CLIMATE CHANGE ADAPTATION IN MASSACHUSETTS

Kathleen Baskin
Executive Office of Energy and Environmental Affairs

October 2011

The Global Warming Solutions Act of 2008

Mitigation – Reduce Greenhouse Gas (GHG) Emissions

- Track and report GHG
- Develop 1990 Baseline and 2020 "Business as Usual" GHG projections
- GHG reductions of 10-25% by 2020, 80% by 2050 (compared to 1990)
- Advisory Committee to Oversee Reduction Planning

Adaptation – Prepare for Effects of Climate Change

Advisory Committee to Analyze Adaptation Strategies

Massachusetts Clean Energy and Climate Plan for 2020

Policies to 10-25% reduction in greenhouse gas emissions by 2020 (compared to 1990)

Road to 80% reduction in emissions by 2050

GWSA Adaptation Advisory Committee

Secretary: Convene Climate Change Adaptation

Advisory Committee (CCAAC)

CCAAC:

Prepare report to Legislature: "analyze strategies for adapting to the predicted impacts of climate change in the

Commonwealth"

Public Involvement

Climate Change Adaptation Advisory Committee

- 35+ members
- 3 meetings

6 Subcommittees

- 200+ participants
- 4-6 meeting each

9 Public Meetings

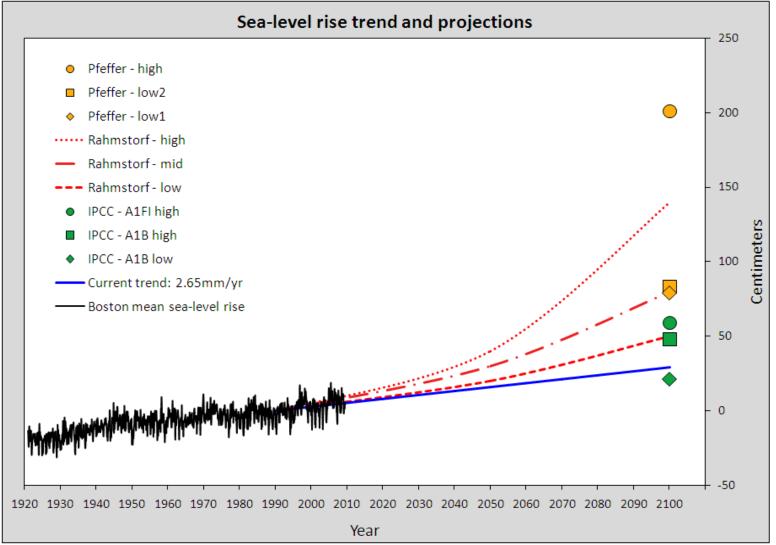
4 Legislative Hearings

Advisory Committee Expertise

- transportation and built infrastructure
- commercial, industrial and manufacturing activities;
- low income consumers
- energy generation and distribution
- land conservation
- water supply and quality
- recreation
- ecosystems dynamics
- coastal zone and oceans
- rivers and wetlands
- local government
- also public health, insurance, forestry, agriculture, public safety

Adaptation Subcommittees

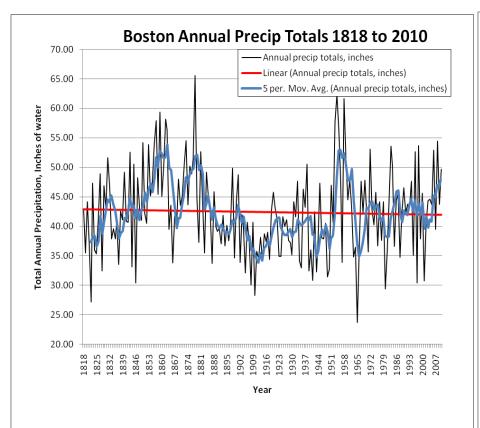
- Natural Resources and Habitat
- Key Infrastructure
- Human Health and Welfare
- Local Economy and Government (including Land Use)
- Coastal Zone and Oceans

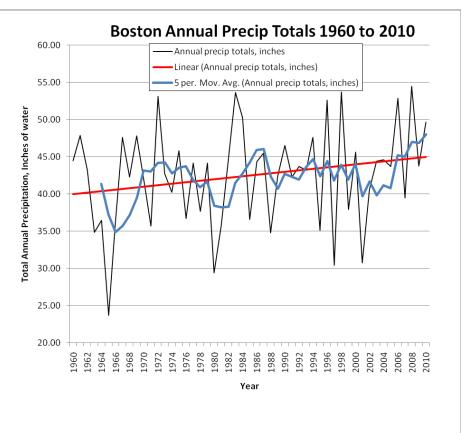

Observed Northeast Climate Impacts

- Warmer annual temperatures up 2 F since 1970
- Warmer winters up 1.3 F per decade since 1970
- Decreasing winter snowpack
- Earlier flowering plants
- More frequent extreme summer heat

