Creation of CAPS-IBI Software and Lake Nutrient Modeling:
Components of the Massachusetts Comprehensive Wetlands
Assessment and Monitoring Program

Final Report

Wetlands Program Development Grant Cooperative Agreement # 96168701

Scott Jackson, Kevin McGarigal, Ethan Plunkett,
Elizabeth Homa and Brad Compton

Department of Environmental Conservation, University of Massachusetts Amherst
And

Robert English

Daystar Computing and Research Services

July 28, 2015



Introduction

The University of Massachusetts Amherst (UMass) has been working since 2006 with the
Massachusetts Department of Environmental Protection (MassDEP) and the MA Office of
Coastal Zone Management (MCZM) to develop and implement a comprehensive Wetlands
Assessment and Monitoring Program for Massachusetts. Our assessment tools, based on EPA’s
Application of Elements of a State Water Monitoring and Assessment Program for Wetlands
(April 2006), are summarized as follows.

Landscape Level 1 Assessment: The Conservation Assessment and Prioritization System

(CAPS) is a landscape level model that predicts ecological integrity based on GIS-derived
metrics representing stressors in the landscape.’ The CAPS output has been rigorously
verified by UMass based on a substantial amount of taxa abundance data collected to date
using statistical calibration based on fitted regression models and maximum likelihood
methods to predict the value of the stressor metrics.

Level 2/3 Site Level Assessment Method (SLAM): SLAM development began in 2006 and
first focused on forested wetlands because they are the wetland type with the most

alteration in MA, and on Salt Marshes because of MCZM experience during sampling over
the past decade. To date a total of 256 forested wetland sites have been sampled in the
Chicopee, Millers, Concord and Taunton River Watersheds and 175 salt marsh sites have
been sampled along the entire MA Coast. Through a process of testing and verification field
data have been used to determine whether CAPS IEl and the individual CAPS stressor
metrics (e.g. habitat loss, connectedness, etc.) are related to ecological condition and to
quantify those relationships through the development of IBls. Data previously collected by
MassDEP from 490 sites were used to develop IBls for wadable streams. Using data from
intensive sampling methods we expect to create simplified sampling methods (RAMs) of
known effectiveness. For example, results from multi-taxa assessments of forested
wetlands are being used to create robust IBls that depend only on collection of plant data.

Continuous Aquatic Life Use (CALU): Our assessment approach is based on the relationship

between IEIl (i.e. constraints on biological condition from the surrounding landscape) and IBI
(i.e. actual condition of a site based on field assessments). We describe this relationship as
the Continuous Aquatic Life Use (CALU) approach because both the IEl and the IBIs yield
scores that are continuous throughout their range and on the same scale so it is not
necessary to create tiers like the traditional Tiered Aquatic Life Use (TALU) model.
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For information on the role of CAPS as part of the Massachusetts Wetlands Monitoring and Assessment Program go to:
http://www.umasscaps.org/applications/wetlands-assessment.html. Related reports are available at:
http://www.umasscaps.org/docs_reports/index.html.




Integrating the landscape-based assessment (Level 1) and the site level assessments (Level 2/3)
is at the core of the Massachusetts Monitoring and Assessment Program. The landscape-based
assessment produces an Index of Ecological Integrity (IEl) as a means of scoring a wetland’s
context on a scale that is comparable to the Generalized Stressor Gradient. Site-based
assessments produce Indices of Biological Integrity (IBI) on the same scale as IEl and are
comparable to the Biological Condition Gradient. Work funded by this Grant Cooperative
Agreement furthered this approach through 1) development of additional IBIs for salt marshes
and forested wetlands and making them easier to implement, and 2) modeling nutrient loading
for lakes and their associated wetlands as a step toward developing a comprehensive nutrient
loading metric for use in CAPS.



Further development and testing of IBIs for salt marshes, forested
wetlands, and wadable streams, and creation of IBI software

REVISE IBIs BASED ON DATA FROM ADDITIONAL FIELD SAMPLING

Since our original IBl analyses in 2013 additional field data collection increased the number of salt marsh
and forested wetland sites available for analysis (Table 1). For salt marshes the additional sites came
from the same geographic area as the original analyses. However, the additional forested wetland sites
came from an expansion in geographic scope to include sites in the Taunton River watershed (the other
watersheds previously included are the Miller’s, Chicopee and Concord River watersheds).

Table 1. Number of sites included in the 2013 and 2015 IBI analyses.

Wetland Type 2013 Analysis | 2015 Analysis
Forested Wetland 214 250
Salt Marsh 130 164
Wadable Stream 490 490

The analyses presented in this report were similar to those conducted in 2013. However, the application
of IBls developed in one portion of the state (Miller’s, Chicopee and Concord watersheds) to a different
part of the state (Taunton watershed) revealed some weaknesses in the previous approach and led to
changes in the analyses used this time around.

IBI Methodology®

We developed separate IBIs for each major taxonomic group (e.g., vascular plants, macroinvertebrates)
and stressor metric in each ecological system. The development of separate IBIs for each taxonomic
group reflects a practical concern over the comparative costs and benefits of collecting and identifying
different taxa. Having separate IBIs for different taxonomic groups and stressor metrics also affords us
great flexibility in using the observed biotic condition to indicate the nature of the stressor(s) affecting
the system. Table 2 lists the various taxonomic groups and sampling technique used in the IBl analyses
along with the number of sites and taxa sampled.

% This is an abbreviated summary of our IBI methodology highlighting changes made to the original approach. For
more detail on the IBl analyses see the 2013 report “EError! Main Document Only.mpirically Derived Indices of
Biotic Integrity for Forested Wetlands, Coastal Salt Marshes and Wadable Freshwater Streams in Massachusetts”
available at http://umasscaps.org/pdf/CAPS%20IBI%20Report%20Sept%2015%202013%20Final.pdf.



Table 2. Number of sites (N) and number of taxa sampled by ecological system and taxonomic group from 1984
through 2012 for the purpose of developing Indices of Biotic Integrity (IBls). The number of taxa include the
number of separate taxa across taxonomic levels from Species to Phylum that were considered in the development
of the IBl and only includes taxa that occurred at 10 or more sites. Similarly the number of sites includes only sites
that were used to make the IBls; some sites are not tallied here if they were sampled for some but not all of the
taxonomic groups used by the IBls.

Ecological System

Forested wetland Salt marsh Wadable streams

Taxonomic group N Taxa N Taxa N Taxa
vascular plants 250 401 167 45 -- --
bryophytes 250 123 -- -- -- -
macroinvertebrates

quadrats -- -- 167 37 - -

D-net sweeps -- -- 167 48 - -

auger - - 167 37 - -

kick nets - - - - 490 294

Step 1. Taxonomic data summary

The first step involved summarizing the species abundance data at each site. For each site, we created
counts of each taxon's abundance at each taxonomic level, including Species, Genus, Family, Order,
Class and Phylum. This means that an individual in a sample identified to Species was counted again at
the Genus level and, depending on the taxonomic group, the Family, Order, Class and Division/Phylum
levels as well. If an individual was only identified to Order, then it was only counted at the Order or
higher level. We treated the abundance of each taxon at each taxonomic level as a separate dependent
variable in the regression models below, and treated abundance as a Binomial response with a trial size
equal to the total specimen count and/or as an unbounded Poisson response (with an offset to account
for sampling effort), as appropriate. As one of several measures to safeguard against model overfitting,
given the generally large number of taxa relative to the number of sites, we dropped all taxa that were
observed at fewer than 10 sites.



