

## CONCORD RIVER WATERSHED SMART MONITORING PROGRAM 2011-2013 TECHNICAL MEMORANDUM CN 418.0



Sudbury River, Framingham

Prepared By: Therese Beaudoin January 2016

Commonwealth of Massachusetts Executive Office of Energy and Environmental Affairs Matthew Beaton, Secretary Massachusetts Department of Environmental Protection Martin Suuberg, Commissioner Bureau of Water Resources Douglas Fine, Assistant Commissioner Division of Watershed Management Rebecca Weidman, Director Watershed Planning Program Kim Groff, Director



# TABLE OF CONTENTS

| TABLE OF CONTENTS                                                                   | 2  |
|-------------------------------------------------------------------------------------|----|
| LIST OF TABLES                                                                      | 2  |
| LIST OF FIGURES                                                                     | 3  |
| LIST OF LATIN NAMES                                                                 | 3  |
| LIST OF ACRONYMS                                                                    |    |
| INTRODUCTION                                                                        |    |
| Overview of Monitoring Plan                                                         | 5  |
| Hydrology                                                                           | 5  |
| Quality Assurance/Quality Control                                                   | 7  |
| PROJECT OBJECTIVES                                                                  | 8  |
| METHODS                                                                             | 8  |
| STATION OBSERVATIONS                                                                |    |
| Station AS04 – Assabet River at School Street, Northborough, MA (river mile 27.803) | 10 |
| Station AS18 – Assabet River at Waltham Street, Maynard, MA (river mile 7.594)      | 12 |
| Station NA01 – Nashoba Brook off Wheeler Lane, Acton, MA (river mile 4.305)         | 14 |
| Station SU07 – Sudbury River at Danforth Street, Framingham, MA (river mile 16.320) | 16 |
| Station CO7A – Concord River at Rogers Street, Lowell, MA (river mile 0.843)        | 18 |
| SURVEY CONDITIONS                                                                   | 25 |
| RESULTS AND QUALITY ASSURANCE/QUALITY CONTROL                                       |    |
| REFERENCES                                                                          | 41 |

## LIST OF TABLES

| Table 1 SuAsCo Basin SMART Sampling Summary – 2011 through 2013                        | 5  |
|----------------------------------------------------------------------------------------|----|
| Table 2 MassDEP SMART 2011 - 2013. Station AS04. Summary of Observations.              | 20 |
| Table 3 MassDEP SMART 2011 - 2013. Station AS18. Summary of Observations.              |    |
| Table 4 MassDEP SMART 2011 - 2013. Station NA01. Summary of Observations.              | 22 |
| Table 5 MassDEP SMART 2011 - 2013. Station SU07. Summary of Observations.              |    |
| Table 6 MassDEP SMART 2011 - 2013. Station CO7A. Summary of Observations.              |    |
| Table 7 Climate Conditions at Reading, MA from January 14-19, 2011                     |    |
| Table 8 Climate Conditions at Reading, MA from March 10-15, 2011                       |    |
| Table 9 Climate Conditions at Reading, MA from February 17-22, 2012                    |    |
| Table 10 Climate Conditions at Reading, MA from January 23-28, 2013                    |    |
| Table 11 Climate Conditions at Reading, MA from March 15-20, 2013                      |    |
| Table 12 SuAsCo Basin Precipitation Data Summary 2011-2013                             |    |
| Table 13 Discharge at the Concord River below River Meadow Brook, Lowell, MA 2011-2013 |    |
| Table 14 MassDEP SMART 2011-2013. Station AS04. In Situ Multiprobe Data.               |    |
| Table 15 MassDEP SMART 2011-2013. Station AS18. In Situ Multiprobe Data.               | 32 |
| Table 16 MassDEP SMART 2011-2013. Station NA01. In Situ Multiprobe Data.               | 33 |
| Table 17 MassDEP SMART 2011-2013. Station SU07. In Situ Multiprobe Data.               |    |
| Table 18 MassDEP SMART 2011-2013. Station CO7A. In Situ Multiprobe Data.               | 35 |
| Table 19 MassDEP SMART 2011-2013. Station AS04. Chemistry Data.                        |    |
| Table 20 MassDEP SMART 2011-2013. Station AS18. Chemistry Data.                        | 37 |
| Table 21 MassDEP SMART 2011-2013. Station NA01. Chemistry Data.                        |    |
| Table 22 MassDEP SMART 2011-2013. Station SU07. Chemistry Data.                        | 39 |
| Table 23 MassDEP SMART 2011-2013. Station CO7A. Chemistry Data.                        | 40 |
|                                                                                        |    |



Cover photo by Therese Beaudoin, MassDEP. September 25, 2013. All photos in document taken by Therese Beaudoin. MassDEP. CERO. SMART monitoring logo designed by Robert Kimball and Barbara Kimball.

# **LIST OF FIGURES**

| Figure 1  | MassDEP SMART Concord River Watershed Water Quality Station Locations | 6    |
|-----------|-----------------------------------------------------------------------|------|
|           | Google Earth view of Station AS04 area                                |      |
| Figure 3  | Station AS04 upstream (9/25/2013)                                     | . 10 |
|           | Google Earth view of Station AS18                                     |      |
| Figure 5  | Station AS18 upstream (5/20/2013)                                     | . 12 |
|           | Google Earth view of NA01 area                                        |      |
|           | Station NA01 upstream (6/20/2012)                                     |      |
|           | Google Earth view of Station SU07 area                                |      |
| Figure 9  | Station SU07 upstream (6/20/2012)                                     | . 16 |
|           | Google Earth view of Station CO7A area                                |      |
| Figure 11 | Station CO7A upstream (9/25/2013)                                     | . 18 |

# LIST OF LATIN NAMES

| Latin Name             | Common name         | Latin Name              | Common name                         |
|------------------------|---------------------|-------------------------|-------------------------------------|
| Agelaius phoeniceus    | redwinged blackbird | Lobelia canadensis      | cardinal flower                     |
| Anas platyrhynchos     | mallard duck        | <i>Myriophyllum</i> sp. | milfoil                             |
| Anatidae family        | duck                | Peltandra virginica     | arrow arum                          |
| Ardea herodias         | great blue heron    | Pontedaria cordata      | pickerelweed                        |
| Branta canadensis      | Canada goose        | Potamogeton sp.         | pondweed                            |
| Cambaridae family      | true crayfishes     | Potamogeton epihydrus   | ribbonleaf pondweed                 |
| Ceratophyllum demersum | coontail/hornwort   | Sagittaria sp.          | arrowhead                           |
| Culicidae family       | mosquitoes          | Scirpus sp.             | sedges                              |
| Elodea sp.             | waterweed           | Unionidae family        | freshwater mussels                  |
| Gramineae family       | true grasses        | <i>Vallisneria</i> sp.  | eelgrass, tape grass or wild celery |
| Lemna sp.              | duckweed            | Wolffia sp.             | watermeal                           |
| Lithobates clamitans   | green frog          |                         |                                     |

# LIST OF ACRONYMS

| % sat<br>305(b)<br>7Q10<br>BWR<br>BWR<br>°C<br>CERO<br>cfs<br>cond<br>CSO<br>DO<br>DWM<br>°F<br>in/yr | percent oxygen saturation<br>Section 305(b), Clean Water Act<br>lowest 7-day average streamflow that occurs, on average, once every 10 years<br>Bureau of Resource Protection<br>Bureau of Water Resources<br>degree Celsius<br>Central Regional Office<br>cubic feet per second<br>specific conductivity<br>Combined Sewer Overflow<br>dissolved oxygen<br>Division of Watershed Management<br>degree Fahrenheit<br>inches per year<br>meter |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| m<br>MA                                                                                               | meter<br>Massachusetts                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MassDEP                                                                                               | Massachusetts Department of Environmental Protection                                                                                                                                                                                                                                                                                                                                                                                          |
| µS/cm                                                                                                 | microsiemens per centimeter                                                                                                                                                                                                                                                                                                                                                                                                                   |
| mg/L                                                                                                  | milligrams per liter                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mi                                                                                                    | mile                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mi <sup>2</sup>                                                                                       | square miles                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NH <sub>3</sub> -N                                                                                    | ammonia nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NO <sub>3</sub> NO <sub>2</sub> -N                                                                    | nitrate-nitrite nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NTU                                                                                                   | Nephelometric Turbidity Unit                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NWS                                                                                                   | National Weather Service                                                                                                                                                                                                                                                                                                                                                                                                                      |
| POR                                                                                                   | Point of Record                                                                                                                                                                                                                                                                                                                                                                                                                               |
| QA                                                                                                    | quality assurance                                                                                                                                                                                                                                                                                                                                                                                                                             |
| QAPP                                                                                                  | Quality Assurance Project Plan                                                                                                                                                                                                                                                                                                                                                                                                                |
| QC                                                                                                    | quality control                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SMART                                                                                                 | Strategic Monitoring and Assessment for River basin Teams                                                                                                                                                                                                                                                                                                                                                                                     |
| SOP                                                                                                   | Standard Operating Procedure                                                                                                                                                                                                                                                                                                                                                                                                                  |
| sp.                                                                                                   | species                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ssolids                                                                                               | suspended solids                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SU                                                                                                    | Standard Unit                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SuAsCo                                                                                                | Sudbury, Assabet, Concord                                                                                                                                                                                                                                                                                                                                                                                                                     |
| T                                                                                                     | temperature                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TDS                                                                                                   | total dissolved solids                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TMDL<br>TN                                                                                            | Total Maximum Daily Load<br>total nitrogen                                                                                                                                                                                                                                                                                                                                                                                                    |
| TPhos                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| turb                                                                                                  | total phosphorus<br>turbidity                                                                                                                                                                                                                                                                                                                                                                                                                 |
| USGS                                                                                                  | United States Geological Survey                                                                                                                                                                                                                                                                                                                                                                                                               |
| WES                                                                                                   | Wall Experiment Station                                                                                                                                                                                                                                                                                                                                                                                                                       |
| WWTP                                                                                                  | wastewater treatment plant                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ****                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                               |



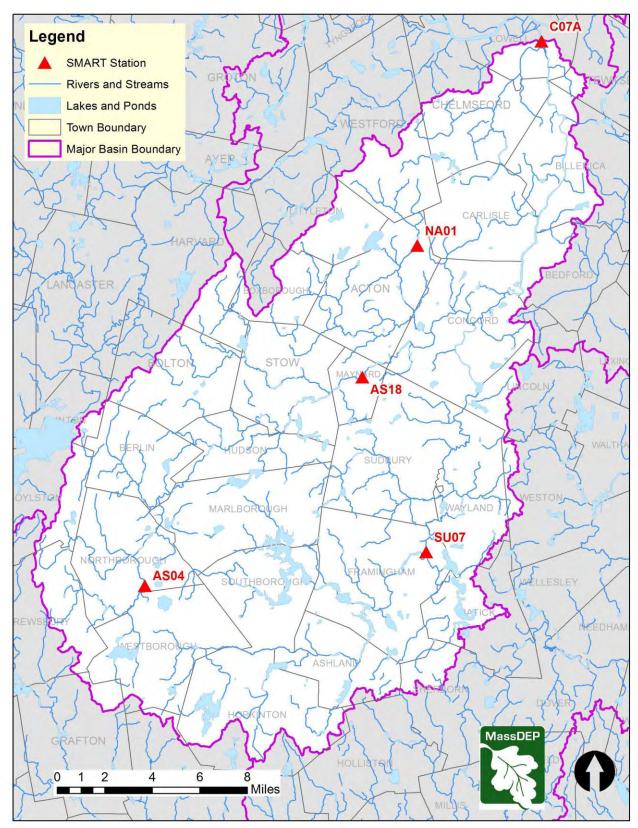
# INTRODUCTION

The purpose of this technical memo is to present observations and data collected in the Strategic Monitoring and Assessment for River basin Teams (SMART) program in the SuAsCo River watershed from 2011 through 2013, highlighting how the program supports and augments programs of the Massachusetts Department of Environmental Protection (MassDEP) Bureau of Resource Protection (BRP, now the Bureau of Water Resources, BWR) Central Regional Office (CERO) and the Division of Watershed Management (DWM).

#### **Overview of Monitoring Plan**

Bimonthly water quality monitoring in the Concord Watershed began in March 2000. The sampling plan matrix for the 2011-2013 SMART monitoring program is presented in Table 1. The location of sampling stations is presented in Figure 1. Sampling components at all stations included:

- in situ measurements: dissolved oxygen (DO), percent oxygen saturation, pH, specific conductivity, temperature (T), depth and total dissolved solids (TDS);
- physical/chemical constituents: total alkalinity, chlorides, hardness, total suspended solids (TSS), turbidity;
- nutrients: ammonia-nitrogen (NH<sub>3</sub>-N), nitrate-nitrite-nitrogen (NO<sub>3</sub>\_NO<sub>2</sub>.N), total nitrogen (TN), and total phosphorus (TP);
- flow measurements (at existing USGS flow gaging stations); and
- general field observations.


| Location and Segment Numbers                                                   | Station<br>Name | Station<br>Type | Dates Sampled <sup>1</sup>                                                                                |
|--------------------------------------------------------------------------------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------|
| Assabet River @ School Street, Northborough MA82B-02                           | AS04            | Impact          |                                                                                                           |
| Assabet River @ USGS flow gaging station, State Roads 27/62, Maynard MA82B-05  | AS18            | Impact          | 2011: 1/19/11, 3/15/11, 5/17/11, 7/20/11, 9/21/11, 11/16/11                                               |
| Nashoba Brook @ USGS flow gaging station, Wheeler Road, Acton MA82B-14         | NA01            | Impact          | 2012: , 2/22/12, 4/11/12, 6/20/12, 8/22/12, 10/24/12<br>2013: 1/28/13, 3/20/13, 5/20/13, 8/28/13, 9/25/13 |
| Sudbury River @ USGS flow gaging station, Danforth Road, Framingham MA82A-03   | SU07            | Reference       |                                                                                                           |
| Concord River SW of Rogers Street, Lowell MA82A-08<br>(from 1/19/11 – 9/25/13) | CO7A            | Boundary        |                                                                                                           |

## Hydrology

The Concord River Watershed has a total drainage area of 400 square miles (mi<sup>2</sup>), entirely within the Commonwealth of Massachusetts (MA). It is comprised mainly of two subwatersheds, the Assabet and Sudbury, which is the basis of the basin's other name, the SuAsCo (<u>Su</u>dbury, <u>As</u>sabet, <u>Concord</u>). See <u>SuAsCo Watershed</u> <u>Water Quality Assessment Report 2001</u> for further information (O'Brien-Clayton 2005).

