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Catch curve analysis is often used in data-limited fisheries stock assessments to estimate total instantaneous mortality (Z). There are now six
catch-curve methods available in the literature: the Chapman–Robson, linear regression, weighted linear regression, Heincke, generalized
Poisson linear, and random-intercept Poisson linear mixed model. An assumption shared among the underyling probability models of these
estimators is that fish collected for ageing are sampled from the population by simple random sampling. This type of sampling is nearly im-
possible in fisheries research because populations are sampled in surveys that use gears that capture individuals in clusters and often fish for
ageing are selected from multi-stage sampling. In this study, I explored the effects of multi-stage cluster sampling on the bias of the estimates
of Z and their associated standard errors. I found that the generalized Poisson linear model and the Chapman–Robson estimators were the
least biased, whereas the random-intercept Poisson linear mixed model was the most biased under a wide range of simulation scenarios that
included different levels of recruitment variation, intra-cluster correlation, sample sizes, and methods used to generate age frequencies.
Standard errors of all estimators were under-estimated in almost all cases and should not be used in statistical comparisons.
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Introduction
Catch curve analysis, the estimation of total mortality from a sin-

gle sample of age composition data, is often used in fisheries stock

assessments where limited data about the population are avail-

able. In such cases, researchers may use age data collected from

fisheries-independent surveys because it is thought that age fre-

quencies tend to be more representative of the population age

structure. For example, catch curve analysis was used to estimate Z

for the recreationally exploited Lagodon rhomboides (Nelson, 2002),

the commercially exploited Nemadactylus macropterus (Wankowski

et al., 1988), and the formerly commercially exploited Alosa aestiva-

lis and Alosa pseudoharengus collected during fisheries-independent

seine and trawl surveys (ASMFC, 2017).

The common estimators used in catch curve analysis are the

Heincke (1913), Chapman and Robson (1960), simple linear re-

gression (Ricker 1975), and weighted linear regression (Maceina

and Bettoli, 1998) and all have implicit model assumptions that

have to be met to produce unbiased estimates of Z and associated

standard errors. The main assumptions are that the population is

in a steady state, implying that recruitment is constant over time,

Z is constant over time and across ages, all fish are assumed

equally vulnerable to sampling above a certain age (i.e. fully

recruited age), and there are no errors in ageing.

Several studies have investigated the performance of the com-

mon Z estimators when these assumptions are violated. Through

simulation, Dunn et al. (2002) investigated the sensitivity of the

Chapman–Robson and simple linear regression methods to sour-

ces of variability in the true mortality rate, auto-correlated annual

recruitment and ageing error. Similarly, Smith et al. (2012) ex-

plored the sensitivity of the Heincke, Chapman–Robson, simple

linear regression, and weighted linear regression estimators and

their associated variances to variability in uncorrelated annual re-

cruitment and the choice of age at full recruitment under a range

of Z values and sample sizes. In general, use of Chapman–Robson

with the age at peak number plus one year rule for the age at full

recruitment or the weighted linear regression estimator with the
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peak age rule provided the least biased estimates of Z, although

Smith et al. (2012) recommended using the former estimator be-

cause the weighting procedure used in the latter method was

purely ad hoc. More recently, Millar (2015) introduced the gener-

alized Poisson model and the random-intercept Poisson log-

linear mixed effect model, and showed that performance of the

latter is superior to the Chapman–Robson, weighted linear re-

gression, and generalized Poisson models under similar scenarios

because it is a non-steady state model that accounts for annual

variation in recruitment.

In fisheries research, age composition used in catch curve

analysis has to be estimated from samples collected from a popu-

lation. All aforementioned mortality estimators require that aged

fish are sampled randomly from the population to obtain unbi-

ased estimates of Z and associated standard errors from the un-

derlying probability models (Chapman and Robson 1960; Seber

2002). The assumptions of simple random sampling require that

each individual selected for the sample has the same nonzero

probability of occurring in the sample, and that the selection of

one individual is not influenced by other individuals already se-

lected (Lohr 1999). To meet these assumptions, fish would have

to be captured individually and at random from a population.

