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Executive Summary 

 
This study of Development of a Salt Spreader Controller Program Using Machine-Sensed 
Roadway Weather Parameters was undertaken as part of the Massachusetts Department of 
Transportation (MassDOT) Research Program. This program is funded by the Federal Highway 
Administration (FHWA) and State Planning and Research (SPR) funds. Through this program, 
applied research is conducted on topics of importance to the Commonwealth of Massachusetts 
transportation agencies. 

Winter operation ensures safe and uninterrupted traffic in the Commonwealth of Massachusetts 
and nationally. Public agencies are actively searching for an optimized “formula” to minimize 
the utilization of the deicing material without compromising its effectiveness. The study 
proposed to address this need by leveraging mobile road weather information sensor (RWIS) 
technologies and automated mechanical controls. If successful, the outcome of this study will 
include a sensor-based material application decision model and the recommended 
configurations for sensor instrumentation so that it lays a critical foundation for seamless 
integration and successful implementation for a more extensive fleet of MassDOT winter 
operation vehicles in the future.  

The research team developed a new salt application system in this study by leveraging the 
instrumented mobile RWIS (i.e., Vaisala MD30 sensor), computer vision, and a new salt 
application model. The research team focused on developing four key aspects of the intelligent 
salt application system, including hardware (i.e., data collection I/O and power supplies 
system), software (i.e., data logging, synchronization, and data fusion), algorithm [i.e., road 
surface classification (RSC) algorithm], and model [i.e., the salt rate prediction (SRP) model], 
so that an optimized salt application decision can be provided to the actuator to treat the road 
surfaces. Through this study, a complete hardware/software system with automated RSC and 
SRP algorithms has been developed, pilot-tested, and validated with promising performance. 

Experimental tests during winter weather events facilitated an analysis of the salt rate prediction 
model and an evaluation of the efficiency of auto-grip mode, manual mode, and a salt treatment 
mode, which uses rates recommended by the salt rate prediction model. Further analysis was 
performed using simulation under fixed weather conditions. A comparative analysis of the results 
derived from all experiments was performed based on grip improvement and salt usage. The salt 
rate prediction model outperformed both auto-grip mode and manual mode. 

• The research team explored the full integration feasibility of mobile RWIS sensors, high-
resolution cameras, GPS, and Geotab logger and developed prototype software for 
comprehensive data collection. 

• The research team developed an automated road surface classification algorithm using the 
DenseNet121 deep-learning model with an 86.7% accuracy. 
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• The research team integrated the detailed road surface classification outcome, the key 
parameters from the mobile RWIS sensor with a comprehensive salt rate decision tree that 
can potentially save salt applications by approximately 34% and 37%, compared with the 
auto-grip mode and the manual mode, while maintaining the similar performance of the 
treatment (i.e., maintaining or improving the grip values). The performance of the 
developed system showed promising results and could potentially save a significant amount 
of salt once implemented in a larger fleet of MassDOT’s winter operations.  

The salt rate prediction model simulation revealed an approximately 18% decrease in salt usage 
compared to auto-grip mode. The salt rate prediction model demonstrated efficient performance 
through cumulative results analysis, particularly during use under moderate to heavy weather 
conditions and sleet mixed snow weather conditions. 

For future studies, the RSC model’s capabilities should be enhanced to improve the salt rate 
prediction model further. More road condition categories (e.g., black ice and packed snow) and 
more road image examples could be considered. The RSC model’s functionality should also be 
extended to consider nighttime road condition identification for nighttime salt treatment. 
Additional factors such as surface temperature gradient (increasing or decreasing) and the type of 
winter storm events anticipated, including light, medium, and heavy snow, sleet, black ice, or 
freezing rain, should be considered to further improve the overall performance of salt treatment. 
These factors can significantly impact the salt rate required for effective road treatment. They 
should be considered alongside surface grip, road condition, and surface temperature when 
determining the appropriate salt rate.
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1.0 Introduction 

This study of Development of a Salt Spreader Controller Program Using Machine-Sensed 
Roadway Weather Parameters was undertaken as part of the Massachusetts Department of 
Transportation (MassDOT) Research Program. This program is funded by the Federal Highway 
Administration (FHWA) and State Planning and Research (SPR) funds. Through this program, 
applied research is conducted on topics of importance to the Commonwealth of Massachusetts 
transportation agencies. 

Winter operation plays an indispensable role in ensuring safe and uninterrupted traffic in the 
Commonwealth of Massachusetts and nationally. Public agencies are actively searching for an 
optimized “formula” to minimize the utilization of the deicing material without compromising 
its effectiveness. The study proposed to address this need by leveraging mobile road weather 
information system (RWIS) technologies and automated mechanical controls. If successful, the 
outcome of this study will include a sensor-based material application decision model and the 
recommended configurations for sensor instrumentation so that it lays a critical foundation for 
seamless integration and successful implementation for a more extensive fleet of MassDOT 
winter operation vehicles in the future.  

1.1 Background  

Winter weather conditions concern many practitioners as the driving environment changes, 
leading to potential risks for road users. Several aspects of the driving task change due to 
visibility issues and decreasing stopping distances. Some instances of snow may cause lane 
markings to be obstructed, potentially leading to disorderly driving in some instances. 
Considering that around 70% of US roads are in potentially snowy regions, planning for salt 
deployments becomes vital (1). According to the US Department of Transportation, on a yearly 
average between 2007 and 2016, 688 fatalities occur during snow or sleet, 521 fatalities occur 
during icy pavement conditions, and 496 fatalities occur during snow or slushy pavement 
conditions. In addition to safety concerns, transportation networks may be hindered due to 
capacity issues emerging from obstructed lane markings or the reduced speeds of all road users. 
Looking at costs associated with delays from weather-related events, trucking companies or 
commercial vehicle operators incur around 2.2 to 3.5 billion dollars. For weather overall, 23% 
of non-recurrent delays are also due to snow, ice, and fog conditions. To combat safety 
concerns and delays due to snow and ice, around 2.3 billion dollars are spent yearly by state 
and local agencies (2). Safety concerns, delays, and costs could be mitigated by optimizing 
road treatment strategies, such as determining when and where to deploy snow treatments. 

To better understand how treatment plans operate, the risks and driver behaviors surrounding 
winter events may also be important to understand. Driver behaviors during winter storm 
events tend to change to accommodate the increased risk of snow-related accidents. It means 
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drivers tend to decrease other risk factors when driving through snow, potentially meaning that 
accidents occurring during snowy or icy conditions may be due more to the environment than 
to human factors due to driver behaviors. It can be seen in the decreased speeds during snowy 
or icy conditions. Also, fatality reports from snowy or icy conditions have less alcohol or drug 
use involved, as well as fewer cases or no seat belts being used, indicating that drivers may be 
trying to mitigate their potential risks. Looking at the rate of crashes, variations appear across 
the country due to different levels of exposure, where states like Alaska, with higher chances of 
icy roads, have more weather-related fatality rates when compared to other states like Arizona, 
with less exposure to rain and snow. Adverse weather conditions on rural roads may result in 
higher fatality rates than in other areas (3). In the case of South Carolina and North Carolina, 
the crash risks for both states differ during winter storm events, where North Carolina increases 
more than when compared to South Carolina. Time of day can also factor in driver risk, where, 
due to demand, weather-related crash risks during daylight hours may be higher than at night 
(4). Crashes during winter weather may be related more to the changes in the environment than 
to individual drivers, where the presence of snow overall increases the risk of incidents for 
drivers. 

According to an FHWA study, US snow and ice removal costs exceed $4 billion annually (5). 
Therefore, public transportation agencies are actively searching for best practices for winter 
operations through effective salt and deicing material application and efficient snow and ice 
removal using salt spreading machinery (i.e., salt spreader).  

The use of salt spreaders is, in general, based on weather conditions. Accurate weather 
information is needed before the salt spreader operation. This information includes the type of 
expected snowfall (e.g., light, moderate, and heavy). In addition, a rain prediction is often 
needed in conjunction with a snowy weather event. If rain is expected before snowfall, 
applying deicing material on the pavement is not advisable since it can wash away the deicing 
material, rendering it ineffective. Pavement temperature and condition play significant roles in 
determining the type and application rate of deicing material. Guidelines published by the US 
Department of Transportation FHWA (6) specify the appropriate application rates for different 
deicing materials. It specifies deicing material application rates based on pavement temperature 
range, trend, and pavement surface condition. These rates are adjusted according to different 
weather conditions. Anti-icing strategies involve operational, decision-making, and personal 
toolboxes. The operational toolbox includes decisions regarding applying solid or liquid 
chemicals and plowing.  

A crucial element of a typical system is a road weather information system (RWIS), which 
provides essential weather data that could guide timely winter operations. Such a system 
collects weather information such as temperature, wind speed, and precipitation. Traditionally, 
stationary RWIS provides general weather information for winter operations, especially 
planning. In recent years, mobile RWIS has become more frequently used to provide real-time 
information about the local weather and road surface conditions (e.g., surface temperature, grip 
levels, etc.). The operator can assert manual control of a salt spreader by utilizing the data 
obtained from mobile RWIS, predetermined guidelines, and visual observations. The driver 
adjusts the spreader’s flow rate, speed, and direction to ensure efficient and accurate salt 
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distribution on the road surface. However, the manual control of the spreaders also means 
potential distractions from driving. Moreover, the effectiveness of leveraging these pieces of 
road surface information was not quantitatively evaluated. Therefore, public transportation 
agencies also search for best practices and optimized systems to integrate such important 
information.  

1.2 Problem Statement 

Massachusetts owns over 1,300 material spreaders that deliver salt, salt and sand mixtures, and 
liquid deicers to more than 15,000 lane miles (7) of the Commonwealth’s roadways during 
winter seasons. Typically, 600,000 tons of salt and 1.6 million gallons of liquid deicer are used 
for snow removal operations in Massachusetts (8). Delivering the materials efficiently and 
effectively is critical to minimize the impacts of winter storms on road operations. In contrast, 
using the materials is maximized to reduce potential environmental impacts. In current 
operation, MassDOT primarily utilizes spreader controllers manufactured by Certified Cirus 
(SpreadSmartRx systems) and Bosch Rexroth (Compu-spread systems). Traditionally, it is 
often challenging for equipment operators to judge the surface condition (e.g., just moist, 
starting to glaze, etc.) and adjust the spreader accordingly. MassDOT deploys mobile RWIS 
sensors (e.g., Vaisala MD30) to better monitor the road surface and ambient weather 
conditions. The mobile RWIS sensors have been installed primarily in supervisor vehicles and 
on a District 3 material spreader.  

RWIS units are introduced to help a supervisor/plow driver assess actual conditions, including 
road temperature, grip level, and surface state, so that the operations can decide whether to 
withhold or distribute deicing materials and at which rate to distribute the materials. The 
introduction of the RWIS sensor is anticipated to improve the supervisor/plow driver’s 
assessment of the road conditions and help him make informed decisions. However, reading 
RWIS measurements remains manual, demanding the supervisor/plow driver’s constant 
attention to the display. Consequently, it may cause the supervisor/plow driver to miss the 
optimal window for adjusting the controller. There is a need for an automated system that 
integrates the RWIS sensory output (i.e., road temperature, grip level, and surface state), 
determines if the sensory output indicates a local need for roadway deicer treatment, and 
automatically interacts with the spreader controller to control and dictate the material 
distribution rate based on the locally observed roadway conditions. 

1.3 Objectives 

An automated system for salt distribution based on pavement conditions was developed to 
address the identified issues and create an effective system for intelligently delivering deicing 
materials by leveraging the existing instrumentation of Vaisala MD30 mobile RWIS sensors. 
This system determines the salt rate based on environmental parameters from the MD30 sensor 
and road conditions from a camera. By incorporating this data-driven approach, the system can 
deliver a salt distribution rate tailored to the specific pavement conditions, with improved 
deicing effectiveness while minimizing salt waste. The following are the three key research 
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objectives: 

• To identify parameters and factors that influence the salt rate. The current MassDOT 
practice relies solely on grip or temperature values and operator judgment. 

• To develop a computer vision/machine learning model that can accurately identify road 
surface conditions (e.g., dry, wet, slushy, streaming water, snowy, and snow-covered with 
wheel tracks) eventually to eliminate the need for visual monitoring and subjective analysis 
of road surface conditions. 

• To develop an intelligent algorithm that holistically considers the derived road conditions 
(from the computer vision model) and the real-time RWIS measurements (from the MD30 
sensor) and generates the optimized salt rate values specific to road conditions and 
environmental parameters. The algorithm will alleviate the need for operators to constantly 
provide on-road assistance in comprehending road and environmental conditions and 
determining the appropriate salt distribution rate. 
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2.0 Research Methodology 

The research methodology for this study consisted of three main parts: a review of existing data and 
technologies, collection of the mobile LiDAR data, and processing of the mobile LiDAR data for 
pedestrian infrastructure inventory. Section 2.1 summarizes the key findings and insights from the 
literature review that can be applied to make informed decisions regarding salt application rates and 
leverage existing advancements in road surface recognition. Section 2.2 presents an overview of the 
research methodology, followed by Sections 2.3 through 2.6, which describe the new system’s 
development of hardware, software, and algorithms.  

2.1 Literature Review  

This section begins by discussing the existing automation features in current salt spreader systems, 
providing an overview of the advancements made in this area and identifying potential areas for 
improvement in line with the research objective, followed by an exploration of the key weather 
parameters that play a critical role in determining the salt distribution rate. It examines how the 
combination of these weather parameters influences the application rate of salt. The subsequent 
subsections focus on the state-of-the-art approaches in winter operation, specifically using machine 
learning models for road surface recognition.  

2.1.1 Adverse Winter Weather Maintenance Strategies 

Several strategies across the country may have been adopted to reduce the risks of adverse winter 
weather. Strategies can be summarized as combining three types: advisory, control, and treatment (9, 
10). Advisory strategies would function by letting the public know of potential weather concerns 
through multiple channels, such as dynamic message signs on roads, 511 traffic systems that would 
allow drivers to know of road conditions in advance, mass notification systems, or other channels that 
would allow the public to be notified.  