The Assabet River, with a drainage area of 131 mi<sup>2</sup>, begins at the outlet of the Assabet River Reservoir, or the "A1" site, in Westborough. From there, the river meanders approximately 31 miles (mi) through many dammed reaches until it joins the Sudbury River at Egg Rock in Concord, MA. The lower 4.4 mi were designated as Wild and Scenic by the U.S. Congress in 1999 (for further information on the Act of Congress that designated these areas, see <u>Designation Of Sudbury, Assabet, And Concord Scenic And Recreational Rivers</u> (USGPO 1999). Due to its highly impounded nature and the nutrient input from four major wastewater treatment plant (WWTP) discharges, the Assabet River exhibits problems associated with eutrophication.

#### Figure 1 MassDEP SMART Concord River Watershed Water Quality Station Locations



The Sudbury River, with a drainage area of 162 mi<sup>2</sup>, flows approximately 28 mi from its headwaters at the outlet of Cedar Swamp Pond, Westborough to the Assabet River confluence. The upper watershed includes numerous large water supply reservoirs in Hopkinton, Southborough, Ashland and Framingham, which serve as emergency drinking water supplies. The river then flows through a large urbanized area in Framingham. North of the Danforth Street Bridge, the final 14.9 miles of the Sudbury have been designated as Wild and Scenic.

The Concord River drains an additional 107 mi<sup>2</sup> and flows approximately 15 mi to its junction with the Merrimack River in the City of Lowell. The upper 8 miles are federally designated Wild and Scenic. This part of the watershed is moderately to densely developed, with large areas of impervious surfaces throughout.

#### **Quality Assurance/Quality Control**

The quality assurance (QA) quality control (QC) project plan (QAPP) for the SMART program is presented in CN 012.1: *Strategic Monitoring and Assessment for River basin Teams Quality Assurance Project Plan* (Beaudoin 2008). The QAPP presents data quality objectives, quality assurance procedures, and other program-specific information. This technical memorandum will report deviations from the procedures described in the QAPP.

Aerial photos were obtained from Google Earth (2013a, 2013b, 2013c, 2013d, 2013e) at a height of approximately 4,000 feet (ft).

# **PROJECT OBJECTIVES**

The primary water quality objectives of the SMART monitoring program are:

- Document baseline water quality by: providing information on low flow/event flow variation, seasonal variation and frequency of selected constituents; and establishing reference distributions of key constituents for ecoregion delineation and "clean water" sites;
- Estimate loads of detected water constituents at key locations by: quantifying nitrogen loadings to coastal waters; and calculating phosphorous loads upstream/downstream of representative land use areas;
- Define long term trends in water quality by: documenting improvements associated with major abatement projects; and identifying trends at least-impacted stations (that may result from factors such as acid precipitation and climate change);
- Assess attainment of water quality uses by: comparing existing water quality with water quality standards; and by assessing use support for the fishable/swimmable goal;
- Provide support for other programs by: determining reference distributions for ecoregion stations; conducting trend analysis for the 305(b) reports<sup>1</sup> and basin plans; quantifying nutrient loadings for load allocations (total maximum daily loads, or TMDLs); obtaining data on nonpoint source loadings for more intensive Year 2 sampling; providing guidance for volunteer monitoring; collecting data for development of statistically-based water quality standards and for improvement of Combined Sewer Overflow (CSO) and Stormwater policies; and developing a long-term database on conditions at key locations for the development of new programs and basic research.

As stated in the Introduction, this document presents observations and data collected in the SuAsCo Watershed under the SMART program from 2011-2013. An assessment of the data will be presented in future reports.

## METHODS

Water quality sampling procedures are included in *Grab Collection Techniques for DWM Water Quality Sampling, Standard Operating Procedure* (MassDEP 1999b). Use of the *in situ* monitoring equipment followed procedures set forth in *CN 4.0 Water Quality Multi-probe Instrument Use, Standard Operating Procedure* (MassDEP 1999a). Physical/chemical and nutrient samples were analyzed at the Wall Experiment Station (WES), the MassDEP analytical laboratory located in Lawrence, Massachusetts. All samples were collected, transported, analyzed, and discarded according to chain-of-custody procedures.

In addition to the measurements and analytes noted above, field observations were recorded at each station on standardized field sheets, field notebooks, and photographs. Field observations included date/time, location, crewmembers, snow cover (when relevant), canopy cover, water odors, colors, sheens, foams, estimated river height and velocity, weather conditions, observed uses (e.g., boating), wildlife, aquatic algae and macrophytes, potential pollution sources, and unusual conditions. The number and type of samples were recorded, as well as the last set of *in situ* data collected. An aerial view and a photo depicting the upstream environs accompany each station description; see Figure 3 through Figure 11. A summary of field observations by station collected during this sampling period are presented in Table 2 through Table 6 following the station descriptions.

Each station selected for the SMART Monitoring program is described according to key characteristics associated with water quality at that location, as follows:

- Reference: a reference station is located in a stream segment that is minimally influenced by anthropogenic activities;
- Impact: an impact (or trend) station is located where several sources of pollution come together and can be used to calibrate a mass balance model, or where critical reactions take place such as at an oxygen sag point; and

<sup>&</sup>lt;sup>1</sup> The 305(b) reports are the biannual reports to the U. S. Congress on water quality that are required under Section 305(b) of the Clean Water Act.

• Boundary: a boundary station is located at a pour point i.e., where water leaves a designated river basin, or at a state line.

Field sheets, raw data files, chain of custody forms, lab reports, and other metadata used in this report are managed and maintained by the MassDEP DWM in the Water Quality Access Database in Worcester, MA. The validation of the water quality data included data entry into DWM databases, data entry quality control checks, analysis for outliers, blank contamination, duplicates, precision, and holding time violations, followed by project level review (MassDEP 2005). The project coordinator, as identified in the QAPP for the SMART program (CN 012.2), reviews the data for reasonableness, completeness and acceptability (Beaudoin 2008).

## **STATION OBSERVATIONS**

Station AS04 – Assabet River at School Street, Northborough, MA (river mile 27.803)



Figure 2 Google Earth view of Station AS04 area



Figure 3 Station AS04 upstream (9/25/2013)

Concord River Watershed SMART Monitoring Program 2011-2013 Technical Memorandum CN 418.0 Station AS04 is located on the Assabet River near the School Street Bridge in Northborough, MA within the Southern New England Coastal Plains and Hills ecoregion. From 2011-2013, this station was sampled 13 times, and access was gained from the bridge or from the shore upstream. When the abundance of poison ivy on the banks in this location prevented shoreline access, samples were collected from the bridge, center stream, with a sampling pole. When poison ivy was not an issue, sampling was conducted from a point upstream of the bridge, by wading in from the left bank. Both locations are representative of water quality conditions in this reach. Station AS04 serves as an impact station as it is located downstream of numerous point and nonpoint sources of pollution, as described below.

Land uses proximal to this station consist of residential and forested, including a Christmas tree farm (Figure 2) (Google Earth 2013a). The Westborough WWTP discharge is located 2.25 mi upstream. Nonpoint sources include roads, shopping districts, and other large expanses of impervious surfaces.

The river was approximately 30 ft wide at this site, typically less than 3 ft deep and roughly uniform across the channel throughout the year (Figure 3). Deciduous trees provided canopy cover over much of the streambed upstream of the bridge. The bottom consisted mainly of sand, with cobble and gravel, silt and mud.

During the growing season (approximately June through September), the channel was colonized with sparse to dense populations of emergent macrophytes, including *Elodea* sp. (waterweed), Gramineae family (grasses), *Peltandra virginica* (arrow arum), *Pontedaria cordata* (pickerelweed), *Potamogeton* sp. (pondweed), *P. epihydrus* (ribbonleaf pondweed), *Sagittaria* sp. (arrowhead), *Scirpus* sp. (sedges), *Vallisneria* sp. (eelgrass, tape grass, wild celery) and Wolffia sp. (watermeal). Periphyton was not present on 9 of the 13 dates sampled; when present, periphytic growth was most commonly composed of dense to very dense filamentous algae.

In addition to songbirds, the only wildlife observed in this stretch of river during SMART monitoring from 2011-2013 was *Branta canadensis* (Canada goose). Fishing line and bobbers were caught in shoreline tree branches, indicating that recreational fishing occurs in this area. In September 2011, a small platform was built on the eastern shore, upstream of the bridge, with a tether for a small boat.

In general, the water column at this station lacked trash, odor, foam, sheens and turbidity. Water color was typically clear or light yellow.

Field duplicates for the SMART program were collected at Station AS04 from 2001 through July 2011; from September 2011 through September 2013, duplicates were collected at Station AS18.

Station AS18 – Assabet River at Waltham Street, Maynard, MA (river mile 7.594)



Figure 4 Google Earth view of Station AS18



Figure 5 Station AS18 upstream (5/20/2013)

Concord River Watershed SMART Monitoring Program 2011-2013 Technical Memorandum CN 418.0 Station AS18 is located upstream of the Waltham Street Bridge (State Road or SR 27) in Maynard, MA within the Southern New England Coastal Plains and Hills ecoregion. From 2011-2013, the station was sampled 13 times, and access was gained from the eastern shore near the United States Geological Survey (USGS) flow gaging station. Samples were collected by wading in or with a sampling pole (when access to flowing water was difficult). Station AS18 serves as an impact station as it is located downstream of numerous point and nonpoint sources of pollution, as described below.

Land uses around this area include residential and commercial (Figure 4) (Google Earth 2013b). Upstream, the river flows through several hypereutrophic impoundments, and receives the discharges of three major WWTPs, including Marlborough Westerly and Hudson (as well as Westborough). Nonpoint sources include roads, shopping districts, and other large expanses of impervious surfaces.

The channel at this location was approximately 45 ft wide, with depths ranging from 1ft to unknown (too deep to wade), and heavily shaded (Figure 5). It was often difficult to see the bottom clearly due to solar reflection, turbidity and turbulence; in addition, bottom rocks were stained a dark brown/black color, and often covered in a dense growth of filamentous algae. As a result, the bottom composition was unobservable on most sampling dates (10 of 13). When visible, the bottom consisted of boulder, cobble, gravel, sand and silt.

Few aquatic macrophytes were observed at this station from 2011-2013; these included *Ceratophyllum demersum* (coontail, hornwort), Gramineae (grasses), *Lemna* sp. (duckweed), *Lobelia canadensis* (cardinal flower), *Myriophyllum* sp. (milfoil), *Potamogeton* sp. (pondweed) and *Wolffia* sp. (watermeal). In addition to songbirds, wildlife observed here included *Agelaius phoeniceus* (redwinged blackbird), *Anas platyrhynchos* (mallard ducks), Cambaridae (crayfish), *Lithobates clamitans* (green frog) and Unionidae (freshwater mussels). Periphyton was noted on 8 events (n=9; unobservable on 4 events); when visible, the most common forms were moderate to very dense populations of moss and/or filamentous algae.

The water column at this station ranged from clear to highly turbid; when visible, conditions were typically clear. The water color was clear on half of the sampling dates, and red or light yellow on the other half. Water odors were absent on half of monitoring events; musty, "eutrophic pond", and effluent odors were also noted. Foam was present on most sampling events, usually sparse in coverage. Sheens were generally absent; pollen was observed on one event (9/21/2011). Trash was unobservable on most of dates; when visible, trash consisted of bricks, chunks of concrete and floatables.

Field duplicates for the SMART program were collected at Station AS04 from 2001 through July 2011; from September 2011 through September 2013, duplicates were collected at Station AS18.

## Station NA01 – Nashoba Brook off Wheeler Lane, Acton, MA (river mile 4.305)

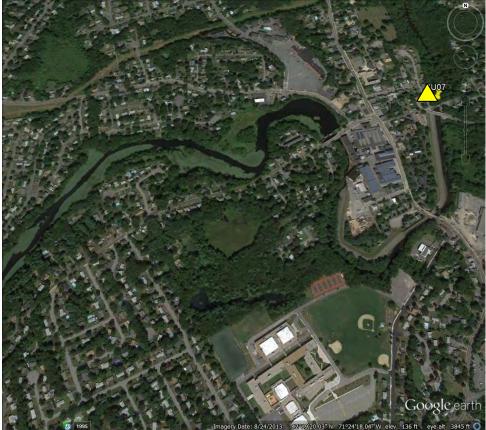




Figure 7 Station NA01 upstream (6/20/2012)

Concord River Watershed SMART Monitoring Program 2011-2013 Technical Memorandum CN 418.0

Station NA01 is located on Nashoba Brook in Acton, MA within the Southern New England Coastal Plains and Hills ecoregion. From 2011-2013, the station was sampled 13 times, and access was gained from the eastern shore at the USGS flow gaging station near a footbridge in the Nashoba Brook Conservation Area. Samples were collected from center stream by wading in or with a sampling pole. Station NA01 was expected to represent reference conditions for the Concord watershed; however, water quality data have shown that it is an impact station, influenced by numerous point and nonpoint sources of pollution, as described below.


The station is located in the upper area of the Nashoba Brook watershed, and upstream land uses include light residential and industrial/commercial development and forest (Figure 6) (Google Earth 2013c). Robbins Mill Pond is located approximately 0.1 miles about Station NA01. Although there are no surface water municipal discharges upstream, there are numerous groundwater discharges of sewage. The closest is the Acton Retirement Community (approximately 350 ft from Nashoba Brook, and 2,400 ft upstream of the station).

The river channel was approximately 15 ft wide in this reach and heavily shaded (Figure 7). Although it was often difficult to determine the bottom composition due to solar reflection, the deep tannic color of the water column and bottom staining, the bottom (when visible) consisted mainly of cobble, gravel and sand. For the same reasons, it was often difficult to determine the presence or absence of periphyton; when visible, periphyton mainly consisted of moss. Trash was absent on all dates when the bottom was visible.

Aquatic macrophytes were largely absent from this stream segment; *Lobelia cardinalis* (cardinal flower) was observed on a single event (8/28/2013). Other than songbirds, wildlife was not observed in this area during this time period.

