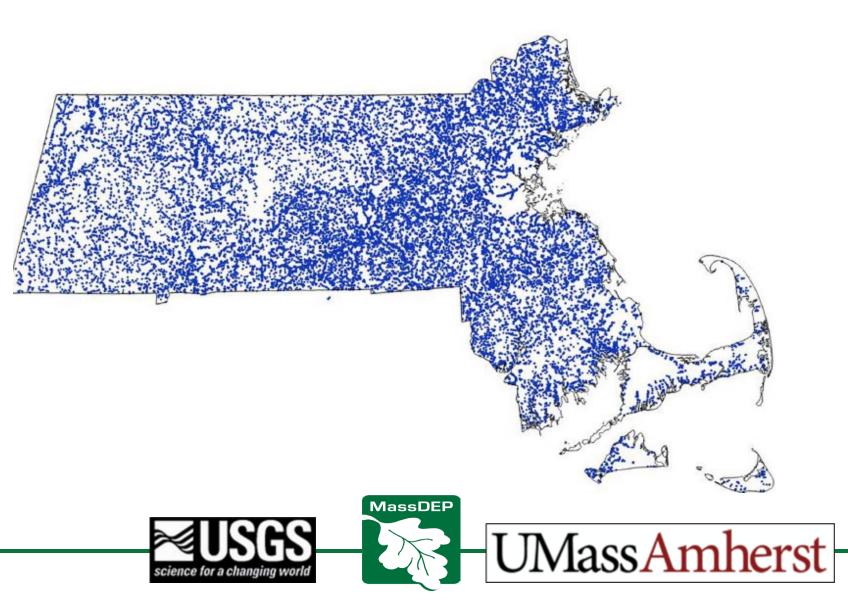
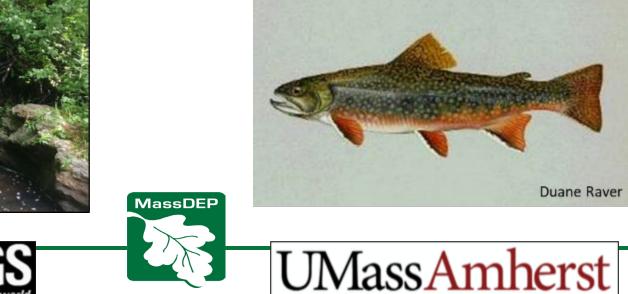
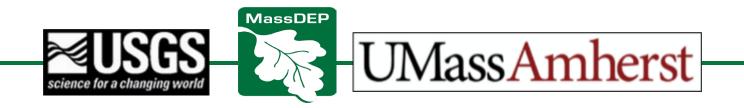
Developing a Statewide Hydraulic Modeling Tool



Agenda

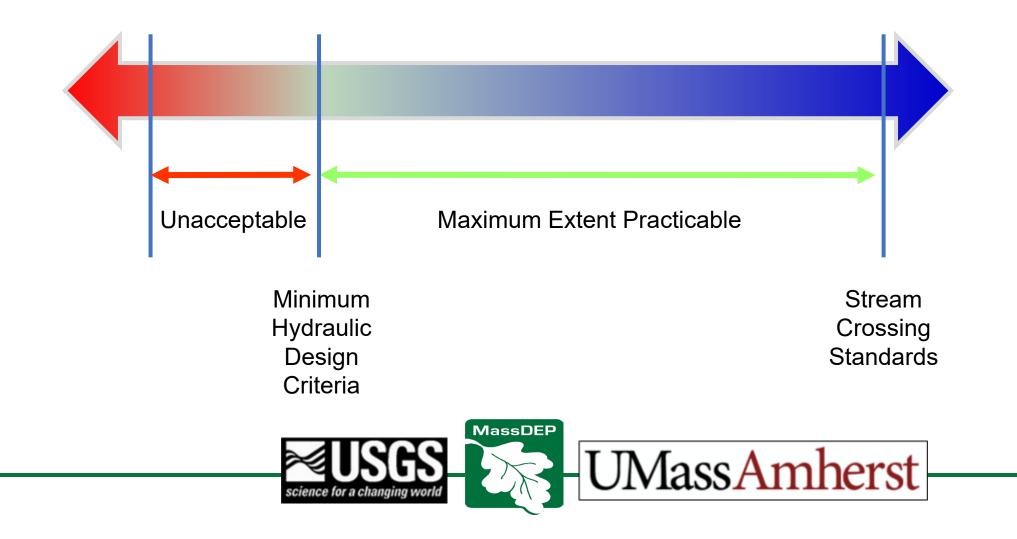
- Massachusetts Regulations (310 CMR 10.00)
- Stream Crossing Standards
- Statewide Policy and Guidance under Development for Maximum Extent Practicable
- Statewide Hydraulic Modeling Tool Development


Thousands of culverts in MA, many undersized and need replacement over the next two decades


Poorly Designed Culverts Disrupt Aquatic Organism Passage

Undersized culverts create high water velocities, scour, and outlet drops that impede the upstream movements of fish and other aquatic organisms.

Massachusetts Stream Crossing Regulations


- New Stream Crossings 310 CMR 10.54(4)(a)6 & 10.56(4)(a)(5)
 - *Massachusetts River and Stream Crossing Standards* developed by the River and Stream Continuity Partnership
- Replacement Stream Crossings 310 CMR 10.53(8)(a)
 - Maximum Extent Practicable Standard requires evaluation of 12 metrics including engineering design constraints, stream stability, and cost.

