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Abstract
The timing of life history events in many plants and animals depends on the seasonal fluctuations of specific envi-

ronmental conditions. Climate change is altering environmental regimes and disrupting natural cycles and patterns
across communities. Anadromous fishes that migrate between marine and freshwater habitats to spawn are particu-
larly sensitive to shifting environmental conditions and thus are vulnerable to the effects of climate change. However,
for many anadromous fish species the specific environmental mechanisms driving migration and spawning patterns are
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not well understood. In this study, we investigated the upstream spawning migrations of river herring Alosa spp. in 12
coastal Massachusetts streams. By analyzing long-term data sets (8–28 years) of daily fish counts, we determined the
local influence of environmental factors on daily migration patterns and compared seasonal run dynamics and environ-
mental regimes among streams. Our results suggest that water temperature was the most consistent predictor of both
daily river herring presence–absence and abundance during migration. We found inconsistent effects of streamflow
and lunar phase, likely due to the anthropogenic manipulation of flow and connectivity in different systems. Geo-
graphic patterns in run dynamics and thermal regimes suggest that the more northerly runs in this region are rela-
tively vulnerable to climate change due to migration occurring later in the spring season, at warmer water
temperatures that approach thermal maxima, and during a narrower temporal window compared to southern runs.
The phenology of river herring and their reliance on seasonal temperature patterns indicate that populations of these
species may benefit from management practices that reduce within-stream anthropogenic water temperature manipula-
tions and maintain coolwater thermal refugia.

In many plants and animals, the timing of cyclical life
history events is driven by environmental conditions that
fluctuate within and across seasons (Forrest and Miller-
Rushing 2010). Annual patterns of migration and repro-
duction, for example, are often timed to match periods of
resource availability. However, shifts in environmental
regimes due to climate change are disrupting the timing of
natural cycles across communities (Parmesan and Yohe
2003; Staudinger et al. 2019). Asynchrony in biotic inter-
actions and the resulting breakdown of trophic linkages
constitute one of the primary ways in which climate
change is contributing to biodiversity loss (Bellard et al.
2012). Thus, it is critical to understand the environmental
drivers of phenological patterns to assess the potential
impact of climate change on natural populations and to
develop relevant adaptation strategies.

There is mounting evidence that climate change is alter-
ing the timing of migration and spawning cycles of anadro-
mous fishes by shifting distributions, restricting suitable
habitat, or shortening the window of time (i.e., phenophase)
in which ideal conditions for those activities take place
(Nye et al. 2009; Peer and Miller 2014; Lynch et al. 2015;
Lombardo et al. 2019; Nack et al. 2019; Staudinger et al.
2019). In addition, many anadromous fishes are subjected
to overfishing, bycatch in marine fisheries, degradation and
destruction of freshwater spawning habitat by human activ-
ities, and the obstruction of spawning migration by dams
and culverts (Hall et al. 2012; ASMFC 2017). For these rea-
sons, anadromous fish species have been identified as being
highly vulnerable to the cumulative effects of climate
change (Hare et al. 2016) and other direct anthropogenic
pressures. This is especially true for regional populations of
river herring Alosa spp., which are at historically low abun-
dances across their range along the Atlantic coast of North
America. River herring is the collective name for two
anadromous fish species: the Alewife A. pseudoharengus
and Blueback Herring A. aestivalis. In the spring, adult
river herring annually migrate from marine environments
up coastal streams to freshwater lakes to spawn. The speci-
fic timing of migration can vary throughout the river her-
rings’ range, mirroring latitudinal differences in the onset of

spring. In the New England and Gulf of Maine regions,
migrations typically span from March to June. Historically,
these spring migrations were initiated when rivers reached
around 10°C and ended at 20°C (Kissil 1974; Loesch 1987;
Ellis and Vokoun 2009; Rosset et al. 2017). In recent dec-
ades, climate change has resulted in water temperatures
reaching these thresholds earlier in the year (Friedland
et al. 2015; Henderson et al. 2017). Thus, warming tempera-
tures could help to explain river herring migrations starting
earlier in the spring as well as the considerable interannual
variation in migration patterns (Huntington et al. 2003;
Ellis and Vokoun 2009; Lombardo et al. 2019). For exam-
ple, river herring migrations in the Albemarle Sound water-
shed, North Carolina, started 16 d earlier in the 2010s
compared to the 1970s (Lombardo et al. 2019).