This type of sampling is nearly impossible in fisheries research be-

cause fish populations are distributed heterogeneously over large

areas and the types of gear generally used (e.g. seines, trawls, etc.)

capture individuals in groups or clusters (Pennington and

Volstad, 1994; Nelson 2014). Cluster sampling creates non-

independence because the inclusion of an individual in a sample

is related to the probability of selecting a cluster, not an individ-

ual, and the selection of one individual becomes dependent on

the selection of another individual (Lohr, 1999). As a result, total

mortality estimators that assume simple random sampling may

produce biased estimates when applied to age composition esti-

mated from cluster sampling because clustering is not taken into

account by the underlying probability models. Jensen (1996) rec-

ognized this issue and modified the Heincke estimator to account

for one-stage (all fish caught are aged) cluster sampling.

The estimation of age composition is complicated further be-

cause a multi-stage cluster sampling design is often used during

fisheries-independent surveys to subsample fish for aging (Aanes

and Volstad, 2015). At the first stage, the clusters (hauls or tows)

are usually taken at random locations. If the number of fish in

a tow is large, second-stage sampling may occur by taking a ran-

dom subsample from each haul to measure characteristics of

fishes such as length. Third-stage sampling may also occur in

which a simple or a stratified (by length) random sample of the

second stage individuals is taken to obtain individuals for estima-

tion of age composition, and often the number of fish taken from

each haul is fixed (ASMFC 1994; Aanes and Volstad, 2015). In

these cases, the numbers-at-age are not those obtained by simply

summing the number of each age in the sample; rather, they have

to be derived by using proportion estimators that correctly weight

samples for haul sizes (Aanes and Volstad, 2015).

A challenge that arises from multi-stage sampling is deciding

which number (the total fish caught in all hauls or actual third-

stage sample size) should be used to derive the age frequencies

from the proportion estimates. A typical goal of a fisheries-

independent survey is to estimate the age composition of the total

catch and may be done by multiplying the total fish caught in all

hauls by the estimated proportions. However, some investigators

may decide to use the actual third-stage subsample size because

age frequencies are usually derived from a sample and the actual

sample size is required in the Chapman–Robson estimator of to-

tal mortality and standard error. In this case, if the total fish

caught in all hauls was used, the resulting estimate of standard er-

ror may be greatly under-estimated. For estimators that use a lin-

ear model framework (e.g. simple linear regression, weighted

linear regression, etc.), this may not be a significant issue because

the number of ages, not the number of fish sampled, is used in

the calculation of standard error of Z (slope of the regression)

(Neter et al., 1996).

Given that total mortality estimators are often used to assess

stocks that are data-limited, an investigation of the performance

of common estimators that researchers will likely apply to age fre-

quency data collected in fish surveys is warranted. In this study, I

used a simulation of a fish survey to explore the effects of the de-

gree of clustering, multi-stage cluster sampling, subsample size

and choice of the expansion number used to derive numbers-at-

age from weighted proportions on the performance of catch curve

estimators and standard errors.

Methods
Estimators
The total mortality estimators examined in this study were the

Chapman and Robson (1960), simple linear regression (Ricker

1975), weighted linear regression (Maceina and Bettoli, 1998), the

modified version of the Heincke method proposed by Jensen

(1996) to correct for one-stage cluster sampling, the Poisson log-

linear model (Millar 2015), and a random-intercept Poisson log-

linear mixed model formulated by Millar (2015). It should be

noted that the random effects mixed modeling framework has the

potential to account for sources of variation in multistage sam-

pling, but investigation of such models was beyond the scope of

this paper. The details of each method explored herein are de-

scribed below. The Chapman and Robson (1960) method deter-

mines total mortality from a natural log-transformed annual

survival rate determined from age composition data modelled as

a geometric distribution under the steady-state assumption. The

formula for total mortality (ẐCR) corrected for bias due to log-

transform is

ẐCR ¼ log e

Pr
a¼0

a �ma

mþ ð
Pr
a¼0

a �maÞ � 1

0
BBB@

1
CCCA

� ðm� 1Þðm� 2Þ

m
�

mþ ð
Pr
a¼0

a �maÞ � 1
��
ð
Pr
a¼0

a �maÞ þ 1
�

where a is the age of each fully recruited age-group, r is the oldest

age, ma is the number of fish of age a in the sample, and m is the

total number of fish in the sample. The ages of the fully recruited

fish are standardized to begin at a¼ 0. The estimated standard er-

ror of ẐCR is

SEðẐCRÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e�ẐCR Þ2

me�ẐCR

s

Chapman and Robson (1960) noted under the steady state as-

sumption that the age frequencies could be modelled as a Poisson
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distribution as well, and Millar (2015) showed total mortality

