from gage area of 106 mi ²	2,491	3,600	4,128	5,514
Change FEMA 2014-1986		-22%	-22%	-22%	-18%

Hydraulics - What Happened ?????

1986 FEMA Q3

Gravel

Pit

BOSTON

ONAL WHIDTLE

MEADOW

R

3

. .

.

Gravel

BOSTON

ONAL WILDLIFE,

atto.

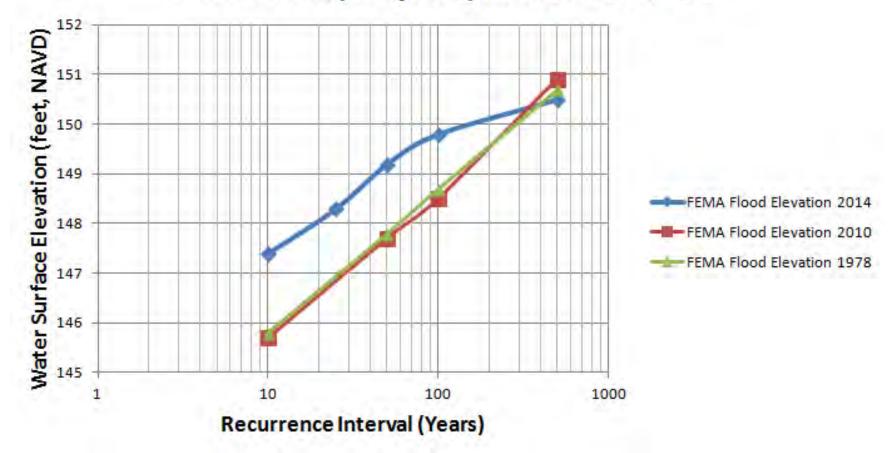
AL.

CAT MEADOWS

alle

Ó

UG


POST

Assabet River, Maynard Hydrology - What Happened ?????

Location near Acton town line	Area	10-yr (ft ³ /s)	50-yr (ft ³ /s)	100-yr (ft ³ /s)	500-yr (ft ³ /s)
1978 FEMA	117.3 mi ²	1,600	2,702	3,320	5,201
2014 FEMA	117.8 mi ²	2,280	3,450	4,010	5,460
USGS Gage (1942-2013)	Adjusted to 117.8 mi ² from gage area of 116 mi ²	2,229	3,437	4,032	5,642
Change FEMA 2014-1978		+42%	+28%	+21%	+5%

Hydraulics - What Happened ?????

Assabet River, Maynard, MA at Waltham St.

