BUILDING AND SITE GUIDELINES

BUILDING TYPOLOGY

The Building and Site Guidelines for resiliency to flooding and extreme heat focus on durable, cost-effective methods for addressing water infiltration and thermal performance. Many of the solutions are dependent upon the characteristics of the building's structure, enclosure, and site. Some of the proposed guidelines will be more effective on larger buildings, as others will be more suitable for small/medium buildings. The DHCD building portfolio is diverse and the table below shows the distribution of buildings according to their construction type defined by structure, enclosure, and size.

LHA BUILDINGS BY CONSTRUCTION TYPE

STRUCTURE	ENCLOSURE	SIZE	# OF BUILDINGS											
Steel Frame	Metal Panel Enclosure	(4-7 Floors)	l I											
	Masonry Enclosure	(4-7 Floors)												
		(8-20 Floors)												
	Concrete Panel Enclosure	(4-7 Floors)	1											Large
		(8-20 Floors)												Lai
Concrete Frame	Masonry Enclosure	(4-7 Floors)												
	Concrete Panel Enclosure	(8-20 Floors)												
		(4-7 Floors)	I											
Wood Frame	Wood Siding Enclosure	(1-4 Floors)												
	Masonry Enclosure	(1-3 Floors)												m
Steel Frame	Masonry Enclosure	(1-3 Floors)												Small/Medium
	Concrete Panel Enclosure	(1-3 Floors)	1											N
Concrete Frame	Masonry Enclosure	(1-3 Floors)												nal
	Concrete Panel Enclosure	(1-3 Floors)												S
			10	0	200	300	400	500	600	700	800	900	100	0C

SMALL/MEDIUM BUILDINGS

The most common construction type for small/medium buildings is wood frame, wood or masonry enclosure. Small building developments are likely to have multiple small buildings with individual mechanical and electrical equipment.

Example: Lee Fort Terrace - Salem Housing Authority is characterized as Small/Medium by wood frame, masonry enclosure, single story.

LARGE BUILDINGS

The most common construction type for large buildings are steel or concrete masonry structure with masonry enclosure. Large building developments are likely to have elevators and centralized mechanical and electrical equipment.

Example: McCarthy Building - Melrose Housing Authority is characterized as Large by masonry frame, masonry enclosure, seven stories.

Larger buildings built to higher construction requirements for frame/ structure are more likely to be resistant to structural water damage and be more resistant to hydrostatic pressure. Smaller buildings with wood/steel structural frame are most likely to require additional enclosure or site improvements to increase flood resiliency. Smaller buildings tend to shed heat more effectively while larger buildings gain and maintain internal heat more readily and are more likely to require cooling, especially during extreme heat events. about the unique characteristic of a property, consult an architect and engineer about the most durable cost-effective method for addressing water infiltration and thermal performance in a building.

RESILIENCE BEST PRACTICES

The Design Guidelines provide a range of strategies for enhanced resiliency of buildings through the implementation of systematic building component improvements. Below are the best practices from each guideline section grouped by structure/enclosure, building systems, and site to provide a more comprehensive overview of how to apply the guidelines to projects.

Building Strategies				
Resilient Structure and Enclosure	Cl	imate Haza		
The most effective wall assemblies are well insulated, air and water tight to keep flooding out and maintain comfortable indoor temperature.	PRECIPICATION	STORM SUBER	PTREME WENT	Guideline Section
Repairing or improving the thermal performance of masonry at all properties should always be done with attention to managing moisture and permeability as well as thermal performance.				04 20 00 Unit Masonry
Use wood building materials which are considered flood damage resistant, meaning they can withstand direct contact with water for at least 72 hours without being significantly damaged.				06 10 00 Rough Carpentry 06 20 00 Finish Carpentry
For some residential buildings, the Massachusetts Energy Code requires a continuous air barrier assembly for new construction buildings or additions at opaque exterior walls or soffits, including joints and junctions to abutting constructions to control air movement through the wall. The air barrier also serves as a liquid-water drainage plane when flashed to discharge water to the exterior.		•		07 10 00 Waterproofing and Dampproofing
The most effective wall assemblies have a primary water barrier (the exterior cladding: brick, clapboards, shingles, etc.) and a secondary, vapor-open, bulk water barrier (house wrap with all joints taped, peel-and-stick membrane, liquid- applied air and water barrier, or other product).			•	07 20 00 Building Insulation & Moisture Protection
Making improvements to roof drainage will help buildings address water penetration and structural failures. Improving roof insulation at the eaves of sloped roofs will reduce the freeze- thaw cycling of ice and snow on the roof that leads to ice dams.			٠	07 30 00 Asphalt Roof Shingles
Resilient buildings in areas that experience frequent wind driven rain should include a pressure neutral rainscreen when installing fiber cement board, brick, masonry, or wood siding.				07 40 00 Siding
When designing new small buildings, architects should design roof overhangs , durable perimeter foundation, and siding materials to minimize the need for gutters. Gutters have traditionally been a high maintenance item.				07 45 00 Gutters and Downspouts
Standard built, up asphalt, rubber, black EPDM, or other dark roofs can reach temperatures of 150°F or more in the summer sun. A light-colored "cool roof" under the same conditions could stay more than 50°F cooler.				07 50 00 Membrane Roofing
In coastal areas it is important to lap flashing and moisture barriers correctly, and to use sealed tapes and products. At roof to wall intersections, use flashing with longer vertical edges. Tape the top step of flashing with a 4-inch or wider self-adhering roof tape, and lap the house wrap or building paper over the flashing and tape that as well.	•			07 62 00 Sheet Metal Trim and Flashing