could be estimated by using a generalized Poisson log-linear

model:

la ¼ exp a�Z �a

where ma is Poisson mean at age a, a is the fixed intercept and Z is

the fixed slope. The model is fitted to numbers-at-age with age as

a covariate via maximum likelihood with a log-link function. The

estimate of total mortality (ẐGL) is the negative of the model

slope.

The simple linear regression method is a common technique

used to estimate total mortality (Ricker 1975; Seber 2002). A sim-

ple linear regression model is fitted to the natural-log of the num-

ber of fully recruited fish greater than zero with age as a covariate

by using least-squares. The estimate of total mortality (ZLM) is

the negative of the slope coefficient. The weighted linear regres-

sion estimator (ẐWL) introduced by Maceina and Bettoli (1998)

determines total mortality in a two step procedure. A simple lin-

ear regression is first fitted to the natural-log of the number of

fully recruited fish greater than zero with age as a covariate. A

weighted linear regression model is then fitted to the same data

but the predicted values of natural-log numbers-at-age from the

simple linear regression are used as weights in the estimation. The

estimate of total mortality (ẐWL) is the negative of the slope

coefficient.

Jensen (1996) adapted the Heincke (1913) total mortality esti-

mator to first-stage cluster sampling (all fish in each haul are

aged) by estimating annual mortality as a ratio of the sum of the

number of the first fully recruited age from all hauls and the sum

of the number of all fully recruited fish from all hauls.

Ẑ JN ¼ � log e 1�

Pn
j¼1

m1j

Pn
j¼1

Pmax

a¼1

maj

0
BBBB@

1
CCCCA

where m1j is the number of the first fully recruited age in haul j,

maj is the number of fully recruited age a fish in haul j and n is

the total number of hauls. Improved standard errors are derived

herein by using jackknife method where jackknifing is performed

at the haul level (Pennington and Volstad, 1994).

Millar (2015) showed that a better model for estimating total

mortality when the steady state assumption is violated is the

random-intercept Poisson log-linear mixed effects model. This

model takes into account annual variation in recruitment, mak-

ing it a non-steady state model. The model form is

la ¼ exp aþba�Z �a

where ma is Poisson mean number at age a, a is the fixed inter-

cept, ba are normally distributed (N(0, r2R)) random effects and

Z is the fixed slope coefficient. The model is fitted to numbers-at-

age with age as a covariate via maximum likelihood with a log-

link function. The estimate of total mortality (ẐRE) is the negative

of the model slope.

On the basis of Smith et al. (2012) and Millar (2015), the ages

considered fully recruited were selected by using the “peak age

plus one year” criterion for the ẐCR, ẐGL, ẐRE, and ẐJN estimators

and the “RG” criterion (peak age and all age groups with nonzero

catch) for the ẐLM and ẐWL estimators. In addition, the standard

errors of ẐCR and ẐGL were corrected for over-dispersion by mul-

tiplying each by the square-root of a variance inflation factor

(Burnham and Anderson, 2002) calculated by using the chi-

square goodness of fit statistic of each model. Only ages with an

expected frequency of at least unity were used in the calculation

of over-dispersion (Millar 2015).

All models were fitted to simulated age frequencies data (de-

scribed below) by using statistical functions in R (R Development

Core Team, 2018). The functions and model code used for each

estimator are listed in Table 1.

Simulations
The performance of each estimator was explored over a range of

true Z values, q, third-stage subsample sizes (fish aged per haul)

and choice of expansion number (total fish caught in all hauls or

third-stage sample size). Because variability in recruitment is an

important factor affecting estimator performance (Dunn et al.,

2002; Smith et al. 2012; Millar, 2015), the impact of recruitment

variation was also examined in conjunction with these factors.