Massachusetts Stream Crossing Standards (SCS)

Maximum Extent Practicable (MEP)

MassDOT

Hydraulic Design Flow Requirements

Highway Functional Classification	Hydraulic Design Flow
Interstate, or limited access highways	100-year
Rural principal arterial	50-year
Rural minor arterial	50-year
Rural collector, major	25-year
Rural collector, minor	10-year
Rural local road	10-year
Urban principal arterial	50-year
Urban minor arterial street	25-year
Urban collector street	10-year
Urban local street	10-year

MassDOT, 2013, LRFD Bridge Manual, Part I, Chapter 1, Table 1.3.4-1

Maximum Extent Practicable Cost-Benefit Analysis

- How much additional cost is "practicable"
 - Relative to crossings built to hydraulic design criteria
 - Based on
 - Habitat quality
 - Connectivity restoration potential
- Still Need to maximize aquatic organism passage when it is not physically possible to meet the Stream Crossing Standards, Examples:
 - Maximize crossing width
 - Rock or log weirs to backwater the outlet and/or reduce velocities
 - Roughened channel within the crossing structure to reduce velocities and ensure adequate water depth

Habitat Quality

- Biomap aquatic core
- Cold water fisheries resource
- Diadromous fish run (Mass F&W development)
- Area of Critical Environmental Concern (ACEC)
- Wild and scenic river

Highest Quality: two or more of the above categories apply

High Quality: one of the above categories apply

General Quality: All other stream and river segments

Connectivity Restoration Potential

Highest Restoration Potential: Top 5% of statewide Critical Linkages or top 10% of Coldwater Critical Linkages Effect scores for crossings on streams with a projected mean summer temperature ≤ 16C

Very High Restoration Potential: 5-10% of statewide Critical Linkages or top 10-20% of Coldwater Critical Linkages Effect scores for crossings on streams with a projected mean summer temperature ≤ 16C

High Restoration Potential: 10--20% of statewide Critical Linkages or top 20-30% of Coldwater Critical Linkages Effect scores for crossings on streams with a projected mean summer temperature ≤ 16C

Medium Restoration Potential: 20-25% of statewide Critical Linkages or top 30-40% of Coldwater Critical Linkages Effect scores for crossings on streams with a projected mean summer temperature ≤ 16C

Other: All other crossings (below top 25% for Critical Linkages; below top 40% for Coldwater Critical Linkages)

Maximum Extent Practicable Cost Factors

Connectivity Restoration Potential	Highest Habitat Quality	High Habitat Quality	General Habitat Quality
Highest restoration potential	50% above baseline	30% above baseline	25% above baseline
Very high restoration potential	40% above baseline	25% above baseline	20% above baseline
High restoration potential	30% above baseline	20% above baseline	15% above baseline
Medium restoration potential	20% above baseline	15% above baseline	10% above baseline
Other	10% above baseline	10% above baseline	Baseline

MassDEP Draft Policy and UMass Guidance under Development

Wetlands Program Policy 22-02: Replacing Stream Crossings to the Maximum Extent Practicable

Wetlands Program Policy 22-02 (BWR/WP 22-2) This policy describes MassDEP's standards for stream crossing replacements and how to meet the maximum extent practicable standard pursuant 310 CMR 10.24(10) and 310 CMR 10.53(8).

Effective Date and Applicability

Effective Date: INSERT DATE

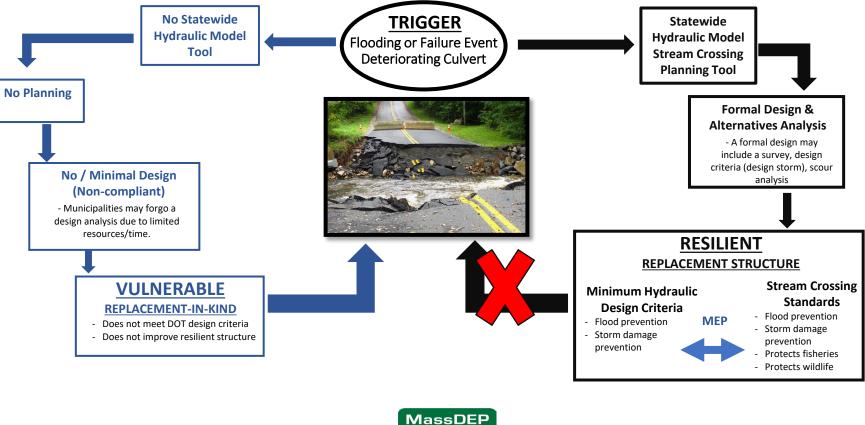
Program Applicability: municipal conservation commissions, MassDEP Wetlands staff, and applicants filing Notices of Intent to conduct activities in wetland resource areas and buffer zones

