Final Massachusetts Integrated List of Waters for the Clean Water Act 2022 Reporting Cycle

Appendix 22 Shawsheen River Basin Assessment and Listing Decision Summary

Prepared by: Watershed Planning Program Division of Watershed Management, Bureau of Water Resources Massachusetts Department of Environmental Protection

Commonwealth of Massachusetts Executive Office of Energy and Environmental Affairs Rebecca L. Tepper, Secretary Massachusetts Department of Environmental Protection Bonnie Heiple, Commissioner Bureau of Water Resources Kathleen M. Baskin, Assistant Commissioner

May 2023

Massachusetts Department of Environmental Protection

MassDEP's mission is to protect and enhance the Commonwealth's natural resources – air, water, and land – to provide for the health, safety, and welfare of all people, and to ensure a clean and safe environment for future generations. In carrying out this mission MassDEP commits to address and advance environmental justice and equity for all people of the Commonwealth; provide meaningful, inclusive opportunities for people to participate in agency decisions that affect their lives; and ensure a diverse workforce that reflects the communities we serve.

Watershed Planning Program

The Watershed Planning Program is a statewide program in the Division of Watershed Management, Bureau of Water Resources, at MassDEP. We are stewards of the water resources of Massachusetts. Together with other state environmental agencies, we share in the duty and responsibility to protect, enhance, and restore the quality and value of the waters of the Commonwealth. We are guided by the federal Clean Water Act and work to secure the environmental, recreational, and public health benefits of clean water for the residents of Massachusetts. The Watershed Planning Program is organized into five Sections that each have a different technical focus under the Clean Water Act: (1) Surface Water Quality Standards; (2) Surface Water Quality Monitoring; (3) Data Management and Water Quality Assessment; (4) Total Maximum Daily Load; and (5) Nonpoint Source Pollution.

Disclaimer

References to trade names, commercial products, manufacturers, or distributors in this report constituted neither endorsement nor recommendation by MassDEP.

Contact Information

Watershed Planning Program Division of Watershed Management, Bureau of Water Resources Massachusetts Department of Environmental Protection 8 New Bond Street, Worcester, MA 01606 Website: <u>https://www.mass.gov/guides/watershed-planning-program</u> Email address: <u>dep.wpp@mass.gov</u>

Notice of Availability

This report is available on the Massachusetts Department of Environmental Protection website: https://www.mass.gov/lists/integrated-lists-of-waters-related-reports.

Table of Contents

2022 Cycle Impairment Changes	3
Ames Pond (MA83001)	6
Recommendations	6
Designated Use Attainment Decisions	6
Bakers Meadow Pond (MA83002)	8
Ballardvale Impoundment (MA83011)	9
Supporting Information for Removed Impairments	10
Recommendations	15
Designated Use Attainment Decisions	15
Content Brook (MA83-09)	20
Elm Brook (MA83-23)	
Elm Brook (MA83-24)	
Fawn Lake (MA83004)	
Fosters Pond (MA83005)	
Supporting Information for Removed Impairments	
Recommendations	
Designated Use Attainment Decisions	
Gravel Pit Pond (MA83007)	
Hussey Brook Pond (MA83008)	
Hussey Pond (MA83009)	29
Kiln Brook (MA83-10)	
Long Meadow Brook (MA83-11)	
Long Pond (MA83010)	
Designated Use Attainment Decisions	
Meadow Brook (MA83-12)	
Pomps Pond (MA83014)	
Pond Street Pond (MA83021)	
Rabbit Pond (MA83015)	
Richardson Pond North (MA83020)	
Rogers Brook (MA83-04)	
Round Pond (MA83018)	40
Sandy Brook (MA83-13)	

Shawsheen River (MA83-01)	42
Recommendations	43
Designated Use Attainment Decisions	
Shawsheen River (MA83-08)	50
Shawsheen River (MA83-17)	51
Recommendations	52
Designated Use Attainment Decisions	52
Shawsheen River (MA83-18)	58
Recommendations	59
Designated Use Attainment Decisions	59
Shawsheen River (MA83-19)	66
Recommendations	67
Designated Use Attainment Decisions	67
Spring Brook (MA83-14)	
Recommendations	
Designated Use Attainment Decisions	
Strong Water Brook (MA83-07)	101
Unnamed Tributary (MA83-15)	102
Unnamed Tributary (MA83-16)	103
Unnamed Tributary (MA83-20)	104
Unnamed Tributary (MA83-21)	105
Vine Brook (MA83-06)	106
Designated Use Attainment Decisions	107
Webb Brook (MA83-22)	116
Data Sources	117

2022 Cycle Impairment Changes

		2018/20				Impairment
		AU	2022 AU			Change
Waterbody	AU_ID	Category	Category	Impairment	ATTAINS Action ID	Summary
Ames Pond	MA83001	5	5	Mercury in Fish Tissue		Unchanged
Bakers Meadow	MA83002	3	3	None		Unchanged
Pond						
Ballardvale	MA83011	5	5	(Aquatic Plants		Changed
Impoundment				(Macrophytes)*)		
Ballardvale	MA83011	5	5	(Fanwort*)		Added
Impoundment			_			
Ballardvale	MA83011	5	5	(Fish Passage Barrier*)		Added
Impoundment	N4402044					Demonstra
Ballardvale	MA83011	5	5	(Non-Native Aquatic Plants*)		Removed
Impoundment	N4402044			NAMES IN Fight Times		Linebergered
Ballardvale	MA83011	5	5	Mercury in Fish Tissue		Unchanged
Impoundment	N4402011			Nutrient/Eutrophisation		Added
Ballardvale	MA83011	5	5	Nutrient/Eutrophication		Added
Impoundment Content Brook	MA83-09	5	5	Biological Indicators Benthic Macroinvertebrates		Linchanged
			5		25.07	Unchanged
Content Brook	MA83-09	5	2	Escherichia Coli (E. Coli)	2587	Unchanged
Elm Brook	MA83-23	2		None		Unchanged
Elm Brook	MA83-24	5	5	(Physical Substrate Habitat Alterations*)		Unchanged
Elm Brook	MA83-24	5	5	Escherichia Coli (E. Coli)	2587	Unchanged
Elm Brook	MA83-24	5	5	Fecal Coliform	2587	Unchanged
Elm Brook	MA83-24	5	5	Sedimentation/Siltation		Unchanged
Fawn Lake	MA83004	3	3	None		Unchanged
Fosters Pond	MA83005	5	5	(Fanwort*)		Added
Fosters Pond	MA83005	5	5	(Non-Native Aquatic Plants*)		Removed
Fosters Pond	MA83005	5	5	Dissolved Oxygen		Unchanged
Fosters Pond	MA83005	5	5	Mercury in Fish Tissue		Unchanged
Gravel Pit Pond	MA83007	4c	4c	(Non-Native Aquatic Plants*)		Unchanged
Hussey Brook	MA83008	3	3	None		Unchanged
Pond						
Hussey Pond	MA83009	5	5	Algae		Unchanged
Kiln Brook	MA83-10	4a	4a	Fecal Coliform	2587	Unchanged
Long Meadow	MA83-11	4a	4a	Escherichia Coli (E. Coli)	2587	Unchanged
Brook						
Long Meadow	MA83-11	4a	4a	Fecal Coliform	2587	Unchanged
Brook						
Long Pond	MA83010	5	5	(Water Chestnut*)		Added
Long Pond	MA83010	5	5	Algae		Unchanged
Long Pond	MA83010	5	5	Chlorophyll-a		Unchanged
Long Pond	MA83010	5	5	Dissolved Oxygen		Unchanged
Long Pond	MA83010	5	5	Phosphorus, Total		Unchanged
Long Pond	MA83010	5	5	Transparency / Clarity		Unchanged
Meadow Brook	MA83-12	2	2	None		Unchanged
Pomps Pond	MA83014	5	5	(Non-Native Aquatic Plants*)		Unchanged
Pomps Pond	MA83014	5	5	Mercury in Fish Tissue		Unchanged
Pond Street Pond	MA83021	3	3	None		Unchanged

		2018/20				Impairment
		AU	2022 AU			Change
Waterbody	AU_ID	Category	Category	Impairment	ATTAINS Action ID	Summary
Rabbit Pond	MA83015	5	5	Turbidity		Unchanged
Richardson Pond	MA83020	3	3	None		Unchanged
North						
Rogers Brook	MA83-04	4a	4a	(Physical Substrate Habitat Alterations*)		Unchanged
Rogers Brook	MA83-04	4a	4a	Escherichia Coli (E. Coli)	2587	Unchanged
Rogers Brook	MA83-04	4a	4a	Fecal Coliform	2587	Unchanged
Round Pond	MA83018	3	3	None		Unchanged
Sandy Brook	MA83-13	4a	4a	Escherichia Coli (E. Coli)	2587	Unchanged
Sandy Brook	MA83-13	4a	4a	Fecal Coliform	2587	Unchanged
Shawsheen River	MA83-01	5	5	(Physical Substrate Habitat Alterations*)		Unchanged
Shawsheen River	MA83-01	5	5	Dissolved Oxygen		Unchanged
Shawsheen River	MA83-01	5	5	Escherichia Coli (E. Coli)	2587	Unchanged
Shawsheen River	MA83-01	5	5	Fecal Coliform	2587	Unchanged
Shawsheen River	MA83-01	5	5	Sedimentation/Siltation		Unchanged
Shawsheen River	MA83-08	5	5	Dissolved Oxygen		Unchanged
Shawsheen River	MA83-08	5	5	Escherichia Coli (E. Coli)	2587	Unchanged
Shawsheen River	MA83-08	5	5	Fecal Coliform	2587	Unchanged
Shawsheen River	MA83-08	5	5	Physical Substrate Habitat	2507	Unchanged
				Alterations		-
Shawsheen River	MA83-17	5	5	(Curly-leaf Pondweed*)		Added
Shawsheen River	MA83-17	5	5	Dissolved Oxygen		Unchanged
Shawsheen River	MA83-17	5	5	Escherichia Coli (E. Coli)	2587	Unchanged
Shawsheen River	MA83-17	5	5	Fecal Coliform	2587	Unchanged
Shawsheen River	MA83-18	5	5	(Curly-leaf Pondweed*)		Added
Shawsheen River	MA83-18	5	5	Dissolved Oxygen		Unchanged
Shawsheen River	MA83-18	5	5	Escherichia Coli (E. Coli)	2587	Unchanged
Shawsheen River	MA83-18	5	5	Fecal Coliform	2587	Unchanged
Shawsheen River	MA83-19	4a	5	(Curly-leaf Pondweed*)		Added
Shawsheen River	MA83-19	4a	5	(Fish Passage Barrier*)		Added
Shawsheen River	MA83-19	4a	5	Benthic Macroinvertebrates		Added
Shawsheen River	MA83-19	4a	5	Escherichia Coli (E. Coli)	2587	Unchanged
Shawsheen River	MA83-19	4a	5	Fecal Coliform	2587	Unchanged
Spring Brook	MA83-14	2	5	(Dewatering*)		Added
Spring Brook	MA83-14	2	5	Escherichia Coli (E. Coli)		Added
Strong Water Brook	MA83-07	4a	4a	Escherichia Coli (E. Coli)	2587	Unchanged
Strong Water Brook	MA83-07	4a	4a	Fecal Coliform	2587	Unchanged
Unnamed Tributary	MA83-15	5	5	(Dewatering*)		Unchanged
Unnamed Tributary	MA83-15	5	5	Chloride		Unchanged
Unnamed Tributary	MA83-15	5	5	Escherichia Coli (E. Coli)	2587	Unchanged
Unnamed	MA83-15	5	5	Fecal Coliform	2587	Unchanged
Tributary Unnamed Tributary	MA83-16	3	3	None		Unchanged

		2018/20 AU	2022 AU			Impairment
Waterbody	AU ID	Category	Category	Impairment	ATTAINS Action ID	Change Summary
Unnamed	MA83-20	5	5	Chloride		Unchanged
Tributary	WIA03 20	5		chionae		onenangeu
Unnamed	MA83-21	4a	4a	Escherichia Coli (E. Coli)	2587	Unchanged
Tributary						
Vine Brook	MA83-06	5	5	(Curly-leaf Pondweed*)		Added
Vine Brook	MA83-06	5	5	Benthic Macroinvertebrates		Added
Vine Brook	MA83-06	5	5	Chloride		Added
Vine Brook	MA83-06	5	5	Dissolved Oxygen		Unchanged
Vine Brook	MA83-06	5	5	Escherichia Coli (E. Coli)		Added
Vine Brook	MA83-06	5	5	Turbidity		Unchanged
Webb Brook	MA83-22	5	5	Escherichia Coli (E. Coli)		Unchanged

Ames Pond (MA83001)

Location:	Tewksbury.
AU Type:	FRESHWATER LAKE
AU Size:	76 ACRES
Classification/Qualifier:	В

2018/20 AU	2022 AU			Impairment Change
Category	Category	Impairment	ATTAINS Action ID	Summary
5	5	Mercury in Fish Tissue		Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
Mercury in Fish Tissue	Atmospheric Deposition - Toxics (Y)		Х			

Recommendations

2022 Recommendations

ALU: An aquatic macrophyte survey of Ames Pond should be conducted when flowering heads are present to confirm the presence of any non-native species of *Myriophyllum* (confirmation of any non-native species should be made by a qualified state agency/taxonomist).

Designated Use Attainment Decisions

Fish, other Aquatic Life and Wildlife

2022 Use Attainment	Alert
Not Assessed	YES
2022 Use Attainment Summary	

As was previously noted, MassDEP staff listed "Myriophyllum sp." on the field sheet for a September 1995 synoptic survey of Ames Pond.

Although no recent data are available for Ames Pond (MA83001) and the Aquatic Life Use is Not Assessed, the Alert status should be retained until an aquatic macrophyte survey can be conducted to determine whether any of the non-native species of *Myriophyllum* are infesting the pond.

Biological Monitoring Information

Non-native Aquatic Species Presence

MassDEP Non-Native Aquatic Invasive Species Records as of May 2021. (MassDEP 1995)

Summary Statement	Assessment Recommendation
As was previously noted, MassDEP staff listed "Myriophyllum sp." on the field	Conduct an aquatic macrophyte survey
sheet for a September 1995 synoptic survey of Ames Pond. DEP biologists	in Ames Pond when flowering heads
should conduct an aquatic macrophyte survey when flowering heads are	are present to determine if any non-
present to determine whether any of the non-native species of Myriophyllum	native species of Myriophyllum are
are infesting the pond. The Alert status should be retained in the interim.	infesting the pond.

Fish Consumption

2022 Use Attainment	Alert
Not Supporting	NO
2022 Use Attainment Summary	
No recent fish toxics sampling was conducted in Ames Pond (MA83001), therefore the Fish Co	onsumption Use will
continue to be accorded as Not Supporting for Margury in Fich Tissue, MassDDU advises that a	hildron vounger then 12

continue to be assessed as Not Supporting for Mercury in Fish Tissue. MassDPH advises that children younger than 12 years of age, pregnant women, women of childbearing age who may become pregnant, and nursing mothers should not eat any largemouth bass from this water body and that the general public should limit consumption of largemouth bass to two meals per month (MassDPH 2021).

Aesthetic

2022 Use Attainment	Alert
Not Assessed	NO
2022 Use Attainment Summary	
No recent data were collected in Ames Pond (MA83001), therefore the Aesthetics Use is Not Assessed.	

Primary Contact Recreation

2022 Use Attainment	Alert			
Not Assessed	NO			
2022 Use Attainment Summary				
No recent bacteria data were collected in Ames Pond (MA83001), therefore the Primary Contact Recreational Use is Not				
Assessed.				

Secondary Contact Recreation

2022 Use Attainment	Alert		
Not Assessed	NO		
2022 Use Attainment Summary			
No recent bacteria data were collected in Ames Pond (MA83001), therefore the Secondary Contact Recreational Use is			
Not Assessed.			

Bakers Meadow Pond (MA83002)

Location:	Andover.			
AU Type:	ype: FRESHWATER LAKE			
AU Size: 21 ACRES				
Classification/Qualifier:	В			

No usable data were available for Bakers Meadow Pond (MA83002) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

					Impairment
201	18/20 AU	2022 AU			Change
Ca	ategory	Category	Impairment	ATTAINS Action ID	Summary
	-3	3	None		Unchanged

Ballardvale Impoundment (MA83011)

Location:	Andover (Lowell Junction Pond).			
AU Type:	FRESHWATER LAKE			
AU Size:	35 ACRES			
Classification/Qualifier:	B: WWF			

2018/20 AU Category	2022 AU Category	Impairment ATTAINS Action ID		Impairment Change Summary
5	5	(Aquatic Plants (Macrophytes)*)		Changed
5	5	(Fanwort*)		Added
5	5	(Fish Passage Barrier*)		Added
5	5	(Non-Native Aquatic Plants*)		Removed
5	5	Mercury in Fish Tissue		Unchanged
5	5	Nutrient/Eutrophication Biological Indicators		Added

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
(Aquatic Plants (Macrophytes)*)	Source Unknown (N)	Х		Х	Х	Х
(Fanwort*)	Introduction of Non-native Organisms (Accidental or Intentional) (Y)	Х				
(Fish Passage Barrier*)	Dam or Impoundment (Y)	Х				
Mercury in Fish Tissue	Source Unknown (N)		Х			
Nutrient/Eutrophication Biological Indicators	Source Unknown (N)	Х		Х	Х	Х

2018/20 Removed			
Impairment	Removal Reason	Removal Comment	
Aquatic Plants (Macrophytes)	Not caused by a pollutant (4c)	 As described in detail in the 2022 CALM guidance document (MassDEP 2) the mapping of Aquatic Plants (Macrophytes) impairments as a pollutant being reevaluated. Ballardvale Impoundment (MA83011), also known as Junction Pond, was first listed as impaired for Noxious Aquatic Plants in 1 and this cause was remapped to Aquatic Plants (Macrophytes) during the IR cycle (MassDEP 2015). The original impairment was based on a Septer 1995 synoptic survey conducted by MassDEP staff in which dense plant of was noted at multiple observation sites in the pond. Non-rooted, floating species observed included <i>Lemna/Wolffia</i> spp. and <i>Spirodela polyrhiza</i> (MassDEP 1995, MassDEP 1997). Subsequently, Google Earth images from August 2013 and September 2014 showed high amounts of plant coverage over more than 25% of the impoundment's surface (Google Earth Pro Undated). The Aquatic Plants (Macrophytes) pollutant impairment is bein removed and replaced with the Nutrient/Eutrophication Biological Indicate pollutant impairment (based on the presence of non-rooted, floating, aq macrophyte species), as well as the Aquatic Plants (Macrophytes) non-pollutant impairment (since more than 25% of the pond was covered in aquatic macrophytes in recent years). The generic Non-Native Aquatic Plants is being removed and replaced with 	
Non-Native	Clarification of	The generic Non-Native Aquatic Plants is being removed and replaced with the	
Aquatic Plants	listing cause	specific aquatic macrophyte species, Fanwort.	

Supporting Information for Removed Impairments

Aquatic Plants (Macrophytes)

1997 WBS Coding Sheet (MassDEP 1997):

<u>WBID:</u> MA83011 <u>NAME:</u> Lowell Junctio <u>CODE:</u> 83011	n Pond	WATERSHI <u>TYP</u> <u>SIZ</u>	E: Lak	wsheen (83) (acres)	<u>CL4</u>	(Printed 02/03/ ASS: B
LATITUDE: LONGITUDE: Lake/Pond Name: Ecoregion Name: () Description: Lowell Junction P			ndover.			
Assessment Date: 9704 Cycle: 97		Sampling: Sampling:	9509 9509		3(d) List?: No as Only?: No	
Lake Specific Information Lake size greater than 10 acres? Significantly Publicly Owne Trophic Status: Trophic Trend: Acidity/Toxics Trend: Acidity Effects:	: Yes ed: xxxx Eutrophi Unknow Unknow Unknow	n n)
Uses	Support	Threat	Partial	Non-Sup	Not-Asses	Not-Attain
OVERALL USE SUPPORT				40.00		
ALUS			40.00			
FISH CONSUMPTION				40.00	10.00	
PRIMARY CONTACT				30.00	10.00	
SECONDARY CONTACT	10.00			30.00		
Aesthetics	10.00			30.00	I	
Nonattainment Causes				"New"		
Code		Size M	agnitude	Code	Size	Magnitude
0500- Metals		40.00	M			
0501- (Mercury)		40.00	М			
2200 - Noxious aquatic plants		30.00	M			
2600 - Exotic species		40.00	M			
N				"New"		
Nonattainment Sources Code		Size M	agnitude		Size	Magnitudo
9000- SOURCE UNKNOWN		40.00	H			
		1 107		Charles N	E NA	
Assessment Type (Assessment Category =>Mon B25- Ecological/habitat survey (Qualitative/Quantitative) R35- Primary Producer Survey	s	<u>"New</u>	Assessmen	tt Category = > M	E NA	
Media/Pollutants Assessed -	(Toxics Mo	onitoring =>	N)	<u>"New"</u> Toxics M	onitoring = > `	YES or NO
Comments: 1997:					ana floating la	af and
September 21, 1995 synoptic su emergent vegetation including t	rvey indicate	ed about 75% e species Cab	of the pond omba caroli	niana. Department	of Public Healt	h fish

<u>1995 Synoptic Survey Field Sheet (MassDEP 1995):</u>

(Ballard ville Impoundment) Lowell Junction Pond Page 1 of 2 40 ac Lake/Pond River Date 9/21/95 TOWN/City ANDOVER Observers HAYNES River Basin SHAWSHEEN HALTERMAN USGS TOPO WILMINGTON 7.5' PALIS NO. 83017 B3011 (be specific, e.g., public boat ramp at west cove area off Simpson Street): Location/type of access () River Street @ USGS Gaging Station @ River street @ Ent-Gre Area - About 1000 feet south of Wabore (3) west side of South bain @ rail road tracks Ownership of Location/Access (specify public or private, name of owner(s), and any use restrictions): 1 unknown @ At cance launch site , but ownership unknown @ Boston twine mit road (mathematica) Posted signs (re aquatic plants, fish advisories, access, etc.): O NONE (2) NONE (3) NONE Water quality observations (clarity, dissolved organic staining, blooms, et cetera): () Corered @ Wolffia gos and Lemna minor (~702) Cannot judge water clarity - open water 2 50' from shareline 3) Refer to plant density notes - vantage point too far from valer to edge of writer.