Control strategies would be in the form of limiting what drivers can do. Typical strategies may be to 
not permit some types of vehicles on certain roads or to limit travel to vehicles with only proper 
weather preparations. It can be seen in past winter storm events, where sections of the interstate had 
restrictions imposed before a winter storm event to allow winter weather treatments to begin. 
Pennsylvania has used such restrictions, where different travel restrictions have been imposed on 
interstates to allow maintenance crews to prepare roads (11). Other control methods could also be 
explored, such as manipulating signal timings of intersections (9). For traffic signal timings, studies 
have collected historical traffic flow data at signalized intersections from past weather events to 
determine new signal timings for future weather events (12). Practitioners also need to determine 
what thresholds need to be reached to activate these alternative signal timings by considering the 
severity, duration, speed, start-up lost time, and other factors that may be relevant to different 
locations. Winter weather signal timings could accommodate for changed driver behaviors, such as 
extending yellow times or all red times to ensure intersections are clear. It would account for 
decreased speeds and increased braking distances, giving drivers enough time and notice to fully 
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brake and clear an intersection due to slower turning movements (13).  

For treatment, strategies can be in the form of road maintenance or by automatic means. Road 
maintenance can be in the form of anti-icing and deicing. Anti-icing prevents snow and ice from 
attaching to pavements while decreasing the temperature at which ice forms. Deicing would involve 
removing the ice from roads through plows or deicing materials such as rock salt. Deicing is also 
completed after snowstorms, as roads may become icy afterward (14). Automatic deicing 
infrastructure has been used in areas that may expect heavy delays due to icy roads. One example 
would be bridges, where sensors detecting wet weather and freezing temperatures trigger automatic 
anti-icing solutions to prevent bridges from facing potential delays due to ice (15). These bridges may 
be armed with stationary Environmental Sensor Stations (ESS), which capture information on wind 
conditions, precipitation, temperature, inches of snow present, road surface conditions, and various 
other data types (16), which can be used to decide if weather conditions merit anti-icing treatments. 
These stations also tie into stationary RWIS as a means of data collection on weather conditions to 
inform decision-making around adverse weather conditions. 

2.1.2 Salt Deployment Guidelines 

For treatment strategies, salt deployment guidelines have been outlined by FHWA, where the 
thresholds to be used for different application rates and the type of anti-icing or deicing to use are 
outlined. The guidelines consider the type of winter storm, pavement temperature, pavement surface 
conditions, and what part of the winter operations are being considered. The types of winter storm 
events used are light snowstorms, moderate snowstorms, heavy snowstorms, or a mix of the types. 
Light snowstorms would be considered when snow is under 12 mm per hour, while snow above 12 
mm per hour can be considered heavy. The pavement and temperature trends have varying 
temperature thresholds for different application rates. The pavement surface cover considers dry, wet, 
slush, or light snowfall conditions. The material application rates also change depending on whether 
this was the initial operation (anti-icing) or subsequent operations (deicing). It is summarized in Table 
2-1 (6). Variations of this table can be seen in other winter storm operations planning, such as with the 
Arizona Highway State Operations manual, which goes into more specifics about the type of winter 
storm event being delt with, such as freezing rainstorms, sleet storms, and black ice. A trend seen in 
the FHWA and Arizona operations is that material does not need to be deployed when temperatures 
are steadily above 32°F, rising above 32°F, or where temperature is below 15°F steadily or falling. 
Below 15°F, salt applications are not used as the materials reactions are slowed (17). 
  



7 
 

Table 2-1: Sodium chloride (NaCl) application rates outlined by FHWA 

Winter 
Storm Event 

Pavement 
Temperature and 

Trend 

Pavement 
Surface* 

Initial Operation 
(anti-icing) 

Sodium chloride 
(NaCl) spread rate 

Subsequent 
Operations 

(deicing) 
Sodium chloride 

(NaCl) spread rate 
Liquid 

(gal/ lane-mi) 
Solid or 

Prewetted 
Solid 

(lb/ lane-mi) 

Liquid 
(gal/ lane-mi) 

Solid or 
Prewetted 

Solid 
(lb/ lane-mi) 

Light 
snowstorm 

Above 32°F 
steady or rising D/W/S/LS — — — — 

20 to 32°F D 28 (100) 28 (100) 28 (100) 28 (100) 

20 to 32°F D/W/S/LS 28 (100) 28 (100) 28 (100) — 

15 to 20°F D/W/S/LS — 55 (200) — 55 (200) 

Below 15°F D/W/S/LS — — — — 
Light 
snowstorm 
w/period(s) 
of moderate 
or heavy 
snow 

Above 32°F 
steady or rising D — — — — 

25 to 32°F D 28 (100) 28 (100) 55 (200) 55 (200) 

25 to 32°F D/W/S/LS 28 (100) 28 (100) 55 (200) — 

15 to 25°F D/W/S/LS — 55 (200) — 55 (200) 

Below 15°F D/LS — — — — 
Moderate or 
heavy 
snowstorms 

Above 32°F 
steady or rising D — — — — 

30 to 32°F D 28 (100) 28 (100) 28 (100) 28 (100) 

30 to 32°F W/S/LS 28 (100) 28 (100) 28 (100) 28 (100) 

25 to 30°F D 55 (200) 42–55  
(150–200) 55 (200) 55 (200) 

25 to 30°F D/W/S/LS 55 (200) 42–55  
(150–200) 

55 (200) 55 (200) 

15 to 25°F D/W/S/LS — 55 (200) — 70 (250) 

Below 15°F W/S/LS — — — — 
* D-Dry; W-Wet; S-Slush; LS-light snow cover 

In Michigan, other factors like dew points and humidity are considered. A flowchart was outlined to 
determine if anti-icing material is necessary during incoming snow events (Figure 2-1) (18). 
Variations in deployments between different areas can also be attributed to differing geographical 
locations, where other local factors must be considered. However, common factors appearing across 
guidelines consider the type of winter storm, pavement temperature, and pavement surface condition, 
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as outlined by the FHWA. At the same time, some add their variations and other factors to consider. 

 

Figure 2-1: Flowchart for anti-icing decisions from Michigan 

2.1.3 Road Weather Information System (RWIS) 

An RWIS can be used to inform winter operations and set guidelines. A typical RWIS uses ESS, 
which allows for the communication of data from sensors on an ESS to summarize atmospheric, 
pavement, and potential water level conditions. An RWIS can be used with observations from sources 
like the National Weather Service or private vendors referred to as Value Added Meteorological 
Services (VAMS). Some DOTs have also used snowplows with sensors to deliver mobile data on 
pavement conditions (19). Using RWIS systems allows for optimizing the strategies practitioners 
have available to them, allowing for dynamic responses to weather events as they occur. Considering 
that winter weather may not be universal across the United States, dynamic approaches enabled by an 
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RWIS can help optimize winter maintenance with location-specific data. Nevada DOT has used an 
RWIS to adapt its response to incoming winter storms to dynamically determine the distribution of 
anti-ice solutions before a storm. By optimizing its treatments, Nevada DOT also reduced its 
environmental impacts on some of the lakes surrounding its roads (20). In the case of Georgia DOT, 
by using multiple locations for RWIS data collection, they have the potential to minimize their pre-
treatment material usage to match with the smaller winter storms they tend to have, with some cases 
potentially removing the need for post-treatments like applying more rock salt (21). Minnesota DOT 
can efficiently deploy anti-icing solutions by using an RWIS for forecasts of ice in an area, resulting 
in less ice presence in many of their areas and minimizing the environmental impact of deicing 
treatments (22). 

Traditionally, an RWIS is stationery. It creates a limitation for a RWIS, where there is no complete 
coverage of road networks because of its fixed location. For this reason, mobile RWISs are being 
explored to better represent road conditions during adverse weather conditions. The collected mobile 
data also needs to be communicated to decision-makers. It can be done through what the Federal 
Highway Administration outlines as Connected Vehicle-enabled Weather Responsive Traffic 
Management (WRTM), where data can be collected through three pathways. Intelligent agency fleets 
can mobilize agency-owned vehicles with sensors and deliver collected data through cellular 
networks, radio, or other means owned or available to the operating agency. Connected vehicles could 
also be used to connect data and information to public agency vehicles, private vehicles, and 
infrastructure over dedicated short-range communications. A final alternative would be to outsource 
data collection to private companies with the infrastructure ready to collect and communicate 
collected information to any DOT (23). This data communication could be a potential obstacle to a 
DOT, depending on whether the infrastructure to send and receive the collected mobile data can be 
established. 

The sensor model used may also be important when considering mobile RWIS. There may be sensor-
specific methods of communicating data, such as Bluetooth, Wi-Fi, or cellular networks, which may 
be an issue for some. Although some sensors may have similar performance levels, they may have 
unique aspects that make some better. The performance of mobile RWIS sensors has also been 
reliable, with studies reporting friction estimates measurements as high as 93.3% (24, 25), indicating 
that icy roads can be accurately identified. Some sensors may measure additional properties beyond 
those needed for estimating friction. However, these additional properties may be unnecessary for 
some. The means of mounting the sensor can also be a limitation depending on the use case of 
practitioners, where some sensors may come with restrictions on where they can be mounted, such as 
height or location on a vehicle (25). 

Mobile RWIS deployments have not been widespread, with some states considering their potential 
use and only a few having tested them. Mobile deployments have been explored for Colorado, 
Indiana, Michigan, and Minnesota. Colorado, Indiana, and Michigan are among the top 10 states with 
the most snow, which may help merit using a mobile RWIS. These states presented information on 
their experience with a mobile RWIS, such as challenges faced and outcomes. These states identified 
challenges around installations, operations, and personnel for their mobile RWIS, weather forecast, 
and road maintenance tool. For the mobile RWIS, some states had operational challenges in that wires 
may have been damaged (due to corrosion) during data collection. Some personnel challenges 
emerged in that some were disinterested or resistant to changes. Installation problems emerged for 
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some states with the maintenance decision tools being used, where some had issues with the interface 
and data feeds of the program being used on setup. Operational challenges emerged where not 
everyone had access to data or data was being modified before release. Personnel challenges emerged 
from the level of interest and issues in trusting the forecast output from their forecast tools. Users of 
the collected data also varied between states. Some had their maintenance decision tool feed 
information to snowplow operators to advise them on what to do during maintenance operations. 
Some also had data used on traveler information systems. Colorado DOT had also commented how 
the potential benefits from the low costs of a mobile RWIS sensor might also pale compared to the 
costs of a snowplow, making data collection a valid approach to take as plows are already on the 
move (26). 

Regarding the benefits of using a mobile RWIS, some states report savings in material costs due to 
optimized decision-making. For Colorado and Minnesota, both states saw decreases in material usage, 
with Minnesota reporting it had saved about $2,308,866. Maintenance decision tools and mobile 
RWISs used by some states also had operational costs to consider, such as the parts and devices 
needed to implement the system being used, overhead costs such as those related to maintaining 
collected data as well as the programs being used, implementation costs to develop the necessary 
infrastructure. Another benefit that Colorado had seen was that the results from the maintenance 
decision tools also served as training for new plow operators. Michigan also reported that it helped 
locate what areas may have potential manpower shortages based on the forecasts reported by 
maintenance decision tools (26). 

2.1.4 Existing Salt Deployment Systems 

Different salt deployment systems use a mix of solutions. Some involved using input sensors on a 
vehicle to automatically adjust salt deployment patterns and quantities based on lookup table values as 
thresholds are reached from sensors. Some also use collected spatially defined sensor data before a 
storm to change the configuration of salt spreaders to be used during the storm. Some deployments 
also use feedback sensors to adjust their configurations based on a mix of measured and signaled salt 
spreading to adjust salt deployment. 

The EpoMaster X1 and SpreadSmartRx salt spreader systems use sensors of various types to control 
salt deployment rates, patterns, and mixtures in conjunction with lookup tables to determine what pre-
made configurations to use. Pavement temperature sensors, for instance, tend to be used as the main 
parameter controlling deicing fluid deployment. Other types of sensors, such as ground speed sensors, 
can help adjust the salt deployment rate to mitigate excessive deployment at low speeds during 
vehicle stops or match higher vehicle speeds (27, 28).The SpreadSmartRx system, in particular, uses 
the temperature sensor to determine the quantity and salt type based on preset temperature thresholds 
sensed. This system uses feedback sensors to measure material output compared to signalized output 
to make real-time adjustments to deployments, maximizing material efficiency (28). 

The AEBI Schmidt system also uses a GPS device while trucks are on deployment to make a spatially 
defined salt spreading scheme. A truck collects data before a storm with its GPS to develop a salt-
spreading plan enacted while the truck is on deployment. The truck still uses GPS and has a known 
location, which dictates the configuration. This system also adjusts spread rates based on vehicle 
speeds by combining this with other sensors like ground speed sensors. Salt spreading can also be 



11 
 

based on observed surface conditions and pavement temperatures instead, where data is fed from 
controller screens, sensors based on road surface detection, or fixed RWIS systems (6, 17, 18). These 
road conditions could also be obtained using cameras with machine learning algorithms (29, 30). 
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2.1.5 Image Processing to Extract Road Conditions 

Some subjective factors have been needed for the guidelines outlined to determine what salt spreading 
patterns, application rates, and mixtures to use. This would be a point of inefficiency as more labor 
and time are required to efficiently deploy salt if subjective measures are required. For instance, 
pavement surface conditions may prove to be difficult to measure directly without the presence of 
dedicated sensors requiring subjective evaluations. To this purpose, convolutional neural networks 
(CNNs) can be useful for automatically classifying road surface images, which can be done through 
smartphones (30). The application of image processing can further improve existing salt deployment 
systems. 

A CNN performs better with higher quantities and varying images to be trained on. Using road 
surface conditions (RSC), images for training features common to different conditions can be 
extracted for future predictions. Different classification sizes at 2, 3, and 5 can be used to evaluate 
pavement surface conditions. In a binary classification, RSCs can be classified as bare or snow-
covered. In a three-class description, classes could be bare, partly snow-covered, or fully snow-
covered. In a five-class description, road surfaces can be bare snow, with the different quartiles of 
coverage being 0 to 25% snow covered, 25% to 50% snow covered, 50% to 75% snow covered, and 
75% to 100% snow covered. A past study testing these classification schemes has found that the 
binary classification has the highest accuracy at 90.7% (30). 