Supersedes Policy: None

Approved by: Stephanie Moura, Director, Wetlands and Waterways Division

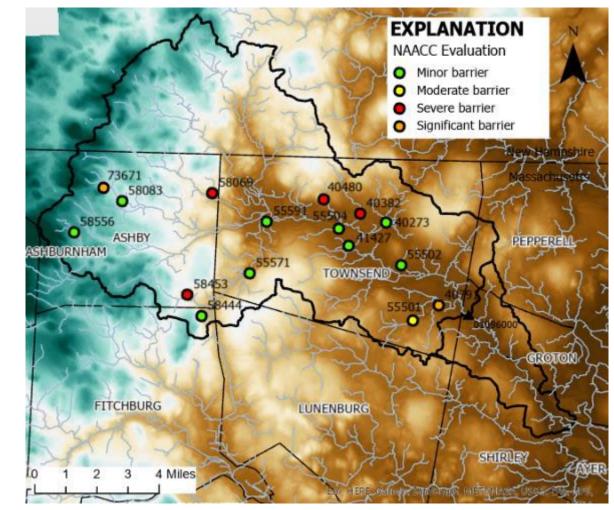
Project Goals and Status

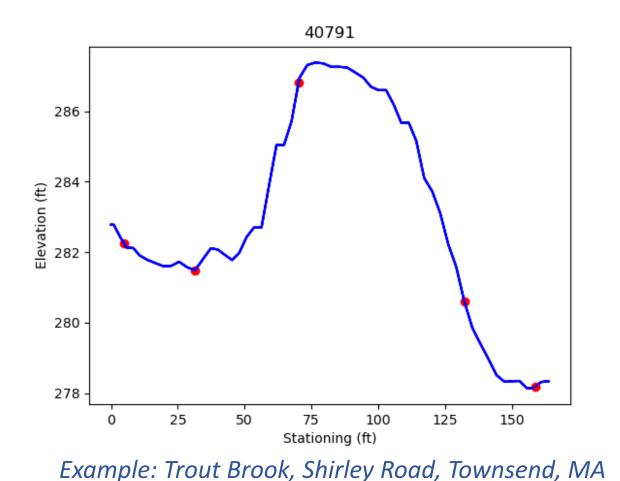
Goal:


- Provide communities a preliminary design for small (<10') stream crossing infrastructure.
- Streamline permitting review in certain scenarios.

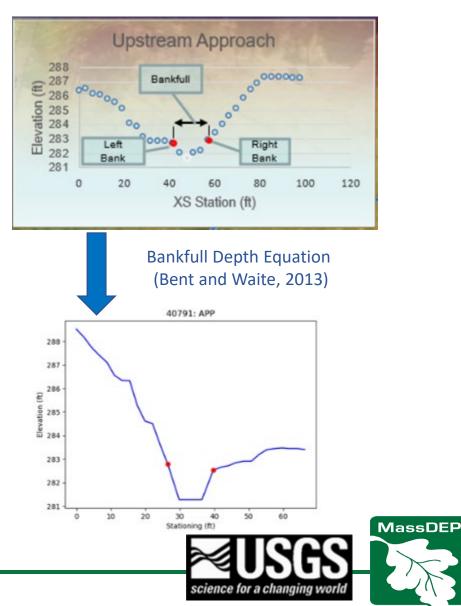
Status:

- Phase 1 Feasibility (7/19 9/22) USGS Geonarrative published
- Phase 2 (7/21 6/23) Pilot Watershed and MEP Guidance
- Phase 2A (7/22 6/24) Ground Comparison, Statewide Terrain Development, and Methodology Publication
- Phase 3 (5/23 6/25) Deerfield, lower Housatonic, and Hudson watersheds
- Phase 3A (7/23 6/25) Upper Housatonic and Westfield watersheds


Statewide Hydraulic Model as a Stream Crossing Planning Tool

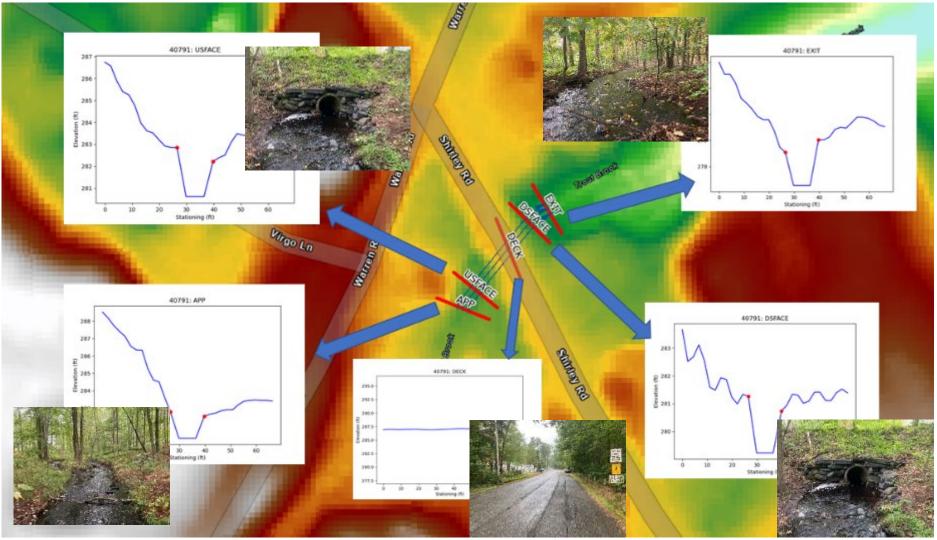

Pilot – Squannacook Watershed – North Central MA

- Field surveyed 16 stream crossing sites in Sept 2021
 - drainage area from 0.1 to 2.0 mi²
 - varied basin slope
 - stream crossing assessment of minor, moderate, or severe barrier)
- Remainder of stream crossings with no NAACC assessment were completed by UMass and the Nashua WS Association