Page 2 of 2 Record of aquatic plant "species" observed (see note below): 1) topha latifolia (dominant plant) Lemma minor] Cover about 209 of wolffin 20. 3 open water Potamostan go. (likely P. natans) (2) (2) hy Thrum satisatian for the sensent everyout type latifolia for plants Lemna minor? dourses wolffia g.) dans Sarodella getyshipa Spangancin 2. Pettandra nirginica Polygonum go. Dulichuiun arundinaceum Hymphaea odorata (?) Elsden vs. @ Cabonta condinia Potamosetin ap. (3) Observed from a distance. too for to distinguish other H Lynum solicaria typha latipshia Nynohan odorata (?) macrop Ryter Observed aquatic plant density (at observation site and across lake or pond, if practicable): 1 60% plus, but This is likely a dignamic (run of the river) pond subject to change in plant density (particularly Q regent do himinon and widter or .) (2) South of Island 100 & covered @ floating bat and everyent planets North of Island is about 658 wrend with energent (mostly T. latitolus) & floating-last Other notes (e.g., overt pollution, construction, and water uses: plants 3 96% coverage @ flashing - bat plants (My Nymphacan o durate ALUS - 27 acres - Partial Support (Leman manor + wolffia) Trophie - Eutrophic 10 contact - 20 acres Non Support 7 acres Not assessed 20 contact - 20 acres Non Support 7 acres Not assessed 20 contact - 20 "7 acres Full support Asstluctions - 20 "7 acres Full support Note: record suspect <u>M. heterophyllum</u> plants that may require confirmation once emergent flowering stalks are evident.

<u>Google Earth image of Ballardvale Impoundment while clear of vegetation, 4/6/2011 (Google Earth Pro</u> Undated):

Google Earth image of Ballardvale Impoundment, 8/24/2013 (Google Earth Pro Undated):

<u>Google Earth image of Ballardvale Impoundment, 9/27/2014 (Google Earth Pro Undated):</u>

Non-Native Aquatic Plants

The generic Non-Native Aquatic Plants is being removed and replaced with the specific aquatic macrophyte species, Fanwort.

Recommendations

2022 Recommendations
ALU: For the next reporting cycle in which the Ballardvale Impoundment AU is assessed, update the assessment with any
progress on the removal of the Ballardvale Dam.

Designated Use Attainment Decisions

Fish, other Aquatic Life and Wildlife

2022 Use Attainment	Alert
Not Supporting	NO
2022 Use Attainment Summary	

As was previously reported, MassDEP staff identified an infestation of the non-native aquatic macrophyte, fanwort (*Cabomba caroliniana*), in the Ballardvale Impoundment during a September 1995 synoptic survey. UMass Amherst students collected limited water quality data (Station UMassA_BVLIMP) in the impoundment 36 m upstream from the dam (in Andover). Continuous temperature data were measured over 78 days in the 2016 summer index period (during which there was a state-wide drought) and 107 days in the 2017 summer index period: there were 24 occurrences of a 7DADM >27.7 °C in 2016 but none in 2017. The maximum 24-hr rolling average temperature (28.2 °C in 2016; 26.5 °C in 2017) did not exceed the acute temperature threshold (28.3 °C) in either year. DMF biologists gave the Ballardvale Dam (marking the boundary between the impoundment and the downstream Shawsheen River AU (MA83-19) a diadromous fish passage score of "8", on a 0-10 scale, indicating that the dam poses a severe impediment to the passage of the target diadromous fish species, river herring and American eel. The population score was noted to be "3". There is a dam removal project in its planning stages here (the design for removal was completed in 2016) as part of the large cooperative project which sought to remove this dam and the two downstream dams (which were successfully removed in 2017) on the Shawsheen River.

As described in detail in the 2022 CALM guidance document (MassDEP 2022), the mapping of Aquatic Plants (Macrophytes) impairments as a pollutant is being reevaluated. Ballardvale Impoundment, also known as Lowell Junction Pond, was first listed as impaired for Noxious Aquatic Plants in 1998 and this cause was remapped to Aquatic Plants (Macrophytes) during the 2010 IR cycle (MassDEP 2015). The original impairment was based on a September 1995 synoptic survey conducted by MassDEP staff in which dense plant cover was noted at multiple observation sites in the pond. Non-rooted, floating species observed included *Lemna/Wolffia* spp. and *Spirodela polyrhiza* (MassDEP 1995, MassDEP 1997). Subsequently, Google Earth images from August 2013 and September 2014 showed high amounts of plant coverage, over more than 25% of the impoundment's surface (Google Earth Pro Undated). Nutrient/Eutrophication Biological Indicators should be added as an impairment based on the presence of non-rooted, floating, aquatic macrophyte species. Additionally, Aquatic Plants (Macrophytes) should be delisted as a pollutant and added again as a non-pollutant since more than 25% of the pond was covered in aquatic macrophytes in recent years. The Aquatic Life Use for the Ballardvale Impoundment (MA83011) is assessed as Not Supporting. A new Fish Passage Barrier impairment will be added, based on the barrier to diadromous fish passage posed by the Ballardvale Dam. The generic Non-Native Aquatic Plants impairment is being replaced by the specific Fanwort impairment. As described

according to the rationale above, the Aquatic Plants (Macrophytes) pollutant impairment is being replaced with the Nutrient/Eutrophication Biological Indicators pollutant impairment and the Aquatic Plants (Macrophytes) non-pollutant impairment.

Monitoring Stations

Station Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
UMassA_BVLIMP	UMass	Water	Shawsheen	36m upstream dam	42.626883	-71.15805
	Amherst	Quality	River			

Biological Monitoring Information

Habitat and Flow Data (anthropogenic alterations)

MassDMF Status of Priority Diadromous Fish Passage Barriers. (Chase 2020)

Assessment Summary

DMF biologists noted one structure causing passage limitation to diadromous fish at the downstream end of the Ballardvale Impoundment. The Ballardvale Dam (marking the boundary between the impoundment and the downstream MA83-19 Shawsheen River AU) was given a passage score of "8", on a 0-10 scale, indicating that the dam poses a severe impediment to the passage of the targeted species, river herring and American eel. The population score was noted to be "3". There is a dam removal project in its planning stages here (the design for removal was completed in 2016) as part of the large cooperative project which sought to remove this dam and the two downstream dams (which were successfully removed in 2017) on the Shawsheen River. The Aquatic Life Use for the Ballardvale Impoundment (MA83011) is assessed as Not Supporting, based on the barrier to diadromous fish passage posed by the Ballardvale Dam.

Non-native Aquatic Species Presence

MassDEP Non-Native Aquatic Invasive Species Records as of May 2021. (MassDEP 1995)

Summary Statement

As was previously reported, MassDEP staff identified an infestation of the non-native aquatic macrophyte, fanwort (*Cabomba caroliniana*), in the Ballardvale Impoundment during a September 1995 synoptic survey.

Physico-chemical Water Quality Information

DO, pH, Temperature (Depth Profiles)

UMass Amherst Dam Study Long-term Continuous Temperature Data (Summer Index 2014-2017). (UMass-Amherst 2018) (MassDEP Undated 4)

[Summer Index is June 1 – Sept 15; 7DADM= 7-Day Average of the Daily Maxima, 7DADA= 7-Day Average of the Daily Average, CW= Coldwater, WW= Warmwater]

Station Code	Start Date	End Date	Index Count	Max 24hr Rolling Avg Temp (°C)	Max Temp (°C)	Max 7DADM (°C)	Max 7DADA (°C)	Count CWTier1 7DADM >20	Count CWTier2 7DADA >21	Count WW 7DADM >27.7
UMassA_BVLIMP	06/30/16	12/31/16	78	28.2	30.2	29.0	27.3	72	72	24
UMassA_BVLIMP	01/01/17	11/30/17	107	26.5	28.2	26.6	25.2	96	74	0

Fish Consumption

2022 Use Attainment	Alert
Not Supporting	NO
2022 Use Attainment Summary	

No recent fish toxics sampling has been conducted in Ballardvale Impoundment (MA83011), but the Fish Consumption Use will continue to be assessed as Not Supporting for Mercury in Fish Tissue. MassDPH advises that children younger than 12 years of age, pregnant women, women of childbearing age who may become pregnant, and nursing mothers should not eat largemouth bass and black crappie from this water body and that the general public should limit consumption of largemouth bass and black crappie from the Ballardvale Impoundment to two meals per month.

Aesthetic

2022 Use Attainment	Alert
Not Supporting	NO

2022 Use Attainment Summary

As described in detail in the 2022 CALM guidance document (MassDEP 2022), the mapping of Aquatic Plants (Macrophytes) impairments as a pollutant is being reevaluated. Ballardvale Impoundment, also known as Lowell Junction Pond, was first listed as impaired for Noxious Aquatic Plants in 1998 and this cause was remapped to Aquatic Plants (Macrophytes) during the 2010 IR cycle (MassDEP 2015). The original impairment was based on a September 1995 synoptic survey conducted by MassDEP staff in which dense plant cover was noted at multiple observation sites in the pond. Non-rooted, floating species observed included *Lemna/Wolffia* spp. and *Spirodela polyrhiza* (MassDEP 1995, MassDEP 1997). Subsequently, Google Earth images from August 2013 and September 2014 showed high amounts of plant coverage, over more than 25% of the impoundment's surface (Google Earth Pro Undated). Nutrient/Eutrophication Biological Indicators should be added as an impairment based on the presence of non-rooted, floating, aquatic macrophyte species. Additionally, Aquatic Plants (Macrophytes) should be delisted as a pollutant and added again as a non-pollutant since more than 25% of the pond was covered in aquatic macrophytes in recent years. Recent data has not been collected from the Ballardvale Impoundment (MA83011), however, its Aesthetics Use will continue to be assessed as Not Supporting. As described according to the rationale above, the Aquatic Plants (Macrophytes) pollutant impairment is being replaced with the Nutrient/Eutrophication Biological Indicators pollutant impairment is being replaced with the Nutrient/Eutrophication Biological Indicators pollutant impairment and the Aquatic Plants (Macrophytes) non-pollutant impairment.

Primary Contact Recreation

2022 Use Attainment	Alert
Not Supporting	NO
2022 Use Attainment Summary	
As described in detail in the 2022 CALM guidance document (MassDEP 2022), the mapping of Aqua	atic Plants
(Macrophytes) impairments as a pollutant is being reevaluated. Ballardvale Impoundment, also kn	own as Lowell Junction
Pond, was first listed as impaired for Noxious Aquatic Plants in 1998 and this cause was remapped	to Aquatic Plants
(Macrophytes) during the 2010 IR cycle (MassDEP 2015). The original impairment was based on a S	September 1995
synoptic survey conducted by MassDEP staff in which dense plant cover was noted at multiple obs	ervation sites in the
pond. Non-rooted, floating species observed included Lemna/Wolffia spp. and Spirodela polyrhiza	(MassDEP 1995,
MassDEP 1997). Subsequently, Google Earth images from August 2013 and September 2014 show	ed high amounts of
plant coverage, over more than 25% of the impoundment's surface (Google Earth Pro Undated). N	utrient/Eutrophication
Biological Indicators should be added as an impairment based on the presence of non-rooted, floa	ting, aquatic
macrophyte species. Additionally, Aquatic Plants (Macrophytes) should be delisted as a pollutant a	and added again as a
non-pollutant since more than 25% of the pond was covered in aquatic macrophytes in recent yea	rs.
Recent bacteria sampling has not been conducted in the Ballardvale Impoundment (MA83011), ho	wever, the Primary
Contact Recreational Use will continue to be assessed as Not Supporting. As described according to	o the rationale above,
the Aquatic Plants (Macrophytes) pollutant impairment is being replaced with the Nutrient/Eutrop	hication Biological
Indicators pollutant impairment and the Aquatic Plants (Macrophytes) non-pollutant impairment.	

Secondary Contact Recreation

2022 Use Attainment	Alert
Not Supporting	NO
2022 Use Attainment Summary	

As described in detail in the 2022 CALM guidance document (MassDEP 2022), the mapping of Aquatic Plants (Macrophytes) impairments as a pollutant is being reevaluated. Ballardvale Impoundment, also known as Lowell Junction Pond, was first listed as impaired for Noxious Aquatic Plants in 1998 and this cause was remapped to Aquatic Plants (Macrophytes) during the 2010 IR cycle (MassDEP 2015). The original impairment was based on a September 1995 synoptic survey conducted by MassDEP staff in which dense plant cover was noted at multiple observation sites in the pond. Non-rooted, floating species observed included *Lemna/Wolffia* spp. and *Spirodela polyrhiza* (MassDEP 1995, MassDEP 1997). Subsequently, Google Earth images from August 2013 and September 2014 showed high amounts of plant coverage, over more than 25% of the impoundment's surface (Google Earth Pro Undated). Nutrient/Eutrophication Biological Indicators should be added as an impairment based on the presence of non-rooted, floating, aquatic macrophyte species. Additionally, Aquatic Plants (Macrophytes) should be delisted as a pollutant and added again as a non-pollutant since more than 25% of the pond was covered in aquatic macrophytes in recent years. Recent bacteria sampling has not been conducted in the Ballardvale Impoundment (MA83011), however, the Secondary Contact Recreational Use will continue to be assessed as Not Supporting. As described according to the rationale above, the Aquatic Plants (Macrophytes) pollutant impairment is being replaced with the Nutrient/Eutrophication Biological Indicators pollutant impairment and the Aquatic Plants (Macrophytes) non-pollutant impairment.

Content Brook (MA83-09)

Location:	Headwaters, outlet Richardson Pond, Billerica, to confluence with Shawsheen River,				
	Tewksbury.				
AU Type:	RIVER				
AU Size:	2.4 MILES				
Classification/Qualifier:	В				

No usable data were available for Content Brook (MA83-09) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
5	5	Benthic Macroinvertebrates		Unchanged
5	5	Escherichia Coli (E. Coli)	2587	Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
Benthic Macroinvertebrates	Source Unknown (N)	Х				
Escherichia Coli (E. Coli)	Discharges from Municipal Separate Storm				Х	
	Sewer Systems (MS4) (N)					

Elm Brook (MA83-23)

Location:	Headwaters, south of Route 2A, Lincoln to beginning of channelized portion southwest of Kendall Court, Bedford (formerly part of 2014 segment: Elm Brook MA83-05).
AU Type:	RIVER
AU Size:	2.7 MILES
Classification/Qualifier:	В

No usable data were available for Elm Brook (MA83-23) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU	2022 AU			Impairment Change
Category	Category	Impairment	ATTAINS Action ID	Summary
2	2	None		Unchanged

Elm Brook (MA83-24)

Location:	From beginning of channelized portion southwest of Kendall Court, Bedford to confluence with Shawsheen River, Bedford (formerly part of 2014 segment: Elm Brook MA83-05).
AU Type:	RIVER
AU Size:	2.4 MILES
Classification/Qualifier:	В

No usable data were available for Elm Brook (MA83-24) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU	2022 AU			Impairment Change
Category	Category	Impairment	ATTAINS Action ID	Summary
5	5	(Physical Substrate Habitat Alterations*)		Unchanged
5	5	Escherichia Coli (E. Coli)	2587	Unchanged
5	5	Fecal Coliform	2587	Unchanged
5	5	Sedimentation/Siltation		Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
(Physical Substrate Habitat Alterations*)	Channelization (Y)	Х				
Escherichia Coli (E. Coli)	Discharges from Municipal Separate Storm				Х	Х
	Sewer Systems (MS4) (N)					
Escherichia Coli (E. Coli)	Industrial/Commercial Site Stormwater				Х	Х
	Discharge (Permitted) (N)					
Escherichia Coli (E. Coli)	Source Unknown (N)				Х	Х
Fecal Coliform	Discharges from Municipal Separate Storm				Х	
	Sewer Systems (MS4) (N)					
Fecal Coliform	Industrial/Commercial Site Stormwater				Х	
	Discharge (Permitted) (N)					
Fecal Coliform	Source Unknown (N)				Х	
Sedimentation/Siltation	Unspecified Urban Stormwater (N)	Х				

Fawn Lake (MA83004)

Location:	Bedford.
AU Type:	FRESHWATER LAKE
AU Size:	12 ACRES
Classification/Qualifier:	В

No usable data were available for Fawn Lake (MA83004) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

				Impairment
2018/20 AU	2022 AU			Change
Category	Category	Impairment	ATTAINS Action ID	Summary
3	3	None		Unchanged

Fosters Pond (MA83005)

Location:	Andover/Wilmington.
AU Type:	FRESHWATER LAKE
AU Size:	109 ACRES
Classification/Qualifier:	В

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
5	5	(Fanwort*)		Added
5	5	(Non-Native Aquatic Plants*)		Removed
5	5	Dissolved Oxygen		Unchanged
5	5	Mercury in Fish Tissue		Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
(Fanwort*)	Introduction of Non-native Organisms	Х				
	(Accidental or Intentional) (Y)					
Dissolved Oxygen	Source Unknown (N)	Х				
Mercury in Fish Tissue	Atmospheric Deposition - Toxics (Y)		Х			

Supporting Information for Removed Impairments

2018/20 Removed		
Impairment	Removal Reason	Removal Comment
Non-Native Aquatic Plants	Clarification of listing	The generic Non-Native Aquatic Plants impairment is being
	cause	removed and replaced with the specific aquatic macrophyte,
		Fanwort.

Non-Native Aquatic Plants

The generic Non-Native Aquatic Plants impairment is being removed and replaced with the specific aquatic macrophyte, Fanwort.

Recommendations

2022 Recommendations
ALU: An aquatic macrophyte survey of Fosters Pond should be conducted when flowering heads are present to confirm
the presence of any non-native species of Myriophyllum (confirmation of any non-native species should be made by a
qualified state agency/taxonomist).

Designated Use Attainment Decisions

Fish, other Aquatic Life and Wildlife

2022 Use Attainment	Alert	
Not Supporting	YES	
2022 Use Attainment Summary		
As was previously reported, MassDEP staff identified an infestation of the non-native aquatic macrophy	te, fanwort	
(Cabomba caroliniana), in Fosters Pond during a September 1995 synoptic survey. During a review of DEP aquatic		
invasive species records, it was noted that the presence of <i>Myriophyllum</i> sp. was also observed during the synoptic		

survey.

Since no other recent data are available, the Aquatic Life Use of Fosters Pond (MA83005) will continue to be assessed as Not Supporting, with the Dissolved Oxygen impairment being carried forward. The generic Non-Native Aquatic Plants impairment will be removed and replaced with the specific Fanwort, and an Alert will be issued for a potential infestation of a non-native *Myriophyllum* species.

Biological Monitoring Information

Non-native Aquatic Species Presence

MassDEP Non-Native Aquatic Invasive Species Records as of May 2021. (MassDEP 1995)

Summary Statement	Assessment Recommendation
As was previously reported, MassDEP staff identified an infestation of the non-	Conduct an aquatic macrophyte
native aquatic macrophyte, fanwort (Cabomba caroliniana), in Fosters Pond during	survey in Fosters Pond when
a September 1995 synoptic survey. A review of DEP aquatic invasive species	flowering heads are present to
records revealed that the presence of <i>Myriophyllum</i> sp. was also noted during the	determine if any non-native
synoptic survey. An aquatic macrophyte survey should be conducted to determine	species of Myriophyllum are
whether any of the non-native species of <i>Myriophyllum</i> are present in the lake and	infesting the pond.
an Alert should be issued.	

Fish Consumption

2022 Use Attainment	Alert	
Not Supporting	NO	
2022 Use Attainment Summary		
No recent fish toxics sampling was conducted in Fosters Pond (MA83005), however the Fish Consumption Use will		
continue to be assessed as Not Supporting for Mercury in Fish Tissue. MassDPH advises that children younger than 12		
years of age, pregnant women, women of childbearing age who may become pregnant, and nursing mothers should not		
eat any fish from this water body and that the general public should limit consumption of all fish from Fosters Pond to		

, two meals per month.

Aesthetic

2022 Use Attainment	Alert	
Insufficient Information	NO	
2022 Use Attainment Summary		
There are no recent data available for Fosters Pond (MA83005). Although this use was previously identified as impaired		
for Non-Native Aquatic Plants, the impairment is being removed since it was determined from a review of the original		
field sheet (MassDEP 1995) that the impairment was applied to this use in error. There is insufficient information to		

assess the Aesthetics Use.

Primary Contact Recreation

Alert

Not Assessed	NO
2022 Use Attainment Summary	

There are no recent bacteria data available for Fosters Pond (MA83005). Although this use was previously identified as impaired for Non-Native Aquatic Plants, the impairment is being removed since it was determined from a review of the original field sheet (MassDEP 1995) that the impairment was applied to this use in error. There is insufficient information to assess the Primary Contact Recreational Use.

Secondary Contact Recreation

2022 Use Attainment	Alert
Insufficient Information	NO
2022 Use Attainment Summary	

There are no recent bacteria data available for Fosters Pond (MA83005). Although this use was previously identified as impaired for Non-Native Aquatic Plants, the impairment is being removed since it was determined from a review of the original field sheet (MassDEP 1995) that the impairment was applied to this use in error. There is insufficient information to assess the Secondary Contact Recreational Use.