Within-season, intra-annual movement dynamics may
also be vulnerable to shifts in environmental regimes due
to climate change. Understanding changes in fine-scale,
within-season movement patterns is important because
they can reveal more nuanced responses to altered envi-
ronmental conditions and can provide insights into
whether a species or population has the flexibility to
adjust its behavior accordingly, thus adapting in place
(Parmesan 2007; Beever et al. 2016). However, unlike
interannual migration patterns, the environmental drivers
of within-season patterns are less clear. Fluctuations in the
rate of seasonal warming and daily variability in tempera-
ture and precipitation are becoming increasingly variable
in many systems (USGCRP 2018; Lombardo et al. 2019).
This could affect the dynamics of upstream pulses of
movement exhibited by adult river herring, which are
characterized by peaks and troughs of high and low abun-
dance throughout the season (Nelson et al. 2020).

Among different anadromous fish species, temperature,
river flow, lunar cycle (which also corresponds with tidal
cycle), and the relative abundance of conspecifics have
varying influences on daily movement patterns (Leggett
1977; for recent examples, see Keefer et al. 2008; Bizzotto
et al. 2009; Snook et al. 2016; Berdahl et al. 2017; Giri
et al. 2019). In some cases, daily fluctuations in run
strength occur without obvious environmental triggers
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(Berdahl et al. 2017). For river herring, previous behav-
ioral experiments (Collins 1952) and counts of adults
migrating upstream (Saila et al. 1972; Richkus 1974;
Ogburn et al. 2017; Rosset et al. 2017) suggested a corre-
lation between daily movement and water temperature but
found conflicting or inconclusive results for the influence
of river flow and lunar cycle. Given the interannual and
interpopulation variability in environmental regimes and
run dynamics (Ogburn et al. 2017; Rosset et al. 2017;
Lombardo et al. 2019), a multi-year, regional examination
of river herring migration patterns is needed to disentangle
the variety of possible drivers of river herring migrations
and aid in optimizing monitoring efforts, population mod-
els, and management strategies. Understanding the inter-
annual drivers of spawning migrations has been useful for
the management of other anadromous fish stocks in set-
ting seasonal closures and time-of-year restrictions (Keefer
et al. 2008; Peer and Miller 2014). Understanding within-
season movements may help to explain when large pulses
of fish move to their spawning grounds and what environ-
mental drivers best predict these events. This information
may be useful for guiding river herring management in
terms of needed adjustments to water withdrawals and
other activities that could interrupt major migrations
upstream.

To address these information needs, we investigated
the spawning migration of river herring (Alewife and
Blueback Herring in aggregate) across 12 coastal streams
in Massachusetts using long-term data sets (8–28 years)
of daily fish counts. As a primary aim, we examined the
relative influence of water temperature and streamflow
variability as well as lunar phase on two metrics of daily
river herring movement within each stream: fish
presence–absence and abundance. Because previous

behavioral experiments indicated a link between water
temperature and upstream migrations in river herring
(e.g., Ogburn et al. 2017; Rosset et al. 2017), we
expected temperature to be a consistent predictor of daily
movement. In addition, we compared the long-term char-
acteristics of the 12 streams, including environmental
regimes and seasonal run dynamics, to identify any
stream-specific or geographic patterns in river herring
runs. We discuss our results in the context of climate
change and potential management decisions.

METHODS
Daily fish counts.—We compiled data sets of daily

river herring counts during upstream migration from 12
coastal streams in Massachusetts between 1990 and 2017,
which resulted in 8–28 years of data per stream (Table 1;
Figure 1). The data were collected as part of a long-term
monitoring program based on a collaborative effort
between the Massachusetts Division of Marine Fisheries
(MA DMF) and associated stakeholders, including
municipalities, watershed associations, and citizen scien-
tists (Nelson et al. 2011). The counts were collected pri-
marily by using visual counting methods, but video
monitoring systems and electronic counting systems were
used at a subset of locations. Collection methods were
consistent within each stream over the course of the time
period evaluated except for the Parker River, where
visual counts (1997–2012), an electronic counter (2013),
and video monitoring (2014–2017) were used. The count-
ing method was always consistent within a given season
at each site.

Visual counts were conducted in eight streams using
a two-way stratified random design according to

TABLE 1. Number of years of data and river herring run size (mean± SE) for each study stream, ordered from north to south along the Mas-
sachusetts coast. Annual runs size data was provided by the Massachusetts Division of Marine Fisheries and compiled by R. M. Dalton, Duke
University. The Monument River is located on the Cape Cod Canal and can be accessed from either the north or south side of the peninsula.

