

MassDEP

Cyanobacteria & Cyanotoxins:
What PWSs should know

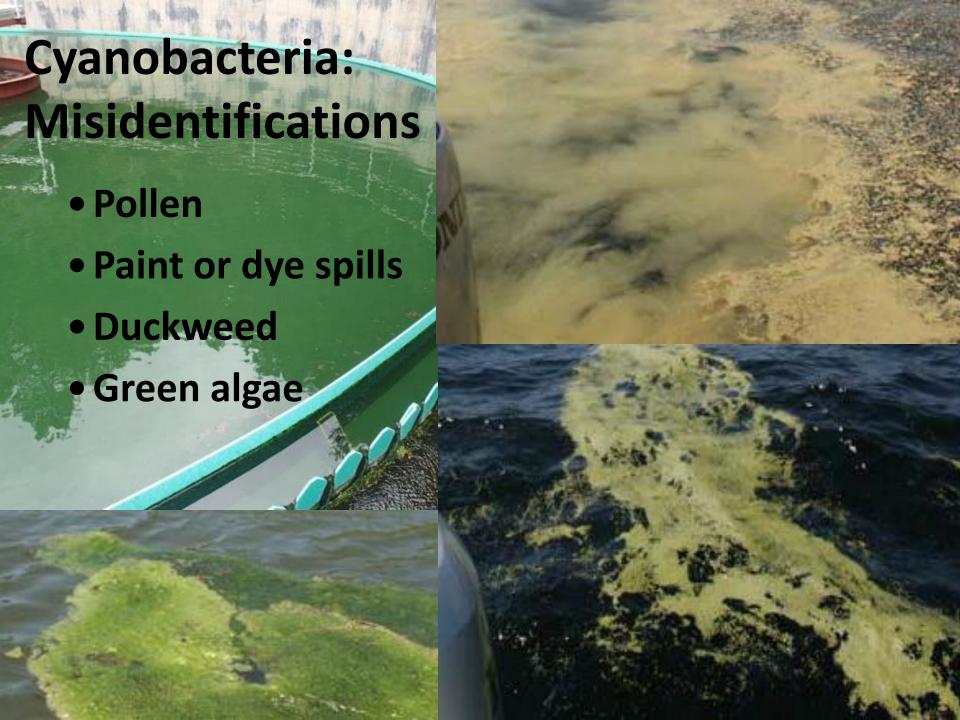
Massachusetts Water Works Association

Membership Meeting

March 15, 2018

Cyanobacteria: The Basics

- Naturally occurring microorganisms (bacteria) formerly known as blue-green algae
- Present in all waterbodies in low numbers
- Cyanobacterial species number in the thousands
- Single cells, thread-like filaments or colonies and groups
- Grow as benthic or planktonic populations
- Four most common cyanobacteria in Massachusetts
- ➤ Anabaena ➤ Aphanizomenon ➤ Microcystis ➤ Planktothrix



CyanoHABs: Risk Factors

• Predominant Indicators

Potential for cyanobacterial blooms in waterbodies based upon environmental factors.						
Bloom Risk level	History of Blooms	Water Temp °C	Total Phosphorous micrograms per liter (µg/L)	Thermal Stratification		
Very low	No	<15	<10	Rare or never		
Low	Yes	<15-20	<10	Infrequent		
Moderate	Yes	20-25	10-25	Occasional		
High	Yes	>25	25-100	Frequent and persistent		
Very high	Yes	>25	>100	Frequent and persistent/strong		

Based on Newcombe et.al., 2010

- Reduced flow/high residence time
- Wind

Cyanotoxins

Cyanotoxins Produced

- Anabaena Anatoxins, Microcystins, Saxitoxins
- Aphanizomenon Saxitoxins, Cylindrospermopsins
- Microcystis Microcystins
- Planktothrix Anatoxins, Aplysiatoxins, Microcystins, Saxitoxins
- Intracellular and Extracellular
- Number of species that produce toxins is unknown
- Cyanotoxin identification requires laboratory analysis

Cyanotoxins: Exposure & Health Effects

Exposure Routes

Dermal, oral and inhalation

Health Effects

- Dermatological Effects & Illness
- Hepatotoxins
- Neurotoxins

Possible Reactions

 Rashes, abdominal pain, fever, vomiting, diarrhea, respiratory irritation, liver and kidney damage; and, and effects to the nervous system

USEPA Human Health Risks to Cyanotoxins Exposure:

CYANOTOXINS	HUMANS

diarrhea

to death*

mouth, and Pneumonia

Fever, Headache, Vomiting, Bloody

Tingling, Burning, Numbness, Drowsiness, Incoherent speech,

Salivation, Respiratory paralysis leading

https://www.epa.gov/nutrient-policy-data/health-and-ecological-effects#what1 MOST COMMON CYANOBACTERIA

PRODUCING TOXIN

Microcystis, Anabaena, Nodularia, Planktothrix,

Aphanizomenon flos-aquae, Aphanizomenon

Umezakia natans, Anabaena bergii, Anabaena

Chrysosporum (Aphanizomenon) ovalisporum,

lapponica, Anabaena planctonica, Lyngbya

gracile, Aphanizomenon ovalisporum,

wollei, Rhaphidiopsis curvata, and

Cuspidothrix, Cylindrospermopsis,

Cylindrospermum, Dolichospermum,

Microcystis, Oscillatoria, Planktothrix,

Phormidium, Anabaena flos-aquae, A.

