

CHELSEA TRIAL COURT HVAC SYSTEM EVALUATION SUMMARY

Visited August 18, 2020. While on site, inspected the air handling equipment located in the mechanical rooms and toured the facility to determine if the spaces generally matched usages noted on the architectural plans. The Chelsea Trial Courthouse was constructed in 1999 and is approximately 79,500 square feet in size. Eleven York indoor

air handling units (AHU) provide ventilation air to the building. According to the 1996 design drawings, AHU-1 through AHU-5 are constant volume units and serve the Courtrooms, and AHU-6 through AHU-11 serve the remainder of the building and are variable air volume units

1.0 Airflow Rate Per Person (Reduced Occupancy)

		Tota	l Air	Outdo	oor Air
Courtroom	Total People	Supply Airflow (CFM)	Airflow Rate (CFM/Person)	Outside Airflow (CFM)	Airflow Rate (CFM/Person)
Jury Pool Room	10	810	81	445	44
Courtroom 1	31	3,900	126	2,100	68
Courtroom 2	13	2,100	162	1,150	88
Courtroom 3	14	1,700	121	975	70
Courtroom 4	25	2,878	115	1,600	64
Courtroom 5	21	2,551	121	1,400	67

2.0 Recommendations

Section	Recommendation/Finding	Action
2.1	Filtration Efficiency	
RF-1	Replace 2" MERV-8 filters with MERV-13 filters	Complete
2.2	Testing and Balancing	
RTB-1	Test and rebalance air handling unit supply air and minimum outside air flow rates	Complete
RTB-2	Rebalance system return air flow rate	Complete
2.3	Equipment Maintenance and Upgrades	
RE-1	Test existing air handling system dampers and actuators for proper operation	Complete
RE-2	Clean air handler coils	Complete
RE-7	Test the existing air handler control valves and actuators for proper operation	Complete
2.4	Control System	
RC-1	Implement a pre-occupancy flush sequence	Complete
RC-4	Confirm the economizer control sequence is operational	Complete
RC-5	Disable demand control ventilation sequences	Complete
2.5	Additional Filtration and Air Cleaning	
RFC-1	Install portable HEPA filters	Complete

2.6	Humidity Control	
	No actionable items listed – continuous monitoring for seasonal changes	On-going
2.7	Other Recommendations	
2.7.1	Replace Pneumatic Damper and Valve Actuators with Electronic Actuators	Complete
2.7.2	Convert Chilled and Hot Water System to Variable Flow Systems	Deferred – included in 5 year capital plan
2.7.3	Replace AHU-2 and AHU-3	Deferred – included in 5 year capital plan

Chelsea District Court Chelsea, MA

HVAC SYSTEM EVALUATIONS COVID-19

Office of Court Management

June 4, 2021

Section 1 Existing Conditions & Site Observations

Tighe & Bond visited the Chelsea District Courthouse on August 18, 2020. While on site we inspected the air handling equipment located in the mechanical rooms and toured the facility to determine if the spaces generally matched usages noted on the architectural plans.

Site Visit Attendees:

- Office of Court Management:
 - o Jonathan Talley, Courthouse Facilities Staff
- Tighe & Bond
 - o Jason Urso, PE, Senior Mechanical Engineer
 - o Timothy Bill, Staff Engineer

1.1 Existing Ventilation System

The Chelsea District Courthouse was constructed in 1999 and is approximately 79,500 square feet in size. Eleven York indoor air handling units (AHU) provide ventilation air to the building. According to the 1996 design drawings, AHU-1 through AHU-5 are constant volume units and serve the Courtrooms, and AHU-6 through AHU-11 serve the remainder of the building and are variable air volume units. Each unit contains a supply fan, hot water heating coil, chilled water cooling coil, and a 2" MERV 8 filter. AHU-4 and AHU-7 through AHU-11 contain return fans. Air is returned to the remaining air handlers by a separate return fan. Supply air from AHU-6 through AHU-11 is distributed to zones via VAV boxes. Three-way hot and chilled water valves control the supply of hot and chilled water to air handler coils. The presence of three-way valves typically indicates that the hydronic systems are constant volume flow.

The air handlers are approximately 21 years old and most air handlers are in fair or poor condition. Most outdoor air dampers are rusted and in fair or poor condition and all visible coils were dirty. The supply fan motors for AHU-1, AHU-7, AHU-8, AHU-9, and AHU-11 and the return fan motors for AHU-4 and AHU-8 have been replaced. The outdoor air dampers appeared to be closed or mostly closed in AHU-2, AHU-3, AHU-4, AHU-7, AHU-8.

Air is supplied to and exhausted from detainee areas. According to the 1996 drawings, slightly more air is exhausted from the cells than supplied, creating a negative pressure inside the cells.

Table 1 summarizes the air handling units' designed airflow rates, the MERV rating of the installed filters, and the condition.

TABLE 1

	dandling Units Original Design Airflow	Original Design Min. O.A.		
Unit	(CFM)	(CFM)	Filters	Condition
AHU-1	3,900	2,100	MERV 8	Fair
AHU-2	2,878	1,600	MERV 8	Poor
AHU-3	2,551	1,400	MERV 8	Fair/Poor
AHU-4	1,700	960	MERV 8	Good
AHU-5	2,100	1,150	MERV 8	Fair
AHU-6	1,700	930	MERV 8	Fair
AHU-7	7,986	4,300	MERV 8	Fair
AHU-8	8,487	4,600	MERV 8	Fair
AHU-9	8,938	4,900	MERV 8	Good
AHU-10	7,700	4,200	MERV 8	Good
AHU-11	9,500	5,200	MERV 8	Fair

Photo 1 – Representative Air Handler

1.2 Existing Control System

An Automated Logic Building Management System (BMS) was installed in approximately 2015. The air handling units, VAV boxes, finned tube radiation, exhaust fans, hot water boiler plant and chilled water plant are all controlled by the BMS. The control system cycles the air handling units on and off based on an occupancy schedule. Carbon dioxide is monitored in the Courtrooms and the outdoor air dampers in AHU-1 through AHU-5 modulate to maintain a CO_2 setpoint of 800 ppm. The system also monitors the pressure drop across the filters and implements an economizer sequence. The air handling unit dampers and control valves have pneumatic actuators.

The air handling unit damper and hot and chilled water control valve actuators are older, pneumatic style. The piping at several control valves are rusted and piping insulation in the vicinity of the control valves are water stained, indicating the valves or the pipe fittings have leaked in the past.

Section 2 Recommendations

Below is a list of recommendations that we propose for the Chelsea District Courthouse. Please refer to the "Master Recommendation List" for further explanation and requirements of the stated recommendations.

2.1 Filtration Efficiency Recommendations

We recommend the following measures be implemented the existing air handling units:

RF-1: Replace 2" MERV-8 filters with MERV-13 filters.

The TAB Contractor and/or Engineer shall verify that the air handlers can accommodate a MERV-13 filter.

2.2 Testing & Balancing Recommendations

Air Solutions & Balancing LLC performed air testing and balancing in 2015. It appears the air handlers, return fans, VAV boxes, and all air inlets and outlets throughout the Courthouse were tested. Table 2 describes the air handler airflow rates and Table 3 describes the toilet exhaust and holding cell exhaust fan airflow rates from the TAB report.

TABLE 22015 Air Handler Testing & Balancing Results

	Design				Actual	
Unit	Total Supply Fan Airflow (CFM)	Recommended Outdoor Airflow (CFM)	Return Airflow (CFM)	Supply Fan Airflow (CFM)	Outdoor Airflow (CFM)	Return Airflow (CFM)
AHU-1	3,900	2,100	1,800	4,179	0	4,173
AHU-2	2,878	1,600	1,278	2,994	Not Listed	2,085
AHU-3	2,551	1,400	1,151	2,662	Not Listed	2,106
AHU-4	1,700	975	725	1,850	Not Listed	1,650
AHU-5	2,100	1,150	950	2,635	Not Listed	1,874
AHU-6	1,700	930	770	1,562	Not Listed	1,155
AHU-7	7,986	4,300	3,686	6,985	Not Listed	5,820
AHU-8	8,487	4,600	3,887	7,035	Not Listed	8,978
AHU-9	8,938	4,900	4,038	9,152	Not Listed	7,095
AHU-10	7,700	4,200	3,500	7,029	Not Listed	3,646
AHU-11	9,500	5,200	4,300	10,426	Not Listed	10,247

It appears that most air handlers were delivering less outside air than originally designed at the time this TAB exercise was completed. AHU-1 appears to be recirculating almost all air and providing close to no outdoor air. Based on the return air airflow rates documented, AHU-3, AHU-4, and AHU-11 appear to be providing less than the specified outdoor air flow rates. These three units also do not appear to be providing the code minimum outdoor air flow rates, noted in Table 4. AHU-2, AHU-5, AHU-6, AHU-9, and AHU-10 also do not appear to be providing the originally specified outdoor air flow rate, however, they do appear to be providing the code required outdoor air. All air handlers appear to be suppling a total supply airflow within acceptable range of the designed rates, with the exception of AHU-7, and AHU-8.

Table 3 describes the reported exhaust airflow rates from the 2015 TAB report for the exhaust fans serving restrooms and holding areas. EF-6, EF-12, EF-13, and EF-16 are exhausting significantly less than originally specified.

TABLE 32015 Exhaust Fan Testing & Balancing Results

Unit	Comin	Original Design Airflow (CFM)	TAB Reported Airflow (CFM)
	Serving	(0.11)	(0.11)
EF-6	Toilet Room 322	400	70
EF-7	3 rd Floor Restrooms	200	210
EF-8	Restrooms	390	354
EF-9	Restrooms	200	275
EF-12	Public West Restrooms	500	191
EF-13	Holding Area 2 nd & 3 rd Floor	600	329
EF-15	1 st Floor Restrooms	875	1,079
EF-16	Holding Cells Basement	2,420	1,924

The 2015 TAB report identifies several issues that may be the cause for the airflow discrepancies for both the air handlers and the exhaust fans. Examples include the outdoor air damper in AHU-1 will not open when commanded by the BMS. Also, many outdoor, return, and exhaust air dampers will only fully open or fully close instead of partially modulating open. Prior to the rebalancing efforts noted below, we recommend further investigation into the possible solutions noted in the 2015 TAB report.

We recommend the following testing and balancing measures be implemented:

RTB-1: Test and rebalance air handling unit supply air and minimum outside air flow rates.

We recommend testing and balancing the outdoor air flow rates for all air handling units to the recommended minimum O.A. rates listed in Table 4.

TABLE 4Recommended Air Handler O.A. Flow Rates

Unit	Original Supply Airflow (CFM)	Original Design Min. O.A. (CFM)	Current Code Min. O.A. Requirements (CFM)	Recommended Minimum O.A. (CFM)
AHU-1	3,900	2,100	1,100	2,100
AHU-2	2,878	1,600	975	1,600
AHU-3	2,551	1,400	875	1,400
AHU-4	1,700	960	975	975
AHU-5	2,100	1,150	600	1,150
AHU-6	1,700	930	200	930
AHU-7	7,986	4,300	1,050	4,300
AHU-8	8,487	4,600	2,550	4,600
AHU-9	8,938	4,900	1,200	4,900
AHU-10	7,700	4,200	3,650	4,200
AHU-11	9,500	5,200	1,275	5,200

The average airflow rate per person is shown below in Table 5. These values are based on the original design supply airflow rate and the recommended outdoor air flow rates shown in Table 4 above. The airflow rate per person assumes a diversity factor of 70%, meaning the maximum number of occupants assumed to be in all zones at all times equates to 70% of the code required occupancy.

Average Airflow Rate per Person

	All spaces	Courtrooms	Non-Courtroom Spaces
Total Occupancy (People)	715	400	315
Total Supply Air (CFM/Person)	80	33	140
Outdoor Air (CFM/Person)	44	18	76

The airflow rate per person for each Courtroom and the Jury Pool Room is shown below in Table 6. These values are based on full occupancy without taking

diversity into account, the original design supply airflow rate, and the recommended outdoor airflow rate. The airflow rate per person assumes the full supply airflow is being delivered to the room. At times when the supply airflow is reduced due to the space temperature being satisfied, the airflow rate per person will also be reduced.

TABLE 6Airflow Rate per Person (Full Occupancy)

		Tota	al Air	Outdoor Air		
Courtroom	Total People	Supply Airflow (CFM)	Airflow Rate (CFM/Person)	Outside Airflow (CFM)	Airflow Rate (CFM/Person)	
Jury Pool Room	30	810	27	445	15	
Courtroom 1	149	3,900	26	2,100	14	
Courtroom 2	82	2,100	26	1,150	14	
Courtroom 3	88	1,700	19	975	11	
Courtroom 4	133	2,878	22	1,600	12	
Courtroom 5	119	2,551	21	1,400	12	

Note: Courtroom occupant density is based on 70 people/1,000 square feet, per the 2015 International Mechanical Code.

The airflow rate per person for each Courtroom and the Jury Pool Room, based on a reduced occupancy schedule determined by the Office of Court Management, is shown below in Table 6a. The airflow rate per person assumes the full supply airflow is being delivered to the room. At times when the supply airflow is reduced due to the space temperature being satisfied, the airflow rate per person will also be reduced.

TABLE 6aAirflow Rate per Person (Reduced Occupancy)

		Total Air		Outdo	or Air
Courtroom	Total People	Supply Airflow (CFM)	Airflow Rate (CFM/Person)	Outside Airflow (CFM)	Airflow Rate (CFM/Person)
Jury Pool Room	10	810	81	445	44
Courtroom 1	31	3,900	126	2,100	68
Courtroom 2	13	2,100	162	1,150	88
Courtroom 3	14	1,700	121	975	70
Courtroom 4	25	2,878	115	1,600	64
Courtroom 5	21	2,551	121	1,400	67

RTB-2: Rebalance system return air flow rate.