Step 2. Regression

The second step was to fit individual responses for each taxon. Specifically, we modeled the relationship
between each taxon (dependent variable) and each stressor metric (independent variable) with two
functional forms and eight error models. The three-parameter logistic function (Equation 1) allowed for
threshold responses of taxa to the gradient (note, the third parameter allows the upper asymptote to
exceed one) while the constrained quadratic exponential (Equation 2) allowed for Gaussian and
exponential responses to the gradient.
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where y; = the abundance of a taxon at the i™ site, x; = the value of the stressor metric at the i'" site,
error; = the error associated with the prediction at the ith site, and a, b, and c are parameters to be
estimated. Note, in Equation 2 we constrained c to always be negative to prevent U-shaped distributions
(i.e., where abundance peaks at low and high levels of the metric and is lowest in the middle) which we
deemed ecologically implausible. Depending on the values of the parameters a, b, and ¢, these two
functional forms can take on a wide variety of shapes, including monotonically increasing or decreasing,
unimodal and sigmoidal curves, that represent plausible alternatives for how species' might respond to
anthropogenic stressor gradients.

With four to eight suitable error models and two functional forms, we had 8-16 alternative models for
each taxon. However, we dropped any model from further consideration if any of the following
conditions were met: 1) the model failed to fit; 2) the delta AIC of the model was greater than 10; or 3)
the fit predicted negative abundance (unrealistic) or abundance that was more than twice the maximum
observed in the training data (these were often fits that behaved strangely at extreme values of the
independent variable). For all retained models, we used AIC model weights to estimate the relative
quality of each of the models based on how many parameters they had and how well they fit the data
(Burnham and Anderson 2002). Note, we did not average these models at this step, but left that for the
next step associated with statistical calibration, as described below.

Step 3: Statistical calibration

The third step involved the procedure known as statistical calibration (Jongman et al. 1995). Calibration
involves using the estimated parameters (a, b, and c) from the regression in step 2 and the observed
value of the dependent variable (y;), and estimating the value of the independent variable (x;) —
essentially, regression in reverse. Specifically, we used the fitted models from step 2 to predict the log-
likelihood of different values of the stressor metric at each site based on the abundance of taxa. The
result is a log-likelihood curve that indicates the relative probability of the stressor metric being any
particular value given the observed abundance of the taxon at a particular site. We generated log-
likelihood curves for each site from the 8-16 different statistical models and then averaged them based
on the AIC weights to make a single log-likelihood curve for each site and taxon.



We performed steps 2 and 3 on 20 cross-validation groups; in each group a different 5% of the sites was
omitted and thus withheld from the model fitting process in step 2. In step 3, the stressor metric value
of each site was then predicted for each taxon based on the models from which the site was omitted. In
this manner, no site was simultaneously used for both model fitting (in step 2) and model prediction (in
step 3). This cross validation is used to select taxa and was not fully external to the model process; we
are therefore calling it an inner cross validation. This inner cross validation helps identify taxa (step 4)
for which the model fits are more robust to new or different data but we no longer believe that it gives
an accurate assessment of model performance.

Step 4: Taxa selection

The fourth step involved selecting the group of taxa that produce the most accurate predictions.
Specifically, we added together the log-likelihood curves of individual taxa from step 3 to make a
prediction for the site based on multiple taxa; the value of the stressor metric with the maximum log-
likelihood was the predicted metric value for the site. We compared the performance of two different
procedures for selecting taxa before selecting a preferred method.

Method 1.--In this method, we used a stepwise procedure to select the taxa, starting with the taxon
that, by itself, produced the most accurate stressor metric (cross-validated) prediction based on the
coefficient of concordance (Lin 1989, 2000) and then incrementally added the taxon that increased the
concordance correlation coefficient of the (cross-validated) prediction the most; i.e. the conditional
improvement in concordance. The concordance coefficient measures the agreement between the
observed value of the stressor metric and our predicted value; a perfect concordance correlation of one
occurs when the points fall on a perfect diagonal line with an intercept of zero and slope of one. Note,
while the final IBI for field application was constructed using the full dataset (i.e., without cross-
validation) for model fitting and calibration, the taxa were always selected based on the cross-validation
procedure to avoid the erroneous selection of taxa that were overfit to the dataset. Unless otherwise
noted, we report the cross-validated coefficients of concordance.

One of the challenges we faced was determining when to stop in the forward stepwise taxon selection
process. As a third hedge against model overfitting and as a means of determining how many taxa to
retain in the final IBI, we tested the significance of each taxon’s fit against pseudotaxa, as follows. We
created 1,000 pseudotaxa by permuting the data from the original taxa. For each pseudotaxa, we
performed the same model fitting (step 2) and calibration (step 3) as the real taxa. Then during taxon
selection (step 4), we compared each selected taxon’s improvement in fit (i.e., concordance correlation)
to the improvement in fit garnered by each of the 1,000 pseudotaxa to estimate the significance of the
improvement in fit of each taxon. We used this significance test to decide how many taxa to include in
the final prediction set; we included all taxa in the stepwise process up until the first taxon that didn’t
produce a significant increase in prediction accuracy, where significance was evaluated at the 0.05, 0.1
and 0.2 alpha levels. Lastly, for comparative purposes, we also continued the stepwise selection process
until the maximum concordance was realized.

Method 2.--In this method, we used the marginal significance of each taxon based on the comparison to
the 1,000 pseudotaxa, as described above. Specifically, for each taxon we computed the (cross-



validated) coefficient of concordance and compared it to the distribution of concordances of the
pseudotaxa (i.e., the distribution of expected concordances by chance alone). We computed a p-value
for each taxon by determining the proportion of the pseudotaxa distribution of concordances greater
than or equal to the observed concordance for each taxon. We included all (marginally) significant taxa
in the IBI, where significance was evaluated at the 0.05, 0.1 and 0.2 alpha levels. In this method we
simply included all taxa with significant marginal concordances; whereas in the previous method we
included taxa in a stepwise process based on their conditional improvement in concordance.

A major challenge faced with either taxa selection method is determining which taxa to include in the
pool available for selection. Because we fit models to many different taxa (e.g., vascular plants,
bryophytes and macroinvertebrates) depending on the ecological system, and at multiple taxonomic
levels, we had many options. While our approach is amenable to the selection of any available taxa at
any taxonomic level, for practical reasons we opted to create a limited set of IBls that balanced
performance and ease of data collection. In the prior round of IBI development we focused on making
sure that we had separate IBIs for each taxonomic group as well as for all the possible groups combined.
In this round we focused on IBIs that combined several of the most effective groups. In forested
wetlands we chose to build IBls out of the combined vascular plant (the most effective single group in
the prior analysis) and bryophytes (a group that was moderately effective but relatively easy to collect
and analyze). For saltmarshes we made IBIs that used all the taxa (plants and macroinvertebrates). In
salt marshes we also tried treating invertebrate larvae as separate taxa from adults but ultimately
dropped this approach as it reduced performance. In streams we continued to build IBls using
macroinvertebrates.

Our original methodology used a conditional 0.1 threshold for taxa inclusion. We observed poor
performance of these IBls when applied to the Taunton data and reconsidered the approach for taxa
selection and performance evaluation. In the original methodology we evaluated the performance of
the IBIs using the same cross validation data that were used to select the taxa. It appears that this
biased the performance estimate upwards. In this round we use an external cross validation to evaluate
model performance which we believe is unbiased. Further, using an unbiased estimate of performance
led us to choose the marginal 0.2 criterion for selecting taxa as it outperformed the conditional 0.1
which we had previously used.