Stream name Abbreviation Total years Years for models (n)
Annual run size
(number of fish)

Parker River PAR 19 18 11,709 ± 3,797
Ipswich River IPS 19 7 873± 196
Little River LIT 15 9 1,890 ± 373
Jones River JON 13 7 2,784 ± 458
Town Brook TOW 8 7 153,907± 10,206
Monument River MON 28 26 174,175± 20,451
Stony Brook STO 11 10 89,657 ± 28,338
Herring (Harwich) River HER 9 8 80,572 ± 25,499
Marstons Mills River MAM 12 5 27,338 ± 6,729
Acushnet River ACU 13 12 3,555 ± 865
Agawam River AGA 12 11 41,203 ± 6,810
Nemasket River NEM 20 18 571,239± 62,746

RIVER HERRING SPAWNING MIGRATION 3



methodologies described by Nelson (2006). In this design,
counts were randomly collected every day from three 4-h
periods (strata). Estimates of total daily passage were cal-
culated from these counts (following the statistical proce-
dures of Nelson 2006). The eight streams were selected
based on a minimum time series of counts (>5 years) and
a high probability to detect year-to-year changes in abun-
dance and trends using the power analysis procedures
described by Gerrodette (1987).

The MA DMF monitored one stream by using a video
monitoring system and three streams by using electronic
resistivity counters (Smith-Root Models 1101 and 1601).
Evaluation of these counting methods by Sheppard and
Bednarski (2015) determined that their accuracy decreases
as the passage rate increases. To correct for this decreased
accuracy, visual counts were additionally conducted at

random periods in these systems to calculate a correction
factor for the estimates of daily passage. Information for
each stream, including a map, counting method, and loca-
tion of the count, is included in the online Supplement
(Figures S1–S12).

Environmental factors.—Mean daily water temperatures
(°C) for each stream were synthesized from measurements
made using HOBO ProV2 temperature loggers or mercury
thermometers at the locations where the fish counts were
taken. Values associated with the lunar cycle, daily moon
phase, were adapted from the MULTIFAN-CL fisheries
stock assessment model using code in R (R Core Team
2018) from the R4MFCL project (Hoyle et al. 2009).
Years and streams with fish counts but no corresponding
environmental data or with inconsistent data were not
included in the analyses.

FIGURE 1. Locations of the 12 streams in Massachusetts where daily river herring counts and stream temperatures were taken. Stream abbreviations
are defined in Table 1.
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Mean daily streamflow (m3/s), also referred to as
stream discharge, was estimated using Weather Research
and Forecasting Hydro (WRF-Hydro) to predict hydro-
logical conditions in the river herring spawning runs
(Gochis et al. 2015). The WRF-Hydro modeling system
couples hydrological model components to atmospheric
models and other Earth System modeling architectures
(Gochis et al. 2015). We ran WRF-Hydro in uncoupled
mode using the Noah-MP model (Niu et al. 2011; Yang
et al. 2011). For the forcing data, we used eight climate
variables: incoming shortwave radiation (W/m2), incoming
longwave radiation (W/m2), specific humidity (kg/kg), air
temperature (K), surface pressure (Pa), near-surface wind
north–south (m/s), near surface wind east–west (m/s), and
precipitation rates (mm/s). We accessed hourly climate
variables from the North American Land Data Assimila-
tion System project that matched to the years of the pre-
sent study (Xia et al. 2012). The resolution of the WRF-
Hydro model is 1 km, and the terrain routing resolution is
250m. The model was calibrated using direct flow obser-
vations made by the U.S. Geological Survey from neigh-
boring gauged streams (streamflow observations from
Geospatial Attributes of Gages for Evaluating Streamflow
II; Falcone 2011). See Somos-Valenzuela and Palmer
(2018) for a full description of the flow models used in this
study, including model performance and limitations.

Statistical analyses.—Analyses of daily river herring
counts were conducted in R version 3.5.2 (R Core Team
2018) using generalized linear mixed-effect models
(GLMMs) in the glmmTMB package (Brooks et al. 2017).
A hurdle model framework (Mullahy 1986) was used to
examine the environmental drivers of both daily run pres-
ence–absence and abundance in each stream. Changes in
presence–absence were analyzed using logistic regressions
and GLMMs with binomial error structures and logit link
functions. Changes in abundance were analyzed using
GLMMs with truncated negative binomial (II) error struc-
tures and log link functions and included only data from
days with fish counts greater than zero. All models
included the main effects and interactions of water tem-
perature, flow, and lunar cycle as fixed factors, with year
as a random factor. Model fit was evaluated using diag-
nostic tools and residual plots (Zuur and Ieno 2016) in the
DHARMa package version 0.3.2.0. For these analyses,
both stream temperature and streamflow were detrended
(Wu et al. 2007), as temperature generally increased lin-
early and flow decreased exponentially throughout the
spawning period. By detrending these data, day-to-day
changes in environmental factors (i.e., variation relative to
the mean) could be separated from the overall seasonal
patterns.