The system return fans should also be tested and balanced.

Further investigation of the VAV box tested airflow rates noted in the 2015 TAB report can identify areas that are not receiving the full design airflow rate.

The 2015 TAB report indicates that the chilled water flow rates for all air handlers are within acceptable range except AHU-9 and AHU-11. The report also suggests that the hot

water flow rates for all air handlers are within acceptable range except AHU-2, AHU-8, AHU-9, and AHU-11. Further investigation is required to determine the cause of chilled and hot water flow to these air handling units.

We do not recommend increasing the outdoor air flow rate beyond the recommended outdoor air flow rates. The originally designed outdoor air flow rates already exceed the code required rates.

2.3 Equipment Maintenance & Upgrades

We recommend the following equipment maintenance and upgrades:

RE-1: Test existing air handling system dampers and actuators for proper operation.

Replace dampers and actuators that are not functioning properly.

RE-2: Clean air handler coils

RE-7: Test the existing air handler control valves and actuators for proper operation.

We presume VAV box controllers were installed as part of the 2015 control system upgrade and are working properly.

2.4 Control System Recommendations

We recommend the following for the control system:

RC-1: Implement a pre and post-occupancy flush sequence.

RC-4: Confirm the economizer control sequence is operational.

RC-5: Disable demand control ventilation sequences.

2.5 Additional Filtration and Air Cleaning

We recommend the installation of the following air cleaning devices:

RFC-1: Install portable HEPA filters.

If the Courthouse is to operate at a high capacity (i.e. 50% occupancy or greater), we recommend installing portable HEPA filters in high traffic areas, such as entrance lobbies. They should also be considered for Courtrooms, depending on the occupancy of the room and how much noise is generated from the filters. The noise levels will vary depending on the manufacturer.

2.6 Humidity Control

Installing duct mounted or portable humidifiers can help maintain the relative humidity levels recommended by ASHRAE. The feasibility of using duct mounted humidification or portable humidifiers is determined by the building envelope. Buildings that were not designed to operate with active humidification can potentially be damaged due to a lack

of a vapor barrier, adequate insulation, and air tightness. We are not aware if this building was constructed to handle a humidification system.

Duct mounted humidifiers must be engineered, integrated into the building control system, tested, and commissioned. They are available in many configurations, but require substantial maintenance and additional controls. They also run the risk of adversely affecting IAQ from growing microorganisms, or leaking water through poorly sealed ductwork damaging insulation and ceilings. Portable humidifiers are easier to install and require less maintenance, but still have the potential to damage the building envelope.

While active humidification is not recommended as a whole building solution due to high installation costs, operational costs, potential to damage the building envelope and adversely affect poor IAQ, it may be warranted as a temporary solution in some areas.

2.7 Other Recommendations

2.7.1 Replace Pneumatic Damper and Valve Actuators with Electronic Actuators

We recommend replacing pneumatic damper and valve actuators with electronic actuators and tying them into the Building Management System. Pneumatic control is an old and obsolete technology. These systems tend to leak air, may result in poor control of the HVAC equipment, cause the air compressor to run more frequently and increase energy usage. A BMS can monitor the position of electronic valves, trend valve position data, and report alarms.

If the existing pneumatic system can cycle damper and valve actuators and position the valves and dampers in their correct position repeatedly, then immediate replacement is not necessary. If the system cannot cycle the actuators to correct damper or valve positions, this may cause too little or too much outdoor air flow and water flow through the units, affecting the quantity of ventilation air and heating and cooling capacity of the coils.

2.7.2 Convert Chilled and Hot Water Systems to Variable Flow Systems

According to the 2015 BMS as-built drawings and sequences, the hot and chilled water pumps are constant flow systems. Constant flow pumps circulate the same volume of water to air handling units regardless of whether the water is required or not. If air handlers do not require this water, the three-way valves serving the air handler coils bypass the coil and is pumped back to the chiller or boiler plant. We recommend investigating the possibility of converting these systems to variable flow. The three-way air handler valves would have to be replaced with two-way valves, as well as any other three-way valves that are in the system. Variable frequency drives (VFD) may be able to be connected to the existing hot and chilled water pumps, allowing the pumps to vary the flow rate to match the demand. This recommendation is an energy saving measure and does not affect the indoor air quality of the building.

2.7.3 Replace AHU-2 and AHU-3

AHU-2 appears to be in poor condition and AHU-3 is in fair to poor condition. Consider replacing these units within 5 years.

Section 3 Testing & Balancing Results

Milharmer Associates, Inc. visited the Chelsea District Courthouse on April 27, 2021 to test the airflow rates of the air handling units and the exhaust fans. A summary of the tested airflow rates versus the design airflow rates are shown below in Tables 7 and 8. The full testing and balancing report is attached.

TABLE 7Air Handler Testing & Balancing Results

	Design				Actual	
Unit	Total Supply Fan Airflow (CFM)	Recommended Outdoor Airflow (CFM)	Return Fan Airflow (CFM)	Supply Fan Airflow (CFM)	Outdoor Airflow (CFM)	Return Fan Airflow (CFM)
AHU-1	3,900	2,100	1,800	4,427	2,316	2,111
AHU-2	2,878	1,600	1,278	3,186	1,637	1,549
AHU-3	2,551	1,400	1,151	2,832	1,428	1,404
AHU-4	1,700	960	740	2,517	960	1,557
AHU-5	2,100	1,150	950	2,276	-	1,847
AHU-6	1,700	930	770	1,501	896	605
AHU-7	7,986	4,300	3,686	8,791	4,208	4,583
AHU-8	8,487	4,600	3,887	8,576	-	-
AHU-9	8,938	4,900	4,038	7,811	4,760	3,951
AHU-10	7,700	4,200	3,500	8,311	4,060	4,251
AHU-11	9,500	5,200	4,300	9,876	5,472	4,404

TABLE 8

Exhaust Fan Testing & Balancing Results

		Design Return/Exhaust Airflow	Actual Return/Exhaus t Airflow
Unit	Serving	(CFM)	(CFM)
EF-6	Staff Lounge	400	103
EF-7	Bathroom	200	202
EF-8	Bathroom	390	246
EF-9	Bathroom	200	245
EF-12	Bathroom	500	189
EF-13	2 nd / 3 rd Floor Holding	600	279
EF-15	Bathroom	875	903
EF-16	Holding Cells	2,420	2,030

Typical balancing tolerances for air systems is $\pm 10\%$ of the design airflow. In VAV systems, airflow issues may reside in downstream VAV boxes resulting in a total supply airflow reading at the air handler less than the designed value. Further investigation is required to determine the cause of a low airflow reading at the air handling unit.

In reviewing the airflow report data, the following should be noted:

- 1. AHU-6 and 9 are performing slightly below the acceptable airflow tolerance range.
- 2. Based on the 1996 design plans provided to Tighe & Bond, AHU-4 is supplying almost 50% more airflow than the original design. The air handler cooling and heating coils may not be able to condition this quantity of supply air properly. Unless the supply airflow rate for AHU-4 was modified after the 1996 design, we recommend balancing the total supply airflow rate back to the original design value.
- 3. AHU-5 supply fan is operating within the acceptable airflow range, however the outside air damper is not functional and will not open. We recommend the ATC Contractor investigate the issue and repair/replace the damper and/or actuator as required and then retest and balance the outdoor air flow rate.
- 4. AHU-8 supply fan is operating within the acceptable airflow range, however the outside air damper is not functional and will not open. We recommend the ATC Contractor investigate the issue and repair/replace the damper and/or actuator as required and then retest and balance the outdoor air flow rate.
- 5. All other air handlers are performing within the acceptable airflow tolerance range.

- 6. Exhaust fans EF-6,8,12,13, and 16 are not performing within acceptable range. These fans are from the original construction in 1996. According to the TAB report, the supply airflow cannot be adjusted at the fan. We recommend replacing these fans to achieve the design airflow.
- 7. The chilled and hot water systems were not operating at the time of the visit, therefore coil flow rates could not be tested.

Disclaimer

Tighe and Bond cannot in anyway guarantee the effectiveness of the proposed recommendations to reduce the presence or transmission of viral infection. Our scope of work is intended to inform the Office of Court Management on recommendations for best practices based on the guidelines published by ASHRAE and the CDC. Please note that these recommendations are measures that may help reduce the risk of airborne exposure to COVID-19 but cannot eliminate the exposure or the threat of the virus. Implementing the proposed recommendations will not guarantee the safety of building occupants. Tighe & Bond will not be held responsible should building occupants contract the virus. The Office of Court Management should refer to other guidelines, published by the CDC and other governing entities, such as social distancing, wearing face masks, cleaning and disinfecting surfaces, etc. to help reduce the risk of exposure of COVID-19 to building occupants.

MILHARMER ASSOCIATES, INC.

534 New State Highway, Route 44, Suite 3

Raynham, MA 02767

Tel.: 508-823-8500; Facsimile: 508-823-8600

TEST AND BALANCE REPORT

Project: Chelsea Trial Court

Chelsea, MA

Project No.: 21-012 Project Date: 4/27/2021

MECHANICAL CONTRACTOR

A N.E.B.B. Certified Company

Project:	Chelsea Trial Co	ourt				
Address:	Chelsea, MA		5		04.040	
Pate:	4/27/2021		Project No.		21-012	
		CER	RTIFICATION			
		<u> </u>				
			ted & Certified by:	_		
		Milharm	er Associates,	Inc.		
Certification No).: 3384			Certification I	Expiration Date: 3-31-23	
-		port is a record of syst				
		ce with the current edit				
		n ng or Environmenta noted in the Test-Adju			lesign quantities which arv.	
JEBB Qualif	ied TAR Sunerviso	or Name: Scott F. Mi	ller			
v.E.B.B. Qualii	ica 1715 Caperviol	or Name. Godin i ini				
I.E.B.B. Qualif	ied TAB Superviso	or Signature:				
		Ŋ	EBB			

Address: Chelsea, MA

Date: 4/27/2021 **Project No.** 21-012

TABLE OF CONTENTS

SECTION 1 TAB Qualifications

A. N.E.B.B. Certification

B. N.E.B.B. Company CertificateC. N.E.B.B. Supervisor Certificate

D. Instrument SheetE. Symbol Sheet

SECTION 2 TAB Building Systems

Project:	Chelsea Trial Court		
Address:	Chelsea, MA		
Date:	4/27/2021	Project No.	21-012
	INSTRU	MENT SHEET	
	iii iii iii ii ii ii ii ii ii ii ii ii	WENT OTILET	
	a list of Instruments owned and operated by	/ Milharmer Associates, Inc. and used o	n
his project.			
Instrument	Instrument	Calibration	Calibration
ID Number		Date	Due Date
1	ADM-870 Digital Multimeter	8-20-20	8-20-21
2	Shortridge Flow Hood	8-20-20	8-20-21
3	Ampmeter	8-20-20	8-20-21
4	Tachometer	8-20-20	8-20-21
5	Airflow Anemometer	8-20-20	8-20-21
6	Digital Thermometers	8-20-20	8-20-21
		0.00.00	0.00.01
7	Shortridge Water Meter	8-20-20	8-20-21
8	Sound Meter	8-20-20	8-20-21
<u> </u>	Courid Meter	0 20 20	0 20 21
9	Vibration Meter	8-20-20	8-20-21
-			
Please Note: Ir	nstruments are tested annually at the M.A.I. I	Lab. and sent back to the factory if devia	ation
	acturing tolerance.	•	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	zerag tereraneer		
Fechnician:			

SYMBOL SHEET

AHU	Air Handling Unit	HEATER O.L.	Thermal Overload
AC or ACU	Air Conditioner Unit		Protection For Motors
ACCU	Air Cooled Condensing Unit		Located at Starter Motor
ADJ P.D.	Adjusted Pitch Diameter		
AMP	Amperage	HEPA	High Efficiency Particulate
AVG	Average		Arrestance
A.D.	Air Density	HOA	Hand/Off/Auto Switch
		H.P.	Horsepower
B.H.P.	Brake Horsepower	HPS	High Pressure Steam
	•	HRC	Heat (Recovery or Recliam) Coil
CFM	Cubic Feet Per Minute	HVAC	Heating, Ventilation and
СН	Chiller		Air Conditioning
CHWR	Chilled Water Return	HWR	Hot Water Return or
CHW or CHWS	Chilled Water Supply		Heating Water Return
CT	Cooling Tower	HWS	Hot Water Supply or
CWR	Condenser Water Return		Heating Water Supply
CW or CWS	Condenser Water Supply	HX	Heat Exchanger
DB	Dry Bulb	I.D.	Inside Diameter
D.D.	Direct Drive		
DIA	Diameter	LAT	Leaving Air Temperature
		L.D.	Linear Supply Diffuser
EAT	Entering Air Temperature	LPS	Low Pressure Steam
EDC	Electric Duct Coil	L.T.	Light Troffer
EDH	Electric Duct Heater	LWT	Leaving Water Temperature
EF	Exhaust Fan		
EMS	Energy Mgt System	MAU/MUA	Make Up Air Unit
EWT	Entering Water Temperature	MBH	1,000 BTU's per Hour
FCU	Fan Coil Unit	N.A.	Not Accessible
FH	Fume Hood	N/A	Not Applicable
F.L.A.	Full Load Amperage	N.I.	Not Installed
FPB	Fan Powered Box	N.L.	Not Listed
FPM	Feet Per Minute		
FT. HD.	Feet of Head		
GPM	Gallons Per Minute		

