

Brookline District Court Brookline, MA

HVAC SYSTEM EVALUATIONS COVID-19

Office of Court Management

November 29, 2021

Tighe&Bond

100% Recyclable

Section 1 Existing Conditions & Site Observations

Tighe & Bond visited the Brookline District Court on October 28, 2020. While on site we inspected the air handling equipment located in the ceilings, attic, and on the roof and toured the facility to determine if the spaces generally matched usages noted on the architectural plans.

Site Visit Attendees:

- Office of Court Management:
 - Mike Ostman, Norfolk County Facilities Staff
 - o John Koch, Norfolk County Facilities Staff
- Tighe & Bond
 - Sean Pringle, PE, Mechanical Engineer
 - Caitlin DeWolfe, Staff Engineer

1.1 Existing Ventilation System

The Brookline District Court is a three story building (including basement) constructed in 1941 with significant HVAC improvements in 2005, and is approximately 15,700 square feet in size. Eight indoor air handling units (AHU) and one rooftop air handling unit (RTU) provide ventilation air to the building. A field fabricated 100% outdoor air system provides makeup air to the lockup areas. All air handling equipment appears to be from the 2005 renovations.

AC's 1-7 are light commercial / residential style constant volume air handlers. Each unit has a DX cooling coil, supply fan, and an outside air duct with an on/off motorized damper. The AHU's do not provide heat. Heating in the areas served is provided by steam perimeter radiators. The AHU's are currently configured to cycle the fan on/off with calls for cooling, and do not operate in the heating season. The AHU's do not have an economizer function. The AHU's are generally in good condition.

AC's 9-10 are wall mounted split heat pump units that serve stair and mechanical areas. These units do not provide any ventilation.

AC-11 is a ceiling mounted split heat pump system serving office B1 in the lockup area providing heating and cooling. The unit is configured to provide outdoor air through a small fresh air duct and is in good condition.

RTU-1 is a constant volume unit in good condition. The RTU has a DX cooling coil, supply fan, as well as return, outside, and relief air dampers. There is no heating within the RTU. The unit has onboard economizer controls and a power exhaust. Heating in the area served is provided by steam perimeter radiators. The RTU is also configured to cycle the fan on/off with calls for cooling, and does not operate in the heating season.

There are three exhaust fans. EF-1, which is a general relief exhaust, was not running at the time of the visit. According to staff, the fan is too loud, and the occupants complain when it is running. The toilet exhaust fan TEF-1 was running, and most restrooms

TADLE 4

appeared to have exhaust airflow. However, the basement men's restrooms did not appear to have any exhaust airflow at the time of the visit. The cause should be investigated.

The lockup area is supplied by a duct mounted supply fan (SF-1), steam coil, and DX cooling coil. Air is supplied into the corridor and exhausted through both the cells and corridor via a dedicated exhaust fan (EF-2). Due to the ceiling location, we were not able to closely inspect the coils. There did not appear to be any air filter protecting the coils. Both the supply and exhaust fans were observed to be working at the time of the visit.

A 1.6 million Btu/h boiler plant provides steam for the perimeter heating throughout the building. Each AHU is served by a dedicated DX condensing unit located on the roof.

Table 1 summarizes the air handling units' designed airflow rates, the MERV rating of the installed filters, and the condition.

TABLE 1	Handling Units			
Unit	Original Design Airflow (CFM)	Original Design Min. O.A. (CFM)	Filters	Condition
AC-1	2,000	360	1" MERV 8	Good
AC-2	2,000	240	1" MERV 8	Good
AC-3	1,200	160	1" MERV 8	Good
AC-4	2,000	240	1" MERV 8	Good
AC-5	1,600	200	1" MERV 8	Good
AC-6	1,000	120	1" MERV 8	Good
AC-7	800	100	1" MERV 8	Good
AC-11	450	40	Unknown	Good
RTU-1	2,400	480	2" MERV 8	Good
SF-1	400	400	Unknown	Good

Photo 1 – Representative Air Handler

Photo 2 - RTU-1

Aside from the lockup area, the occupied areas in the basement do not have any source of ventilation air. Although the first floor lobby is ventilated, there is no ventilation in the second floor corridor area outside the courtrooms. Building areas without ventilation significantly increase the risk of spreading viruses like COVID-19, especially areas with high occupant density and where people occupy the same space for relatively long periods of time. Consider significantly reducing occupancy or relocating occupants to other areas with adequate ventilation. The windows in the perimeter basement rooms are relatively large with operable sashes.

1.2 Existing Control System

The Courthouse does not have a building-wide control system or building management system (BMS). The AHU's, RTU, and perimeter heating operate with local thermostats. A localized Automated Logic DDC controller and external time clock enable the exhaust fans and lockup area ventilation.

Section 2 Recommendations

Below is a list of recommendations that we propose for the Brookline District Court. Please refer to the "Master Recommendation List" for further explanation and requirements of the stated recommendations.