Gravel Pit Pond (MA83007)

Location:	Andover (Hussey Brook Pond East).
AU Type:	FRESHWATER LAKE
AU Size:	5 ACRES
Classification/Qualifier:	В

No usable data were available for Gravel Pit Pond (MA83007) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
4c	4c	(Non-Native Aquatic Plants*)		Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
(Non-Native Aquatic Plants*)	Introduction of Non-native Organisms	Х				
	(Accidental or Intentional) (Y)					

Hussey Brook Pond (MA83008)

Location:	Andover.
AU Type:	FRESHWATER LAKE
AU Size:	0.5 ACRES
Classification/Qualifier:	В

No usable data were available for Hussey Brook Pond (MA83008) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU	2022 AU			Impairment Change
Category	Category	Impairment	ATTAINS Action ID	Summary
3	3	None		Unchanged

Hussey Pond (MA83009)

Location:	Andover.
AU Type:	FRESHWATER LAKE
AU Size:	1 ACRES
Classification/Qualifier:	В

No usable data were available for Hussey Pond (MA83009) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
category	category	inipairineitt	ATTAINS ACCOULD	Summary
5	5	Algae		Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
Algae	Source Unknown (N)			х	Х	Х

Kiln Brook (MA83-10)

Location:	Outlet unnamed pond (in Pine Meadows Country Club), Lexington, to confluence with Shawsheen River, Bedford.
AU Type:	RIVER
AU Size:	1.5 MILES
Classification/Qualifier:	В

No usable data were available for Kiln Brook (MA83-10) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU	2022 AU			Impairment Change
Category	Category	Impairment	ATTAINS Action ID	Summary
4a	4a	Fecal Coliform	2587	Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
Fecal Coliform	Discharges from Municipal Separate Storm				Х	
	Sewer Systems (MS4) (N)					

Long Meadow Brook (MA83-11)

Location:	Wetland east of Lexington Street and north of Independence Drive, Burlington, to confluence with Vine Brook, Burlington.
AU Type:	RIVER
AU Size:	1.3 MILES
Classification/Qualifier:	В

No usable data were available for Long Meadow Brook (MA83-11) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
4a	4a	Escherichia Coli (E. Coli)	2587	Unchanged
4a	4a	Fecal Coliform	2587	Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
Escherichia Coli (E. Coli)	Discharges from Municipal Separate Storm				Х	Х
	Sewer Systems (MS4) (N)					
Fecal Coliform	Discharges from Municipal Separate Storm				Х	
	Sewer Systems (MS4) (N)	1	1	1	1	

Long Pond (MA83010)

Location:	Tewksbury.
AU Type:	FRESHWATER LAKE
AU Size:	44 ACRES
Classification/Qualifier:	В

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
5	5	(Water Chestnut*)		Added
5	5	Algae		Unchanged
5	5	Chlorophyll-a		Unchanged
5	5	Dissolved Oxygen		Unchanged
5	5	Phosphorus, Total		Unchanged
5	5	Transparency / Clarity		Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
(Water Chestnut*)	Introduction of Non-native Organisms	Х				
	(Accidental or Intentional) (Y)					
Algae	Source Unknown (N)	Х		Х	Х	Х
Chlorophyll-a	Source Unknown (N)	Х				
Dissolved Oxygen	Source Unknown (N)	Х				
Phosphorus, Total	Source Unknown (N)	Х		Х	Х	Х
Transparency / Clarity	Source Unknown (N)	Х		Х	Х	Х

Designated Use Attainment Decisions

Fish, other Aquatic Life and Wildlife

2022 Use Attainment	Alert
Not Supporting	NO
2022 Use Attainment Summary	

The USGS Nonindigenous Aquatic Species website (which informs the MassDEP Freshwater Aquatic Invasive Species database) includes a 2016 record of the non-native aquatic macrophyte, water chestnut (*Trapa natans*), which was found in Long Pond.

The Aquatic Life Use of Long Pond (MA83010) is assessed as Not Supporting with the Algae, Chlorophyll-a, Dissolved Oxygen, 'Phophorus, Total', and Transparency/Clarity impairments related to nutrient enrichment being carried forward. A Water Chestnut impairment is being added.

Biological Monitoring Information

Non-native Aquatic Species Presence

MassDEP Non-Native Aquatic Invasive Species Records as of May 2021. (MassDEP Undated 1)

Summary Statement

The USGS Nonindigenous Aquatic Species website (which informs the MassDEP Freshwater Aquatic Invasive Species database) includes a 2016 record of the non-native aquatic macrophyte, water chestnut (*Trapa natans*), which was found in Long Pond.

Fish Consumption

2022 Use Attainment	Alert				
Not Assessed	NO				
2022 Use Attainment Summary					
No recent fish toxics sampling has been conducted in Long Pond (MA83010), and since no site-specific advisory has been					
issued, the Fish Consumption Use is Not Assessed.					

Aesthetic

2022 Use Attainment	Alert	
Not Supporting	NO	
2022 Use Attainment Summary		

Sampling has not been conducted recently in Long Pond (MA83010) so the Aesthetics Use will continue to be assessed as Not Supporting with the Algae, 'Phosphorus, Total', and Transparency/Clarity impairments being carried forward.

Primary Contact Recreation

2022 Use Attainment	Alert			
Not Supporting	NO			
2022 Use Attainment Summary				
No recent bacteria sampling has been conducted in Long Pond (MA83010); the Primary Contact Recreational Use will				
continue to be assessed as Not Supporting with the Algae, 'Phosphorus, Total', and Transparency/Clarity impairments				
being carried forward.				

Secondary Contact Recreation

2022 Use Attainment	Alert			
Not Supporting	NO			
2022 Use Attainment Summary				
No recent bacteria sampling has been conducted in Long Pond (MA83010); the Secondary Contact Recreational Use will				
continue to be assessed as Not Supporting with the Algae, 'Phosphorus, Total', and Transparency/Clarity impairments				
being carried forward.				

Meadow Brook (MA83-12)

Location:	Headwaters, outlet Ames Pond, Tewksbury, to confluence with Strong Water Brook,		
	Tewksbury.		
AU Type:	RIVER		
AU Size:	1.7 MILES		
Classification/Qualifier:	В		

No usable data were available for Meadow Brook (MA83-12) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

				Impairment
2018/20 AU	2022 AU			Change
Category	Category	Impairment	ATTAINS Action ID	Summary
2	2	None		Unchanged

Pomps Pond (MA83014)

Location:	Andover.
AU Type:	FRESHWATER LAKE
AU Size:	25 ACRES
Classification/Qualifier:	В

No usable data were available for Pomps Pond (MA83014) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
5	5	(Non-Native Aquatic Plants*)		Unchanged
5	5	Mercury in Fish Tissue		Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
(Non-Native Aquatic Plants*)	Introduction of Non-native Organisms	Х				
	(Accidental or Intentional) (Y)					
Mercury in Fish Tissue	Atmospheric Deposition - Toxics (Y)		Х			

Pond Street Pond (MA83021)

Location:	Billerica (unnamed pond west of Pond Street).		
AU Type:	FRESHWATER LAKE		
AU Size:	4 ACRES		
Classification/Qualifier:	В		

No usable data were available for Pond Street Pond (MA83021) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

				Impairment
2018/20 AU	2022 AU			Change
Category	Category	Impairment	ATTAINS Action ID	Summary
3	3	None		Unchanged

Rabbit Pond (MA83015)

Location:	Andover.
AU Type:	FRESHWATER LAKE
AU Size:	2 ACRES
Classification/Qualifier:	В

No usable data were available for Rabbit Pond (MA83015) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
5	5	Turbidity		Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
Turbidity	Source Unknown (N)			Х	Х	Х

Richardson Pond North (MA83020)

Location:	Billerica/Tewksbury.
AU Type:	FRESHWATER LAKE
AU Size:	46 ACRES
Classification/Qualifier:	В

No usable data were available for Richardson Pond North (MA83020) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
3	3	None		Unchanged

Rogers Brook (MA83-04)

Location:	From outlet of unnamed impoundment upstream of Morton Street, Andover (Prior to 1997 cycle listed as "Headwaters Billerica") to confluence with Shawsheen River, Andover.
AU Type:	RIVER
AU Size:	1.3 MILES
Classification/Qualifier:	В

No usable data were available for Rogers Brook (MA83-04) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
4a	4a	(Physical Substrate Habitat Alterations*)		Unchanged
4a	4a	Escherichia Coli (E. Coli)	2587	Unchanged
4a	4a	Fecal Coliform	2587	Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
(Physical Substrate Habitat Alterations*)	Channelization (Y)	Х				
Escherichia Coli (E. Coli)	Discharges from Municipal Separate Storm Sewer Systems (MS4) (N)				Х	
Escherichia Coli (E. Coli)	Illicit Connections/Hook-ups to Storm Sewers (N)				Х	
Escherichia Coli (E. Coli)	On-site Treatment Systems (Septic Systems and Similar Decentralized Systems) (N)				Х	
Fecal Coliform	Discharges from Municipal Separate Storm Sewer Systems (MS4) (N)				Х	
Fecal Coliform	Illicit Connections/Hook-ups to Storm Sewers (N)				Х	
Fecal Coliform	On-site Treatment Systems (Septic Systems and Similar Decentralized Systems) (N)				Х	

Round Pond (MA83018)

Location:	Tewksbury.
AU Type:	FRESHWATER LAKE
AU Size:	25 ACRES
Classification/Qualifier:	В

No usable data were available for Round Pond (MA83018) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU	2022 AU			Impairment Change
Category	Category	Impairment	ATTAINS Action ID	Summary
3	3	None		Unchanged

Sandy Brook (MA83-13)

Location:	Headwaters north of Bedford Street and east of Fairfax Street, Burlington to confluence with Vine Brook, Burlington.
AU Type:	RIVER
AU Size:	1.2 MILES
Classification/Qualifier:	В

No usable data were available for Sandy Brook (MA83-13) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
4a	4a	Escherichia Coli (E. Coli)	2587	Unchanged
4a	4a	Fecal Coliform	2587	Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
Escherichia Coli (E. Coli)	Discharges from Municipal Separate Storm				Х	Х
	Sewer Systems (MS4) (N)					
Fecal Coliform	Discharges from Municipal Separate Storm				Х	
	Sewer Systems (MS4) (N)					

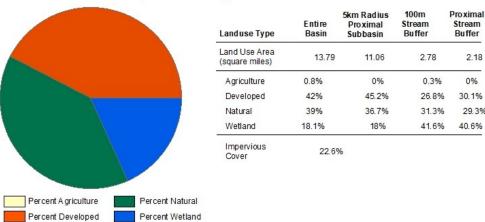
Stream Buffer

2.18

0%

30.1%

40.6%


29.3%

Shawsheen River (MA83-01)

Location:	Summer Street (historically listed as Maguire Road), Bedford to confluence with Spring Brook, Bedford.
AU Type:	RIVER
AU Size:	1.6 MILES
Classification/Qualifier:	B: TWS, WWF

Shawsheen River - MA83-01

Watershed Area: 13.79 square miles including areas outside Massachusetts

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
5	5	(Physical Substrate Habitat Alterations*)		Unchanged
5	5	Dissolved Oxygen		Unchanged
5	5	Escherichia Coli (E. Coli)	2587	Unchanged
5	5	Fecal Coliform	2587	Unchanged
5	5	Sedimentation/Siltation		Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
(Physical Substrate Habitat Alterations*)	Source Unknown (N)	Х				
Dissolved Oxygen	Source Unknown (N)	Х				
Dissolved Oxygen	Unspecified Urban Stormwater (N)	Х				
Escherichia Coli (E. Coli)	Discharges from Municipal Separate Storm Sewer Systems (MS4) (N)				х	
Fecal Coliform	Discharges from Municipal Separate Storm Sewer Systems (MS4) (N)				Х	

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
Sedimentation/Siltation	Source Unknown (N)	Х				

Recommendations

2022 Recommendations
ALU: Fish community data collected throughout the Shawsheen River mainstem is needed to update the comparison to
the Shawsheen Target Fish Community model since the Marland Place and Balmoral Dams have been removed.; REC:
Collect E. coli samples both upstream and downstream of the Elm Brook confluence to further evaluate bacteria
contamination in this Shawsheen River AU (MA83-01).

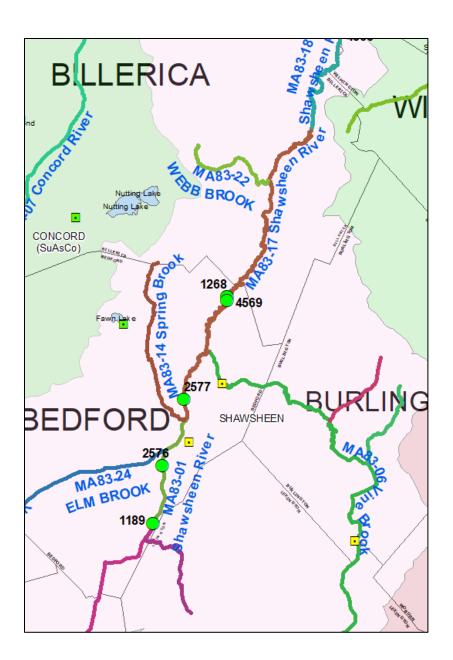
Designated Use Attainment Decisions

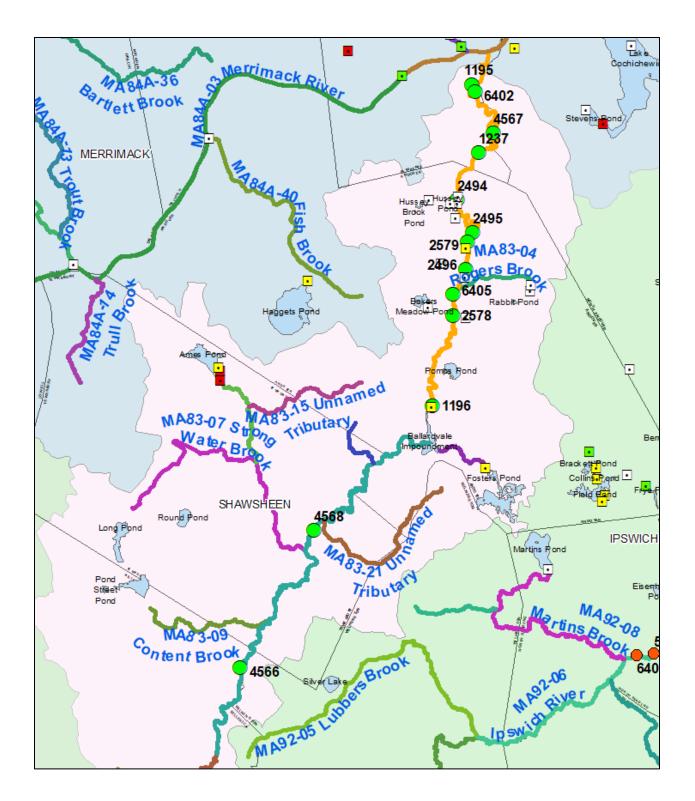
Fish, other Aquatic Life and Wildlife

2022 Use Attainment	Alert
Not Supporting	YES
2022 Use Attainment Summary	
Eighteen fish community samples (Sample IDs: 1189, 1195, 1196, 1237, 1268, 2494, 2495, 2496, 2576, 25	577, 2578, 2579,
4566, 4567, 4568, 4569, 6402, 6405) were collected in the Shawsheen River (AUs MA83-01, MA83-17, M	A83-18, MA83-
19) from 2005-2015. The percent similarity with the Shawsheen Target Fish Community model was 49.08	%. Of the 5
most common species in the TFC (all fluvial species and 4 moderately tolerant), only one species (fallfish)	was found in
the top five among the study samples (fallfish, American eel, redbreast sunfish, white sucker, redfin picke	erel). There
were fewer fluvial species and more tolerant species among these five most common species in the study	y samples.
Kashiwagi and Richards (2009) noted issues with channelization, as well as potentially erosion, sedimenta	ation, and
stormwater discharges in this basin. However, the Marland Place Dam (also known as the Stevens Street	Dam) and the
Balmoral Dam were removed from a downstream AU (MA83-19) in 2017, resulting in increased connective	ity of riverine
habitat (USFWS 2016). Since the comparison of fish community data with the Shawsheen TFC model was	so close to the
50% target and the fish community data collected before 2017 (when major restoration activities occurre	ed) were not
necessarily representative of current conditions, a decision to add a Fish Bioassessments impairment will	not be made at
this time.	
The Aquatic Life Use of this Shawsheen River AU (MA83-01) will continue to be assessed as Not Supportin	ng with

The Aquatic Life Use of this Shawsheen River AU (MA83-01) will continue to be assessed as Not Supporting with Dissolved Oxygen, Physical Substrate Habitat Alterations, and Sedimentation/Siltation impairments being carried forward. An Alert for Fish Bioassessments is being identified based on the TFC analysis.

Biological Monitoring Information


Fish Community Data and DELTS


Comparison of fish community samples (2005-2017) to the Shawsheen Target Fish Community (TFC) Model. (MassDFG 2018, MassDEP Undated 2, Kashiwagi and Richards 2009)

Eighteen fish community samples (Sample IDs: 1189, 1195, 1196, 1237, 1268, 2494, 2495, 2496, 2576, 2577, 2578, 2579, 4566, 4567, 4568, 4569, 6402, 6405) were collected in the Shawsheen River (AUs MA83-01, MA83-17, MA83-18, MA83-19) from 2005-2015. The percent similarity with the Shawsheen Target Fish Community

model was 49.08%. Of the 5 most common species in the TFC (all fluvial species; 4 moderately tolerant), only one species (fallfish) was found in the top 5 among the study samples (fallfish, American eel, redbreast sunfish, white sucker, redfin pickerel). There were fewer fluvial species and more tolerant species among these 5 most common species in the study samples. Kashiwagi and Richards (2009) noted issues with channelization, as well as potentially erosion, sedimentation, and stormwater discharges in this basin. However, the Marland Place Dam (also known as the Stevens Street Dam) and the Balmoral Dam were removed from the downstream AU (MA83-19) in 2017, resulting in increased connectivity of riverine habitat (USFWS 2016). Since the comparison of fish community data with the Shawsheen TFC model was so close to the 50% target and the fish community data collected before 2017 (when major restoration activities occurred) were not necessarily representative of current conditions, a use impairment decision for these four Shawsheen River AUs (MA83-01, MA83-17, MA83-18, MA83-19) will not be made at this time. In a future IR cycle, fish community data collected after 2017 throughout the Shawsheen River mainstem should be included in a comparative analysis with the Shawsheen TFC model.

Fish Community Samples in the Shawsheen River (MA83-01, MA83-17, MA83-18, MA83-19); screen capture of 2 upstream/southern AUs, and then 2 downstream/northern AUs:

Shawsheen TFC Model:

Table A14. Species percent composition for reference rivers used to develop the Shawsheen River target fish community model. Species are ordered by mean rank. Non-native, stocked, and out-of-range species were deleted from the ranking and calculation of expected proportion in the target fish model. The ranks were converted to expected proportions (as a percent) using a rank-weighting technique as outlined by Bain and Meixler (2008).

	Wood	Nissitissit	Eightmile	Isinglass	SB Piscataquog	Little			Expected
Species	River	River	River	River	River	River	Total	Rank	Proportions
Common shiner	32.3	5.4	18.6	36.8	20.6	14.9	128.6	1	37.6
Fallfish	4.1	26.7	3.1	18.1	3.0	16.2	71.2	2	18.8
Blacknose dace	0.0	6.2	3.4	0.0	33.4	22.3	65.3		
Longnose dace	12.5	12.6	1.0	12.1	19.0	0.0	57.2		
Tessellated darter	13.6	9.7	17.3	0.0	0.0	0.0	40.7	5	7.5
Redbreast sunfish	16.1	1.0	10.9	9.2	0.0	0.0	37.1	6	6.3
American eel	5.9	2.3	8.9	10.8	0.0	4.7	32.6	7	5.4
White sucker	2.1	0.8	5.0	0.5	0.9	12.2	21.4	8	4.7
Pumpkinseed	0.3	11.0	3.3	2.7	0.5	0.0	17.9	9	4.2
Atlantic salmon	2.8	0.0	1.4	3.9	9.4	0.0	17.5		
Largemouth bass	0.2	5.4	6.0	0.9	0.7	0.0	13.2		
Yellow bullhead	0.0	10.3	0.0	0.0	1.8	0.0	12.1		
Spottail shiner	0.0	0.0	11.3	0.0	0.5	0.0	11.8		
Bluegill	4.9	3.8	0.4	0.0	0.0	0.0	9.2		
Chain pickerel	1.1	3.3	0.1	0.2	0.2	0.7	5.7	15	2.5
Smallmouth bass	0.0	0.0	1.3	0.5	3.6	0.0	5.4		
Yellow perch	0.0	0.0	4.3	0.0	0.0	0.0	4.3	17	2.2
Brown bullhead	0.8	0.0	0.1	1.4	0.0	0.0	2.3	18	2.1
Creek chubsucker	1.3	0.8	0.0	0.0	0.0	0.0	2.1	19	2.0
Brown trout	0.7	0.0	0.3	0.0	0.4	0.7	2.0		
Bridle shiner	0.0	0.0	0.0	1.8	0.0	0.0	1.8	21	1.8
Golden shiner	0.0	0.0	0.0	0.0	1.6	0.0	1.6	22	1.7
Brook trout	0.8	0.3	0.0	0.0	0.0	0.0	1.1	23	1.6
Redfin pickerel	0.0	0.0	0.9	0.0	0.0	0.0	0.9	24	1.6
Rock bass	0.0	0.5	0.0	0.0	0.0	0.0	0.5		
Rainbow trout	0.2	0.0	0.0	0.0	0.2	0.0	0.4		
Black crappie	0.2	0.0	0.0	0.0	0.0	0.0	0.2		

Fish Community Analysis:

	Values						
	# of			TFC	% Sim to		
- common manie	Fish		TFC	Difference	TFC		Rov Labels 🔄 🚽
		0.00%	-	-			🗏 Shawsheen
American Eel			5.4				1189
Atlantic Salmon	5		-	0.2			1195
Banded Killifish		0.00%	-	-			1196
Banded Sunfish	10	0.49%	-	0.5			1237
Black Crappie		0.00%	-	-			1268
Blacknose Dace	1	0.05%	-	0.0			2494
Bluegill	66	3.26%	-	3.3			2495
Bluntnose Minnow		0.00%	-	-			2496
Bridle Shiner		0.00%	1.8	1.8			2576
Brook Trout		0.00%	1.6	1.6			2577
Brown Bullhead	58	2.87%	2.1	0.8			2578
Brown Trout	3	0.15%	-	0.1			2579
Central Mudminnow		0.00%	-	-			4566
Chain Pickerel	14	0.69%	2.5	1.8			4567
Channel Catfish			-	-			4568
	3		_	0.1			4569
			37.6				6402
			-				6405
	6		2.0				Grand Total
	0		2.0				Granu Totai
	566		10.0	92			
	300		10.0				
	10		17				
	13		L. (0.0			
			-	-			
	23			L.I.			
			-	-			
			-	-			
			-	-			
			4.2	0.7			
			-	-			
	103		1.6	3.5			
			-	-			
Sea Lamprey	79		-	3.9			
Slimy Sculpin			-	-			
Smallmouth Bass		0.00%	-	-			
Spottail Shiner		0.00%	-	-			
Swamp Darter	4	0.20%	-	0.2			
Tadpole Madtom		0.00%	-	-			
Tesselated Darter	82	4.06%	-	4.1			
White Catfish		0.00%	-	-			
White Perch		0.00%	-	-			
White Sucker	145	7.17%	4.7	2.5			
Yellow Bullhead	39	1.93%	-	1.9			
Yellow Perch	18	0.89%	2.2	1.3			
(blank)		0.00%	-		49.08		
		*****		100.0			
	American Eel Atlantic Salmon Banded Kullifish Black Crappie Blacknose Dace Bluegill Bluntnose Minnow Bridle Shiner Brook Trout Brown Bullhead Brown Trout Central Mudminnow Chain Pickerel Channel Catfish Common Carp Common Shiner Creek Chub Creek Chub Creek Chubsucker Cutlips Minnow Fallfish Fathead Minnow Golden Shiner Green Sunfish Lake Chub Largemouth Bass Longnose Dace Longnose Dace Longnose Sucker Notthern Pike Pumpkinseed Rainbow Trout Redbreast Sunfish Redtin Pickerel Rock Bass Sea Lamprey Slimy Sculpin Smallmouth Bass Spottail Shiner Sw amp Darter Tadpole Madtom Tesselated Darter White Catfish White Pich White Sucker Yellow Bullhead Yellow Perch	Common Namef of FishAmerican Brook LampreyAmerican Eel490Atlantic Salmon5Banded Killifish10Black Crappie66Bluegill66Bluntnose Minnow7Brook Trout3Central Mudminnow7Chaine Pickerel14Channel Catfish14Channel Catfish7Creek Chub7Creek Chubsucker66Cutlips Minnow7Creek Chubsucker6Cutlips Minnow7Golden Shiner19Green Sunfish23Longnose Dace23Longnose Sucker71Rainbow Trout71Rainbow Trout72Silimy Soulpin73Systal Shiner73Systal Shiner74<	Common NameF of FishZ of catchAmerican Brook Lamprey0.00%American Brook Lamprey0.00%American Brook Lamprey0.00%Atlantic Salmon5Banded Killish0.00%Banded Killish0.00%Black Crappie0.00%Black Crappie0.00%Black Dave Dace1Black Dave Dace1Bluegill663.26%Bluntnose Minnow0.00%Brown Tout0.00%Brown Bullhead582.87%Brown Trout3Brown Trout30.15%Central Mudminnow0.00%Channel Caffish0.00%Common Shiner20.10%Creek Chub0.00%Creek Chub0.00%Cutlips Minnow0.00%Catles Minnow0.00%Catles Minnow0.00%Catles Minnow0.00%Golden Shiner190.94%Green Sunfish0.00%Lake Chub0.00%Lake Chub0.00%Lake Chub0.00%Largemouth Bass231.14%Longnose Dace0.00%Northern Pike0.00%Northern Pike0.00%Sea Lamprey793.91%Silmy Soulpin0.00%Swamp Darter40.20%White Catfish0.00%Swamp Darter40.00%White Catfish0.00%Swamp Darter40.00%White Cat	Image: Common NameImage: Common NameImage: Catch TFCAmerican Elel0.00%-American Elel49024.23%5.4Atlantic Salmon0.00%-Banded Killifish0.00%-Banded Sunfish100.43%-Black Crappie0.00%-Black Crappie0.00%-Bluegill663.26%-Bluegill682.87%2.1Brown Trout0.00%-1.6Brown Frout30.15%-Central Mudminnow0.00%Chain Pickerel140.63%2.5Channel Catfish0.00%Common Shiner20.10%37.6Creek Chub0.00%Catek Chubsucker60.30%-Common Shiner190.94%1.7Green Sunfish0.00%Catek Chubsucker60.00%-Catek Chubsucker190.94%1.7Green Sunfish0.00%Lake Chub0.00%Lake Chub0.00%Lake Chub0.00%Lake Chub0.00%Lake Chub0.00%Lake Chub0.00%Lake Chub0.00%Redin Pickerel1035.03%1.6Redin Pickerel1035	Image: Common Name Image: Control of State	Image: Common Name Image: Fish Applicable TFC × Sim to American Brook Lampey 0.00% - - - American Brook Lampey 0.00% - - - Banded Sunish 10 0.49% - 0.2 Banded Sunish 10 0.49% - 0.5 Black Crappie 0.00% - - Banded Sunish 10 0.49% - 0.0 Black Scrappie 0.00% - - - Bidelinese Dace 1 0.05% - 0.0 Bluegill 66 3.26% - 3.3 Blurntose Minnow 0.00% - - 0.1 Central Mudminnow 0.00% - - 0.1 Central Mudminnow 0.00% - - 0.1 Common Carp 3 0.15% - 0.1 Common Shiner 2 0.10% - - Common Shine	Image: Common Name For X of Applicable TFC X Sim to American Brock Lamprey 0.00% - - - American El 490 24.23% 5.4 18.8 Attantic Salmon 5 0.25% - 0.2 Banded Killifish 0.00% - - Bande Killifish 10 43% - 0.5 Black Crappie 0.00% - - - Black Scace 1 0.05% - 0.0 Black Scace 1 0.05% - 0.0 Bitelle Shiner 0.00% 16 16 Brown Fout 3 0.15% - 0.1 Chamel Catlish 0.00% - - Common Shiner 2 0.10% 37.5 - Common Shiner 1 0.30% - - Common Shiner 1 0.30% - - Common Shiner 1 0.30%

Fish Consumption

2022 Use Attainment	Alert
Not Assessed	NO
2022 Use Attainment Summary	
Fish toxics sampling has not been conducted in this Shawsheen River AU (MA83-01) so the Fish Consump	tion Use is Not
Assessed.	

Aesthetic

2022 Use Attainment	Alert
Not Assessed	NO
2022 Use Attainment Summary	

Recent sampling has not been conducted in this Shawsheen River AU (MA83-01) so the Aesthetics Use is Not Assessed.

Primary Contact Recreation

2022 Use Attainment	Alert			
Not Supporting	NO			
2022 Use Attainment Summary				
No recent bacteria sampling has been conducted in this Shawsheen River AU (MA83-01); the Primary Cor	ntact			
Recreational Use will continue to be assessed as Not Supporting, with the historical impairments for Escherichia Coli (E.				

Coli) and Fecal Coliform being carried forward.

Secondary Contact Recreation

2022 Use Attainment	Alert			
Not Assessed	YES			
2022 Use Attainment Summary				
Recent bacteria sampling has not been conducted in this Shawsheen River AU (MA83-01) so the Seconda	ry Contact			
Recreational Use is Not Assessed. The Alert for potential E. coli contamination, first identified in the 2016 reporting cycle				
(MassDEP Undated 7), is being carried forward.				

Shawsheen River (MA83-08)

Location: Headwater, north of Folly Pond and North Great Road, Lincoln to Summer Street, E	
AU Type:	RIVER
AU Size:	2.1 MILES
Classification/Qualifier:	B: TWS, WWF

No usable data were available for Shawsheen River (MA83-08) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
5	5	Dissolved Oxygen		Unchanged
5	5	Escherichia Coli (E. Coli)	2587	Unchanged
5	5	Fecal Coliform	2587	Unchanged
5	5	Physical Substrate Habitat Alterations		Unchanged

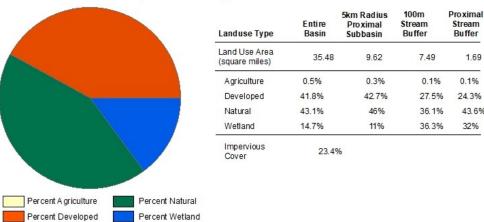
Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
Dissolved Oxygen	Source Unknown (N)	Х				
Escherichia Coli (E. Coli)	Discharges from Municipal Separate Storm Sewer Systems (MS4) (N)				Х	
Escherichia Coli (E. Coli)	Industrial/Commercial Site Stormwater Discharge (Permitted) (N)				Х	
Fecal Coliform	Discharges from Municipal Separate Storm Sewer Systems (MS4) (N)				Х	
Fecal Coliform	Industrial/Commercial Site Stormwater Discharge (Permitted) (N)				Х	
Physical Substrate Habitat Alterations	Channelization (Y)	Х				

1.69

0.1%

24.3%

43.6%


32%

Shawsheen River (MA83-17)

Location:	Confluence with Spring Brook, Bedford to the Burlington Water Department's surface water intake, Billerica. (formerly part of 2002 segment: Shawsheen River MA83-02).
AU Type:	RIVER
AU Size:	5.7 MILES
Classification/Qualifier:	B: TWS, WWF

Shawsheen River - MA83-17

Watershed Area: 35.48 square miles including areas outside Massachusetts

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
5	5	(Curly-leaf Pondweed*)		Added
5	5	Dissolved Oxygen		Unchanged
5	5	Escherichia Coli (E. Coli)	2587	Unchanged
5	5	Fecal Coliform	2587	Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
(Curly-leaf Pondweed*)	Introduction of Non-native Organisms	Х				
	(Accidental or Intentional) (Y)					
Dissolved Oxygen	Source Unknown (N)	Х				
Escherichia Coli (E. Coli)	Discharges from Municipal Separate Storm				Х	
	Sewer Systems (MS4) (N)					
Fecal Coliform	Discharges from Municipal Separate Storm				Х	
	Sewer Systems (MS4) (N)					

Recommendations

2022 Recommendations

ALU: Fish community data collected throughout the Shawsheen River mainstem is needed to update the comparison to the Shawsheen Target Fish Community model since the Marland Place and Balmoral Dams have been removed.

Designated Use Attainment Decisions

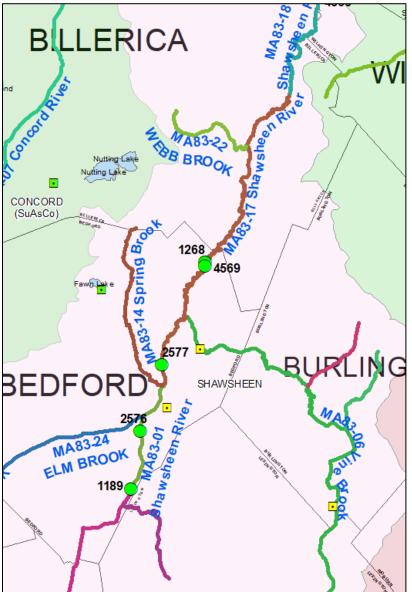
Fish, other Aquatic Life and Wildlife

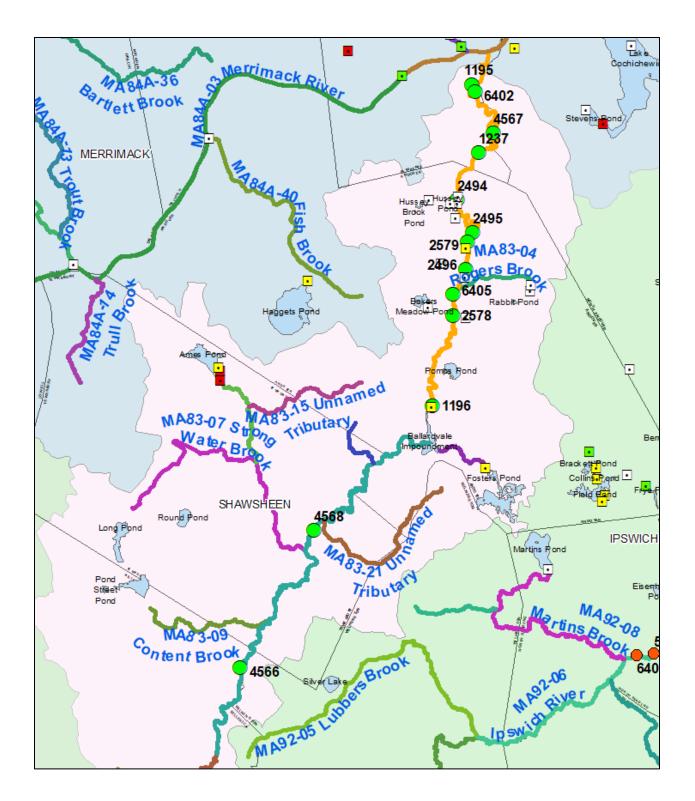
2022 Use Attainment	Alert
Not Supporting	YES
2022 Use Attainment Summary	
MassDEP staff identified an infestation of the non-native aquatic macrophyte, curly-leaf pondweed (Po	tamogeton
crispus), in this Shawsheen River AU (MA83-17) in the vicinity of water quality station W2149 (approxin	nately 350 feet
upstream of Middlesex Turnpike, Bedford) in 2010.	
Eighteen fish community samples (Sample IDs: 1189, 1195, 1196, 1237, 1268, 2494, 2495, 2496, 2576,	2577, 2578, 2579,
4566, 4567, 4568, 4569, 6402, 6405) were collected in the Shawsheen River (AUs MA83-01, MA83-17, I	MA83-18, MA83-
19) from 2005-2015. The percent similarity with the Shawsheen Target Fish Community model was 49.0)8%. Of the five

19) from 2005-2015. The percent similarity with the Shawsheen Target Fish Community model was 49.08%. Of the five most common species in the TFC (all fluvial species and 4 moderately tolerant), only one species (fallfish) was found in the top five among the study samples (fallfish, American eel, redbreast sunfish, white sucker, redfin pickerel). There were fewer fluvial species and more tolerant species among these five most common species in the study samples. Kashiwagi and Richards (2009) noted issues with channelization, as well as potentially erosion, sedimentation, and stormwater discharges in this basin. However, the Marland Place Dam (also known as the Stevens Street Dam) and the Balmoral Dam were removed from a downstream AU (MA83-19) in 2017, resulting in increased connectivity of riverine habitat (USFWS 2016). Since the comparison of fish community data with the Shawsheen TFC model was so close to the 50% target and the fish community data collected before 2017 (when major restoration activities occurred) were not necessarily representative of current conditions, a decision to include a Fish Bioassessments impairment will not be made at this time.

The Aquatic Life Use of this Shawsheen River AU (MA83-17) will continue to be assessed as Not Supporting with the Dissolved Oxygen impairment being carried forward. A new impairment is being added for the non-native aquatic macrophyte, Curly-leaf Pondweed and an Alert for Fish Bioassessments is being identified based on the TFC analysis.

Biological Monitoring Information


Fish Community Data and DELTS


Comparison of fish community samples (2005-2017) to the Shawsheen Target Fish Community (TFC) Model. (MassDFG 2018, MassDEP Undated 2, Kashiwagi and Richards 2009)

Eighteen fish community samples (Sample IDs: 1189, 1195, 1196, 1237, 1268, 2494, 2495, 2496, 2576, 2577, 2578, 2579, 4566, 4567, 4568, 4569, 6402, 6405) were collected in the Shawsheen River (AUs MA83-01, MA83-17, MA83-18, MA83-19) from 2005-2015. The percent similarity with the Shawsheen Target Fish Community model was 49.08%. Of the 5 most common species in the TFC (all fluvial species; 4 moderately tolerant), only one species (fallfish) was found in the top 5 among the study samples (fallfish, American eel, redbreast sunfish, white sucker, redfin pickerel). There were fewer fluvial species and more tolerant species among these 5 most common species in the study samples. Kashiwagi and Richards (2009) noted issues with channelization, as well as potentially erosion, sedimentation, and stormwater discharges in this basin. However, the Marland Place Dam (also known as the Stevens Street Dam) and the Balmoral Dam were removed from the downstream AU (MA83-

19) in 2017, resulting in increased connectivity of riverine habitat (USFWS 2016). Since the comparison of fish community data with the Shawsheen TFC model was so close to the 50% target and the fish community data collected before 2017 (when major restoration activities occurred) were not necessarily representative of current conditions, a use impairment decision for these four Shawsheen River AUs (MA83-01, MA83-17, MA83-18, MA83-19) will not be made at this time. In a future IR cycle, fish community data collected after 2017 throughout the Shawsheen River mainstem should be included in a comparative analysis with the Shawsheen TFC model.

Fish Community Samples in the Shawsheen River (MA83-01, MA83-17, MA83-18, MA83-19); screen capture of 2 upstream/southern AUs, and then 2 downstream/northern AUs:

Shawsheen TFC Model:

Table A14. Species percent composition for reference rivers used to develop the Shawsheen River target fish community model. Species are ordered by mean rank. Non-native, stocked, and out-of-range species were deleted from the ranking and calculation of expected proportion in the target fish model. The ranks were converted to expected proportions (as a percent) using a rank-weighting technique as outlined by Bain and Meixler (2008).

	Wood	Nissitissit	Eightmile	Isinglass	SB Piscataquog	Little			Expected
Species	River	River	River	River	River	River	Total	Rank	Proportions
Common shiner	32.3	5.4	18.6	36.8	20.6	14.9	128.6	1	37.6
Fallfish	4.1	26.7	3.1	18.1	3.0	16.2	71.2	2	18.8
Blacknose dace	0.0	6.2	3.4	0.0	33.4	22.3	65.3		
Longnose dace	12.5	12.6	1.0	12.1	19.0	0.0	57.2		
Tessellated darter	13.6	9.7	17.3	0.0	0.0	0.0	40.7	5	7.5
Redbreast sunfish	16.1	1.0	10.9	9.2	0.0	0.0	37.1	6	6.3
American eel	5.9	2.3	8.9	10.8	0.0	4.7	32.6	7	5.4
White sucker	2.1	0.8	5.0	0.5	0.9	12.2	21.4	8	4.7
Pumpkinseed	0.3	11.0	3.3	2.7	0.5	0.0	17.9	9	4.2
Atlantic salmon	2.8	0.0	1.4	3.9	9.4	0.0	17.5		
Largemouth bass	0.2	5.4	6.0	0.9	0.7	0.0	13.2		
Yellow bullhead	0.0	10.3	0.0	0.0	1.8	0.0	12.1		
Spottail shiner	0.0	0.0	11.3	0.0	0.5	0.0	11.8		
Bluegill	4.9	3.8	0.4	0.0	0.0	0.0	9.2		
Chain pickerel	1.1	3.3	0.1	0.2	0.2	0.7	5.7	15	2.5
Smallmouth bass	0.0	0.0	1.3	0.5	3.6	0.0	5.4		
Yellow perch	0.0	0.0	4.3	0.0	0.0	0.0	4.3	17	2.2
Brown bullhead	0.8	0.0	0.1	1.4	0.0	0.0	2.3	18	2.1
Creek chubsucker	1.3	0.8	0.0	0.0	0.0	0.0	2.1	19	2.0
Brown trout	0.7	0.0	0.3	0.0	0.4	0.7	2.0		
Bridle shiner	0.0	0.0	0.0	1.8	0.0	0.0	1.8	21	1.8
Golden shiner	0.0	0.0	0.0	0.0	1.6	0.0	1.6	22	1.7
Brook trout	0.8	0.3	0.0	0.0	0.0	0.0	1.1	23	1.6
Redfin pickerel	0.0	0.0	0.9	0.0	0.0	0.0	0.9	24	1.6
Rock bass	0.0	0.5	0.0	0.0	0.0	0.0	0.5		
Rainbow trout	0.2	0.0	0.0	0.0	0.2	0.0	0.4		
Black crappie	0.2	0.0	0.0	0.0	0.0	0.0	0.2		

Fish Community Analysis:

		Values					
		# of		Applicable	TFC	% Sim to	
Watershed	于 Common Name 🛛 🕂	Fish	catch		Difference	TFC	Roy Labels 🛛 🖵
🗏 Sha y sheen	American Brook Lamprey	,	0.00%		-		🖃 Shawsheen
Shawsheen	American Eel	490	24.23%	5.4	18.8		1189
Shawsheen	Atlantic Salmon	5	0.25%	-	0.2		1195
Shawsheen	Banded Killifish		0.00%	-	-		1196
Shawsheen	Banded Sunfish	10	0.49%	-	0.5		1237
Shawsheen	Black Crappie		0.00%	-	-		1268
Shawsheen	Blacknose Dace	1	0.05%	-	0.0		2494
Shawsheen	Bluegill	66	3.26%	-	3.3		2495
Sha y sheen	Bluntnose Minnow		0.00%	-	-		2496
Shawsheen	Bridle Shiner		0.00%	1.8	1.8		2576
Shawsheen	Brook Trout		0.00%	1.6	1.6		2577
Shawsheen	Brown Bullhead	58	2.87%				2578
Shawsheen	Brown Trout	3			0.1		2579
Shawsheen	Central Mudminnow		0.00%	_	-		4566
Shawsheen	Chain Pickerel	14	0.69%		1.8		4567
Shawsheen	Channel Catfish	14	0.00%	-			4568
Shawsheen	Common Carp	3	0.15%		0.1		 4569
Shawsheen	Common Shiner	2	0.10%		37.5		 6402
Shawsheen	Creek Chub	2	0.00%		51.5		 6405
		6	0.30%		1.7		
Shawsheen	Creek Chubsucker	D		2.0	L.C.		 Grand Total
Shawsheen	Cutlips Minnow	500	0.00%	-			
Shawsheen	Fallfish	566			9.2		
Shawsheen	Fathead Minnow		0.00%				
Shawsheen	Golden Shiner	19	0.94%		0.8		
Shawsheen	Green Sunfish		0.00%	-	-		
Shawsheen	Lake Chub		0.00%	-	-		
Shawsheen	Largemouth Bass	23	1.14%		1.1		
Shawsheen	Longnose Dace		0.00%	-	-		
Shawsheen	Longnose Sucker		0.00%	-	-		
Shawsheen	Northern Pike		0.00%		-		
Shawsheen	Pumpkinseed	71			0.7		
Shawsheen	Rainbow Trout		0.00%		-		
Shawsheen	Redbreast Sunfish	215	10.63%		4.3		
Shawsheen	Redfin Pickerel	103	5.09%	1.6	3.5		
Shawsheen	Rock Bass		0.00%		-		
Shawsheen	Sea Lamprey	79	3.91%	-	3.9		
Shawsheen	Slimy Sculpin		0.00%	-	-		
Shawsheen	Smallmouth Bass		0.00%	-	-		
Shawsheen	Spottail Shiner		0.00%	-	-		
Shawsheen	Swamp Darter	4	0.20%	-	0.2		
Shawsheen	Tadpole Madtom		0.00%	-	-		
Shawsheen	Tesselated Darter	82	4.06%	-	4.1		
Shawsheen	White Catfish		0.00%	-	-		
Shawsheen	White Perch		0.00%	-	-		
Shawsheen	White Sucker	145	7.17%	4.7	2.5		
Shawsheen	Yellow Bullhead	39	1.93%	-	1.9		
Shawsheen	Yellow Perch	18	0.89%	2.2	1.3		
Shawsheen	(blank)		0.00%	-	-	49.08	
Grand Total	(access cov)	2022	*****	_	100.0	10.00	
		2022			100.0		

Non-native Aquatic Species Presence

MassDEP Non-Native Aquatic Invasive Species Records as of May 2021. (MassDEP Undated 1)

Summary Statement

MassDEP staff identified an infestation of the non-native aquatic macrophyte, curly-leaf pondweed (*Potamogeton crispus*), in the Shawsheen River (MA83-17) in the vicinity of water quality station W2149 in 2010.