Step 5: Outer cross validation

Previously our randomized testing in which we conducted the entire process on pseudospecies revealed
that low concordances were achieved with psuedospecies alone. This showed that the inner cross
validation that was used to select species was not a true independent estimate of performance. In this
round we decided to directly estimate performance by conducting the whole IBI fitting process in steps
1:4 within a four-fold “outer” cross validation. In this outer cross validation we divided the data in four
groups and repeatedly conducted all of the prior steps on each combination of 3 groups and then
predicted the fourth group. Thus the holdout data in this cross validation were used only to evaluate the
entire IBI process. One side effect of this change is that our estimates of performance have decreased



from prior estimates that used the inner cross validation. When we apply the IBIs to new data we used
models fit to the entire dataset.

IBI Results

Tables 3, 4 and 5 present the results of our IBl analyses. We used an R-squared value of 0.5 as the cut-off
for choosing IBIs that we considered credible enough to use; these are the IBls included in the IBI
software. R-squared values below 0.5 may be statistically significant but the relationships are weak
enough that we believe they are of limited usefulness. In this run 16 IBls were constructed for wadable
stream of which ten were credible (R* > 0.5). Five of 15 IBIs constructed for forested wetlands had R?
values above 0.5. None of the 22 IBIs constructed for salt marshes were considered credible. The best
performing salt marsh metric (connectedness) had an R value of 0.32; IEI (the second best metric) had
an R” of 0.27. As a result none of the salt marsh IBls were incorporated into the IBI software.

Table 3. IBls constructed for salt marshes (IBls in bold are considered credible, R2 > 0.5)

Metric Datasets R-Squared
Connectedness Macroinvertebrates and plants 0.32
IEI Macroinvertebrates and plants 0.27
Salt marsh ditching Macroinvertebrates and plants 0.26
Connectedness Macroinvertebrates 0.25
[EI Macroinvertebrates 0.21
Habitat loss Macroinvertebrates and plants 0.16
Salt marsh ditching Macroinvertebrates 0.14
Tidal restrictions Macroinvertebrates and plants 0.12
Similarity Macroinvertebrates 0.11
Edge predators Macroinvertebrates and plants 0.09
Feral predators Macroinvertebrates 0.09
Wetland buffer insults Macroinvertebrates and plants 0.08
Habitat loss Macroinvertebrates 0.07
Similarity Macroinvertebrates and plants 0.07
Wetland buffer insults Macroinvertebrates 0.06
Feral predators Macroinvertebrates and plants 0.05
Road traffic intensity Macroinvertebrates and plants 0.04
Edge predators Macroinvertebrates 0.03
Tidal restrictions Macroinvertebrates 0.03
Road traffic intensity Macroinvertebrates 0.02
Mowing & plowing intensity | Macroinvertebrates and plants -0.04
Mowing & plowing intensity | Macroinvertebrates -0.04




Table 4. IBIs constructed for wadable streams (IBls in bold are considered credible, R2 > 0.5)

Metric Datasets R-Squared
Imperviousness Macroinvertebrates 0.73
Watershed habitat loss Macroinvertebrates 0.72
Sediment loading Macroinvertebrates 0.71
IELs* Macroinvertebrates 0.69
Nutrient loading Macroinvertebrates 0.68
Change in phosphorus Macroinvertebrates 0.65
Road traffic intensity Macroinvertebrates 0.64
Hydrologic alteration Macroinvertebrates 0.61
IEI Macroinvertebrates 0.60
Habitat loss Macroinvertebrates 0.58
Connectedness Macroinvertebrates 0.49
Edge predators Macroinvertebrates 0.44
Aquatic connectedness Macroinvertebrates 0.41
Change in nitrogen Macroinvertebrates 0.38
Mowing & plowing intensity | Macroinvertebrates 0.19
Dam intensity Macroinvertebrates 0.004

*|ELs is |El calculated for all streams considered as a single category

Table 5. IBIs constructed for forested wetlands (IBls in bold are considered credible, R2 > 0.5)

Metric Datasets R-Squared
IEIl Bryophytes & vascular plants 0.57
Connectedness Bryophytes & vascular plants 0.56
Habitat loss Bryophytes & vascular plants 0.52
Edge predators Bryophytes & vascular plants 0.51
Invasive earthworm Bryophytes & vascular plants 0.50
Invasive plants Bryophytes & vascular plants 0.50
Similarity Bryophytes & vascular plants 0.49
Watershed habitat loss Bryophytes & vascular plants 0.46
Nutrient loading Bryophytes & vascular plants 0.44
Sediment loading Bryophytes & vascular plants 0.39
Road traffic intensity Bryophytes & vascular plants 0.34
Edge effect (microclimate alterations) | Bryophytes & vascular plants 0.33
Aquatic connectedness Bryophytes & vascular plants 0.32
Road salt Bryophytes & vascular plants 0.31
Wetland buffer insults Bryophytes & vascular plants 0.25




Continuous Aquatic Life Use (CALU)

One of the uses of the CAPS derived IBIs is to evaluate wetlands to see if their biological condition is
commensurate with the landscape in which they are located. Many IBIs are developed using reference
sites and test (impacted) sites but not the full disturbance gradient. Tiers (as used in Tier Aquatic Life
Use or TALU standards) are essentially a means for dealing with uncertainty when IBls are not developed
as dose-dependent relationships between biological condition and stressors. CAPS IEl scores are a
continuous rather than binary approach for defining reference conditions used in the development of
IBls. When IBIs are developed to correspond to a continuous stressor gradient (consistent with the
Biological Condition Gradient concept) then it is no longer necessary to have tiered criteria tied to
specific Classes or Qualifiers.

CAPS provides an approach to the establishment of numeric criteria for aquatic life use that is consistent
with TALU but eliminates the need to develop tiers. We call this new approach CALU for Continuous
Aguatic Life Use standards. Because both IEl and IBls yield scores that are continuous throughout their
range it is not necessary to create Tiers or Classes for wetlands and water bodies in order to have
meaningful criteria for aquatic life use.

The CALU approach is based on the relationship between IEl (representing the constraints on biological
condition due to the nature of the surrounding landscape) and IBI, which represents the actual condition
of a site based on assessments conducted in the field. By defining an acceptable range of variability
around this relationship it is possible to create numeric criteria for biological condition (a range of
acceptable IBI scores) based on each site’s particular landscape context (IEl score). Figure 1 is a CALU
plot for forested wetland IEI.

Forested wetland

Index of ecological integrity
Concordance =0.57; CI=0.8
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Figure 1. Continuous Aquatic Life Use (CALU) for IEl in forested wetlands
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We have created CALU plots for all credible IBIs and the CALU concept is built into the IBI software.
When users get results from the IBI software these results will include the percentile for each IBI value.

This percentile is the basis for determining whether the site “exceeds expectations” (>90" percentile),

“meets expectations” (10" to 90" percentile) or “fails to meet expectations” (<10™ percentile).

CREATE SOFTWARE AND USER’S GUIDE FOR IMPLEMENTING IBIs

A new software program, CAPS-IBI was created to allow users to easily compute IBl scores on their own

field data for forested wetlands and wadable streams. Because we were not able to construct credible

IBls from the salt marsh data this wetland type was not included in the software.

CAPS-IBI currently is intended to run primarily on Microsoft Windows operating systems (XP, Vista and

Windows 7 and Windows 8), although files are available that make it possible for very experienced

computer users to run the software on nearly any operating system. Hardware requirements include a
minimum of 512MB of RAM and about 300MB of free disk space. CAPS-IBI is written in the Python
programming language and makes use of the Quantum GIS API and the Inno Setup 5 installer program.

The software can be downloaded from this link: https://sourceforge.net/projects/capsibi/files/. The

User’s Manual is included at Appendix A to this report. Figure 2 is a screen shot of the output from the

CAPS-IBI software.