2.1 Filtration Efficiency Recommendations

We recommend the following measures be implemented for the existing air handling units:

RF-1: Replace 1" and 2" MERV-8 filters with MERV-13 filters.

The TAB Contractor and/or Engineer shall verify that the air handlers can accommodate a MERV-13 filter per Appendix A in the overview of recommendations report. Replace filters in AHU's and RTU's with 2" and 1" MERV 13 filters, respectively.

For AC-11, we recommend using the highest performance filter available. Mitsubishi offers a MERV 10 filter for this type of unit.

RF-3: Install a differential pressure sensor with a display across the filter bank.

RF-3a: Connect the pressure sensor to a local alarm.

As there is no centralized control system or BMS, provide a local alarm. For the AHU's and RTU, provide a local alarm in an area that will be noticed by staff.

2.2 Testing & Balancing Recommendations

The air handling units are approximately 15 years old and it is unknown to Tighe & Bond when the last time the units were tested and balanced. Also, the code requirements to determine the outside air flow rates that were used to design the original system were different than the 2015 International Mechanical Code (IMC) and current ASHRAE Standard 62.1 requirements.

We recommend the following testing and balancing measures be implemented:

RTB-1: Test and rebalance air handling unit supply air and minimum outside air flow rates.

We recommend testing and balancing the outdoor air flow rates for all air handling units to the recommended minimum O.A. rates listed in Table 2.

Unit	Original Supply Airflow (CFM)	Original Design Min. O.A. (CFM)	Current Code Min. O.A. Requirements (CFM)	Recommended Minimum O.A. (CFM)
AC-1	2,000	360	320	360
AC-2	2,000	240	90	240
AC-3	1,200	160	50	160
AC-4	2,000	240	140	240
AC-5	1,600	200	100	200
AC-6	1,000	120	80	120
AC-7	800	100	50	100
AC-11	450	40	20	40
RTU-1	2,400	480	680	680
SF-1	400	400	N/A	400

TABLE 2

Recommended Air Handler O.A. Flow Rates

Note: Although the ASHRAE Position Document on Infectious Aerosols recommends using the latest published standards and codes as a baseline for minimum ventilation, the mechanical code in effect at the time the HVAC systems were designed and constructed is what governs the required outdoor air flowrate for the HVAC equipment, if there have been no additions, renovations, alterations or changes in occupancy to the building. The 2015 International Mechanical Code does not prevent the continued use of existing systems.

As noted in section 1.1, since the all units aside from AC-11 and SF-1 currently operate only when a call for cooling is present, no ventilation is currently provided during the winter months or moderate weather.

We believe the outdoor air for RTU-1 can safely be increased to 680 CFM with the current operation. This will likely reduce comfort on extremely cold days.

If the controls are modified to operate in "fan on" (see Section 2.7.1), the outdoor airflow for RTU-1 may need to be kept at the current rate of 480 CFM to maintain reasonable supply air temperatures on very cold days. While less than the airflow required by the current code, any winter ventilation would be an improvement over current winter operation without any ventilation air.

The average airflow rate per person is shown below in Table 3. These values are based on the original design supply airflow rate and the recommended outdoor air flow rates shown in Table 2. The airflow rate per person assumes a diversity factor of 70%, meaning the maximum number of occupants assumed to be in all zones at all times equates to 70% of the code required occupancy. The airflow rate per person assumes supply air is being delivered to all rooms.

TABLE	3			
-		-		

Average Airflow Rate per Person	Average /	Airflow	Rate	per	Person
---------------------------------	-----------	---------	------	-----	--------

	All spaces	Courtrooms	Non-Courtroom Spaces
Total Occupancy (People)	148	113	34
Total Supply Air (CFM/Person)	94	34	290
Outdoor Air (CFM/Person)	17	8	46

The airflow rate per person for each Courtroom is shown below in Table 4. These values are based on full occupancy without taking diversity into account, the original design supply airflow rate, and the recommended outdoor airflow rate. The airflow rate per person assumes supply air is being delivered to the room.

TABLE 4

Airflow Rate per Person (Full Occupancy)

		Tota	al Air	Outdo	oor Air
Courtroom	Total People	Supply Airflow (CFM)	Airflow Rate (CFM/Person)	Outside Airflow (CFM)	Airflow Rate (CFM/Person)
Small Courtroom	45	1,500	33	270	6
Main Courtroom	117	2,400	21	680	6

Note: Courtroom occupant density is based on 70 people/1,000 square feet, per the 2015 International Mechanical Code

The airflow rate per person for each Courtroom, based on a reduced occupancy schedule determined by the Office of Court Management, is shown below in Table 4a. The airflow rate per person assumes supply air is being delivered to the room.