For comparison, bias of estimators using age frequencies from

first-stage sampling (all fish captured were aged) was calculated

under all scenarios. Under the q¼ 0 with first-stage sampling, the

bias of each estimator was considered the baseline and is com-

pared with bias under the remaining scenarios to determine the

influence of a factor.

Data generation
A basic population dynamics model nearly identical to Millar

(2015) was created to generate population numbers-at-age with

true Z values ranging from 0.1 to 1.0 per year. The relative num-

ber of age-1 fish in the population in each year was generated as-

suming first-order autocorrelation following Dunn et al. (2002):

Table 1. The R package, function and code snippet used to fit each total mortality estimator to simulated age composition data.

Estimator Package Function Code Snippet

CR fishmethods agesurv agesurv(age¼age, estimate¼“z”, method¼“crcb”)
LM stats lm lm(log(number)�age, data¼datafile)
WLM stats lm lm(log(number)�age, weights¼predict(lm(log(number)�age, data¼datafile)), data¼datafile)
GLM

a,b stats glm glm(number�age, family¼“poisson”, link¼“log”, data¼datafille)
RE

a lme4 glmer glmer(number�ageþ(1jage), family¼“poisson”, link¼“log”, data¼datafile)
JEN – – written code
aThe code snippet given in Millar (2015) was used to extend the age-frequency data.
bAdditional code was written to calculate the over-dispersion parameter.
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Nt0;1 ¼ exp�1

Nt ;1 ¼ exp/ logðNt�1;1Þþ
ffiffiffiffiffiffiffiffi
1�/2
p

��t

where t0 is the first year of the simulation, Nt,1 is the relative

number of fish of age 1 in year t, �t are independently distributed

normal random deviates (N(0,r2
R)) and / is the autocorrelation

coefficient. Following Millar (2015), the effects of differing levels

of recruitment variability were investigated by using a fixed / of

0.37 and rR equal to 0.35, 0.67, and 1.17.

The relative numbers of fish age 2 and older in the population

were determined by forward projection of the age 1 numbers:

N¼Nt�1;a�1 � exp �Za�1

where Za is the total mortality for age a, which is the sum of the

partially recruited instantaneous fishing (saF) and natural (NM)

mortality rates (Za¼ saFþNM). Following Millar (2015), fully

recruited F and NM were each set to half of the true Z value and

the partial recruitment (sa) vector was 0.25 for age-1, 0.75 for

age-2, 0.964 for age-3, 0.996 for age-4, and 1.00 for ages 5 and

older. The maximum number of ages in the population was set to

100. The population was projected for 200 years. The population

age composition was expressed as probabilities obtained from the

last year’s abundances:

pa ¼
saNaP100

a¼1

saNa

To simulate haul-specific survey catches and age compositions,

first-stage sampling was accomplished by first randomly generat-

ing catch for 150 hauls from a negative binomial distribution, pa-

rameterized with mean haul size and dispersion parameter set at

200 and 0.7, respectively, by using function rnegbin in the R pack-

age MASS (Venables and Ripley, 1999). The negative binomial

parameters are intermediate values for catch distributions of the

top five species in five trawl surveys examined in Nelson (2014).

The first 20 hauls with positive catches were then used in the sim-

ulation. The age frequencies for each haul were then randomly

generated from the Dirichlet-Multinomial distribution, a multi-

variate generalization of beta binomial distribution that incorpo-

rates correlation among observations, by using function simPop

in R package dirmult (Tvedebrink, 2013). The Dirichlet-

Multinomial distribution was parameterized with the total catch

of each haul, age-probabilities (pa), and an intra-cluster correla-

tion value (q), which measures the degree of clustering (within-

cluster similarity). Age compositions were generated with four

levels of intra-cluster correlation (q¼ 0.0, 0.1, 0.2, and 0.3).

Under q¼ 0, bias in estimates represents what would result under

simple random sampling. The maximum value (0.3) is close to

the maximum (0.26) estimated for Arctic cod by Aanes and

Pennington (2003) from commercial catches. In reality, the intra-

cluster correlation could be higher for fisheries-independent sur-

veys, but there were no estimates available in the literature.