River herring run dynamics (i.e., start and end dates
and duration) and environmental regimes were compared
among streams by using linear mixed-effect models, with

stream as a fixed factor and year included as a random
factor. Least-squares mean estimates and post hoc pair-
wise comparisons were calculated using the R package
emmeans version 1.4.8 (Searle et al. 1980). Run start and
end dates were defined as 10% and 90% of the total
spawning run count, respectively. Run duration was calcu-
lated as the differences between the run end (90th quan-
tile) and start (10th quantile) dates. These conservative
metrics of run start and end are hypothesized to better
capture the main pulse of population movements at each
site compared to absolute first and last occurrences (Fer-
reira et al. 2014; Staudinger et al. 2019). Environmental
conditions included water temperature and flow at the
start date and end date of each run, mean temperature
during the run, rate of temperature increase throughout
the run, and spring thermal transition date. The spring
thermal transition date, or spring onset, for each stream
was calculated as the first day of the year following eight
consecutive days with stream temperatures at or above
10°C (following Friedland et al. 2015; Henderson et al.
2017). This thermal threshold also roughly represents the
temperature at which the river herring spawning migration
is initiated (e.g., Loesch 1987). In addition to the pairwise
comparisons among the streams, geographic trends for
each run dynamic and environmental factor were assessed
using a two-tailed Kendall’s tau correlation analysis. This
nonparametric analysis tests for significant ranking of the
streams, where streams were ordered from north to south
based on their location along the coast.

RESULTS
Water temperature variation was a significant predictor

(P < 0.05) of daily river herring presence in 11 out of 12
coastal streams (Figure 2A) and a significant predictor of
abundance in 7 of the 12 streams (Figure 2B). Variation in
streamflow was not a significant predictor of fish presence
or absence in any stream (Figure 2C); furthermore,
streamflow was only found to be a significant predictor of
abundance in two streams (Figure 2D), with one being
negatively influenced (Monument River: estimate ± SE =
−1.38± 0.44, z972 = −3.16, P= 0.002) and the other being
positively influenced (Agawam River: estimate = 1.20±
0.30, z660= 4.02, P < 0.001). Lunar cycle (Figure 2E) was
a significant predictor of fish presence in two streams
(Nemasket River: estimate = 1.13± 0.45, z910= 2.54, P=
0.011; Stony Brook: estimate= 1.36± 0.45, z452= 3.00,
P= 0.003) and a significant predictor of daily fish abun-
dance in only one stream (Marstons Mills River: estimate=
0.92± 0.27, z180= 3.42, P< 0.001; Figure 2F). For daily fish
abundance, the effect sizes of water temperature were smal-
ler (|estimate| < 0.5) than those of flow (|estimate| > 1.0).
Interactions among water temperature, flow, and lunar
cycle were significant in three streams for daily fish
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presence–absence (Marstons Mills River, Parker River, and
Town Brook) and in four streams for daily fish abundance
(Ipswich River, Monument River, Stony Brook, and Town
Brook). In the cases of the Ipswich River and Town Brook,
only interactions (i.e., no main effects) were significant for
abundance. A full list of GLMM results for both the pres-
ence–absence and abundance models for each stream is
included in the online Supplement (Table S1).

There was a high degree of variability in river herring
run dynamics and environmental regimes among streams
(Table 2), with a north-to-south trend along the coast.
Run start and end dates were weakly correlated with geo-
graphic position (start date: Kendall’s τ= 0.370, z= 6.78,
P< 0.001; end date: Kendall’s τ = 0.352, z= 6.59, P<
0.001). The more southerly runs (Acushnet, Agawam, and
Nemasket rivers) started (~day 90–100) and ended (~day
115–125) earlier in the year compared to the northernmost
runs (Ipswich and Parker rivers) and the runs on the Cape
Cod peninsula (Herring River, Monument River, and
Stony Brook), which started on approximately day 111–
115 and ended on approximately day 134–140 (Figure
3A). The more southerly runs were also longer in dura-
tion, lasting about 57–80 d compared to the more north-
erly runs, which lasted approximately 45–53 d (run
duration: Kendall’s τ = −0.217, z = −4.08, P< 0.001). In
addition, the range of temperatures at which runs
occurred were correlated with geographic position (start
temperature: Kendall’s τ= 0.330, z= 5.29, P< 0.001; end
temperature: Kendall’s τ = 0.125, z= 2.04, P= 0.041;
mean temperature: Kendall’s τ= 0.271, z= 4.65, P<
0.001). The southern runs started and ended in colder
water (start temperature was ~8–12°C; end temperature
was ~13–16°C) compared to the northern and Cape Cod
runs (start temperature was ~13–14°C; end temperature
was ~16–17°C; Figure 3B). Estimates of streamflow rates
were significantly higher on average (pairwise compar-
isons: P < 0.05) in the Ipswich and Nemasket rivers (>3.0
m3/s) compared to any of the other streams (<1.0 m3/s;
Figure 3C). In addition, the Ipswich River was the only
system where flow increased on average throughout the
season.