TABLE 4a

Airflow Rate per Person (Reduced Occupancy)

		Tota	al Air	Outdoor Air		
Courtroom	Total People	Supply Airflow (CFM)	Airflow Rate (CFM/Person)	Outside Airflow (CFM)	Airflow Rate (CFM/Person)	
Small Courtroom	9	1,500	167	270	30	
Main Courtroom	23	2,400	104	680	30	

Note: If occupancy is further reduced, the airflow rate per person will increase, assuming full airflow is being delivered to the space.

RTB-3: Increase outside air flow rate beyond the minimum under non-peak conditions

At minimum, this would require added controls and changing the outdoor air dampers from on/off to modulating. The available increase in outdoor air will be limited by the existing outdoor air ductwork, louvers and soffit openings.

2.3 Equipment Maintenance & Upgrades

We recommend the following equipment maintenance and upgrades:

RE-1: Test existing air handling system dampers and actuators for proper operation.

Replace dampers and actuators that are not functioning properly.

RE-2: Clean air handler coils and drain pans.

2.4 Control System Recommendations

We recommend the following for the control system:

RC-1: *Implement a pre- and post-occupancy flush sequence.*

RC-2: Install controls required to introduce outside air beyond the minimum requirements under non-peak conditions.

For the AHU's, this would require a new control system and replacement of outdoor air dampers actuators at minimum. It is possible that RTU-1 can be field retrofitted to operate with variable outdoor airflow, but this should be confirmed with the manufacturer.

Prior to implementing this control strategy, the TAB Contractor should verify the quantity of outside air the outdoor air louvers can accommodate without exceeding an intake air velocity of 450 feet/minute (FPM). Exceeding this air velocity through an intake air louver may result in rain or snow entering the louver.

RC-4: Confirm the economizer control sequence is operational.

This applies to RTU-1 only.

2.5 Additional Filtration and Air Cleaning

We recommend the installation of the following air cleaning devices:

RFC-1: Install portable HEPA filters.

If the Courthouse is to operate at a high capacity (i.e. 50% occupancy or greater), we recommend installing portable HEPA filters in high traffic areas, such as entrance lobbies. They should also be considered for Courtrooms, depending on the occupancy of the room and how much noise is generated from the filters. The noise levels will vary depending on the manufacturer.

2.6 Humidity Control

Installing duct mounted or portable humidifiers can help maintain the relative humidity levels recommended by ASHRAE. The feasibility of using duct mounted humidification or portable humidifiers is determined by the building envelope. Buildings that were not designed to operate with active humidification can potentially be damaged due to a lack of a vapor barrier, adequate insulation, and air tightness. We are not aware if this building was constructed to accommodate a humidification system.

Duct mounted humidifiers must be engineered, integrated into the building control system, tested, and commissioned. They are available in many configurations, but require

substantial maintenance and additional controls. They also run the risk of adversely affecting IAQ from growing microorganisms, or leaking water through poorly sealed ductwork damaging insulation and ceilings. Portable humidifiers are easier to install and require less maintenance, but still have the potential to damage the building envelope.

While active humidification is not recommended as a whole building solution due to high installation costs, operational costs, potential to damage the building envelope and adversely affect poor IAQ, it may be warranted as a temporary solution in some areas.

2.7 Other Recommendations

2.7.1 Run Ventilation Fans Continuously During Occupied Hours

For the AHU and RTU systems where the fans cycle in response to cooling demand, we strongly recommend running the supply fans continuously during occupied hours in all seasons, to provide mechanical ventilation at all times as code requires. Implementing this strategy may cause comfort issues, especially in systems with a high outdoor air percentage. When the fan continuously runs, the cooling coils will turn on and off based on the space temperature. Comfort issues may arise if the existing units do not have multiple stages of cooling that would otherwise handle load fluctuations better. In the winter, no heat is available to temper the supply air as these systems provide cooling only.

With the recommended outdoor airflows in Table 2, the supply air temperature on a design winter day (8.5°F) will generally be around 60°F, except for RTU-1 which will be about 53°F with the recommended increase in outdoor air. These low supply air temperatures have the potential to create comfort issues on winter days. Further system analysis and improvements are required to execute this recommendation.

Consider also adding a single electronic time clock to control AHU's, RTU's, and exhaust fans from a single location in the Courthouse to simplify scheduling and operation. Alternately, the existing programmable thermostats serving the RTU's could be replaced with new thermostats that include a programmable fan function. Depending on the current wiring, new control wiring may be required between the thermostats and RTU's.

2.7.2 Provide Exhaust for All Toilet Rooms

Investigate the lack of exhaust airflow in the basement restrooms. Add exhaust fans and/or ductwork to provide the code-required exhaust to these restrooms.

2.7.3 Add Ventilation to All Occupied Areas

Several office areas in the basement level do not have any ventilation. Consider adding a ventilation system to serve these areas. If the area is currently adequately heated and cooled, consider the user of a small energy recovery ventilator (ERV) or dedicated outdoor air system (DOAS) to serve these spaces.