To investigate the impact of subsample size on the performance

of the Z estimators when third-stage subsampling occurs, a random

second-stage subsample equal to 30% (intermediate percentage of

fish sampled for lengths in the surveys examined by Nelson 2014)

of the total number in each haul was taken from each haul using a

multinomial model parameterized with the haul catch age-

probabilities. The third-stage sampling was accomplished by ran-

dom sampling of the individuals of each haul from the second-

stage sampling using a multinomial model parameterized with

second-stage calculated age-probabilities. Two fixed subsample

sizes (10 and 50 fish aged per haul) were explored during third-

stage sampling, and represented �175 and 626 fish, respectively,

sampled on average (not all hauls have enough fish to obtain the

fixed sample size). For first-stage sampling, the total number of fish

in all hauls averaged 4000 individuals.

The survey age composition of hauls was estimated from the

third-stage subsample by calculating the proportions-at-age (pa):

p̂a ¼

Pn
i¼1

Mi � p̂i;a

Pn
i¼1

Mi

where Mi is the total number of fish in haul i, pi,a is the estimated

proportion of age a in haul i from subsampling and n is the num-

ber of hauls (Aanes and Volstad, 2015). pi,a is calculated as mi,a/

mi where mi,a is the number of age a fish in haul i and mi are the

number sampled in the third stage from haul i.

To explore the impact of using the total number of fish caught

in all hauls (M) or the third-stage total subsample size (m) as the

expansion number to develop the numbers-at-age from the

proportions-at-age, age frequencies of each age a were derived by:

M̂ a¼p̂a �
Xn

i

Mi

and

m̂a¼p̂a �
Xn

i

mi

Numbers-at-age were rounded to the nearest whole integer to

specify discrete counts.

Performance
For each level of true Z and rR, 4000 population age frequencies

were generated. If the number of fully recruited age classes was

less than three, the catch age frequency was rejected and replaced

with a catch age frequency from a new population. Intra-cluster

correlation was introduced using the same 4000 simulated popu-

lation age frequencies for each level of q.

The performance of each estimator was measured with percent

bias (%BIAS) following Smith et al. (2012). For each estimator,

%BIAS of a Ẑ was calculated as

%BIASðẐÞ ¼ EðẐÞ � Z

Z
� 100

and %BIAS of the standard error (SE(Ẑ)) was calculated as

%BIASðSEðẐÞÞ ¼ EðSÊðẐÞÞ � SEðẐÞ
SEðẐÞ

� 100

where E() denotes expectation, Z is the true value and SE(Ẑ) is

the true SE calculated as the standard deviation of the 4000 simu-

lated estimates of Z. E(Ẑ) and E(SÊ(Ẑ)) were approximated by
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averaging estimates of Ẑ and SÊ(Ẑ) over the simulation results

(Smith et al., 2012).

Results
Performance of Z estimators
The trends and magnitudes in %BIAS of ẐCR and ẐGL were simi-

lar across all scenarios (Figures 1 and 2). Under q¼ 0 (no intra-

cluster correlation), %BIAS from first-stage sampling (all fish

aged) was relatively low and negative, but it became more nega-

tive as true Z and rR increased (Figures 1 and 2). Compared with

these baseline values, the impact of increasing q was to increase

bias in the positive direction at low Z and to increase bias in the

negative direction at high Z, although %BIAS in ẐGL became

slightly more positive at low Z and less negative at high Z

(Figures 1 and 2). As recruitment variation increased, these

patterns became more pronounced. The effect of third-stage sub-

sample size was to slightly shift bias in the positive direction at

low Z and in the negative direction at high Z as subsample size

decreased. The expansion number had little impact on bias

(Figures 1 and 2). Overall, %BIAS under all scenarios was rela-

tively narrow (ẐCR range: –23.2%, 12.5%; ẐGL range: –20.6%,

8.5%).

%BIAS of ẐLM and ẐWL was similar in trend but different in

magnitude across all scenarios. Under the q¼ 0 scenarios, %BIAS

for first-stage sampling was typically negative, but it became more

negative as rR increased, particularly at low Z (Figures 3 and 4).