ST

townball 1

70

HILL

PP 53.5

AVE

St Bridgets

PARK ST

ROAC

Sch

Maynard

62

8

Gaoir

ST

ELMWOOD

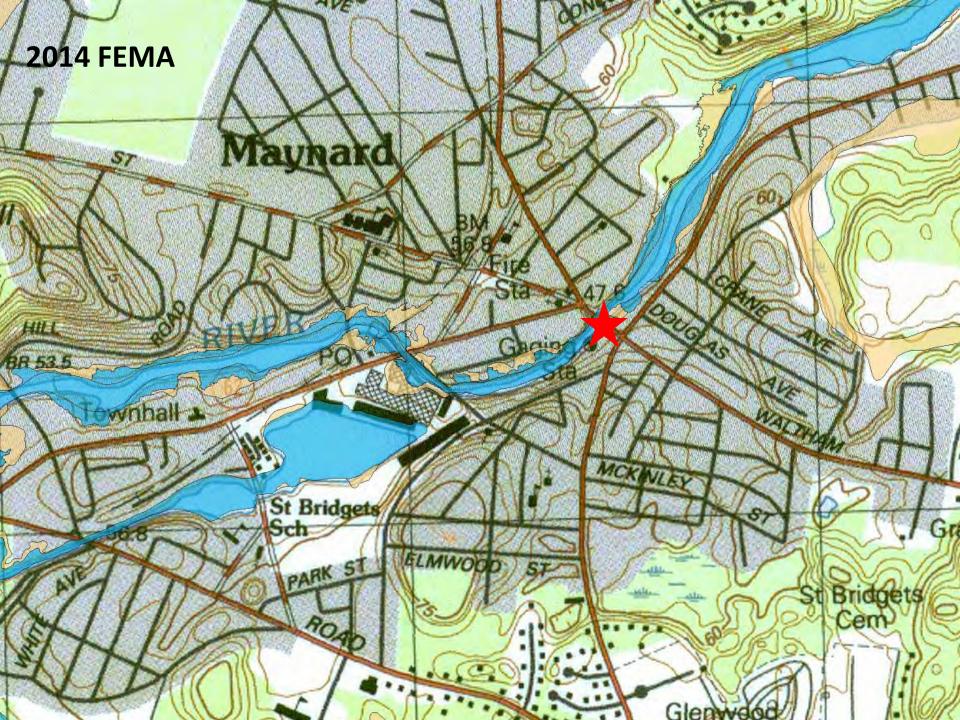
00

60

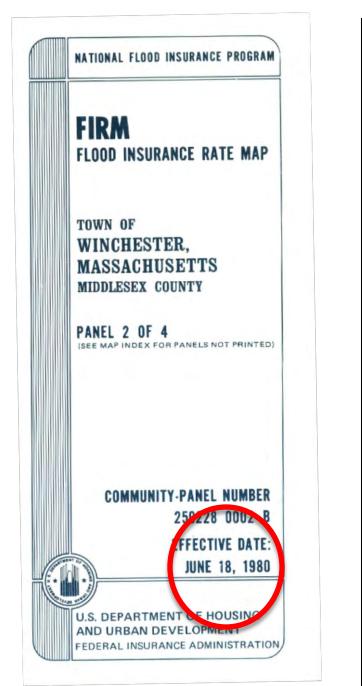
ALS

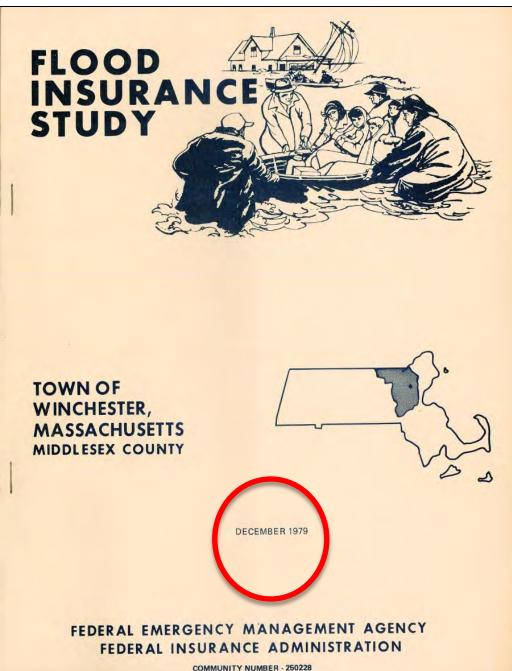
MALMIAN

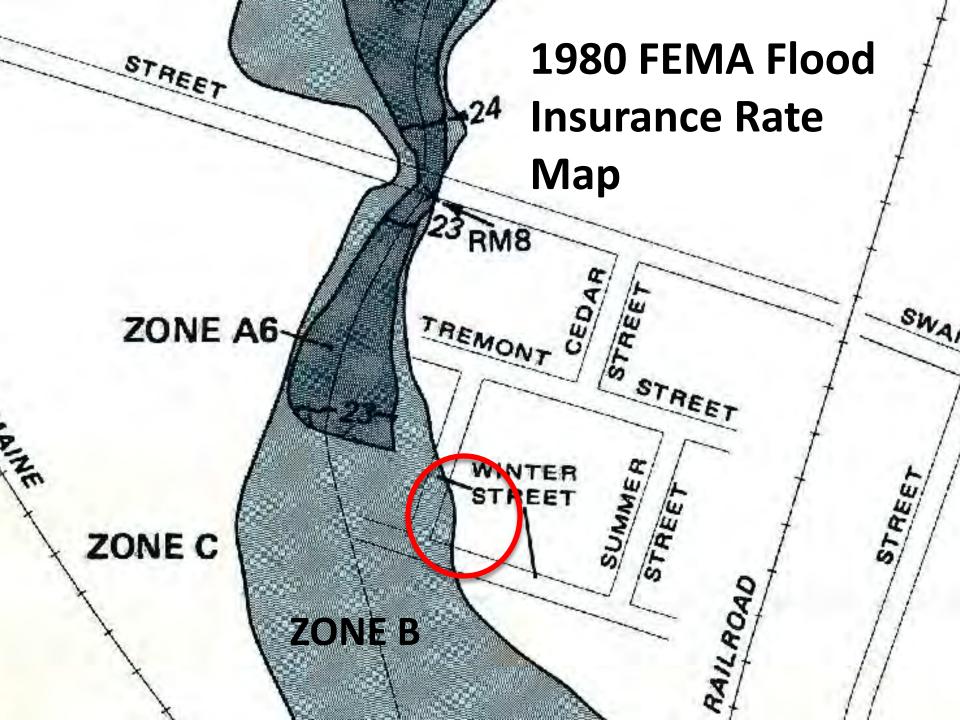
Ste

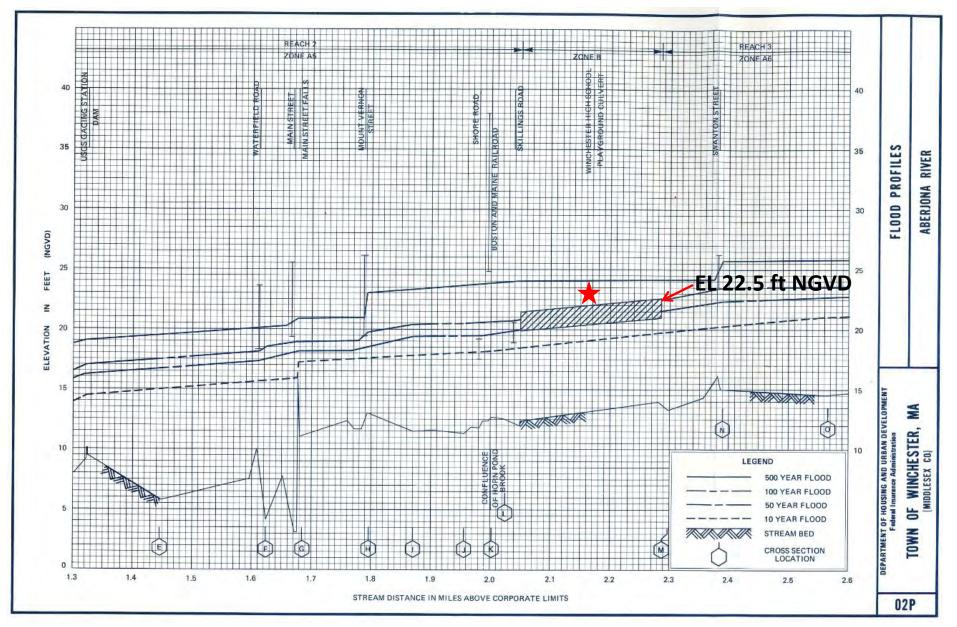

Bridgets

Cemp


Delicity's


Glenwood


MCKINLEY


Consequences

1979 FEMA Flood Profile

FLOODING SOURCE			FLOODWAY		BASE FLOOD WATER SURFACE ELEVATION			
CROSS SECTION	DISTANCE	WIDTH (FT.)	SECTION AREA (SQ. FT.)	MEAN VELOCITY (F.P.S.)	REGULATORY (NGVD)	WITHOUT LOODWAY (NGVD)	WITH FLOODWAY (NGVD)	INCREASE (FEET)
Aberjona River								
A	0.869	70	320	4.1	9.8	9.8	9.8	0.0
В	1.005	67	370	3.5	13.5	13.5	13.5	0.0
С	1.111	78	390	3.4	15.2	15.2	15.2	0.0
D	1.297	197	775	1.7	16.6	16.6	16.6	0.0
E	1.446	68	390	3.1	17.6	17.6	17.6	0.0
F	1.622	44	595	2.1	18.5	18.5	18.5	0.0
G	1.682	142	790	1.5	18.9	18.9	18.9	0.0
н	1.796	38	215	5.6	19.7	19.7	19.8	0.1
I	1.871	116	790	1.5	20.4	20.4	20.5	0.1
J	1.955	80	630	1.9	20.4	20.4	20.5	0.1
K	2.002	104	750	1.6	20.7	20.7	20.8	0.1
L	2.024	56	400	3.1	20.7	20.7	20.8	0.1
М	2.296	100	420	1.7	22.5	22.5	22.5	0.0
N	2.387	58	385	1.9	23.5	23.5	23.7	0.2
0	2.568	50	425	1.7	23.6	23.6	24.0	0.4
P	2.744	50	330	2.2	25.3	25.3	26.1	0.8
Q	2.856	50	380	1.9	25.5	25.5	26.3	0.8