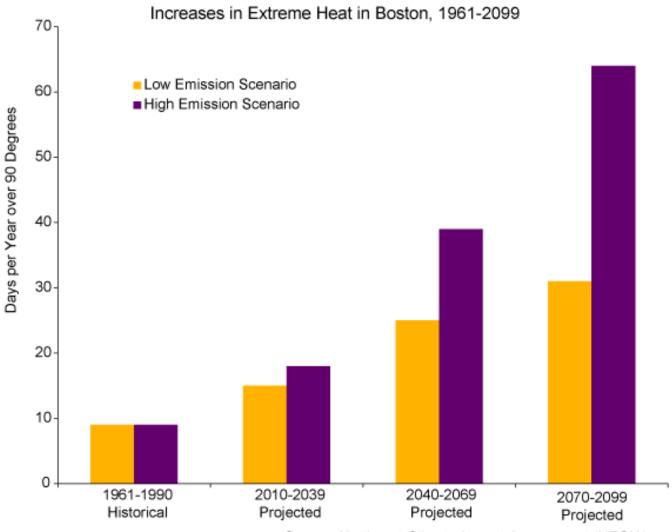
Sea Level Rise: Northeast Predictions

Predicted Northeast Climate Change Impacts


Parameter	Current (1961-1990)	Predicted Range by 2100	
Temperature (°C)	7.8	10 to 13	
Precipitation (inches)	40.5	43 to 46	
Sea level rise (inches)	3.1	10 to 35	
Streamflow-spring peak flow (days)	84.5	80 to 72	
Short Droughts (#/30 yr)	12.61	16 to 23	
Snow Days/Month (days)	5.2	4 to 1	
Length of growing season (days)	184	196 to 227	

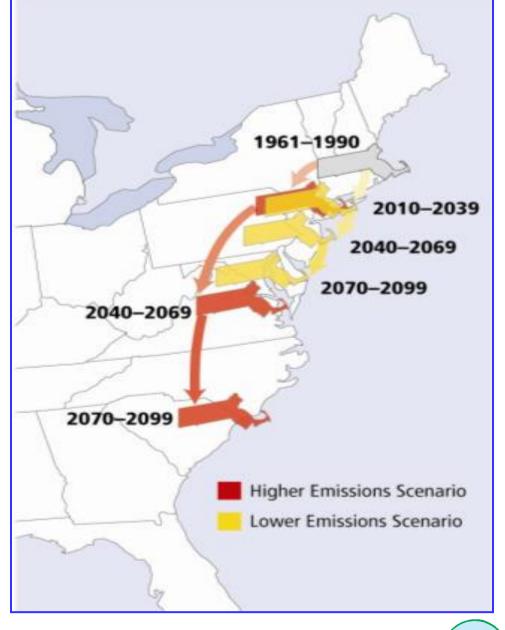

Source: Wake et al., 2006

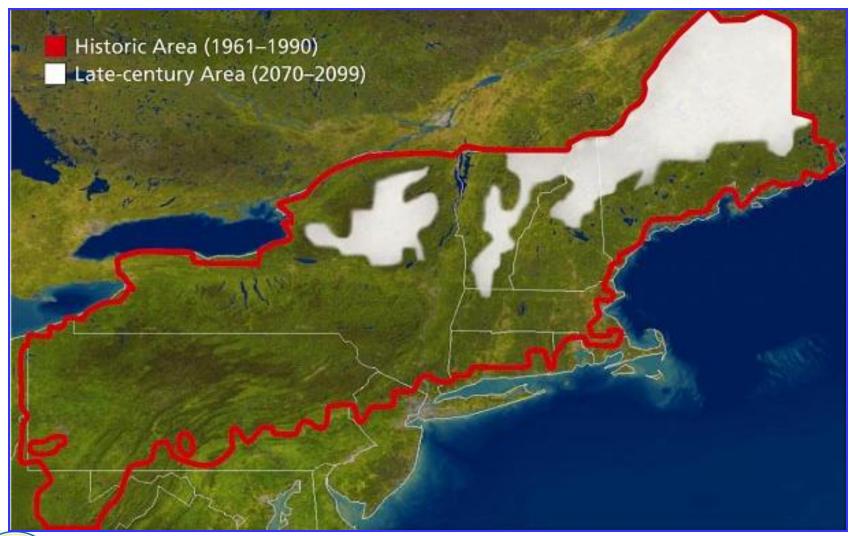
Annual precipitation in Boston from January 1818 to December 2010



The blue line represents a five-year moving average and the red line a least squares regression.

Projected Increases in Extreme Heat Days




How hot will it feel?