Past studies have also tested pre-trained CNN architectures in terms of their accuracy in classifying 
weather detections and surface conditions. Images collected from roadside webcams on an interstate 
were separated into two separate data sets. One consisted of 15,000 images annotated based on 
surface conditions in dry, snowy, or wet/slushy categories. Another 3,000 images were annotated for 
weather detection, being clear, light snow, and heavy snow. Using these data sets with the CNN 
architectures, AlexNet (31), GoogLeNet (32), and ResNet18 (33) showed that ResNet18 had the best 
performance, with 99% accuracy in evaluating surface conditions and 97% accuracy for weather 
detection (29). 

2.1.6 Summary 

Using RWIS can be useful in enhancing existing winter weather maintenance strategies. The 
information collected can be shared with the public for advisory strategies. An RWIS, when used to 
determine forecast and treatment plans, can also help with control strategies, as roads requiring 
closures or restrictions could be better identified. It can be especially useful in treatment strategies by 
helping to optimize treatment strategies, reducing the amount of material used, and potential 
environmental impacts. More optimizations can be completed by expanding on stationary RWISs 
with mobile RWISs. A stationary RWIS would not completely represent what road conditions are 
like. However, using a mobile RWIS, road conditions can be collected and dynamically responded to. 
It allows for more refined data, further improving maintenance and treatment strategies. Some 
considerations to make with implementing a mobile RWIS would be to explore the system’s different 
requirements, such as what sensor to use, how data would be communicated, how to interpret the data, 
and who would have access to the data afterward. Another consideration could also be how applicable 
machine learning methods may be to the currently available systems and deployments as methods of 
increasing efficiency through automation. Because of the costs associated with implementing this type 
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of system, states with higher snowfall could benefit more from a mobile RWIS as these states face 
higher risks around winter weather. Considering the amount of deicing and anti-ice materials used by 
snowy states, optimizing their use may lead to material cost reductions, leading to greater benefits for 
states using more materials like what was seen with Minnesota. A mobile RWIS allows for cost 
savings and reduces environmental impacts and potential risks drivers may face. 

2.2 Methodology Overview 

The research team developed a new salt application system in this study by leveraging the 
instrumented mobile RWIS (i.e., Vaisala MD30 sensor), computer vision, and a new salt application 
model. Figure 2-2 illustrates the high-level block diagram of the developed intelligent salt application 
system. The research team focused on developing four key aspects of the intelligent salt application 
system, including hardware (i.e., data collection I/O and power supplies system), software (i.e., data 
logging, synchronization, and data fusion), algorithm (i.e., RSC algorithm), and model (i.e., the SRP 
model), so that an optimized salt application decision can be provided to the actuator to treat the road 
surfaces. In Sections 2.3 through 2.6, the details of the design and implementation of these aspects of 
the system are presented, respectively.  

 

Figure 2-2: High-level block diagram of salt spreader system 

2.3 Intelligent Salt Application System: Hardware 

2.3.1 Existing Hardware on Trucks at MassDOT 

As described previously, MassDOT uses the Vaisala MD30, a mobile RWIS sensor, in snowplows to 
gather real-time environmental and road surface data. A SpreadSmartRx controller effectively 
manages the salt rate and spreading pattern based on the reported data from the MD30 sensor. In 
addition to the mobile RWIS sensor, the instrumented vehicle in MassDOT has also been equipped 
with the Geotab data logger to record all the vehicle and spreader controller’s status information. 
Figure 2-3 illustrates the system that MassDOT has instrumented on trucks.  
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Figure 2-3: Sensor and data logging systems on the MassDOT truck 

• The MD30 sensor (34) was designed for snowplows and other vehicles. It collects and transmits 
road surface state, grip, surface layer thickness, surface temperature, air temperature, dew point, 
frost point, and relative humidity. The unit is easily mounted on a plow vehicle behind the front 
metal bumper, as shown in Figure 2-4. The MD30 is designed to withstand heavy vehicle 
vibration and prevent water ingress. It attaches to the front of a snowplow or other vehicle. 
Bluetooth connection is used to transmit sensor data to a mobile application located on a device in 
the vehicle. The MD30 helps operators understand road conditions that can be used to deploy 
deicing techniques. 

Figure 2-4: Current MD30 sensor installed on the MassDOT truck 

• SpreadSmartRx is designed to control the spreading of granular or liquid material using feedback 
sensors, “Closed Loop operation,” or “Open Loop operation.” Feedback sensors allow the 
SpreadSmartRx to measure outputs and make real-time adjustments for more consistent control. 
The box has a variety of knobs to control the spreader. The box can adjust specific materials’ 
material type, calibration, and spinner speed. It records readings of spreader output for each 
uniquely named material. It also stores calibration values of spreader hardware, system setup, and 
operating parameters. These recorded data can be uploaded or downloaded using a laptop PC 
serial port. Figure 2-5 shows the SpreadSmartRx box connections. The unit has a liquid crystal 
display (LCD) and keyboard (for control knobs) to assist control. 
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Figure 2-5: SpreadSmartRx control unit for controlling salt rate 

• Geotab, as shown in Figure 2-6, is a telematics device connected to the vehicle’s onboard 
diagnostics port. The SpreadSmartRx enables the collection of SpreadSmartRx data, specifically 
the salt rate, by the Geotab software using a custom protocol (IOX). The Geotab logger is used to 
extract the road treatment salt rate. The resulting data from the Geotab logger is available in 
comma-separated values (CSV) file format. The Geotab report highlighted in Figure 3-11 (shown 
later) provides logged salt rates and corresponding GPS coordinates. Geotab logs air temperature, 
road temperature, and the rate at which deicing material (solid or liquid) is applied. Effectively, it 
records the SpreadSmartRx control unit’s data. However, Geotab does not capture data from the 
MD30 sensor, hence the need for a separate logging mechanism. The Geotab platform also 
collects vehicle information such as location, speed, fuel consumption, engine diagnostics, GPS 
info, and more. The data is transmitted to Geotab software, which is processed and analyzed to 
provide actionable insights to fleet managers. 

Figure 2-6: Geotab logger and the recorded sample data 

2.3.2 New Hardware Integration 

The objective of the new hardware is to integrate the local data logger (LDL) into the existing 
hardware on MassDOT’s truck and independently record all the mobile RWIS information and the 
road condition information, with the flexibility of customizing the data acquisition configurations and 
without interfering with the existing hardware. By the time this project was completed, the Geotab 
logger only recorded the SpreadSmartRx and the truck engine information. Therefore, the MD30 
sensor also relies on the LDL to record all the data. Figure 2-7 shows the schematic diagram of the 
LDL with respect to the existing hardware. In this diagram, the gray blocks (video camera, XSens 
GPS and Geotab GPS, mobile RWIS, truck ODB II, and actuator) represent all the available sensors 
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instrumented in this study. 

In contrast, the green blocks (two data loggers and a controller) represent the computation units used 
for integrating collected data and subsequently processing them. The two orange boxes represent the 
key algorithms/models (RSC and SRP) developed in this study, whereas the blue boxes represent the 
input devices (keyboard and display) that might require the operator’s engagement. For hardware 
integration, the red bounding boxes in Figure 2-7 represent where the research team carried out data 
I/O and the power supply works concerning the overall system.  

 

 

Data I/OData I/O

Data I/O

Power Supply and Assembly

Figure 2-7: Hardware development for the new system 

Figure 2-8 shows the detailed schematics of the Data I/O interfaces and the power supply interfaces 
for the newly integrated hardware. Details on the data connection and power specification can be 
referred to in Appendix 6.3.  

Figure 2-8: Data I/O and power supply schematics 

Specifically, the GPS (i.e., Xsens MTi-G-710) and the video camera (i.e., Teledyne FLIR GS3-U3-
51S5C-C) are directly connected with the LDL through the universal serial bus (USB) 3.0 ports, 
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whereas the MD30 is connected with a Y-splitter for RS232 so that the feed to the SpreadSmartRx is 
not affected by the feed to the LDL. The feed from the MD30 is then connected with the LDL through 
a serial-to-USB interface. The data feed from the MD30 to the LDL was set up differently for the 
instrumentation using the UMass vehicle (for system development and testing purposes) and the 
MassDOT truck (for data collection and deployment purposes). For the UMass vehicle, the LDL 
works as the controller and actively requests the data from the MD30 by sending a data request 
command, whereas, for the MassDOT truck, the LDL works as a listener and only receives a copy of 
the MD30 data that is directly sent to the SpreadSmartRx controller, because the data request 
command is triggered by the SpreadSmartRx controller. The details of the hardware configuration for 
both the UMass vehicle and the MassDOT truck can be referred to Appendixes 6.2 and 6.3. Figure 2-
9 shows the final configurations of the UMass vehicle and the MassDOT truck.  

 

Figure 2-9: Hardware on the UMass vehicle (left) and the MassDOT truck (right) 

2.4 Intelligent Salt Application System: Software 

The objective of the software development is to ensure that the LDL can keep track of all the data 
feeds from the sensors and the Geotab data logger, as presented in Section 2.3. Figure 2-10 shows the 
software’s basic functions corresponding to the sensors: logging and fusion. The first part of the 
software will control LDL itself to log the video camera, GPS, and MD30 data into a single 
spreadsheet that is synchronized through the LDL’s time stamp, whereas the other part of the software 
will merge the LDL’s logging data with the Geotab’s logging data. As noted in Section 2.3, the 
Geotab logger, at the time of the project, could not log the MD30 data. Therefore, the key purpose of 
fusing the Geotab logger’s data is to ensure that the SpreadSmartRx and the truck status data can be 
synchronized and integrated with the LDL’s data. The research team was able to directly feed the 
SpreadSmartRx’s status (including the salt rates) into the LDL. However, as the MassDOT truck has 
remained on active duty, the research team was instructed to minimize the interference with the truck. 
Because obtaining the direct feed from the SpreadSmartRx requires more complicated wiring, the 
research team decided to rely on the Geotab logger’s data for the salt rates.  
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Logging

Logging

Fusion

Figure 2-10: Software development for the new system 

2.4.1 LDL Data Logging 

The LDL data logging software aims to compile consolidated data logs from different sensors. As 
presented in Section 2.3, all the sensors are connected to the LDL through USB interfaces and will be 
independently dictated by the LDL. Therefore, a simple data logging software through multithread to 
dictate different ports will meet this objective. Therefore, the research team developed the data 
logging software using Python 3.10 and incorporated the MD30 interface client, FLIR SpinView, and 
Movella MT SDKs for the Vaisala MD30, the FLIR Grasshopper camera, and the Xsens GPS, 
respectively. The detailed configurations for different sensors can be referred to in Appendix 6.1. 
Figure 2-11 shows an example of the captured data, incorporation all the sensors’ readings. As the 
sensors were capturing the data at different frequencies (i.e., 10 Hz, 200 Hz, and 5 Hz for MD30, 
GPS, and camera, respectively) 10 Hz was selected as the time interval as it dictates the complete 
information from MD30. In contrast, the GPS data were down-sampled by a scale of 20, and each 
image was captured for two MD30 data packages.  
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 Figure 2-11: Sample data from the developed software 

2.4.2 LDL and Geotab Data Fusion 

The Geotab and MD30 loggers share synchronized time stamps, which can be leveraged to merge 
information into a single log. Road condition data collected before and after treatment is needed when 
evaluating road salt treatment effectiveness. Data logging with a two-hour difference could be used, 
although it would make time-stamp-based merging impractical. Therefore, data integration in these 
cases requires an additional common parameter, GPS coordinates. These coordinates are collected 
separately by the Geotab and MD30 loggers and used to merge logged information. A unified data 
log, the “Final CSV” block in Figure 3.4 (shown later in the report), incorporates information from 
the MD30 sensor, camera input, GPS coordinates, and the salt rate. This information can be used to 
execute a salt rate prediction model that makes decisions based on road-based data, as shown in 
Figure 2-12. 
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Figure 2-12: Data fusion schematic from the LDL and Geotab 

GPS coordinates, latitude, and longitude values merge data from the local and Geotab loggers. The 
nearest coordinates from both data sets can be located using the Python GeoPy library (35) or the 
Haversine formula (36). BallTree or KDTree data structures can be used for spatial searches of the 
data set to find the nearest neighbors of a point. 

Data is collected once per second for 30 to 40 minutes. The BallTree algorithm was selected due to its 
proficiency in managing large data sets where it is necessary to find the nearest neighbors of points in 
the data set. The Haversine formula calculates the shortest distance d between two points on the 
surface of a sphere, given latitude and longitude coordinates. It is expressed as:

 

Where: 
• ∆lat is the difference in latitude between the two points. 
• ∆long is the difference in longitude between the two points. 
• lat1 and lat2 are the latitudes of the two points, respectively. 
• R is the radius of the Earth (mean radius ≈ 6,371 km). 
• a is the square of half the chord length between the points. 
• c is the angular distance in radians. 
• d is the distance between the two points along the sphere’s surface. 

2.5 Intelligent Salt Application System: Algorithm 

The algorithms aim to improve the system’s road condition identification reliability by recognizing 
them from the images captured by the instrumented camera. The model should identify dry, wet, 
streaming water, snowy, slushy, and snow-covered wheel track surfaces to cover all the common road 
surface conditions. Namely, the algorithm is called the road surface condition algorithm or the RSC 
model.  
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The MD30 sensor reports road surface conditions through its sensor observation. However, an MD30 
sensor has a narrow focus, which limits its surface condition assessment capabilities. For example, if 
the MD30 sensor is exposed to a small patch of a wet surface on a snow-covered road, as depicted in 
Figure 2-13, while the remainder of the surface is snowy, the road may be classified as wet rather than 
snowy. This discrepancy can result in inaccurate salt rate calculations, hampering efficiency. Hence, 
the RSC model is necessary. The model analyzes multiple road images and predicts overall surface 
conditions. By considering visual data beyond the scope of the MD30 sensor, this model can provide 
a more comprehensive understanding of road conditions, leading to a more effective salt rate 
calculation. The Road Surface Classification model’s output is combined with MD30 data to generate 
a salt distribution rate value, as shown in Figure 2-2. 