# Conservation Assessment and Prioritization System (CAPS) IBI - depl.ibi

H:»]@ g"

Project
1 =4
1 2 3 4 5 6
1 {Bl Metric 1BI Score E?[ité;;’; Compliance Level Percentile Metric Type
2 Ecological Integrity 0.208 0.0399999991059 Meets expectations 73.0 Integrity/Resiliency
3 Ecological Integrity (stream)
' 4 Habitat Loss 043002232 0.585550785065 Meets expectations 84.0 Stressor
5 Watershed Habitat Loss
I 6 Road Sediment
I 7 Connectedness 0082291  0.0342523083091 Meets expectations 69.0 Integrity/Resiliency
Il |8 Invasive Earthworms 0.24420897 0.251386135817 Meets expectations 61.0 Stressor
| 9 Edge Predators 0.31457572 0.304845869541 Meets expectations 40.0 Stressor
10 Hyrologic Alterations
11 Imperviousness
I 12 Nutrients
13 Phosphorus
14 Road Traffic

Figure 2. A screenshot from CAPS-IBI showing output from the analysis
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USE OF CAPS-IBI SOFTWARE TO ANALYZE DATA FROM MassDEP ASSESSMENTS

The new forested wetlands IBIs have been applied to five mitigation sites that were permitted by
MassDEP as variance projects. Their position on the CALU plot for IEl is shown in Figure 2. Full details of
this assessment will be included in a wetland mitigation report currently in preparation. UMass
personnel are working with MassDEP staff to use the CAPS-IBI software and the CALU approach to
evaluate 40 forested wetland sites in the Chicopee River watershed.
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Figure 3. CALU plot for IEl in forested wetlands with five mitigation sites
permitted by MassDEP as variance projects
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Estimating alteration of lake phosphorus concentrations from
anthropogenic basin alterations

SUMMARY

The goal of this study was to estimate for lakes in Massachusetts the degree of alteration of
phosphorus concentrations associated with anthropogenic basin modifications. We developed
multiple linear regression models, using principal component analysis to guide independent
variable selection, to estimate current, altered phosphorus concentrations from a range of both
natural and anthropogenic basin characteristics. Natural nutrient concentrations were then
estimated by simulating basins with no alterations, allowing the difference between the natural
and altered nutrient concentrations to be investigated. The hope is that we will be able to
model not only nutrient concentrations in lakes but be able to relate those concentrations to
the natural trophic status of those ecosystems. This would then serve as the basis for a stressor
metric for inclusion in CAPS.

The significant variables in the final model for all lakes were cranberry bogs, septic systems,
transportation, unpaved roads and waste disposal sites in watersheds, all correlated with
increases in lake phosphorus concentrations. When only mainland (non-CAPE) watersheds are
considered, unpaved roads and waste disposal sites were the anthropogenic basin
modifications that were identified as significant variables in predicting lake phosphorus.

DATA

This study was conducted on lakes whose basins are completely within the boundaries of the
Commonwealth of Massachusetts. Data for the lake total phosphorus (TP) concentrations, lake
depth and lake surface area came from the National Water Quality Portal with samples from
1997 - 2010, and the Massachusetts Department of Environmental Protection (Mass DEP)
Division of Watershed Management (DWM) WPP final water quality data for the 2005-2010
monitoring years. MassDEP data were received from Tom Dallaire at Mass DEP. The NWQp data
were downloaded from http://www.waterqualitydata.us/ using the query shown below in

Figure 4.
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LOCATION Point location: 2 Bounding box: ?

Country: US select Within: miles from: North:

State: US:MA select Lat: Long: West: East:
County: select my location South:

SITE PARAMETERS SAMPLING PARAMETERS

Site Type: Lake, Reservoir, Impol select Sample Media: Water select
Organization ID: select Characteristic Group: Nutrient select
Site ID: 2 Characteristics: select
HUC: # Parameter Code: (NWIS ONLY) =

Date range: from 01-01-1990 to 12—31—2012| (mm-dd-yyyy)

Figure 4 National Water Quality Portal query used to download nutrient data for MA lakes

Of the 81 lakes with phosphorus MassDEP sampling data from 2005-2010, the 53 shown in
purple in Figure (below) also had surface area and max depth data. Of the 161 NWQp lakes with
phosphorus sampling data from 1997-2010, 85 had surface area and max depth data. These 85

are also shown in green in Figure .

MassDEP-Lakes2005-10

]
NWQp
]

Figure 5 Locations of lakes used in this study

Maximum depth data for over 600 lakes in Massachusetts was provided by Marie Francoise Hatte at the
Water Resources Research Center (WRRC) at UMass (http://wrrc.umass.edu/research/acid-rain-
monitoring-project). The WRRC depth data included the PALSARIS, a unique numerical code for
Massachusetts water bodies: 5 digits for lakes, 7 digits for streams with the first two digits signifying the
watershed. This identifier is the same as PALIS used by MassDEP, and this ID was used to link the data
sets. (Visual verification was also done by mapping all the lakes and depth data and confirming that

locations matched.)
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Figure 6. A histogram of the depths (feet) for the MA lakes selected for this study
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Figure 7. Histogram of In(average TP) for the lakes in this study
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Selected lakes had 1 — 18 measurements with a median of 2 samples per lake (Figure 8). After
removing basins smaller than 0.5 km?, and removing any lakes with data errors, there were a
total of 127 lakes available for the analysis. The average phosphorus concentration for the lakes
selected ranged from non-detect (at MDL of 0.005 mg/L) and a max of 0.233 mg/L. The mean of all the
selected lakes was 0.030 mg/L.
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Figure 8. Histogram of the number of samples for each lake in the study
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Numer of TP Samples by Month
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Figure 9. The number of phosphorus samples by month

There were a total of 520 TP samples for the lakes selected, including 42 for Walden Pond. Most of the
Walden samples were taken in the spring for a USGS lead study in 1997 — 2000. Because of the spring
timing of all the samples, and the fact that Walden Pond has no surface inflows or outflows, it was
removed from the set of lakes selected for this study.

Number of TP Samples by Month
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Figure 10. The number of phosphorus samples by month, excluding samples at Walden Pond

All TP samples excluding Walden Pond comes to a total of 478. Most of the samples are taken in the
months of June through September (Figure 10). Lakes with only one sample were sampled in June, July
or August (Figure ).
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Number of TP Samples by Month
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Figure 11. Months in which samples were taken for lakes with only one sample

The coefficient of variation (standard deviation / mean) was evaluated for the set of samples for each

lake (see Figure 2 and Figure 13.). Given the increased variability in samples for one lake when the

hypolimnion samples were included, the decision was made to only include the phosphorus
concentration in the epilimnion of lakes. All samples labelled as “Near bottom” (Mass DEP data) were

removed. For samples without this label (NWQp data), a ratio was calculated of the sample depth to the
maximum lake depth. A sample was labelled as “Near bottom” if the sample depth was > 60% of the
maximum lake depth. The phosphorus concentration was then calculated as the average value of all

measurements not “Near bottom”.
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Figure 12. Histogram of the coefficient of variation of the phosphorus samples at all depths for each lake
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Basin Data

Tables 6, 7 and 8 list the basin characteristics that were used as potential independent variables in the

10

Frequency

Figure 1 Histogram of the coefficient of variation of the phosphorus samples for each lake

Histogram of phosCV
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phosCV

excluding those taken in the hypolimnion (or “Near bottom”)

regression model.
Table 6. Anthropogenic basin characteristics considered as potential
independent variables in the regression model

Variable Source Range
Population 2010 census data 0.005 - 8.6
Discharge 2000-2005 in Mass DEP / SYE wateruse db o - 15027
Septic 1990 census data - % households on septic 1 -1257
Imperv Mass GIS 2006 0.8 -36.7%
Land Use %t CAPS Land Use various
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Table 7. Natural basin characteristics considered as potential independent variables in the regression model

Variable Source

Basin Area (5 — 213 km?) CAPS delineation
Climate* PRISM

Bedrock Lithology** Mass GIS 2004, Group A
Land Use %t CAPS Land Uses

TLand Uses: http://www.umasscaps.org/index.html

*Climate: Max Temp, Min Temp, Mean Precipitation from the PRISM 800m climate data for
1981-2010:
http://www.prism.oregonstate.edu/products/matrix.phtml?vartype=tmin&view=maps

**Bedrock Lithology: http://www.mass.gov/anf/research-and-tech/it-serv-and-

support/application-serv/office-of-geographic-information-massgis/datalayers/bedrock-
lithology-.html. See Group A layer.