SYMBOL SHEET CONTINUED

O.D.	Onto de Diamentos	TAD	Testine Adiretine and Delensine
	Outside Diameter	TAB	Testing, Adjusting, and Balancing
OA Min	Outside Air Minimum	TSP	Total Static Pressure
OAT	Outside Air Total	TP	Thermally Protected
PF	Power Factor	UH	Unit Heater
PHC	Preheat Coil		
PH	Phase(s)	V	Volts
PSI	Pounds Per Square Inch	VAV	Variable Air Volume
P.T.	Pitot Traverse	VD	Volume Damper
		VFD	Variable Frequency Drive
RA	Return Air	VP	Velocity Pressure
RF	Return Air Fan		
R.G.	Return Grille	\mathbf{W}	Watts
RHC	Reheat Coil	WB	Wet Bulb
RPM	Revolutions per Minute	W.D.	Water Density
		W.G.	Water Guage
SA	Supply Air		
SAT	Supply Air Temperature	F	Degrees Fahrenheit
S.D.	Supply Diffuser		
SEF	Smoke Exhaust Fan	ΔΡ	Differential (Delta) Pressure or
SF (AIR)	Supply Fan		Pressure Drop
S.F.(Elect)	Service Factors		-
SHC	Steam Heating Coil	ΔT	Differential (Delta) Temperature,
S.P. "W.C."	Static Pressure		Net Temperature
	Measured in Inches of		Decrease or Increase
	Water Column	#	PSI or Pounds Per Square Inch
			Decrease or Increase

Project:	Chelsea Trial Court		
Address:	Chelsea, MA		
Date:	4/27/2021	Project No.	21-012
		-	
	REPO	ORT SUMMARY	
	The following is the report for the Chel	lsea Trial Court. A survey was performed	
	on AHU-1 thru AHU-11 and the toilet e	exhaust fans with the following comments:	
	Chilled water was not running during	ng testing.	
	2. AHU-5 - Outside air damper is bind	ding up and will not open.	
	3. AHU-8 - Outside air damper will no	t open and needs to be investigated by the	
	ATC contractor.		
	4. Tallet automatiface have been tast		
	adjustment as they are direct drive fan	ed and some are below design with no	
	adjactment de they are alrest arrestall		
	-		
	-		
	-		
	-		
	-		

Address: Chelsea, MA

Date: 4/27/2021 **Project No.** 21-012

REPORT SUMMARY

AIR HANDLING UNITS

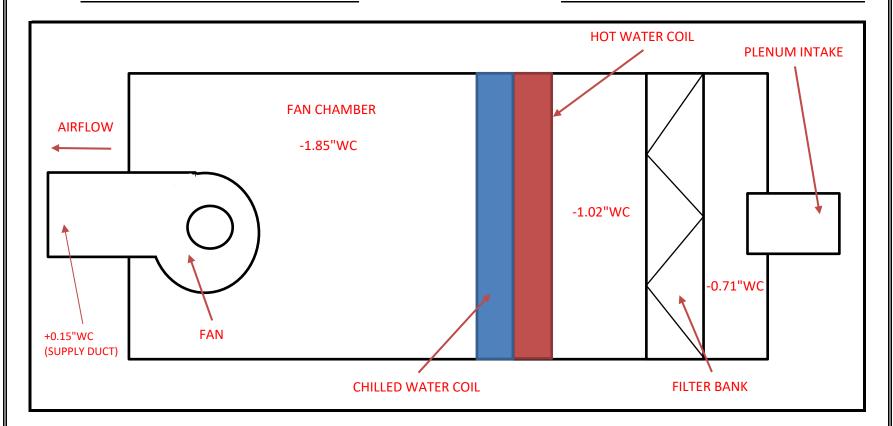
UNIT	SUPPLY	RETURN	OUTSIDE AIR
AHU-1	4,427 CFM	2,111 CFM	2,316 CFM
AHU-2	3,186 CFM	1,549 CFM	1,637 CFM
AHU-3	2,832 CFM	1,404 CFM	1,428 CFM
AHU-4	2,517 CFM	1,557 CFM	960 CFM
AHU-5	2,276 CFM	*1	*1
AHU-6	1,501 CFM	605 CFM	896 CFM
AHU-7	8,791 CFM	4,583 CFM	4,208 CFM
AHU-8	8,576 CFM	*1	*1
AHU-9	7,811 CFM	3,951 CFM	4,760 CFM
AHU-10	8,311 CFM	4,251 CFM	4,060 CFM
AHU-11	9,876 CFM	4,404 CFM	5,472 CFM

Address: Chelsea, MA

Date: 4/27/202	21		Project No.	21-012
	F.	AN DATA SHEET	-	
	FAN	NO. AHU-1	FAN I	NO. AHU-2
Serves / Location:	Court Rm #1 / Base	ment Mech	Court Rm #4 / Basen	ment Mech
Manufacturer:	York		York	
Model Number:	APBOFSFC12X12		CSI5OFOFCII10X9	
Size:	NL		NL	
Serial Number:	CNFM-022413		CKGM-024074	
MOTOR	DESIGN	TESTED	DESIGN	TESTED
Manufacturer:	NL	Baldor	NL	Dayton
Frame Number:	NL	184T	NL	184T
Horsepower:	NL	5	NL	5
Brake Horsepower:	NL	NA	NL	NA
Safety Factor:	NL	1.15	NL	1.15
Volts/Phase:	460/3	460/3	460/3	460/3
Motor Amperage:	6.6	6.0/6.2/6.2	6.6	5.6/5.7/5.6
Motor RPM:	1750	1765	1750	1765
Speeds:	1	1	1	1
Heater Size:	NL	IA-70	NL	IA-70
Heater Amps.:	NL	NA	NL	NA
FAN	DESIGN	TESTED	DESIGN	TESTED
Supply Air CFM:	3900	4427	2878	3186
Return Air CFM:				
Exhaust Air CFM:				
Outside Air CFM:	2100	2316 *1	1600	1637 *2
Suction Pressure:				
Discharge Pressure:				
Fan Static Pressure:				
External Pressure:				
RPM	DESIGN	TESTED	DESIGN	TESTED
Fan RPM:	NL	NA	NL	NA
Motor Drive:	NL	1VL56	NL	AK46
Motor Size/Bore:	NL	1 1/8"	NL	1"
Fan Drive:	NL	AK58	NL	AK44
Fan Size/Bore:	NL	H 1"	NL	3/4"
Belt Size / Number:	NL	4L600H / 1	NL	AX48 / 1
Shafts C-C:	NL	21"	NL	18"
Turns Open:	NL	1	NL	Fixed

Comments: *1 Minimum OSA Damper set for 50%

*2 Minimum OSA Damper set for 30%


Address: Chelsea, MA

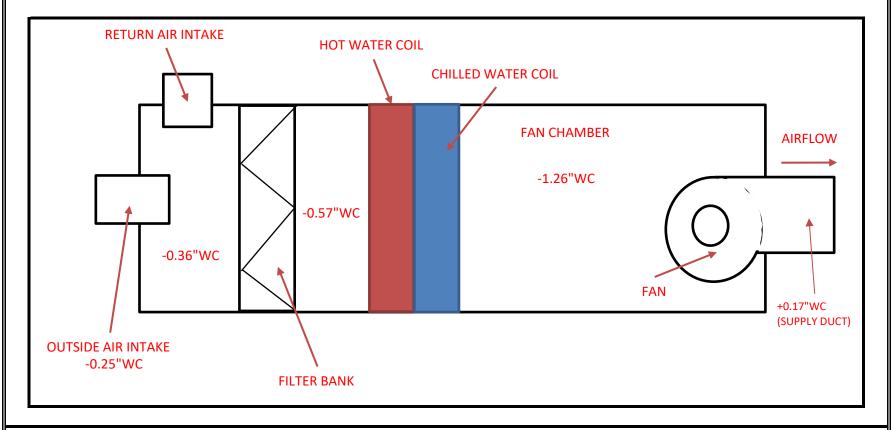
Date: 4/27/2021

Project No. 21-012

STATIC PRESSURE PROFILE

Device: AHU-1 Technician: G.Willer

Comments: *FILTERS ARE CONSIDERABLY LOADED


**COILS ARE DIRTY

Address: Chelsea, MA

Date: 4/27/2021 Project No. 21-012

STATIC PRESSURE PROFILE

Device: AHU-2 Technician: G. Willer

Comments: *FILTERS ARE CONSIDERABLY LOADED

**COILS ARE DIRTY

Project: Address: Date:	Chelsea Trial Cour Chelsea, MA 4/27/2021	rt			Project No.	21-0	12
			ED AVEDOE	DATA			
OVOTENA. ALIII	4		TRAVERSE		NUMBED :	Т 4	
SYSTEM: AHU	-1			TRAVERSE TRAVERSE	NUMBER : LOCATION:	T-1 SUPPLY	
DUCT SIZE (RI		40	" DIAMETER " WIDTH x		DEPTH	Sq Ft = Sq Ft =	0.00
AIR DENSITY I STATIC PRESS DUCT AIR TEN BAROMETRIC	S @ CL: MP :	0.49 ln' 70 De 29.92 ln	eg F		DESIGN (ACTUAL SC		3900 4419 4427
	RATIO CORRECTI CTION FACTOR SITY	ON =	1.00 1.00 0.075				
TEST HOLE	1	2	3	4	5	6	7
Α	1060	1269	1521	1262	1032	856	545
В	1124	1228	1531	1293	868	962	732
С	1149	1135	1481	1232	759	838	737
D	991	1141	1420	1230	674	794	745
E							
F							
G							
Н							
1							
NO. OF READI	NGS =	32	AVERAGE FF	PM =	994		
J	530						
K	678						
L	493						
M	510						
N							
0							
Р							
Q							
R							
TECHNICIAN:	Greg Mille	PY .					

Project: Address: Date:	Chelsea Trial Cou Chelsea, MA 4/27/2021	ırt			Project No.	21.	-012
Date.	7/21/2021				r roject ito:	21	012
		-	TRAVERSE	DATA			
SYSTEM: AHI	U-1				SE NUMBER : SE LOCATION:	T-1 SUPPLY	
DUCT SIZE (F		36	" DIAMETER	18	" DEPTH	Sq Ft = Sq Ft =	0.00 4.50
AIR DENSITY STATIC PRES DUCT AIR TE BAROMETRIO	SS @ CL: :MP :	NA In 70 De 29.92 In	eg F		DESIGN ACTUAL SO		2100 2316 2317
	' RATIO CORRECT ECTION FACTOR ISITY	ION =	1.00 1.00 0.075				
TEST HOLE	1	2	3	4	5	6	7
Α	518	508	518				
В							
С							
D							
E							
F							
G							
Н							
I							
NO. OF READ	DINGS =	3	AVERAGE F	PM =	515		
J							
K							
L							
M							
N							
0							
Р							4
Q							
R							
TECHNICIAN	: Greg Mill	er	-				

Project: Address:	Chelsea Trial Co Chelsea, MA	urt					
Date:	4/27/2021				Project No.	21-	012
		•	TRAVERSE	DATA			
SYSTEM: AH	U-2				NUMBER : LOCATION:	T-1 SUPPLY	
DUCT SIZE (I	•	26	" DIAMETER		DEPTH	Sq Ft = Sq Ft =	0.00 3.25
AIR DENSITY STATIC PRE: DUCT AIR TE BAROMETRI	SS @ CL: EMP :	0.57 In 70 Do 29.92 In	eg F		DESIGN ACTUAL S		2878 3186 3193
	' RATIO CORREC [*] ECTION FACTOR ISITY	ΓΙΟN =	1.00 1.00 0.075				
TEST HOLE	1	2	3	4	5	6	7
Α	1142	819	639	853	819		
В	1107	1025	730	646	771		
С	1280	1146	823	680	1113		
D	1345	1088	1070	1180	1333		
E							
F							
G							
Н							
I							
NO. OF REAL	DINGS =	20	AVERAGE F	PM =	980		
J							
K							
L							
M							
N							
0							
Р							
Q							
R							
TECHNICIAN	: Greg Míl	ler	-				

Address:	Chelsea Trial Cour Chelsea, MA 4/27/2021	t			Project No.	21-0	12
		-	TRAVERSE	DATA			
SYSTEM: AHU-	-2			TRAVERSE	NUMBER :	T-1	
				TRAVERSE	LOCATION:	OSA	
DUCT SIZE (RO	-	40	" DIAMETER		DEPTH	Sq Ft = Sq Ft =	0.00 3.89
AIR DENSITY DESSENTED PRESSENTED	6 @ CL: 1P :	-0.21 ln 70 De 29.92 ln	eg F		DESIGN (ACTUAL SC		1600 1637 1637
	RATIO CORRECTION FACTOR	ON =	1.00 1.00 0.075				
TEST HOLE	1	2	3	4	5	6	7
Α	344	310	313	321	288	345	313
В	423	421	411	507	478	523	566
С	511	499	378	413	422	521	533
D							
E							
F							
G							
Н							
I							
NO. OF READII	NGS =	21	AVERAGE FF	PM =	421		
J							
K							
L							
M							
N							
0							
Р							
Q							
R							
TECHNICIAN:	Greg Mille	lY .	-				