 

Figure 2-13: Road surface where snow accumulated inhomogeneously 

2.5.1 Training Data Set Collection 

To develop an RSC model capable of distinguishing surface conditions, obtaining a data set of 
thousands of images encompassing all relevant categories is necessary. The ideal time frame to 
acquire the appropriate image set for snowy, slippery, and slushy surfaces would be from November 
through February, as Massachusetts experiences snowfall during that period. The classification for 
pavement surfaces consists of six categories: dry, wet, streaming water, snowy, slushy, and snow-
covered with wheel track surfaces. These categories are derived from reported MD30 road conditions 
parameters. Classifications are discussed further in Section 3.0. 

2.5.2 Model Architecture for Classification Model 

Pretrained models for classification can be used, or a new model can be created from scratch using 
artificial neural networks (ANN) or CNN layers. Pre-trained models offer good accuracy, making 
them suitable for road surface classification. DenseNet121 is a pre-trained CNN model that offers 
excellent performance in image classification tasks (37). This model can serve as a robust backbone 
for image classification tasks, allowing for adding layers and fine-tuning hyperparameters to improve 
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accuracy. The DenseNet121 pre-trained CNN model was chosen as the basis for the RSC model. 
DenseNet121 achieves a top-1 accuracy of 75.0% and a top-5 accuracy of 92.3%, making it reliable 
for accurate image classification. 

Additionally, the model is relatively lightweight, with a code size of 33 MB and requiring only 8.1 
million parameters (38). For RSC, the top layer of the DenseNet121 model, designed for ImageNet 
class prediction, was removed. Instead, custom layers were added to the model to perform image 
classification into six road surface classes. The pre-trained “DenseNet121” is utilized as the base 
model for the RSC model, upon which additional classification layers were added. Training took 
place in the Google Colab environment, leveraging computing resources such as GPUs and TPUs to 
facilitate rapid training. 

The model was trained on images with 64 × 64 pixels, each with three color channels (red, green, and 
blue [RGB]). DenseNet121 is a densely connected convolutional network with each layer connected. 
The DenseNet architecture is partitioned into multiple dense blocks. DenseNet121 includes four 
DenseBlocks with [6,12,24,6] convolutional layers. It also includes max pooling, transition, 
convolutional, and classification layers. The overall architecture is shown in Figure 2-14. A sequential 
model is used in the final RSC model, encapsulating the DenseNet model and additional layers. The 
newly added custom classification model includes a flatten, dense, and output layers. The flatten layer 
converts the 3D output tensor from the DenseNet121 into a 1D vector, input to the dense layers. Three 
dense layers are utilized to extract image features, and the output layer is configured with six units 
corresponding to the number of classes in the classification task. ReLU activation functions are 
employed for the dense layers, while “softmax” activation is utilized for the output layer. 

 

Figure 2-14: Architecture of the RSC model using DenseNet121 

The classification model outputs a probability assigned to each class. The category or class of the 
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image is determined by selecting the class with the highest probability. The final road surface 
category of the corresponding image will then be provided to the salt rate prediction model to decide 
the salt rate. 

2.5.3 RSC Classification Definition and Classification 

This step aims to define and classify the road surface conditions from the images that consistently 
represent the surface condition parameters reported by the MD30 sensor. To achieve this goal, a 
custom image data set was created using 10,000 images recorded in Amherst and Auburn, MA. The 
FLIR camera with a wide lens was used for this experiment. The setup shown in Figure 4.1 was used 
to collect the images on the UMass Amherst campus. Images were collected on a MassDOT truck 
during road treatment in real-time weather events. 

The data set comprises a total of 363 images for the Streaming Water category, 4,624 images for Dry, 
1,316 images for Slushy, 439 images for Snow-covered with Wheel tracks, 2,886 images for Wet, and 
373 images for Snowy. The categories match MD30 road state parameters. A custom data set was 
needed since differences in weather, roads, and individual understanding can affect data set 
categorization. Recorded images were manually categorized based on perceived road conditions 
DenseNet121 was employed to classify the road images. This algorithm inputs road images and 
generates probability scores for each surface condition class. 

 

Figure 2-15: Camera configuration for RSC model training 

Table 2-2 shows that the RSC model’s output categories are mapped to MD30 parameters. Notably, 
the new definition in the RSC model is similar to the MD30 definition, which merges some similar 
classes into a single cluster. In addition, the road condition Snow-covered with wheel tracks has been 
added as a new category. This surface condition has its salt rate recommendation (39), although the 
MD30 cannot distinguish it as a separate category. Sample road surface categorization images are 
shown in Figure 2-16. 

Table 2-2: Mapping of MD30 and RSC model classification 
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Road Surface Classification 
Model 

MD30 state parameter MD30 EN1558 
parameter 

Value Description Value Description 
Dry 1 Dry 1 Dry 

Wet 
2 Moist 2 Moist 
3 Wet 3 Wet 

Snow 6 Snowy 11 Slippery 
Snow-covered with wheel tracks — — — — 

Slushy 
7 Icy 11 Slippery 
9 Slushy 11 Slippery 

Streaming water — — 10 Streaming water 
 
 

 

 

 

  

 

 

 

  

Dry Surface 

Wet Surface Snowy Surface Slushy Surface 

Streaming Water Surface Snow-covered with Wheel Tracks 

Figure 2-16: Sample road surface categorization images 
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2.6 Intelligent Salt Application System: Model  

A comprehensive model that considers all road condition factors as input and generates corresponding 
salt rate values is needed to achieve accurate selections based on road-dependent conditions. 
Currently, MassDOT follows Vaisala salt rate guidelines (40) based on grip level. However, per 
Vaisala guidelines (40) and a Washington State University study (41), surface temperature and 
surface conditions also affect salt rate values. Thus, the decision-making model should consider grip 
levels, surface temperatures, and conditions to produce accurate salt rates. The salt rate prediction 
model can be represented as a flowchart in which the salt rate decision is determined by considering 
grip, surface temperature, road state, and the RSC model’s output. Constructing the salt rate 
prediction model involves a series of conditions within the algorithm. Various combinations of grip 
levels and surface temperatures determine the primary root conditions. If any of these root conditions 
are satisfied, the algorithm assesses the surface condition using data from the MD30 sensor and the 
predicted surface state from the RSC model. Based on this evaluation, the final salt rate is determined. 
This section discusses the details of the developed salt rate prediction (SPR) model.  

The latest (new) salt rates used by MassDOT to treat roads in the 2023–2024 winter are presented in 
Table 2-3. Previously used (old) values are included in the right column. Rates have been adjusted 
upward to increase deicing effectiveness. This salt rate model takes input from the MD30 sensor 
(surface and weather conditions) and the RSC model. The MD30 information includes grip, surface 
temperature, and road state indicated by “state” and “EN15518 state.” Road grip level ranges from 
0.10 (poor) to 0.82 (good).  

Table 2-3: MassDOT salt rates for winter operation (based on MD30 grip reporting) 

Grip level New salt rates (lb/mi) Old salt rates (lb/mi) 

0.10–0.30 480 350 

0.30–0.40 420 300 

0.40–0.50 350 200 

0.50–0.80 300 150 

0.80–0.82 150 No salt 

In the SRP model, the salt rate serves as the target variable. The rate depends on road surface 
parameters such as surface temperature and grip. The model was built using Vaisala guidelines (40) 
and information from Washington State University (41). The developed system makes decisions by 
combining MD30 sensor parameters such as surface temperature, grip, road surface state, and 
EN15518 road condition state. The salt rate prediction model was executed in real-time in a 
snowplow based on weather conditions, and model-generated values were provided to the salt 
distribution controller. To evaluate the performance of the new salt rate prediction model, the 
efficiency of the approach was compared with the efficiency of firmware auto mode operation based 
on grip measurements and manual salt rate control by the operator. The overall salt material used to 
treat roads and the overall grip improvement of the road were considered in assessments. 
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Figure 2-17 shows the updated decision model for salt rate. This model takes the existing decision 
model originally recommended by Vaisala (green) and integrates the outcome from the RSC model. 
(brown). The output of the final conditional block is the salt rate. The flowchart input comes from the 
MD30 sensor (road grip, surface temperature, and EN151518 state). Suppose the grip is within a 
range of 0.80 to 0.82, and the surface temperature is above 0°C. In that case, both the road state and 
EN151518 state indicate dry or moist conditions, or the RSC model output suggests a dry road 
surface; the conditions collectively confirm a dry surface. Under these circumstances, a salt rate of 
100–150 pounds/miles, recommended by Washington State University (41), is deemed sufficient for 
road maintenance. If these conditions do not apply, checks in the flowchart are made for moderately 
low grip and surface temperature levels.
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Figure 2-17: SRP model for surface treatment 
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The algorithm then checks the road’s grip measurement to determine if it falls within the range of 
0.50 to 0.80 or if the surface temperature is between −3.89°C and 0°C. Roads with a grip between 
0.60 and 0.80 have moderate traction and, therefore, require less salt than surfaces with lower grip 
levels. Grip values within the range of 0.50 to 0.60 indicate slush or ice formation. Within the 
specified grip range of 0.50 to 0.80, surface conditions (wet, snowy, or slushy) must be considered, as 
different road conditions demand distinct salt application rates. 

Once the condition (0.50 ≤ grip <0.80) or (−3.89 ≤ surface temp ≤ 0°C) is met, it is necessary to 
assess whether the road surface state is icy and the EN15518 state is slippery or streaming water or if 
the image shows slushy or streaming water. Under such conditions, a salt rate of 300 pounds per mile 
is considered, as recommended by Vaisala. If the road is not slippery, it must be determined whether 
it is wet or moist using the MD30 “state” parameter or the RSC model’s image prediction output. A 
wet road condition requires a lower salt rate than a slippery surface, approximately 180–220 pounds 
per mile. If the wet condition is absent, snowy conditions are considered using the MD30 “state” 
parameter or the RSC model’s indication of a snowy surface. If snowy conditions are confirmed, a 
salt rate of 200 pounds per mile is used. Finally, a check is made for the snow-covered with wheel 
track condition is made using the RSC model. A salt rate of 250–300 pounds per mile is used if this 
condition is confirmed. A default minimal salt rate of 150 pounds/mile is used if no conditions are 
satisfied. 

If the condition (0.50 ≤ grip <0.80) or (−3.89°C ≤ surface temp ≤ 0°C) is not met, the algorithm 
proceeds to check for lower grip values and surface temperatures. A check is made to determine if the 
grip is in the range of 0.40 to 0.50 or if the surface temperature is between -6.67°C and -3.89°C. If 
this condition is satisfied, a check is made for slippery road conditions. If the state is snowy or 
EN15518 is slippery as per MD30 parameters, or the RSC model output for the image is snowy or 
snow with wheel tracks, a salt rate is 350 pounds per mile. If this condition is not satisfied, a salt rate 
of 250–300 pounds per mile is used. 

If the condition (0.40 ≤ grip <0.60) or (−6.67°C ≤ surface temp ≤ −3.89°C) is not met, a check is 
made for lower grip level and surface temperature values. If the grip is in the range of 0.30 and 0.40 
and the surface temperature is between −9.44°C and −6.67°C, information from the MD30 is needed, 
as shown in the flowchart. In this case, a salt rate of 400 pounds per mile is used if the MD30 road 
state is icy, the EN15518 state is slippery, or the RSC model indicates snowy or snow with wheel 
track conditions. A salt rate of 325–350 pounds/mile is used if the slippery road condition is not 
satisfied. 

If the condition of (0.30 ≤ grip ≤ 0 .40) or (−9.44°C ≤ surface temp ≤ −6.67°C) is not satisfied, then a 
check is made for a grip level less than 0.30, a surface temperature less than −9.44°C or an icy surface 
state. If these conditions are satisfied, an aggressive salt rate of 450 pounds/mile is used. A default salt 
rate of 150 pounds/mile is used if these conditions do not hold. If the MD30 sensor output does not 
satisfy any of the conditions, the sensor output may be in error. 
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3.0 Results 

This section presents the findings and analysis of salt treatment experiments conducted during winter 
events. The experiments assess the performance of the Road Surface Classification model. The initial 
two experiments, Experiment 1 (preliminary data logging testing with MD30, camera, and GPS) and 
Experiment 2 (establishing MD30 dual communication and preliminary data logging testing with 
MD30, SpreadSmartRx, camera, and GPS), aimed to validate hardware and software. Experiment 3 
(RSC algorithm evaluation) involved image data collection and the development of a machine 
learning (ML) model to identify surface states, while Experiment 4 (SRP model validation) focused 
on data collection during salt treatment, execution of the salt rate prediction model, and performance 
evaluation alongside current MassDOT practices. 

3.1 Validations of Hardware and Software 
(Experiments 1 and 2) 

The outcome of Experiment 1 was the successful implementation of the LDL on the UMass vehicle, 
with synchronization between MD30 and camera data. In Experiment 2, all components and 
connections were successfully mounted on the MassDOT truck. Experiment 2 also established the 
MD30’s communication with the LDL and the SpreadSmartRx. This setup enabled the generation and 
validation of the logger, which records MD30, camera, and GPS information on the LDL, and the 
Geotab logger, which records the salt rate and GPS data. Detailed information on logger validation 
methods, approaches to check synchronization between the camera and MD30, pinout information for 
MD30’s dual communication with LDL and SpreadSmartRx, and final component placement and 
connections on the MassDOT truck are available in Appendix C. 

3.2 Validation of the RSC Model (Experiment 3) 

Experiment 3 evaluated a machine learning model capable of categorizing images into dry, wet, 
snowy, snow-covered with wheel tracks, streaming water, and slushy. During model training, the 
sample data set is randomly shuffled, and 80% of the data is used for training, while the remaining 
20% is used for model testing. The training accuracy of the model, which refers to the accuracy of a 
machine learning model on the 20% training data set, is 86.7%. The model was evaluated using 
fivefold cross-validation, receiver operating characteristics, mean average precision, top-three 
accuracy, F1 score, and a precision–recall curve. These metrics are described subsequently in this 
section. 