Fish Consumption

2022 Use Attainment	Alert
Not Assessed	NO
2022 Use Attainment Summary	

No fish toxics sampling has been conducted in this Shawsheen River AU (MA83-17) so the Fish Consumption Use is Not Assessed.

Aesthetic

2022 Use Attainment	Alert
Not Assessed	NO
2022 Use Attainment Summary	
	-

Recent sampling has not been conducted in this Shawsheen River AU (MA83-17) so the Aesthetics Use is Not Assessed.

Primary Contact Recreation

2022 Use Attainment	Alert				
Not Supporting	NO				
2022 Use Attainment Summary					
No recent bacteria sampling has been conducted in this Shawsheen River AU (MA83-17) so the Primary Contact					
Recreational Use will continue to be assessed as Not Supporting with the Escherichia Coli (E. Coli) and Fed	al Coliform				

impairments being carried forward.

Secondary Contact Recreation

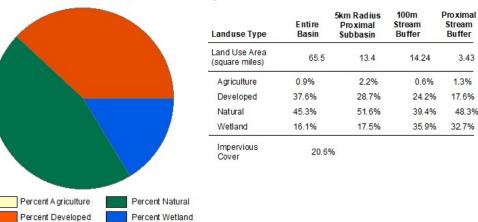
2022 Use Attainment	Alert				
Not Assessed	NO				
2022 Use Attainment Summary					
No recent bacteria sampling has been conducted in this Shawsheen River AU (MA83-17) so the Secondar	y Contact				
Recreational Use is Not Assessed.					

3.43

1.3%

17.6%

48.3%


32.7%

Shawsheen River (MA83-18)

Location:	Burlington Water Department's surface water intake, Billerica to the inlet of Ballardvale Impoundment, Andover (formerly part of 2002 segment: Shawsheen River MA83-02) (since 2016 cycle: excludes Ballardvale Impoundment, pond segment MA83011).
AU Type:	RIVER
AU Size:	9.5 MILES
Classification/Qualifier:	B: WWF

Shawsheen River - MA83-18

65.5 square miles including areas outside Massachusetts Watershed Area:

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
5	5	(Curly-leaf Pondweed*)		Added
5	5	Dissolved Oxygen		Unchanged
5	5	Escherichia Coli (E. Coli)	2587	Unchanged
5	5	Fecal Coliform	2587	Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
(Curly-leaf Pondweed*)	Introduction of Non-native Organisms (Accidental or Intentional) (Y)	Х				
Dissolved Oxygen	Source Unknown (N)	Х				
Escherichia Coli (E. Coli)	Discharges from Municipal Separate Storm Sewer Systems (MS4) (N)				Х	
Fecal Coliform	Discharges from Municipal Separate Storm Sewer Systems (MS4) (N)				Х	

Recommendations

2022 Recommendations

ALU: Fish community data collected throughout the Shawsheen River mainstem is needed to update the comparison to the Shawsheen Target Fish Community model since the Marland Place and Balmoral Dams have been removed.

Designated Use Attainment Decisions

Fish, other Aquatic Life and Wildlife

2022 Use Attainment	Alert
Not Supporting	YES
2022 Use Attainment Summary	
MassDEP staff identified an infestation of the non-native aquatic macrophyte, curly-leaf pondw	eed (Potamogeton
crispus), in this Shawsheen River AU (MA83-18) in the vicinity of water quality station W2148 (a	pproximately 2600 feet
downstream of Route 93, Andover) in 2010.	
Eighteen fish community samples (Sample IDs: 1189, 1195, 1196, 1237, 1268, 2494, 2495, 2496	5, 2576, 2577, 2578, 2579,
4566, 4567, 4568, 4569, 6402, 6405) were collected in the Shawsheen River (AUs MA83-01, MA	83-17, MA83-18, MA83-
19) from 2005-2015. The percent similarity with the Shawsheen Target Fish Community model	was 49.08%. Of the five
most common species in the TFC (all fluvial species and 4 moderately tolerant), only one specie	s (fallfish) was found in
the top five among the study samples (fallfish, American eel, redbreast sunfish, white sucker, re	edfin pickerel). There
were fewer fluvial species and more tolerant species among these 5 most common species in the	ne study samples.
Kashiwagi and Richards (2009) noted issues with channelization, as well as potentially erosion, s	sedimentation, and
stormwater discharges in this basin. However, the Marland Place Dam (also known as the Steve	ens Street Dam) and the
Balmoral Dam were removed from the downstream AU (MA83-19) in 2017, resulting in increase	ed connectivity of riverine
habitat (USFWS 2016). Since the comparison of fish community data with the Shawsheen TFC m	nodel was so close to the
50% target and the fish community data collected before 2017 (when major restoration activitient)	es occurred) were not
necessarily representative of current conditions, a decision to include a Fish Bioassessments im	pairment will not be
made at this time. UMass Amherst students collected limited water quality data (Station UMass	sA_BVLUS) in this
Shawsheen River AU 7500 m upstream of the Ballardvale Dam (and a short way upstream of the	e Strong Water Brook
confluence) in Tewksbury. Continuous temperature data were measured over 78 days in the 20	16 summer index period
(before the Balmoral Dam was demolished in 2017) and were indicative of adequate conditions	for a warmwater fishery:
there were <11 occurrences of a 7DADM >27.7 °C (n=8) and the maximum recorded temperatu	re (29.0 °C) did not
exceed the acute temperature threshold.	
The Aquatic Life Use of this Shawsheen River AU (MA83-18) will continue to be assessed as Not	Supporting, with the

The Aquatic Life Use of this Shawsheen River AU (MA83-18) will continue to be assessed as Not Supporting, with the Dissolved Oxygen impairment being carried forward. A new impairment is being added for the non-native aquatic macrophyte, Curly-leaf Pondweed and an Alert for Fish Bioassessments is being identified based on the TFC analysis.

Monitoring Stations

Station Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
8593	MassDFG	Fish	Shawsheen	mill st ds, Tewksbury	42.60061	-71.19296
		Community	River			

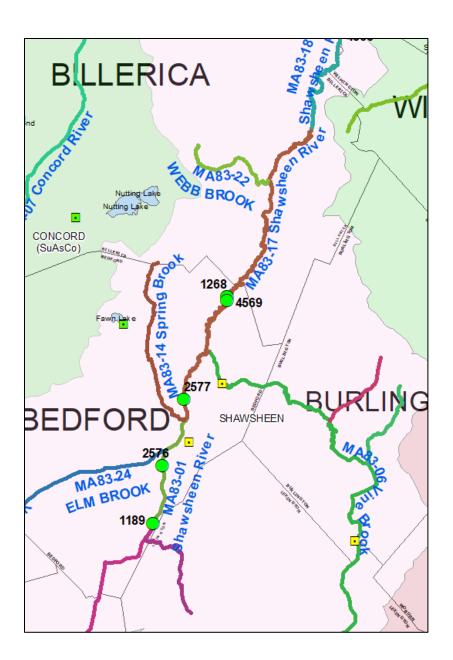
Station Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
UMassA_BVLUS	UMass Amherst	Water Quality	Shawsheen River	7500m upstream dam	42.595117	-71.195383

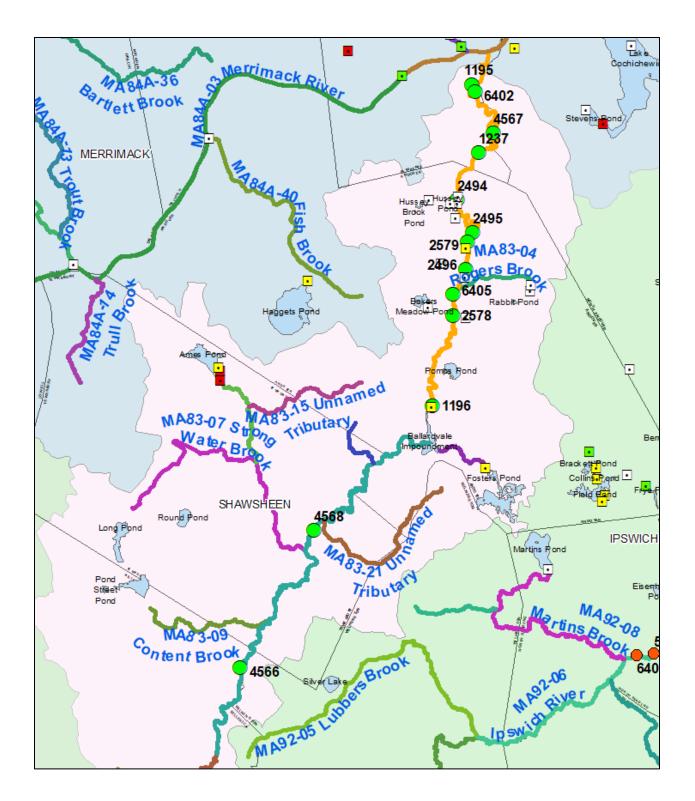
Biological Monitoring Information

Fish Community Data and DELTS

Fish Community Data (2012-2019) Provided by MassDFG. (MassDFG 2020) (MassDEP Undated 3)

[Sample Type: TP= Total Pickup, SP= Selective Pickup, Method: BT=Boat Shocking, BP= Backpack Shocking, BG= Barge Shocking, SE= Seine, SL= Snorkel, NS= Not Stated, MT= Minnow Trap, GN= Gillnet, FY= Fyke Net, Gradient: H = High, L = Low; I/MT MG= Intolerant/Moderately Tolerant Macrohabitat Generalist]


[Species List: AE = American Eel, B = Bluegill, F = Fallfish, LMB = Largemouth Bass, P = Pumpkinseed, RBS = Redbreast Sunfish, RP = Redfin Pickerel, YP = Yellow Perch]


Sample ID	Sample Date	Method	Sample Type	Gradient	Total Taxa	Total Ind	Cold Ind %	Fluvial Taxa	Fluvial Ind %	Intol Ind %	I/MT MG Taxa	I/MT MG Ind %	Notables	CFR	Species List
8593	08/15/19	BP	ТР		8	120	0%	1	11%	0%	5	39%	No	No	AE, B, F, LMB, P, RBS, RP, YP,

Comparison of fish community samples (2005-2017) to the Shawsheen Target Fish Community (TFC) Model. (MassDFG 2018, MassDEP Undated 2, Kashiwagi and Richards 2009)

Eighteen fish community samples (Sample IDs: 1189, 1195, 1196, 1237, 1268, 2494, 2495, 2496, 2576, 2577, 2578, 2579, 4566, 4567, 4568, 4569, 6402, 6405) were collected in the Shawsheen River (AUs MA83-01, MA83-17, MA83-18, MA83-19) from 2005-2015. The percent similarity with the Shawsheen Target Fish Community model was 49.08%. Of the 5 most common species in the TFC (all fluvial species; 4 moderately tolerant), only one species (fallfish) was found in the top 5 among the study samples (fallfish, American eel, redbreast sunfish, white sucker, redfin pickerel). There were fewer fluvial species and more tolerant species among these 5 most common species in the study samples. Kashiwagi and Richards (2009) noted issues with channelization, as well as potentially erosion, sedimentation, and stormwater discharges in this basin. However, the Marland Place Dam (also known as the Stevens Street Dam) and the Balmoral Dam were removed from the downstream AU (MA83-19) in 2017, resulting in increased connectivity of riverine habitat (USFWS 2016). Since the comparison of fish community data with the Shawsheen TFC model was so close to the 50% target and the fish community data collected before 2017 (when major restoration activities occurred) were not necessarily representative of current conditions, a use impairment decision for these four Shawsheen River AUs (MA83-01, MA83-17, MA83-18, MA83-19) will not be made at this time. In a future IR cycle, fish community data collected after 2017 throughout the Shawsheen River mainstem should be included in a comparative analysis with the Shawsheen TFC model.

Fish Community Samples in the Shawsheen River (MA83-01, MA83-17, MA83-18, MA83-19); screen capture of 2 upstream/southern AUs, and then 2 downstream/northern AUs:

Shawsheen TFC Model:

Table A14. Species percent composition for reference rivers used to develop the Shawsheen River target fish community model. Species are ordered by mean rank. Non-native, stocked, and out-of-range species were deleted from the ranking and calculation of expected proportion in the target fish model. The ranks were converted to expected proportions (as a percent) using a rank-weighting technique as outlined by Bain and Meixler (2008).

	Wood	Nissitissit	Eightmile	Isinglass	SB Piscataquog	Little			Expected
Species	River	River	River	River	River	River	Total	Rank	Proportions
Common shiner	32.3	5.4	18.6	36.8	20.6	14.9	128.6	1	37.6
Fallfish	4.1	26.7	3.1	18.1	3.0	16.2	71.2	2	18.8
Blacknose dace	0.0	6.2	3.4	0.0	33.4	22.3	65.3		
Longnose dace	12.5	12.6	1.0	12.1	19.0	0.0	57.2		
Tessellated darter	13.6	9.7	17.3	0.0	0.0	0.0	40.7	5	7.5
Redbreast sunfish	16.1	1.0	10.9	9.2	0.0	0.0	37.1	6	6.3
American eel	5.9	2.3	8.9	10.8	0.0	4.7	32.6	7	5.4
White sucker	2.1	0.8	5.0	0.5	0.9	12.2	21.4	8	4.7
Pumpkinseed	0.3	11.0	3.3	2.7	0.5	0.0	17.9	9	4.2
Atlantic salmon	2.8	0.0	1.4	3.9	9.4	0.0	17.5		
Largemouth bass	0.2	5.4	6.0	0.9	0.7	0.0	13.2		
Yellow bullhead	0.0	10.3	0.0	0.0	1.8	0.0	12.1		
Spottail shiner	0.0	0.0	11.3	0.0	0.5	0.0	11.8		
Bluegill	4.9	3.8	0.4	0.0	0.0	0.0	9.2		
Chain pickerel	1.1	3.3	0.1	0.2	0.2	0.7	5.7	15	2.5
Smallmouth bass	0.0	0.0	1.3	0.5	3.6	0.0	5.4		
Yellow perch	0.0	0.0	4.3	0.0	0.0	0.0	4.3	17	2.2
Brown bullhead	0.8	0.0	0.1	1.4	0.0	0.0	2.3	18	2.1
Creek chubsucker	1.3	0.8	0.0	0.0	0.0	0.0	2.1	19	2.0
Brown trout	0.7	0.0	0.3	0.0	0.4	0.7	2.0		
Bridle shiner	0.0	0.0	0.0	1.8	0.0	0.0	1.8	21	1.8
Golden shiner	0.0	0.0	0.0	0.0	1.6	0.0	1.6	22	1.7
Brook trout	0.8	0.3	0.0	0.0	0.0	0.0	1.1	23	1.6
Redfin pickerel	0.0	0.0	0.9	0.0	0.0	0.0	0.9	24	1.6
Rock bass	0.0	0.5	0.0	0.0	0.0	0.0	0.5		
Rainbow trout	0.2	0.0	0.0	0.0	0.2	0.0	0.4		
Black crappie	0.2	0.0	0.0	0.0	0.0	0.0	0.2		

Fish Community Analysis:

		Values					
		# of		Applicable	TFC	% Sim to	
Watershed	于 Common Name 🛛 🕂	Fish	catch	TFC	Difference	TFC	Roy Labels 🔄 🚽
🗏 Sha v sheen	American Brook Lamprey		0.00%	-	-		🖃 Sha v sheen
Shawsheen	American Eel	490		5.4	18.8		1189
Shavsheen	Atlantic Salmon	5	0.25%	-	0.2		1195
Shawsheen	Banded Killifish		0.00%	-	-		1196
Shawsheen	Banded Sunfish	10	0.49%	-	0.5		1237
Shawsheen	Black Crappie		0.00%	-	-		1268
Shawsheen	Blacknose Dace	1	0.05%	-	0.0		2494
Shawsheen	Bluegill	66	3.26%	-	3.3		2495
Shawsheen	Bluntnose Minnow		0.00%	-	-		2496
Shawsheen	Bridle Shiner		0.00%	1.8	1.8		2576
Shawsheen	Brook Trout		0.00%	1.6	1.6		2577
Shawsheen	Brown Bullhead	58	2.87%	2.1	0.8		2578
Shawsheen	Brown Trout	3	0.15%		0.1		2579
Shawsheen	Central Mudminnow		0.00%	_	-		4566
Shawsheen	Chain Pickerel	14	0.69%	2.5	1.8		4567
Shawsheen	Channel Catfish	14	0.00%				 4568
Shawsheen	Common Carp	3	0.15%		0.1		 4569
Shawsheen	Common Shiner	2	0.10%	37.6	37.5		 6402
Shawsheen	Creek Chub	2	0.00%				 6405
		6			17		
Shawsheen	Creek Chubsucker	ь	0.30%	2.0	L.C.		 Grand Total
Shavsheen	Cutlips Minnow	500	0.00%		-		
Shawsheen	Fallfish	566	27.99%	18.8	9.2		
Shawsheen	Fathead Minnow		0.00%	-			
Shawsheen	Golden Shiner	19	0.94%	1.7	0.8		
Shawsheen	Green Sunfish		0.00%	-	-		
Shawsheen	Lake Chub		0.00%	-	-		
Shawsheen	Largemouth Bass	23	1.147	-	1.1		
Shawsheen	Longnose Dace		0.00%	-	-		
Shawsheen	Longnose Sucker		0.00%	-	-		
Shawsheen	Northern Pike		0.00%	-	-		
Shavsheen	Pumpkinseed	71	3.51%	4.2	0.7		
Shawsheen	Rainbow Trout		0.00%	-	-		
Shawsheen	Redbreast Sunfish	215	10.63%	6.3	4.3		
Shawsheen	Redfin Pickerel	103	5.09%	1.6	3.5		
Shavsheen	Rock Bass		0.00%	-	-		
Shavsheen	Sea Lamprey	79	3.91%	-	3.9		
Shawsheen	SlimySculpin		0.00%	-	-		
Shawsheen	Smallmouth Bass		0.00%	-	-		
Shawsheen	Spottail Shiner		0.00%	-	-		
Shawsheen	Swamp Darter	4	0.20%	-	0.2		
Shawsheen	Tadpole Madtom		0.00%	_	-		
Shawsheen	Tesselated Darter	82	4.06%	_	4.1		
Shawsheen	White Catfish	52	0.00%	_	-		
Shawsheen	White Perch		0.00%	_	_		
Shawsheen	White Sucker	145	7.17%	4.7	2.5		
Shawsheen	Yellow Bullhead	39	1.93%	4.1	2.5		
Shawsheen				2.2	1.3		
	Yellow Perch	18	0.89%	2.2	1.3	40.00	
Shavsheen	(blank)	2022	0.00%	-		49.08	
Grand Total		2022	*****	-	100.0		

Non-native Aquatic Species Presence

MassDEP Non-Native Aquatic Invasive Species Records as of May 2021. (MassDEP Undated 1)

Summary Statement

MassDEP staff identified an infestation of the non-native aquatic macrophyte, curly-leaf pondweed (*Potamogeton crispus*), in the Shawsheen River (MA83-18) in the vicinity of water quality station W2148 in 2010.

Physico-chemical Water Quality Information

DO, pH, Temperature

UMass Amherst Dam Study Long-term Continuous Temperature Data (Summer Index 2014-2017). (UMass-Amherst 2018) (MassDEP Undated 4)

[Summer Index is June 1 – Sept 15; 7DADM= 7-Day Average of the Daily Maxima, 7DADA= 7-Day Average of the Daily Average, CW= Coldwater, WW= Warmwater]

Station Code	Start Date	End Date	Index Count	Max 24hr Rolling Avg Temp (°C)	Max Temp (°C)	Max 7DADM (°C)	Max 7DADA (°C)	Count CWTier1 7DADM >20	Count CWTier2 7DADA >21	Count WW 7DADM >27.7
UMassA_BVLUS	06/30/16	12/31/16	78	27.5	29.0	28.4	26.9	72	70	8
UMassA_BVLUS	01/01/17	05/18/17	0	23.4	23.8	NA	NA	NA	NA	NA

Fish Consumption

2022 Use Attainment	Alert
Not Assessed	NO
2022 Use Attainment Summary	
Fish toxics sampling has not been conducted in this Shawsheen River AU (MA83-18) so the Fish Consump	tion Use is Not
Assessed.	

Aesthetic

2022 Use Attainment	Alert					
Not Assessed	NO					
2022 Use Attainment Summary						
No recent sampling has been conducted in this Shawsheen River AU (MA83-18) so the Aesthetics Use is Not Assessed.						

No recent sampling has been conducted in this Shawsheen River AU (MA83-18) so the Aesthetics Use is Not Assessed.

Primary Contact Recreation

2022 Use Attainment	Alert				
Not Supporting	NO				
2022 Use Attainment Summary					
No recent bacteria sampling has been conducted in this Shawsheen River AU (MA83-18) so the Prima	ary Contact				
Recreational Use will continue to be assessed as Not Supporting, with the Escherichia Coli (E. Coli) and Fecal Coliform					
impairments being carried forward.					

Secondary Contact Recreation

2022 Use Attainment	Alert					
Not Assessed	NO					
2022 Use Attainment Summary						
No recent bacteria sampling has been conducted in this Shawsheen River AU (MA83-18) so the Secondary Contact						
Recreational Use is Not Assessed.						