Predicted Snow Cover

Examples of Potential Vulnerabilities

Temperature Increases

- Increased warm weather energy demand
- Increased irrigation demand affecting public water supply
- > Aircraft performance deteriorates, longer runways required
- Heat stress in vulnerable populations

Precipitation (more droughts and floods)

- Increased loads to wastewater and stormwater systems result in combined sewer overflows
- Localized flooding
- Decreased water supply in summer months

Recent Record High Spring Flows in MA Rivers

STATION NAME	March-April 2010 Peak Flows		Historic Peak Flow		Start of Analysis
	Date	Gage Height (ft)	Date	Gage Height (ft)	Period
Charles River at Waltham	3/15/2010	7.56	2/3/1976	6.54	1932
Indian Head River at Hanover	3/15/2010	7.32	3/18/1968	7.13	1967
Taunton River near Bridgewater	4/1/2010	14.97	3/20/1968	14.48	1930
Segreganset River near Dighton	3/15/2010	8.66	3/18/1968	7.69	1967

Examples of Potential Vulnerabilities

- Sea Level Rise (SLR) and Flooding
 - Property damage
 - Interruption of key services (emergency response, infrastructure)
- Extreme Weather Events
 - High winds, hurricanes, storm surges, waves, ice storms can cause damage
 - Reduced emergency response capacity and public safety hazards

Principles

- Broad-based participation
- Best available science & technology
- Strong leadership
- Coordination of efforts
- Assist vulnerable populations
- Cost-effective and risk-based approaches

Types of Potential Strategies

- 200+ recommendations
- "No-regrets"
- Cross-cutting
- Sector-specific

Cross-Cutting Strategies

- Combine mitigation and adaptation strategies
- Identify and fill critical information gaps
- Advance risk and vulnerability assessments
- Evaluate and prioritize adaptation strategies for implementation
- Support local communities
- Improve planning and land use practices
- Enhance emergency preparedness
- Encourage ecosystem-based adaptation
- Continue to seek expert advice and stakeholder input
- Ensure agency and regional coordination
- Promote communication and outreach
- Start now be bold!

Natural Resources and Habitat

• Ecosystem Types: Forest Coastal

Aquatic Wetland

Guiding Principles:

- Protect ecosystems of sufficient size, across environmental settings, & in multiples
- Maintain large-scale ecosystem processes, prevent isolation; maintain diversity
- Use nature-based adaptation solutions; embrace adaptive management
- Strategies: 4 broad categories
 - Land Protection
 - Policy, Flexible Regulation, Planning and Funding
 - Management and Restoration
 - Monitoring, Research and Adaptive Management

Key Infrastructure

Sectors:

Energy (electric, gas, petroleum)
Water (supply, wastewater, stormwater)
Waste (solid and hazardous)
Telecommunications

Transportation (land, sea, air)

Dam Safety and Flood Control

Built Infrastructure and Buildings

General Strategies:

- Accurate Mapping and Surveys
- Change Land Use, Design, Site Selection and Building Standards
- Enhance Natural Systems
- Identify Lead Times for Adaptive Construction

Key Infrastructure Interconnections

- Energy and Transportation
- Within Water Resource Sectors integrated water to mimic natural hydrology
- Increased Conservation Measures and "Green" Designs in energy, transportation, and using urban forests

Mother's Day Storm - 2006

Mother's Day Storm - 2006

Ice Storm - 2008

Human Health and Welfare

Sectors:

- Public Health (infrastructure and vector-borne diseases)
- Air Quality (ambient and indoor)
- Water Quality/Sanitation
- Agriculture and Food Systems
- Vulnerable Populations
- Advancing Adaptation and Mitigation from a Public Health Perspective
 - A Healthy Cities Initiative
 - Alternative Fuel Vehicles
 - Improving Electricity Grid Infrastructure

Local Economy and Government

Sectors:

Agriculture Cultural Resources
Forestry Government

Fisheries

Manufacturing (computers, electronics, fabricated metal, machinery)
Services Industry (real estate mgmt, tourism & recreation, health care, higher education)

 Economic Opportunities: green jobs, new technologies, research and design opportunities

Government:

- General Strategies: sponsor data collection & research; procurement, grant criteria, standards, codes and regulations
- Enhance Emergency preparedness
- Improve Planning and Land Use Practices

Coastal Zone and Oceans

- Residential and Commercial Development, Ports and Infrastructure
 - Avoid vulnerable areas; design according to projected risk
 - Decrease repetitive losses to existing development
- Coastal Engineering for Shoreline Stabilization and Flood Protection
 - assess local erosion and flooding, evaluate coastal hazards mgmt approaches
 - Incorporate higher sea levels in new coastal designs
- Coastal, Estuarine, and Marine Habitats, Resources, and Ecosystem Services
 - Bolster land conservation
 - Improve resiliency through habitat restoration, green infrastructure, design
 - Reduce anthropogenic stressors through improved water quality
 - Incorporate flexibility into fisheries mgmt systems
 - Improve shellfish management
 - Increase monitoring, observations, and assessments

Potential Coastal Flooding in Boston

Under Present and High Emission Sea Levels

Examples of Ongoing Agency Activities

- DAR: Promote "buy local," improve storage for local produce
- DFG: Climate-smart State Wildlife Action Plan
- DCR: Regional precipitation modeling (using data in design)
- DEP: Promoting "green infrastructure," assisting with energy security and diversification
- CZM: StormSmart Coast tools, technical information (i.e. visualization of sea level rise and coastal surges)
- DOER: Zero Net Energy buildings

Immediate Next Steps

- Agencies evaluating potential strategies
- EEA and agencies will assess feasibility of implementation of these strategies
- Stakeholder group to assess impacts of climate change as part of MEPA review

Thank you

Report Website:

http://www.mass.gov/environment/cca