2.7.4 Add Heat to AHU's

The RTU and AHU's do not heat the supply air. As mentioned in section 2.7.1, occupants may feel cold with the low supply air temperature in the winter without heat to the temper supply air. Consider providing duct mounted heating coils or replace the AC unit and condenser with a split air source heat pump system to provide heating and cooling with the refrigerant coil. As the building is heated by steam, the routing and installation of duct

mounted steam coils or the addition of a steam to hot water heat exchanger and hot water distribution may be an involved and intrusive project. Electric heating coils or replacing the AHU's with equipment that provides both heating and cooling may be more practical solutions. Further analysis and design efforts are required to execute this recommendation.

This recommendation is a comfort and energy saving measure and does not affect the indoor air quality of the building, however this measure will allow the ventilation air to be provided at all times with less space temperature discomfort.

2.7.5 Add Economizer Controls to AHU's

The AHU's have small outdoor air ducts and louvers, which can only provide limited outdoor air. There is currently an on/off motorized damper in the outdoor air duct, but no return air damper. Consider increasing the outdoor air duct and louver / intake opening size to provide 100% outdoor air when outdoor conditions are favorable. This would also require new actuators and dampers in the return air ducts for each unit, as well as standalone or DDC type economizer controls. Further analysis and design efforts are required to execute this recommendation.

This recommendation is primarily an energy saving measure and does not affect the indoor air quality of the building.

Section 3 Testing & Balancing Results

Wing's Testing and Balancing visited the Brookline District Courthouse on September 16 through September 23, 2021 to test the airflow rates of the air handling units and the exhaust fans. A summary of the tested airflow rates versus the design airflow rates are shown below in Tables 5 and 6. The full testing and balancing report is attached. Note that as the heating coils are steam and the cooling coils are DX refrigerant, there are no water flows to balance at this courthouse.

		Design			Actual	
Unit	Total Supply Fan Airflow (CFM)	Recommended Outdoor Airflow (CFM)	Return Airflow (CFM)	Supply Fan Airflow (CFM)	Outdoor Airflow (CFM)	Return Airflow (CFM)
AC-1	2,000	360	1,640	2,018	0	2,018
AC-2	2,000	240	1,760	2,049	75	1,974
AC-3	1,200	160	1,040	1,097	43	1,054
AC-4	2,000	240	1,760	1,928	0	1,928
AC-5	1,600	200	1,400	1,469	112	1,357
AC-6	1,000	120	880	1,000	0	1,000
AC-7	800	100	700	681	176	550
AC-11	450	40	10	564	14	550
RTU-1	2,400	680	1,720	2,225	452	1,773
SF-1	400	400	0	363	363	0

TABLE 5 Air Handler Testing & Balancing Results

TABLE 6

Exhaust Fan Testing & Balancing Results										
		Design Return/Exhaust Airflow	Actual Return/Exhaust Airflow							
Unit	Serving	(CFM)	(CFM)							
EF-1	Building Relief	5,000	7,889							
EF-2	Lockup	400	432							
TEF-1	Toilets	1,100	767							

The typical balancing tolerance for air systems is $\pm 10\%$ of the design airflow.

In reviewing the airflow report data, the following should be noted:

- 1. The filters for all AC units (except AC-11) at the time of testing were 1" MERV 10. The filters in RTU-1 were 2" MERV 10.
- 2. All supply airflows except AC-7 and AC-11 are within the acceptable airflow range.
- 3. The supply airflow of AC-7 is operating at 85% of design, slightly below the acceptable airflow range. Because the motor is direct drive, there are no sheaves to adjust, and the motor is already at its highest speed setting.
 - a. We recommend confirming that the filters and coils are clean, and retesting after cleaning. If this does not resolve the issue, we recommend rebalancing the inlets and outlets with the space to maximize airflow.
- 4. The supply airflow of AC-11 is above approximately 125% of the design airflow. As this is a VRF ceiling cassette unit, the airflow is not adjustable.
- 5. The outdoor airflow of AC-11 is approximately 35% of the design airflow. As this is a VRF ceiling cassette unit and the design relies on the VRF fan unit to draw in outdoor air, the only way to increase airflow would be to modify the ductwork and/or louver. The current airflow (14 CFM) is very close to the code minimum outdoor airflow (15 CFM). If this unit only serves a single person office, we do not recommend any changes to the configuration.
- 6. The outdoor airflows of AC units 1-6 are all well below design. The outdoor airflow of AC-7 is operating at 175% of the design airflow.
 - a. Most of the outdoor air dampers were inoperable.
 - b. There were no balancing dampers on the return or outdoor air ducts to balance the outdoor airflow.
 - c. We recommend adding balancing dampers to the return and outdoor air ducts to allow balancing of the outdoor airflow and repairing any inoperable outdoor air dampers/actuators. Note that due to the small outdoor air ductwork and openings, it may not be possible to balance the system to meet both the outdoor and supply airflow simultaneously. If this occurs, the outdoor airflow should maximized, while maintaining 85-90% of supply airflow.
- 7. The outdoor airflow of RTU-1 appears to have been balanced to the original design airflow (480 CFM). The outdoor airflow should be rebalanced to match the recommended outdoor airflow in Table 2 (680 CFM).
- 8. General exhaust fan EF-1 is operating at 160% of design.
 - a. The fan speed should be reduced by adjusting the sheaves to match the design airflow with all other exhaust fans operating and the AC and RTU equipment operating. This excess general exhaust can cause negative building pressurization, which can in turn cause drafts and building envelope deterioration over time.
- 9. Lockup exhaust fan EF-2 is within the acceptable airflow range. However, the damper did not automatically open with fan operation. This should be repaired.
- 10. Toilet exhaust fan TEF-1 is operating at approximately 70% of the design airflow. The balancer noted that the overload relay was inadequately sized and resulting in repeated trips during testing. This may have affected the readings. Also, during the initial walkthrough, we noted that the basement restrooms did not have any exhaust airflow, although they are connected to this fan.