The data set is randomly divided into five groups (folds) in fivefold cross-validation. The model is 
trained on fourfold, while onefold is reserved for model testing. This process is repeated five times, 
with each fold used once as the test set. Therefore, a different fold is the test set in each iteration, 
while the remaining folds are used for model training. For this evaluation technique, the accuracy 
values obtained were 88.9%, 91.4%, 90.1%, 88.8%, and 88.5%. The overall mean accuracy of 
fivefold cross-validation is 89.5%, with a standard deviation of 1.1%. The fivefold cross-validation 
score indicates a 1.1% variation in performance across different data subsets. This variation is 
tolerable, and the model is expected to perform well on unseen data. 
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A receiver operating characteristics (ROC) curve is a graphical representation of a model’s 
performance. The curve is a graph of true positive rate versus false positive rate. A true positive rate 
signifies the proportion of positive instances the model identifies as positive. A false positive rate 
signifies the proportion of negative instances the model incorrectly classifies as positive. The most 
common way to analyze a ROC curve is with an area under curve (AUC) value. AUC ranges from 0 
to 1, where a higher value indicates better overall performance. Figure 3-1 shows that the AUC for 
dry surface classification is the highest, suggesting strong discrimination capability for dry road 
conditions. For all other road classifications—slushy, snow-covered with wheel tracks, snowy, 
streaming water, and wet—the AUC values are also high, indicating that the model performs well in 
discriminating between these road surface conditions. 

 

Figure 3-1: ROC curve 

In model evaluation, precision is the proportion of true positive predictions out of all positive 
predictions made by the model. At the same time, recall is the proportion of true positive predictions 
from all positive instances in the data set. The precision–recall curve plots precision and recall at 
different classification thresholds. A high AUC represents both high recall and high precision. A 
precision–recall curve for the RSC model is shown in Figure 3-2. Dry, snow-covered wheel tracks 
and wet surfaces have AUC values greater than 0.90, indicating that the RSC model’s predictions for 
these classes are highly reliable, and the model can identify most of the actual instances of each class, 
indicating high precision and recall value. The slushy and snowy classes have AUC ranges from 0.80 
to 0.90, suggesting that the model balances precision and recall. Still, it might either miss some true 
instances (lower recall) or include some incorrect ones (lower precision). However, the streaming 
water classification has a poor AUC value of 0.54, indicating that the model is unreliable for detecting 
streaming water and could lead to many missed detections and false predictions. There is room for 
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improvement for this class, particularly a need to acquire a better data set that can identify and 
incorporate additional relevant features to capture the class’s characteristics better. 

 

Figure 3-2: Precision–recall curve 

Average precision (AP) is a metric used to summarize a specific class’s precision–recall curve (PR 
curve). It is recorded by the model across all recall levels and is calculated as the area under the PR 
curve. The AP values for each class are as follows: 99% for dry surface, 88% for slushy surface, 91% 
for snow-covered with wheel tracks surface, 80% for snowy surface, 54% for streaming water 
surface, and 98% for wet surface. Hence, the model is highly effective at identifying dry and wet 
surfaces, detecting slushy and snow-covered wheel track surfaces, and detecting snowy surfaces. 
However, it is not reliable for classifying streaming water surfaces. The mean average precision 
(mAP) is the mean of the AP values calculated across all classes in the data set. It provides an overall 
performance measure for the model across multiple classes. The mAP of the RSC model is 85.3%, 
which indicates that, on average, the classification model has a good level of precision across all 
classes and is sufficient for a road classification requirement. 

Top-n accuracy is a performance metric used in multiclass classification tasks, where a prediction is 
considered correct if the true class label is among the top n predicted classes with the highest 
confidence scores. In the case of the RSC model’s performance evaluation, the top three accuracies 
have been calculated. This metric assesses the model’s ability to predict the correct class when 
considering the top three predicted classes out of a total of six classes. Achieving high accuracy 
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within the top three predictions demonstrates promising model performance. Notably, the RSC model 
has achieved an impressive top-three accuracy of 99.45%. 

F1 score is a popular metric used in classification models. It is the harmonic means of precision and 
recall. F1 combines these two metrics into a single value, providing a balanced measure of a 
classifier’s performance. The F1 score ranges from 0 to 1, with a score closer to 1 indicating better 
performance. For the RSC model, an F1 score of 0.90 indicates a strong balance between precision 
and recall in a classification model. It reflects an RSC model that is both precise and robust in 
identifying the true instances of a particular class, with a very good trade-off between not missing true 
instances and not misclassifying other instances as the class of interest. This score is suitable for the 
project application. 

While the model has demonstrated promising performance across various evaluation metrics, it is 
important to note that it has been trained and tested on a relatively small data set of 10,000 images. 
This data set does not comprehensively cover all classifications in detail, making the model unsuitable 
for real-time testing scenarios at this stage. 

3.3 Validation of the SRP Model (Experiment 4) 

Experiment 4 evaluates the performance of salt treatment practices and the salt rate model. Salt 
treatment effectiveness is evaluated using two key metrics: overall improvement in road grip and the 
total amount of salt utilized during treatment. Two databases are required to assess these factors. The 
first database includes MD30 sensor data capturing road conditions, camera images, GPS coordinates, 
and corresponding salt application rates used for treatment. This data set, obtained using the loggers 
evaluated in Experiment 2, provides insights into grip levels and salt usage during road treatment. The 
second database, collected approximately 1 to 2 hours after treatment along the same route, includes 
MD30 parameter values that capture road conditions and camera images annotated with GPS 
coordinates. This post-treatment data set offers valuable information regarding road condition 
improvement, particularly grip enhancement. 

This experiment collected data in three different spread controller modes, including auto-grip mode, 
manual mode, and the proposed mode using SRP. The salt spreader system has two modes: manual 
and automatic. In heavy snow storms, the operator manually runs the salt spreader system, deciding 
salt rates based on his understanding of the weather and road conditions by visual analysis. The 
operator uses a salt spreader in auto-grip mode if it is a moderate snowstorm based on Table 2-3.  

3.3.1 Auto-Grip Mode Salt Treatment 

Data was first collected when the controller was set to auto-grip mode. Logs were generated before 
and after treatment using GPS coordinates and the spatial merging technique discussed in Section 
3.3.2. The before and after salt treatment grip values over the treatment distance were plotted, as 
depicted in Figure 3-3. Grip values range between 0.10 (poor) and 0.82 (good). 

In Figure 3-3, the distance traveled by the truck is plotted on the x-axis in miles, and grip values are 
plotted on the y-axis. The blue line represents grip values before the salt treatment trip, while the red 
line represents grip values after the salt treatment. Dotted blue (lower) and dotted red (upper) lines 
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indicate the overall mean values before and after salt treatment. The grip line after treatment indicates 
that, in most of the trip, the grip has improved compared to before treatment of the road. Additionally, 
the overall mean of the grip values throughout the distance traveled has increased by 0.03 compared 
to before treatment, as indicated by the dotted blue and red lines representing the mean value of the 
grip data collected before and after treatment. In this evaluation mode, it is important to consider

 

Figure 3-3: Grip values before and after treatment for the auto-grip mode 

weather conditions. The weather was moderately snowy when the data set was collected before salt 
treatment, with surface temperatures ranging between −0.33°C to 4.41°C. Two hours later, when data 
was collected after salt treatment, the weather was cloudy, and there was no snowfall, with surface 
temperatures ranging between 1.97°C and 14.09°C. Rising surface temperature helps melt the snow 
faster. So, in the after-treatment analysis of auto-grip mode, variation in surface temperature also 
plays a significant role. 

3.3.2 Manual Mode Salt Treatment 

The second data set was collected while the operator manually operated the spreader controller based 
on their road conditions assessment. A video of the controller’s operation during the trip was recorded 
to capture salt rate information during manual mode. This video documented the operator’s 
adjustments to the salt rate. The corresponding salt rate for each time stamp was manually entered 
into the logger using the video as a reference. The salt rate was originally displayed as a percentage 
but was subsequently converted to pounds per mile. This conversion was achieved by calculating the 
percentage of the maximum salt rate allowed for the controller per mile, which was set at 1,200 
pounds. For instance, if the operator set the controller to 26%, that percentage of the maximum 
allowed salt rate per mile (1,200 pounds) was calculated, and this value was then manually entered 
into the Geotab logger for the corresponding time stamp. The MD30 logger was used to analyze road 
conditions, and the Geotab logger was used to determine the total salt rate of the material used in 
manual mode road treatment. 
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To assess the effectiveness of the manual mode road treatment, a trip was conducted along the same 
route one hour after the initial treatment. During this trip, the collected MD30 data and GPS 
coordinates were utilized to evaluate the overall road grip. The MD30 data logs collected before and 
after manual mode salt treatment were merged using spatial analysis with the help of GPS coordinates 
collected by the loggers. Synchronization techniques were used to combine the data sets. Road grip 
was evaluated by plotting before and after salt treatment grip values against the distance traveled by 
the truck. 

In Figure 3-4, the x-axis represents the distance traveled on the road, while the y-axis represents grip 
values. The blue line represents grip values collected before manual mode salt treatment, while the 
red line represents grip values collected after manual mode salt treatment. Although the red line has 
not shifted noticeably upward compared to the blue line, it closely follows the same trajectory. This 
suggests that the grip values observed before manual salt treatment have not significantly improved; 
the overall grip level has been maintained with the applied salt rate. However, these grip levels seem 
acceptable considering the weather conditions before and after manual salt treatment. 

 

Figure 3-4: Grip values before and after treatment for the manual mode 

Before treatment, there was heavy sleet rain with a surface temperature ranging from −3.79°C to 
2.65°C, while during the evaluation of manual salt treatment performance, there was sleet mixed with 
snow with a surface temperature ranging between −1.79°C to 6.07°C. Hence, the observed grip levels 
are deemed satisfactory, given the challenging weather conditions. The means of the grip values 
before and after treatment are drawn with dotted red (upper) and blue (lower)  lines, respectively. The 
plots show that the overall mean value of the grip improved by 0.01. 

3.3.3 Proposed Mode Using SRP Model 

Salt treatment was performed per the salt rate prediction model, which takes input from the MD30 
sensor for different road conditions and outputs the appropriate salt rate. This rate was then manually 
entered into the SpreadSmartRx controller using a keyboard. Grip values collected before and after 
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treatment were plotted against the distance traveled by truck, as shown in Figure 3-5. The blue line 
represents the grip values recorded before treating the roads, while the red line indicates the grip 
values recorded after the salt treatment. This figure shows that the grip values for the first three miles 
after treatment are significantly shifted compared to the before-treatment values. Subsequent grip 
lines either closely follow each other or exhibit slight variations. 

Overall, there is an improvement in grip values throughout the journey, as evidenced by the mean grip 
lines depicted in the graph. The lines show an overall improvement of 0.03 in the mean grip. The 
weather conditions were sleet mixed snow before salt treatment and snow during after-treatment data 
collection. 

 

Figure 3-5: Grip values before and after treatment using the proposed mode 

3.3.4 Salt Application Amount Comparison 

Salt treatment was also evaluated by analyzing the total amount used in each treatment mode. For 
auto-grip mode, manual mode, and salt rate model modes, the Geotab logger recorded salt rates and 
corresponding GPS coordinates. Salt rates were measured in pounds per mile. The distances traveled 
between consecutive GPS points were logged to calculate the cumulative roadway salt spread. This 
distance was computed in miles using the geodesic distance function provided by the Geopy library. 
The amount of salt spread for each segment was calculated by multiplying the distance traveled in 
each segment by the corresponding solid material rate, as the salt rate is measured in pounds per mile. 
The total amount of salt spread was determined by taking the cumulative sum of salt spread across all 
segments. 

Figure 3-6 shows cumulative salt spread during auto-grip, manual, and salt rate model modes. The 
distance traveled by truck in miles is shown on the x-axis, and the total salt spread on the roads in 
pounds is shown on the y-axis. Blue, red, and green lines show cumulative salt spread determined by 
the SpreadSmartRx controller for the auto-grip, manual, and proposed modes, respectively. The truck 
traveled 11.82 miles in auto-grip mode, and the total salt spread on the road was 3,590 pounds. In 
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manual mode, the distance driven by truck was 13.53 miles, and the cumulative salt spread was 3,752 
pounds. In salt rate model mode, the truck traveled 11.18 miles, and the total salt spread on the road 
was 2,369 pounds. 

 

 

Figure 3-6: Cumulative salt on roads during auto-grip, manual, and proposed modes 

The total amounts of salt used for road treatment and the distances traveled by truck in the auto-
grip (upper) and salt rate model (lower) modes were verified using Geotab reports shown in Figure 
3-7, in which the amount of solid (salt) material in the truck was checked at the start and end of 
each trip for each respective treatment mode. The total salt spread on the roads was determined by 
subtracting the initial amount from the final amount. Similarly, from the Geotab record, the truck 
solid spread distance values at the beginning and end of each log were used to calculate the total 
distance traveled by the truck during road treatment.  

Figure 3-7: Total distance traveled and salt used in auto-grip and proposed modes 

3.3.5 Simulated Salt Treatment Modes 

Data collected for auto-grip and salt rate model modes can be used in real-time and for simulations. 
Specifically, weather conditions and time differences between consecutive road treatments can be 
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simulated, and expected salt rates can be determined. This approach allows for the comparison of 
salt treatments under the same environmental conditions. 

A simulation was conducted to determine respective model outputs under the same weather 
conditions and application distances to ensure a fair comparison of salt usage between auto-grip 
and salt rate model modes. Environmental and GPS data logged while treating roads in auto-grip 
mode were used as input to the salt rate prediction model. The salt rate output suggested by the 
model was then recorded. In Figure 3-8, a solid blue line depicts the total salt used in auto-grip 
mode. A dashed blue line represents the simulated outcome of the total salt that would have been 
used in the proposed mode with the SPR model executed within the same environment. The total 
salt used in auto-grip mode is 3,590 pounds, whereas the total salt usage in the SPR model would 
have been 2,898 pounds. 