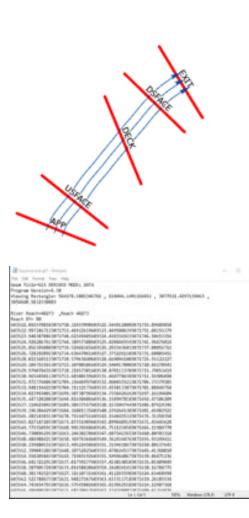

GIS Derived Elevation Data

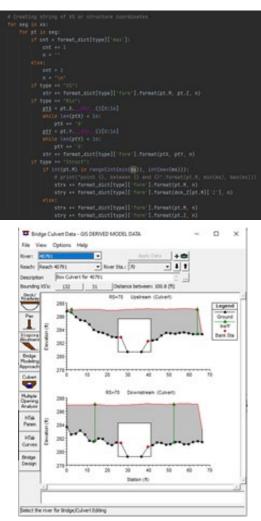
- XSEC locations are selected along a profile from elevation changes and inflection points
- An inflection point algorithm is also used to determine embankment width and estimate culvert length
- Approach and exit XSEC are spaced from the structure faces by a certain number of bankfull widths

Science for a changing world


Burned Channel Geometry

- Lidar does not capture channel geometry
- Bankfull Depth equations are used to approximate channel geometry by 'burning' in a new channel
- Currently using a trapezoid to approximate shape, plan to use a parabola for more realistic geometry. (Bjerklie and others, 2020)


GIS Derived Elevation Data

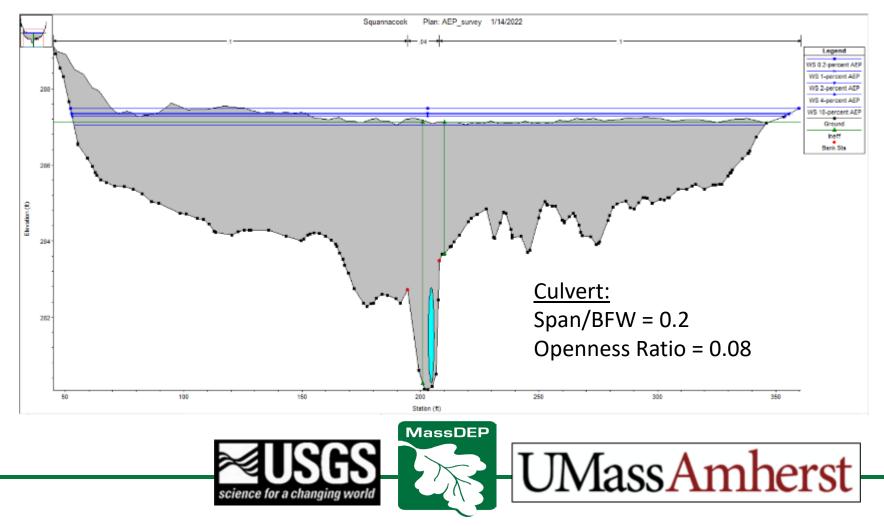


UMassAmherst

Creation of Geometry File for HEC-RAS

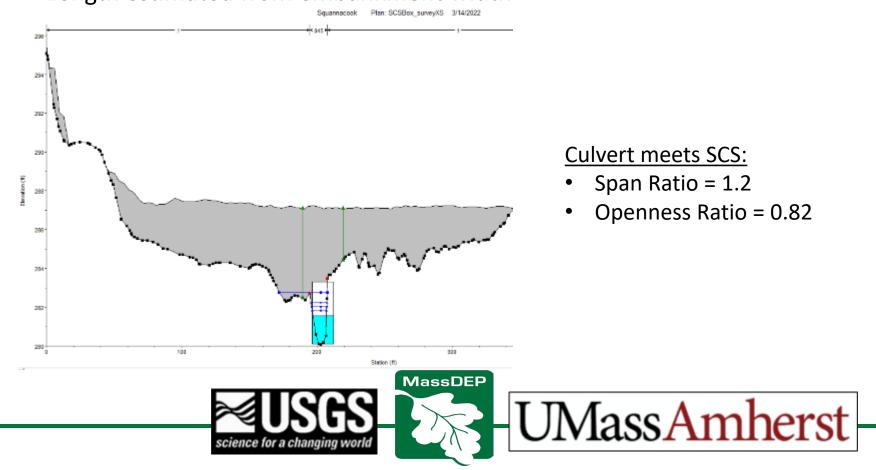
MassDEP

 Features created by automation script are broken down into points and translated into a HEC-RAS geometry file.


• Dimensions of initial structures derived from channel geometry using standards defined by the modeling team

MassAmherst

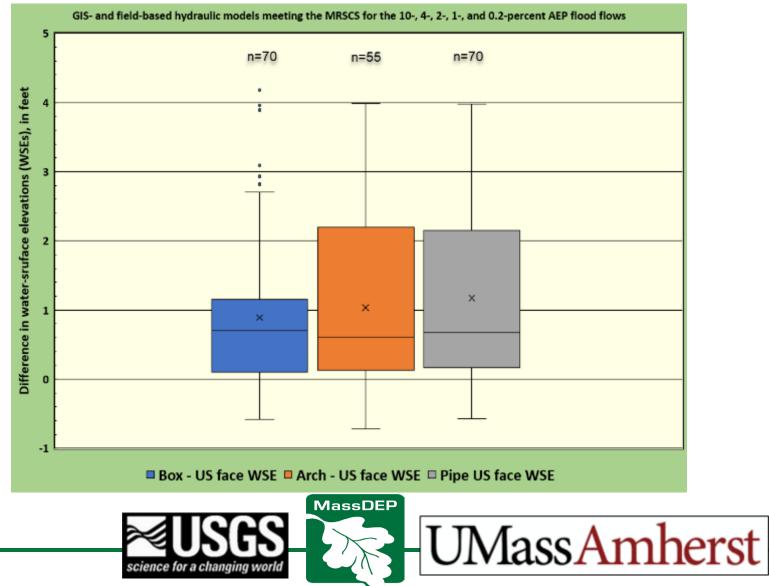
Science for a changing world


HEC-RAS Model for "Current" Culvert Design

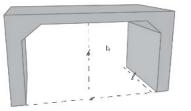
- Culvert is a 2.5 ft diameter concrete pipe
- Current culvert design: weir flow for all flows except, the 10-percent AEP