The water column was clear on most sampling events; when visible, turbidity was sparse to moderate. The water color was red on most sampling events. The water column typically lacked odor; although a petroleum odor was noted on 5 sampling events, the source appeared to be the sediments when disturbed by the sampling staff. Foam was absent on two-thirds of monitoring dates, and sparse on most other site visits. A pollen layer was observed on 6/20/2012; sheens were absent on all other dates.

Station SU07 – Sudbury River at Danforth Street, Framingham, MA (river mile 16.320)



5 Imagery Date: 8/24/2013 (2219/20)03" 11 71224'18.04"W elev Figure 8 Google Earth view of Station SU07 area



Figure 9 Station SU07 upstream (6/20/2012)

Concord River Watershed SMART Monitoring Program 2011-2013 Technical Memorandum CN 418.0 Station SU07 is located on the Sudbury River in the village of Saxonville, Framingham, MA within the Boston Basin ecoregion. From 2011-2013, the station was sampled 13 times, and access was gained from the western shore downstream of the historic Old Danforth Street Bridge (pedestrian traffic only) near the (modern) Danforth Street Bridge. Samples were collected from center stream by wading in or with a sampling pole. Both sites are considered to represent water quality in this reach. Station SU07 serves as a reference station, minimally influenced by anthropogenic activities.

The upper Sudbury watershed includes pristine riverine areas and large impoundments managed as emergency water supplies (Figure 8) (Google Earth 2011d). The river flows through the urbanized towns of Framingham and Natick, with dense residential and industrial/commercial development, roadways and a flood control project constructed by the U.S. Army Corps of Engineers in 1979 to alleviate flooding in the village of Saxonville.

Upstream of the Old Danforth Street Bridge, the river channel is approximately 75 ft wide, with depths ranging from approximately 0.5 ft to unknown (too deep to wade). The channel is open to the sky, except in the footprint of the two bridges (Figure 9). Downstream of the historic bridge, the channel is approximately 50 ft wide, 0.5 to 3 ft deep, with nearly complete canopy cover. The bottom consisted largely of cobble, gravel and sand. Periphyton was present on half of the sampling events; moss was the most common form observed (n=4), and moderate dark green filamentous algae and a sparse clear film were observed once. Aquatic macrophytes were sparse; those present included *Potamogeton* sp. (pondweed), *P. epihydrus* (ribbonleaf pondweed) and an unknown submergent. Waterfowl and other water-related birds included *Agelaius phoeniceus* (redwinged blackbird), Anatidae (duck family) and *Branta canadensis* (Canada goose). Mussels (Unionidae) and Culicidae (mosquitoes) were also noted.

On most sampling events, the water column was clear (without visible turbidity) and lacked odor, foam and sheens. Water color was typically clear or light yellow. Trash was present on all sampling dates, in both the riparian zone and the stream channel; items observed included broken glass, bricks, storm drain grate, catch basin cover, metals, floatables and miscellaneous unidentifiable objects.

Station CO7A – Concord River at Rogers Street, Lowell, MA (river mile 0.843)

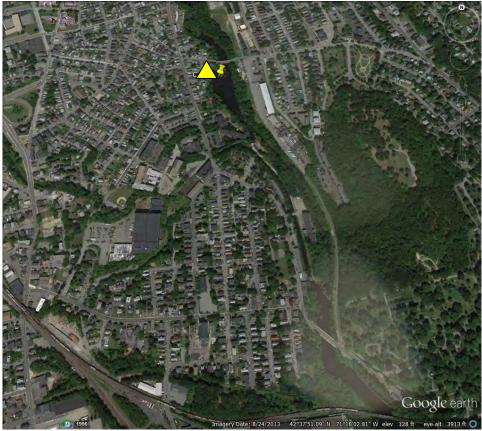



Figure 10 Google Earth view of Station CO7A area



Figure 11 Station CO7A upstream (9/25/2013)

Concord River Watershed SMART Monitoring Program 2011-2013 Technical Memorandum CN 418.0 Station CO7A is located on the lowest reach of the Concord River in Lowell, MA within the Southern New England Coastal Plains and Hills ecoregion. From 2011-2013, the station was sampled 12 times, and access was gained from the western shore approximately 20 ft upstream (south) of the Rogers Street Bridge. Samples were collected by wading in or with a sampling pole. Station CO7A serves as a boundary station, where the Concord River watershed enters the Merrimack River watershed.

The land use surrounding this stretch of river is the urbanized center of Lowell (Figure 10) (Google Earth 2011e). Numerous municipal discharges are located upstream, as well as large areas of impervious surfaces.

The river at Station CO7A is approximately 120 ft wide. Although shaded along some of the shoreline, most of the channel is open to the sky (Figure 11). The depth across the stream channel is unknown at both locations (too deep to wade). Visibility was often limited due to solar reflection, turbidity and turbulence. When visible (2 of 12 events), the stream bottom was composed largely of boulders, with cobble, gravel, sand and a layer of silt over all. Again, when the entire water column was visible (5 events, n=12), periphyton typically consisted of a filamentous algae or moss. No aquatic macrophytes were observed in this area from 2011-2013. Waterfowl noted at this station included Anatidae (duck family), *Branta canadensis* (Canada goose), *Anas platyrhynchos* (mallard duck), and *Ardea herodias* (great blue heron); "gulls" were also observed.

When visible, the water column at this station ranged from clear to highly turbid; in general, the river was moderately to highly turbid. Typically, the water color was red or light yellow and lacked odor and sheens. Foam was absent on half of the monitoring events; when present, foam coverage ranged from very sparse to moderate. The streambed was not visible on 9 of 12 events; when the bottom was visible (3 dates), minor to moderately dense trash was present, including metals, tires, shopping cart, scooter, unidentifiable items, and floatables.

As the last station sampled on each of the SuAsCo SMART Monitoring events, field blank samples were collected here.

## Table 2 MassDEP SMART 2011 - 2013. Station AS04. Summary of Observations.

| Survey      |                                 |                 |                                 |              |               |        |       |           | W  |
|-------------|---------------------------------|-----------------|---------------------------------|--------------|---------------|--------|-------|-----------|----|
| Dates       | Substrate                       | Trash           | Periphyton                      | Color        | Odor          | Foam   | Sheen | Turbidity | Co |
| 1/19/2011   | Sand                            | None            | None                            | Clear        | None          | None   | None  | Clear     | W  |
| 3/15/2011   | Sand                            | None            | None                            | Light yellow | None          | None   | None  | Clear     | Di |
| 5/17/2011   | Cobble/sand                     | None            | None                            | Red, slight  | None          | None   | None  | Clear     | W  |
| 7/20/2011   | Sand/silt                       | None            | None                            | Light yellow | None          | None   | None  | Clear     | Dr |
| 9/21/2011   | Cobble/gravel/sand/silt         | None            | Moderate: moss                  | Light yellow | None          | None   | None  | Clear     | Dr |
|             |                                 |                 |                                 |              |               | Very   |       |           |    |
| 11/16/2011  | Sand                            | None            | None                            | Clear        | None          | sparse | None  | Clear     | Dr |
| 2/22/2012   | Sand/Mud                        | None            | Dense: brown filamentous        | Light yellow | None          | None   | None  | Clear     | Dr |
| 4/11/2012   | Unobservable                    | None            | Dense: silt-covered filamentous | Clear        | Effluent      | None   | None  | Clear     | Dr |
| 6/20/2012   | Cobble/gravel/sand/silt         | None            | None                            | Light yellow | Musty, slight | None   | None  | Moderate  | Di |
| 8/22/2012   | Cobble/gravel/sand/silt         | Minor: beer can | None                            | Clear        | Musty, slight | None   | None  | Clear     | Dr |
|             |                                 |                 | Very dense: dark green          |              |               |        |       |           |    |
|             |                                 |                 | filamentous; moderate brown     |              |               |        |       |           |    |
| 10/24/2012  | Sand                            | None            | film                            | Clear        | None          | None   | None  | Clear     | Di |
| 1/28/2013   | Sand                            | None            | None                            | Clear        | None          | None   | None  | Clear     | Di |
| 3/20/2013   | Sand                            | None            | None                            | Clear        | None          | None   | None  | Clear     | W  |
|             |                                 |                 | Unobservable; dense clear film  |              |               |        |       |           |    |
| 5/20/2013   | Unobservable                    | Unobservable    | on rocks where visible          | Light yellow | Musty, slight | None   | None  | Clear     | Dr |
| 8/28/2013   | Boulder/sand/silt               | None            | Moderate: moss                  | Clear        | None          | None   | None  | Clear     | Dr |
|             |                                 |                 |                                 |              |               |        |       |           |    |
| 9/25/2013   | Boulder/cobble/gravel/sand/silt | None            | Sparse: moss                    | Clear        | Musty, slight | None   | None  | Clear     | W  |
| : Not noted |                                 |                 |                                 |              |               |        |       |           |    |

| -                     |
|-----------------------|
| Wet/Dry<br>Conditions |
| Wet                   |
| Dry                   |
| Wet                   |
| Dry                   |
| Dry                   |
|                       |
| Dry                   |
|                       |
| Dry                   |
| Dry                   |
| Wet                   |
|                       |
| Dry                   |
| Dry                   |
|                       |
| Wet                   |
|                       |

| Sumary Datas             | Substrate                                   | Trash                                             | Devichuten                                                 | Calar        | Odor                   | Foom        | Sheen  | Turbidity    | Wet/Dry    |
|--------------------------|---------------------------------------------|---------------------------------------------------|------------------------------------------------------------|--------------|------------------------|-------------|--------|--------------|------------|
| Survey Dates             | Substrate                                   |                                                   | Periphyton                                                 | Color        |                        | Foam        |        |              | Conditions |
| 1/19/2011                | Unobservable                                | Unobservable                                      | Unobservable<br>Unobservable; dark<br>green filamentous on | Clear        | Effluent, strong       | Sparse      | None   | Clear        | Wet        |
| 3/15/2011                | Unobservable                                | Unobservable                                      | plants where visible                                       | Clear        | None                   | Sparse      | None   | Unobservable | Dry        |
| 5/17/2011                | Unobservable                                | Unobservable                                      | Unobservable                                               | Unobservable | None                   | Moderate    | None   | Unobservable | Wet        |
| 7/20/2011                | Unobservable                                | Trash                                             | Dense: moss                                                | Light yellow | Eutrophic pond, strong | Very sparse | None   | Unobservable | Dry        |
| 9/21/2011                | Boulder/cobble/gravel/sand/silt             | Chunks of concrete, bricks                        | Sparse: moss                                               | Red, slight  | Musty                  | Sparse      | Pollen | Moderate     | Dry        |
| 11/16/2011               | Unobservable                                | Unobservable; chunks of cement<br>(where visible) | Unobservable                                               | Red          | Musty                  | Sparse      | None   | Clear        | Dry        |
| 2/22/2012                | Unobservable; dense periphyton              | Unobservable; luxuriant filamentous algae         | Very dense; bright<br>green filamentous,<br>"luxuriant"    | Light yellow | None                   | Sparse      | None   | Clear        | Dry        |
| 4/11/2012                | Boulder/cobble/gravel/silt                  | Unobservable; chunks of cement<br>(where visible) | Very dense: silt-covered filamentous, luxuriant            | Light yellow | Eutrophic pond         | None        | None   | Slight       | Dry        |
| 6/20/2012                | Boulder/cobble/gravel/sand/silt             | Minor: cement chunks                              | Moderate: moss                                             | Red          | Musty, strong          | Sparse      | None   | Moderate     | Dry        |
| 8/22/2012                | Unobservable; turbulence                    | Unobservable                                      | Very dense: dark green<br>filamentous                      | Clear        | Eutrophic pond, strong | None        | None   | Unobservable |            |
| 10/24/2012               | Unobservable; bottom stained dark brown     | Unobservable                                      | Very dense: clear film                                     | Clear        | None                   | None        | None   | Clear        | Dry        |
| 1/28/2013                | Unobservable (solar reflection)             | Unobservable                                      | None                                                       | Clear        | None                   | Sparse      | None   | Clear        | Dry        |
| 3/20/2013                | Unobservable                                | Minor: floatables, cement chunks                  | Moderate: bright green filamentous                         | Clear        | None                   | Sparse      | None   | Clear        | Wet        |
| 5/20/2013                | Boulder/cobble/gravel/sand/silt             | Chunks of concrete                                | Sparse green<br>filamentous; dense<br>moss                 | Unobservable | None                   | Moderate    | None   | Unobservable | Dry        |
| 8/28/2013                | Boulder/cobble/gravel/sand/silt;<br>stained | Chunks of concrete                                | Dense: moss                                                | Clear        | Eutrophic pond         | None        | None   | Clear        | Dry        |
|                          |                                             |                                                   | Sparse: dark green<br>filamentous; sparse                  |              |                        |             |        |              |            |
| 9/25/2013                | Boulder/cobble/gravel/sand/silt             | Minor: cement chunks                              | moss                                                       | Clear        | None                   | None        | None   | Clear        | Wet        |
| 9/25/2013<br>: Not noted | Boulder/cobble/gravel/sand/silt             | Minor: cement chunks                              |                                                            | Clear        | None                   | None        | None   | Clear        |            |