Table 8. Natural lake characteristics considered as potential independent variables in the regression model

METHODS

Variable Source
Lake surface area Mass DEP, NWQp
Lake depth (max) UMass WRRC

A multiple linear regression model was used to estimate lake phosphorus concentration from the basin

and lake characteristics.

where:

In(c) =By + f1in(X; + 1) + Boln(X, + 1) + -+ Bpln(X, + 1)

average nutrient concentration

basin characteristic i

model coefficient for basin characteristic X;

the number of basin characteristics used as independent variables

l1ton
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We employed a natural log transformation of both the independent and dependent variables.
Natural log transformation is consistent with previous regression models relating basin
characteristics to lake or stream nutrient concentrations (Sorrano 2008, Dodds and Oakes
2004). Alternative transformations were evaluated both numerically, by considering univariate
correlations between variables, as well as visually, by examining plots of independent against
dependent variables. No improvement was found when compared to the log-log model results.

Adding one to the value of the basin or lake characteristics before taking the natural log allows
a correct mapping of boundary conditions between the value of the term (In(X+1) ) in the linear
regression model and the value of X, so that when X =0, In(X+1) = 0. This approach allows for
the correct representation of the ‘removal’ of anthropogenic modifications from the regression
equation by setting the value of the corresponding terms to zero.

Because the natural log is only defined for values above zero, any basin characteristic with
negative values was shifted to be nonnegative by adding the minimum value plus a small
increment to all values. Only one required shifting (min temp) as the remaining natural
variables were all non-negative.

We used principal component analysis (PCA) to select a subset of the 67 highly intercorrelated
basin characteristics considered as potential independent variables in each regression.
Variables with the highest eigenvector loadings, determined using a scree test, within
intercorrelated sets of variables in the first set of components were maintained in the set of
candidate variables. The variable reduction process involved determination of which
characteristics had the highest univariate correlation coefficients with the dependent variable,
and maintenance of variance inflation factors (VIFs) below 10, along with the analysis of the
PCA loadings.

The 28 variables selected from the PCA were then input to stepwise regression algorithm,
written in the statistical language R (R Development Core Team, 2006), which minimized the
Akaike information criterion (AIC) to estimate the regression parameters and develop the final
equations. One outlier was removed based on a high Cook’s D (Kutner, 2005).

Weightings for the basin characteristics were calculated based on an ‘aquatic distance’ of each
30m square cell to the target point which in this case is the location of the sample taken for the
nutrient concentration measurement. The ‘aquatic distance’ is calculated based on the land use
of each cell traversed to reach the target point, whether the cell contains a stream channel, and
the slope of the land surface of the cell. The approach is based on a method presented by
Randhir et al., 2001.

Models with weighted and non-weighted basin characteristics were compared. Variables
weighted by aquatic distance had significantly higher univariate correlations with the
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dependent variables and the models using the weighted basin variables resulted in higher
adjusted R? values, so only weighted variables were included in the final models.

RESULTS

There are two sets of results shown here. Both include only summer, eplimnion samples for the study
lakes. The first set of results includes all lakes and the second excludes lakes in the Southeastern part of
Massachusetts and all of Cape Cod due to the domination of groundwater flow in those areas.

The first regression model including samples of all lakes had 11 variables and an adjusted R*value of 0.64
(Tables 9 and 10).

Table 9. The number of parameters (p), adjusted R2, mean square error (MSE) and
standard error (SE) for the model including all lakes

o] 11
ADJR2 0.638
MSE 0.312
SE 0.650

Table 10. The model coefficients for the regression including all study lakes

Intercept -0.775
septic 0.170
Transportation 0.760
Waste_disposal 2.206
Spectator_recreation -0.707
Unpaved_road 0.150
Cranberry_bog 0.285
Forest -0.583
Shrub_swamp 0.223
Water_lentic -0.188
Water_lotic 0.267
DEPTH_IN_FEET -0.566

Note in Table 10 that the sign is negative for the spectator_recreation variable, indicating that the
model estimates an increase in spectator_recreation, weighted by aquatic distance to the lake, will
decrease the lake phosphorus concentration. This is potentially an unexpected result, though our
previous stream nutrient model showed the same behavior. The negative relationship between Forest
and Water_lentic (lake water) is expected, as is the increasing lake depth being associated with a
decrease in phosphorus.

The anthropogenic basin characteristics which were predicted to increase phosphorus are septic
systems, transportation, waste disposal, unpaved roads and cranberry bogs. As we can see in Figure
below, septic systems for the study lakes are estimated to have the most consistent impact on changing
phosphorus concentrations. All of the study lakes are shown to have septic systems. Where the
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existence of the other alterations such as transportation or cranberry bogs are not in many basins, but
some have a higher impact than the septic systems when they are there (Figure 15).

AvgTP % Change from each Basin Alteration
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Figure 14. Percent change in TP due to each anthropogenic basin modification in the final model including all study
lakes. Every study lake value of the variable is included here, even values of 0. Variables shown (from left to right)
are cranberry bog, septic, spectator recreation, transportation, unpaved road, and waste disposal.
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AvgTP % Change from each Basin Alteration
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Figure 2 Percent change in TP due to each anthropogenic basin modification in the final model including all study
lakes. Only non-zero values of the variables are included here. The ranges, therefore, show the impact on
phosphorus for the basins that have those particular modifications. Variables shown (from left to right) are
cranberry bog, septic, spectator recreation, transportation, unpaved road, and waste disposal.

The second regression model, for summer, eplimnion samples of lakes not including those in SE Mass
and on Cape Cod had 9 final variables and an adjusted R value of 0.70 (Tables 11 and 12).

Table 11. The number of parameters (p), adjusted R2, mean square error (MSE) and
standard error (SE) for the model excluding lakes in SE and on Cape Cod

p 9
ADJR2 0.696
MSE 0.257
SE 0.579
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The anthropogenic basin characteristics that were predicted to increase phosphorus are waste disposal,
and unpaved roads.

Table 12. The model coefficients for the regression the model excluding lakes in SE and on Cape Cod

Intercept -6.697
Waste_disposal 4.799
Spectator_recreation -0.465
Unpaved_road 0.374
maxtemp 2.395
Forest -0.605
Shrub_swamp 0.266
Water_lentic -0.177
Water_lotic 0.384
DEPTH_IN_FEET -0.638

AvgTP % Change from each Basin Alteration
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Figure 16.Percent change in TP due to each anthropogenic basin modification in the model excluding lakes in SE
and on Cape Cod. Every study lake value of the variable is included here, even values of 0. Variables shown (from
left to right) are spectator recreation, unpaved road, and waste disposal.