HEC-RAS Model for Preliminary Design

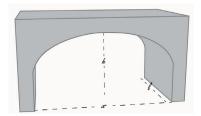
- Box (3-sided) culvert: span ratio = 1.2 x BFW, height = (0.82 x length)/span
- Natural bottom based on SCS
- Current culvert design with 10- to 0.2-percent AEP WSE
- Length estimated from embankment width

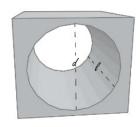


Comparison between GIS- and Field-Based Elevations


Note, the locations of the field- and GIS-based cross sections do not necessarily coincide

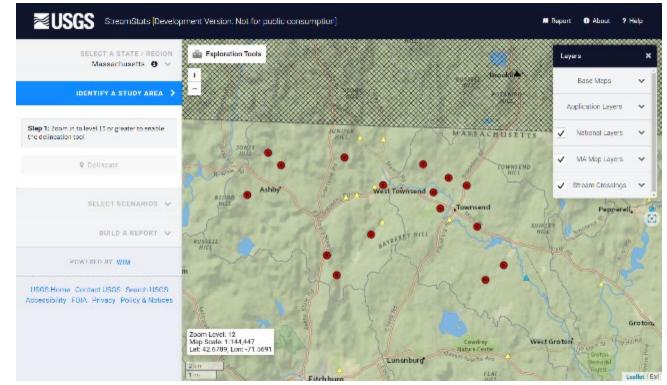
Comparison between Field- and GIS-Based Modeled WSEs




Comparison between Field- and GIS-Based Culvert Dimensions

- Box culvert (14 of 16 sites)
 - Median "span, height, and cross-sectional area" difference = 0.0 ft

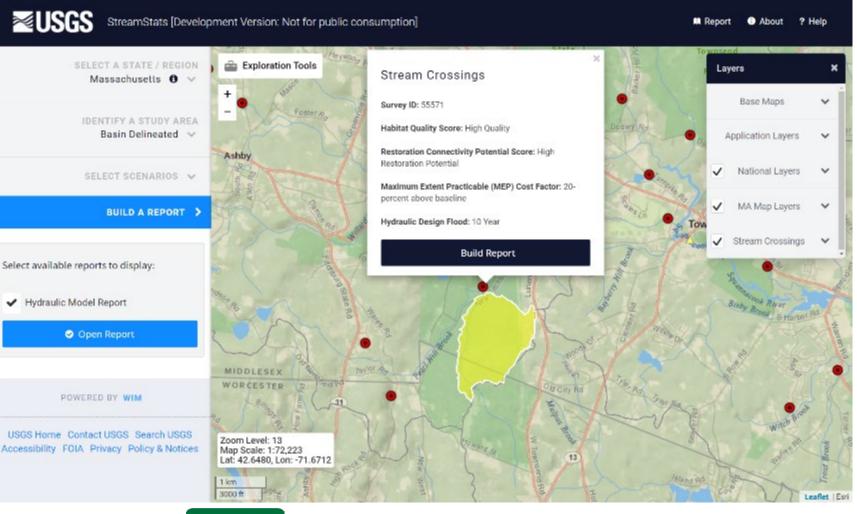
- Conspan arch culvert (12 of 16 sites)
 - Median "span, height, and cross-sectional area" difference = 0.0 ft
- Pipe culvert (14 of 16 sites)
 - Median "diameter" difference = -1.0 ft
 - Median "cross-sectional area minus SCS embedded area" = -8.7 ft²



USGS StreamStats Hydraulic Modeling Tool Web Application

Information presented:

- Site location
- North Atlantic Aquatic Connectivity Collaborative (NAACC)
- Aquatic habitat quality, stream connectivity restoration potential, and Maximum Extent Practicable (MEP) scores
- MassDOT highway functional classification and hydraulic design flow
- USGS peakflow and bankfull channel geometry equations
- Preliminary 3-sided box and conspan arch, and pipe culvert dimensions and relation to Mass SCS



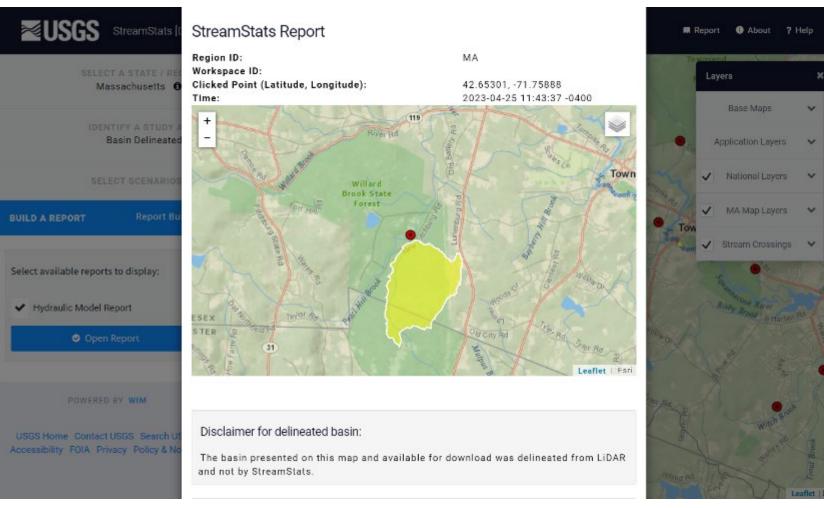
StreamStats: https://streamstats.usgs.gov/ss/