R	3.040	50	295	2.4	26.5	26.5	26.9	0.4
S	3.092	100	825	0.9	26.6	26.6	27.0	0.4
Miles above cor	porate limit 79 F		A Flo	odv	vay	Data	a Tak	ble
EPARTMENT OF HOUSING AND URBAN DEVELOPMENT Federal Insurance Administration TOWN OF WINCHESTER, MA (MIDDLESEX CO.)				FLOODWAY DATA				
				ABERJONA RIVER				

TABLE 2

ZONE B

...

ZONÉ C

1980 FEMA Flood Insurance Rate Map Superimposed Over <u>2005</u> Ortho-Photo

REMO

1980 FEMA Flood Insurance Rate Map Superimposed Over <u>2006</u> Ortho-Photo

Same building, March 2010 flood (approximately only a 40-year flood)

IE BRITTE TO BOOM

APPRESENT OF THE OWNER.

Aberjona River, Winchester Hydrology - What Happened ?????

Location	1979 FEMA Study 100-yr Flood Q	2010 FEMA Study 100-yr Flood Q	% Increase
USGS Aberjona River Gage at Winchester, MA	1,200 ft ³ /sec	1,830 ft ³ /sec	53%

2010 FEMA Update, Flood Map Insurance Rate Map

The building was built in 2006. It was not located in FEMA flood zone at that time according to 1980 FEMA study that was then available . No compensatory flood storage was provided. The preliminary FEMA study was issued in 2007. The building flooded in March 2010. The FEMA study was issued in June 2010.

Conclusion

- River flooding is increasing in some rivers in New England based on analysis of peak annual maxima series recorded at USGS gages.
- Outdated Wandle 1983 regression equations were used in the FEMA 2014 study for Concord River watershed to develop the hydrology.
- FEMA 2014 study results under represents actual hydrology for the Concord River based on comparison with USGS gage records.
- FEMA 2014 study for Concord River watershed and flood insurance rate maps did not incorporate future climate change.
- Recent LiDar topography and bridge/culvert surveys incorporated into FEMA hydraulic portion of the study played role in determining extent of flooding in Concord River watershed.

Conclusion

- Use FEMA flood profile contained in the Flood Insurance Study required by 310 CMR 10.57 for Wetlands regulatory purposes as flood maps may not properly locate flood elevation.
- When FEMA flood profile is available, Conservation Commissions must use the most recently available flood profile, unless the presumption is overcome.
- If the preliminary flood study is more recently dated than the effective flood study, use the FEMA flood profile in the preliminary study, unless the presumption is overcome.
- Familiarize yourself with most recent FEMA study/maps for your town so you can determine where changes were made.
- Where no FEMA flood profile is available, Conservation Commissions must use procedures described at 310 CMR 10.57 to determine the BLSF boundary.