The spring thermal transition date in the northernmost
stream (Parker River) occurred later in the year (day of
year= 121 ± 9) compared to the southernmost streams
(Acushnet, Agawam, and Nemasket rivers; mean < day
112; pairwise comparisons: P< 0.05; Figure 3D). Spring
thermal transition was weakly positively correlated with
geographic position (Kendall’s τ = 0.185, z= 2.90, P=
0.004). A full list of pairwise comparisons for the general
run dynamics and environmental characteristics among
the streams can be found at the U.S. Geological Survey’s
digital repository, ScienceBase (https://doi.org/10.21429/
cr80-fy95).

DISCUSSION
Environmental conditions can have varying effects on

the timing of anadromous fish migrations, making the pri-
mary drivers of within-system movements difficult to iden-
tify over different time scales. Indeed, in the literature
there has been much debate on whether temperature or
flow is the master variable affecting anadromous fish

(A) (B)

(C) (D)

(F)(E)

FIGURE 2. Coefficients from the river herring presence–absence models
(left column) and abundance models (right column), showing the
predicted daily percentage change of counting more than zero fish or
daily changes in fish abundance for a 1-unit increase in (A), (B) water
temperature; (C), (D) flow; and (E), (F) lunar cycle. Streams with
significant effects for each model are indicated with an asterisk. Note the
differences in scales among plots. Streams are ordered based on
geographic position from north to south along the Massachusetts coast.
Stream abbreviations are defined in Table 1. The horizontal dotted lines
indicate the ordinal location of the easternmost extent of Cape Cod (i.e.,
the division between northern and southern streams).
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movements (e.g., Keefer et al. 2008; Bizzotto et al. 2009;
Snook et al. 2016; Berdahl et al. 2017; Giri et al. 2019).
Across 12 stream systems in Massachusetts, water temper-
ature was found to be the most common predictor of daily
river herring movement during spawning migrations. In a
majority of the streams, a day-to-day increase in tempera-
ture above the estimated mean corresponded with an
increase in both of our metrics (river herring presence–ab-
sence and river herring abundance). This result supports
previous behavioral experiments (Collins 1952) and single-
year fish count studies (Saila et al. 1972; Richkus 1974;
Ogburn et al. 2017) that also suggest a correlation
between temperature and daily movements. Thus, both
overall timing of seasonal river herring migrations (e.g.,
Ellis and Vokoun 2009; Lombardo et al. 2019) and daily
movement patterns of river herring are primarily driven
by temperature regimes.

Streamflow and lunar cycle had variable or inconclusive
effects on within-season fish migrations. Streamflow was
only a predictor of river herring run abundance in 2 of the
12 coastal streams (Agawam and Monument rivers). Inter-
estingly, while higher flow positively influenced run size in
the Agawam River, it negatively influenced run size in the
Monument River. Flow and related factors, such as channel
depth and width, can impact accessibility, where fish physi-
cally cannot move upstream (or downstream as juveniles)
due to too little or too much flow. However, beyond these
extreme limitations the effects of increasing flow remain
inconclusive. Lunar cycle was a predictor of river herring
presence–absence in two streams (Nemasket River and
Stony Brook) and run abundance in only one stream (Mar-
stons Mills River). Lunar effects were considered a proxy
for tidal cycles and, similar to flow, may interfere with
accessibility if lower tides physically prevent fish from mov-
ing upstream. Overall, our results for flow and lunar cycle

are consistent with previous studies in other systems, which
found no definitive association between these factors and
river herring movement (Kissil 1974; Ogburn et al. 2017).

Geographic patterns in both seasonal run dynamics and
environmental regimes suggest that some runs may be
more vulnerable to warming temperatures due to climate
change. The more northerly runs (Ipswich, Little, and Par-
ker rivers) and the runs on the Cape Cod peninsula (Mar-
stons Mills River, Monument River, and Stony Brook)
started and ended later in the season and in overall warmer
conditions compared to the southern runs. This is consis-
tent with known latitudinal trends in phenology that pro-
gress seasonally from south to north (Greene et al. 2009;
Staudinger et al. 2019). The runs that started later were
also shorter in duration and occurred in a narrower range
of temperatures, closer to the historical thermal maximum
at which river herring migrations have been observed
(~20°C; Kissil 1974; Loesch 1987; Ellis and Vokoun 2009;
Rosset et al. 2017). Thus, increases to within-season rates
of warming may constrict run duration in these streams.
This is concerning, as the runs start and end within a win-
dow of about 3°C, which corresponds to the projected
amount of warming expected in the northeastern U.S.
region in the next 10–20 years (Karmalkar and Bradley
2017). In contrast to the northern runs, the more southerly
runs (Acushnet, Agawam, and Nemasket rivers) have a
broader thermal range to respond and adapt to warming
temperatures, suggesting higher resilience to climate
change. Previous analyses of run counts in these same 12
coastal streams found that river herring run durations have
not shifted substantially over recent decades (R. M. Dal-
ton, Duke University and M. D. Staudinger, U.S. Geologi-
cal Survey, unpublished data). In those analyses, run
initiation was best predicted by a combination of winter
variables prior to the spring run, while the median and end

TABLE 2. River herring run (migration) timing and environmental characteristics (mean± SE) associated with the run period for each study stream,
ordered from north to south along the Massachusetts coast. Stream abbreviations are defined in Table 1.