SHM Web Application: <u>https://dev.streamstats.usgs.gov/ma-culverts/</u> *SHM will be on public StreamStats this summer/fall

- Click on your stream crossing of interest
- Tool draws drainage area to that stream crossing and builds report
- Click on blue "Open Report" button on left to view report

Culvert Replacement Report

• User can enter a report title and add comments


StreamStats [I	evelopment Version: Not for public consumption]		M R	eport 0 About ? H	Help
SELECT A STATE / REG Massachusetts 0	Culvert Replacement Reports		X	Layers	×
IDENTIFY A STUDY A Basin Delineated	Enter a report title and/or comments here that will display on the below.	e printed report. Use the print button		Base Maps Application Layers	> >
	Enter report title:		Jul ?	✓ National Layers	~
SELECT SCENARIOS	StreamStats Report		Carles 21		
BUILD A REPORT Report Bu	Enter comments:		Tow	✓ MA Map Layers	~
Select available reports to display: Hydraulic Model Report Open Report	Some comments here			Stream Crossings	· .
C open nepon	StreamStats Report		- and	p/ 1/4	
POWERED BY WIM	Workspace ID: Clicked Point (Latitude, Longitude):	MA 42.65301,-71.75888 2023-04-25 11:43:37-0400	Nor Ma - B	1.	
USGS Home Contact USGS Search US Accessibility FOIA Privacy Policy & No	+ - River Rd River Rd	Service Toy	Jacons etc.	Store .	Voor Front

Culvert Replacement Report

- Latitude and longitude of location
- User can zoom in and out on the map
- Drainage basin boundary is delineated from highresolution elevation data derived from lidar

JMassAmherst

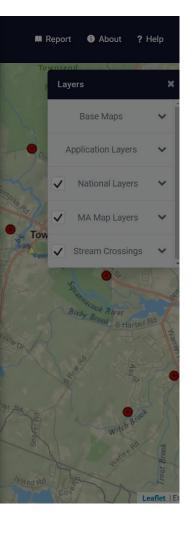
Culvert Replacement Report

- Site information
- Basin characteristics used to solve the Massachusetts peakflow and bankfull channel geometry equations
- User can hover over the black button next to the parameter name to get a description

USGS StreamStats [[
SELECT A STATE / REC Massachusetts
IDENTIFY A STUDY A Basin Delineated
SELECT SCENARIOS
BUILD A REPORT Report Bu
Select available reports to display:
✓ Hydraulic Model Report
Open Report
POWERED BY WIM
USGS Home Contact USGS Search US Accessibility FOIA Privacy Policy & No

Site Information		
Parameter Name	Value	Unit
NAACC Survey ID 🚯	55571	
NAACC Code	xy4265299571758875	
NAACC Туре Ө	Culvert	
Road	New Fitchburg Road	
Stream Name O	trib to Pearl Hill Brook	
Town	Townsend	

Site Information Citations


North Atlantic Aquatic Connectivity Collaborative, 2021, NAACC Data Center: website accessed August 3, 2021 at https://naacc.org/naacc_data_center_home.cfm.

Basin Characteristics

Parameter Name	Value	Unit
Drainage Area 🚯	0.85	Square Miles
Mean Basin Elevation 1	613	Feet
Percent Storage from NLCD2006	5.76	Percent
Mean Basin Slope from 10m DEM	7.539	Percent

Basin Characteristics Citations

Drainage area determine from digital elevation models derived from lidar data (Massachusetts

Culvert Replacement Report

- Stream Habitat and Connectivity Characteristics
- Habitat Quality and **Restoration Connectivity Potential Scores**
- Maximum Extent ${}^{\bullet}$ Practicable (MEP) Cost

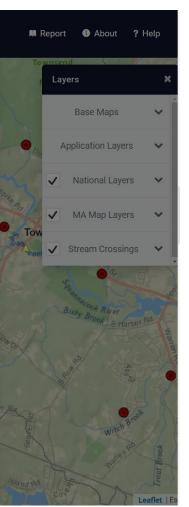
StreamStats [[Stream Habitat and Co
	Parameter Name
SELECT A STATE / REC	Coldwater Fisheries Res
Massachusetts 🚯	Areas of Critical Environ
	BioMap 2 Aquatic Core
IDENTIFY A STUDY A Basin Delineated	Wild and Scenic Rivers (
	Critical Linkages O
SELECT SCENARIOS	Cold Water Critical Linka
BUILD A REPORT Report Bui	Habitat Quality Score 0
	Restoration Connectivity
Select available reports to display:	Maximum Extent Practic
✓ Hydraulic Model Report	Stream Habitat and Connective
	Massachusetts Division of 2022 at https://www.mass.
🥥 Open Report	Massachusetts Departmen
	ACEC program overview: w details/acec-program-over
POWERED BY WIM	Massachusetts Departmen 2022, BioMap2 web site, a http://maps.massgis.state.
USGS Home Contact USGS Search US Accessibility FOIA Privacy Policy & No	National Wild and Scenic F at https://www.rivers.gov/r
	University of Massachuset 2022, The critical linkage http://www.umasscaps.org