Address: Chelsea, MA

Date: 4/27/2021

Project No. 21-012

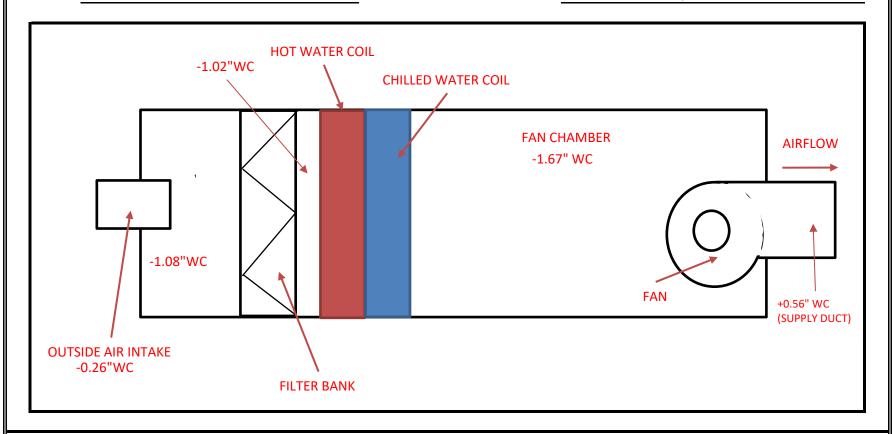
Date: 4/27/202	21		Project No.	21-012
	F.	AN DATA SHEET		
	FAN	NO. RAF-1	FAN	NO. RAF-2
Serves / Location:	Court Rm #1 / Base	ment Mech	Court Rm #4 / Basen	nent Mech
Manufacturer:	Penn		Penn	
Model Number:	REX-27B		NA	
Size:	NL		NL	
Serial Number:	NL		NA	
MOTOR	DESIGN	TESTED	DESIGN	TESTED
Manufacturer:	NL	US Motors	NL	US Motors
Frame Number:	NL	182T	NL	145T
Horsepower:	NL	3	NL	2
Brake Horsepower:	NL	NA	NL	
Safety Factor:	NL	1.15	NL	1.15
Volts/Phase:	460/3	460/3	460/3	460/3
Motor Amperage:	3.9	2.3/2.3/2.4	2.8	2.0/2.1/2.1
Motor RPM:	1770	1781	1740	1769
Speeds:	1	1	1	1
Heater Size:	NL	NA	NL	NA
Heater Amps.:	NL	NA	NL	NA
FAN	DESIGN	TESTED	DESIGN	TESTED
Supply Air CFM:				
Return Air CFM:	3900	4173	2878	2085
Exhaust Air CFM:				
Outside Air CFM:				
Suction Pressure:				
Discharge Pressure:				
Fan Static Pressure:				
External Pressure:				
RPM	DESIGN	TESTED	DESIGN	TESTED
Fan RPM:	NL	NA	NL	NA
Motor Drive:	NL	1VP50	NL	1VL44
Motor Size/Bore:	NL	1 1/8"	NL	7/8"
Fan Drive:	NL	INLINE	NL	INLINE
Fan Size/Bore:	NL	INLINE	NL	INLINE
Belt Size / Number:	NL	B75	NL	A52 / 1
Shafts C-C:	NL	27.5"	NL	20"
Turns Open:	NL	1	NL	1

Chelsea Trial Court

Project: Address: Chelsea, MA

Date: 4/27/202	21		Project No.	21-012
	F.	AN DATA SHEET		
	FAN	NO. AHU-3	FAN	NO. AHU-4
Serves / Location:	Court Rm #5 / Basement Mech		Court Rm #4 / Basement Mech	
Manufacturer:	York		York	
Model Number:	CSI50F0FCII10X9		AP35	
Size:	NL		NL	
Serial Number:	CKGM-024075		CLGM 02196B	
MOTOR	DESIGN	TESTED	DESIGN	TESTED
Manufacturer:	NL	Baldor	NL	Dayton
Frame Number:	NL	182T	NL	182T
Horsepower:	NL	3	NL	3
Brake Horsepower:	NL	NA	NL	NA
Safety Factor:	NL	1.15	NL	1.15
Volts/Phase:	460/3	460/3	460/3	460/3
Motor Amperage:	4.2	3.3/3.5/3.3	4	3.2/3.1/3.1
Motor RPM:	1765	1767	1740	1756
Speeds:	1	1	1	1
Heater Size:	NL	IA-70	NL	IA-70
Heater Amps.:	NL	NA	NL	NA
FAN	DESIGN	TESTED	DESIGN	TESTED
Supply Air CFM:	2551	2832	1700	2517
Return Air CFM:				
Exhaust Air CFM:				
Outside Air CFM:	1400	1428 *1	975	960 *2
Suction Pressure:				
Discharge Pressure:				
Fan Static Pressure:				
External Pressure:				
RPM	DESIGN	TESTED	DESIGN	TESTED
Fan RPM:	NL	NA	NL	NA
Motor Drive:	NL	AK44	NL	8450
Motor Size/Bore:	NL	1 1/8"	NL	1 1/8"
Fan Drive:	NL	AK44	NL	AK34
Fan Size/Bore:	NL	3/4"	NL	3/4"
Belt Size / Number:	NL	AP47 / 1	NL	AP45 / 1
Shafts C-C:	NL	17 3/4"	NL	17"
Turns Open:	NL	FIXED	NL	2

Comments: *1 Mininmum OSA Damper set for 30%

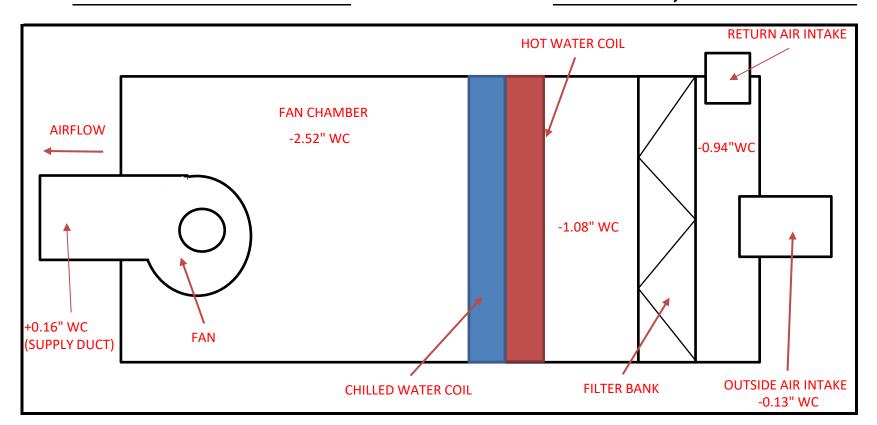

*2 Mininmum OSA Damper set for 60%

Address: Chelsea, MA

Date: 4/27/2021 Project No. 21-012

STATIC PRESSURE PROFILE

Device: AHU-3 Technician: G. Willer


Comments: **COILS ARE DIRTY

Address: Chelsea, MA

Date: 4/27/2021 Project No. 21-012

STATIC PRESSURE PROFILE

Device: AHU-4 Technician: G. Miller

Comments: *COILS ARE DIRTY

Address:	Chelsea Trial Cour Chelsea, MA 4/27/2021	t			Project No.	21	-012
		-	TRAVERSE	DATA			
SYSTEM: AHU-	-3			TRAVERSE TRAVERSE	NUMBER : LOCATION:	T-1 SUPPLY	
DUCT SIZE (ROUND) DUCT SIZE (RECT.) 26		26	" DIAMETER		DEPTH	Sq Ft = Sq Ft =	0.00 3.25
AIR DENSITY DATA STATIC PRESS @ CL: DUCT AIR TEMP : BAROMETRIC PRESS :		0.57 ln\ 70 De 29.92 ln	eg F		DESIGN ACTUAL S		2551 2827 2832
AIR DENSITY RATIO CORRECT SCFM CORRECTION FACTOR ACTUAL DENSITY		ON =	1.00 1.00 0.075				
TEST HOLE	1	2	3	4	5	6	7
Α	917	1034	1131	994	701		
В	1061	879	880	902	796		
С	1036	825	848	721	745		
D	983	877	715	709	642		
E							
F							
G							
Н							
1							
NO. OF READII	NGS =	20	AVERAGE FF	PM =	870		
J							
K							
L							
M							
N							
0							
Р							
Q							
R							
TECHNICIAN:	Greg Mille	er -					

Address:	Chelsea Trial Cour Chelsea, MA 4/27/2021	t			Project No.	21-0	12
		-	TRAVERSE	DATA			
SYSTEM: AHU-	-3			TRAVERSE	NUMBER :	T-1	
				TRAVERSE	LOCATION:	OSA	
DUCT SIZE (ROUND) DUCT SIZE (RECT.) 40		40	" DIAMETER		DEPTH	Sq Ft = Sq Ft =	0.00 3.89
AIR DENSITY DATA STATIC PRESS @ CL: DUCT AIR TEMP : BAROMETRIC PRESS :		-0.18 ln 70 De 29.92 ln	eg F		DESIGN (ACTUAL SC		975 1425 1425
	RATIO CORRECTION FACTOR	ON =	1.00 1.00 0.075				
TEST HOLE	1	2	3	4	5	6	7
Α	414	387	345	379	440	433	287
В	277	256	402	388	356	421	433
С	289	301	411	421	378	310	367
D							
Е							
F							
G							
H							
NO. OF READII	NGS =	21	AVERAGE FF	PM =	366		
J							
K							
L							
M							
N							
0							
Р							
Q							
R							
TECHNICIAN:	Greg Mille	r	-				

Address:	Chelsea Trial Cour Chelsea, MA 4/27/2021	t			Project No.	21	-012
		-	TRAVERSE	DATA			
SYSTEM: AHU-	4				NUMBER : LOCATION:	T-1 SUPPLY	
DUCT SIZE (RC DUCT SIZE (RE	-	36	" DIAMETER		DEPTH	Sq Ft = Sq Ft =	0.00 3.50
AIR DENSITY DATA STATIC PRESS @ CL: DUCT AIR TEMP : BAROMETRIC PRESS :		0.42 ln¹ 70 De 29.92 ln	eg F		DESIGN ACTUAL S		1700 2513 2517
AIR DENSITY RATIO CORRECT SCFM CORRECTION FACTOR ACTUAL DENSITY		ON =	1.00 1.00 0.075				
TEST HOLE	1	2	3	4	5	6	7
Α	680	357	379	637	706		
В	1034	327	465	651	653		
С	1130	1160	929	898	766		
D							
Е							
F							
G							
Н							
1							
NO. OF READIN	NGS =	15	AVERAGE FF	PM =	718		
J							
K							
L							
M							
N							
Ο							
Р							
Q							
R							
TECHNICIAN:	Greg Mille	CY.					

Project: Address:	Chelsea Trial Cou Chelsea, MA	rt					
Date:	4/27/2021				Project No.	21-	012
		7	TRAVERSE	DATA			
SYSTEM: AHU	J-4				NUMBER : LOCATION:	T-1 OSA	_
DUCT SIZE (R DUCT SIZE (R		20	" DIAMETER		DEPTH	Sq Ft = Sq Ft =	0.00 2.78
AIR DENSITY DATA STATIC PRESS @ CL: -0.18 DUCT AIR TEMP : 70 BAROMETRIC PRESS : 29.92			eg F		DESIGN ACTUAL S		1700 960 960
AIR DENSITY RATIO CORRECTION = 1.00 SCFM CORRECTION FACTOR 1.00 ACTUAL DENSITY 0.075							
TEST HOLE	1	2	3	4	5	6	7
Α	345	310	345	455			
В	411	286	403	433			
С	356	303	414	322			
D	278	211	367	288			
E							
F							
G							
Н							
1							
NO. OF READ	NNGS =	16	AVERAGE FF	PM =	345		
J							
K							
L							
M							
N							
0							
Р							
Q							
R							
TECHNICIAN:	Greg Mílli	er					

Address: Chelsea, MA

Date: 4/27/2021 **Project No.** 21-012

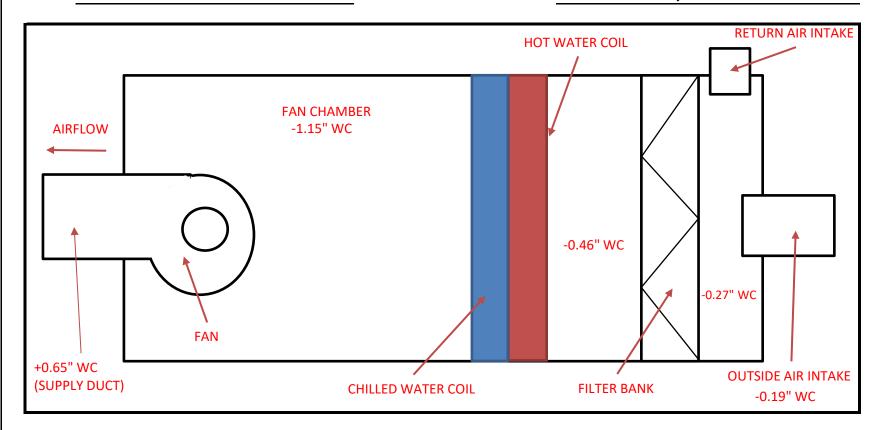
Date: 4/27/202	21		Project No.	21-012		
	F	AN DATA SHEET				
	FAN	NO. RAF-3	FAN	NO. RAF-4		
Serves / Location:	Court Rm #5 / Baser	ment Mech	Court Rm #4 / Baser	Court Rm #4 / Basement Mech		
Manufacturer:	Penn		York			
Model Number:	REX-20B		BA0061420			
Size:	NL		NL			
Serial Number:	NL		DLGM-09009B			
MOTOR	DESIGN	TESTED	DESIGN	TESTED		
Manufacturer:	NL	US Motors	NL	Dayton		
Frame Number:	NL	145T	NL	182T		
Horsepower:	NL	2	NL	3		
Brake Horsepower:	NL	NA	NL	NA		
Safety Factor:	NL	1.15	NL	1.15		
Volts/Phase:	460/3	460/3	460/3	460/3		
Motor Amperage:	2.8	,2.0/2.2/2.1	4	2.7/2.6/2.6		
Motor RPM:	1740	1765	1740	1755		
Speeds:	1	1	1	1		
Heater Size:	NL	NA	NL	NA		
Heater Amps.:	NL	NA	NL	NA		
FAN	DESIGN	TESTED	DESIGN	TESTED		
Supply Air CFM:						
Return Air CFM:	2551	2106	1700	1650		
Exhaust Air CFM:						
Outside Air CFM:						
Suction Pressure:						
Discharge Pressure:						
Fan Static Pressure:						
External Pressure:				<u> </u>		
RPM	DESIGN	TESTED	DESIGN	TESTED		
Fan RPM:	NL		NL			
Motor Drive:	NL	1VL44	NL	1VL44		
Motor Size/Bore:	NL	7/8"	NL	1 1/8"		
Fan Drive:	NL	INLINE	NL	AK39		
Fan Size/Bore:	NL	INLINE	NL	3/4"		
Belt Size / Number:	NL	A52 / 1	NL	AX43 / 1		
Shafts C-C:	NL	20"	NL	16.5"		
Turns Open:	NL	1	NL	1		
Comments:						