25



AvgTP % Change from each Basin Alteration

200 - -
l
[}
]
i
]
—_ l
o 150 o !
= o !
2 o .
< - |
~ 1 [}
o l |
| ]
5, 100 :
> ]
< |
]
s !
() 1
'O 1
N—r’
G_) p—
> 50
C
I
e
O
g : R T
[}
& 0 — 0
> I
<
50 1
N
I I I
c o] ('_U
o ®©
: ] g
©
L 3 |
l g )
Qo £ &

Figure 17. Percent change in TP due to each anthropogenic basin modification in the model excluding lakes in SE
and on Cape Cod. Only non-zero values of the variables are included here. The ranges, therefore, show the impact
on phosphorus for the basins that have those particular modifications. Variables shown (from left to right) are
spectator recreation, unpaved road, and waste disposal.
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AN ALTERNATIVE APPROACH TO CONSIDER

Qa Qc2

s

An alternative structure for the regression model could be considered which adds mechanistic
knowledge based on a mass balance model of phosphorus concentration. The change in phosphorus
concentration over time determined by the mass of phosphorus entering the lake (W), minus the mass
flowing out of the lake (Qc) minus the mass of phosphorus settling out of the water column (vAgc).

dc
Va= W — Qc — vAgc

In the steady state conditions, the change in phosphorus is 0 and inflows are equal to the outflows. So,
W = Qc + vAsc
W = c(Q + vAy)

Thus an alternative regression to our first approach could be to use the following structure:

C(Q + UAS) ~ .80 + .Bnlln(an + 1) + .anln(XnZ + 1) + -

where:
c average nutrient concentration
Xnj basin characteristic
4 model coefficients
Q flow out of the lake
Ag lake surface area
v settling rate
w nutrient loading rate
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Note that this is different from previous regressions done on nutrient loadings estimated by inflow and
stream concentration. The proposed model above instead uses outflow and in-lake concentration.
Without flow data for all of the lake outflows the flow would need to be estimated.

Another opportunity to improve the model would be to collect data for dissolved oxygen for all the
study lakes and note which lakes have hypolimnions that become anoxic (all the oxygen is depleted).
These conditions can lead to the release of TP from the lake sediments and the sediments become a
possible source instead of a sink for phosphorus.

More robust statistical methods could also be applied to learn about the relationships between the
basins and phosphorus concentrations. Regression trees or neural networks should be investigated. In
any case a cross validation should be run.

Additional research on alternate models for the aquatic distance calculation could be considered. It
would be enlightening to compare the current model with a fixed riparian corridor, a flow path with two
simple transport parameters such as proposed by Van Sickle (2008), or a more complex model of
nutrient attenuation across the particular land use of each 30m cell.

Knowledge regarding ground water flows could be included in basin delineations if possible.

Additional lake nutrient data could be collected and possibly a model for estimating nitrogen from basin
characteristics could also be developed.

NEXT STEPS

We have developing a model for evaluating the nutrient status of lakes. Our models for lake phosphorus
had good R-squared values (0.64 — 0.7). In order to use these models to create a CAPS metric for lake
phosphorus we will need comprehensive data on lake depths. Given the advances in remote sensing
technologies these data might become available in the near future. There are also alternative
approaches that could be explored for modeling lake phosphorus.

Our goal is to eventually be able to create a CAPS metric that doesn’t just model phosphorus loading but
evaluates the degree to which phosphorus concentrations have increase over natural conditions due to
anthropogenic land use and waste disposal. The approach that we used for stream hydrologic
alterations and stream nutrient status appears to be workable for evaluating phosphorus stress in lakes.
Once we have more comprehensive data on lake depth we should be able to include phosphorus as a
stressor metric for evaluating the ecological integrity of lake ecosystems in CAPS.
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Overview

What is CAPS

The Conservation Assessment and Prioritization System (CAPS) is an ecosystem-based (coarse-filter) approach
for assessing the ecological integrity of lands and waters and subsequently identifying and prioritizing land for
habitat and biodiversity conservation. We define ecological integrity as the ability of an area to support
biodiversity and the ecosystem processes necessary to sustain biodiversity over the long term. CAPS is a
computer software program and an approach to prioritizing land for conservation based on the assessment of
ecological integrity for various ecological communities (e.g., forest, shrub swamp, headwater stream) within an
area.

The first step in the CAPS approach is the characterization of both the developed and undeveloped elements of
the landscape. With a computer base map depicting various classes of developed and undeveloped land, we
then evaluate a variety of landscape-based variables (“metrics”) for every point in the landscape. A metric
may, for example, take into account the microclimatic alterations associated with “edge effects,” intensity of
road traffic in the vicinity, nutrient loading in aquatic ecosystems, or the effects of human development on
landscape connectivity.

Various metrics are applied to the landscape and then integrated in weighted linear combinations as models
for predicting ecological integrity. This process results in a final Index of Ecological Integrity (IEl) for each point
in the landscape based on models constructed separately for each ecological community.

What is CAPS-IBI?

Over the course of several years UMass Amherst has been collecting biological data in forested wetlands and
using data collected by the MA Office of Coastal Zone Management and MassDEP in salt marshes and wadable
streams. These data were used to create and test Indices of Biotic Integrity (IBls) for CAPS IEl and metrics.?

CAPS-IBI is software that allows cooperating agencies, organizations and businesses to input field-collected
biological data and output IBI scores for IEl and some of the CAPS metrics for forested wetlands, salt marshes
or wadable streams.

CAPS-IBI can be used to:

e Evaluate the biological condition of particular sites and assess whether IBI scores meet expectations
for wetlands in their specific landscape contexts

e Identify whether site specific stressors (e.g. chemical dumping) are affecting the biological condition of
wetlands beyond the general stressors associated with the surrounding landscape

e Assess progress and the success of wetlands mitigation projects

e Assess the impact of wetland restoration projects

How do | install CAPS-IBI?

CAPS-IBI currently is intended to run primarily on Microsoft Windows operating systems (XP, Vista and
Windows 7 and Windows 8), although files are available that make it possible for very experienced computer
users to run the software on nearly any operating system. Hardware requirements include a minimum of

! For information about IBI development see “Empirically Derived Indices of Biotic Integrity for Forested Wetlands,
Coastal Salt Marshes and Wadable Freshwater Streams in Massachusetts” available at
http://umasscaps.org/pdf/CAPS%20IBI%20Report%20Sept%2015%202013%20Final.pdf.



512MB of RAM and about 300MB of free disk space. Microsoft Windows users can download the standalone
installer using the link found in the “Links” section above. Please note that you must have Administrator
privileges to install, but once installed, those with ‘user’ privileges only may use the software. To install, just
click or double click the file to open the install wizard and then follow the instructions. We recommend
installing the software using the default settings. For windows users, the default installation will create a folder
in the program files list and the program can be opened just like any other Windows program. CAPS-IBI is
written in the Python programming language and makes use of the Quantum GIS API and the Inno Setup 5
installer program.

Who should read this manual?

We hope that all users of the software will read this manual carefully. The CAPS-IBI software appears fairly
simple on the surface, but a lot is going on internally that is not obvious in the graphical user interface (GUI).

Glossary of Terms

Term Definition
Action The function performed by clicking a button or choosing a menu item.
Compliance Level There are three possible results: “Exceeds expectations,” “Meets expectations,” or “Fails to

meet expectations.”