Stream
Run start

(day of year)
Run end

(day of year) Duration (d)
Spring transition date

(day of year)
Mean temperature

(°C)
Mean flow

(m3/s)

PAR 115± 2 133± 2 45± 4 121± 2 14.7± 0.7 0.95 ± 0.1
IPS 112± 2 135± 2 53± 3 114± 4 14.1± 0.7 8.65 ± 0.9
LIT 104± 3 127± 2 53± 1 113± 3 13.5± 0.5 0.02 ± <0.1
JON 107± 1 134± 2 58± 2 115± 2 13.0± 0.5 0.84 ± 0.1
TOW 106± 2 131± 1 63± 3 118± 4 11.7± 0.7 0.35 ± 0.1
MON 115± 1 131± 1 77± 1 117± 5 13.9± 0.2 0.36 ± <0.1
STO 116± 1 136± 2 57± 2 111± 2 15.2± 0.5 0.16 ± <0.1
HER 111± 1 140± 2 58± 2 117± 3 13.9± 0.3 0.31 ± 0.1
MAM 105± 2 124± 2 39± 3 111± 1 13.3± 0.3 0.51 ± 0.1
ACU 103± 1 125± 1 74± 3 110± 3 13.5± 0.2 0.27 ± <0.1
AGA 95± 2 118± 3 80± 3 110± 3 11.8± 0.6 0.57 ± 0.1
NEM 90± 2 116± 1 57± 3 112± 2 10.3± 0.5 3.61 ± 0.5
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of run timing were more affected by within-season (spring)
conditions (Dalton and Staudinger, unpublished data). In
other systems, however, such as the Albemarle Sound
watershed in North Carolina, decreases in river herring run
durations were observed due to increasing within-season
warming rates (Lombardo et al. 2019).

Population- and Community-Level Effects of Warming
Temperatures

As the seasonal rate of warming and daily variability in
temperatures increase (USGCRP 2018; Lombardo et al.
2019), shifts in river herring migration dynamics may have

broader population- and community-level impacts. At the
population level, changes in within-season migration tim-
ing may correspondingly affect other aspects of the river
herring life cycle, such as when spawning occurs and when
juveniles out-migrate, thus affecting spawning rates and
juvenile growth and survival (ASMFC 2012; Tommasi
et al. 2015; Rosset et al. 2017). In addition, individuals
can migrate upstream and downstream multiple times
within a single season (McCartin et al. 2019), and individ-
uals that initially migrate earlier in a season are more
likely to have multiple successful mating events (Marjadi
et al. 2019). If the window of time during which runs
occur is constricted due to increases in within-season
warming rates, then upstream spawning migration and
mating could be limited to a single event per individual.
Narrower phenophases could also make these systems
increasingly vulnerable to extreme events (e.g., storms) by
reducing the windows available for successful migrations
into spawning grounds. Overall, however, the specific con-
sequences of a reduced migration window on spawning
success represent an area that requires more research, as
the link between the timing of spawning migrations and
eventual juvenile output is not well understood.

Changes in river herring abundance and phenology can
also have broader ecological consequences. River herring
and other anadromous forage fishes are keystone species
and play a critical role in sustaining coastal ecosystems
(Willson and Halupka 1995; Dias et al. 2019). Their
migrations connect riverine and oceanic habitats and pro-
vide an influx of marine nutrients to freshwater food webs
(Walters et al. 2009). In addition, river herring support a
diverse community of higher-trophic-level predators,
including raptors and important recreational freshwater
fish (e.g., Largemouth Bass Micropterus salmoides; Yako
and Mather 2000; Mattocks et al. 2017), economically
valuable marine species (e.g., Atlantic Cod Gadus mor-
hua), and species of conservation concern (e.g., whales,
pinnipeds, sharks, and seabirds; Dias et al. 2019). Thus, a
loss of river herring or shifts in their phenology may result
in trophic mismatches and cascading effects in freshwater
and marine communities (Cushing 1990; Edwards and
Richardson 2004).