Comments:

Address: Chelsea, MA

Date: 4/27/202	21		Project No.	21-012		
	F.	AN DATA SHEET				
	FAN	NO. AHU-5	FAN	NO. AHU-6		
Serves / Location:	Court Rm #2 / Base	ment Mech.				
Manufacturer:	York		York	York		
Model Number:	CSI50F0FCII10X9		BA0001220			
Size:	NL		NL			
Serial Number:	CKGM-024076		DNFM - 05006B			
MOTOR	DESIGN	TESTED	DESIGN	TESTED		
Manufacturer:	NL	Marathon	NL	AO Smith		
Frame Number:	NL	213T	NL	S182T		
Horsepower:	NL	7.5	NL			
Brake Horsepower:	NL	NA	NL	NA		
Safety Factor:	NL	1.15	NL	1.15		
Volts/Phase:	460/3	460/3	460/3	477		
Motor Amperage:	9.8	3.1/2.9/3.2	4.3	3.4		
Motor RPM:	1760	1776	1765	1775		
Speeds:	1	1	VFD	60 Hz		
Heater Size:	NL	IA-70	NL	IA		
Heater Amps.:	NL	NA	NL	IA		
FAN	DESIGN	TESTED	DESIGN	TESTED		
Supply Air CFM:	2100	2276	1700	1501		
Return Air CFM:						
Exhaust Air CFM:						
Outside Air CFM:	1150	*1	930	896 *2		
Suction Pressure:						
Discharge Pressure:						
Fan Static Pressure:						
External Pressure:						
RPM	DESIGN	TESTED	DESIGN	TESTED		
Fan RPM:	NL	NA	NL	NA		
Motor Drive:	NL	AK28	NL	1VM50		
Motor Size/Bore:	NL	7/8"	NL	1 1/8"		
Fan Drive:	NL	AK41	NL	AK32		
Fan Size/Bore:	NL	3/4"	NL	3/4"		
Belt Size / Number:	NL	A44 / 1	NL	AX46 / 1		
Shafts C-C:	NL	17 3/4"	NL	27"		
Turns Open:	NL	FIXED	NL	3		

Comments: *1 OSA Damper is getting hung up and won't move.

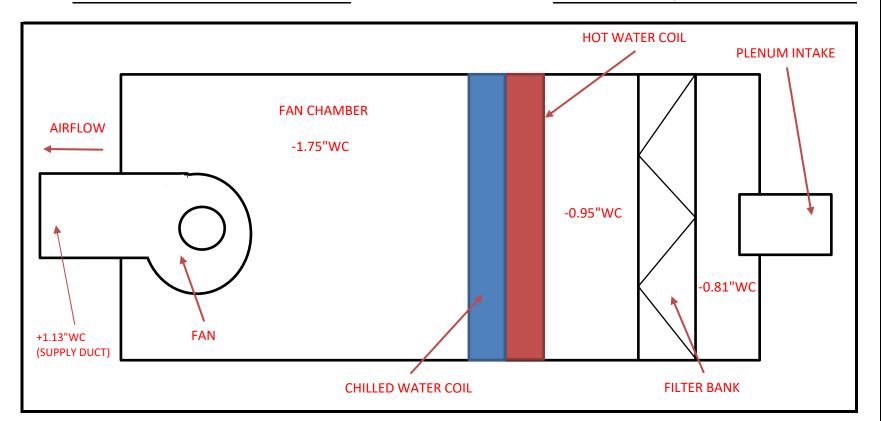

^{*2} Mininmum OSA Damper set for 65%

Address: Chelsea, MA

Date: 4/27/2021 Project No. 21-012

STATIC PRESSURE PROFILE

Device: AHU-4 Technician: G. Miller


Comments:

Address: Chelsea, MA

Date: 4/27/2021 Project No. 21-012

STATIC PRESSURE PROFILE

Device: AHU-6 Technician: G. Miller

Comments:

•	Chelsea Trial Cour	t					
	Chelsea, MA 4/27/2021				Project No.	21	-012
			TRAVERSE	DATA			
CVCTEM, ALILI	F		IKAVEKSE		· NIIIMDED .	Т 1	
SYSTEM: AHU-	-5				: NUMBER : : LOCATION:	T-1 SUPPLY	
DUCT SIZE (RO	OUND)		" DIAMETER	R		Sq Ft =	0.00
DUCT SIZE (RE		30	" WIDTH x	14"	DEPTH	Sq Ft =	2.92
AIR DENSITY [_						
STATIC PRESS	<u> </u>	0.65 ln			DESIGN		2100
DUCT AIR TEM	-	70 De			ACTUAL		2276
BAROMETRIC PRESS: 29.92 In Hg. SCFM= 2281					2281		
AIR DENSITY RATIO CORRECTION = 1.00							
	CTION FACTOR		1.00				
ACTUAL DENS			0.075		_		_
TEST HOLE	1	2	3	4	5	6	7
A	929	863	754	667	682		
В	737	687	833	822	738		
С	1046	700	692	800	754		
D							
E							
F					_		
G	—				_		
H I	-						
NO. OF READI	NGS =	15	AVERAGE FF	PM =	780		
J						1	<u> </u>
K							
L							
М							
N							
0							
Р							
Q							
R							
TECHNICIAN:	Greg Mílle	CY					

Address:	Chelsea Trial Cou Chelsea, MA 4/27/2021	urt			Project No.	21-0	012
			TRAVERSE	DATA			
SYSTEM: AHU-	5			TRAVERSE TRAVERSE	NUMBER : LOCATION:	T-1 OSA	
DUCT SIZE (RC DUCT SIZE (RE		44	" DIAMETER		DEPTH	Sq Ft = Sq Ft =	0.00 4.89
AIR DENSITY D STATIC PRESS DUCT AIR TEM BAROMETRIC I	6 @ CL: P :	0.57 In 70 D 29.92 In	eg F		DESIGN ACTUAL SO		1150 #DIV/0! #DIV/0!
AIR DENSITY RATIO CORRECTION = 1.00 SCFM CORRECTION FACTOR 1.00 ACTUAL DENSITY 0.075 TEST HOLE 1 2 3 4 5				6	7		
A B C D E F G H							
NO. OF READIN K L M N O P Q R	NGS =	0	AVERAGE F	PM =	#DIV/0!		
TECHNICIAN:	Greg Míll	er	_				

Project: Address:	Chelsea Trial (Chelsea, MA	Court					
Date:	4/27/2021				Project No.	21	-012
			TRAVERSE	DATA			
SYSTEM: AH	U-6				RSE NUMBER : RSE LOCATION:	T-1 SUPPLY	
DUCT SIZE (I DUCT SIZE (I		20	" DIAMETER	R 12	" DEPTH	Sq Ft = Sq Ft =	0.00 1.67
DUCT AIR TEMP : 7			nWg. Deg F n Hg.		DESIGN ACTUAL S		1700 1501 1504
AIR DENSITY RATIO CORRECTION = 1.00 SCFM CORRECTION FACTOR 1.00 ACTUAL DENSITY 0.075							
TEST HOLE	1	2	3	4	5	6	7
Α	1544	903	279				
В	1536	620	153				
С	1706	587	84				
D	1411	1646	336				
E							
F							
G							
Н							
1							
NO. OF REAL	DINGS =	12	AVERAGE F	PM =	900		
J			T				
K							
L							
М							
N							
0							
Р						1	
Q						1	
R							
TECHNICIAN	: Greg M	íller	_				

Project: Address:	Chelsea Trial C	Court					
Date:	4/27/2021				Project No.	21-	012
			TRAVERSE	DATA			
SYSTEM: AH	U-6				E NUMBER : E LOCATION:	T-1 OSA	
DUCT SIZE (F		24	" DIAMETER		' DEPTH	Sq Ft = Sq Ft =	0.00 2.67
			nWg. Deg F n Hg.		DESIGN ACTUAL S		930 896 896
AIR DENSITY RATIO CORRECTION = 1.00 SCFM CORRECTION FACTOR 1.00 ACTUAL DENSITY 0.075							
TEST HOLE	1	2	3	4	5	6	7
Α	323	411	376	417			
В	288	302	389	388			
С	303	245	404	301			
D	277	313	321	319			
E							
F							
G							
Н							
1							
NO. OF READ	DINGS =	16	AVERAGE FI	PM =	336		
J							
K							
L							
M							
N							
0							
Р							
Q							
R							
TECHNICIAN	: Greg Mi	íller	_				

Address: Chelsea, MA
Date: 4/27/2021

Project No. 21-012

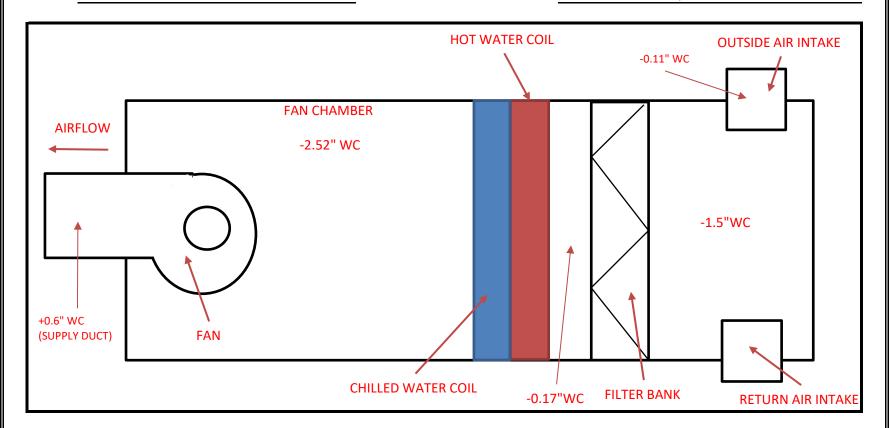
Date: 4/27/202	<u> </u>		Project No.	21-012		
	F.	AN DATA SHEET				
	FAN	NO. RAF-5	FAN	NO. RAF-6		
Serves / Location:	Court Rm #2 / Base	ment Mech.	Court Rm #4 / Basen	Court Rm #4 / Basement Mech		
Manufacturer:	York		PENN	PENN		
Model Number:	CSI50F0GCII10X9		REX-20B			
Size:	NL		NL			
Serial Number:	GKGM-024077		NL			
MOTOR	DESIGN	TESTED	DESIGN	TESTED		
Manufacturer:	NL	Magnetek	NL	US MOTORS		
Frame Number:	NL	N143T	NL	143T		
Horsepower:	NL	1	NL	1		
Brake Horsepower:	NL	NA	NL	NA		
Safety Factor:	NL	1.15	NL	1.15		
Volts/Phase:	460/3	460/3	460/3	460/3		
Motor Amperage:	1.35	1.0/1.1/1.0	1.5	1.1/1.0/1.1		
Motor RPM:	1745	1753	1755	1762		
Speeds:	1	1	VFD	1		
Heater Size:	NL	NA	NL	IA		
Heater Amps.:	NL	NA	NL	IA		
FAN	DESIGN	TESTED	DESIGN	TESTED		
Supply Air CFM:						
Return Air CFM:	2100	1847	1700	1155		
Exhaust Air CFM:						
Outside Air CFM:						
Suction Pressure:						
Discharge Pressure:						
Fan Static Pressure:						
External Pressure:						
RPM	DESIGN	TESTED	DESIGN	TESTED		
Fan RPM:	NL	NA	NL	NA		
Motor Drive:	NL	AK28	NL	1VL40		
Motor Size/Bore:	NL	7/8"	NL	7/8"		
Fan Drive:	NL	AK41	NL	INLINE		
Fan Size/Bore:	NL	3/4"	NL	INLINE		
Belt Size / Number:	NL	A45 / 1	NL	A53 / 1		
Shafts C-C:	NL	18"	NL	20"		
Turns Open:	NL	FIXED	NL	1		
Belt Size / Number: Shafts C-C: Turns Open: Comments:	NL	18"	NL	20"		

Chelsea Trial Court

Project: Address: Chelsea, MA

Date: 4/27/202	21		Project No.	21-012
	F.	AN DATA SHEET	-	
	FAN	NO. AHU-7	FAN	NO. AHU-8
Serves / Location:	1st FI VAV's / Baser	ment Mech	2nd FI VAV's / Baser	ment Mech
Manufacturer:	York		York	
Model Number:	BA0061430		BA0061430	
Size:	NL		NL	
Serial Number:	DLGM-09010B		DLGM - 09005B	
MOTOR	DESIGN	TESTED	DESIGN	TESTED
Manufacturer:	NL	Baldor	NL	Baldor
Frame Number:	NL	215T	NL	215T
Horsepower:	NL	10	NL	10
Brake Horsepower:	NL	NA	NL	NA
Safety Factor:	NL	1.15	NL	1.15
Volts/Phase:	460/3	460	460/3	460
Motor Amperage:	12.5	12.5	12.5	12.5
Motor RPM:	1770	1752	1770	1675
Speeds:	VFD	VFD 60 Hz		56.7 Hz
Heater Size:	NL	NL IA		IA
Heater Amps.:	NL	NL IA		IA
FAN	DESIGN	TESTED	DESIGN	TESTED
Supply Air CFM:	7986	8791	8487	8576
Return Air CFM:				
Exhaust Air CFM:				
Outside Air CFM:	4300	4208 *1	4600	*2
Suction Pressure:				
Discharge Pressure:				
Fan Static Pressure:				
External Pressure:				
RPM	DESIGN	TESTED	DESIGN	TESTED
Fan RPM:	NL	NA	NL	NA
Motor Drive:	NL	8450M	NL	2BK57
Motor Size/Bore:	NL	1 1/8"	NL	QT 1 3/8"
Fan Drive:	NL	BK105	NL	2BK80
Fan Size/Bore:	NL	QT 1 3/16"	NL	QT 1 7/16"
Belt Size / Number:	NL	BX53 / 2	NL	B50 / 2
Shafts C-C:	NL	16.5"	NL	16"
Turns Open:	NL	3	NL	FIXED

Comments: *1 Mininmum OSA Damper set for 65%


*2 OSA Damper does not move.