 

Figure 3-8: Total salt used in simulated proposed mode 

In a similar experiment, environmental and GPS data collected during salt rate model mode was 
used to help determine expected outputs during auto-grip mode. The data is inputted into auto-grip 
mode, and output salt rates and total salt values are determined. In Figure 3-9, the solid green line 
indicates the amount of salt used in the proposed mode with the SPR model, while a dotted blue 
line indicates the salt that would have been used by the auto-grip mode in the same environment. 
The salt used by the proposed mode is 2,369 pounds, whereas the total salt that the auto-grip mode 
would have used was 3,454 pounds. 
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Figure 3-9: Total salt used in simulated auto-grip mode 

Last, the SRP model relies on two input sources: the MD30 sensor data and the RSC model output. 
Since the RSC model could not be trained on a comprehensive data set covering a large range of 
road conditions, it was not employed for real-time salt rate decision-making for the 
experimentation in this study. Instead, the salt rate was solely determined by inputs from the 
MD30. Nevertheless, the environmental data collected in auto-grip mode and surface images can 
still be leveraged as input for the flowchart in Figure 2-17. The algorithm that implements the 
flowchart generates salt rate predictions utilizing input from both the MD30 sensor and the RSC 
model. This simulation uses logged environmental and GPS data collected in auto-grip mode 
during salt treatment. 

In Figure 3-10, the total salt amount is calculated for the salt rate model mode under the same 
environmental conditions as auto-grip mode. The solid blue line represents the cumulative salt 
used in auto-grip mode. The dotted blue line indicates the total salt that would have been used by 
the salt rate prediction model with only MD30 input, while the dotted green line shows the total 
salt that would have been used by the salt rate prediction model with both MD30 data and the RSC 
model output as input. In auto-grip mode, 3,590 pounds of salt were used, whereas in the salt rate 
model with only MD30 input, the total salt usage was calculated to be 2,898 pounds. If the salt rate 
model had utilized both MD30 and RSC model input, the cumulative salt total would have been 
2,949 pounds. 
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Figure 3-10: Total salt used in simulated proposed mode with RSC model input 

3.3.6 Comparative Analysis of Salt Treatment Methods 

This section presents a comparative analysis and discussion of the findings from experiments 
conducted to evaluate the performance of the salt rate prediction model in both real-time and 
simulated scenarios. It shows how the salt rate prediction model surpasses current practices and 
notes the advantages of the salt rate prediction model over existing methods.  

After auto-grip mode salt treatment, grip improved from 0.56 to 0.59, and the total salt used was 
3,590 pounds. Before the salt treatment, there was moderate to heavy snowfall, but the snow had 
completely stopped after the treatment. Additionally, the mean surface temperature increased from 
2.02°C to 3.94°C. So, in this evaluation, along with salt treatment, environmental conditions 
helped to improve the road’s grip. If the salt rate model had been used for road treatment under the 
same weather conditions, the resulting salt usage would have been 2,898 pounds, a savings of 692 
pounds. If the salt rate model had been utilized with RSC input in the same weather conditions, the 
total salt usage would have been 2,949 pounds. Including the RSC input leads to a 51-pound 
difference in salt usage versus the salt rate model without it. 

It remains a challenge to ascertain how these methods would improve grip. Once the model is 
adequately trained on all aspects of road condition characteristics, it would be worthwhile to 
explore integrating RSC model input for real-time salt treatment. This could potentially enhance 
the overall effectiveness of the salt treatment strategy. For the manual mode experiment, the 
weather conditions were consistent, with a mix of sleet and snow before and after salt treatment. 
Consequently, grip improvement was insignificant, with the overall grip changing from 0.58 to 
0.59. A total of 3,752 pounds of salt were used in this mode. In general, manual mode is not 
commonly used for MassDOT salt treatments. It is typically used only during heavy winter storms 
or challenging road conditions. In most cases, auto-grip mode is preferred. 

For the salt rate model mode experiment, the weather conditions were a mix of sleet and snow 
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before salt treatment, followed by moderate snow after treatment. The overall grip improved from 
0.59 to 0.62. Of the three treatment modes, only the salt rate model mode resulted in an overall 
grip improvement below 0.60. According to the Vaisala grip description, a grip level 0.60 indicates 
moderate road grip. In real-time road treatments, the salt rate model spread the least amount of salt, 
totaling 2,369 pounds, compared to the other two methods, improving the overall grip. If auto-grip 
mode had been used for salt treatment in the same weather environment, the total salt would have 
been 3,453 pounds, resulting in an overuse of 1,084 pounds. 

Based on the real-time validation and simulation testing analysis, the salt rate model performed 
well in grip improvement and salt usage efficiency. Real-time validation showed a grip 
improvement of 0.03 with a minimum salt usage of 2,369 pounds compared to the auto-grip and 
manual methods. The simulation experiment on the salt rate prediction model showed a reduction 
of approximately 18% in salt usage compared to the auto-grip mode. Conversely, the auto-grip 
mode showed a notable increase of 45.8% in salt usage compared to the salt rate prediction model. 

3.4 Influence of the RSC’s Accuracy  

The impact of incorrect predictions made by the RSC model on the salt rate calculated by the salt 
rate prediction model and methods to mitigate mispredictions or inaccuracies generated by the 
RSC model are discussed in this section. 

3.4.1 Impact of RSC Model on Salt Rate Prediction 

Road surface misclassification can significantly impact salt rate calculations. The accuracy of the 
RSC model’s classifications can be assessed using the confusion matrix in Figure 3-11, generated 
by the RSC model when tested on the testing data set. 

 

Figure 3-11: RSC model’s confusion matrix 
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The matrix shows the number of times the model’s predictions matched the actual conditions 
(values along the diagonal) and the number of times the model was incorrect (values off the 
diagonal). For example, the model is highly accurate in predicting “Dry” and “Wet” conditions, 
with 897 and 553 correct predictions, respectively. The model has moderate accuracy for “Slushy” 
and “Snow-covered with wheel tracks” conditions, with 200 and 67 correct predictions, 
respectively. However, “Snowy” and “Streaming water” road conditions have fewer testing 
instances, resulting in 27 and 17 correct predictions, respectively. Table 3-1 provides a detailed 
analysis of how mispredictions by the RSC model would impact salt rate calculations in the salt 
rate prediction model. 

Out of all dry surface images, approximately 97% are correctly identified as dry by the RSC 
model. However, 0.32% of dry images are misclassified as slushy, 0.11% snowy, and 2.49% wet. 
Consequently, if a dry image were misclassified as wet, 65 lb/mi would have been overestimated 
compared to the actual salt rate. Similarly, dry images may be classified as snowy, but snowy 
conditions have varying salt rates based on MD30 grip values. For dry surfaces misclassified as 
snowy under grip conditions greater than 0.50, the predicted salt rate is 200 lb/mi, resulting in a 75 
lb/mi overestimation. However, for grips lower than 0.50, the predicted rate ranges from 250–300 
lb/mi, leading to overestimating 150 lb/mi. If the grip falls below 0.40, the overestimation reaches 
212 lb/mi. 

• According to the confusion matrix, if an image is misclassified as slushy, the average 
overestimation across different grip levels can be 225 lb/mi. However, very few images are 
misclassified as snowy or slushy, as indicated in the confusion matrix. 

• According to the confusion matrix, 82.64% of slushy surface images are correctly classified as 
slushy. Among the remaining slushy images, 9.09% are misclassified as snow-covered-wheel-
track surfaces, 2.48% as snowy, 2.89% as streaming water, and 2.89% as wet surfaces. 

When slushy is misclassified as wet, the predicted salt rate ranges from 180–200 lb/mi, resulting in 
an underestimation of 110 lb/mi. If slushy is misclassified as snowy, there is an average 
underestimation of 79 lb/mi under different grip levels. In the misclassification of the slushy 
surface into snow-covered with wheel tracks surface, there is an underestimation of 25 lb/mi under 
grip conditions greater than 0.50. However, under grip conditions below 0.50 or 0.40, the salt rate 
prediction remains the same, even with the misprediction, as both surfaces fall under the same 
slippery category. 

Similarly, if slushy is mispredicted as streaming water under grip conditions greater than 0.50, 
there is no difference in salt rate prediction. This is because slush and streaming water require the 
same treatment with equal salt rates under such grip conditions. Hence, this misprediction does not 
impact salt rate calculation. Similarly, Table 3-1 comprehensively analyzes how mispredictions for 
dry, wet, streaming water, snowy, slushy, and snow-covered-wheel-track surfaces affect salt rate 
calculations in the salt rate prediction model. 
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Table 3-1: RSC model misprediction impact on salt rate prediction 

Road 
Condition 

Predicted 
Condition 

MD30 
Condition 

Actual Rate 
(lb/mi) 

Predicted Rate 
(lb/mi) 

Rate Difference 
(lb/mi) 

Dry Wet 0.50≤grip<0.80 100–150 180–200 65 
Dry Snowy 0.50≤grip<0.80 100–150 200 75 
Dry Snowy 0.40≤grip<0.50 100–150 250–300 150 
Dry Snowy 0.30≤grip<0.40 100–150 325–350 212 
Dry Slushy 0.50≤grip<0.80 100–150 300 175 
Dry Slushy 0.40≤grip<0.50 100–150 350 225 
Dry Slushy 0.30≤grip<0.40 100–150 400 275 
Slushy Wet 0.50≤grip<0.80 300 180–200 −110 
Slushy Snowy 0.50≤grip<0.80 300 200 −100 
Slushy Snowy 0.40≤grip<0.50 350 250–300 −75 
Slushy Snowy 0.30≤grip<0.40 400 325–350 −63 
Slushy SCWWT* 0.50≤grip<0.80 300 250–300 −25 
Slushy SCWWT 0.40≤grip<0.50 350 350 0 
Slushy SCWWT 0.30≤grip<0.40 400 400 0 
Slushy Streaming water 0.50≤grip<0.80 300 300 0 
SCWWT* Snowy 0.50≤grip<0 .80 250 –300 200 −75 
SCWWT Snowy 0.40≤grip<0.50 350 250–300 −75 
SCWWT Snowy 0.30≤grip<0.40 400 325–350 −63 
SCWWT slushy 0.50≤grip<0.80 250–300 300 25 
SCWWT Streaming water 0.50≤grip<0.80 250–300 300 25 
Snow SCWWT 0.50≤grip<0.80 200 250–300 75 
Snow SCWWT 0.40≤grip<0.50 250–300 350 75 
Snow SCWWT 0.30≤grip<0.40 325–350 400 63 
Snow Slushy 0.50≤grip<0.80 200 300 100 
Snow Slushy 0.40≤grip<0.50 250–300 350 75 
Snow Slushy 0.30≤grip<0.40 325–350 400 63 
Streaming water Slushy 0.50≤grip<0.80 300 300 0 
Streaming water Slushy 0.40≤grip<0.50 250–300 350 75 
Streaming water Slushy 0.30≤grip<0.40 325–350 400 63 
Streaming water Wet 0.50≤grip<0.80 300 180–200 −110 
Wet Dry 0.80≤grip ≤0.82 180–200 100–150 −65 
Wet Streaming water 0.50≤grip<0.80 180–200 300 110 
Wet slushy 0.50≤grip<0.80 180–200 300 110 
Wet slushy 0.40≤grip<0.50 180–200 350 160 
Wet slushy 0.30≤grip<0.40 180–200 400 210 

* SCWWT: Snow-covered with wheel track. 



43 
 

In general, if a dry road condition is misclassified as wet, snowy, or slushy, if a wet road condition 
is misclassified as streaming water or a slushy road condition, or if a snowy surface is misclassified 
as snow-covered with wheel tracks or slushy, then the predicted salt rate estimation would be 
higher than the actual salt rate required. Conversely, misclassifying slushy surface conditions into 
snowy, wet, or snow-covered road conditions with wheel tracks would lead to a lower predicted 
salt rate estimation than the actual salt rate. If a snow-covered with wheel track surface condition is 
misclassified as slushy or streaming water, then the predicted rate estimation would be slightly 
higher (25 lb/mi) than the actual salt rate. Conversely, if it is misclassified as snowy, the predicted 
salt rate would be lower than the actual salt rate required. 

No model can achieve 100% accuracy. However, the confusion matrix indicates that inaccuracies 
can be mitigated by implementing appropriate logical conditions between MD30’s road condition 
parameter and the RSC model output to determine the correct road condition.  

3.4.2 Sensitivity of the RSC Model on Salt Rate Prediction 

The algorithm uses the prediction flowchart to assess grip and surface temperature conditions 
before determining the salt rate. Subsequently, it examines surface identification using input from 
the MD30 sensor and the RSC model. The surface identification process involves compiling input 
from the MD30 sensor and the RSC model using an OR condition. The sensitivity of the RSC 
model on salt rate prediction was evaluated by comparing the results obtained using both AND and 
OR conditions on the MD30 surface state inputs and the RSC model output for road surface 
classification. 

Figure 3-12 displays the total salt used for salt treatment when using the salt rate prediction 
flowchart with and without RSC model input. The MD30 and RSC input utilize the AND logical 
condition for surface state identification. The dotted blue lines indicate a total salt usage of 2,898 
pounds when using only MD30 input. The green dotted line represents a total salt usage of 2,790 
pounds when incorporating MD30 and RSC model input under the AND logical condition, a 
reduction of 108 pounds. 
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Figure 3-12: Total salt usage by the salt rate prediction model with AND condition 

Similarly, Figure 3-13 illustrates the total salt used for salt treatment with the same inputs but 
under an OR condition. The dotted blue line depicts a total salt usage of 2,898 pounds with MD30 
input alone. In comparison, the green dotted line indicates a total salt usage of 2,946 pounds when 
both MD30 and RSC model inputs are considered under the OR logical condition, increasing the 
salt usage by 48 pounds. 

Figure 3-13: Total salt usage by the salt rate prediction model with OR logical condition 
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As mentioned earlier in this chapter, the RSC model is not 100% perfect in classifying road 
surfaces. Using the OR logical condition mitigates potential misclassifications made by the RSC 
model. Therefore, even though the total salt usage is higher when using the OR logical condition 
compared to the AND logical condition, it is preferable to err on caution. It is better to slightly 
overestimate salt usage than to risk missing important road conditions such as icy or slushy 
surfaces. 