Anthropogenic Influences and Other Confounding
Factors

All 12 streams in this study contain anthropogenic
structures and obstructions (e.g., dams and culverts) that
may create unique conditions that affect flow rates, fish
passage, and within-season movement patterns. Further-
more, water withdrawals from river herring spawning
habitats are conducted for municipal uses (in the Jones,
Little, and Nemasket rivers) or for use as irrigation
sources for agriculture (in the Acushnet, Agawam, Her-
ring, and Marstons Mills rivers; Brady et al. 2005; Reback

(A) Run dynamics (B) Temperature regimes

(C) Flow regimes (D) Spring thermal 

FIGURE 3. Averages, SEs, and ranges for river herring run dynamics
and environmental characteristics in each stream, including (A) the start
and end day of the run, (B) water temperature at the start and end of
each run, (C) streamflow at the start and end of each run, and (D) the
spring thermal transition date. The spring transition date was calculated
as the first day of the year following eight consecutive days with water
temperatures at or above 10°C for each stream. Streams are ordered
based on geographic position from north to south along the
Massachusetts coast. Stream abbreviations are defined in Table 1. The
horizontal dotted lines indicate the ordinal location of the easternmost
extent of Cape Cod (i.e., the division between northern and southern
streams).
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et al. 2004a, 2004b, 2004c). Withdrawals are regulated
through issuing permits that set daily and annual with-
drawal limits in accordance with the Massachusetts Water
Management Act (1986), through operation and manage-
ment plans for fishway operations (Massachusetts General
Law chapter 130, section 19), or voluntarily through best
management practices to maintain adequate levels of flow
to allow river herring passage during critical migratory
periods. These hindrances to fish passage and manipula-
tions of streamflow limit our ability to accurately assess
the effects of environmental drivers on river herring move-
ment. In addition, no streams in this study were directly
monitored for flow during the time period of our analyses.
Our streamflow models were calibrated using observations
from neighboring gauged streams and represent the natu-
ral hydrological characteristics of our 12 study sites. How-
ever, the models do not account for water withdrawals
within a season (Somos-Valenzuela and Palmer 2018),
potentially resulting in a disconnect between our estimates
of flow and the actual flow in our target systems. Thus,
our inconclusive results regarding the effects of streamflow
on daily fish migrations may be explained by anthro-
pogenic manipulation of flow. To clearly understand the
influence of flow and potential interactive effects of water
withdrawals on river herring migrations, future studies are
needed that include direct monitoring of streamflow (e.g.,
the installation of streamflow gauges) in the systems that
contain migratory fish populations.

The effects of lunar cycle on river herring migration
timing may also be confounded by anthropogenic manipu-
lations of flow. If lunar influence on fish migration is
related to tidal cycles, then the manipulation of water
levels and connectivity may dampen that tidal effect.
However, given the variety of water level manipulations
across streams, parsing out the influence of specific
anthropogenic factors on river herring migration dynamics
is a challenge. Information for each stream, including the
area and location of available spawning habitat, obstruc-
tions to connectivity, and restoration efforts, is included in
the online Supplement (Figures S1–S12).

The methods for counting fish and collecting environ-
mental data may also limit the interpretations of our
results. The location within each stream where fish counts
were taken varied in terms of distance from the ocean and
anthropogenic barriers. In addition, temperature measure-
ments were only taken at a single location within each
stream. Both temperature and the movement of fish are
temporally and spatially variable throughout a river net-
work over the course of a day. River herring likely take
advantage of the thermal corridors and refugia that are dis-
persed throughout each system rather than relying on con-
ditions at any given point. Recently developed modeling
techniques that consider systemwide environmental condi-
tions (Mazza and Steel 2017) may assist investigations of

how thermal regimes and fine-scale river herring move-
ments shift within river networks.

Finally, species-specific differences in migration timing
may be confounding our results. In this study, we did not
differentiate between the two species of river herring. Ale-
wife migrate upstream earlier in the spring (March–June),
while Blueback Herring typically migrate later (late April
to June; Saunders et al. 2006). Given the window of time
in which daily fish counts were collected, it is likely that
most of the river herring counted in this study were Ale-
wife. This assumption is further supported by weekly bio-
logical sampling of several of these streams during the
spring spawning season (MA DMF, unpublished data).
However, Alewife and Blueback Herring runs are known
to temporally overlap (Saunders et al. 2006), and co-oc-
currences of these two species have previously been
observed in at least three of the streams included in our
study (Monument River, Parker River, and Stony Brook;
Rosset et al. 2017). Alewife and Blueback Herring are also
known to hybridize in the systems of the current study
(Marjadi et al. 2019). Thus, although it could be assumed
that the majority of the fish counted were Alewife, the
presence of Blueback Herring in some systems may affect
late-season run counts. New studies and tools (e.g., Plough
et al. 2018) that sample throughout the migration season
and that can separate counts of Alewife and Blueback
Herring are needed to differentiate the environmental dri-
vers of movements in each species.