RESILIENCE BEST PRACTICES

	Climate Hazard	
		Guideline Section
Creating a waterproof barrier in a section of wall to make it impermeable may require the use of sealants applied directly to the exterior surface of the building to seal walls and floors.	•	07 90 00 Sealants
Fiberglass, vinyl and metal exterior doors and frames are preferred for reasons of overall cost-effectiveness and durability, and the consideration of resilience reinforces this preference.		08 10 00 Doors and Frames
Shading devices, operable windows and screens can be integrated into the design to help reduce temperature-related climate impacts, including overheating during heat waves.		08 40 00 Entrances and Storefronts
Windows play an important role in minimizing the negative effects of climate hazards like extreme heat and flooding, by providing daylighting, improved thermal performance, enabling emergency egress, and providing building occupant comfort.		08 50 00 Windows
To avoid corrosion of exterior hardware , use hot-dip galvanized steel or stainless-steel hardware. Stainless steel hardware is acceptable in virtually all locations, but hot-dip galvanized hardware may not be appropriate in every location.		08 70 00 Hardware
Building materials installed in floodable spaces—including fram be able to survive water exposure without major damage, pro Building materials below the design flood elevation (DFE) shou up to 72 hours without requiring more than cosmetic repairs. Construct walls with a horizontal gap between wallboard to prevent moisture. Use non-paper-faced gypsum below the wallboard with latex based paint. Use ridged, closed cell insulation in the lower section of the wall.	moting mold or mildew, or ab uld be able to withstand conta	sorbing contaminants.
Install slip resistant waterproof flooring such as textured tile in common areas to both resist flood water damage and to help prevent injury during egress in the event floors become wet.		09 30 00 Tile
Where flooding is a concern, consider removal of existing flooring and installation of an alternative such as ceramic, vinyl plank, or another water-resistant tile.		09 64 00 Wood Flooring
Consider the combination of materials when planning flood resistant floors such as tile or polished concrete. Using a wood subfloor, however, would trap moisture in the subfloor assembly, possibly leading to mold or rot.		09 65 00 Resilient Flooring
Avoid the use of carpet in areas where flooding is a concern such as basements, below grade spaces, and on concrete sub floors.		09 68 00 Carpet
If flooding is a concern, consider the types of materials to be painted and which type of paint is most appropriate.		09 90 00 Painting
Raise elevator components above the design flood elevation (DFE), and mitigate flooding in elevator pits by waterproofing the interior of the pit and installing sump pumps.		14 20 00 Elevators