## Table 4 MassDEP SMART 2011 - 2013. Station NA01. Summary of Observations.

|              |                                 |              |                |           |                              |        |                |              | Wet/Dry    |
|--------------|---------------------------------|--------------|----------------|-----------|------------------------------|--------|----------------|--------------|------------|
| Survey Dates | Substrate                       | Trash        | Periphyton     | Color     | Odor                         | Foam   | Sheen          | Turbidity    | Conditions |
| 1/19/2011    | Unobservable                    | None         | None           | Clear     | None                         | None   | None           | Clear        | Wet        |
|              |                                 |              |                |           |                              | Very   |                |              |            |
| 3/15/2011    | Cobble/sand                     | None         | Dense, moss    | Red       | Petroleum                    | sparse | None           | Clear        | Dry        |
| 5/17/2011    | Unobservable                    | Unobservable | Unobservable   | Red       | None                         | Sparse | None           | Unobservable | Wet        |
| 7/20/2011    | Boulder/cobble/gravel/sand/silt | None         | Moderate: moss | Red       | Petroleum                    | None   | None           | Slight       | Dry        |
| 9/21/2011    | Unobservable                    | None         | Sparse: moss   | Red, deep | Petroleum (sediment release) | None   | None           | Slight       | Dry        |
|              | Unobservable; bottom stained    |              |                |           |                              |        |                |              |            |
| 11/16/2011   | black                           | None         | Sparse: moss   | Red       | None                         | None   | None           | Clear        | Dry        |
| 2/22/2012    | Cobble/gravel/sand              | None         | None           | Red       | None                         | None   | None           | Clear        | Dry        |
| 4/11/2012    | Boulder/cobble/gravel/sand/silt | None         | None           | Red       | None                         | Sparse | None           | Clear        | Dry        |
| 6/20/2012    | Unobservable                    | Unobservable | Unobservable   | Red, deep | Petroleum, strong            | None   | Pollen         | Moderate     | Dry        |
| 8/22/2012    | Unobservable                    | Unobservable | Unobservable   | Red, deep | Musty, slight                | Sparse | None           | Unobservable | Dry        |
| 10/24/2012   | Unobservable; bottom stained    | None         | None           | Red       | Petroleum (sediment release) | None   | None           | Clear        | Dry        |
| 1/28/2013    | Unobservable                    | Unobservable | Unobservable   | Red       | None                         | None   | None           | Clear        | Dry        |
| 3/20/2013    | Boulder/cobble/gravel/sand/silt | None         | Moderate: moss | Red       | None                         | Sparse | None           | Clear        | Wet        |
| 5/20/2013    | Unobservable                    | None         | Sparse: moss   | Red       | Musty, slight                | None   | Pollen, slight | Clear        | Dry        |
| 8/28/2013    | Unobservable                    | Unobservable | Unobservable   | Red       | Musty, slight                | None   | None           | Slight       | Dry        |
| 9/25/2013    | Unobservable                    | Unobservable | Unobservable   | Red       | None                         | None   | None           | Clear        | Wet        |
| : Not noted  |                                 |              |                |           |                              |        |                |              |            |

## Table 5 MassDEP SMART 2011 - 2013. Station SU07. Summary of Observations.

| Survey Dates | Substrate                                    | Trash                                                                                | Periphyton                                                | Color                               | Odor                 | Foam   | Sheen | Turbidity    | Wet/Dry<br>Conditions |
|--------------|----------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------|----------------------|--------|-------|--------------|-----------------------|
| 1/19/2011    | Cobble/grand/sand                            | Moderate: metals, broken glass                                                       | None                                                      | Clear                               | None                 | None   | None  | Clear        | Wet                   |
| 3/15/2011    | Cobble/gravel/sand                           | Moderate                                                                             | None                                                      | Light yellow                        | None                 | Sparse | None  | Clear        | Dry                   |
| 5/17/2011    | Unobservable                                 | Moderate: broken "junk"                                                              | None                                                      | Brown                               | Musty                | None   | None  | Moderate     | Wet                   |
| 7/20/2011    | Cobble/gravel/sand/silt                      | Moderate: miscellaneous unidentifiable items, catch basin grate                      | None                                                      | Light yellow                        | None                 | Sparse | None  | Clear        | Dry                   |
| 9/21/2011    | Cobble/gravel/sand                           | Moderate: broken glass, metals,<br>miscellaneous, bricks                             | None                                                      | Light yellow                        | Musty                | None   | None  | Slight       | Dry                   |
| 11/16/2011   | Cobble/gravel/sand                           | Minor: floatables, metals,<br>miscellaneous unidentifiable objects                   | None                                                      | Red, slight                         | None                 | None   | None  | Clear        | Dry                   |
| 2/22/2012    | Unobservable                                 | Unobservable; broken glass, storm drain grate where visible                          | Unobservable                                              | Light yellow                        | None                 | None   | None  | Unobservable | Dry                   |
| 4/11/2012    | Boulder/cobble/gravel/sand/silt              | Moderate: broken glass, metals, floatables, unknown                                  | Very dense: moss                                          | Clear                               | Fishy - intermittent | None   | None  | Clear        | Dry                   |
| 6/20/2012    | Cobble/gravel/sand                           | Moderate: broken glass, metals,<br>miscellaneous unidentifiable objects              | Sparse: moss                                              | Red, slight/light<br>yellow, slight | None                 | None   | None  | Slight       | Dry                   |
| 8/22/2012    | Boulder/cobble/gravel/sand/silt;<br>embedded | Moderate: broken glass, metals, miscellaneous                                        | Sparse: moss                                              | Clear                               | Musty                | Sparse | None  | Clear        | Dry                   |
| 10/24/2012   | Cobble/gravel/sand                           | Moderate: broken metals,<br>miscellaneous, bricks                                    | Moderate: dark green<br>filamentous; sparse<br>clear film | Light yellow                        | None                 | None   | None  | Clear        | Dry                   |
| 1/28/2013    | Cobble/gravel/sand/silt                      | Moderate: metals, miscellaneous                                                      | None                                                      | Clear                               | None                 | None   | None  | Clear        | Dry                   |
| 3/20/2013    | Unobservable                                 | Unobservable; moderate miscellaneous<br>broken unidentifiable items where<br>visible | Unobservable; none<br>where visible                       | Clear                               | None                 | None   | None  | Clear        | Wet                   |
| 5/20/2013    | Boulder/cobble/gravel/sand/silt              | Moderate: miscellaneous pieces                                                       | Dense: green<br>filamentous                               | Clear                               | None                 | None   | None  | Clear        | Dry                   |
| 8/28/2013    | Boulder/cobble/gravel/sand                   | Minor: trash, most high and dry                                                      | Very dense: brown<br>filamentous                          | Clear                               | None                 | None   | None  | Clear        | Dry                   |
| 9/25/2013    | Boulder/cobble/gravel/sand/silt              | Moderate: miscellaneous<br>unidentifiable objects - most on banks                    | Sparse: green<br>filamentous                              | Clear                               | None                 | None   | None  | Clear        | Wet                   |
| : Not noted  |                                              |                                                                                      |                                                           |                                     | •                    |        |       | •            |                       |

| Survey Dates     | Substrate                        | Trash                                                                  | Periphyton                                                | Color            | Odor                   | Foam           | Sheen  | Turbidity    | Wet/Dry<br>Conditions |
|------------------|----------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|------------------|------------------------|----------------|--------|--------------|-----------------------|
| 1/19/2011 (CO7A) | Station not sampled; access/time | issues                                                                 |                                                           |                  |                        | L              |        |              |                       |
| 3/15/2011        | Unobservable                     | Unobservable                                                           | Unobservable                                              | Light yellow     | None                   | Moderate       | None   | Unobservable | Dry                   |
| 5/17/2011        | Unobservable                     | Unobservable                                                           | Unobservable                                              | Light yellow     | None                   | Sparse         | None   | Unobservable | Wet                   |
| 7/20/2011        | Boulder/cobble/gravel/sand/silt  | Moderate: tires, shopping cart,<br>unidentifiable "stuff", floatables  | Moderate: moss,<br>covered in silt                        | Red/light yellow | Eutrophic pond, strong | Moderate       | None   | Moderate     | Dry                   |
| 9/21/2011        | Unobservable                     | Minor: unidentifiable items                                            | Sparse: moss                                              | Red              | Musty                  | Moderate       | None   | Slight       | Dry                   |
| 11/16/2011       | Unobservable                     | Unobservable                                                           | Unobservable                                              | Red              | None                   | Very<br>sparse | None   | Unobservable | Dry                   |
| 2/22/2012        | Unobservable                     | Unobservable                                                           | Unobservable; dense<br>brown filamentous<br>where visible | Light yellow     | None                   | None           | None   | Unobservable | Dry                   |
|                  |                                  |                                                                        | Very dense olive green                                    |                  |                        |                |        |              |                       |
| 4/11/2012        | Unobservable                     | Unobservable                                                           | filamentous                                               | Red, slight      | Eutrophic pond         | None           | None   | Moderate     | Dry                   |
| 6/20/2012        | Unobservable                     | Unobservable                                                           | Unobservable                                              | Brown/red        | None                   | None           | None   | Highly murky | Dry                   |
| 8/22/2012        | Unobservable                     | Unobservable                                                           | Unobservable                                              | Rusty            | Fishy, eutrophic pond  | None           | None   | Highly murky | Dry                   |
| 10/24/2012       | Unobservable (solar reflection)  | Unobservable; broken pieces of<br>"unidentifiable stuff" where visible | None                                                      | Light yellow     | None                   | None           | None   | Clear        | Dry                   |
| 1/28/2013        | Boulder/cobble/gravel/sand/silt  | Moderate: floatables, metals, scooter, miscellaneous                   | Moderate: tan<br>filamentous                              | Clear            | None                   | None           | None   | Clear        | Dry                   |
| 3/20/2013        | Unobservable                     | Unobservable                                                           | Unobservable                                              | Unobservable     | None                   | Sparse         | None   | Unobservable | Wet                   |
| 5/20/2013        | Unobservable                     | Unobservable; scooter where visible                                    | Unobservable                                              | Light yellow     | None                   | None           | Pollen | Moderate     | Dry                   |
| 8/28/2013        | Boulder/coble/gravel/sand/silt   | Moderate; covered in silt                                              | Dense: brown<br>filamentous                               | Red              | Musty, slight          | None           | Pollen | Slight       | Dry                   |
| 9/25/2013        | Unobservable                     | Moderate: miscellaneous unidentifiable objects                         | Very dense: brown<br>filamentous                          | Brown            | Musty, slight          | Very<br>sparse | None   | Moderate     | Wet                   |
| : Not noted      |                                  | •                                                                      | ,                                                         |                  |                        |                |        |              |                       |

# SURVEY CONDITIONS

Stream discharge and precipitation data are used to determine hydrologic conditions and, consequently, if water quality surveys should be described as dry or wet weather events. Precipitation data were obtained from the National Oceanic and Atmospheric Administration (NOAA). The presence/absence of precipitation during the five days prior to each sampling event was based on the National Weather Service (NWS) data located on their website <u>NOAA Climatological Data Publications</u> (NOAA 2015). The weather stations closest to the Concord watershed are in Lowell, Reading and Worcester. Reading has the save average annual precipitation as most of the basin, while Worcester receives a greater volume and Lowell a smaller volume. Therefore, climatological data collected at Reading were utilized in this report. Overall, precipitation varies little across the watershed, which receives an average of 44 to 46 inches/year (in/yr) (Ostiguy et al 2010). The northern area, including Chelmsford, Lowell, and the northern sections of Westford and Billerica, receives 42 to 44 in/yr, while the southwest area, including portions of the towns of Bolton, Berlin, Northborough and Westborough, receives 46 to 48 in/yr.

During dry weather, trace amounts of precipitation may fall, but there is no measurable change in stream flow. The USGS operates five real time stream gaging stations in the Concord River Watershed near SMART stations:

- Assabet River at Maynard, MA (7/11/1941 to current)(USGS 2015a);
- Nashoba Brook near Acton, MA (7/26/1963 to current)(USGS 2015b);
- Sudbury River at Saxonville, MA (11/1/1979 to current) (USGS 2015c); and
- Concord River below River Meadow Brook at Lowell, MA (12/16/1936 to current)(USGS 2015d).

The mean streamflow values are from the USGS Concord River gage below River Meadow Brook, Lowell and are reported at <u>USGS Daily Data at Concord River below River Meadow Brook, Lowell, MA</u> (USGS 2015e). The monthly mean discharge data are found at <u>USGS Monthly Data at Concord River below River Meadow Brook, Lowell, MA</u> (USGS 2015f). The daily statistics data, based on 71-72 years of record are reported at <u>USGS Mean</u> <u>Daily Statistics at Concord River below River Meadow Brook, Lowell, MA</u> (USGS 2015g).

Wet weather is determined to impact water quality when precipitation within a five-day antecedent period leads to more than a slight increase in stream discharge. Under dry weather conditions, trace amounts of precipitation may fall, but no measurable change in stream flow occurs. In addition to precipitation, discharge values were examined relative to the 7Q10 low flow (the lowest 7-day average streamflow that occurs, on average, once every 10 years) which is 32.2 cubic feet per second (cfs) at the USGS gaging station on the Concord River below River Meadow Brook in Lowell (Wandle and Fontaine 1984). At some of the SuAsCo flow gaging stations, precipitation-related stream fluctuations were difficult to distinguish from non-precipitation driven fluctuations on some events.

Table 7 through Table 11 present climate data used to determine wet weather/runoff or dry weather conditions for individual winter surveys (January – March). Table 12 through Table 13 present the precipitation and discharge data for each sampling event and the preceding 5-day period; these data were used to estimate hydrological conditions for each sampling event. When precipitation and discharge data were insufficient to determine wet or dry conditions, additional data consulted included maximum daily temperature, snowfall and snow on the ground.

**January 19, 2011** – Over 5 in of snow (1.38 in as water) was recorded at the Reading, MA weather station on January 18-19, 2011. Discharge at area gages generally reflected this storm, as well as input from snowmelt (see Table 7). Data collected during this event reflect wet weather/runoff conditions. Air temperature during the sampling event ranged from 36 to 39 degrees Fahrenheit (°F) under overcast skies.

| Parameter                              | Jan 14           | Jan 15      | Jan 16 | Jan 17 | Jan 18 | Jan 19 |
|----------------------------------------|------------------|-------------|--------|--------|--------|--------|
| Max Temperature (°F)                   | 25               | 30          | 37     | 24     | 39     | 39     |
| Precipitation (inches as water)        | 0                | Т           | 0      | 0      | 1.38   | 0.26   |
| Snowfall (inches)                      | 0                | Т           | 0      | 0      | 5.2    | 1.0    |
| Snow on the ground (inches)            | 20               | 17          | 15     | 15     | 18     | 16     |
| Data obtained at NOAA Climatological D | ata Publications | (NOAA 2015) |        |        |        |        |

 Table 7 Climate Conditions at Reading, MA from January 14-19, 2011

Data obtained at <u>NOAA Climatological Data Publications</u> (NOAA 2015).