Comma Separated Value | The file that contains the biological sampling data (see “Step 4:” below for format)
(CSV) data file

1Bl Metric See http://www.umasscaps.org/pdf/CAPS-Landscape-Metrics.pdf for individual metric
definitions

IBI Score The score calculated by statistical modeling based on the field-collected biological data

IBI Table The table that appears in the main window when CAPS-IBI is opened

Metric Type Either “Stressor” or “Integrity/Resiliency” see http://www.umasscaps.org/pdf/CAPS-

Landscape-Metrics.pdf

Percentile The percentage of values that is expected to fall below the given value (e.g. IBl score) based
on training data used to create the IBls

Target Score The expected IBI score based on the metric or IEl score calculated by the CAPS model for
the CAPS cell nearest the GPS coordinates of the sampling site

Wetland Type Currently users may choose among Salt Marsh, Forested Wetlands or Streams.



http://www.umasscaps.org/pdf/CAPS-Landscape-Metrics.pdf
http://www.umasscaps.org/pdf/CAPS-Landscape-Metrics.pdf
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How to Use CAPS-IBI

As seen in Figure 1 below, the Main Window has a single menu named “Project.” The project menu has three
actions in it: “New Project,” “Open Project” and “Save Project.” The buttons on the toolbar perform the same
three actions as the items in the project menu. You may notice that the “Save” button on the toolbar is ‘grayed
out,” which means it is not available to use. The “Save” button is only available when there is something to
save. In Figure 1, looking below the toolbar you see the IBI Table. When an IBI has been completed, the
calculation results will be displayed in the IBI Table. Please note that the number of output metrics will vary
depending on the wetland type being assessed.

-)" Conservation Assessment and Prioritization System (CAPS) [BI —-Ié‘@ﬂ

Project

1= 4d

1 2 3 4 5 ]

Target Score

1 IBI Metric IBI Score (from CAPS)

Compliance Level Percentile Metric Type

Ecological Integrity
Ecological Integrity (stream)

Habitat Loss

2

3

4

5 Watershed Habitat Loss
6 Road Sediment

7 Connectedness

8 Invasive Earthworms
9 Edge Predators

10 Hyrologic Alterations
11 Imperviousness

12 Nutrients

13 Phosphorus

14 Road Traffic

Figure 1 —The Main Window

After opening the software for the first time the Main Window shown in Figure 1 will appear, and you should
begin by clicking the “New Project” button. A file dialog will open that will allow you to save a project
anywhere you choose on your file system. After you name the project and click “Save,” the program will
automatically add the “.ibi” extension to your file name and display the project name in the Main Window title
bar. Files with the “.ibi” extension are simple text files that store information about the status of your project,
so you can partially complete a project and then return to it later by using the “Open Project” button or menu
item.



Immediately after saving your new project, the “Create IBI” dialog shown below in Figure 2 will open. This
dialog is ‘modeless’ which means you can select any of the menu items or buttons in the Main Window at the
same time the Create IBI dialog is open. As you can read in the green text just below the title bar, this dialog
asks you to complete 5 steps in order to be able to calculate results for an IBl. The “Calculate” button at the
bottom of the dialog will not be enabled until all 5 steps are completed without errors. Note that the dialog
displays the project name, “9.ibi”, also in green text on the second line of text below the title bar. The 5 steps
displayed in Figure 2 are described in detail below.

To create and calculate results for an IBI, please complete the five steps below:

Project Name: 9.ibi

Step 1: Choose a wetland type.

L.

Step 2: Enter the GPS coordinates of your sample location in decimal geographic coordinates (WGS84, EPSG: 4326).
Latitude (& digits from 41.2380 to 42.8868): __. Longitude (& digits from -73.5082 to -69.9278): -__.

Result of location check: | Coordinates not entered or invalid|

Step 3: Click the finks below and check the boxes to confirm your sample location on a Google Map.
Display GPS point: GPS coordinates OK

Display nearest point having IEI calculations for your chosen wetland type: Nearest point OK

Step 4: Browse to a Comma Separated Value (CSV) file that contains your data.

l Browse l |N0 file selected|

Result of data check: | Mo file selected
View Error Report

Step 5: Click to calculate and display results.

Calculate

Figure 2 — The Create IBI Dialog
Step 1: Choose a wetland type.

The drop down menu shown in Step 1 has 3 choices, “Salt Marsh,” “Forested Wetlands” and “Streams.”
Currently, we do not have credible IBIs for the “Salt Marsh” selection. The wetland type must be chosen before
entering GPS coordinates in Step 2 because CAPS-IBI will check if your GPS coordinates are in a suitable
location for the wetland type you have chosen. The wetland type must also be chosen before choosing the
Comma Separate Value data file in Step 4 because the software will check if the ‘wetland.type’ listed in the
data file is consistent with the wetland type you have chosen. If you attempt to change the wetland type after
you have entered GPS coordinates or chosen a data file, a dialog will appear to warn you that you must also
change GPS coordinates and your data file. The dialog will give you a choice of whether to proceed or cancel. If
you proceed, the coordinates in Step 2 ad the CSV file in step 3 will be reset to default values.
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Step 2: Enter the GPS coordinates of your sample location in decimal geographic coordinates (WGS84, EPSG:
4326)

The coordinates listed in parentheses after the “Latitude” label and “Longitude” label are the coordinates for
the maximum extents of Massachusetts, so your coordinates must be between those limits to be valid. You
also must enter 6 digits beyond the decimal place in order for the latitude and longitude text boxes to accept
your entry as valid. Once you have entered valid coordinates and hit the tab or enter key, the software will
check your GPS coordinates against a built-in database of suitable locations for the wetland type you have
chosen, and will display green text indicating that the location is suitable or red text indicating that it is not
suitable. For those who are interested, CAPS-IBI constructs a box of suitable size around your GPS coordinates
and finds any CAPS cells that fall within that box. If no CAPS cells of the designed wetland type are found
within the box then the location is not suitable. If CAPS cells matching your wetland type are found, the
software then identifies the appropriate CAPS cell closest to your GPS point and indicates that the location is
suitable. If the location is suitable, the software also displays the distance between your GPS point and the
nearest suitable CAPS cell. The box size is based on an assumption that GPS coordinates will be accurate to
within 30 meters.

Step 3: Click the links below and check the boxes to confirm your sample location on a Google Map.

Once you have entered acceptable GPS coordinates, CAPS-IBI will generate two blue colored links to Google
Maps. One link will display the location of your GPS point, and the other will display the location of the nearest
CAPS cell for your wetland type. We ask that you click on each link and verify that your GPS coordinates
accurately represent the location where you took your sample. A marker will appear on the Google map that
indicates the location of your GPS coordinates or the location of the nearest CAPS cell depending on which link
you have clicked. The coordinates will either appear near the marker or in the search box of the map, and the
marker shape or color may differ depending on your operating system and/or web browser. Please note that
you can change the map from a map view to a satellite image view if necessary.

After you have clicked a link, the check box labeled “GPS coordinates OK,” or “Nearest point OK” will become
active. You must check those checkboxes before you can proceed with your calculations.

Step 4: Browse to a Comma Separated Value (CSV) file that contains your data.

Probably the easiest way to create your CSV data file is to type the column headings and other data into
separate cells in Microsoft Excel, or Open Office Calc and then choose to save the file as a CSV file. However,
the file can also be created in a text editor if you prefer. If you do use a text editor, please do not use Unicode
encoding for your file; however, UTF 8 or ASCII will work fine. An example for creating the CSV data file in
Microsoft Excel is illustrated in Figure 3 below.

wetland.type|sample.type site |abundance|genus species family order class division
Stream kn.invertebrates 1 10|Campeloma

Stream kn.invertebrates 1 10|Campeloma

Stream kn.invertebrates 1 6 Naididae

Stream kn.invertebrates 1 6 Tubificida

Stream kn.invertebrates 1 6 Clitellata

Stream kn.invertebrates 1 6 Arthropoda

Figure 3 — Create Data File using MS Excel




wetland.type, sample.type, 3ite, ebundance, genus, species, family, order, class,division
Stream, kn.invertebrates, 1,10, Campeloma, , ., .