RESILIENCE BEST PRACTICES

Building Systems Strategies

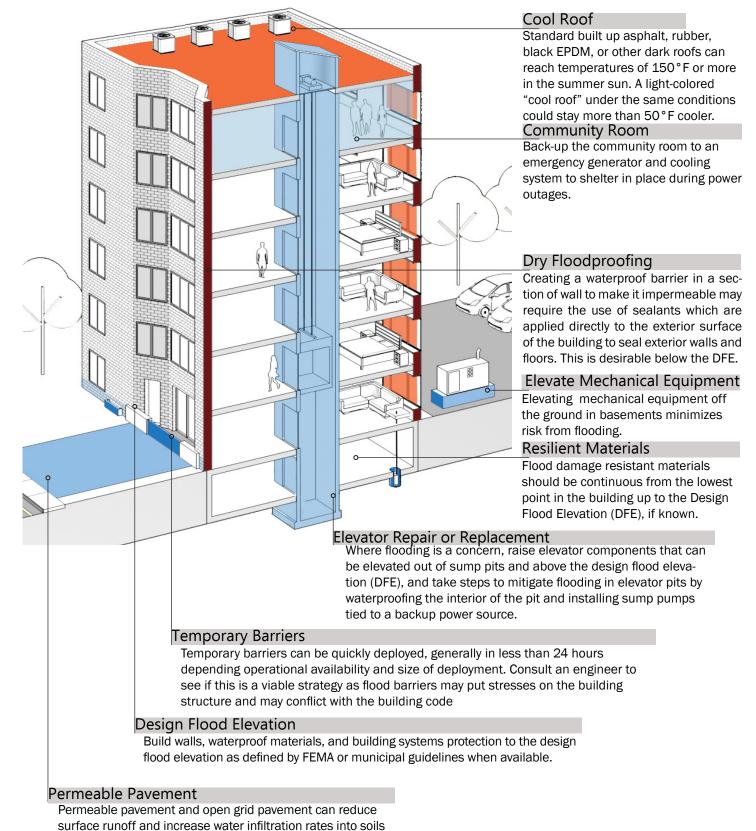
	Climate Hazard			
Building systems should always be located or protected up to the DFE and be designed for efficiency to reduce energy costs and emissions.	RECIPICATION	STORM SUBSE	POTREME WENT	Guideline Section
To accommodate future battery storage , locate any central solar photovoltaic inverters in a location with additional room for a battery system (at least $10' \times 10'$) or near an exterior wall for a battery to be located outside.				07 07 00 Solar Photovoltaic Systems
Consider installing a permanent exterior electrical connection so that temporary generators can be connected to emergency circuits if no permanent backup generator is located on site.				21 00 00 Fire Suppression
Raise domestic hot water heater above the Design Flood Elevation (DFE). Install backwater valves to prevent storm and sanitary sewer backups related flooding events.				22 00 00 Plumbing
When central HVAC equipment is replaced, it should be located or moved from locations where flooding is a risk to prevent water from damaging components.				23 00 00 Heating Ventilation & Air Conditioning
Reducing or eliminating central heating systems and baseboard electric resistance heating equipment, which are often located in basements or on first floors, enables heating and cooling systems to be located in residential units				23 80 00 Air Source Heat Pumps
Raise electrical equipment, conduit, panels, and wiring above the Design Flood Elevation (DFE), and seal penetrations through buildings.				26 00 00 Electrical
Seal penetrations through outside walls, especially where service runs underground.				28 00 00 Electronic Safety and Security
Site Strategies				
Resilient sites should maximize planting and pervious su	rfaces to m	nitigate st	ormwater	flooding and heat.
Use light colored pavement (high albedo) and open grid pavement to help reduce heat impacts. Open grid and permeable pavements help absorb stormwater. Some materials will require modified maintenance practices.				32 10 00 Asphalt Paving
If site flooding is a concern, a retaining wall or deployable flood barriers could be added around the perimeter of the building.				32 30 00 Site Improvements
When planning landscaping, consider the potential flood mitigation and cost savings opportunities that Low Impact Development (LID), or green infrastructure , may present. LID techniques, such as implementation of bioswales or rain gardens (for stormwater management) also have co-benefits including area beautification and localized temperature moderation.	•		•	32 90 00 Landscaping
When updating sewer lines to a building, consider including backwater valves .				33 00 00 Site Utilities
When refurbishing or relocating septic tanks and leech				33 36 00

When refurbishing or relocating **septic tanks and leech fields**, be mindful of Design Flood Elevations.

Septic Systems

SMALL/MEDIUM DEVELOPMENT STRATEGIES

The graphic below demonstrates a suite of potential strategies for wood frame, wood enclosure and wood frame, masonry enclosure buildings, the most common small/medium construction types in the DHCD portfolio. For wood frame, wood enclosure buildings in flood zones, elevating the building may also be possible.


Solar Panels Roof Overhang A roof replacement offers Emergency Generator When designing new 1-2 story buildings, an ideal time to evaluate Raise electrical equipment, conduit, architects should design ample roof the orientation of the roof panels, and wiring above the Design overhangs, durable perimeter foundation for future installation of Flood Elevation (DFE) Consider the and siding materials to minimize the need for solar photovoltaic (PV) or backup power needs of residents, gutters. solar thermal domestic especially if they are expected Cool Roof hot water heating to shelter in place during power systems. outages. Size backup generators to Avoid dark brown and black shingles the critical loads identified. because they tend to build up and retain heat, and have a shorter lifespan. Retaining/Perimeter Wall Window Well Insulation Protect window wells by Retaining walls can be used to manage Well insulated. building up the walls at least flood and landslide risk. Retaining airtight buildings with six inches to protect from flash walls must be designed to withstand appropriate vapor control flooding. earth load and hydrostatic pressure keep heat inside in winter to insure a long-lasting installation. Permeable Pavement and can be cooled more Temporary flood barriers may be efficiently in summer. Permeable pavement and open grid installed at entrances and deployed in Windows pavement can reduce surface runoff advance of an anticipated flood events. and increase water infiltration rates Shading windows reduces the Design Flood Elevation into soils which may be useful in amount of solar heat gain in the Build walls, waterproof materials, and building managing stormwater. interior of the building, thereby systems protection to the design flood elevation Elevate Mechanical Equipment reducing cooling loads during the as defined by FEMA or municipal guidelines when summer months and leading to Elevating mechanical equipment available. lower indoor temperatures during off the ground in basements power outages when the cooling

minimizes risk from flooding.

system is not operational.

LARGE DEVELOPMENT STRATEGIES

The graphic below demonstrates a suite of potential strategies for a concrete frame, masonry enclosure building, the most common large construction type in the DHCD portfolio.

which may be useful in managing stormwater.