**March 15, 2011** – Over 0.67 in of precipitation was recorded at Reading between March 10-12, 2011. Discharge at area gages rose with this event, but decreased to pre-storm levels by March 14. Table 8 shows maximum daily temperatures well above freezing through this period, although snow on the ground remained at approximately 1 in (field observations note some areas with snow and patches of dry ground, and some areas with patches of snow only throughout the watershed). Data collected during this event dry weather conditions. Air temperature ranged from 31 to 47°F with cloud cover ranging from 15 to 100%.

| Parameter                               | March 10           | March 11    | March 12 | March 13 | March 14 | March 15 |  |  |  |  |
|-----------------------------------------|--------------------|-------------|----------|----------|----------|----------|--|--|--|--|
| Max Temperature (°F)                    | 39                 | 51          | 50       | 48       | 38       | 48       |  |  |  |  |
| Precipitation (inches as water)         | 0.07               | 0.59        | 0.01     | Т        | Т        | 0        |  |  |  |  |
| Snowfall (inches)                       | 0                  | 0           | 0        | 0        | Т        | 0        |  |  |  |  |
| Snow on the ground (inches) 1 1 1 1 1 1 |                    |             |          |          |          |          |  |  |  |  |
| Data obtained at NOAA Climatological D  | ata Publications ( | NOAA 2015). |          |          |          |          |  |  |  |  |

 Table 8 Climate Conditions at Reading, MA from March 10-15, 2011

**May 17, 2011** – Over 0.85 in rain fell on the area in the two days and the morning preceding this spring monitoring event (May 15-17). Discharge at area gages more than doubled during this period; discharge at the Concord River gage indicated several rapid fluctuations not associated with precipitation. Data reflect wet weather/runoff conditions. Air temperature ranged from 48 to 49°F with overcast skies and intermittent drizzle.

**July 20, 2011** – Summer sampling in 2011 followed a relatively dry period (approximately 0.21 in of rain 2 days prior to monitoring activities). Discharge at the Assabet River at Maynard and Nashoba Brook at Acton gages steadily decreased in this period, while discharge at the Sudbury River at Saxonville and the Concord River at Lowell reflect non-precipitation based fluctuations. Field observations note river levels ranging from low to very low throughout the watershed. Data reflect dry weather conditions. Air temperature ranged from 68 to 84°F under sunny skies.

**September 21, 2011** – A small amount of rain (0.14 in) fell the evening before this monitoring event. Discharge at all watershed gages steadily decreased in the preceding week. Data collected during this event reflect dry weather conditions. Air temperature ranged from 61 to 70°F under sunny skies.

**November 16, 2011** – This mid-fall survey followed a week with only trace precipitation recorded at Reading (the half inch of rain measured on the sampling date fell after conclusion of monitoring activities). Discharge at area gages generally decreased from Nov. 10/12-16. Therefore, data reflect dry weather conditions. Air temperature ranged from 52 to 61°F and cloud cover from 20 to 100%.

**February 22, 2012** – This winter sampling even followed a dry period, with scant precipitation recorded at Reading; see Table 9 for climate data. The discharge pattern at area gages generally decreased from February 17 through the sampling date. Field observations noted lower than normal water levels at all stations. Data collected on this date reflect dry weather conditions. Air temperature ranged from 35 to 55°F and skies ranged from mostly sunny to overcast.

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Feb 17              | Feb 18     | Feb 19 | Feb 20 | Feb 21 | Feb 22 |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|--------|--------|--------|--------|--|--|--|--|
| Max Temperature (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 53                  | 47         | 57     | 42     | 44     | 58     |  |  |  |  |
| Precipitation (inches as water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                | Т          | 0      | 0      | Т      | 0      |  |  |  |  |
| Snowfall (inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                   | 0          | 0      | 0      | Т      | 0      |  |  |  |  |
| Snow on the ground (inches)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0< |                     |            |        |        |        |        |  |  |  |  |
| Data obtained at NOAA Climatological Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ata Publications (N | OAA 2015). |        |        |        |        |  |  |  |  |

 Table 9 Climate Conditions at Reading, MA from February 17-22, 2012

**April 11, 2012** – A dry period proceeded this spring monitoring event (0.01 recorded on the sampling date fell after conclusion of monitoring activities). Overall, discharge at watershed gages decreased over the preceding week; although non-precipitation based fluctuations were observed at the Sudbury and Concord River gages, flows had returned to pre-event levels by April 11. Water levels at all stations continued to be low to very low. Data collected on this date reflect dry weather conditions. Air temperature ranged from 46 to 54°F under overcast skies.

**June 20, 2012** – This late spring monitoring event followed a dry period, with no precipitation recorded at Reading in the preceding five days. Overall, discharge at area gages rose decreased steadily from June 14-20. Water levels at all stations continued to be lower than normal. Data collected during this event reflect dry weather conditions. Air temperature ranged from 74 to 90°F under clear skies.

**August 22, 2012** –A storm brought 0.26 in to the area on August 17-18, followed by 4 days without measurable precipitation at Reading. Discharge at area gages generally reflected the precipitation pattern. Low to very low water levels were observed at all stations. Data reflect dry weather conditions. Air temperature ranged from 63 to 78°F under sunny skies.

**October 24, 2012** – Over an inch of rain fell on the area on October 19-20, 2012 with no precipitation recorded at Reading from October 21-24. In general, discharge at area gages peaked on October 20-21, then decreased through monitoring activities to pre-storm levels. Data reflect dry weather conditions. Air temperature ranged from 52 to 57°F under overcast skies.

**January 28, 2013** – Little precipitation was noted in the area in the five days preceding this winter monitoring event (1.2 in snow recorded on the sampling date fell after monitoring activities had concluded) (see Table 10). Discharge at area gages generally decreased throughout the week preceding this monitoring event. At stations throughout the watershed, water levels were lower than normal. Bare ground with patches of snow was noted throughout the watershed. Data collected during this event reflect dry weather conditions. Air temperature ranged from 25 to 30°F under overcast skies.

| Parameter                                 | Jan 23           | Jan 24       | Jan 25 | Jan 26 | Jan 27 | Jan 28 |
|-------------------------------------------|------------------|--------------|--------|--------|--------|--------|
| Max Temperature (°F)                      | 17               | 19           | 24     | 25     | 30     | 30     |
| Precipitation (inches as water)           | 0                | 0            | Т      | 0.01   | 0      | 0.15   |
| Snowfall (inches)                         | 0                | 0            | Т      | 0.1    | 0      | 1.2    |
| Snow on the ground (inches)               | Т                | 0            | Т      | 0      | 0      | 1      |
| Data obtained at NOAA Climatological Data | ata Publications | (NOAA 2015). |        |        |        |        |

Table 10 Climate Conditions at Reading, MA from January 23-28, 2013

**March 20, 2013** – A late winter storm brought 13 inches of snow to the area from March 18-19, 2013 (2.01 in as water); see Table 11 for climate data from March 15-20, 2015. The discharge pattern varied at area gages. At the Assabet River, Maynard, flow decreased steadily from March 14-18, then remained at that level through March 20. At the Nashoba Brook, Acton and the Sudbury River, Saxonville, flow also decreased through March 18, then increased through March 20. Mean daily discharge at the Concord River gage varied little over the week prior this sampling event. Table 8 shows maximum daily temperatures above freezing through this period, and snow on the ground decreased 3 in from March 19-20. Field observations note that water levels at area stations were normal to high, up from low in January. Data collected during this event wet weather/runoff conditions. Air temperature ranged from 30 to 42°F and cloud cover from 0 to 70%.

## Table 11 Climate Conditions at Reading, MA from March 15-20, 2013

| Parameter                             | March 15       | March 16        | March 17   | March 18 | March 19 | March 20 |
|---------------------------------------|----------------|-----------------|------------|----------|----------|----------|
| Max Temperature (°F)                  | 39             | 39              | 39         | 38       | 34       | 37       |
| Precipitation (inches as water)       | 0              | 0               | 0          | 0.08     | 1.33     | 0        |
| Snowfall (inches)                     | 0              | 0               | 0          | 0.8      | 12.2     | 0        |
| Snow on the ground (inches) T T 0 1 9 |                |                 |            |          |          |          |
| Data obtained at NOAA Climatol        | ogical Data Pu | ublications (NC | DAA 2015). |          |          |          |

**May 20, 2013** – A small storm brought 0.17 in rain to the area from May 19-20, 2013; however, discharge did not rise with precipitation. The water level at all stations had returned to lower than normal. Data collected on this date reflect dry weather conditions. Air temperature ranged from 60 to 70°F and skies from 10 to 100% cloud cover.

August 28, 2013 – Minimal precipitation fell in the area in the 5-day preceding this summer monitoring event (0.01 in). The discharge pattern varied between watershed gages from August 23-28. Discharge at the Assabet River gages (Hudson, Maynard) rose from August 27-28; fell at the Nashoba Brook (Acton) and Concord River (Lowell);

Concord River Watershed SMART Monitoring Program 2011-2013 Technical Memorandum CN 418.0 and varied little at the Sudbury River (Saxonville). Water levels at all stations remained at lower than normal. Based on precipitation, discharge at Nashoba Brook and the Concord River, and consistently low water levels throughout the watershed, data collected on this date reflect dry weather conditions. Air temperature ranged from 68 to 82°F under sunny to mostly sunny skies.

**September 25, 2013** – A storm brought 0.74 in rain to the area 3 days before this early fall monitoring event (9/22/2013). Discharge at most watershed gages rose with the precipitation input, then decreased but not to prestorm levels before the survey. Data collected during this event reflect wet weather/runoff conditions. Air temperature ranged from 50 to 60°F under sunny to mostly sunny skies.

| Table 12 SuAsCo | Basin Pre         | cipitation D    | ata Summa       | ry 2011-201     | 3                |                |                                      |
|-----------------|-------------------|-----------------|-----------------|-----------------|------------------|----------------|--------------------------------------|
| Survey Dates    | 5 Days<br>Prior * | 4 Days<br>Prior | 3 Days<br>Prior | 2 Days<br>Prior | 1 Day<br>Prior** | Sample<br>Date | Wet/Dry<br>Conditions <sup>***</sup> |
| 1/19/2011       | 0                 | Т               | 0               | 0               | 1.38             | 0.26           | Wet                                  |
| 3/15/2011       | 0.07              | 0.59            | 0.01            | Т               | Т                | 0              | Dry                                  |
| 5/17/2011       | 0                 | 0               | Т               | 0.55            | 0.21             | 0.09           | Wet                                  |
| 7/20/2011       | 0                 | 0               | 0               | 0.21            | 0                | 0              | Dry                                  |
| 9/21/2011       | 0.04              | 0               | 0               | 0               | 0                | 0.14           | Dry                                  |
| 11/16/2011      | Т                 | 0               | 0               | 0               | Т                | 0.51           | Dry                                  |
| 2/22/2012       | 0.01              | Т               | 0               | 0               | Т                | 0              | Dry                                  |
| 4/11/2012       | 0                 | 0               | Т               | 0               | 0                | 0.01           | Dry                                  |
| 6/20/2012       | 0                 | 0               | 0               | 0               | 0                | 0              | Dry                                  |
| 8/22/2012       | 0.12              | 0.14            | 0               | 0               | Т                | 0              | Dry                                  |
| 10/24/2012      | 0.14              | 0.97            | 0               | 0               | 0                | 0              | Dry                                  |
| 1/28/2013       | 0                 | 0               | Т               | 0.01            | 0                | 0.15           | Dry                                  |
| 3/20/2013       | 0                 | 0               | 0               | 0.08            | 1.33             | 0              | Wet                                  |
| 5/20/2013       | Т                 | 0               | 0               | 0               | 0.14             | 0.03           | Dry                                  |
| 8/28/2013       | 0                 | 0               | 0               | 0.01            | Т                | 0              | Dry                                  |
| 9/25/2013       | 0                 | 0               | 0.74            | 0               | 0                | 0              | Wet                                  |

\*Unofficial data from the National Weather Service station in Reading, MA and reported at <u>NOAA Climatological Data</u> <u>Publications</u> (NOAA 2015); all data in inches of water.

\*\*T= trace amount

\*\*\* Based on precipitation, streamflow and other relevant data.

| Table 13 Discha | rge at the Cor | cord River      | below Rive      | r Meadow B      | rook, Lowe     | II, MA 201     | 1-2013          |                |
|-----------------|----------------|-----------------|-----------------|-----------------|----------------|----------------|-----------------|----------------|
| Survey Dates    | 5 Days Prior   | 4 Days<br>Prior | 3 Days<br>Prior | 2 Days<br>Prior | 1 Day<br>Prior | Sample<br>Date | Monthly<br>Mean | POR***<br>Mean |
| 1/19/2011       | 374            | 412             | 394             | 359             | 339            | 374            | 421.6           | 683            |
| 3/15/2011       | 2,830          | 3,000           | 3,110           | 3,120           | 3,090          | 3,000          | 2,229           | 1,180          |
| 5/17/2011       | 706            | 678             | 646             | 652             | 700            | 773            | 859.7           | 858            |
| 7/20/2011       | 190            | 176             | 155             | 144             | 113            | 163            | 283.1           | 221            |
| 9/21/2011       | 1,300          | 1,170           | 1,060           | 957             | 878            | 806            | 1,150           | 265            |
| 11/16/2011      | 1,120          | 1,130           | 1,120           | 1,090           | 1,040          | 1,000          | 1,196           | 556            |
| 2/22/2012       | 587            | 585             | 587             | 589             | 585            | 577            | 758.0           | 859            |
| 4/11/2012       | 363            | 349             | 341             | 335             | 329            | 299            | 499.0           | 1,450          |
| 6/20/2012       | 517            | 487             | 450             | 385             | 340            | 300            | 454.4           | 513            |
| 8/22/2012       | 416            | 475             | 452             | 419             | 399            | 334            | 208.9           | 267            |
| 10/24/2012      | 207            | 325             | 377             | 370             | 336            | 297            | 264.4           | 402            |
| 1/28/2013       | 546            | 506             | 423             | 380             | 333            | 310            | 613.7           | 895            |
| 3/20/2013       | 1,980          | 2,000           | 1,970           | 1,920           | 1,880          | 1,850          | 1,665           | 1,340          |
| 5/20/2013       | 421            | 394             | 352             | 327             | 287            | 266            | 396.7           | 831            |
| 8/28/2013       | 99             | 95              | 89              | 87              | 81             | 80             | 240.3           | 225            |
| 9/25/2013       | 137            | 120             | 136             | 134             | 137            | 128            | 156.4           | 293            |

\*Gage # 01099500 data found at <u>Daily Data for the Concord River below River Meadow Brook, Lowell, MA</u>; all data approved for publication (USGS 2015e).