Stream, kn.invertebrates, 1,10, Campeloma, , ., .

Stream, kn.invertebrates,l1, 3, , Hydrokiidae,,,

Stream, kn.invertebrates, 1, 8, Fseudosuccinea, columella, ,, ,

Stream, kn.invertebrates, 1, 3,,,PFlanorkidae, , .,

Stream, kn.invertebrates, 1, 3,,,PFlanorkidae, , .,

FIGURE 4 — Proper CSV Data File Format

Figure 4 above shows an example of the CSV file format that must actually be submitted. The first line has the
column names separated by commas. As illustrated by the column name line, there is no comma after the last
item in the line if all columns have a value. In other words, there should be 9 commas delineating the 10
possible entries for each line. Each line represents one record in the data set, and missing items are indicated
by adjacent commas. Note that each line ends with a carriage return, but if you open your CSV file in a text
editor, the carriage return markers may or may not show depending on your text editor settings. There cannot
be any carriage returns before the column names or after the end of the last line or record. Lastly you should
not use commas within an item (say a site name containing a comma). If you must use commas within your
text, please learn how to delimit the text properly or simply use Excel, which will write the file properly for you.
The following bulleted list describes what errors CAPS-IBI checks for in the CSV data file. Please note that the
checking process is case insensitive.

e Wetland.type and sample.type are required for all records.

e The “wetland.type” entries must be the same as the name of the wetland type you have selected.

e The sample.type must be one of the three entries shown in Figure 5 below.

e The sample.type must agree with the wetland.type you have chosen.

e The taxa supplied for each record must be in the “group” specified for the sample.type

e Sijteis required for all records and can be a number or a name as you prefer, but it must be the same
for all records.

e Abundance is required for all records.

e If species is indicated then genus must be supplied. Otherwise, listing a single taxon other than species
(genus, family, order, class or division) is sufficient and will pass validation.

e The spelling of each taxon is checked against the built-in database and must be correct.

e |f more than one taxon is listed for a record then the combination must be found in our database.

Once you have created a properly formatted CSV data file, click the “Browse” button and browse to the file. As
soon as you have selected the file and clicked “Open” in the file dialog, CAPS-IBI will display the path to your
file and automatically begin the process of checking for errors. If CAPS-IBI finds errors, it will write an error
message in red next to the “Result of data check:” label and a new window titled “Error Report” will appear
and describe the error and the line number for each error. The program will also write an error file named
“yourprojectname_error.txt” to the same directory as the project file in case you choose to save the project
and continue later. The error file can be displayed at a later time by clicking the “View Error Report” button.
After you have fixed the CSV file, a message in green text will appear next to the “Result of data check:” label
indicating that your data file has passed the check and the error file will automatically be deleted. In addition,
a file named “yourprojectname_completed_taxa.csv” will be written to the project folder with missing taxa
information filled in for reference.



sample.type wetland.type group
vascular.plants  |[Forested wetland |vascular plant
bryophytes Forested wetland |bryophyte

kn.invertebrates |Stream macroinvertebrate
Figure 5 — sample.type

Step 5:

Congratulations! If you have successfully completed Steps 1-4, the “Calculate” button is enabled and you are
ready to do calculations for your IBls. If you click “Calculate” before you have saved your project, you will be
prompted to save the project before the calculations begin. The calculations use the ‘R Project for Statistical
Computing’ software and consist of complex statistical modeling based upon the biological data you have
submitted. Once the calculations have completed, the results will appear in the IBI Table, and CAPS-IBI will
write the results to a CSV file named “yourprojectname_calc_results.csv.”

SOME ADDITIONAL IMPORTANT INFORMATION:

As described above, every project has a “project” file consisting of the project name and the “.ibi” extension.
Figure 6 below shows the project file for “9.ibi.”

[ *- this file encoded using: ytf-8 -*-

{PROJECT NAME}}: 9.ibi

{LANDiTYPE}}: 3

{LATITUDE}}: 42.304100

{LONGITUDE}}: -73.423400

{LOCATION CHECK RESULT}}: Your location is suitable for the wetland type selected.
{CSV_DATA FILE}}: C:/download/TestAbundanceData fixed.ggy

{DATA CHECK RESULT}}: Your data file passed the checking process.
{E‘.RROR_REPORT} }:

{GPS_MAP CHECK}}: True

{NEAREST MAP CHECK}}: True

Figure 6 — A Sample Project File

As seen in Figure 6, Project “9.ibi” has a CSV Data File stored in “C:/download/TestAbundanceData_fixed.csv,”
but it does not have an {{Error Report}} file because the CSV Data File passed the checking projects as
described on the {{DATA_CHECK_RESULT}} line, and as mentioned above the error report file is automatically
deleted once the CSV data file has passed the checking process. Because project 9.ibi has successfully passed
all the steps needed to calculate the IBls, the project probably also has a calculation results file,

“9 calc_results.csv,” stored in the same directory as the project file. If project 9.ibi had a “9_error.txt” file, it
would also be stored in the same directory as the project file.

We have not included a menu option for deleting a CAPS-IBI project because of the several possibilities for
which files you may want to save or delete. For example, you may want to keep the “9_calc_results.csv” file for
later comparison, but delete any other files associated with the project. We also have not included the option
to rename a project because we would have to ask whether you would like to save the old project or perhaps
delete only certain files in the old project. Also, having several files that use the same CSV data file might be
confusing. So, to entirely delete a project simply delete all of the 4 possible files associated with the project
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(“myproject.ibi,” “myproject_error.txt,” “myproject_calc_results.csv,” and “myproject_completed_taxa.csv”).
To rename a project open myproject.ibi in a text editor and change the project name then rename the 4 files
using the new project name.” Alternatively, you may rename a project by deleting the old project and creating
a new project with a different name; the process of creating an IBl is fairly quick and simple.

Finally we should describe the process that occurs when opening a previously saved project. Because it is
possible to hand edit or move any of the 3 files associated with a project, the software always checks the files
when the project is opened. Because any of the 3 files may have changed, we recheck the GPS coordinates, the
CSV data file, and perform the calculations again depending on the status of the project when it was last saved.
You will be notified if the GPS coordinates or CSV data file have changed, or if the CSV data file is missing.
Please be aware that the error report will be rewritten or overwritten as will the projects calculation results
file, and the “Create IBI” dialog will reflect the current state of the project. If the CSV data file is missing, you
will be asked to relocate it.

We hope that you will find CAPS-IBI to be a valuable tool that is easy to install and use. If you have any
problems, or have requests for additional functionality, please submit a “ticket” using the link provided in the
“Preface” section above.

Thanks,
Bob English and the CAPS team



APPENDIX B: Land Use Land Cover Variables

ALTERATIONS:

Commercial

Industrial

Urban open

Urban public
Transportation

Mining

Waste disposal
Junkyard

Multi-family residential
High-density residential
Medium-density residential
Low-density residential
Spectator recreation
Participatory recreation
Golf

Water based recreation
Marina

Cemetery

TOTAL URBAN

Cropland
Cranberry_bog
Nursery

Orchard

Pasture

TOTAL PLANTED

Powerline shrubland
Open land
TOTAL BARREN

NATURAL:

Forest
Forested_wetland
TOTAL FOREST
Shrub_swamp
Bog
Shallow_marsh
Deep_marsh
Vernal_pool
TOTAL LOWLAND

Water_lentic
Water_lotic
TOTAL OPEN WATER