onnectivity Characteristics

Parameter Name	Value	Uni
Coldwater Fisheries Resources 🚯	0	
Areas of Critical Environmental Concerns 🚯	1	
BioMap 2 Aquatic Core	0	
Wild and Scenic Rivers	0	
Critical Linkages 🚯	20	
Cold Water Critical Linkages		
Habitat Quality Score 🖲	High Quality	
Restoration Connectivity Potential Score 🕄	High Restoration Potential	
Maximum Extent Practicable (MEP) Cost Factor O	20-percent above baseline	

vity Characteristics Citations

of Fisheries, 2022, Coldwater fish resources, website accessed April 30, .gov/info-details/coldwater-fish-resources.


nt of Conversation and Recreation, Ecology and ACEC Program, 2022, vebsite, accessed April 30, 2022 at https://www.mass.gov/servicerview.

nt of Fish and Game, Natural Heritage Endangered Species Program, ccessed April 29, 2022 at .ma.us/dfg/biomap2.htm

Rivers System, 2022, Massachusetts: website, accessed April 30, 2022 massachusetts.php.

tts at Amherst, Conservation Assessment and Prioritization System, project: website, accessed April 30, 2022 at g/applications/critical-linkages.html

MassAmherst

Culvert Replacement Report

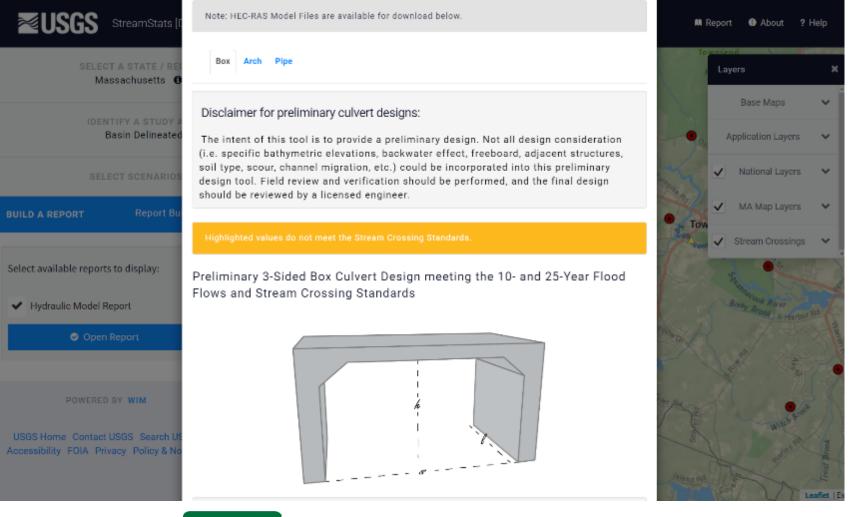
- MassDOT roadway classification and associated hydraulic design flood
- USGS Massachusetts peakflow recurrence interval and magnitude

USGS StreamStats	Road Crossing Characteristi	CS			🏿 Report 🚯 About 🛛 P He
SELECT A STATE / RE	Parameter Name	Value		Unit	Townsend Layers
Massachusetts	Hydraulic Design Flood 🛈	10		Year	
	Roadway Classification ()	Urban co	ollector or rural minor	1	Base Maps
IDENTIFY A STUDY Basin Delineate	c Road Crossing Characteristics Citati	ons			Application Layers
SELECT SCENARIO	Bridge Manual – Part I, Chapter	1 bridge site explor), Load and resistance factor design (l ation, January 2020 revision, 26 p, ac ter-1-bridge-site-exploration/downloa	cessed Pmp -1	✓ National Layers
BUILD A REPORT Report Bu	Massachusetts Department of T	ransportation, 2021	I, Roadway culverts, accessed Octobe datasets/MassDOT::culverts-1/about.	r 20,	MA Map Layers
				2.00	Stream Crossings
Select available reports to display:	Peak-Flow Statistics Flow R	eport		10	Same Carl
✓ Hydraulic Model Report	Parameter Name	Value	Unit		Bixby Brook River
🛛 Open Report	10-year Peakflow 🕄	94	Cubic Feet per second	Villowm	
	25-year Peakflow 🕄	130	Cubic Feet per second	X	
	50-year Peakflow 🕄	160	Cubic Feet per second		
POWERED BY WIM	100-year Peakflow	192	Cubic Feet per second	Ver Ra	
USGS Home Contact USGS Search U				Seafer	Writch Bru
Accessibility FOIA Privacy Policy & N	Zarriello, P.J., 2017, Magnitude	Geological Survey	elected annual exceedance probabilitie Scientific Investigations Report 2016-		Ro annon

Culvert Replacement Report

- USGS Massachusetts • peakflow recurrence interval and magnitude
- USGS Massachusetts • bankfull width, mean depth, and cross-sectional area