- a. We recommend replacing the overload relay with a unit properly sized for the motor.
- b. The cause of the low airflow in the basement should be investigated, as it may be impacting the total exhaust fan airflow. Once the cause of the low/no basement exhaust airflow condition is identified and resolved, we recommend rebalancing all exhaust openings associated with this fan.
- c. Note that the 2007 design drawings do not specify the airflows for any of the restrooms that were existing at the time of the 2007 design. We recommend that an engineer establishing proper airflows for each restroom and total exhaust airflow, while considering the existing ductwork and register sizes.

Disclaimer

Tighe and Bond cannot in anyway guarantee the effectiveness of the proposed recommendations to reduce the presence or transmission of viral infection. Our scope of work is intended to inform the Office of Court Management on recommendations for best practices based on the guidelines published by ASHRAE and the CDC. Please note that these recommendations are measures that may help reduce the risk of airborne exposure to COVID-19 but cannot eliminate the exposure or the threat of the virus. Implementing the proposed recommendations will not guarantee the safety of building occupants. Tighe & Bond will not be held responsible should building occupants contract the virus. The Office of Court Management should refer to other guidelines, published by the CDC and other governing entities, such as social distancing, wearing face masks, cleaning and disinfecting surfaces, etc. to help reduce the risk of exposure of COVID-19 to building occupants.

J:\M\M1671 Comm. of MA Court System\011 - COVID-19 Courthouse Evaluations\Report_Evaluation\Draft Reports\Brookline District Court.docx

Brookline District Court Brookline, MA

* * * *

Tighe & Bond Attn: Jason Urso 1 University Ave #100 Westwood, MA 02090

September 23rd, 2021

September 23rd, 2021

Tighe & Bond Attn: Jason Urso 1 University Ave #100 Westwood, MA 02090

Re: Brookline District Court

Dear Jason,

We have completed our HVAC/fresh-air survey for the above-mentioned site. The results are as follows:

- The water could not be tested as the cooling is DX and the heating is steam.
- The AC units are stand-alone residential units with packaged controls and no way to modulate the outside air dampers if the minimum setting doesn't meet design.
- The outside air dampers do not open at all on AC units 1, 2 and 4.
- The motorized outside air actuator is not attached to the duct. It is wired but is sitting on the ceiling.
- The trip relay for TEF-1 is undersized. The motor is rated for 5.0 amps, but the trip relay only goes up to 4 amps. The fan is constantly tripped out. A larger trip relay needs to be installed.
- The motorized relief damper for EF-2 is not modulating open while this fan is on. This damper should be fixed or replaced.

The following pages are your record of current operating conditions. If you have any questions, or if we can be of further service, please do not hesitate to call.

Very truly yours,

Wing's Testing & Balancing Co., Inc.

ICB Certified Contractor for: TABB—Commissioning—Fire/Life Safety L1&L2—Sound & Vibration