Address: Chelsea, MA

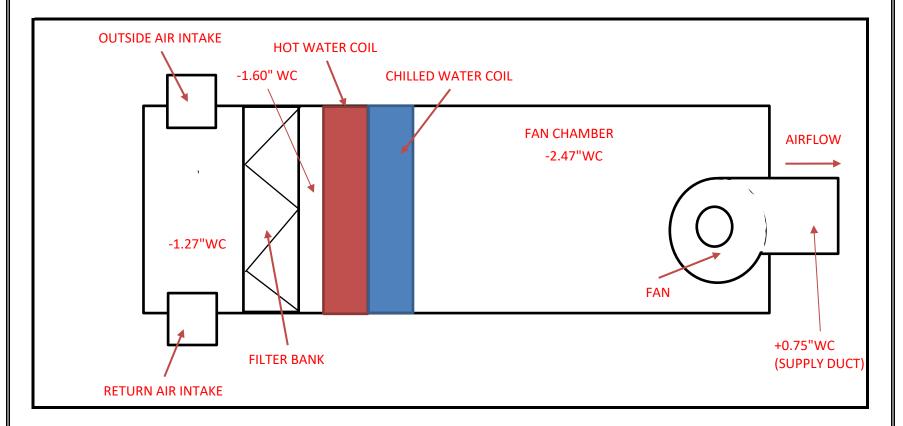
Date: 4/27/2021 Project No. 21-012

STATIC PRESSURE PROFILE

Device: AHU-7 Technician: G. Willer

Comments: *FILTERS ARE CONSIDERABLY LOADED

**COILS ARE DIRTY


Address: Chelsea, MA

Date: 4/27/2021

Project No. 21-012

STATIC PRESSURE PROFILE

Device: AHU-8 Technician: G. Willer

Comments: *FILTERS ARE CONSIDERABLY LOADED

**COILS ARE DIRTY

Project: Address:	Chelsea Trial Coul Chelsea, MA	rt					
Date:	4/27/2021				Project No.	21-	-012
		-	TRAVERSE	DATA			
SYSTEM: AHI	J-7				E NUMBER : E LOCATION:	T-1 SUPPLY	
DUCT SIZE (ROUND) DUCT SIZE (RECT.) 24			" DIAMETER		" DEPTH	Sq Ft = Sq Ft =	0.00 6.67
DUCT AIR TEMP : 70		1.08 ln 70 De 29.92 ln	eg F		DESIGN ACTUAL S		7986 8762 8791
	RATIO CORRECTI ECTION FACTOR ISITY	ON =	1.00 1.00 0.075				
TEST HOLE	1	2	3	4	5	6	7
Α	1427	1569	2011	1956			
В	1289	1417	1630	2047			
С	1525	1007	1428	1879			
D	1385	1252	1354	1625			
Е	1447	1216	1193	1328			
F	1188	829	322	1524			
G	894	477	0	1583			
Н							
1							
NO. OF READ	DINGS =	28	AVERAGE FF	PM =	1314		
J							
K							
L							
M							
Ν							
0							
Р							
Q							
R							
TECHNICIAN:	: Greg Mille	PY .	-				

Address:	Chelsea Trial Cour Chelsea, MA 4/27/2021	t			Project No.	21-	-012
		-	TRAVERSE	DATA			
SYSTEM: AHU-	7			TRAVERSE	NUMBER :	T-1	
				TRAVERSE	LOCATION:	OSA	
DUCT SIZE (ROUND) DUCT SIZE (RECT.) 24		24	" DIAMETER		' DEPTH	Sq Ft = Sq Ft =	0.00 6.00
AIR DENSITY DATA STATIC PRESS @ CL: -0.14 DUCT AIR TEMP : 70 BAROMETRIC PRESS : 29.93			eg F		DESIGN ACTUAL S		4300 4208 4209
AIR DENSITY RATIO CORRECTION : SCFM CORRECTION FACTOR ACTUAL DENSITY		ON =	1.00 1.00 0.075				
TEST HOLE	1	2	3	4	5	6	7
Α	677	721	822	810			
В	543	833	833	665			
С	614	845	765	689			
D	456	877	802	655			
E	567	676	611	566			
F							
G							
Н							
I							
NO. OF READII	NGS =	20	AVERAGE FF	PM =	701		
J							
K							
L							
M							
N							
0							
Р							
Q							
R							
TECHNICIAN:	Greg Mílle	lY .	-				

Project: Address: Date:	Chelsea Trial Co Chelsea, MA 4/27/2021	urt			Project No.	21-0	12
			_				
		•	TRAVERSE				
SYSTEM: AH	U-8			TRAVERSE		T-1 SUPPLY	
			" DIAMETER		DEPTH	Sq Ft = Sq Ft =	0.00 7.00
AIR DENSITY DATA STATIC PRESS @ CL: 0.76 InWg. DUCT AIR TEMP : 70 Deg F BAROMETRIC PRESS : 29.92 In Hg.			DESIGN (ACTUAL SC		8487 8576 8597		
	' RATIO CORRECT ECTION FACTOR ISITY	ION =	1.00 1.00 0.075				
TEST HOLE	1	2	3	4	5	6	7
Α	1655	1433	1345	1456	1100	1344	
В	1566	1211	1312	1327	987	1278	
С	1476	1010	1001	1210	1211	1311	
D	1211	1098	899	908	1066	988	
E							
F							
G							
Н							
I							
NO. OF REAL	DINGS =	24	AVERAGE FF	PM =	1225		
J							
K							
L							
M							
N							
0							
Р							
Q							
R			-				
TECHNICIAN	: Greg Míll	er_	-				

Address:	Chelsea Trial Cou Chelsea, MA 4/27/2021	rt			Project No.	21-(012
		i	TRAVERSE	DATA			
SYSTEM: AHU-8	8				NUMBER :	T-1 OSA	_
DUCT SIZE (ROUND) DUCT SIZE (RECT.)		56	" DIAMETEI " WIDTH x		DEPTH	Sq Ft = Sq Ft =	0.00 5.44
AIR DENSITY D STATIC PRESS DUCT AIR TEMI BAROMETRIC F	@ CL: P :	70 D 29.92 In		DESIGN CFM = 4 ACTUAL CFM = #DIV			
AIR DENSITY R SCFM CORREC ACTUAL DENSI TEST HOLE		ON =	1.00 1.00 0.075 3	4	5	6	7
A B C D E F G H							
NO. OF READIN	IGS =	0	AVERAGE F	PM =	#DIV/0!	ı	,
J K L M N O P Q R							
TECHNICIAN:	Greg Míll	er	_				

Address: Chelsea, MA

Date: 4/27/2021

ate: 4/27/2021 Project No. 21-012

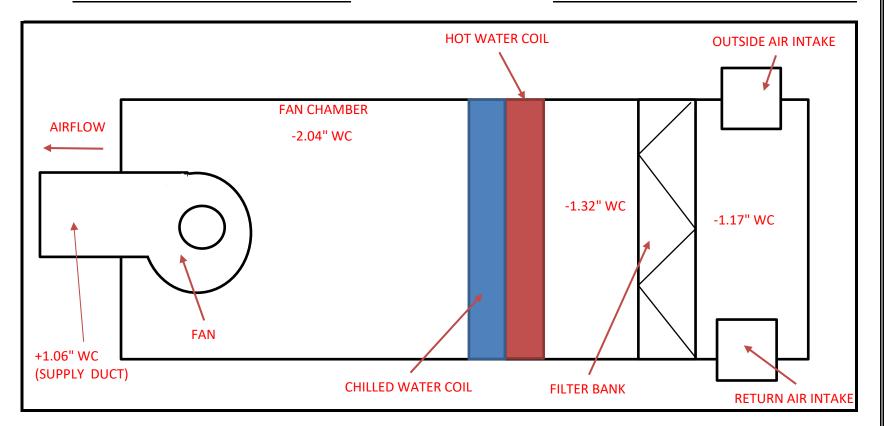
Date: 4/27/202	21		Project No.	21-012		
	F.	AN DATA SHEET	-			
	FAN	NO. RAF-7	FAN	NO. RAF-8		
Serves / Location:	1st Fl Return / Base	ment Mech	2nd Fl Return / Base	ment Mech		
Manufacturer:	York		York	York		
Model Number:	BA0061430		CA0060830			
Size:	NL		NL			
Serial Number:	DLGM-09010B		DLGM - 090028B			
MOTOR	DESIGN	TESTED	DESIGN	TESTED		
Manufacturer:	NL	Magnetek	NL	Magnetek		
Frame Number:	NL	S184T	NL	S184T		
Horsepower:	NL	5	NL	5		
Brake Horsepower:	NL	NA	NL	NA		
Safety Factor:	NL	1.15	NL	1.15		
Volts/Phase:	460/3	460/3	460/3	460/3		
Motor Amperage:	7	4.1/4.0/3.9	7	5.1/4.9/5.0		
Motor RPM:	1745	1752	1745	1755		
Speeds:	VFD	60 Hz	VFD	60 Hz		
Heater Size:	NL	IA	NL	IA		
Heater Amps.:	NL	IA	NL	IA		
FAN	DESIGN	TESTED	DESIGN	TESTED		
Supply Air CFM:						
Return Air CFM:	7986	5820	8487	8978		
Exhaust Air CFM:						
Outside Air CFM:						
Suction Pressure:						
Discharge Pressure:						
Fan Static Pressure:						
External Pressure:						
RPM	DESIGN	TESTED	DESIGN	TESTED		
Fan RPM:	NL	NA	NL	NA		
Motor Drive:	NL	1VP50	NL	1VP50		
Motor Size/Bore:	NL	1 1/8"	NL	1 1/8"		
Fan Drive:	NL	BK105H	NL	AK124		
Fan Size/Bore:	NL	H 1/316"	NL	1 3/16"		
Belt Size / Number:	NL	BX53 / 1	NL	AX60 / 1"		
Shafts C-C:	NL	16.5"	NL	17.5"		
Turns Open:	NL	1	NL	1		
Comments:						

Address: Chelsea, MA

Date: 4/27/202	<u></u>		Project No.	21-012
	F	AN DATA SHEET	1	
	FAN	NO. AHU-9	FAN N	NO. AHU-10
Serves / Location:	3rd Floor VAV's / Ba	asement Mech	Basement West VA\	V's / Basement Mech
Manufacturer:	York		York	
Model Number:	CA0061433		BA0061230	
Size:	NL		NL	
Serial Number:	DLGM-09026B		DLGM-09007B	
MOTOR	DESIGN	TESTED	DESIGN	TESTED
Manufacturer:	NL	Marathon	NL	AO Smith
Frame Number:	NL	213T	NL	S213T
Horsepower:	NL	7.5	NL	10
Brake Horsepower:	NL	NA	NL	NA
Safety Factor:	NL	1.15	NL	1.15
Volts/Phase:	460/3	460/3	460/3	460/3
Motor Amperage:	9.8	9.6/9.8/9.6	9.7	9.1
Motor RPM:	1760	1777	1760	1769
Speeds:	VFD	60 Hz	VFD	60Hz
Heater Size:	NL	IA	NL	IA
Heater Amps.:	NL	IA	NL	IA
FAN	DESIGN	TESTED	DESIGN	TESTED
Supply Air CFM:	8938	7811	7709	8311
Return Air CFM:				
Exhaust Air CFM:				
Outside Air CFM:	4900	4760 *1	4200	4060 *2
Suction Pressure:				
Discharge Pressure:				
Fan Static Pressure:				
External Pressure:				
RPM	DESIGN	TESTED	DESIGN	TESTED
Fan RPM:	NL	NA	NL	NA
Motor Drive:	NL	8600L	NL	7" OD
Motor Size/Bore:	NL	1 3/8"	NL	1 3/8"
Fan Drive:	NL	BK120	NL	8 3/4" OD
Fan Size/Bore:	NL	1 3/16"	NL	SK 1 3/16"
Belt Size / Number:	NL	BP57 /1	NL	BX59 / 2
Shafts C-C:	NL	15 1/2"	NL	19 1/4"
Turns Open:	NL	3	NL	3

Comments: *1 Mininmum OSA Damper set for 30%

*2 Mininmum OSA Damper set for 45%


Device: AHU-9 Technician: G.Miller HOT WATER COIL RETURN AIR INTAKE FAN CHAMBER -1.45" WC -0.9" WC OUTSIDE AIR INTAKE OUTSIDE AIR INTAKE	Address:	Chelsea Trial Court Chelsea, MA 4/27/2021		Project No. 21-012
AIRFLOW FAN CHAMBER -1.45" WC -0.9" WC +1.4" WC			STATIC PRESSURE PROFILE	
AIRFLOW FAN CHAMBER -1.45" WC -0.9" WC -0.83" WC	Device:	AHU-9	Technician:	G.Miller
Comments: *FILTERS ARE CONSIDERABLY LOADED	+1.4" WC (SUPPLY D	-1.45" V	CHILLED WATER COIL	-0.9" WC