1.39

0%

Shawsheen River (MA83-19)

Location:	Outlet of Ballardvale Impoundment, Andover to the confluence with the Merrimack River, Lawrence. (formerly part of 2002 segment: Shawsheen River MA83-02 and all of 2002 segment: Shawsheen River MA83-03).
AU Type:	RIVER
AU Size:	8.2 MILES
Classification/Qualifier:	B: WWF

Shawsheen River - MA83-19

Percent Developed

77.75 square miles including areas outside Massachusetts Watershed Area:

Percent Wetland

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
4a	5	(Curly-leaf Pondweed*)		Added
4a	5	(Fish Passage Barrier*)		Added
4a	5	Benthic Macroinvertebrates		Added
4a	5	Escherichia Coli (E. Coli)	2587	Unchanged
4a	5	Fecal Coliform	2587	Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
(Curly-leaf Pondweed*)	Introduction of Non-native Organisms	Х				
	(Accidental or Intentional) (Y)					
(Fish Passage Barrier*)	Dam or Impoundment (Y)	Х				
Benthic Macroinvertebrates	Source Unknown (N)	Х				
Escherichia Coli (E. Coli)	Discharges from Municipal Separate Storm Sewer Systems (MS4) (N)				Х	

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
Escherichia Coli (E. Coli)	Illicit Connections/Hook-ups to Storm				Х	
	Sewers (N)					
Fecal Coliform	Discharges from Municipal Separate Storm				Х	
	Sewer Systems (MS4) (N)					
Fecal Coliform	Illicit Connections/Hook-ups to Storm				Х	
	Sewers (N)					

Recommendations

2022 Recommendations

ALU: Fish community data collected throughout the Shawsheen River mainstem is needed to update the comparison to the Shawsheen Target Fish Community model since the Marland Place and Balmoral Dams were removed in March 2017. Additionally, progress should be tracked on the project to remove the Ballardvale Dam.

Designated Use Attainment Decisions

Fish, other Aquatic Life and Wildlife

2022 Use Attainment	Alert
Not Supporting	NO
2022 Use Attainment Summary	

The Ballardvale Dam, at the upstream end of this Shawsheen River AU (MA83-19), represents the upstream extent of passage of diadromous fish species (river herring, American eel, American shad), according to DMF biologists. They gave this structure a passage score of "8", on a 0-10 scale, meaning the dam poses a severe impediment to fish passage. A dam removal project is in the planning stages with design completed in 2016, while the downstr. Marland Place Dam (aka Stevens St Dam) & Balmoral/Rt.133 Dam were successfully removed in 2017 (passage scores = 0), opening ~4 miles of river.

Data available for this AU includes benthic community (MassDEP), fish community (MassDFG/MassDEP), and water quality (WQ) data (MassDEP, UMass). Eighteen fish community samples (Samples 1189, 1195, 1196, 1237, 1268, 2494, 2495, 2496, 2576, 2577, 2578, 2579, 4566, 4567, 4568, 4569, 6402, 6405) were collected in the Shawsheen River (AUs MA83-01, MA83-17, MA83-18, MA83-19) from 2005-2015. The % similarity with the Shawsheen Target Fish Community model was 49.08%, approaching the 50% target. Although Kashiwagi & Richards (2009) noted issues with channelization, as well as potentially erosion, sedimentation, and stormwater discharges in this basin, this TFC analysis is not necessarily representative of current conditions since 2 dams were removed in 2017; therefore, a use impairment decision is not warranted at this time. Additional fish samples were collected in 2018 & 2019, but comparable sampling is needed in all mainstem AUs so that the TFC analysis can be updated.

UMass Amherst students collected limited WQ data at 3 locations downstream of the Ballardvale Dam. Among continuous temp. data collected in the 2016 (n=78 days) & 2017 (n=107 days) summer index periods, there were no violations of chronic/acute temp. thresholds (MassDEP 2022). MassDEP field crews conducted benthic/WQ sampling during summer 2015 at 2 locations in this AU: ~1900 ft upstr. of Central St, Andover (B0937/W2538) & ~1300 ft downstr. of the Rt 495 crossing nearest the Mass Ave ramp to Rt 495 S, Lawrence (B0922/W2523). Benthic sample index scores (47/32) were indicative of moderately degraded conditions at the high gradient upstr. location & severely degraded conditions at the low gradient downstr. site. The non-native aquatic macrophyte, curly-leaf pondweed (P. crispus) was observed at the upstr. site. Among continuous DO data (n= 79 days/location), no 7DADMins were <5.0mg/L & only two 1day mins were <4.0mg/L at the downstr. location. Continuous temp. was measured over a similar period & the max temp. for either location was 27.4°C, good for a WWF. Other WQ indicators are summarized as follows ("n" listed per station) & were generally indicative of good conditions: pH 7.0-7.3 S.U. (n=3), no indication of nutrient enrichment (seasonal TP avg 0.041/0.038mg/L with n=5, max DO diel shift 3.0mg/L both stations, max DO saturation 86%/97%, no observations of excessive filamentous algae), no exceedances among 3 clean metals samples or 3 aluminum samples, max Total Ammonia-N was 0.2/0.19mg/L (n=3), and max chloride was 180/210mg/L (n=3/station) with similar indications in the SC data. UMass Amherst students collected WQ data at multiple stations upstr. & downstr. of the Marland Place & Balmoral Dams in 2015, 2016, and after dam removal in 2017. Continuous DO (5-7 day deploys) had no 1-day mins <5.0mg/L in the early life stages period or <4.0mg/L the rest of the season. Among continuous temp. data (n= 69-107/summer index) there were no exceedances of acute/chronic thresholds. All pH data ranged from 6.5-8.0S.U. (n= 1-6/depth/station). SC data (n= 1-6/depth/station) did not exceed estimated chloride criteria.

The Aquatic Life Use of this Shawsheen River AU (MA83-19) is assessed as Not Supporting based on all the described data above, with Fish Passage Barriers (barrier posed by the Ballardvale Impoundment), Benthic Macroinvertebrates, and Curly-leaf Pondweed impairments all being added.

Monitoring Stations

Station Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
6402	MassDEP Fish Shawsheen , Lawrence, North Andover		, Lawrence, North Andover	42.69712	-71.14400	
		Community	River			
6405	MassDEP	Fish	Shawsheen	approximately 1900 feet upstream/north of	42.65220	-71.15097
		Community	River	Central Street, Andover, Andover		
7459	MassDFG	Fish	Shawsheen	Riverina Rd., Andover	42.67295	-71.14970
		Community	River			
7460	MassDFG	Fish	Shawsheen	Washington Park Dr., Andover	42.66749	-71.14566
		Community	River			
7461	MassDFG	Fish	Shawsheen	Stevens St. downstream, Andover	42.66404	-71.14643
		Community	River			

Station Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
7462	MassDFG	Fish	Shawsheen	Essex St. downstream, Andover	42.65840	-71.14703
		Community	River			
7463	MassDFG	Fish	Shawsheen	"off" Lupine rd. behind cemetary, Andover	42.65198	-71.15077
		Community	River			
7464	MassDFG	Fish	Shawsheen	Dale St. "end of dirt road", Andover	42.63031	-71.15786
		Community	River			
8591	MassDFG	Fish	Shawsheen	Dale ST, Andover	42.63024	-71.15786
		Community	River			
8592	MassDFG	Fish	Shawsheen	Dale ST, Andover	42.62908	-71.15725
		Community	River			
B0922	MassDEP	Benthic	Shawsheen	[approximately 400 meters	42.697117	-71.143995
			River/	downstream/west of Route 495 crossing		
				nearest the Massachusetts Avenue ramp to		
				Route 495 southbound, Lawrence, MA]		
B0937	MassDEP	Benthic	Shawsheen	[approximately 580 meters upstream/north	42.652195	-71.150971
			River/	of Central Street, Andover, MA]		
W2523	MassDEP	Water	Shawsheen	[approximately 1300 feet downstream/west	42.697117	-71.143995
		Quality	River	of Route 495 crossing nearest the		
				Massachusetts Avenue ramp to Route 495		
				southbound, Lawrence]		
W2538	MassDEP	Water	Shawsheen	[approximately 1900 feet upstream/north	42.652195	-71.150971
		Quality	River	of Central Street, Andover]		

Station Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
UMassA_BALDS1	UMass	Water	Shawsheen	60m downstream dam	42.672617	-71.149567
	Amherst	Quality	River			
UMassA_BALDS2	UMass	Water	Shawsheen	160m downstream dam	42.673552	-71.149397
	Amherst	Quality	River			
UMassA_BALDS3	UMass	Water	Shawsheen	450m downstream dam	42.676033	-71.149667
	Amherst	Quality	River			
UMassA_BALDS4	UMass	Water	Shawsheen	600m downstream dam	42.677458	-71.14953
	Amherst	Quality	River			
UMassA_BALIMP	UMass	Water	Shawsheen	30m upstream dam	42.671867	-71.149417
	Amherst	Quality	River			
UMassA_BALUS	UMass	Water	Shawsheen	1500m upstream dam	42.66495	-71.1458
	Amherst	Quality	River			
UMassA_BVLDS1	UMass	Water	Shawsheen	49m downstream dam	42.627478	-71.157397
	Amherst	Quality	River			
UMassA_BVLDS2	UMass	Water	Shawsheen	245m downstream dam	42.629133	-71.157383
	Amherst	Quality	River			
UMassA_BVLDS3	UMass	Water	Shawsheen	460m downstream dam	42.631017	-71.15815
	Amherst	Quality	River			
UMassA_MARDS1	UMass	Water	Shawsheen	44m downstream dam	42.662717	-71.146733
	Amherst	Quality	River			
UMassA_MARDS2	UMass	Water	Shawsheen	100m downstream dam	42.663229	-71.146659
	Amherst	Quality	River			
UMassA_MARDS3	UMass	Water	Shawsheen	205m downstream dam	42.664183	-71.1465
	Amherst	Quality	River			
UMassA_MARIMP	UMass	Water	Shawsheen	27m upstream dam	42.66205	-71.146683
	Amherst	Quality	River			1

Station Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
UMassA_MARUS	UMass	Water	Shawsheen	669m upstream dam	42.657103	-71.14675
	Amherst	Quality	River			

Biological Monitoring Information

Benthic Macroinvertebrate Data

MassDEP Benthic Macroinvertebrate Data (2011-2017). (MassDEP Undated 5)

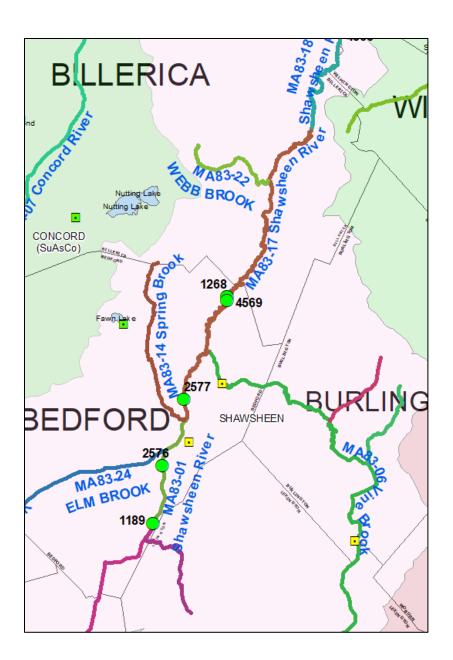
[Index Biological Condition Class: E= Exceptional, S= Satisfactory, MD= Moderately Degraded, SD= Severely Degraded; High Gradient IBI Thresholds: E= 100-75, S= 74-55, MD= 54-35, SD= 34-0; Low Gradient IBI Thresholds: E= 100-81, S= 80-62, MD= 61-38, SD= 37-0; R qualifier = Rarefaction (100ct) <55]

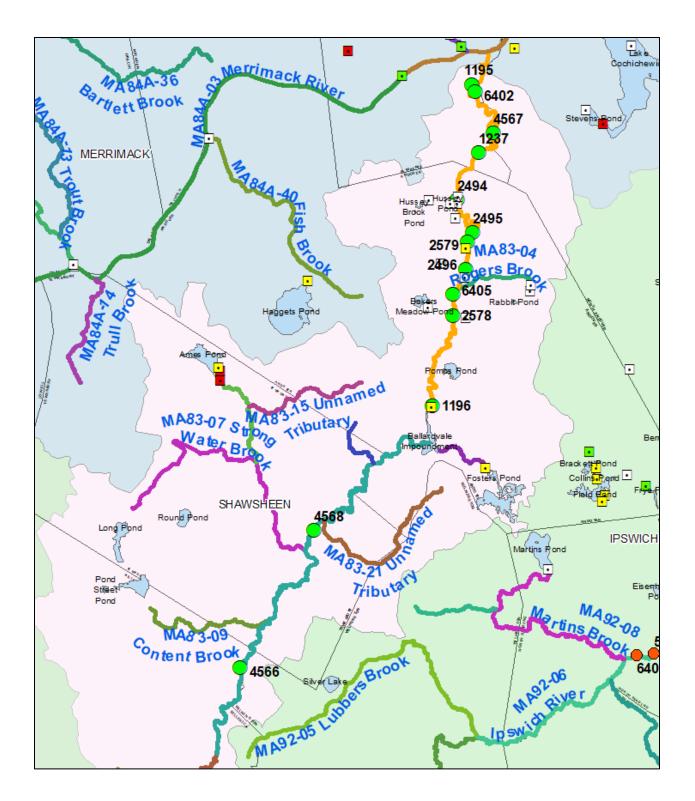
Station Code	Collection Date	Collection Method	Index Type	Organism Count	Index Score	Index Biological Condition Class	
B0922	07/07/15	RBP multihab	Statewide_Low_Gradient	314	32	SD	
B0937	07/09/15	RBP kicknet	Central_Hills_300ct	311	47	MD	

Fish Community Data and DELTS

Fish Community Data (2012-2019) Provided by MassDFG. (MassDFG 2020) (MassDEP Undated 3)

[Sample Type: TP= Total Pickup, SP= Selective Pickup, Method: BT=Boat Shocking, BP= Backpack Shocking, BG= Barge Shocking, SE= Seine, SL= Snorkel, NS= Not Stated, MT= Minnow Trap, GN= Gillnet, FY= Fyke Net, Gradient: H = High, L = Low; I/MT MG= Intolerant/Moderately Tolerant Macrohabitat Generalist]


[Species List: AE = American Eel, B = Bluegill, BB = Brown Bullhead, CP = Chain Pickerel, F = Fallfish, GS = Golden Shiner, GSF = Green Sunfish, LMB = Largemouth Bass, P = Pumpkinseed, RBS = Redbreast Sunfish, SL = Sea Lamprey, TD = Tesselated Darter, WS = White Sucker, YB = Yellow Bullhead, YP = Yellow Perch]


Sample ID	Sample Date	Method	Sample Type	Gradient	Total Taxa	Total Ind	Cold Ind %	Fluvial Taxa	Fluvial Ind %	Intol Ind %	I/MT MG Taxa	I/MT MG Ind %	Notables	CFR	Species List
6402	09/22/15	BG	ТР		9	150	0%	3	31%	0%	2	5%	Yes	No	AE, B, F, GS, P, RBS, SL, TD, WS,
6405	09/25/15	BP	ТР		9	454	0%	2	92%	0%	3	2%	No	No	AE, BB, CP, F, LMB, RBS, SL, WS, YB,
7459	07/10/18	BP	ТР	L	10	64	0%	3	59%	0%	2	6%	No	No	AE, B, F, GSF, LMB, P, SL, TD, WS, YB,
7460	07/10/18	BP	ТР	L	7	26	0%	2	46%	0%	3	19%	No	No	AE, F, GSF, LMB, P, RBS, TD,
7461	07/10/18	BP	ТР	L	9	126	0%	2	83%	0%	3	6%	No	No	AE, CP, F, GSF, LMB, RBS, SL, TD, YB,
7462	07/11/18	BP	TP	L	7	34	0%	2	18%	0%	3	44%	No	No	AE, CP, F, P, RBS, WS, YB,
7463	07/11/18	BP	TP	L	6	69	0%	1	7%	0%	3	12%	No	No	AE, CP, F, LMB, RBS, SL,
7464	07/11/18	BP	TP	L	6	23	0%	1	13%	0%	3	39%	No	No	AE, P, RBS, WS, YB, YP,
8591	08/15/19	BP	ТР		10	92	0%	2	9%	0%	5	34%	No	No	AE, B, CP, F, LMB, P, RBS, WS, YB, YP,
8592	08/15/19	BP	TP		9	100	0%	2	12%	0%	4	16%	No	No	AE, B, F, LMB, P, RBS, WS, YB, YP,

Comparison of fish community samples (2005-2017) to the Shawsheen Target Fish Community (TFC) Model. (MassDFG 2018, MassDEP Undated 2, Kashiwagi and Richards 2009)

Eighteen fish community samples (Sample IDs: 1189, 1195, 1196, 1237, 1268, 2494, 2495, 2496, 2576, 2577, 2578, 2579, 4566, 4567, 4568, 4569, 6402, 6405) were collected in the Shawsheen River (AUs MA83-01, MA83-17, MA83-18, MA83-19) from 2005-2015. The percent similarity with the Shawsheen Target Fish Community model was 49.08%. Of the 5 most common species in the TFC (all fluvial species; 4 moderately tolerant), only one species (fallfish) was found in the top 5 among the study samples (fallfish, American eel, redbreast sunfish, white sucker, redfin pickerel). There were fewer fluvial species and more tolerant species among these 5 most common species in the study samples. Kashiwagi and Richards (2009) noted issues with channelization, as well as potentially erosion, sedimentation, and stormwater discharges in this basin. However, the Marland Place Dam (also known as the Stevens Street Dam) and the Balmoral Dam were removed from the downstream AU (MA83-19) in 2017, resulting in increased connectivity of riverine habitat (USFWS 2016). Since the comparison of fish community data with the Shawsheen TFC model was so close to the 50% target and the fish community data collected before 2017 (when major restoration activities occurred) were not necessarily representative of current conditions, a use impairment decision for these four Shawsheen River AUs (MA83-01, MA83-17, MA83-18, MA83-19) will not be made at this time. In a future IR cycle, fish community data collected after 2017 throughout the Shawsheen River mainstem should be included in a comparative analysis with the Shawsheen TFC model.

Fish Community Samples in the Shawsheen River (MA83-01, MA83-17, MA83-18, MA83-19); screen capture of 2 upstream/southern AUs, and then 2 downstream/northern AUs:

Shawsheen TFC Model:

Table A14. Species percent composition for reference rivers used to develop the Shawsheen River target fish community model. Species are ordered by mean rank. Non-native, stocked, and out-of-range species were deleted from the ranking and calculation of expected proportion in the target fish model. The ranks were converted to expected proportions (as a percent) using a rank-weighting technique as outlined by Bain and Meixler (2008).

	Wood	Nissitissit	Eightmile	Isinglass	SB Piscataquog	Little			Expected
Species	River	River	River	River	River	River	Total	Rank	Proportions
Common shiner	32.3	5.4	18.6	36.8	20.6	14.9	128.6	1	37.6
Fallfish	4.1	26.7	3.1	18.1	3.0	16.2	71.2	2	18.8
Blacknose dace	0.0	6.2	3.4	0.0	33.4	22.3	65.3		
Longnose dace	12.5	12.6	1.0	12.1	19.0	0.0	57.2		
Tessellated darter	13.6	9.7	17.3	0.0	0.0	0.0	40.7	5	7.5
Redbreast sunfish	16.1	1.0	10.9	9.2	0.0	0.0	37.1	6	6.3
American eel	5.9	2.3	8.9	10.8	0.0	4.7	32.6	7	5.4
White sucker	2.1	0.8	5.0	0.5	0.9	12.2	21.4	8	4.7
Pumpkinseed	0.3	11.0	3.3	2.7	0.5	0.0	17.9	9	4.2
Atlantic salmon	2.8	0.0	1.4	3.9	9.4	0.0	17.5		
Largemouth bass	0.2	5.4	6.0	0.9	0.7	0.0	13.2		
Yellow bullhead	0.0	10.3	0.0	0.0	1.8	0.0	12.1		
Spottail shiner	0.0	0.0	11.3	0.0	0.5	0.0	11.8		
Bluegill	4.9	3.8	0.4	0.0	0.0	0.0	9.2		
Chain pickerel	1.1	3.3	0.1	0.2	0.2	0.7	5.7	15	2.5
Smallmouth bass	0.0	0.0	1.3	0.5	3.6	0.0	5.4		
Yellow perch	0.0	0.0	4.3	0.0	0.0	0.0	4.3	17	2.2
Brown bullhead	0.8	0.0	0.1	1.4	0.0	0.0	2.3	18	2.1
Creek chubsucker	1.3	0.8	0.0	0.0	0.0	0.0	2.1	19	2.0
Brown trout	0.7	0.0	0.3	0.0	0.4	0.7	2.0		
Bridle shiner	0.0	0.0	0.0	1.8	0.0	0.0	1.8	21	1.8
Golden shiner	0.0	0.0	0.0	0.0	1.6	0.0	1.6	22	1.7
Brook trout	0.8	0.3	0.0	0.0	0.0	0.0	1.1	23	1.6
Redfin pickerel	0.0	0.0	0.9	0.0	0.0	0.0	0.9	24	1.6
Rock bass	0.0	0.5	0.0	0.0	0.0	0.0	0.5		
Rainbow trout	0.2	0.0	0.0	0.0	0.2	0.0	0.4		
Black crappie	0.2	0.0	0.0	0.0	0.0	0.0	0.2		

Fish Community Analysis:

		Values					
		# of	% of	Applicable	TFC	% Sim to	
Watershed	🖵 Common Name 🛛 🖅	Fish	catch	TFC	Difference	TFC	Row Labels
🗏 Sha v sheen	American Brook Lamprey	y	0.00%	- 1	-		🖃 Shawsheen
Shavsheen	American Eel	490	24.23%	5.4	18.8		1189
Shawsheen	Atlantic Salmon	5	0.25%	-	0.2		1195
Shawsheen	Banded Killifish		0.00%	-	-		1196
Shawsheen	Banded Sunfish	10	0.49%	-	0.5		1237
Shawsheen	Black Crappie		0.00%	-	-		1268
Shawsheen	Blacknose Dace	1	0.05%	-	0.0		2494
Shawsheen	Bluegill	66	3.26%	-	3.3		2495
Shawsheen	Bluntnose Minnow		0.00%	-	-		2496
Shawsheen	Bridle Shiner		0.00%	1.8	1.8		2576
Shawsheen	Brook Trout		0.00%	1.6	1.6		2577
Shawsheen	Brown Bullhead	58	2.87%	2.1	0.8		2578
Shawsheen	Brown Trout	3	0.15%		0.1		2579
Shawsheen	Central Mudminnow		0.00%	_	-		4566
Shawsheen	Chain Pickerel	14	0.69%	2.5	1.8		4567
Shawsheen	Channel Catfish	14	0.00%	-			4568
Shawsheen	Common Carp	3	0.15%		0.1		4569
Shawsheen	Common Shiner	2	0.10%	37.6	37.5		6402
Shawsheen	Creek Chub	2	0.00%	51.0	51.5		6405
		6		2.0	1.7		
Shavsheen	Creek Chubsucker	ь	0.30%		L.C.		Grand Total
Shavsheen	Cutlips Minnow	500	0.00%	-	-		
Shawsheen	Fallfish	566	27.99%	18.8	9.2		
Shawsheen	Fathead Minnow		0.00%				
Shawsheen	Golden Shiner	19	0.94%	1.7	0.8		
Shawsheen	Green Sunfish		0.00%	-	-		
Shawsheen	Lake Chub		0.00%	-	-		
Shawsheen	Largemouth Bass	23	1.14%	-	1.1		
Shawsheen	Longnose Dace		0.00%	-	-		
Shawsheen	Longnose Sucker		0.00%	-	-		
Shawsheen	Northern Pike		0.00%	-	-		
Shavsheen	Pumpkinseed	71	3.51%	4.2	0.7		
Shavsheen	Rainbow Trout		0.00%	-	-		
Shawsheen	Redbreast Sunfish	215	10.63%	6.3	4.3		
Shawsheen	Redfin Pickerel	103	5.09%	1.6	3.5		
Shawsheen	Rock Bass		0.00%	-	-		
Shawsheen	Sea Lamprey	79	3.91%	-	3.9		
Shawsheen	Slimy Sculpin		0.00%	-	-		
Shawsheen	Smallmouth Bass		0.00%	-	-		
Shawsheen	Spottail Shiner		0.00%	-	-		
Shawsheen	Swamp Darter	4	0.20%	-	0.2		
Shawsheen	Tadpole Madtom		0.00%	-	-		
Shawsheen	Tesselated Darter	82	4.06%	_	4.1		
Shawsheen	White Catfish		0.00%	_			
Shawsheen	White Perch		0.00%	_	-		
Shawsheen	White Sucker	145	7.17%	4.7	2.5		
Shawsheen	Yellow Bullhead	39	1.93%		1.9		
Shawsheen	Yellow Perch	18	0.89%	2.2	1.3		
Shavsheen	(blank)	10	0.00%	2.2	1.5	49.08	
Snawsneen Grand Total	(plank)	2022		-	100.0	43.00	
Grand Total		2022	*****	-	100.0		

Habitat and Flow Data (anthropogenic alterations)

Status of MassDER habitat restoration priority projects as of 2021 (Wildman April 15, 2021)

Marland Place Dam (aka Stevens Street Dam) and Balmoral Dam

The Town of Andover worked with the Massachusetts Division of Ecological Restoration, USFWS, NOAA, and the Center for Ecosystem Restoration to complete the removal of the Marland Place Dam (also known as the Stevens Street Dam) and the Balmoral Dam (also known as the Rt. 133 Dam) on the Shawsheen River in spring 2017. The combined removal of both dams has reconnected approximately 4 miles of the Shawsheen River, restored access to 16 acres of habitat for migratory fish species (alewife, blueback herring, American shad, and sea lamprey), and reduced the risk of flooding in downtown Andover (USFWS 2016). Studies on the environmental effects of both the Balmoral and Marland Place Dams on the

Shawsheen River were conducted by UMass students between July 2015 and September 2017. Investigators used data loggers to monitor continuous and discrete temperature, as well as dissolved oxygen levels (UMass-Amherst 2018).

MassDMF Status of Priority Diadromous Fish Passage Barriers. (Chase 2020)

Assessment Summary

DMF biologists note three structures pertaining to the passage of diadromous fish throughout the Shawsheen River AU and the upstream to downstream: The Ballardvale Dam (marking the boundary between this Shawsheen River AU and the upstream Ballardvale Impoundment (MA83011) was given a passage score of "8", on a 0-10 scale, indicating that the dam poses a severe impediment to the passage of the targeted species, river herring and American eel. The population score was noted to be "3". It was noted that there is a dam removal project in its planning stages here, as part of the large cooperative project which sought to remove all 3 dams on the Shawsheen. The design for removal of the Ballardvale dam was completed in 2016. In the middle of the AU, the remnants of the Marland Place Dam (just downstream of Stevens Street in Andover), which was successfully removed in 2017, were given a passage score of "0", indicating that the dam remnants pose no obstruction to the passage of the targeted species, river herring and American shad. The population score was noted to be "3". A little further downstream, the Balmoral/Rt.133 Dam (NATID# MA00179), also removed in 2017, was given a passage score of "0", on a 0-10 scale, indicating that the remnants of the dam also no longer pose an impediment to the passage of the targeted species, river herring and American shad. The population score was noted to be "3". The Aquatic Life Use for Shawsheen River (Assessment Unit MA83-19) is assessed as Not Supporting, based on the barrier to diadromous fish passage at the Ballardvale Dam.

Non-native Aquatic Species Presence

MassDEP Non-Native Aquatic Invasive Species Records as of May 2021. (MassDEP Undated 1)

Summary Statement

MassDEP staff identified an infestation of the non-native aquatic macrophyte, curly-leaf pondweed (*Potamogeton crispus*), in the Shawsheen River (MA83-19) in the vicinity of water quality station W2538 in 2015.

Physico-chemical Water Quality Information

DO, pH, Temperature

MassDEP Long-term Continuous Dissolved Oxygen Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6) [7DADMin= 7-Day Average of the Daily Minima, 7DADA= 7-Day Average of the Daily Average, CW= Coldwater, WW= Warmwater]

	- 1	0	,		,		,	0) -/ -		,			
Station Code	Start Date	End Date	Day Count	7day Count	30day Count	DO Min (mg/L)	Min 7DADMin (mg/L)	Min 7DADA (mg/L)	Delta DO Max (mg/L)	Count CW 7DADMin <6.0	Count CW 1Day Min <5.0	Count WW Early Life Stages 7DADA <6.5	Count WW Early Life Stages 1Day Min <5.0	Count WW Other Life Stages 7DADMin <5.0	Count WW Other Life Stages 1Day Min <4.0	Count CW 30DADA <8.0	Count WW Other Life Stages 30DADA <6.0
W2523	07/01/15	09/23/15	85	79	56	3.5	5.1	6.2	3	10	4	0	0	0	2	56	0
W2538	07/01/15	09/23/15	85	79	56	5.7	6.2	7.2	3	0	0	0	0	0	0	56	0

MassDEP Discrete Dissolved Oxygen Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[CW= Coldwater, WW= Warmwater]

					DO		Count WW	Count WW
Station			DO	DO Min	Avg	Count	Early Life Stages	Other Life
Code	Start Date	End Date	Count	(mg/L)	(mg/L)	CW <5.0	<5.0	Stages <4.0
W2523	08/04/15	09/24/15	3	7.7	8.3	0	0	0
W2538	08/04/15	09/24/15	3	6.4	7.2	0	0	0

MassDEP Long-term Continuous Temperature Data (Summer Index 2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[Summer Index is June 1 – Sept 15; Max Daily Mean= Maximum 24-Hour Average, 7DADM= 7-Day Average of the Daily Maxima, 7DADA= 7-Day Average of the Daily Average, CW= Coldwater, WW= Warmwater; NOTE: In the case of more than one row of data in the same year for a site, different types of temperature probes were deployed.]

Station Code	Start Date	End Date	Index Count	7day Count	Max Daily Mean (°C)	Max Temp (°C)	Max 7DADM (°C)	Max 7DADA (°C)	Count CWTier1 7DADM >20	Count CWTier1 Daily Mean >23.5	Count CWTier2 7DADA >21	Count CWTier2 Daily Mean >24.1	Count WW 7DADM >27.7	Count WW Daily Mean >28.3
W2523	07/01/15	09/15/15	77	74	25.4	26.7	25.8	24.9	74	26	71	17	0	0
W2538	07/01/15	09/15/15	77	74	26.1	27.4	26.6	25.5	74	34	71	24	0	0

24-hour Rolling Average Calculations for MassDEP Short- and Long-term Continuous Temperature Data (Summer Index 2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[Summer Index is June 1 – Sept 15; CW= Coldwater, WW= Warmwater; NOTE: In the case of more than one row of data in the same year for a site, different types of temperature probes were deployed.]

					Max 24hr	Count	Count	Count WW
			Count	24hr	Avg	CWTier1 24hr	CWTier2 24hr	24hr Avg
Station	Start		Days	Rolling	Rolling	Avg Rolling	Avg Rolling	Rolling
Code	Date	End Date	Deployed	Count	Temp (°C)	>23.5 °C	>24.1 °C	>28.3°C
W2523	06/30/15	09/15/15	77	3665	25.5	1300	867	0
W2538	06/30/15	09/15/15	78	3677	26.2	1687	1162	0

MassDEP Discrete Temperature Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[Summer Index is June 1 – Sept 15; CW= Coldwater, WW= Warmwater]

					Temp					
Station	Start		Temp	Index	Max	Temp	Count	Count	Count	Count WW
Code	Date	End Date	Count	Count	(°C)	Avg (°C)	CW >20	CW >22	WW >28.3	>30.3
W2523	08/04/15	09/24/15	3	2	24.7	21.8	2	2	0	0
W2538	08/04/15	09/24/15	3	2	24.1	21.2	2	2	0	0

MassDEP Discrete pH Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

Station Code	Start Date	End Date	pH Count	pH Min (SU)	pH Max (SU)	pH Count <6.5 & >8.3	pH Count <6.0 & >8.8
W2523	08/04/15	09/24/15	3	7.2	7.3	0	0
W2538	08/04/15	09/24/15	3	7	7.1	0	0

UMass Amherst Dam Study Short-term Continuous Dissolved Oxygen Data (2015-2017). (UMass-Amherst 2018) (MassDEP Undated 4)

[Note: X= 7 (or # of deploy days if less than seven days); XDADMin= XDay Average of the Daily Minima, XDADA= XDay Average of the Daily Average, CW= Coldwater, WW= Warmwater]

					â		(Count CW XDADMin <6.0	Count CW 1Day Min <5.0		. 0	e 0	вO
					Min XDADMin (mg/L)	g/L)	Delta DO Max (mg/L)	DMin	Min	Count WW Early Life Stages XDADA <6.5	Count WW Early Life Stages 1Day Min <5.0	Count WW Other Life Stages XDADMin <5.0	Count WW Other Life Stages 1Day Min <4.0
e				DO Min (mg/L)	Min	Min XDADA (mg/L)	Jax (XDAI	1Day	Count WW Early Lif	'Earl	Oth VDMi	y Mi
Station Code	Jate	ate	Day Count	<u>ц</u>	DAD	ΩAD,	00	CM	CW	WW ADA	WW 1Da	WW XD	WW 1Da
atio	Start Date	End Date	av Cc	Σ	in X	in XI	elta l	ount	ount	ount ages	ages	ages	ount ages
び UMassA_BALDS1	ಸ 08/26/15	<u>ከ</u> 09/01/15	<u> </u>	<u>ă</u> 7.2	<u>≥</u> 7.5	<u>≥</u> 8.1	<u>م</u> 1.4	3 0	000	<u>55</u> 0	<u>88</u> 0	ג נ	<u>55</u> 0
UMassA_BALDS1	07/20/16	07/24/16	5	5.9	6.5	6.9	0.9	0	0	0	0	0	0
UMassA_BALDS1	08/17/16	08/21/16	5	6.6	6.8	7.1	1.2	0	0	0	0	0	0
UMassA_BALDS1	09/08/16	09/13/16	6	6.7	7	7.4	1	0	0	0	0	0	0
UMassA_BALDS1	07/28/17	08/01/17	5	7.3	7.9	8.3	1.4	0	0	0	0	0	0
UMassA_BALDS1	08/19/17	08/24/17	6	5.6	6.5	7.5	2.9	0	0	0	0	0	0
 UMassA_BALDS1	09/11/17	09/16/17	6	6.7	7.7	8.4	2	0	0	0	0	0	0
 UMassA_BALIMP	08/26/15	09/01/15	7	6	6.6	7.8	3.3	0	0	0	0	0	0
UMassA_BALIMP	07/20/16	07/24/16	5	5	5.4	6.3	1.8	1	0	1	0	0	0
UMassA_BALIMP	08/17/16	08/21/16	5	5.2	5.4	6.2	2	1	0	0	0	0	0
UMassA_BALIMP	09/08/16	09/13/16	6	4.7	5.6	6.1	1.8	1	2	0	0	0	0
UMassA_BALIMP	07/28/17	08/01/17	5	7.3	7.9	8.4	1.4	0	0	0	0	0	0
UMassA_BALIMP	08/19/17	08/24/17	6	5.6	6.6	7.6	3	0	0	0	0	0	0
UMassA_BALIMP	09/11/17	09/16/17	6	6.7	7.7	8.4	2.2	0	0	0	0	0	0
UMassA_BALUS	08/26/15	09/01/15	7	7.7	7.9	8.4	1.7	0	0	0	0	0	0
UMassA_BALUS	07/20/16	07/24/16	5	6.5	6.9	7.5	1.5	0	0	0	0	0	0
UMassA_BALUS	08/17/16	08/21/16	5	6.8	7.2	7.6	1.5	0	0	0	0	0	0
UMassA_BALUS	09/08/16	09/13/16	6	7.5	7.7	8.1	1.3	0	0	0	0	0	0
UMassA_BALUS	07/28/17	08/01/17	5	7.7	8.1	8.5	1.0	0	0	0	0	0	0
UMassA_BALUS	08/19/17	08/24/17	6	6.5	7.2	7.9	1.7	0	0	0	0	0	0
UMassA_BALUS	09/11/17	09/16/17	6	7.7	8.3	8.8	1.5	0	0	0	0	0	0
UMassA_MARDS1	08/26/15	09/01/15	7	7.7	8	8.5	1.6	0	0	0	0	0	0
UMassA_MARDS1	07/20/16	07/24/16	5	6.6	7	7.4	1.2	0	0	0	0	0	0
UMassA_MARDS1	08/17/16	08/21/16	5	7	7.3	7.8	1.3	0	0	0	0	0	0
UMassA_MARDS1	09/08/16	09/13/16	6	7.7	8	8.3	0.9	0	0	0	0	0	0
UMassA_MARDS1	07/28/17	08/01/17	5	7.8	8.1	8.6	1.1	0	0	0	0	0	0
UMassA_MARDS1			6	6.4	7.2	7.9	1.8	0	0	0	0	0	0
UMassA_MARDS1	09/11/17	09/16/17	6	7.5	8	8.4	1.4	0	0	0	0	0	0
UMassA_MARIMP	08/26/15	09/01/15	7	6.4	6.7	7.8	3.6	0	0	0	0	0	0
UMassA_MARIMP	07/20/16	07/24/16	5	5	5.7	7.2	3.5	1	0	0	0	0	0
UMassA_MARIMP	08/17/16	08/21/16	5	5.3	5.7	7	3.4	1	0	0	0	0	0
UMassA_MARIMP	09/08/16	09/13/16	6	5.4	5.8	7.2	3.1	1	0	0	0	0	0
UMassA_MARIMP	08/19/17	08/24/17	6	6.1	6.8	7.7	2.6	0	0	0	0	0	0
UMassA_MARIMP	09/11/17	09/16/17	6	6.7	7.3	7.8	1.5	0	0	0	0	0	0
UMassA_MARUS	08/26/15	09/01/15	7	7.4	7.7	8.9	4	0	0	0	0	0	0
UMassA_MARUS	07/20/16	07/24/16	5	6.4	6.7	7.6	2.6	0	0	0	0	0	0
UMassA_MARUS	08/17/16	08/21/16	5	6.5	6.6	7.6	3.4	0	0	0	0	0	0
UMassA_MARUS	09/08/16	09/13/16	6	6.9	7.1	8.4	4	0	0	0	0	0	0
UMassA_MARUS	07/28/17	08/01/17	5	7.5	7.8	8.3	1.7	0	0	0	0	0	0

Station Code	Start Date	End Date	Day Count	DO Min (mg/L)	Min XDADMin (mg/L)	Min XDADA (mg/L)	Delta DO Max (mg/L)	Count CW XDADMin <6.0	Count CW 1Day Min <5.0	Count WW Early Life Stages XDADA <6.5	Count WW Early Life Stages 1Day Min <5.0	Count WW Other Life Stages XDADMin <5.0	Count WW Other Life Stages 1Day Min <4.0
UMassA_MARUS	08/19/17	08/24/17	6	6.5	7	7.9	2.6	0	0	0	0	0	0
UMassA_MARUS	09/11/17	09/16/17	6	7.5	8.1	8.6	1.7	0	0	0	0	0	0

UMass Amherst Dam Study Discrete Dissolved Oxygen Data (2016-2017). (UMass-Amherst 2018) (MassDEP Undated 4) [CW= Coldwater, WW= Warmwater]

	Start		Sample	DO	DO Min	DO Avg	Count CW	Count WW Early Life	Count WW Other Life
Station Code	Date	End Date	Depth	Count	(mg/L)	(mg/L)	<5.0	Stages <5.0	Stages <4.0
UMassA_BALIMP	07/25/16	09/14/16	surface	3	4.6	5.5	1	1	0
UMassA_BALIMP	07/25/16	09/14/16	0.5m	3	4.6	5.6	1	1	0
UMassA_BALIMP	07/25/16	09/14/16	1.0m	3	4.3	5.3	2	2	0
UMassA_BALIMP	08/22/16	09/14/16	1.3m	2	4.4	5.5	1	1	0
UMassA_BALIMP	07/25/16	07/25/16	1.4m	1	2.2	2.2	1	1	1
UMassA_MARIMP	07/25/16	09/14/16	surface	3	4.4	5.8	1	1	0
UMassA_MARIMP	07/25/16	09/14/16	0.5m	3	4.5	5.7	1	1	0
UMassA_MARIMP	07/25/16	09/14/16	1.0m	3	4.8	5.8	1	1	0
UMassA_MARIMP	07/25/16	09/14/16	1.5m	3	4.6	5.6	1	1	0
UMassA_MARIMP	07/25/16	09/14/16	2.0m	3	4.5	5.2	2	2	0
UMassA_MARIMP	09/14/16	09/14/16	2.5m	1	4.5	4.5	1	1	0

UMass Amherst Dam Study Long-term Continuous Temperature Data (Summer Index 2014-2017). (UMass-Amherst 2018)

(MassDEP Undated 4)

[Summer Index is June 1 – Sept 15; 7DADM= 7-Day Average of the Daily Maxima, 7DADA= 7-Day Average of the Daily Average, CW= Coldwater, WW= Warmwater]

Station Code	Start Date	End Date	Index Count	Max 24hr Rolling Avg Temp (°C)	Max Temp (°C)	Max 7DADM (°C)	Max 7DADA (°C)	Count CWTier1 7DADM >20	Count CWTier2 7DADA >21	Count WW 7DADM >27.7
UMassA_BALDS1	07/07/15	12/31/15	71	25.8	26.6	25.7	24.8	65	65	0
UMassA_BALDS1	01/01/16	12/31/16	107	27.2	27.8	26.8	25.8	107	94	0
UMassA_BALDS1	01/01/17	05/18/17	0	21.9	23.4	NA	NA	NA	NA	NA
UMassA_BALDS2	07/07/15	12/31/15	71	26.0	26.7	25.9	25.4	65	65	0
UMassA_BALDS2	01/01/16	12/31/16	107	26.7	27.1	26.2	25.5	107	93	0
UMassA_BALDS2	01/01/17	05/18/17	0	23.0	23.5	NA	NA	NA	NA	NA
UMassA_BALDS3	07/07/15	12/31/15	71	26.1	26.9	26.0	25.4	65	65	0
UMassA_BALDS3	01/01/16	12/31/16	107	26.9	27.4	26.5	25.5	107	90	0
UMassA_BALDS3	01/01/17	05/18/17	0	22.9	23.4	NA	NA	NA	NA	NA
UMassA_BALDS4	07/07/15	12/31/15	71	26.0	27.1	26.0	25.3	65	65	0
UMassA_BALDS4	01/01/16	12/31/16	107	26.9	27.7	27.1	25.5	107	91	0
UMassA_BALDS4	01/01/17	05/18/17	0	23.0	23.5	NA	NA	NA	NA	NA
UMassA_BALIMP	07/07/15	12/31/15	71	26.5	26.9	26.4	25.7	65	65	0
UMassA_BALIMP	01/01/16	11/05/16	107	27.4	27.9	27.2	26.0	107	94	0

Station Code	Start Date	End Date	Index Count	Max 24hr Rolling Avg Temp (°C)	Max Temp (°C)	Max 7DADM (°C)	Max 7DADA (°C)	Count CWTier1 7DADM >20	Count CWTier2 7DADA >21	Count WW 7DADM >27.7
UMassA_BALUS	07/07/15	12/31/15	71	26.0	27.4	26.7	25.4	65	65	0
UMassA_BALUS	01/01/16	12/31/16	107	27.2	28.9	27.5	25.9	107	93	0
UMassA_BALUS	01/01/17	05/18/17	0	22.1	23.6	NA	NA	NA	NA	NA
UMassA_BVLDS1	06/30/16	12/31/16	78	27.8	29.4	28.4	27.0	72	72	8
UMassA_BVLDS1	01/01/17	11/30/17	107	26.2	27.4	26.3	25.1	87	74	0
UMassA_BVLDS2	06/30/16	12/31/16	78	27.3	28.7	27.9	26.2	72	71	3
UMassA_BVLDS2	01/01/17	11/30/17	106	26.1	27.4	26.2	25.0	84	73	0
UMassA_BVLDS3	06/30/16	12/31/16	78	27.2	28.5	27.6	26.2	72	71	0
UMassA_BVLDS3	01/01/17	11/30/17	107	26.1	27.4	26.3	25.1	83	73	0
UMassA_MARDS1	07/09/15	12/31/15	69	25.8	28.0	26.3	26.2	63	63	0
UMassA_MARDS1	01/01/16	11/05/16	107	27.2	29.1	27.1	26.7	107	101	0
UMassA_MARDS2	07/09/15	12/31/15	69	26.3	27.8	26.5	26.3	63	63	0
UMassA_MARDS2	01/01/16	11/05/16	107	27.1	29.0	27.0	26.6	107	96	0
UMassA_MARDS3	07/09/15	12/31/15	69	26.3	27.8	26.5	26.4	63	63	0
UMassA_MARDS3	01/01/16	11/05/16	107	27.2	28.9	27.0	26.6	107	99	0
UMassA_MARIMP	07/09/15	12/31/15	69	26.5	28.3	26.7	26.6	63	63	0
UMassA_MARIMP	01/01/16	11/05/16	107	27.3	29.1	27.2	26.8	107	101	0
UMassA_MARUS	07/09/15	12/31/15	69	25.5	27.9	26.1	26.1	63	63	0
UMassA_MARUS	01/01/16	11/05/16	106	27.1	30.7	28.0	27.9	107	101	4