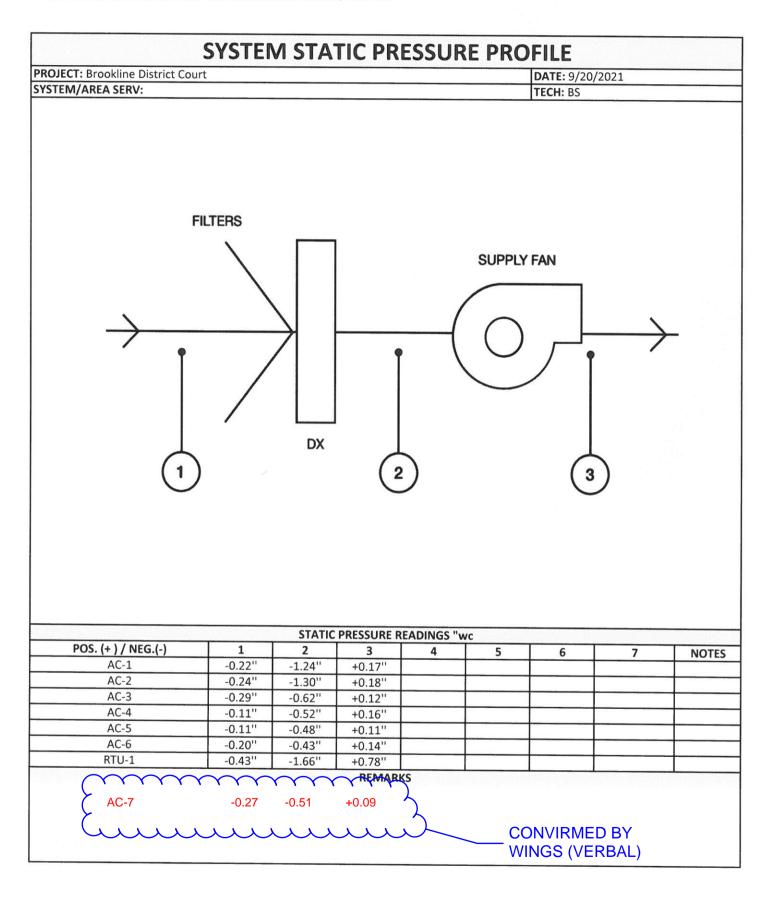
Barry Stratos Certified TABB Technician

94 North Branford Road • Suite One • Branford, CT 06405 (203) 481-4988 • Fax (203) 488-5634 • wings@wingstesting.com

www.wingstesting.com

PROJECT: Brookline Di	strict Court			DATE: 9/21/	2021		
AREA SERVED:				TECH: BS			
		FAN D	ATA				
FAN NUMBER	A	C-1	AC	C-2	A	C-3	
LOCATION	At	ttic	At	ttic	At	tic	
AREA SERVED	2nd Flo	or Court	Lib	rary	Prob	ation	
MANUFACTURER	Cai	rrier	Car	rier	Car	rier	
MODEL OR SIZE	FB48	NF060	FB48I	NF060	FB48I	NF060	
	DESIGN	ACTUAL	DESIGN	ACTUAL	DESIGN	ACTUAL	
TOTAL CFM	2000	2018	2000	2049	1200	1097	
RETURN AIR	1640	2018	1760	1974			
OUTSIDE AIR	360	0 (1)	240	75 (1)	160	43(1)	
DISCH. STATIC		+0.17"		+0.18''		+0.12"	
SUCTION STATIC		1.24"		-1.3"		-0.62"	
TOTAL STATIC		1.41"		1.48''		0.74"	
FAN RPM	DD	DD	DD	DD	DD	DD	
PULLEY O.D.	C	D	DD		D	D	
ESP	0.	39	0.	42	0.41		
VFD SPEED	No	VFD	No	VFD	No VFD		
O.A.D.MIN POS	Clo	Closed		Open		Open	
		MOTOR	DATA				
MANUFACTURER		GF		GF		βF	
MODEL OR FR.	N	IA	NA		N	IA	
HORSEPOWER	3/4	3/4	3/4	3/4	1/3	1/3	
MOTOR RPM	1075	1075	1075	1075	1075	1075	
VOLTAGE / PH.	208/1	208/1	208/1	208/1	208/1	208/1	
LEG 1	5.4		5.4		2.7		
AMPS LEG 2		4.8		4.8		2.5	
LEG 3							
SHEAVE O.D.	D	D	D	D	D	D	
BELTS - QTY / SIZE	D	D	D	D	D	D	
SHEAVE POSITION	D	D	D	D	D	D	
SPEED	Hi	gh	Hi	gh	Lo	w	
		REMA		<u> </u>	······		