Project:	Chelsea Trial Court
Address:	Chelsea, MA

Date: 4/27/2021 Project No. 21-012

STATIC PRESSURE PROFILE

Device: AHU-10 Technician: G.Willer

Comments: *FILTERS ARE CONSIDERABLY DIRTY

**COILS ARE DIRTY

Address:	Chelsea Trial Cour Chelsea, MA 4/27/2021	t			Project No.	21-0	112
		-	TRAVERSE	DATA			
SYSTEM: AHU-	-9			TRAVERSE		T-1	
				TRAVERSE	LOCATION:	SUPPLY	
DUCT SIZE (ROUND) DUCT SIZE (RECT.) 48		" DIAMETER		DEPTH	Sq Ft = Sq Ft =	0.00	
AIR DENSITY DATA STATIC PRESS @ CL: 1.17 InWg. DUCT AIR TEMP : 70 Deg F BAROMETRIC PRESS : 29.92 In Hg.		ACTUAL CFM = 7784			7709 7784 7811		
	RATIO CORRECTION CTION FACTOR ITY	ON =	1.00 1.00 0.075				
TEST HOLE	1	2	3	4	5	6	7
Α	514	620	744	1071	1117	1505	
В	533	286	605	817	1215	1476	
С	384	640	733	624	1043	1686	
D	1019	1057	1290	1381	1278	1715	
E							
F							
G							
Н							
I							
NO. OF READII	NGS =	24	AVERAGE FF	PM =	973		
J							
K							
L							
M							
N							
0							
Р							
Q							
R							
TECHNICIAN:	Greg Mille	lY.	-				

Project: Address:	Chelsea Trial Cou Chelsea, MA	rt			Duning No.	04.0	40
Date:	4/27/2021				Project No.	21-0	12
		•	TRAVERSE	DATA			
SYSTEM: AH	U-9			TRAVERSE TRAVERSE		T-1 OSA	
			" DIAMETER		DEPTH	Sq Ft = Sq Ft =	0.00 9.17
AIR DENSITY DATA STATIC PRESS @ CL: -0.16 InWg. DUCT AIR TEMP : 70 Deg F BAROMETRIC PRESS : 29.92 In Hg.				DESIGN (ACTUAL SC		4900 4760 4761	
	RATIO CORRECTI ECTION FACTOR ISITY	ON =	1.00 1.00 0.075				
TEST HOLE	1	2	3	4	5	6	7
Α	421	676	711	456	523	611	699
В	440	533	636	502	488	478	466
С	501	522	588	477	377	367	432
D							
E							
F							
G							
Н							
I							
NO. OF READ	DINGS =	21	AVERAGE FF	PM =	519		
J							
K							
L							
M							
N							
0							
Р							
Q							
R							
TECHNICIAN	: Greg Míll	er	-				

Project: Address: Date:	Chelsea Trial Co Chelsea, MA 4/27/2021	ourt			Project No.	21-0	12
	1,21,2021						
		•	TRAVERSE	DATA			
SYSTEM: AH	U-10			TRAVERSE TRAVERSE		T-1 SUPPLY	
			" DIAMETER		DEPTH	Sq Ft = Sq Ft =	0.00 6.50
AIR DENSITY DATA STATIC PRESS @ CL: 0.95 DUCT AIR TEMP : 70 BAROMETRIC PRESS : 29.92			eg F		DESIGN (ACTUAL SO		7709 8287 8311
	' RATIO CORREC' ECTION FACTOR ISITY		1.00 1.00 0.075				
TEST HOLE	1	2	3	4	5	6	7
Α	2473	2139	1328	1486	589	0	0
В	2851	2145	1681	1318	734	0	0
С	2987	2781	1790	823	517	219	0
D	3393	3217	2544	684	0	0	0
Е							
F							
G							
Н							
I							
NO. OF REAL	DINGS =	28	AVERAGE FF	PM =	1275		
J							
K							
L							
M							
N							
0							
Р							
Q							
R							
TECHNICIAN	: Greg Míl	ler	-				

Project:	Chelsea Trial Cou	rt					
Address: Date:	Chelsea, MA 4/27/2021				Project No.	21-0	12
	,,_,,_,				,		
		-	TRAVERSE	DATA			
SYSTEM: AHU	J-10			TRAVERSE		T-1	
				TRAVERSE	LOCATION:	OSA	
DUCT SIZE (R	OLIND)		" DIAMETER	•		Sq Ft =	0.00
DUCT SIZE (R DUCT SIZE (R	· · · · · · · · · · · · · · · · · · ·	56	" WIDTH x		DEPTH	Sq Ft =	6.22
DOOT SIZE (IX			WIDTITA		DEI III	54 T L =	0.22
AIR DENSITY	DATA						
STATIC PRES	S @ CL:	-0.18 In	Wg.		DESIGN (CFM =	4200
DUCT AIR TEN	MP :	70 De	eg F		ACTUAL	CFM =	4059
BAROMETRIC	PRESS:	29.92 In	Hg.		SC	CFM=	4060
AID DENGITY	RATIO CORRECTI	ON -	1.00				
	CTION FACTOR	ON =	1.00				
ACTUAL DENS			0.075				
TEST HOLE	1	2	3	4	5	6	7
A	766	811	701	765	833	822	765
В	802	745	789	655	711	823	656
С	354	333	523	477	411	502	456
D							
E							
F							
G							
Н							
I							
NO. OF READI	INGS =	21	AVERAGE FF	PM =	652		
J K							
L							
M							
N							
0							
Р							
Q Q							
R							
TECHNICIAN:	Greg Mille	er					

Address: Chelsea, MA

Date: 4/27/2021

ate: 4/27/2021 Project No. 21-012

Date: 4/27/202	21		Project No.	21-012		
	F.	AN DATA SHEET	-			
	FAN NO. RAF-9			FAN NO. RAF-10		
Serves / Location:	3rd Floor Return / B	asement Mech	Basement West VAV	Basement West VAV's / Basement Mech		
Manufacturer:	York		York			
Model Number:	CA0061433		BA0061230			
Size:	NL		NL			
Serial Number:	DLGM-09026B		DLGM-09007B			
MOTOR	DESIGN	TESTED	DESIGN	TESTED		
Manufacturer:	NL	Marathon	NL	AO Smith		
Frame Number:	NL	213T	NL	S184Y		
Horsepower:	NL	7.5	NL	5		
Brake Horsepower:	NL	NA	NL	NA		
Safety Factor:	NL	1.15	NL	1.15		
Volts/Phase:	460/3	460/3	460/3	460/3		
Motor Amperage:	9.8	7.1/6.9/6.9	6.8	5.0/5.3/5.2		
Motor RPM:	1760	1781	1760	1777		
Speeds:	VFD	60 Hz	VFD	60 Hz		
Heater Size:	NL	IA	NL	IA		
Heater Amps.:	NL	IA	NL	IA		
FAN	DESIGN	TESTED	DESIGN	TESTED		
Supply Air CFM:						
Return Air CFM:	8938	7095				
Exhaust Air CFM:						
Outside Air CFM:						
Suction Pressure:						
Discharge Pressure:						
Fan Static Pressure:						
External Pressure:						
RPM	DESIGN	TESTED	DESIGN	TESTED		
Fan RPM:	NL	NA	NL	NA		
Motor Drive:	NL	1VP60"	NL	8400M		
Motor Size/Bore:	NL	1 3/8"	NL	1 1/8"		
Fan Drive:	NL	BK120	NL	BK95		
Fan Size/Bore:	NL	1 3/16"	NL	QT 1 3/16"		
Belt Size / Number:	NL	BP57 /1	NL	BX50 / 1		
Shafts C-C:	NL	15 1/2"	NL	15 1/2"		

Address: Chelsea, MA

Motor Amperage:

Motor RPM:

Fan Size/Bore:

Shafts C-C:

Turns Open:

Belt Size / Number:

Speeds:

Date: 4/27/2021 **Project No.** 21-012

	F	AN DATA SHEET		
	FAN I	FAN NO.		
Serves / Location:	1st Floor East VAV	s / Basement Mech		
Manufacturer:	York			
Model Number:	BA0061232			
Size:	NL			
Serial Number:	DLGM-09008B	DLGM-09008B		
MOTOR	DESIGN	TESTED	DESIGN	TESTED
Manufacturer:	NL	Marathon		
Frame Number:	NL	213T		
Horsepower:	NL	7.5		
Brake Horsepower:	NL	NA		
Safety Factor:	NL	1.15		
Volts/Phase:	460/3	460/3		

10.1/9.9/9.7

1756

60Hz

Heater Size:	NL	IA		
Heater Amps.:	NL	IA		
FAN	DESIGN	TESTED	DESIGN	TESTED
Supply Air CFM:	9500	9876		
Return Air CFM:				
Exhaust Air CFM:				
Outside Air CFM:	5200	5472 *1		
Suction Pressure:				
Discharge Pressure:				
Fan Static Pressure:				
External Pressure:				
RPM	DESIGN	TESTED	DESIGN	TESTED
Fan RPM:	NL	NA		
Motor Drive:	NL	8600L		
Motor Size/Bore:	NL	1 3/8"		
Fan Drive:	NL	BK130		

Comments: *1 Mininmum OSA Damper set for 50%

NL

NL

NL

NL

9.8

1760

VFD

SK 1 3/16"

BX59/2

23"

2

Project: Chelsea Trial Court Address: Chelsea, MA Date: 4/27/2021	Project No.	21-012
STATIC	PRESSURE PROFILE	
Device: AHU-11	Technician:	G.Miller
AIRFLOW -2.72" WC	HOT WATER COIL -1.41" WC	OUTSIDE AIR INTAKE
1.17" WC (SUPPLY DUCT) CHILLED Comments: *FILTERS ARE CONSIDERABLY DIRTY	WATER COIL FILTER BANK	RETURN AIR INTAKE

Address:	Chelsea Trial Cou Chelsea, MA 4/27/2021	t			Project No.	21-	012
		-	TRAVERSE	DATA			
SYSTEM: AHU-	11				NUMBER :	T-1	
				TRAVERSE	LOCATION:	SUPPLY	_
DUCT SIZE (RC DUCT SIZE (RE	-	20	" DIAMETER	74"	DEPTH	Sq Ft = Sq Ft =	0.00
AIR DENSITY D							
STATIC PRESS		0.83 ln	=		DESIGN		9500
DUCT AIR TEM BAROMETRIC		70 De	•		ACTUAL		9850
BAROMETRIC	PRESS:	29.92 In	нg.		5	CFM=	9876
SCFM CORREC	RATIO CORRECTION FACTOR	ON =	1.00				
ACTUAL DENS		0	0.075	4	Г	0	7
TEST HOLE A	1 988	2 1021	3 1211	4 1345	5 1178	6	7
В	877	1120	1102	1278	1176		
С	656	976	1076	1190	1256		+
D	754	956	988	1023	910		
Е	845	788	877	977	989		
F	902	902	788	899	798		
G	921	865	863	907	876		
Н	988	765	907	866	949		
1	966	811	899	801	967		
NO. OF READIN	NGS =	45	AVERAGE FF	PM =	958		
J							
K							
L							
М							
N	-						+
0							
P							1
Q	 						+
R							
TECHNICIAN:	Greg Mílle	2Y	-				

Project:	Chelsea Trial Cou	rt					
Address:	Chelsea, MA				Duningt No	04.0	40
Date:	4/27/2021				Project No.	21-0	112
		-	TRAVERSE	DATA			
SYSTEM: AF	HU-11			TRAVERSE		T-2	
				TRAVERSE	LOCATION:	OSA	
DUCT SIZE ((BOLIND)		" DIAMETER)		Sq Ft =	0.00
DUCT SIZE (· · · · · · · · · · · · · · · · · · ·	70	" WIDTH x		DEPTH	Sq Ft =	9.72
DOOT GIZE ((INLOT)	10	WIDTITA			0411-	5.12
AIR DENSIT	Y DATA						
STATIC PRE	SS @ CL:	-0.22 In	Wg.		DESIGN	CFM =	5200
DUCT AIR T	EMP :	70 De	eg F		ACTUAL	CFM =	5472
BAROMETR	IC PRESS :	29.92 In	Hg.		SC	CFM=	5472
AID DENCIT	Y RATIO CORRECTI	ON	1.00				
	RECTION FACTOR	ON =	1.00				
ACTUAL DE			0.075				
TEST HOLE		2	3	4	5	6	7
Α	692	619	823	658	851	819	739
В	636	841	725	505	540	381	555
C	426	114	181	254	256	151	435
D							
Е							
F							
G							
Н							
1							
NO. OF REA	.DINGS =	30	AVERAGE F	PM =	563		
J	734	723	733				
K	635	564	939				
L	330	331	694				
M							
N							
0							
Р							
Q							
R							
TECHNICIAN	N: Greg Míll	er					
			-				