Tychonema and Woronichinia

lemmermannii Raphidiopsis mediterranea (strain of Cylindrospermopsis raciborskii),

Rhaphidiopsis mediterranea

Fisherella, Nostoc, Oscillatoria, and

Cylindrospermopsis raciborskii,

Gloeotrichia

Abdominal pain, Headache, Sore throat, Vomiting and nausea, Dry Microcystin-LR cough, Diarrhea, Blistering around the

Cylindrospermopsin

Anatoxin-a group

*Symptoms observed in animals.

CyanoHABs: Regulations/Guidance

EMERGING ISSUE: NO current federal or Massachusetts regulations for cyanobacteria or cyanotoxins

- US EPA Health Advisories (HAs)
- US EPA Required UCMR4 Monitoring
- Massachusetts Department of Public Health (MDPH) Guidance (public beaches)
- MassDEP Guidance for Public Water Systems (PWSs)

US EPA DW Health Advisories

- Two (2) HAs microcystins and cylindrospermopsin
- Non-regulatory concentrations at or below which adverse health effects are not anticipated to occur by oral ingestion of DW over specific exposure durations.

US EPA DW Health Advisories

	US EPA 10-day HA			
<u>Cyanotoxin</u>	Bottle-fed infants & pre- school children	School-age children and adults		
Microcystins	0.3 μg/L	1.6 μg/L		
Cylindrospermopsin	0.7 μg/L	3 µg/L		

Cyanotoxins Monitoring: UCMR4

- Cyanotoxins Sampling between 2018-2020
- Ten (10) Cyanotoxins: total microcystins, microcystin-LA, microcystin-LF, microcystin-LR, microcystin-LY, microcystin-RR, microcystin-YR, nodularin, anatoxin-a, and cylindrospermopsin
- Data from the UCMR serves as a primary source of research information, which US EPA utilizes to develop regulatory decisions.
- Three (3) US EPA approved methods for drinking water
 - **▶ EPA 544** (LC/MS/MS − MC/NOD)
 - ➤ EPA 545 (LC/MS/MS CYN/Ana)
 - ➤ EPA 546 (ELISA MC/NOD)

For further information on UCMR4 and cyanotoxins assessment monitoring, please see: https://www.epa.gov/dwucmr/fourth-unregulated-contaminant-monitoring-rule.

Cyanobacteria: MDPH Guidance

 MDPH has developed health-based guidance levels for recreational exposure to cyanobacteria.

 MDPH recommends that beaches be <u>posted</u> and individuals limit all contact with a waterbody if the waterbody has

cyanobacteria cell counts exceeding 70,000 cells/milliliter (mL) or microcystin concentrations that meet or exceed 14 micrograms per liter (µg/L).

Coming Soon: MassDEP Guidance

Collaborative Development

- MDPH, Office of Research and Standards (ORS)
- Regional DW Programs, Watershed Planning Program (WPP)
- Safe Drinking Water Act Advisory Committee (SDWAAC)

Watershed Management & Source Water Protection Focus

- Cyanobacteria/Cyanotoxin Information
- Critical factors for assessing source vulnerability
- Fact Sheet & PWS Bloom Tracking Form
- Treatment options
 - In-reservoir & within treatment facility
- Additional resource materials and MassDEP contacts

Website Update & Internal/Interagency Protocols

Helpful Resources

US EPA Website: https://www.epa.gov/nutrient-policy-data/cyanohabs

MA EOEEA Website:

https://www.mass.gov/guides/cyanobacterial-harmful-algal-blooms-cyanohabs-water

Cyanobacterial Harmful Algal Blooms (CyanoHABs) & Water

Cyanobacteria are microscopic bacteria that live in all types of waterbodies. A large growth of these bacteria results in algal blooms. These blooms can pollute the water and may even be toxic to animals and people.

MDPH Website:

https://www.mass.gov/lists/algae-information

IN THIS GUIDE

- What are cyanobacteria?
- What are CyanoHABs?
- What are possible health effects associated with CyanoHABs?
- Are cyanobacteria regulated contaminants in drinking water or in recreational water bodies?
- What should I do if I see a potential CyanoHAB?

- Who should I contact if I see a potential CyanoHAB?
- Which state agency is responsible for responding to
- How do I know if a CyanoHAB has already been
- Where can I get information on laboratories that perform cyanobacteria/cyanotoxin analysis?
- Additional guidance for Public Water Suppliers (PWS)

University of New Hampshire Online Guide:

http://cfb.unh.edu/CyanoKey/indexCyanoQuick Guide.htm

CyanoHAB QUESTIONS/COMMENTS?

Contact Information

Kristin Divris

Water Utility Resilience Program (WURP)

DWP Emergency Preparedness & Security

kristin.divris@state.ma.us

508-849-4028