PROJECT: B	rookline District	Court			DATE: 9/22/2	2021	
AREA SERVE	ED:	7. (?		TECH: BS			
			FAN D	ATA	•		
FAN NUMBE	ER	A	C-4	A	C-5	AC-6	
LOCATION		Main	Office	Of	fice	Judge's C	hambers
AREA SERVE	D	Main	Office	Off	fices	Juc	lge
MANUFACT	URER	Ca	rrier	Ca	rrier	Car	rier
MODEL OR S	SIZE	FB48	NF060	FB48	NF048	FB481	NF030
		DESIGN	ACTUAL	DESIGN	ACTUAL	DESIGN	ACTUAL
TOTAL CFM		2000	1928	1600	1469	1000	1016
RETURN AI	3	1760	1928	1400	1357	880	1016
OUTSIDE AII	R	240	0.00	200	112	120	(1)
DISCH. STAT	TIC		+0.11''		+0.11"		+0.14"
SUCTION ST	ATIC		-0.58''		-0.48''		-0.43"
TOTAL STAT	TC		0.64''		0.59''		0.57"
FAN RPM							
PULLEY O.D).	[DD	DD		D	D
ESP		0	0.22		0.32		34
VFD SPEED		No	VFD	No VFD		No	VFD
O.A.D.MIN F	POS	Closed (2)		Open		Op	en
and the second			MOTOR	DATA			
MANUFACT	URER	(GE	(GE	G	E
MODEL OR I	FR.	NA		Γ	NA	N	A
HORSEPOW	ER	3/4	3/4	3/4	3/4	1/3	1/3
MOTOR RPN	Λ	1075	1075	1075	1075	1075	1075
VOLTAGE / I	PH.	208/1	208/1	208/1	208/1	208/1	208/1
	LEG 1	5.4		4.3		2.4	
AMPS	LEG 2		3.8		3.0		2.0
	LEG 3						
SHEAVE	O.D.	C	D	C	DD	D	D
BELTS - QTY	/ SIZE	C	DD	C	DD	D	D
SHEAVE POS	SITION	0	DD	C	DD	D	D
SPEED		Lo	ow	Lo	ow	Hi	gh
			REMA	RKC			<u>.</u>


(2) The outside air activator does not workand needs repairing.

NA-Not Available

ND-No Design DD-Direct Drive

HOLEON DIOORINE DISCH	ict Court			DATE: 9/16/2	2021		
AREA SERVED:				TECH: BS			
		FAN D	ΑΤΑ				
FAN NUMBER	A	C-7	AC	-11	RT	U-1	
LOCATION	Cle	erks	Offic	ce B1	Ro	oof	
AREA SERVED	Cle	erks	Offic	ce B1	Main	Court	
MANUFACTURER	Cai	rrier	Car	rrier	Car	rier	
MODEL OR SIZE	FB48	NF024	PL1	.2AK	50H.	J-007	
	DESIGN	ACTUAL	DESIGN	ACTUAL	DESIGN	ACTUAL	
TOTAL CFM	800	681	450	564	2400	2225	
RETURN AIR	700	505	410	550	1920		
OUTSIDE AIR	100	176.00	40	14(1)	480	452	
DISCH. STATIC		+0.09''		+0.06''		+0.78"	
SUCTION STATIC		-0.51"		-0.04''		-1.66"	
TOTAL STATIC		0.60''		0.10"		2.44"	
FAN RPM							
PULLEY O.D.	C	D	DD		4.0 >	x 5/8	
ESP	0.	36	0.	10	1.71		
VFD SPEED	No	VFD	No	VFD	No VFD		
D.A.D.MIN POS	Op	Open		Open		10%	
		MOTOR	DATA				
MANUFACTURER	0	GE		Mitsubishi		iΕ	
MODEL OR FR.	N	IA	NA		56	54	
HORSEPOWER	1/4	1/4	70 Watt	70 Watt	1/4	1/4	
MOTOR RPM	1075	1075	NA	NA	1725	1725	
/OLTAGE / PH.	208/1	208/1	115/1	115/1	208/3	208/3	
LEG 1	1.8		1.2		5.2		
AMPS LEG 2		1.8		1.0		5.3	
LEG 3							
SHEAVE O.D.	D	D	D	D	3.75	x 5/8	
BELTS - QTY / SIZE	D	D	D	D		138	
SHEAVE POSITION	D	D	D	D	Fully c		
DEED	Hi	gh	Hi	gh			
SPEED	Alexandra and a second and a second as		RKS	~			

PROJECT: Brookline Distric	t Court			DATE: 9/20/2	2021		
AREA SERVED:				TECH: BS			
		FAN D	ATA				
FAN NUMBER	SI	-1					
LOCATION	Mechar	nic Room					
AREA SERVED	Loo	k-up					
MANUFACTURER	Gree	nheck	~				
MODEL OR SIZE	ESQ	-80-5					
	DESIGN	ACTUAL	DESIGN	ACTUAL	DESIGN	ACTUAL	
TOTAL CFM	400	363					
RETURN AIR	0	0					
OUTSIDE AIR	400	363					
DISCH. STATIC		+0.12"					
SUCTION STATIC		-0.69''					
TOTAL STATIC		0.81"					
FAN RPM		1657					
PULLEY O.D.	2.75"	x 3/4					
ESP	0.	30					
VFD SPEED	No	VFD					
O.A.D.MIN POS	10	0%					
		MOTOR	DATA				
MANUFACTURER	Mara	athon					
MODEL OR FR.	5	6					
HORSEPOWER	1/2	1/2					
MOTOR RPM	1725	1725					
VOLTAGE / PH.	15/1	115/1					
LEG 1	6.7						
AMPS LEG 2		6.1					
LEG 3							
SHEAVE O.D.	3.0 >	(1/2					
BELTS - QTY / SIZE		P34	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11				
SHEAVE POSITION		closed					
C to C		.5					
			SKC				