Address: Chelsea, MA

21		Project No.	21-012
F.	AN DATA SHEET		
FAN I	NO. RAF-11	FAN	NO.
1st Floor East Retur	n / Basement Mech		
York			
BA0061232			
NL			
DLGM-09008B			
DESIGN	TESTED	DESIGN	TESTED
NL	Marathon		
NL	213T		
NL	7.5		
NL	NA		
NL	1.15		
460/3	460/3		
9.8	7.1/6.8/7.7		
1760	1778		
VFD	60 Hz		
NL	IA		
NL	IA		
DESIGN	TESTED	DESIGN	TESTED
9500	10247		
DESIGN	TESTED	DESIGN	TESTED
NL	NA		
NL	1VP60"		
NL	1 3/8"		
NL	1B5V124		
NL	1 3/16"		
NL	BX59 / 1		
NL	15 1/2"		
	2	_	i
	FAN N 1st Floor East Return York BA0061232 NL DLGM-09008B DESIGN NL NL NL NL NL NL VFD NL NL NL DESIGN NL NL NL NL NL NL NL NL NL	FAN DATA SHEET FAN NO. RAF-11 1st Floor East Return / Basement Mech York BA0061232 NL DLGM-09008B DESIGN NL NL NL NL NL NL NL NL NL	FAN DATA SHEET FAN NO. RAF-11 1st Floor East Return / Basement Mech York BA0061232 NL DLGM-09008B DESIGN NL NL 213T NL NL NL NL NL 1.15 460/3 9.8 7.1/6.8/7.7 1760 1778 VFD 60 Hz NL NL NL NL DESIGN TESTED DESIGN TESTED DESIGN DESIGN DESIGN DESIGN DESIGN DESIGN TESTED DESIGN DESIGN NL NL NL NL NL NL NL NL NL

Address: Chelsea, MA

Date: 4/27/2021 **Project No.** 21-012

	F	AN DATA SHEET	•			
	FAN	FAN	FAN NO. EF-7			
Serves / Location:	Staff Lounge / Roof		Bathroom 305 / Roof	Bathroom 305 / Roof		
Manufacturer:	Penn		Dayton			
Model Number:	NL		4YC67G			
Size:	NL		NL			
Serial Number:	NL		10904728 0706			
MOTOR	DESIGN	TESTED	DESIGN	TESTED		
Manufacturer:	NL	FASCO	NL	Dayton		
Frame Number:	NL	NL	NL	NL		
Horsepower:	NL	1/30	NL	1/8		
Brake Horsepower:	NL	NA	NL	NA		
Safety Factor:	NL	NL	NL	NL		
Volts/Phase:	115/1	115	115/1	115		
Motor Amperage:	0.6	0.4	2.6	2		
Motor RPM:	750/1550	DIRECT DRIVE	1550/1300/1050	DIRECT DRIVE		
Speeds:	2		3			
Heater Size:	NL	СВ	NL	СВ		
Heater Amps.:	NL	СВ	NL	СВ		
FAN	DESIGN	TESTED	DESIGN	TESTED		
Supply Air CFM:						
Return Air CFM:						
Exhaust Air CFM:	400	103	200	202		
Outside Air CFM:						
Suction Pressure:	NL	-0.11	NL	-0.19		
Discharge Pressure:	NL	0.03	NL	0.03		
Fan Static Pressure:	NL	0.14	NL	0.22		
External Pressure:	NL	NA	NL	NA		
RPM	DESIGN	TESTED	DESIGN	TESTED		
Fan RPM:	NL	DIRECT DRIVE	NL	DIRECT DRIVE		
Motor Drive:	NL	DIRECT DRIVE	NL	DIRECT DRIVE		
Motor Size/Bore:	NL	DIRECT DRIVE	NL	DIRECT DRIVE		
Fan Drive:	NL	DIRECT DRIVE	NL	DIRECT DRIVE		
Fan Size/Bore:	NL	DIRECT DRIVE	NL	DIRECT DRIVE		
Belt Size / Number:	NL	DIRECT DRIVE	NL	DIRECT DRIVE		
Shafts C-C:	NL	DIRECT DRIVE	NL	DIRECT DRIVE		
Turns Open:	NL	DIRECT DRIVE	NL	DIRECT DRIVE		
Comments:						

Address: Chelsea, MA

Date: 4/27/2021

Project No. 21-012

F/	AN DATA SHEET	i			
FAN	NO. EF-8	FAN	FAN NO. EF-9		
Bathroom 313,324,3	25 / Roof	Bathroom 317,318 /	Bathroom 317,318 / Roof		
Dayton		Dayton			
4YC67G		4YC65G			
NL		NL			
10904716 0706		15233028 17K			
DESIGN	TESTED	DESIGN	TESTED		
NL	Dayton	NL	Dayton		
NL	NL	NL	NL		
NL	1/8	NL	1/25		
NL	NA	NL	NA		
NL	NL	NL	NL		
115/1		115/1	115		
2.6	2	1.3	1		
1550/1300/1050	DIRECT DRIVE	1550/1300/1050	DIRECT DRIVE		
3		3			
NL	NL CB		СВ		
NL	СВ	NL	СВ		
DESIGN	TESTED	DESIGN	TESTED		
390	246	200	245		
390	246	200	245		
390 NL	-0.18	200 NL	0.15		
NL	-0.18	NL	0.15		
NL NL	-0.18 0.04	NL NL	0.15 0.03		
NL NL NL	-0.18 0.04 0.22	NL NL NL	0.15 0.03 0.18		
NL NL NL NL	-0.18 0.04 0.22 NA	NL NL NL NL	0.15 0.03 0.18 NA		
NL NL NL NL DESIGN	-0.18 0.04 0.22 NA TESTED	NL NL NL NL DESIGN	0.15 0.03 0.18 NA TESTED		
NL NL NL NL DESIGN NL	-0.18 0.04 0.22 NA TESTED DIRECT DRIVE	NL NL NL DESIGN NL	0.15 0.03 0.18 NA TESTED DIRECT DRIVE		
NL NL NL DESIGN NL NL	-0.18 0.04 0.22 NA TESTED DIRECT DRIVE DIRECT DRIVE	NL NL NL DESIGN NL NL	0.15 0.03 0.18 NA TESTED DIRECT DRIVE DIRECT DRIVE		
NL NL NL NL DESIGN NL NL NL NL	-0.18 0.04 0.22 NA TESTED DIRECT DRIVE DIRECT DRIVE DIRECT DRIVE	NL NL DESIGN NL NL NL	0.15 0.03 0.18 NA TESTED DIRECT DRIVE DIRECT DRIVE DIRECT DRIVE		
NL NL NL DESIGN NL NL NL NL NL NL	-0.18 0.04 0.22 NA TESTED DIRECT DRIVE DIRECT DRIVE DIRECT DRIVE DIRECT DRIVE	NL NL NL DESIGN NL NL NL NL NL NL	0.15 0.03 0.18 NA TESTED DIRECT DRIVE DIRECT DRIVE DIRECT DRIVE DIRECT DRIVE		
NL NL NL DESIGN NL NL NL NL NL NL NL NL NL	-0.18 0.04 0.22 NA TESTED DIRECT DRIVE DIRECT DRIVE DIRECT DRIVE DIRECT DRIVE DIRECT DRIVE DIRECT DRIVE DIRECT DRIVE	NL NL DESIGN NL NL NL NL NL NL NL NL NL	0.15 0.03 0.18 NA TESTED DIRECT DRIVE DIRECT DRIVE DIRECT DRIVE DIRECT DRIVE DIRECT DRIVE DIRECT DRIVE		
	FAN Bathroom 313,324,3 Dayton 4YC67G NL 10904716 0706 DESIGN NL NL NL NL NL NL NL NL NL	FAN NO. EF-8 Bathroom 313,324,325 / Roof Dayton 4YC67G NL 10904716 0706 DESIGN TESTED NL Dayton NL NL NL NL NL NL NL NL NL NL	Bathroom 313,324,325 / Roof Bathroom 317,318 / Dayton Dayton		

Address: Chelsea, MA

Date: 4/27/2021 **Project No.** 21-012

FAN DATA SHEET

FAN Bathroom 331,332 / Dayton 4YC65G NL 15233029 17K DESIGN NL NL NL	NO. EF-12 Roof TESTED Dayton	Holding Cells 2nd & 3 Dayton 4YC65G NL 15241037 17K DESIGN	EF-13 3rd fl / Roof TESTED
Dayton 4YC65G NL 15233029 17K DESIGN NL NL	TESTED	Dayton 4YC65G NL 15241037 17K	
4YC65G NL 15233029 17K DESIGN NL NL		4YC65G NL 15241037 17K	TESTED
NL 15233029 17K DESIGN NL NL		NL 15241037 17K	TEOTED
15233029 17K		15241037 17K	TESTER
DESIGN NL NL			TECTED
NL NL		DESIGN	TESTED
NL	Dayton		IESIED
		NL	Dayton
NII	NL	NL	NL
IIN⊏	1/25	NL	1/25
NL	NA	NL	NA
NL	NL	NL	NL
115/1	115	115/1	115
1.3	0.9	1.3	0.9
1550/1300/1050	DIRECT DRIVE	1550/1300/1050	DIRECT DRIVE
3		3	
NL CB		NL	СВ
NL	NL CB		СВ
DESIGN	TESTED	DESIGN	TESTED
500	189	600	279
NL	-0.22	NL	-0.18
NL	0.04	NL	0.03
NL	0.26	NL	0.21
NL	NA	NL	NA
DESIGN	TESTED	DESIGN	TESTED
NL	DIRECT DRIVE	NL	DIRECT DRIVE
NL	DIRECT DRIVE	NL	DIRECT DRIVE
NL	DIRECT DRIVE	NL	DIRECT DRIVE
NL	DIRECT DRIVE	NL	DIRECT DRIVE
NL	DIRECT DRIVE	NL	DIRECT DRIVE
NL	DIRECT DRIVE	NL	DIRECT DRIVE
NL	DIRECT DRIVE	NL	DIRECT DRIVE
NL	DIRECT DRIVE	NL	DIRECT DRIVE
	115/1 1.3 1550/1300/1050 3 NL NL DESIGN 500 NL NL NL NL NL NL NL NL NL	115/1 115 1.3 0.9 1550/1300/1050 DIRECT DRIVE 3 NL NL CB NL CB DESIGN TESTED 500 189 NL -0.22 NL 0.04 NL NA DESIGN TESTED NL DIRECT DRIVE NL DIRECT DRIVE	115/1 115 115/1 1.3 0.9 1.3 1550/1300/1050 DIRECT DRIVE 1550/1300/1050 3 3 NL CB NL NL DESIGN TESTED DESIGN 500 189 600 NL NL NL NL DIRECT DRIVE NL NL NL DIRECT DRIVE NL NL DIRECT DRIVE NL NL DIRECT DRIVE NL NL DIRECT DRIVE NL NL DIRECT DRIVE NL NL DIRECT DRIVE NL NL DIRECT DRIVE NL NL DIRECT DRIVE NL

Address: Chelsea, MA

Date: 4/27/2021 **Project No.** 21-012

	F	AN DATA SHEET		
	FAN	NO. EF-15		EF-16
Serves / Location:	Bathroom 331,332 /	Roof	Holding Cells Basem	nent / Roof
Manufacturer:	Acme		Penn Ventilator	
Model Number:	PRN126		RFX-22B	
Size:	NL		NL	
Serial Number:	18G1318-8		NL	
MOTOR	DESIGN	TESTED	DESIGN	TESTED
Manufacturer:	NL	US Motors	NL	Baldor
Frame Number:	NL	56	NL	56
Horsepower:	NL	1/4	NL	1/2
Brake Horsepower:	NL	NA	NL	NA
Safety Factor:	NL	NL	NL	1.25
Volts/Phase:	115/1	115	460/3	477
Motor Amperage:	2.7	2.1	0.8	.6/.6/.7
Motor RPM:	1625	DIRECT DRIVE	1750	1761
Speeds:	1	1	1 1	
Heater Size:	NL	СВ	NL	СВ
Heater Amps.:	NL	СВ	NL	СВ
FAN	DESIGN	TESTED	DESIGN	TESTED
Supply Air CFM:				
Return Air CFM:				
Exhaust Air CFM:	875	903	2420	2030
Outside Air CFM:				
Suction Pressure:	NL	-0.26	NL	-0.43
Discharge Pressure:	NL	0.04	NL	0.03
Fan Static Pressure:	NL	0.3	NL	0.46
External Pressure:	NL	NA	NL	NA
RPM	DESIGN	TESTED	DESIGN	TESTED
Fan RPM:	NL	DIRECT DRIVE	NL	NA
Motor Drive:	NL	DIRECT DRIVE	NL	1VL34
Motor Size/Bore:	NL	DIRECT DRIVE	NL	5/8"
Fan Drive:	NL	DIRECT DRIVE	NL	INLINE
Fan Size/Bore:	NL	DIRECT DRIVE	NL	INLINE
Belt Size / Number:	NL	DIRECT DRIVE	NL	AX60 / 1
Shafts C-C:	NL	DIRECT DRIVE	NL	INLINE
Turns Open:		DIRECT DRIVE	NL	1

Project: Address:	Chelsea Trial Cou Chelsea, MA	rt					
Date:	4/27/2021				Project No.	21-	012
		•	TRAVERSE	DATA			
SYSTEM: EF-	-16				SE NUMBER : SE LOCATION:	T-1 EXHAUST	
DUCT SIZE (F		14	" DIAMETER	26	" DEPTH	Sq Ft = Sq Ft =	0.00 2.53
AIR DENSITY STATIC PRES DUCT AIR TE BAROMETRIG	SS @ CL: :MP :	-0.42 In Do 29.92 In	eg F		DESIGN ACTUAL S		2420 2030 2338
	RATIO CORRECTI ECTION FACTOR ISITY	ON =	1.15 1.15 0.086				
TEST HOLE	1	2	3	4	5	6	7
Α	721	636	603				
В	795	785	835				
С	864	905	900				
D	897	918	876				
E	760	751	800				
F							
G							
Н							
1							
NO. OF REAL	DINGS =	15	AVERAGE FF	PM =	803		
J							
K							
L							
М							
N							
0							
Р							
Q							
R							
TECHNICIAN	: Greg Mílli	 EY					