Compared with these baselines, the effect of increasing q was

for %BIAS to become more negative at low Z and more positive

at intermediate Z values as rR increased (Figures 3 and 4). The

impact of third-stage sampling was to shift overall bias in the neg-

ative direction as subsample size decreased. When m was used in

Figure 1. Percent bias (%Bias) of the Chapman–Robson total mortality rate (Z) estimator vs. the true total mortality under different levels of
recruitment variation (rR), intra-cluster correlation (q), choice of using the total number caught (M), or the total subsample size (m) to
derived age frequencies and third-stage subsample size (10 or 50 fish per haul).
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expansion, bias shifted in the negative direction, although less so

for ẐWL (Figures 3 and 4). Overall, the range of %BIAS under all

scenarios was wide (ẐLM range: –55.6%, 3.3%; ẐWL range: –

42.4%, 15.1%).

Under the q¼ 0 scenarios, the %BIAS of the ẐJN estimator was

mostly negative at low rR, but it became more positive at low

true Z values and more negative at high Z values as rR increased

(Figure 5). The effect of increasing q was to slightly increase bias

in the negative direction (Figure 5). The impact of subsample size

was for bias to become more negative at low sample size (10 fish

per haul) (Figure 5). Overall, the range of %BIAS of ẐJN under all

scenarios was wide (range: –39.2%, 42.4%).

Under the q¼ 0 scenarios, %BIAS of ẐRE for first-stage sam-

pling was very low (range: –1.6%, 0.8%) in all rR scenarios and

became only slightly negative as Z increased (Figure 6). As q in-

creased, %BIAS of ẐRE in all scenarios became more positive

(Figure 6). The effect of third-stage subsampling was to increase

bias in the positive direction as subsample size decreased and

when M was used in expansion (Figure 6). Unexpectedly, the

converse was true when m was used in expansion (Figure 6).

Overall, the range of bias for ẐRE under all scenarios was very

wide (range: –3.6%, 139.1%).

Performance of standard error estimators
The performance of standard error estimators was poor in most

scenarios as the true standard error was typically under-estimated

(Supplementary Figures S1–S6). %BIAS was the most negative in

baseline cases (first-stage sampling and all rRs) under q¼ 0 and

negative bias increased with increasing rR. SE(ẐRE) was least bi-

ased negatively (range: –37.6, –22.6), followed by SE(ẐLM) (range:

–39.5, –11.5), SE(ẐWLM) (range: –46.6, –31.0), SE(ẐGL) (range: –

53.8, –39.3), SE(ẐCR) (range: –57.2, –39.9), and SE(ẐJN) (range: –

93.7, –78.1). In general, the effect of increasing q, decreasing sub-

sample size and using m in expansion was for %BIAS to become

Figure 2. Percent bias (%Bias) of the generalized Poisson linear model estimator of total mortality rate (Z) vs. the true total mortality under
different levels of recruitment variation (rR), intra-cluster correlation (q), choice of using the total number caught (M), or the total
subsample size (m) to derived age frequencies and third-stage subsample size (10 or 50 fish per haul).
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less negative, although the trends in bias typically changed with

increasing rR (Supplementary Figures S1–S6). Bias in SE(ẐCR),

SE(ẐGL), SE(ẐWLM), SE(ẐJN), and SE(ẐRE) was particularly sensi-

tive to the expansion number used and third-stage subsample

size, whereas bias in SE(ẐLM) was particularly sensitive to sub-

sample size regardless of the expansion number used

(Supplementary Figures S1–S6). Plots of %BIAS in SE vs. %BIAS

in Z showed that there were apparent relationships between bias

for several estimators (Figure 7). %BIAS in SE became less nega-

tive as the bias in ẐLM, ẐWLM, and ẐJN became more negative and

as bias in ẐRE became more positive (Figure 7).

Discussion
This study demonstrated that the performance of the six Ẑ esti-

mators examined herein are affected by q, subsample size in

third-stage sampling, the choice of expansion number and the

level of rR. In general, increasing q, small subsample size per

haul, and use of total fish caught in all hauls to generate the age

frequencies tended to increase bias (in negative or positive direc-

tion) in most Ẑ estimators compared with the baseline estimates

under the levels of rR examined, although to different degrees.

Bias in ẐCR and ẐGL was influenced modestly by rR and q, but

appeared relatively insensitive to the expansion number and sub-

sample size. Bias in ẐJN was very sensitive to rR and modestly sen-

sitive to subsample size. Bias in ẐLM and ẐWLM was sensitive to

increasing q and rR under first-stage sampling, but was most sen-

sitive to decreasing sample size under third-stage sampling and

expansion number. Increasing q, decreasing subsample size and

using M to create age frequencies greatly increased bias in ẐRE.