3.5 Limitations of the Developed System 

• Identification of Streaming Water Road Condition: The RSC model, a key component of 
the salt rate prediction model, is trained to identify various road conditions such as dry, wet, 
snowy, snow-covered with wheel tracks, streaming water, and slushy. However, as reported in 
the previous chapter, an evaluation of the RSC model reveals that its precision–recall 
performance for identifying streaming water road conditions is poor. This poor performance 
stems from the limited number of images to train the model to recognize this particular road 
condition. Streaming water conditions are particularly challenging to identify because they 
occur when slush melts. If the surface temperature drops below freezing, the water can freeze 
into ice, reducing road traction. Accurately identifying streaming water conditions is essential 
for maintaining road safety and effectiveness. However, the RSC model faces challenges in 
correctly identifying these conditions. These limitations affect the overall effectiveness of salt 
treatment using the salt rate prediction model. The RSC model should be enhanced by 
collecting additional image data specifically targeting streaming water road conditions to 
address this issue. This expanded data set can then be used to retrain the RSC model, 
improving its ability to identify streaming water conditions accurately and thereby enhancing 
the effectiveness of the salt rate prediction model. 

• Night-Time Salt Treatment with RSC Model Input: The current RSC model cannot be 
effectively utilized for nighttime salt treatment scenarios because the model was exclusively 
trained on daytime images. These images offer clarity and distinctiveness, making them 
suitable for training purposes. Nighttime images present challenges due to reduced visibility 
and illumination. Consequently, there is a risk of mislabeling nighttime images as snowy or 
slushy due to darkness. Although a lamp is near the camera to provide some illumination, the 
captured images remain visually unclear and inadequate for accurate classification. One 
potential solution to this issue involves using multiple illumination sources near the camera. 
Strategically placing additional light sources to cover the area captured by the camera can 
improve image clarity and detail. With clearer images, it becomes easier to accurately label 
road conditions and retrain the model for improved performance. 

• Black Ice and Packed Snow Detection: The initial problem statement for this research was 
centered around the MD30 sensor’s inability to detect black ice or packed snow, both of which 
present significant traction challenges. However, specific images of these road conditions could 
not be captured due to limited winter storm occurrences and fewer snow showers during the 
data collection. Consequently, the current RSC model cannot identify black ice and packed 
snow road conditions. In the next phase of the study, these specific road conditions will be 
targeted and incorporated into the model. An approach may involve collecting additional data 
and retraining the model to encompass black ice and packed snow classifications. The model’s 
effectiveness for salt treatment can be enhanced by doing so. 
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4.0 Conclusions 

This project aims to develop an intelligent salt spreader system that effectively and efficiently 
delivers the appropriate rate of salt dispersal under specific road conditions and environmental 
factors. The approach presented eliminates the need for subjective analysis of road surface 
conditions. To achieve this objective, a salt spreader system has been developed through hardware 
integration, software development, algorithms development, and model development. 

Previous research was analyzed to identify environmental factors affecting the salt rate. The RSC 
model provides surface conditions from captured pavement images to eliminate the need for visual 
monitoring. Additionally, the SRP model utilizes data from an RWIS sensor, including grip, 
surface temperature, surface conditions, and surface condition information from the RSC model, to 
predict the appropriate salt rate. 

The research team developed a new salt application system in this study by leveraging the 
instrumented mobile RWIS (i.e., Vaisala MD30 sensor), computer vision, and a new salt 
application model. The research team focused on developing four key aspects of the intelligent 
salt application system, including hardware (i.e., data collection I/O and power supplies 
system), software (i.e., data logging, synchronization, and data fusion), algorithm (i.e., road 
surface classification [RSC] algorithm), and model (i.e., the salt rate prediction [SRP] model), 
so that an optimized salt application decision can be provided to the actuator to treat the road 
surfaces. Through this study, a complete hardware/software system with automated RSC and 
SRP algorithms has been developed, pilot-tested, and validated with promising performance. 

Experimental tests during winter weather events facilitated an analysis of the salt rate prediction 
model and an evaluation of the efficiency of auto-grip mode, manual mode, and a salt treatment 
mode, which uses rates recommended by the salt rate prediction model. Further analysis was 
performed using simulation under fixed weather conditions. A comparative analysis of the results 
derived from all experiments was performed based on grip improvement and salt usage. The salt 
rate prediction model outperformed both auto-grip mode and manual mode. 

• The research team explored the full integration feasibility of a mobile RWIS sensor, high-
resolution camera, GPS, and Geotab logger and developed prototype software for 
comprehensive data collection. 

• The research team developed an automated road surface classification algorithm using the 
DenseNet121 deep-learning model with an 86.7% accuracy. 

• The research team integrated the detailed road surface classification outcome, the key 
parameters from the mobile RWIS sensor with a comprehensive salt rate decision tree that 
can potentially save salt applications by approximately 34% and 37%, compared with the 
auto-grip mode and the manual mode, while maintaining the similar performance of the 
treatment (i.e., maintaining or improving the grip values). The performance of the 
developed system showed promising results and could potentially save a significant amount 
of salt once implemented in a larger fleet of MassDOT’s winter operations.  
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The salt rate prediction model simulation revealed an approximately 18% decrease in salt usage 
compared to auto-grip mode. The salt rate prediction model demonstrated efficient performance 
through cumulative results analysis, particularly during use under moderate to heavy weather 
conditions and sleet mixed snow weather conditions. 

For future studies, the RSC model’s capabilities should be enhanced to improve the salt rate 
prediction model further. More road condition categories (e.g., black ice and packed snow) and 
more road image examples could be considered. The RSC model’s functionality should also be 
extended to consider nighttime road condition identification for nighttime salt treatment. 
Additional factors such as surface temperature gradient (increasing or decreasing) and the type of 
winter storm events anticipated, including light, medium, and heavy snow, sleet, black ice, or 
freezing rain, should be considered to improve the overall performance of salt treatment further. 
These factors can significantly impact the salt rate required for effective road treatment. They 
should be considered alongside surface grip, road condition, and surface temperature when 
determining the appropriate salt rate. 



49 
 

5.0 References 

 
1.  Snow & Ice - FHWA Road Weather Management. 

https://ops.fhwa.dot.gov/weather/weather_events/snow_ice.htm. Accessed Jun. 3, 2024. 
2.  How Do Weather Events Impact Roads? - FHWA Road Weather Management. 

https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm. Accessed Jun. 3, 2024. 
3.  Saha, S., P. Schramm, A. Nolan, and J. Hess. Adverse Weather Conditions and Fatal Motor 

Vehicle Crashes in the United States, 1994-2012. Environmental Health, Vol. 15, No. 1, 2016, p. 
104. https://doi.org/10.1186/s12940-016-0189-x. 

4.  Eck, M. A. The Influence of Precipitation on Car Crash Risk Across the Rural-Urban Continuum 
of the Carolinas. , 2022. 

5.  Dent, M. Why Snow Costs America a Fortune Every Year. The Hustle, 2023. 
6.  Ketcham, S. A., L. D. Minsk, R. R. Blackburn, and E. J. Fleege. Manual of Practice for an 

Effective Anti-Icing Program: A Guide for Highway Winter Maintenance Personnel. U.S. 
Department of Transportation Federal Highway Administration, 1996. 

7.  Gulliver, J. L. RWIS Snow Ice Preparation. MassDOT, 2019. 
8.  Salsberg, B. Survey: States Spent Heavily to Clear Winter Snow and Ice. The Associated Press, 

2015. 
9.  Pisano, P., L. Goodwin, and M. Rossetti. FHWA Road Weather Management Best Practices. 

Presented at the 88th American Meteorological Society Annual Meeting, Washington DC, 2008. 
10.  Murphy, R., R. Swick, and G. Guevara. Best Practices for Road Weather Management. 

Publication FHWA-HOP-12-046. Federal Highway Administration, Washington DC, 2012. 
11.  PennDOT and PA Turnpike Remind Motorists to Exercise Caution, Be Aware of Changing 

Conditions in Coming Winter Weather Event. Pennsylvania Turnpike Commission (PTC). 
https://www.paturnpike.com/news/details/2023/03/13/penndot-and-pa-turnpike-remind-
motorists-to-exercise-caution-be-aware-of-changing-conditions-in-coming-winter-weather-
event. Accessed Jun. 3, 2024. 

12.  Garcia de la Santa Ramos, J. Impact of Inclement Weather on Traffic and Signal Timing Plan 
Optimization of Intersections in Nagaoka, Japan. Master thesis. Universitat Politècnica de 
Catalunya, 2020. 

13.  Perrin, H., P. T. Martin, and B. G. Hansen. Modifying Signal Timing During Inclement Weather. 
Transportation Research Record, Vol. 1748, No. 1, 2001, pp. 66–71. 
https://doi.org/10.3141/1748-08. 

14.  MassDOT Snow and Ice Control Agreement 2021-2022. p. 24. 
15.  Bridge Anti-Icing Technology. Nevada Department of Transportation. 
16.  Interactive Environmental Sensor Station. FHWA. 
17.  Winter Storm Management of Arizona Highways State Operations Manual. Arizona Highway 



50 
 

Department, 2014. 
18.  Longworth, M., and M. DeVries. Using RWIS for Winter Maintenance Decisions. Michigan 

Department of Transportation, 2019. 
19.  Road Weather Information Systems. Washington State Department of Transportation. 
20.  Anti-Icing Strategies Improve Safety and Protect the Environment. Publication FHWA-SA-96-

016. Federal Highway Administration, Washington DC, 1996. 
21.  Das, J. Optimizing Anti-Icing Operation for Winter Roadway Treatment Using A Decision-

Making Tool. Georgia Southern University, 2020. 
22.  Minnesota Snow and Ice Control Handbook for Snowplow Operators. Minnesota Department of 

Transportation, 2022. 
23.  Gopalakrishnan, D., N. U. Serulle, F. Kitchener, K. Garrett, D. Newton, ICF International 

(Firm), and Leidos. Guidelines for Deploying Connected Vehicle-Enabled Weather Responsive 
Traffic Management Strategies. Publication FHWA-JPO-17-478. 2016. 

24.  Ding, X., and T. J. Kwon. Winter Road Friction Estimations via Multi-Source Road Weather 
Data—A Case Study of Alberta, Canada. Future Transportation, Vol. 2, No. 4, 2022, pp. 970–
987. https://doi.org/10.3390/futuretransp2040054. 

25.  Minge, E., M. Gallagher, Z. Hanson, K. Hvizdos, and SRF Consulting Group. Mobile 
Technologies for Assessment of Winter Road Conditions. Publication CR 16-03. 2019. 

26.  El-Rayes, K., and E.-J. Ignacio. Evaluating the Benefits of Implementing Mobile Road Weather 
Information Sensors. FHWA-ICT-22-004, 2022. https://doi.org/10.36501/0197-9191/22-004. 

27.  Thompson, G. Developing a Totally Automated Spreading System. Minnesota Department of 
Transportation, Research Services & Library, 2014. 

28.  SpreadSmartRx Rx TM (with Touch Screen) Operation Manual. Cirus Controls. 
29.  Pan, G., L. Fu, R. Yu, and M. Muresan. Winter Road Surface Condition Recognition Using A 

Pretrained Deep Convolutional Network. http://arxiv.org/abs/1812.06858. Accessed Jun. 3, 
2024. 

30.  Khan, M. N., and M. M. Ahmed. Weather and Surface Condition Detection Based on Road-Side 
Webcams: Application of Pre-Trained Convolutional Neural Network. International Journal of 
Transportation Science and Technology, Vol. 11, No. 3, 2022, pp. 468–483. 
https://doi.org/10.1016/j.ijtst.2021.06.003. 

31.  Krizhevsky, A., I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep 
Convolutional Neural Networks. No. 25, 2012. 

32.  Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and 
A. Rabinovich. Going Deeper with Convolutions. http://arxiv.org/abs/1409.4842. Accessed Jun. 
3, 2024. 

33.  He, K., X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. 
http://arxiv.org/abs/1512.03385. Accessed Jun. 3, 2024. 

34.  Mobile Detector MD30 B211719EN-F. Vaisala Oyj. 



51 
 

35.  Geopy 2.4.1. GEOPY, pypi.org/project/geopy. 
36.  Bhardwaj, A. Calculating Distance between Two Geo-Locations in Python. Towards Data 

Science, 2020. 
37.  Huang, G., Z. Liu, Z. Liu, and K. Q. Weinberger. Densely Connected Convolutional Networks. 

arXiv, 2016. 
38.  Keras Applications. Keras, keras.io/api/applications/densenet. 
39.  Product Description Vaisala Mobile Detector MD30. Vaisala Oyj, 

www.vaisala.com/en/products/weather-environmental-sensors/mobile-detector-md30. 
40.  Winter Maintenance Salt Treatment Suggestions: Grip and Pavement Temperature. Vaisala Oyj, 

www.vaisala.com/sites/default/files/documents/WEA-GT-Infographic-Salt-treatment-
suggestions-B212519EN-A.pdf. 

41.  Shi, X. Material Application Methodologies Guidebook. Washington State University, 2019. 



52 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page left blank intentionally 



53 
 

6.0 Appendices 

6.1 Hardware Connection Tutorial 
6.1.1 MD30 Configuration and Connection 

The MD30 is connected to the local data logger (LDL) using RS232 communication via a USB port. 
The MD30 sensor uses five RS232 wires for communication, as shown in Figure 6-1. Three wires 
are used for data transfer, and two are power and ground. 

1. 115,200 bps 
2. 8 data bits 
3. 1 stop bit 
4. No parity 
5. No hardware controls 

 

Figure 6-1: MD30 interface with the LDL 

Table 6-1 shows the MD30 pin connection to the RS232 interface. An external power supply of 12 
Volts is used for power. For initial MD30 communication testing, the open-source serial terminal 
software (OpenSerialPortMonitor—v1.0.5988.23754) was installed on the LDL. The MD30 sensor 
unit interface applies a request-response pattern. The sensor acknowledges every message. The 
following basic default settings must be configured on the LDL’s serial terminal software to 
support RS232 communication. 