\*\*Daily statistics based on mean values of the point of record from 10/1/1936 - 9/30/2008 (USGS 2015g).

7Q10 = 32.2 cfs @ USGS gaging station, Concord River below River Meadow Brook at Lowell, MA (Wandle and Fontaine 1984).

# **RESULTS AND QUALITY ASSURANCE/QUALITY CONTROL**

The results of SMART monitoring conducted in the SuAsCo watershed from 2011 through 2013 are included below. Table 14 through Table 18 present *in-situ* multiprobe readings, including temperature, pH, dissolved oxygen, percent oxygen saturation, depth, specific conductivity, and total dissolved solids. Table 19 through Table 23 contain nutrient (ammonia-nitrogen, nitrate-nitrite nitrogen, total nitrogen and total phosphorus), chlorides, hardness, total alkalinity, total suspended solids and turbidity data. Most results are expressed as milligrams per liter (mg/L). Exceptions include: depth in meters (m); temperature in degrees Celsius (°C); pH in Standard Units (SU); conductivity in microsiemens per centimeter (µS/cm); dissolved oxygen saturation in percent (%); and turbidity, in Nephelometric Turbidity Units (NTU).

Field sheets, field notebooks, chain of custody forms, raw and electronic data files, lab reports and other metadata are maintained by DWM. Detailed information regarding the data validation process is explained in the separate document, *CN 56.2. Standard Operating Procedure. Data Validation and Usability* (MassDEP 2005). Specific validation criteria used for 2011-2013 data include, but are not limited to conformance to the SMART Monitoring Quality Assurance Project Plan (Beaudoin 2008) and with DWM standard operating procedures (SOPs), precision, accuracy, representativeness, holding times, sample preservation, frequency of field QC samples, contamination of field blanks, stability of multiprobe readings and documentation. The following data qualifiers were applied as needed:

Multiprobe data qualifiers:

- \*\* = Missing data.
- -- = No data.
- ## = Censored data (data that have been discarded for some reason).
- c = Greater than calibration standard used for pre-calibration, or outside the acceptable range about the calibration standard.
- i = Inaccurate readings from multiprobe likely.
- m = Method not followed; one or more protocols contained in the DWM Multi-probe SOP not followed.
- r = Data not representative of actual field conditions.
- s = Field sheet recorded data were used to accept data, not data electronically recorded in the Multi-probe surveyor unit, due to operator error or equipment failure.
- u = Unstable readings.

Laboratory sample data qualifiers:

- \*\* = Missing data.
- -- = No data.
- ## = Censored data (data that have been discarded for some reason).
- [] = A result reported inside brackets has been censored, but is shown for informational purposes.
- b = Blank contamination in lab reagent blanks and/or field blank samples.
- d = Precision of field duplicates (as RPD) did not meet project data quality objectives identified for program or in QAPP.
- e = Not theoretically possible. Specifically, used for bacteria data where colonies per unit volume for *E. coli* bacteria is greater than fecal coliform bacteria.
- h = Holding time violation (usually indicating possible bias low).
- j = 'Estimated' value; used for lab-related issues where certain lab QC criteria are not met and re-testing is not possible (as identified by the WES lab only). Also used to report sample data where the sample concentration is less than the reporting detection limit (RDL) and greater than the method detection limit (MDL) (RDL > x > MDL). Also used to note where values have been reported at levels less than the MDL.
- m = Method SOP not followed, only partially implemented or not implemented at all, due to complications with sample matrix (e.g. sediment in sample, floc formation), lab error (e.g. cross-contamination between samples), additional steps taken by the lab to deal with matrix complications, lost/unanalyzed samples, and missing data.

| Date       | OWMID   | Time    | Depth | Temp | рН   | Cond@<br>25C | TDS    | DO     | SAT |
|------------|---------|---------|-------|------|------|--------------|--------|--------|-----|
|            |         | (24hr)  | (m)   | (C)  | (SU) | (us/cm)      | (mg/l) | (mg/l) | (%) |
| 1/19/2011  | SM-3456 | 8:50 AM | 0.3   | 3.1  | 6.6  | 777          | 505    | 11.9   | 89  |
| 3/15/2011  | SM-3528 | 8:14 AM | 0.7   | 3.1  | 6.5  | 458          | 298    | 12.1   | 90  |
| 5/17/2011  | SM-3600 | 8:26 AM | 0.3   | 12.6 | 6.7  | 436          | 283    | ##i    | ##i |
| 7/20/2011  | SM-3672 | 8:27 AM | 0.2   | 21.4 | 7.0  | 1110         | 721    | 6.1    | 69  |
| 9/21/2011  | SM-3743 | 8:15 AM | 0.4   | 15.9 | 7.0  | 679          | 441    | 7.8    | 79  |
| 11/16/2011 | SM-3815 | 8:07 AM | 0.7   | 10.7 | 6.9  | 370          | 240    | 10.0   | 90  |
| 2/22/2012  | SM-3887 | 8:12 AM | 0.6   | 4.7  | 7.0  | 606          | 394    | 11.0   | 86  |
| 4/11/2012  | SM-3959 | 8:04 AM | ##i   | 10.8 | 7.0  | 894          | 581    | 8.7i   | 79i |
| 6/20/2012  | SM-4031 | 8:02 AM | ##i   | 19.0 | 7.0  | 810          | 527    | 6.5    | 70  |
| 8/22/2012  | SM-4103 | 8:22 AM | ##i   | 20.5 | 7.1  | 1246         | 810    | 5.6i   | 63i |
| 10/24/2012 | SM-4175 | 7:58 AM | ##i   | 14.5 | 7.1  | 1050         | 682    | 5.9    | 58  |
| 1/28/2013  | SM-4248 | 8:43 AM | 0.0i  | 2.1  | 6.9  | 795          | 517    | 11.3i  | 82i |
| 3/20/2013  | SM-4319 | 8:11 AM | 0.0i  | 1.9  | 6.8  | 655          | 426    | 12.8i  | 92i |
| 5/20/2013  | SM-4379 | 8:10 AM | ##i   | 16.1 | 7.3  | 902          | 586    | 8.1    | 82  |
| 8/28/2013  | SM-4421 | 8:22 AM | 0.0i  | 20.8 | 7.3  | 1047         | 681    | 6.8    | 76  |
| 9/25/2013  | SM-4451 | 8:11 AM | 0.0i  | 15.0 | 7.1  | 999          | 649    | 8.0    | 80  |

| Date       | OWMID   | Time     | Depth | Temp | рН   | Cond@<br>25C | TDS    | DO     | SAT  |
|------------|---------|----------|-------|------|------|--------------|--------|--------|------|
|            |         | (24hr)   | (m)   | (C)  | (SU) | (us/cm)      | (mg/l) | (mg/l) | (%)  |
| 1/19/2011  | SM-3460 | 10:51 AM | 0.3   | 0.3  | 6.9  | 675          | 439    | 14.9   | 103  |
| 3/15/2011  | SM-3532 | 10:21 AM | 0.6   | 3.2  | 6.6  | 367          | 239    | 14.1   | 106  |
| 5/17/2011  | SM-3604 | 10:45 AM | 0.3   | 13.1 | 6.9  | 426          | 277    | ##i    | ##i  |
| 7/20/2011  | SM-3676 | 10:13 AM | 0.2   | 25.6 | 7.6  | 641          | 417    | 7.4    | 91   |
| 9/21/2011  | SM-3748 | 10:04 AM | 0.3   | 16.4 | 7.2  | 438          | 285    | 9.7    | 100  |
| 11/16/2011 | SM-3820 | 10:03 AM | 0.5   | 10.6 | 7.1  | 332u         | 215u   | 11.6   | 104  |
| 2/22/2012  | SM-3892 | 10:15 AM | 0.3   | 4.3  | 7.6  | 409          | 266    | 14.1   | 108  |
| 4/11/2012  | SM-3964 | 10:01 AM | ##i   | 11.1 | 8.0  | 495          | 322    | 12.7i  | 116i |
| 6/20/2012  | SM-4036 | 9:46 AM  | ##i   | 22.3 | 7.5  | 423          | 275    | 8.6    | 99   |
| 8/22/2012  | SM-4108 | 10:10 AM | ##i   | 23.6 | 7.5  | 452          | 293    | 8.0i   | 95i  |
| 10/24/2012 | SM-4180 | 9:52 AM  | ##i   | 12.9 | 7.4  | 605          | 393    | 9.9    | 93   |
| 1/28/2013  | SM-4252 | 10:29 AM | 0.0i  | 0.6  | 7.3  | 579          | 376    | 14.7i  | 103i |
| 3/20/2013  | SM-4324 | 10:21 AM | 0.0i  | 1.4  | 7.0  | 463          | 301    | 14.1i  | 100i |
| 5/20/2013  | SM-4384 | 10:02 AM | ##i   | 18.8 | 7.5  | 547          | 355    | 9.7    | 104  |
| 8/28/2013  | SM-4426 | 10:12 AM | ##i   | 23.5 | 7.9  | 671          | 436    | 8.0    | 95   |
| 9/25/2013  | SM-4456 | 9:58 AM  | 0.0i  | 16.5 | 7.5  | 673          | 438    | 9.5    | 97   |

## Table 15 MassDEP SMART 2011-2013. Station AS18. In Situ Multiprobe Data.

| Date       | OWMID   | Time     | Depth | Temp | рН   | Cond@<br>25C | TDS    | DO     | SAT  |
|------------|---------|----------|-------|------|------|--------------|--------|--------|------|
|            |         | (24hr)   | (m)   | (C)  | (SU) | (us/cm)      | (mg/l) | (mg/l) | (%)  |
| 1/19/2011  | SM-3462 | 11:33 AM | 0.3   | 0.1  | 6.4  | 507          | 330    | 12.1   | 83   |
| 3/15/2011  | SM-3534 | 10:56 AM | 0.8   | 1.2  | 6.4  | 383          | 249    | 14.1   | 100  |
| 5/17/2011  | SM-3606 | 11:26 AM | 0.5   | 11.0 | 6.5  | 426          | 277    | ##i    | ##i  |
| 7/20/2011  | SM-3678 | 10:50 AM | 0.4   | 22.7 | 6.8  | 536          | 349    | 6.0    | 70   |
| 9/21/2011  | SM-3750 | 10:38 AM | 0.5   | 13.8 | 6.7  | 487          | 317    | 8.5    | 83   |
| 11/16/2011 | SM-3822 | 10:44 AM | 0.6   | 10.9 | 6.7  | 383          | 249    | 9.7    | 88   |
| 2/22/2012  | SM-3894 | 11:08 AM | 0.4   | 2.8  | 6.9  | 413          | 269    | 12.5   | 93   |
| 4/11/2012  | SM-3966 | 10:40 AM | ##i   | 10.0 | 7.0  | 425          | 276    | 11.7i  | 104i |
| 6/20/2012  | SM-4038 | 10:23 AM | ##i   | 19.6 | 6.8  | 416          | 271    | 7.4    | 81   |
| 8/22/2012  | SM-4110 | 11:00 AM | ##i   | 20.7 | 6.8  | 537          | 349    | 6.6i   | 74i  |
| 10/24/2012 | SM-4182 | 10:26 AM | ##i   | 11.2 | 6.6  | 528          | 343    | 8.6    | 79   |
| 1/28/2013  | SM-4254 | 11:18 AM | 0.0i  | 0.3  | 6.6  | 613          | 399    | 12.2i  | 84i  |
| 3/20/2013  | SM-4326 | 11:10 AM | 0.0i  | 0.4  | 6.6  | 516          | 335    | 13.1i  | 91i  |
| 5/20/2013  | SM-4386 | 10:40 AM | 0.0i  | 16.5 | 6.8  | 577          | 375    | 8.6    | 88   |
| 8/28/2013  | SM-4428 | 10:54 AM | ##i   | 21.0 | 6.9  | 387          | 251    | 7.3    | 82   |
| 9/25/2013  | SM-4458 | 10:34 AM | 0.0i  | 13.2 | 6.7  | 531          | 345    | 9.0    | 86   |

## Table 16 MassDEP SMART 2011-2013. Station NA01. In Situ Multiprobe Data.

| Date       | OWMID   | Time     | Depth | Temp | рН   | Cond@<br>25C | TDS    | DO     | SAT   |
|------------|---------|----------|-------|------|------|--------------|--------|--------|-------|
|            |         | (24hr)   | (m)   | (C)  | (SU) | (us/cm)      | (mg/l) | (mg/l) | (%)   |
| 1/19/2011  | SM-3458 | 10:01 AM | 0.2   | 0.6  | 7.1  | 684u         | 444u   | 14.7   | 103   |
| 3/15/2011  | SM-3530 | 9:41 AM  | 1.1   | 3.3  | 6.8  | 472          | 307    | 14.8   | 111   |
| 5/17/2011  | SM-3602 | 9:48 AM  | 0.3   | 13.7 | 6.9  | 465          | 302    | ##i    | ##i   |
| 7/20/2011  | SM-3674 | 9:26 AM  | 0.5   | 25.6 | 7.2  | 458          | 298    | 7.9    | 97    |
| 9/21/2011  | SM-3745 | 9:25 AM  | 0.4   | 17.8 | 7.2  | 382          | 248    | 9.6    | 101   |
| 11/16/2011 | SM-3817 | 9:18 AM  | 0.3   | 10.6 | 7.1  | 381          | 248    | 11.9   | 107   |
| 2/22/2012  | SM-3889 | 9:19 AM  | 0.4   | 4.0  | 7.3  | 387          | 251    | 13.4   | 102   |
| 4/11/2012  | SM-3961 | 9:11 AM  | ##i   | 11.1 | 7.3  | 443          | 288    | 11.7i  | 106ii |
| 6/20/2012  | SM-4033 | 9:00 AM  | ##i   | 21.0 | 7.2  | 473          | 308    | 8.4    | 95    |
| 8/22/2012  | SM-4105 | 9:22 AM  | ##i   | 22.6 | 7.2  | 442          | 287    | 8.2i   | 95i   |
| 10/24/2012 | SM-4177 | 9:05 AM  | ##i   | 13.2 | 7.2  | 433          | 282    | 10.2   | 97    |
| 1/28/2013  | SM-4250 | 9:48 AM  | 0.0i  | 0.8  | 7.2  | 508          | 330    | 14.1i  | 99i   |
| 3/20/2013  | SM-4321 | 9:29 AM  | 0.0i  | 2.0  | 7.1  | 698          | 454    | 14.1i  | 102i  |
| 5/20/2013  | SM-4381 | 9:17 AM  | ##i   | 18.2 | 7.2  | 610          | 396    | 9.7    | 103   |
| 8/28/2013  | SM-4423 | 9:26 AM  | ##i   | 21.7 | 7.3  | 595          | 387    | 8.1    | 92    |
| 9/25/2013  | SM-4453 | 9:14 AM  | 0.0i  | 15.4 | 7.0  | 596          | 388    | 9.3    | 93    |