Compared with work of other researchers, results of this study

for scenarios under q¼ 0 and first-stage sampling were similar in

magnitudes and trends in bias of Z estimators. Smith et al. (2012)

and Millar (2015) under low ageing error scenarios also showed

that bias in ẐCR estimates was relatively low (under 22%), typi-

cally became more negative as Z increased, was moderately sensi-

tive to increasing rR and as sample size decreased. Millar (2015)

Figure 3. Percent bias (%Bias) of the standard linear model estimator of total mortality rate (Z) vs. the true total mortality under different
levels of recruitment variation (rR), intra-cluster correlation (q), choice of using the total number caught (M), or the total subsample size (m)
to derived age frequencies and third-stage subsample size (10 or 50 fish per haul).
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found that the bias of ẐGL was similar to ẐCR, but tended to be

slightly less negative. For ẐLM, decreasing negative bias with

increasing Z was also observed by Smith et al. (2012) for Z> 0.3

using the peak age criterion. For ẐWL, increasing negative bias

with increasing Z was observed by Smith et al. (2012) for values

of Z> 0.3. The emerging dome-shaped pattern in bias (high neg-

ative bias at low Z, low bias at intermediate Z and high negative

bias at high Z) found in this study as rR increased and subsample

size decreased was also observed by Millar (2015) across all low

ageing error scenarios. Trends in bias of ẐJN found in this study

(declining bias with increasing Z) were similar to the trends in

bias for the Heincke method described by Smith et al. (2012)

but the magnitude shown in this study was much lower and

more negative at intermediate and high Z values. The trends and

magnitudes in bias of ẐRE and sensitivity to rR were nearly identi-

cal to those observed in Millar (2015) for low ageing error

scenarios.

The influence of ageing error on bias of the Z estimators was

not examined like Millar (2015). Ageing error is likely a source of

bias in reality, but the number of factors examined had to be re-

stricted to a manageable size to make analysis and interpretation

easier. Increased ageing error would likely increase estimator bias

in the negative direction under the q¼ 0 scenarios, as found by

Millar (2015), but the increased bias would be likely offset by

the directional change in bias observed under the remaining

scenarios.

Under the factors explored in this study, it was shown that esti-

mates of standard errors were biased, although to different

degrees. Under q¼ 0 and no sub-sampling, the baseline standard

errors were under-estimated in all cases. Equivalent observations

were noted by Smith et al. (2012) and Millar (2015) in their stud-

ies. Increasing q, lower subsample size and, depending on the es-

timator, the choice of expansion number caused bias to become

less negative under the levels of rR examined compared with the

Figure 4. Percent bias (%Bias) of the weighted regression estimator of total mortality rate (Z) vs. the true total mortality under different
levels of recruitment variation (rR), intra-cluster correlation (q), choice of using the total number caught (M), or the total subsample size (m)
to derived age frequencies and third-stage subsample size (10 or 50 fish per haul).
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baseline estimates. One might interpret these findings as an im-

provement in the estimates of SE. However, it would be an incor-

rect conclusion because the declines in negative bias represent a

change in the direction of bias, not an improvement. This feature

is shown in Supplementary Figure S6 for SE(ẐRE) where SE bias

at high Z approached and then exceed 0% bias as q increased. If q
continued to increase, bias would likely become even more posi-

tive given the observed trends.

Unfortunately, there was no single estimator that provided un-

biased estimates of total mortality under simulated multi-stage

cluster sampling. However, based on the range of bias in Z

estimates and the apparent sensitivities to changes in the factors

examined, there are two estimators that eclipsed the performance

of the others: ẐGL and ẐCR. These estimators produced the nar-

rowest range of bias (ẐGL range: –20.6%, 8.5%; ẐCR range: –

23.2%, 12.5%) under all scenarios (although ẐGL performed

slightly better), and were only modestly sensitive to changes in rR

and q and rather insensitive to subsample size and expansion

number. However, the standard errors produced by these estima-

tors (and the remaining estimators) were quite biased as they

were under-estimated in almost all cases. Therefore, standard

errors should not be used in any type of statistical comparison

because the type I error rate (probability of rejecting a true null

hypothesis) will be greatly impacted and, in cases where SEs are

under-estimated, significant differences will often be found where

none exists (Nelson 2014).

