Deep Learning algorithm forecasts of shellfish toxicity at site scales in coastal Maine

Isabella Grasso, Stephen D. Archer, Craig Burnell, Benjamin Tupper, Carlton Rauschenberg, Kohl Kanwit, Nicholas R. Record

PSP and HABs

Figure 2: *Alexandrium Fundyense*, a common dinoflagellate that creates harmful blooms (NOAA)

The Problem

Scientific Question

Can we create a shellfish toxicity forecast that is reliable at the site scale?

Methods

- DMR PSP toxicity data processed by Dr. Steve Archer
- Use of site ID's
- Neural Network, a deep learning tool

What is deep learning?

Figure 3: Modified: Figure 1.1 Artificial Intelligence, machine learning, and deep learning. *Deep Learning With R*

Neural Networks

Figure 4: Visual of Artificial intelligence. *Neural Networks are changing the World. What are they?* Graham Templeton. Extreme Tech. Machine learning for forecasts

Figure 5: Modified: Figure 1.2 Machine learning: a new programming paradigm. *Deep Learning With R*

Quiz Time!

Mean image value vs. Classifications

Why so difficult to distinguish?

Figure 6:Mean value of images vs. known Labels.

Mean Value of Image (log)

Predicted Classifications vs. Known Classifications

Current Predictive Power

Figure 7: Predictions vs. known Labels. 2014-2016 data to predict 2017.

Predictions Classifications

3

2

0

1

Figure 8:Weeks ahead vs Accuracy.

Past Data Only

Figure 9: Forecast using past data only.

Further Research

- Data layers
- Unpacking the "black box"
- Subsets of toxins
- Expand regionally
- •Any ideas?

How can Neural Networks aid ecology?

Figure 11: *Forget 2100*, Nick Record. Visual aid to expose the variation in the short term within long term climate trends

How can Neural Networks aid ecology?

Figure 12: *Forget 2100*, Nick Record. Visual aid to expose the variation in the short term within long term climate trends

Takeaway

Figure 13: Could Big Data be the end of theory in science? Fulvio,Mazzochi

Acknowledgments

Please contact us if you have any questions or interest in collaboration! grassoi@clarkson.edu, nrecord@bigelow.org

Dr. Nick Record, Mentor Ben Tupper, Technician Dr. Steve Archer, Preliminary Work Craig Burnell, Preliminary Work Dr. David Fields, Program Director Maine Department of Marine Resources

Neural Networks

Figure 9: Object detection in Photos. Saagie