## Table 17 MassDEP SMART 2011-2013. Station SU07. In Situ Multiprobe Data.

## Table 18 MassDEP SMART 2011-2013. Station CO7A. In Situ Multiprobe Data.

| Date       | OWMID   | Time     | Depth | Temp  | рН      | Cond@<br>25C | TDS     | DO      | SAT     |
|------------|---------|----------|-------|-------|---------|--------------|---------|---------|---------|
|            |         | (24hr)   | (m)   | (C)   | (SU)    | (us/cm)      | (mg/l)  | (mg/l)  | (%)     |
| 1/19/2011  | SM-3465 | 12:30 PM | **    | **    | **      | **           | **      | **      | **      |
| 3/15/2011  | SM-3537 | 11:48 AM | 0.8   | 2.7   | 6.5     | 382          | 248     | 14.3    | 106     |
| 5/17/2011  | SM-3609 | 12:26 PM | 0.3   | 13.7  | 6.8     | 470          | 305     | ##i     | ##i     |
| 7/20/2011  | SM-3681 | 11:47 AM | 0.3   | 26.8  | 7.4     | 613          | 399     | 7.7     | 96      |
| 9/21/2011  | SM-3753 | 11:22 AM | 0.6   | 17.0  | 6.7     | 397          | 258     | 8.3     | 85      |
| 11/16/2011 | SM-3825 | 11:30 AM | 0.7   | 10.1  | 6.9     | 383          | 249     | 11.7    | 104     |
| 2/22/2012  | SM-3897 | 12:00 PM | 0.4   | 4.4   | 7.2     | 431          | 280     | 13.6    | 105     |
| 4/11/2012  | SM-3969 | 11:20 AM | ##i   | 11.0  | 7.4     | 480          | 312     | 12.6i   | 114i    |
| 6/20/2012  | SM-4041 | 11:11 AM | ##i   | ##m,u | ##i,m,u | ##i,m,u      | ##i,m,u | ##i,m,u | ##i,m,u |
| 8/22/2012  | SM-4113 | 12:08 PM | ##i   | 25.1  | 8.4     | 425          | 276     | 9.6i    | 116i    |
| 10/24/2012 | SM-4185 | 11:10 AM | ##i   | 13.6  | 7.1     | 490          | 318     | 9.6     | 92      |
| 1/28/2013  | SM-4257 | 11:58 AM | 0.0i  | 0.3   | 7.0     | 564          | 367     | 14.4i   | 100i    |
| 3/20/2013  | SM-4329 | 12:35 PM | 0.0i  | 2.5   | 7.0     | 587          | 382     | 13.7i   | 101i    |
| 5/20/2013  | SM-4389 | 11:25 AM | 0.0i  | 18.6  | 7.2     | 567          | 368     | 9.5     | 102     |
| 8/28/2013  | SM-4431 | 11:37 AM | ##i   | 25.0  | 7.4     | 576          | 375     | 8.2     | 99      |
| 9/25/2013  | SM-4461 | 11:30 AM | 0.0i  | 17.6  | 7.5     | 522u         | 339u    | 9.9     | 103     |

| Date       | OWMID   | Time    | Alkalinity | Hardness | Chloride | E_coli      | Ssolids | Turb  | TN     | NH3-N  | NO3-<br>NO2-N | TPhos  |
|------------|---------|---------|------------|----------|----------|-------------|---------|-------|--------|--------|---------------|--------|
|            |         | (24hr)  | (mg/l)     | (mg/l)   | (mg/l)   | (MPN/100ml) | (mg/l)  | (NTU) | (mg/l) | (mg/l) | (mg/l)        | (mg/l) |
| 1/19/2011  | SM-3454 | 8:40    | 23         | 110      | 190      | >2419.6     | 5.4     | 2.6   | 8.0    | 0.14   | 6.8           | 0.20   |
| 3/15/2011  | SM-3526 | 8:00    | 16         | 63       | 110      | 21          | 2.6d    | 1.5   | 2.0    | 0.15   | 1.3           | 0.040  |
| 5/17/2011  | SM-3598 | 8:15    | 26         | 76       | 110      | 435         | 6.5     | 2.6   | 2.0    | 0.35   | 1.2           | 0.10   |
| 7/20/2011  | SM-3670 | 8:16    | 49         | 190      | 270      | 276         | 2.4     | 1.7   | 11.0   | 0.04   | 9.7           | 0.18   |
| 9/21/2011  | SM-3742 | 8:10    | 45         | 120      | 170      | 65          | 1.5     | 1.6   | 4.1    | 0.05   | 2.7           | 0.26   |
| 11/16/2011 | SM-3814 | 8:00    | 26         | 61       | 78       | 13          | 2.2     | 1.4   | 1.7    | <0.04  | 1.2           | 0.072  |
| 2/22/2012  | SM-3886 | 7:50    | 40         | 99       | 140      | 2           | 2.0     | 1.3   | 3.3    | <0.04  | 2.9           | 0.11   |
| 4/11/2012  | SM-3958 | 7:55    | 60         | 160      | 190      | 19          | 2.4     | ##h   | 10.0d  | 0.04   | 9.2           | 0.035  |
| 6/20/2012  | SM-4030 | 7:55    | 67         | 150      | 180      | 121         | 3.5     | 2.2b  | 5.1    | 0.05   | 4.6           | 0.048  |
| 8/22/2012  | SM-4102 | 8:10    | 70         | 260      | 250      | 121d        | ##h     | 1.4   | 6.6    | <0.02  | 5.5           | 0.040  |
| 10/24/2012 | SM-4174 | 7:45    | 89         | 210      | 240      | 75          | 2.4     | 0.8   | 8.2b   | <0.10  | 7.9           | 0.036  |
| 1/28/2013  | SM-4246 | 8:20 AM | 50         | 120      | 180      | 54          | 3.0     | 1.6   | 6.0    | 0.05   | 4.7           | 0.042  |
| 3/20/2013  | SM-4318 | 8:00 AM | 22         | 81       | 170      | 18          | 1.9     | 1.2   | 1.9    | 0.03   | 1.4           | 0.078  |
| 5/20/2013  | SM-4378 | 8:10 AM | 73         | 160      | 200      | 130         | 6.0     | 2.7   | 5.3    | 0.12   | 4.4           | 0.070  |
| 8/28/2013  | SM-4420 | 8:15 AM | 80         | 180b     | ##h      | 345         | 1.8d    | 1.1d  | 5.5    | ##h    | ##h           | 0.034  |
| 9/25/2013  | SM-4450 | 8:02 AM | 75         | 180      | 210      | 185         | <1.0    | 0.8   | 8.0    | 0.02   | 8.1           | 0.022  |

### Table 19 MassDEP SMART 2011-2013. Station AS04. Chemistry Data.

| Date       | OWMID   | Time     | Alkalinity | Hardness | Chloride | E_coli      | Ssolids | Turb  | TN     | NH3-N  | NO3-<br>NO2-N | TPhos  |
|------------|---------|----------|------------|----------|----------|-------------|---------|-------|--------|--------|---------------|--------|
|            |         | (24hr)   | (mg/l)     | (mg/l)   | (mg/l)   | (MPN/100ml) | (mg/l)  | (NTU) | (mg/l) | (mg/l) | (mg/l)        | (mg/l) |
| 1/19/2011  | SM-3459 | 10:42    | 20         | 74       | 160      | 108         | 2.6     | 2.3   | 3.7    | 0.32   | 3.2           | 0.055  |
| 3/15/2011  | SM-3531 | 10:10    | 9          | 41       | 90       | 291         | 1.9     | 1.3   | 1.1    | 0.09   | 0.74          | 0.029  |
| 5/17/2011  | SM-3603 | 10:35    | 22         | 61       | 100      | 613         | 11      | 3.0   | 1.5    | 0.09   | 0.93          | 0.076  |
| 7/20/2011  | SM-3675 | 10:00    | 41         | 83       | 160      | 613         | 6.7     | 3.6   | 1.5    | 0.07   | 0.79          | 0.082  |
| 9/21/2011  | SM-3746 | 9:58     | 17d        | 60       | 110      | 178         | 3.1     | 2.0   | 1.6    | 0.04   | 1.1           | 0.062  |
| 11/16/2011 | SM-3818 | 9:56     | 19         | 50       | 84       | 105         | 16      | 8.6d  | 1.3    | 0.02d  | 0.93          | 0.051  |
| 2/22/2012  | SM-3890 | 10:00    | 22         | 57       | 94       | 49          | 1.7     | 1.5   | 1.7    | <0.02  | 1.4           | 0.032  |
| 4/11/2012  | SM-3962 | 9:44     | 30         | 67       | 110      | 488         | 5.7     | ##h   | ##d    | 0.02   | 1.9           | 0.028d |
| 6/20/2012  | SM-4034 | 12:04    | 31         | 57       | 99       | 687         | 5.2     | 3.2b  | 1.5    | 0.04   | 0.95          | 0.071  |
| 8/22/2012  | SM-4106 | 10:05    | 33         | 63       | 93       | ##d         | ##h     | 1.6   | 1.2    | <0.02  | 0.73          | 0.063  |
| 10/24/2012 | SM-4178 | 9:39     | 48         | 90       | 140      | 548         | 1.4     | 1.1   | 2.5b   | 0.06   | 2.5           | 0.031  |
| 1/28/2013  | SM-4251 | 10:20 AM | 29         | 77       | 130      | 75          | 1.5     | 1.7   | 2.7    | 48     | 2.0           | 0.030  |
| 3/20/2013  | SM-4322 | 10:12 AM | 10d        | 51       | 120      | 36          | 1.1d    | 1.1   | 1.1    | 0.02   | 0.89          | 0.025  |
| 5/20/2013  | SM-4382 | 9:57 AM  | 30         | 72       | 120      | 48          | 3.4d    | 1.8   | 1.8    | <0.02  | 1.2           | 0.051  |
| 8/28/2013  | SM-4424 | 10:06 AM | 47         | 89b      | ##h      | 435         | ##d     | ##d   | 1.2    | 0.05h  | ##h           | 0.041  |
| 9/25/2013  | SM-4454 | 9:48 AM  | 48         | 96       | 160      | 387         | <1.0    | 5.0   | 2.2    | ##     | 1.8           | 0.048d |

### Table 20 MassDEP SMART 2011-2013. Station AS18. Chemistry Data.

| Date       | OWMID   | Time     | Alkalinity | Hardness | Chloride | E_coli      | Ssolids | Turb  | TN     | NH3-N  | NO3-<br>NO2-N | TPhos  |
|------------|---------|----------|------------|----------|----------|-------------|---------|-------|--------|--------|---------------|--------|
|            |         | (24hr)   | (mg/l)     | (mg/l)   | (mg/l)   | (MPN/100ml) | (mg/l)  | (NTU) | (mg/l) | (mg/l) | (mg/l)        | (mg/l) |
| 1/19/2011  | SM-3461 | 11:23    | 22         | 75       | 110      | 15          | <1.0    | 1.6   | 1.9    | 0.80j  | 0.84          | 0.020  |
| 3/15/2011  | SM-3533 | 10:45    | 8          | 44       | 94       | 17          | <1.0    | 0.6   | 1.1    | 0.17   | 0.68          | 0.017  |
| 5/17/2011  | SM-3605 | 11:18    | 16         | 54       | 100      | 461         | 3.2     | 1.9   | 0.94   | 0.13   | 0.22          | 0.044  |
| 7/20/2011  | SM-3677 | 10:42    | 30         | 75       | 130      | 29          | 4.3     | 1.8   | 0.82   | 0.02   | 0.42          | 0.038  |
| 9/21/2011  | SM-3749 | 10:32    | 25         | 71       | 130      | 55          | 2.4     | 1.5   | 1.5    | 0.06   | 0.95          | 0.032  |
| 11/16/2011 | SM-3821 | 10:40    | 18         | 50       | 94       | 21          | 2.6     | 1.3   | 1.1    | 0.16   | 0.49          | 0.027  |
| 2/22/2012  | SM-3893 | 10:50    | 20         | 56       | 98       | 9           | 2.0     | 1.7   | 1.4    | 0.47   | 0.73          | 0.021  |
| 4/11/2012  | SM-3965 | 10:33    | 23         | 62       | 100      | 12          | 2.5     | ##h   | 1.1d   | 0.14   | 0.64          | 0.025  |
| 6/20/2012  | SM-4037 | 10:12    | 25         | 59       | 100      | 64          | 5.0     | 4.0b  | 1.4    | 0.10   | 0.76          | 0.065  |
| 8/22/2012  | SM-4109 | 10:50    | 25         | 81       | 140      | 62d         | ##h     | 2.8   | 0.80   | 0.04   | 0.18          | 0.058  |
| 10/24/2012 | SM-4181 | 10:17    | 20         | 76       | 140      | 23          | 2.0     | 1.4   | 0.78b  | 0.05   | 0.19          | 0.034  |
| 1/28/2013  | SM-4253 | 11:15 AM | 50         | 87       | 120      | 11          | <1.0    | 1.7   | 2.0    | 0.63   | 1.1           | 0.021  |
| 3/20/2013  | SM-4325 | 11:05 AM | 13         | 57       | 140      | 5           | <1.0    | 0.8   | 1.1    | 0.18   | 0.66          | 0.013  |
| 5/20/2013  | SM-4385 | 10:35 AM | 25         | 75       | 140      | 58          | 8.7     | 3.8   | 1.3    | 0.25   | 0.52          | 0.068  |
| 8/28/2013  | SM-4427 | 10:47 AM | 28         | 75b      | ##h      | 89          | 13d     | 4.5d  | 1.9    | ##h    | ##h           | 0.22   |
| 9/25/2013  | SM-4457 | 10:26 AM | 21         | 79       | 130      | 44          | 24      | 4.0   | 1.4    | 0.04   | 0.57          | 0.13   |