The remaining estimators (ẐJN, ẐLM, or ẐWLM) should not be

used because the former was very sensitive to recruitment varia-

tion and the latter two were moderately sensitive to all factors ex-

amined. In addition, the random-intercept Poisson log-linear

mixed effects model should not be used when data are collected

through multi-stage cluster sampling. If it were possible to col-

lected fish individually and at random required under the model

assumption, then ẐRE would be the best estimator by far as shown

Figure 5. Percent bias (%Bias) of the modified Heincke estimator of total mortality rate (Z) vs. the true total mortality under different levels
of recruitment variation (rR), intra-cluster correlation (q), choice of using the total number caught (M), or the total subsample size (m) to
derived age frequencies and third-stage subsample size (10 or 50 fish per haul).
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by Millar (2015). However, when third-stage subsampling occurs,

intra-cluster correlation is present, subsample size is low or

the age frequencies are created by using the total number of fish

caught in all hauls, the performance of the estimator degrades

significantly. The degraded performance is likely the result of

the signal in age-specific recruitment deviations being affected by

the multi-stage random sampling because the proportions of

older, low frequency age classes are over-represented in many

cases. The random effects of those age classes are then over-esti-

mated, which influences the steepness of the slope in numbers-at-

age vs. age relationship, thus producing higher mortality rates.

Surprisingly, the estimator performed better when the third-stage

total sub-sample size was used to develop the age frequencies

and 10 fish per haul were sub-sampled. This is likely an artefact

of rounding the estimated numbers-at-age to whole digits, which

eliminates the problematic, older, low frequency age classes that,

when proportions are multiplied by small total subsample sizes,

have fractional numbers <0.5.

This work showed that the least-biased estimators are the gen-

eralized Poisson linear model and the Chapman–Robson estima-

tor, and these should be used to estimate total mortality when

data are collected from fish trawl surveys. However, it should be

kept in mind the only factor that can marginally reduce bias in

ẐGL and ẐCR estimators, and is under control of the investigator,

is sample size. As shown above, bias in ẐGL and ẐCR improves

modestly as the subsample size increases, and this is directly

related to the precision of the age composition estimates. In

multi-stage cluster sampling, the best strategy for improving the

precision of age composition estimates is to increase the number

of hauls (or tows) that are made and sampled during a fish sur-

vey, not the number of fish sampled in each haul, because it is the

variation among clusters that determines mostly the precision of

Figure 6. Percent bias (%Bias) of the random-intercept Poisson log-linear mixed model estimator of total mortality rate (Z) vs. the true total
mortality under different levels of recruitment variation (rR), intra-cluster correlation (q), choice of using the total number caught (M), or
the total subsample size (m) to derived age frequencies and third-stage subsample size (10 or 50 fish per haul).
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estimates when intra-cluster correlation is high (Pennington and

Volstad, 1994; Bogstad et al., 1995; Aanes and Pennington, 2003).

In fact, it appears the optimal sampling strategy is to measure

fewer individuals from each haul (Bogstad et al., 1995; Zhang and

Cadrin, 2013; Aanes and Volstad, 2015). Therefore, the investiga-

tor must be aware that, if intra-cluster correlation is present and

only a few hauls are available from which to sample, the precision

of age composition estimates will be likely low (and bias in Z

large), and increasing the number of fish sampled from each haul

will not likely make a significant improvement in the bias of any

total mortality estimator (see Supplementary Table S1).

None of the estimators examined herein was specifically for-

mulated to incorporate intra-cluster correlation or the extra vari-

ation of multistage sampling. As stressed by one reviewer, the

Poisson log-linear mixed modeling framework has the best poten-

tial for incorporating these sources of variability by modeling

data from individual hauls and such configurations should be ex-

plored in the future. However, it should be noted that issues arise

from these configurations (e.g. how to apply the “peak age” crite-

rion to individual hauls) that will need to be assessed before such

models are presented.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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