JECT: Brookline Distr	ict Court				DATE: 9/23/2	021	
A SERVED: TRAVERSE	DUCT	AD54	DESIGN		TECH: BS	NOTES	
LOCATIONS	SIZE "	AREA SQ.FT.	FPM CFM	CENTERLINE STATIC PRES."	FPM	FPM CFM	
AC-1 Total	20x16	2.22	2000	+0.17"	909	2018	
AC-1 OA	14x4	0.39	360	0.00	0	0	(1)
AC-1 Return			1640	Calculated		2018	(1)
AC-2 Total	18x18	2.25	2000	+0.18"	911	2049	
AC-2 OA	14x4	0.39	240	-0.18"	192	75	(1)
AC-2 Return			1760	Calculated		1947	
AC-3 Total	16x12	1.33	1200	+0.12"	823	1097	
AC-3 OA	14x4	0.39	160	-0.37"	109	43	
AC-3 Return			1040	Calculated			
AC-4 Total	21x21	3.06	2000	-0.11"	630	1928	
AC-4 OA			240			1920	(1)
AC-4 Return			1760	Calculated		1928	
AC-5 Total	19x12	1.58	1600	+0.11"	930	1469	
AC-5 OA	12x8ID	0.66	200	-0.04'	169	1403	
AC-5 Return			1400	0.04	105	1357	
AC-7 Total	14x12	1.16	800	+0.09"	587	681	
AC-7 OA	14x4	0.39	100	-0.24"	451	176	
AC-7 Return							
he outsde air activat		. I	REMARKS		1	I	I

1

PROJECT: B	rookline District (Court			DATE: 9/17/2021	
AREA SERV	ED:				TECH: BS	
			FAN DATA			
FAN NUMB	ER	EF-1	EF-2	TEF-1		
LOCATION		Attic	Attic	Attic		
AREA SERV		Whole Building	Lock-up	Toilets		
MANUFACT	TURER	Greenheck	Greenheck	Greenheck		
MODEL OR	SIZE	N	BSQ-080	NA		
TOTAL	DESIGN	5000	400	1100		
CFM	ACTUAL	7889	432	767		
FAN	DESIGN	NA	NA	NA		
RPM	ACTUAL	546	1667	1438		
PULLEY	O.D.	13.0 x 1 1/4	3.0 x 3/4	3.5 x 3/4		
SERVICE		1.15	1.25	1.15		
C to C		15.0	13.5	7.5		
MANUFACT	URER	Reliance	MOTOR DATA Fasco (2)	Marathon (1)		
MODEL NU	MBER	182T	NA	56		
MOTOR	DESIGN	3	1/4	3/4		
HP	ACTUAL	3	1/4	3/4		
MOTOR RP	M	1745	1725	1725		
VOLTAGE/P	PHASE	208/3	115/1	208/1		
	DESIGN	9.3	4.1	5.0		
MOTOR	ACT. LEG 1	7.9		4.4		
AMPS	ACT. LEG 2	8.2	3.6	4.4		
	ACT. LEG 3	7.5		4.4		
SHEAVE		4.75 x 1 1/8	2.5 x 1/2	3.25 x 5/8		
BELTS-QTY/		AX57/1	3350/1	AF24/1		
SHEAVE PO	SITION	3/4 Shut	Fully closed	Fully shut		
				1		

(1) The trip relay for the fan has a maximum setting of 4.0 Amps while nameplate FLA is 5.0 and the fan is running at 4.4. Fan keeps tripping. This trip relay needs to be changed to a relay with a 6 Amp max setting.

(2) The motorized relief damper for this fan is not opening while the fan is operating. It should be fixed or replaced.

	DATE: 9/23/2				ct Court	JECT: Brookline Distri
	TECH: BS	CENTERLING	DESIGN	AREA	DUCT	EA SERVED: TRAVERSE
TEST NOTE PM CFM	FPM	CENTERLINE STATIC PRES."	FPM CFM	SQ.FT.	SIZE "	LOCATIONS
	203	Velgrid	450	2.77	20x20	AC-11 Total
	68	-0.04"	40	0.20	6''R	AC-11 OA
550		Calculated	410			AC-11 Return
318 2225	818	Velgrid	2400	2.72	28x14	RTU-1 Total
	166	Velgrid	480	2.72	28x14	RTU-1 OA
166 452 1773	100	Calculated	1920	2.72	20114	RTU-1 Return
618 7889	3618	-0.96''	5000	2.18	20''R	EF-1 Total
325 432 (1)	325	+0.36"	400	1.33	16x12	EF-2 Total
194 767	194	-0.20''	1100	0.55	10"R	TEF-1 Total
373 363	373	+0.12''	400	0.972	14×10	EF-1 Total
			REMARKS	I		
		aced.	REMARKS d needs to be fixed or repl	dulating open a	this fan is not mo) The relief chamber for