Table 6-1: MD30 to RS232 pin description 

Pin color RS232/Power 
Pink Vin+ 
White Vin− 
Yellow GND (RS-232) 
Green TX (RS-232) 
Brown RX (RS-232) 
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Once hardware setup and default settings are configured in the serial terminal application, 
communication is verified by sending a command to the MD30. A command for product info or 
unit ID can be sent to the MD30 to check communication. The following hex request is written in 
the “Data to send” section on the serial terminal application’s graphical user interface (GUI), as 
shown in Figure 6-2. A request message for product info is the following: 

<message start ><message sender ID ><message receiver ID ><message ID ><message 
number><data length ><data ><CRC> 

Ex. 0xab 0x00 0x01 0x11 0x02 0x00 0x00 0x32 0xa7 

While sending the hex command to the sensor, “Data format” is selected. The “Send” option is 
then selected using a click. Figure 6-2 shows the MD30 response in the “Received data” and the 
“Raw data” window. Some command responses do not decode properly in the “Received data” 
window, but it is possible to verify raw data values using manual descriptions. 

<message start ><message sender ID ><message receiver ID ><message ID ><message number 
><interface version number><error code ><data length ><number of pairs and key-value pairs 
and values ><CRC > 

The request response to the request is highlighted in Figure 6-2. 

 

Figure 6-2: Verified communication on serial terminal application 
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MD30 responses use scripts and the mobile road sensor interface. To use the md30Interface client, 
the following system requirements should be fulfilled: 

1. Windows 10 system 
2. Any Python version above 3.7.3 
3. PySerial module 

Once the above requirements are met and the Python application and module are installed, all 
MD30 source code files should be copied to a folder on the LDL. The command prompt is opened 
from that location, and the interface client code file is called, which allows the MD30 to 
communicate with the LDL, as shown in Figure 6-3. 

 

Figure 6-3: Calling interface client software to start communication 

Vaisala has provided a variety of interface functions to calibrate and obtain the required 
information from the MD30 sensor. The MD30 module is programmed to record 
information/parameters received after the “SEND DATA” command is sent to MD30. 

1. GET UNIT ID: Help to identify the installed unit. 
2. GET FULL PRODUCT INFO: Provide brief information about MD30. 
3. GET UNIT STATUS: Report status and error information. 
4. SEND DATA: Initiate road condition, temperature, and humidity data reporting continuously 

at a defined interval. 
5. GET PARAMETER: Get values for road and air temperature calibration. 
6. SET PARAMETER: Set offset of the road and air temperature. 
7. SET REFERENCES: Use to set reference values. 
8. SET ROAD COEFFICIENTS: Use to set road coefficient values. 
9. RESTART UNIT: Restart the sensor. 
10. STOP REFERENCE SETTING: Used to interrupt reference data collection. 

6.1.2 Camera Configuration and Connection 

The project utilizes a Spinnaker FLIR camera, which communicates with the LDL via USB. For 
initial testing, the SpinView 3.0.0.118 application was used. To configure the programming 
module for the camera, the Spinnaker Python library module “spinnaker python3.0.0.118-cp310-
cp310-win amd64.whl” was installed. This module depends on pip, NumPy, matplotlib, and 
pillow, which were installed. 
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The Spinnaker library was imported into the project as “pyspin.” During the installation process, 
care was taken to ensure compatibility between the Spinnaker library version and the Python 
version being used. Because Python version 3.10 was used, the appropriate Spinnaker library 
“spinnaker /python-3.0.0.118-cp310-cp310-win amd64.whl” was installed in this case. This 
camera module can capture pavement images, name them, and store them on disk. Image names 
are stored in a CSV file. Figure 6-4 shows a screenshot of the SpinView application for camera 
testing. The research team integrated all the functions from the SDK into the main software, while 
the SpinView application was solely for calibrating camera purposes.  

 

Figure 6-4: SpinView application for testing camera 

6.1.3 GPS Configuration and Connection 

The Xsens motion tracker device is utilized for GPS. The Xsens device features an inertial 
measurement unit (IMU) and an integrated GNSS receiver, which acts as an antenna and enables 
the determination of location coordinates. The Xsens device also offers real-time visualization 
capabilities. It allows users to view the 3D orientation of the system, monitor data from both the 
inertial and magnetic sensors, and track latitude, longitude, and altitude in real-time. 

For system setup, the Xsens module is only used for GPS. GPS values are communicated to the 
LDL using USB. For initial testing, Xsens MT Manager 2022 was used. The Xsens application 
records its parameters into .mtb and .csv files. However, I developed a separate program to log 
GPS data into larger CSV files, as MD30, GPS, and camera data are needed in a single file. To 
program and interact with the Xsens device, use a dedicated library called xsensdeviceapi-
2022.0.0-cp310-none-win amd64.whl. Before installing this library, it was necessary to ensure the 
presence and proper functioning of the wheel library module. The version of Python used must be 
compatible with the Xsens library, in this case, Python 3.10. Once the Xsens library was 
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successfully installed, it was imported as xsensdeviceapi.xsensdeviceapi_py310 64. The GPS 
module is programmed to record the longitude and latitude values along with its time stamp.  
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6.2 Tutorial for Local Data Logger (LDL) 
Configuration 

6.2.1 LDL Configuration for the UMass Vehicle 

This experiment tested the LDL using inputs from the MD30, a GPS device, and a camera. The 
testing functions verify the (1) correctness of file logging (e.g., formatted csv file at 1 
record/second including all MD30 readings, GPS coordinates and GPS time, camera frame 
number, and file name); (2) synchronization of the data (e.g., camera and MD30 data 
synchronization); and (3) reliability of logger functionality (e.g., duration, storage, etc.). This 
experiment required sensor and configuration, host computer installation, monitor, cabling, and so 
forth, and vehicle hardware mounting. It was performed on dry and wet surfaces. 

• A sport utility vehicle (SUV) owned by UMass was used for testing. Initially, the research team 
attached a hitch to the UMass vehicle to install the MD30. Subsequently, a flexible and 
adjustable assembly was created with mounting brackets and plates, allowing for easy 
attachment and detachment from the vehicle as needed. Figure 6-5(a) shows the MD30 
mounting on the SUV. 

• For the GPS component, the Xsens Motion Tracker system was utilized. It consists of a control 
unit and an antenna. The control unit was installed inside the vehicle and connected to the 
LDL, while the antenna, which has a magnet, was attached to the roof, as shown in Figure 6-
5(b). 

• A FLIR Spinnaker camera was used in the experiments. For secure mounting, the camera was 
installed in the trunk with the help of a screw shown in Figure 6-5(c). The camera could 
capture the road surface from the trunk’s transparent window. 

• The UMass vehicle already had inverters in the trunk that could power components. The 
inverter features two three-pin plugs: one connected to the 12-volt power supply regulator, 
while the other powered the CPU. The 12-volt power supply was utilized to power the MD30 
sensor. Once the CPU was powered, a touchscreen display, GPS, and camera were connected. 
This setup ensured the CPU, display, MD30, GPS, and camera received the necessary power to 
function. Figure 6-5(d) shows the overall SUV setup. 
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(a) MD30 mounting on the UMass vehicle (b) GPS antenna placement 

(c) Camera mounting on a SUV (d) Overall assembly of the UMass vehicle 

Figure 6-5: Installed sensors on the UMass vehicle 

6.2.2 LDL Configuration for the MassDOT Truck 

The configuration of the LDL for the MassDOT Truck focused on setting up dual communication 
between SpreadSmartRx and the LDL. It also validated data logging from the MD30, a camera, 
and a GPS device mounted on a MassDOT plow truck. Additionally, it verified the salt rate (i.e., 
SpreadSmartRx data) logged on the Geotab fleet management service running on the MassDOT 
truck. This experiment aimed to test the functionality of two loggers: a local data logger that 
recorded MD30 parameters, captured images, and GPS coordinates; and a Geotab logger capturing 
salt rate with time stamps and GPS coordinates. 
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Figure 6-6: MassDOT truck STL942 

• The MassDOT truck STL942, shown in Figure 6-6 and Figure 6-7(a) (cabin), was designated 
to the research team in District 3. The MD30 and a SpreadSmartRx controller were already 
installed on the truck. The MD30 is located on the front of the truck, as shown in Figure 6-7(b). 
The SpreadSmartRx controller is placed in the driver’s cabin. As shown in Figure 6-7(a), the 
SpreadSmartRx controller is kept beneath the black box, and the MD30 is connected to the 
SpreadSmartRx controller through an RS232 communication line. 

• After discussing with the MassDOT plow operator, the camera was positioned near the 
spreader assembly on the truck’s rear side, as shown in Figure 6-7(c). This location allows the 
camera to capture the road view without interfering with the truck’s operation or obstructing 
the driver’s view. To get a broader view of the road, wide angle lenses were used to get a 
broader field of view for the road. 

• The same GPS setup as Experiment 1 was utilized. For GPS, antenna position is important. The 
antenna must be outside to receive signals. The antenna was attached near a door handle. As 
shown in Figure 6-7(d) (highlighted by red arrow), the cigarette lighter port was used to power 
the inverter and subsequently power the LDL. 

• For this experiment, it was necessary to establish the MD30’s connection with LDL, the GPS 
connection, the camera installation, and the inverter connection to power LDL in the truck’s 
cabin. 
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(a) MD30 connection to SpreadSmartRx (b) MD30 placement on the truck 

(c) Camera setup on the MassDOT truck (d) Power Supply 

Figure 6-7: Installed sensors on the MassDOT Truck 

6.3 Tutorial for Data Collection 

6.3.1 Data Logging Using the UMass vehicle 

For the data logging using the UMass vehicle, all the tests for the data collection were performed 
on the UMass vehicle operating at a maximum speed of 25–30 mph. Data was collected on wet and 
dry roadways and parking lots in Amherst, MA, and on the UMass Amherst campus. Figure 6-8 
and Figure 6-9 display snippets of the collected data. During data collection, MD30 parameters, 
GPS coordinates, time stamps, and the names of captured images were stored in a CSV file. MD30 
parameters include road surface state, EN15518 state, grip, and water level. 
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Figure 6-8: Detection example of the dry road surface 

 

Figure 6-9: Detection example of the wet road surface 

In Figure 6-8, the captured image displays a dry surface, and its corresponding MD30 values 
(highlighted in green and bordered in black) also indicate correct values for dry surfaces. For 
instance, the values for state and EN15518 are both 1, reflecting a dry state per the value 
description in Table 2-2. Additionally, the high grip value and the absence of water level (0 water 
level) further indicate a dry surface. 

In Figure 6-9, the captured image reveals a watery surface, and its corresponding MD30 values 
(highlighted in green and bordered in black) accurately reflect wet conditions, per Table 2-2. The 
MD30’s state value of 3 indicates wetness, and the EN15518’s state value of 10 suggests streaming 
water. Additionally, a lower grip value of 0.28 and a water level of 3.17 mm further confirm the 
strong presence of water. The data quality and logger integrity were also tested in high-speed 
scenarios. Camera-captured images often have motion blur. To overcome this blur, the exposure 
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rate/shutter speed was manipulated at the start of the experiment. Setting “Exposure Auto” to OFF 
adjusts the exposure time and reduces the exposure time to increase the shutter speed. 

6.3.2 Data Logging Using the MassDOT Truck 

For the data logging using the MassDOT truck, the MD30 is connected to the LDL and the 
SpreadSmartRx controller’s “temp/GPS” port, shown in Figure 2-5, using RS232 communication. 
The controller is located in the driver’s cabin. A Y splitter provided the MD30 signal to the LDL 
and the SpreadSmartRx controller (Figure 6-10). Initially, the LDL did not receive a response from 
MD30, and the SpreadSmartRx controller’s protective fuse blew. Because RS232 is point-to-point 
communication, only one device drives an RS232 serial line. Effectively, both the LDL and MD30 
were driving the signal. 

 

 

Figure 6-10: Y splitter connection 

To establish passive (unidirectional) communication between the MD30 and the LDL, TX 
communication from the MD30 is needed. For passive communication, only TX and GND 
connections are needed. With this connection, the LDL only receives the data from the MD30. 
Laptop transmissions are ignored. To establish the connection described above, a customized 
RS232 cable was utilized. Figure 6-11 shows that the MD30’s TX (transmitting) signal is carried 
on PIN 2, while the RX (receiving) signal is carried on pin 3. The LDL must listen to the MD30’s 
transmitting line for a passive LDL port connection. In Figure 6-11, the TX signal on pin 2 must be 
connected to RX pin 3 of the LDL’s port. 

Figure 6-11: MD30 to SpreadSmartRx connection 
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Figure 6-12 shows the overall connection used in the truck, and the detailed pin connection can be 
found in Figure 2-8. An RS232 connector and an RS232 serial port cable were utilized. The 
brown-colored pin of the RS232 cable is connected to the RS232 connector’s pin 3, and the 
yellow-colored pin is connected to pin 5. 

 

Figure 6-12: Connection setup block diagram 

After successfully configuring the MD30 dual communication with the LDL, one may proceed to 
verify the logger’s functionality, which records MD30 parameters, GPS, and camera frames. 
Synchronization between MD30 and camera data can be achieved as described in Sections 6.1 and 
6.2. Figure 6-13 shows a snippet of the local log generated on the truck. It recorded all sensor 
values properly. This log converts the GPS timing signal to 12-hour values to create more precise 
time stamps. 

In some cases, MD30 data was not stored due to data unavailability at specific time stamps. 
However, these occurrences were infrequent (15 instances of unavailable MD30 records in a data 
set of 1,200 data points). These unstamped instances were removed for further consideration using 
a Python program. Road surface images were captured on the truck using a wide-lens camera. Due 
to the wide lenses, the road surface and the housing edges were captured. Using a Python program, 
the images were cropped to obtain the proper road view, as illustrated in Figure 6-14. The Geotab 
logging mechanism was used for each run of the STL942 MassDOT truck. Logged information 
included time stamps, GPS coordinates, and the salt rate. Logging instances for the Geotab logger 
were verified while operating the MassDOT truck, and all sensors were mounted and utilized. 
Figure 6-15 shows the snippet of the Geotab log recorded during this test. 
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Figure 6-13: Data log generated on the MassDOT truck 

(a) Original image (b) Cropped image 

Figure 6-14: Examples of the captured images 

Figure 6-15: Geotab logger generated on the MassDOT truck 
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