### Table 21 MassDEP SMART 2011-2013. Station NA01. Chemistry Data.

| Date       | OWMID   | Time    | Alkalinity | Hardness | Chloride | E_coli      | Ssolids | Turb  | TN     | NH3-N  | NO3-<br>NO2-N | TPhos  |
|------------|---------|---------|------------|----------|----------|-------------|---------|-------|--------|--------|---------------|--------|
|            |         | (24hr)  | (mg/l)     | (mg/l)   | (mg/l)   | (MPN/100ml) | (mg/l)  | (NTU) | (mg/l) | (mg/l) | (mg/l)        | (mg/l) |
| 1/19/2011  | SM-3457 | 9:54    | 19         | 61       | 170      | 91          | 2.0     | 2.0   | 0.75   | 0.06   | 0.44          | 0.016  |
| 3/15/2011  | SM-3529 | 9:30    | 11         | 44       | 120      | 29          | 1.5     | 1.2   | 0.76   | 0.04   | 0.49          | 0.014  |
| 5/17/2011  | SM-3601 | 9:35    | 17         | 50       | 120      | 199         | 18      | 1.9   | 0.67   | 0.07   | 0.26          | 0.027  |
| 7/20/2011  | SM-3673 | 9:17    | 18         | 47       | 110      | 365         | 2.3     | 1.6   | 0.43   | 0.02   | 0.07          | 0.026  |
| 9/21/2011  | SM-3744 | 9:17    | 16         | 45       | 110      | 54          | 2.2     | 1.4   | 0.57   | 0.03   | 0.20          | 0.024  |
| 11/16/2011 | SM-3816 | 9:14    | 15         | 41       | 97       | 38          | 1.6     | 1.9   | 0.63   | 0.03   | 0.29          | 0.021  |
| 2/22/2012  | SM-3888 | 9:05    | 17         | 45       | 98       | 4           | 2.8     | 1.4   | 0.70   | <0.02  | 0.44          | 0.019  |
| 4/11/2012  | SM-3960 | 9:00    | 19         | 50       | 110      | 4           | 2.0     | ##h   | 0.58d  | 0.03   | 0.28          | 0.013  |
| 6/20/2012  | SM-4032 | 8:52    | 25         | 53       | 120      | 45          | 1.9     | 2.0b  | 0.65   | 0.05   | 0.26          | 0.028  |
| 8/22/2012  | SM-4104 | 9:13    | 24         | 49       | 110      | 16d         | ##h     | 1.3   | 0.48   | 0.03   | 0.13          | 0.019  |
| 10/24/2012 | SM-4176 | 8:55    | 25         | 50       | 110      | 13          | 1.8     | 1.2   | 0.49b  | 0.02   | 0.14          | 0.018  |
| 1/28/2013  | SM-4249 | 9:44 AM | 25         | 61       | 120      | 30          | 1.5     | 1.6   | 0.86   | <0.02  | 0.57          | 0.013  |
| 3/20/2013  | SM-4320 | 9:22 AM | 20         | 47       | 200      | 30          | 2.8     | 1.6   | 0.69   | 0.02   | 0.45          | 0.014  |
| 5/20/2013  | SM-4380 | 9:15 AM | 23         | 63       | 150      | 20          | 2.3     | 1.4   | 0.65   | 0.06   | 0.24          | 0.021  |
| 8/28/2013  | SM-4422 | 9:22 AM | 31         | 71b      | **       | 72          | 4.3d    | 1.4d  | **     | **     | **            | **     |
| 9/25/2013  | SM-4452 | 9:05 AM | 30         | 73       | 160      | 27          | 1.6     | 1.3   | 0.49   | <0.02  | 0.21          | 0.013  |

### Table 22 MassDEP SMART 2011-2013. Station SU07. Chemistry Data.

| Date       | OWMID   | Time     | Alkalinity | Hardness | Chloride | E_coli      | Ssolids | Turb  | TN     | NH3-N  | NO3-<br>NO2-N | TPhos  |
|------------|---------|----------|------------|----------|----------|-------------|---------|-------|--------|--------|---------------|--------|
|            |         | (24hr)   | (mg/l)     | (mg/l)   | (mg/l)   | (MPN/100ml) | (mg/l)  | (NTU) | (mg/l) | (mg/l) | (mg/l)        | (mg/l) |
| 1/19/2011  | SM-3463 | **       | **         | **       | **       | **          | **      | **    | **     | **     | **            | **     |
| 3/15/2011  | SM-3535 | 11:37    | 8          | 39       | 94       | 45          | 3.5     | 1.6   | 1.0    | 0.06   | 0.67          | 0.028  |
| 5/17/2011  | SM-3607 | 12:16    | 23         | 58       | 110      | 308         | 8.3     | 2.1   | 1.1    | 0.06   | 0.57          | 0.054  |
| 7/20/2011  | SM-3679 | 11:32    | 33         | 77       | 140      | 980         | 11      | 5.1   | 1.6    | 0.04   | 0.93          | 0.076  |
| 9/21/2011  | SM-3751 | 11:15    | 24         | 52       | 100      | 308         | 5.8     | 2.4   | 0.95   | 0.04   | 0.41          | 0.058  |
| 11/16/2011 | SM-3823 | 11:25    | 20         | 49       | 92       | 86          | 3.8     | 1.8   | 0.89   | 0.02   | 0.50          | 0.034  |
| 2/22/2012  | SM-3895 | 11:48    | 21         | 54       | 100      | 38          | 1.8     | 1.5   | 1.3    | <0.02  | 0.99          | 0.029  |
| 4/11/2012  | SM-3967 | 11:15    | 27         | 61       | 110      | 25          | 7.2     | ##h   | 1.5d   | 0.02   | 1.0           | 0.041  |
| 6/20/2012  | SM-4039 | 11:02    | 29         | 57       | 110      | 105         | 9.0     | 4.8b  | 1.3    | 0.04   | 0.64          | 0.072  |
| 8/22/2012  | SM-4111 | 11:59    | 30         | 57       | 92       | 148d        | ##h     | 4.6   | 1.0    | <0.02  | 0.35          | 0.070  |
| 10/24/2012 | SM-4183 | 11:00    | 32         | 68       | 120      | 142         | 7.5     | 3.2   | 1.4b   | 0.03   | 0.99          | 0.044  |
| 1/28/2013  | SM-4255 | 11:52 AM | 27         | 71       | 130      | 57          | 1.2     | 1.4   | 1.7    | 0.03   | 1.3           | 0.034  |
| 3/20/2013  | SM-4327 | 12:28 PM | 15         | 50       | 160      | 20          | 2.3     | 1.4   | 0.82   | 0.04   | 0.52          | 0.021  |
| 5/20/2013  | SM-4387 | 11:18 AM | 30         | 71       | 130      | 99          | 7.3     | 1.7   | 1.4    | 0.09   | 0.78          | 0.056  |
| 8/28/2013  | SM-4429 | 11:34 AM | 32         | 71b      | ##h      | 613         | 4.4d    | 2.4d  | 1.4    | ##h    | ##h           | 0.039  |
| 9/25/2013  | SM-4459 | 11:25 AM | 33         | 75       | 130      | 115         | 18      | 6.6   | 1.7    | 0.05   | 1.1           | 0.065  |

## Table 23 MassDEP SMART 2011-2013. Station CO7A. Chemistry Data.

## REFERENCES

Beaudoin, T. 2008 (unpublished). CN 012.1: Strategic Monitoring and Assessment for River basin Teams Quality Assurance Project Plan. 2008-2012. Massachusetts Department of Environmental Protection. Central Regional Office. Worcester, MA.

Google Earth. 2013a. "AS04". 42°18'00.20"N and 71°38'12.05"W. Imagery August 24, 2013. Retrieved August 21, 2014.

Google Earth. 2013b. "AS18". 42°25'47.98"N and 71°27'20.35"W. Imagery August 24, 2013. Retrieved August 21, 2014.

Google Earth. 2013c. "NA01". 42°31'04.03"N and 71°24'12.37"W. Imagery August 24, 2013. Retrieved August 21, 2014.

Google Earth. 2013d. "SU07". 42°19'22.85"N and 71°24'16.02"W. Imagery August 24, 2013. Retrieved August 21, 2014.

Google Earth. 2013e. "CO7A". 42°38'10.77"N and 71°18'08.17"W. Imagery August 24, 2013. Retrieved August 21, 2014.

MassDEP. 2005. CN 56.2. Standard Operating Procedure. Data Validation and Usability. Massachusetts Department of Environmental Protection, Division of Watershed Management. Worcester, MA.

MassDEP. 1999a. CN 4.0 Water Quality Multi-probe Instrument Use, Standard Operating Procedure. Massachusetts Department of Environmental Protection, Division of Watershed Management. Worcester, MA.

MassDEP. 1999b. Grab Collection Techniques for DWM Water Quality Sampling, Standard Operating Procedure. Massachusetts Department of Environmental Protection, Division of Watershed Management. Worcester, MA.

NOAA. 2015 [online]. Climatological Data Publications. Massachusetts. NOAA Satellite and Information Service. National Climatic Data Center. Image and Publications System. Retrieved September 2, 2015. Available at http://www.ncdc.noaa.gov/IPS/cd/cd.html;jsessionid=1CB121D95499F2E6677D736184136915? page=0&jsessionid=1CB1 21D95499F2E6677D736184136915&state=MA& target1=Next+%3E

O'Brien-Clayton, Katie A. 2005 [online]. CN 92.0: SuAsCo Watershed 2001 Water Quality Assessment Report. 2001. Report 82-AC-1. August 2005. Massachusetts Department of Environmental Protection. Division of Watershed Management. Retrieved September 2, 2015. Available at http://www.mass.gov/eea/docs/dep/water/resources/71wgar09/82wgar1.pdf.

Ostiguy, Lance J., Weiskel, Peter K. and Stacey A. Archfield. 2010 [Online]. Average Annual Precipitation, in Inches, for Massachusetts as Computed over the Period 1971-2000 Using the Parameter-Elevation Regressions on Independent Slopes (PRISM) Model. Appendix 1. Figure 1-2. Retrieved September 2. 2015. Available at http://pubs.usgs.gov/sir/2009/5227/pdf/Appendix/sir2009-5227 appendix1 fig2.pdf

USGPO. 9 April, 1999. Public Law 106–20. Sudbury, Assabet and Concord Wild and Scenic River Act. 106<sup>th</sup> Congress. United States Government Printing Office. Washington, DC. Retrieved September 2, 2015. Available at http://www.gpo.gov/fdsys/pkg/PLAW-106publ20/pdf/PLAW-106publ20.pdf.

USGS. 2015a [online]. National Water Interface System: Web Interface. USGS 01097000 Assabet River at Maynard, MA. Provisional data subject to revision. Period of record July 11, 1941 to current. United States Geological Survey. Retrieved September 2, 2015. Available at http://waterdata.usgs.gov/ma/nwis/dv/?site\_no=01097000&PARAmeter\_cd=00060,00065.

USGS, 2015b [online], National Water Interface System; Web Interface, USGS 01097300 Nashoba Brook Near Acton, MA. Provisional data subject to revision. Period of record July 26, 1963 to current. United States Geological Survey. Retrieved September 2, 2015. Available at http://waterdata.usgs.gov/ma/nwis/dv/?site no=01097300&PARAmeter cd=00060.00065.

USGS. 2015c [online]. National Water Interface System: Web Interface. USGS 01098530 Sudbury River at Saxonville, MA. Provisional data subject to revision. Period of record November 1, 1979 to current. United States Geological Survey. Retrieved September 2, 2015. Available at

http://waterdata.usgs.gov/ma/nwis/dv/?site no=01098530&PARAmeter cd=00060,00065.

USGS. 2015d [online]. *National Water Interface System: Web Interface. USGS 01099500 Concord River below River Meadow Brook at Lowell, MA*. Provisional data subject to revision. Period of record December 16, 1936 to current. United States Geological Survey. Retrieved September 2, 2015. Available at <a href="http://waterdata.usgs.gov/ma/nwis/uv/?site">http://waterdata.usgs.gov/ma/nwis/uv/?site</a> no=01099500&agency cd=USGS.

USGS. 2015e [online]. Daily data at the USGS Concord River gage below River Meadow Brook, Lowell (USGS station number 01099500). Retrieved February 18, 2015. Available at <a href="http://waterdata.usgs.gov/nwis/dv/?site\_no=01099500&agency\_cd=USGS&referred\_module=sw">http://waterdata.usgs.gov/nwis/dv/?site\_no=01099500&agency\_cd=USGS&referred\_module=sw</a>

USGS. 2015f [online]. Monthly data at the USGS Concord River gage below River Meadow Brook, Lowell (USGS station number 01099500). Retrieved September 2, 2015. Available at <a href="http://waterdata.usgs.gov/nwis/monthly/?referred\_module=sw&site\_no=01099500&por\_01099500\_1=1267274,00060,1,193">http://waterdata.usgs.gov/nwis/monthly/?referred\_module=sw&site\_no=01099500&por\_01099500\_1=1267274,00060,1,193</a> 6-12,2014-12&format=html\_table&date\_format=YYYY-MM-DD&rdb\_compression=file&submitted\_form=parameter\_selection\_list

USGS. 2015f[online]. Mean streamflow values based on 71-72 years of record at the USGS Concord River gage below River Meadow Brook, Lowell (USGS station number 01099500). Point of record daily statistics based on data collected from 10/1/1936 – 9/30/2008. Retrieved September 2, 2015. Available at <a href="http://waterdata.usgs.gov/nwis/dvstat/?referred\_module=sw&site\_no=01099500&por\_01099500\_1=1267274,00060,1,1936-12-16,2008-03-17&start\_dt=1936-12-16&end\_dt=2007-12-31&format=html\_table&stat\_cds=mean\_va&date\_format=YYYY-MM-DD&rdb\_compression=file&submitted\_form=parameter\_selection\_list\_

Wandle, S. W. and Fontaine, R.A.. 1984 [Online]. *Gazetteer of Hydrologic Characteristics of Streams in Massachusetts-Coastal River Basins of the North Shore and Massachusetts Bay.* Water-Resources Investigations Report 84-4284. United States Geological Survey. Retrieved September 2, 2015. Available at <u>http://pubs.er.usgs.gov/publication/wri844284</u>.