USGS StreamStats [[Peak-Flow Statistics Flow Report			
SELECT A STATE / REC	Parameter Name	Value	Unit	
Massachusetts 6	10-year Peakflow 0	94	Cubic Feet	per second
	25-year Peakflow 0	130	Cubic Feet	per second
IDENTIFY A STUDY A Basin Delineated	50-year Peakflow 0	160	Cubic Feet	per second
Basin Delineated	100-year Peakflow 🟮	192	Cubic Feet	per second
SELECT SCENARIOS BUILD A REPORT Report Bu	Peak-Flow Statistics Citations Zarriello, P.J., 2017, Magnitude of floo streams in Massachusetts: U.S. Geolog 54 p., https://doi.org/10.3133/sir2016	gical Survey S		
Select available reports to display:				
Select available reports to display.	Bankfull Statistics Flow Report			
✓ Hydraulic Model Report	Parameter Name		Value	Unit
🛛 Open Report	Bankfull Width 🕄		14.2	Feet
	Bankfull Mean Depth		0.91	Feet
	Bankfull XS Area 🚯		12.8	Square Feet
POWERED BY WIM				
USGS Home Contact USGS Search US Accessibility FOIA Privacy Policy & No	Bankfull Statistics Citations Bent, G.C., and Waite, A.M., 2013, Equ discharge for streams in Massachusett 2013–5155, 62 p., http://dx.doi.org/10	ts: U.S. Geolo	gical Survey Sc	

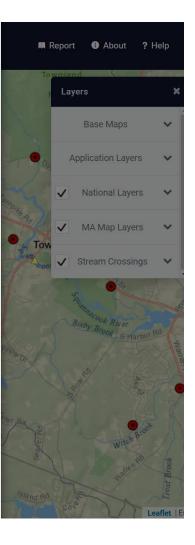

Townsend	
Layers	×
Base Maps	~
Application Layers	~
National Layers	~
MA Map Layers	~
Stream Crossings	~
Stunna Cook River Budy Brook Cover 180	-
Birdy Brook S Harton Ro	Watte
and the second	-
Her Ba	K
With Pice	yoo
t Island Rd Cove	Trout Br.

Culvert Replacement Report

- User can select culvert design: Box, Arch, or Pipe
- This example will be for a 3-side box
- Preliminary culvert designs to convey the 10and 25-yr flood flow with no backwater and to meet the Stream Crossing Standards

Culvert Replacement Report

- Culvert information: span, height, diameter, length, XSEC area, material, invert and road deck elevations, and maximum recurrence interval flood flow passed without flowing over the road deck
- Stream Crossing Standard results


USGS StreamState	s[[Parar
	Box C
SELECT A STATE / I	
Massachusetts	Box C
	Box C
IDENTIFY A STUD Basin Delinea	Boy
	Box C Eleva
SELECT SCENARI	Box C Inver
BUILD A REPORT Report	Bu Box C
Select available reports to display:	Box C Throu
✓ Hydraulic Model Report	Box C
O Course Doce and	Box E
Open Report	Box S
	Box S
POWERED BY WIM	Box C
USGS Home Contact USGS Search	Hydrau
Accessibility FOIA Privacy Policy &	No Mass

Box Culvert Span ()5.05.018FeBox Culvert Height ()4.05.08FeBox Culvert Length ()66.266.266.2Fe	Jnit Feet Feet
Box Culvert Height ①4.05.08FeBox Culvert Length ①66.266.266.2FeBox Culvert Area ①20.025.0144Sc	eet
Box Culvert Length I 66.2 66.2 66.2 Fe Box Culvert Area I 20.0 25.0 144 Sc	
Box Culvert Area () 20.0 25.0 144 Sc	eet
Box Culvert Material 6 Concrete Concrete	Square Feet
	Feet - NAVD88
	eet - NAVD88
	eet - NAVD88
Box Culvert Maximum Flow to Pass 10 25 500 Ye Through G	'ear
Box Culvert Type ① 3-sided 3-sided 3-sided Box Box Box Box	
Box Embedment 🔁 None None Fe	eet
Box Substrate 🛛 Natural Natural Natural	
Box Span Ratio 🔁 0.4 0.4 1.3	
Box Openness Ratio 1 0.30 0.40 2.2	

Hydraulic Model Citations

Massachusetts Department of Fish and Game, Division of Ecological Restoration, 2012, Massachusetts stream crossing handbook, 2nd edition, accessed August 1, 2021 at https://www.mass.gov/doc/massachusetts-stream-crossing-handbook/download.

MassAmherst

Culvert Replacement Report

- User can print the report
- User can download the HEC-RAS hydraulic modeling files (input and output files) associated with this stream crossing and culvert design

StreamStats [L	Massachusetts Department of Fish and Game, Division of Ecological Restoration, 2012, Massachusetts stream crossing handbook, 2nd edition, accessed August 1, 2021 at https://www.mass.gov/doc/massachusetts-stream-crossing-handbook/download.	M Report 🚺 About 🤌 H
SELECT A STATE / REG Massachusetts	USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated	Layers Base Maps
IDENTIFY A STUDY A Basin Delineated	metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.	Application Layers
SELECT SCENARIOS	USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S.	National Layers
BUILD A REPORT Report Bu	Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.	MA Map Layers MA Map Layers Stream Crossings
Select available reports to display:	USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.	
Hydraulic Model Report Open Report	Application Version: 4.7.0 [Development Version: Not for public consumption] StreamStats Services Version: 1.2.22 [Development Version: Not for public consumption] NSS Services Version: [Development Version: Not for public consumption]	Bondy Brood - a Harror W
	La Download →	
POWERED BY WIM	La CSV Close ⊖ Print	wite has
Accessibility FOIA Privacy Policy & Not		
	Le HEC-RAS Model Files	TOTAL COP T Les

/lassAm

herst

Questions

David Hilgeman: <u>david.hilgeman@mass.gov</u>

Scott Jackson: sjackson@umass.edu

Gardner Bent: gbent@usgs.gov