Management Implications
River herring and other anadromous fishes in the

northwest Atlantic have been identified as species that are
highly vulnerable to climate change (Nye et al. 2009;
Lynch et al. 2015; Hare et al. 2016). Our results support
this threat assessment, as we found a connection between
within-season temperature patterns and river herring phe-
nology. In addition, our results confirm the previously
identified thermal threshold for river herring upstream
movement (Kissil 1974; Loesch 1987; Ellis and Vokoun
2009; Rosset et al. 2017), as the mean water temperature
for the start and end of the spawning runs in all 12
streams was less than 20°C. Given their sensitivity to
warming temperature regimes, river herring may benefit
from protections that maintain thermal refugia. This may
be particularly pertinent in the more northerly systems,
where fish are migrating near their thermal maximum
within a narrower temporal window and where the 20°C
thermal threshold is projected to be crossed in the next
two decades (Karmalkar and Bradley 2017). In Mas-
sachusetts, waterbodies (streams, rivers, or tributaries) that
are used by reproducing “coldwater” fish are protected as
Coldwater Fish Resources (CFRs; Division of Fisheries
and Wildlife 2014). Designation as a CFR is meant to
maintain the coldwater thermal refugia for species of
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interest by regulating and minimizing the impacts of water
withdrawals. Coldwater fishes under the CFR classifica-
tion include native species, such as Brook Trout Salvelinus
fontinalis and Rainbow Smelt Osmerus mordax, and non-
native species, such as Brown Trout Salmo trutta and
Rainbow Trout Oncorhynchus mykiss, many of which are
sympatric with river herring. Some of the streams in this
study, namely Marstons Mills River and tributaries of the
Jones and Nemasket rivers, are already designated as
CFRs. However, while river herring upstream migration
occurs in waters less than 20°C, spawning is not as ther-
mally restricted and can occur in warmer waters. Further-
more, the timing and duration of spawning in river
herring may not be linked to the timing and duration of
migration (Rosset et al. 2017). Thus, thermal restrictions
to migration may not have a proportionate impact on
spawning success and recruitment. To understand how
maintaining thermal refugia might benefit river herring
populations, future studies could examine how shifts in
migration dynamics impact other life stages.

Although we found inconclusive evidence of the effects
of streamflow on river herring migrations, low flows caused
by water withdrawals may be affecting movements. In the
two streams where flow was a significant predictor of daily
movement (Agawam and Monument rivers), our results
also suggested that flow had a greater effect on daily fish
abundance than water temperature. Thus, in some systems
flow may be a more influential driver of river herring migra-
tion patterns, possibly outweighing the influence of temper-
ature. Stream management practices that better maintain
flow and control for water withdrawals during the spawning
season may benefit river herring populations by improving
passage and increasing resilience to shifting thermal regimes
due to climate change.

Conclusion
Temperature has long been suspected as the driving vari-

able affecting within-season river herring migration pat-
terns (e.g., Collins 1952; Saila et al. 1972; Richkus 1974;
Huntington et al. 2003; Ogburn et al. 2017; Rosset et al.
2017). Previous studies, however, lacked the long-term data
sets of daily measurements needed to examine day-to-day
spawning run dynamics in river herring—a known gap in
the literature (Nelson et al. 2020). Our results confirm the
assumption that temperature is the primary driver of
within-season migration dynamics and suggest widespread
influence of daily temperature on fish migration among 12
coastal Massachusetts streams. In addition, among-stream
variation in run dynamics suggests a geographic trend in
phenology and that the more southerly runs in the study
region may be more resilient to climate change. Overall,
given the vulnerability of river herring to warming temper-
atures (Hare et al. 2016), increased protections that main-
tain thermal refugia may benefit populations of river

herring. Finally, there are several remaining research ques-
tions that warrant further investigation following this
study. If the southern runs in Massachusetts occur over
longer durations in colder water compared to the northern
runs, are there (1) genetic or physiological differences in
these populations or (2) differences in condition between
fish that spawn in the northern versus southern runs? The
effects of streamflow and lunar cycle on fish movement
were inconclusive in this study. However, it remains
unclear how anthropogenic manipulations of streams, such
as obstructions and water withdrawals, influence the envi-
ronmental factors that affect fish movement. Correspond-
ingly, how would stream restoration efforts and better
management of streamflow during river herring runs affect
within-season fish migrations? Finally, can river herring
adapt to changing thermal regimes in these systems, and
how do shifts in migration dynamics impact other life his-
tory events? Addressing these questions will allow for a
clearer understanding of river herring phenology and is
necessary to guide more climate-adaptive management and
habitat restoration efforts.
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