UMass Amherst Dam Study Discrete Temperature Data (2016-2017). (UMass-Amherst 2018) (MassDEP Undated 4) [Summer Index is June 1 – Sept 15; CW= Coldwater, WW= Warmwater]

										'n	ň
Station Code	Start Date	End Date	Sample Depth	Temp Count	Index Count	Temp Max (°C)	Temp Avg (°C)	Count CW >20	Count CW >22	Count WW >28.3	Count WW >30.3
UMassA_BALIMP	07/25/16	09/14/16	surface	3	3	25	23	3	2	0	0
UMassA_BALIMP	07/25/16	09/14/16	0.5m	3	3	24	22	3	2	0	0
UMassA_BALIMP	07/25/16	09/14/16	1.0m	3	3	24	22	2	2	0	0
UMassA_BALIMP	08/22/16	09/14/16	1.3m	2	2	22	21	1	1	0	0
UMassA_BALIMP	07/25/16	07/25/16	1.4m	1	1	24	24	1	1	0	0
UMassA_MARIMP	07/25/16	09/14/16	surface	3	3	24	23	3	3	0	0
UMassA_MARIMP	07/25/16	09/14/16	0.5m	3	3	24	22	3	2	0	0
UMassA_MARIMP	07/25/16	09/14/16	1.0m	3	3	24	22.0	2	2	0	0
UMassA_MARIMP	07/25/16	09/14/16	1.5m	3	3	23	22	2	2	0	0
UMassA_MARIMP	07/25/16	09/14/16	2.0m	3	3	23	22	2	2	0	0
UMassA_MARIMP	09/14/16	09/14/16	2.5m	1	1	19	19	0	0	0	0

UMass Amherst Dam Study Discrete pH Data (2016-2017). (UMass-Amherst 2018) (MassDEP Undated 4)

	Start		Sample	рН	pH Min	рН Мах	pH Count	pH Count
Station Code	Date	End Date	Depth	Count	(SU)	(SU)	<6.5 & >8.3	<6.0 & >8.8
UMassA_BALDS1	07/19/16	09/14/16	Surface	6	6.7	7.2	0	0
UMassA_BALDS1	07/27/17	09/17/17	Surface	5	6.9	7.7	0	0

	Start		Sample	рН	pH Min	pH Max	pH Count	pH Count
Station Code	Date	End Date	Depth	Count	(SU)	(SU)	<6.5 & >8.3	<6.0 & >8.8
UMassA_BALIMP	07/19/16	09/14/16	Surface	6	6.7	7.0	0	0
UMassA_BALIMP	07/25/16	09/14/16	0.5m	3	6.6	7.0	0	0
UMassA_BALIMP	07/25/16	09/14/16	1.0m	3	6.6	6.9	0	0
UMassA_BALIMP	08/22/16	09/14/16	1.3m	2	6.5	6.8	0	0
UMassA_BALIMP	07/25/16	07/25/16	1.4m	1	6.7	6.7	0	0
UMassA_BALIMP	07/27/17	09/17/17	Surface	5	6.9	7.7	0	0
UMassA_BALUS	07/19/16	09/14/16	Surface	6	6.9	7.4	0	0
UMassA_BALUS	07/27/17	09/17/17	Surface	5	6.9	7.7	0	0
UMassA_MARDS1	07/19/16	09/14/16	Surface	6	7.0	7.3	0	0
UMassA_MARDS1	07/27/17	09/17/17	Surface	5	6.9	7.9	0	0
UMassA_MARIMP	07/19/16	09/14/16	Surface	6	6.7	7.0	0	0
UMassA_MARIMP	07/25/16	09/14/16	0.5m	3	6.7	7.0	0	0
UMassA_MARIMP	07/25/16	09/14/16	1.0m	3	6.6	7.0	0	0
UMassA_MARIMP	07/25/16	09/14/16	1.5m	3	6.6	6.9	0	0
UMassA_MARIMP	07/25/16	09/14/16	2.0m	3	6.6	6.9	0	0
UMassA_MARIMP	09/14/16	09/14/16	2.5m	1	6.7	6.7	0	0
UMassA_MARIMP	08/18/17	09/17/17	Surface	4	6.9	7.6	0	0
UMassA_MARUS	07/19/16	09/14/16	Surface	6	6.8	8.0	0	0
UMassA_MARUS	07/27/17	09/17/17	Surface	5	6.9	7.5	0	0

Nutrients (Primary Producer Screening, Physico-chemical Screening)

MassDEP Nutrient Enrichment Indicator Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[Summer seasonal total phosphorus data collected May-Sept]

						Delta	Delta	DO			Dense/V.
		Seasonal	Seasonal	Seasonal	Seasonal	DO	DO	Sat	рН	Count	Dense
Station	Data	ТР	TP Min	TP Max	TP Avg	Max	Avg	Max	Max	Algal	Film/Fila.
Code	Year	Count	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(%)	(SU)	Obsv.	Algae
W2523	2015	5	0.012	0.088	0.038	3.0	1.4	97.2	7.3	4	0
W2538	2015	Г	0.019	0.091	0.041	3.0	1.9	86.2	71	4	0

Toxics and other pollutants (metals, ammonia, chloride, chlorine)

MassDEP Clean Metals Water Column Data (2011-2018), Acute Criteria Violations. (MassDEP Undated 8) (MassDEP Undated 6)

[CMC= Criterion Maximum Concentration, TU= Toxic Unit]

Station Code	Data Year	Metals Count		Cd CMC TU >1	Cr III CMC TU >1	Cu CMC TU >1	Pb CMC TU >1	Ni CMC TU >1	Ag CMC TU >1	Zn CMC TU >1
W2523	2015	3	0	0	0	0	0	0	0	0
W2538	2015	3	0	0	0	0	0	0	0	0

MassDEP Clean Metals Water Column Data (2011-2018), Chronic Criteria Violations. (MassDEP Undated 8) (MassDEP Undated 6)

[CCC= Criterion Continuous Concentration, TU= Toxic Unit]

Station Code	Data Year				Cr III CCC TU >1				Se CCC TU >1	Zn CCC TU >1
W2523	2015	3	0	0	0	0	0	0	0	0

Station Code	Data Year			Cd CCC TU >1	Cr III CCC TU >1	Cu CCC TU >1	Pb CCC TU >1	Ni CCC TU >1	Se CCC TU >1	Zn CCC TU >1
W2538	2015	3	0	0	0	0	0	0	0	0

MassDEP Dissolved Aluminum Water Column Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[Since only dissolved aluminum data were available, these data were compared to the default freshwater criteria for total recoverable aluminum (TRA), presented in Appendix E of MassDEP's 2022 CALM. As dissolved Al is a fraction of TRA, an exceedance count of 0 does not rule out violations of the TRA criteria. CMC= Criterion Maximum Concentration, CCC= Criterion Continuous Concentration, TU= Toxic Unit]

Station Code	Data Year	Dissolved Al Count	Al Min (mg/L)	Al Max (mg/L)	Al Avg (mg/L)	Al CMC TU Max	Al CCC TU Max	AI CMC TU >1	Al CCC TU >1
W2523	2015	3	0.051	0.051	0.051	0.1	0.2	0	0
W2538	2015	3	0.051	0.051	0.051	0.1	0.2	0	0

MassDEP Total Ammonia Nitrogen (TAN) Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[TAN= NH3 + NH4+]

Station Code	Data Year	TAN Count	TAN Min (mg/L)	TAN Max (mg/L)	TAN Avg (mg/L)	Count TAN >Chronic	Count TAN >Acute
W2523	2015	5	0.040	0.190	0.073	0	0
W2538	2015	5	0.035	0.200	0.073	0	0

MassDEP Chloride Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

Station	Data	Chloride	Chloride	Chloride	Chloride	Count Chloride	Count Chloride
Code	Year	Count	Min (mg/L)	Max (mg/L)	Avg (mg/L)	>230	>860
W2523	2015	5	140	210	182	0	0
W2538	2015	5	130	180	160	0	0

MassDEP Discrete Specific Conductance Data (2011-2018) Compared to Estimated Chloride Criteria. (MassDEP Undated 8) (MassDEP Undated 6)

Station Code	Start Date	End Date	SpCond Count	SpCond Min (μs/cm)	SpCond Max (μs/cm)	Count SpCond >904	Count SpCond >994	Count SpCond >3193	Count SpCond >3512	Consecutive sets >904	Consecutive sets >994
W2523	08/04/15	09/24/15	3	724	796	0	0	0	0	0	0
W2538	08/04/15	09/24/15	3	654	714	0	0	0	0	0	0

UMass Amherst Dam Study Discrete Specific Conductance Data (2016-2017) Compared to Estimated Chloride Criteria. (UMass-Amherst 2018) (MassDEP Undated 4)

ition Code	art Date	d Date	mple Depth	Cond Count	Cond Min s/cm)	Cond Max s/cm)	ount SpCond 904	unt SpCond 94	unt SpCond 193	unt SpCond 512	nsecutive is >904	nsecutive is >994
Sta	Sta	E	Sa	Sp	dS d	sıl) SpC	Ŝĕ.	no)	Cou >31	Cou >35:	Co set	Cons sets
UMassA_BALDS1	07/19/16	09/14/16	surface	6	245	762	0	0	0	0	0	0
UMassA_BALDS1	07/27/17	09/17/17	surface	5	540	688	0	0	0	0	0	0
UMassA_BALIMP	07/19/16	09/14/16	surface	6	246	761	0	0	0	0	0	0
UMassA_BALIMP	07/25/16	09/14/16	0.5m	3	247	764	0	0	0	0	0	0
UMassA_BALIMP	07/25/16	09/14/16	1.0m	3	238	753	0	0	0	0	0	0

Station Code	Start Date	End Date	Sample Depth	SpCond Count	SpCond Min (μs/cm)	SpCond Max (µs/cm)	Count SpCond >904	Count SpCond >994	Count SpCond >3193	Count SpCond >3512	Consecutive sets >904	Consecutive sets >994
UMassA_BALIMP	07/25/16	07/25/16	1.4m	1	737	737	0	0	0	0	0	0
UMassA_BALIMP	08/22/16	09/14/16	1.3m	2	237	696	0	0	0	0	0	0
UMassA_BALIMP	07/27/17	09/17/17	surface	5	538	707	0	0	0	0	0	0
UMassA_BALUS	07/19/16	09/14/16	surface	6	472	766	0	0	0	0	0	0
UMassA_BALUS	07/27/17	09/17/17	surface	5	535	702	0	0	0	0	0	0
UMassA_MARDS1	07/19/16	09/14/16	surface	6	472	763	0	0	0	0	0	0
UMassA_MARDS1	07/27/17	09/17/17	surface	5	537	702	0	0	0	0	0	0
UMassA_MARIMP	07/19/16	09/14/16	surface	6	449	765	0	0	0	0	0	0
UMassA_MARIMP	07/25/16	09/14/16	0.5m	3	442	762	0	0	0	0	0	0
UMassA_MARIMP	07/25/16	09/14/16	1.0m	3	448	762	0	0	0	0	0	0
UMassA_MARIMP	07/25/16	09/14/16	1.5m	3	455	762	0	0	0	0	0	0
UMassA_MARIMP	07/25/16	09/14/16	2.0m	3	459	762	0	0	0	0	0	0
UMassA_MARIMP	09/14/16	09/14/16	2.5m	1	690	690	0	0	0	0	0	0
UMassA_MARIMP	08/18/17	09/17/17	surface	4	560	712	0	0	0	0	0	0
UMassA_MARUS	07/19/16	09/14/16	surface	6	548	720	0	0	0	0	0	0
UMassA_MARUS	07/27/17	09/17/17	surface	5	532	707	0	0	0	0	0	0

Fish Consumption

2022 Use Attainment	Alert
Not Assessed	NO
2022 Use Attainment Summary	
No fish toxics sampling has been conducted in this Shawsheen River AU (MA83-19) so the Fish Consumpt	ion Use is Not
Assessed.	

Aesthetic

2022 Use Attainment	Alert
Fully Supporting	NO
2022 Use Attainment Summary	

MassDEP field crews conducted water quality sampling during summer 2015 at two locations in this Shawsheen River AU (MA83-19): ~1900 ft upstream/north of Central Street, Andover (W2538) and ~1300 ft downstream/west of the Route 495 crossing nearest the Massachusetts Avenue ramp to Route 495 southbound, Lawrence (W2523). There were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded during five site visits to each location.

The Aesthetics Use of this Shawsheen River AU (MA83-19) is assessed as Fully Supporting based on DEP field crew observations from summer 2015.

Monitoring Stations

Station						
Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
W2523	MassDEP	Water	Shawsheen	[approximately 1300 feet downstream/west of Route	42.697117	-71.143995
		Quality	River	495 crossing nearest the Massachusetts Avenue		
				ramp to Route 495 southbound, Lawrence]		
W2538	MassDEP	Water	Shawsheen	[approximately 1900 feet upstream/north of Central	42.652195	-71.150971
		Quality	River	Street, Andover]		

Aesthetic Observations

Aesthetics Summary Statements for MassDEP Stations (2011-2018) (MassDEP Undated 6)

Station Code	Waterbody	Data Year	Field Sheet Count	Aesthetics Summary Statement
W2523	Shawsheen	2015	5	MassDEP aesthetics observations for station W2523/MAP2-685 on
	River			Shawsheen River can be summarized as follows: there were generally no
				noted objectionable conditions (odors, deposits, growths, or turbidity)
				recorded by DEP field sampling crews during summer 2015.
W2538	Shawsheen	2015	5	MassDEP aesthetics observations for station W2538/MAP2-717 on
	River			Shawsheen River can be summarized as follows: there were generally no
				noted objectionable conditions (odors, deposits, growths, or turbidity)
				recorded by DEP field sampling crews during summer 2015.

Observations of Filamentous/Film Algae at MassDEP Stations (2011-2018) (MassDEP Undated 8) (MassDEP Undated 6)

Station Code	Data Year	Field Sheet Count	Field Sheet Count w/ Film & Filamentous Algae Observations	Dense/ Very Dense Film/ Filamentous Algae
W2523	2015	5	4	0
W2538	2015	5	4	0

MassDEP Aesthetics Observations (2011-2018) (MassDEP Undated 8)

Station		Data			Result	Total Field
Code	Waterbody	Year	Parameter	Result	Count	Sheet Count
W2523	Shawsheen River	2015	Color	Light Yellow/Tan	4	5
W2523	Shawsheen River	2015	Color	None	1	5
W2523	Shawsheen River	2015	Objectionable Deposits	No	2	5
W2523	Shawsheen River	2015	Objectionable Deposits	Yes	3	5
W2523	Shawsheen River	2015	Odor	None	5	5
W2523	Shawsheen River	2015	Scum	No	4	5
W2523	Shawsheen River	2015	Scum	Yes	1	5
W2523	Shawsheen River	2015	Turbidity	Slightly Turbid	5	5
W2538	Shawsheen River	2015	Color	Light Yellow/Tan	3	5
W2538	Shawsheen River	2015	Color	None	2	5
W2538	Shawsheen River	2015	Objectionable Deposits	No	4	5
W2538	Shawsheen River	2015	Objectionable Deposits	Unobservable	1	5
W2538	Shawsheen River	2015	Odor	None	5	5
W2538	Shawsheen River	2015	Scum	No	4	5
W2538	Shawsheen River	2015	Scum	Yes	1	5
W2538	Shawsheen River	2015	Turbidity	Moderately Turbid	1	5
W2538	Shawsheen River	2015	Turbidity	None	4	5

Primary Contact Recreation

2022 Use Attainment	Alert
Not Supporting	NO
2022 Use Attainment Summary	

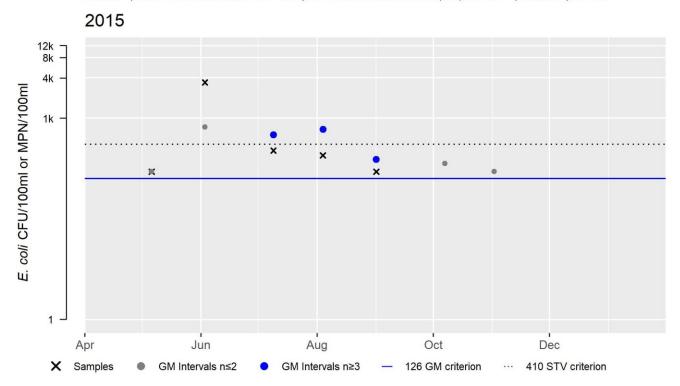
MassDEP field crews conducted water quality sampling during summer 2015 at two locations in this Shawsheen River AU (MA83-19): ~1900 ft upstream/north of Central Street, Andover (W2538) and ~1300 ft downstream/west of the Route 495 crossing nearest the Massachusetts Avenue ramp to Route 495 southbound, Lawrence (W2523). There were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded during five site visits to each location. Analysis of limited frequency *E. coli* data (n=5) collected during these summer site visits indicated that 100% of intervals for the upstream station (W2538) had GMs >126 cfu/100mL, one sample exceeded the 410 cfu/100mL STV, and the seasonal GM was 279 cfu/100mL. For the downstream location (W2523), 100% of intervals again exceeded the GM criterion, one sample exceeded the STV, and the seasonal GM was 381 cfu/100mL. Although aesthetics observations by DEP staff at two locations on this Shawsheen River AU (MA83-19) were good, the Primary Contact Recreational Use will continue to be assessed as Not Supporting. *E. coli* bacteria data from the same two locations support the retention of the Escherichia Coli (E. Coli) and Fecal Coliform impairments for this AU.

Monitoring Stations

Station						
Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
W2523	MassDEP	Water	Shawsheen	[approximately 1300 feet downstream/west of Route	42.697117	-71.143995
		Quality	River	495 crossing nearest the Massachusetts Avenue		
				ramp to Route 495 southbound, Lawrence]		
W2538	MassDEP	Water	Shawsheen	[approximately 1900 feet upstream/north of Central	42.652195	-71.150971
		Quality	River	Street, Andover]		

Bacteria Data

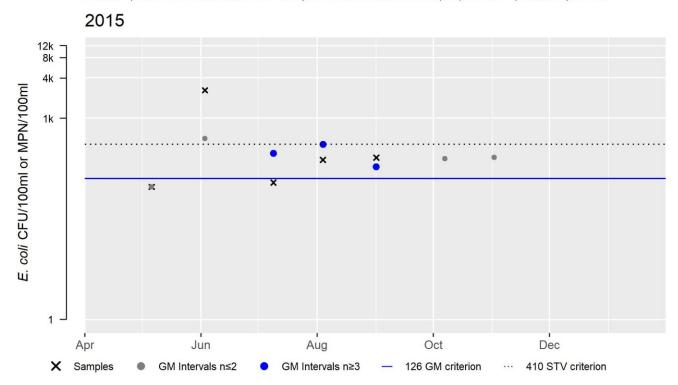
Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 8) (MassDEP Undated 6)


[Result units are CFU/100ml or MPN/100ml]

						Minimum	Maximum	Seasonal
					Sample	Sample	Sample	Geometric
Station Code	Organization	Indicator	Start Date	End Date	Count	Result	Result	Mean
W2523	MassDEP	E. coli	05/06/15	09/01/15	5	160	3400	381
W2538	MassDEP	E. coli	05/06/15	09/01/15	5	95	2600	279

W2523 E. coli (90-day Interval), Primary Contact Recreational Use Season

Var	Res
Samples	5
SeasGM	381
#GMI	3
#GMI Ex	3
%GMI Ex	100
n>STV	1
%n>STV	20


Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV

W2538 E. coli (90-day Interval), Primary Contact Recreational Use Season

Var	Res
Samples	5
SeasGM	279
#GMI	3
#GMI Ex	3
%GMI Ex	100
n>STV	1
%n>STV	20

Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV

Secondary Contact Recreation

2022 Use Attainment	Alert
Fully Supporting	NO
2022 Use Attainment Summary	

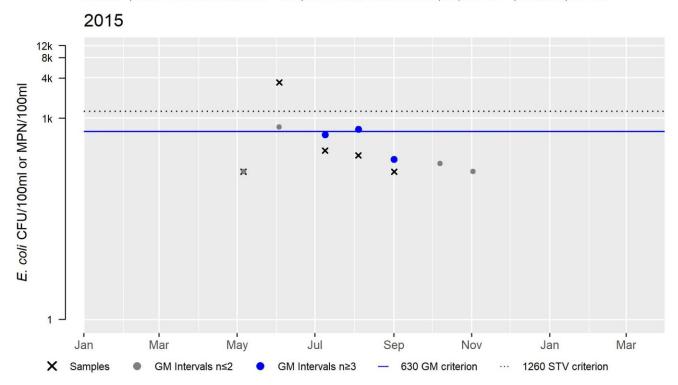
MassDEP field crews conducted water quality sampling during summer 2015 at two locations in this Shawsheen River AU (MA83-19): ~1900 ft upstream/north of Central Street, Andover (W2538) and ~1300 ft downstream/west of the Route 495 crossing nearest the Massachusetts Avenue ramp to Route 495 southbound, Lawrence (W2523). There were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded during five site visits to each location. Analysis of limited frequency *E. coli* data (n=5) collected during these summer site visits indicated that none of the intervals for the upstream station (W2538) had GMs >630 cfu/100mL, one sample exceeded the 1260 cfu/100mL STV, and the seasonal GM was 279 cfu/100mL. For the downstream location (W2523), 33% of intervals exceeded the GM criterion, one sample exceeded the STV, and the seasonal GM was 381 cfu/100mL. *E. coli* bacteria data and aesthetics observations by DEP staff at two locations on this Shawsheen River AU (MA83-19) were indicative of good conditions, so the Secondary Contact Recreational Use is assessed as Fully Supporting.

Monitoring Stations

Station						
Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
W2523	MassDEP	Water	Shawsheen	[approximately 1300 feet downstream/west of Route	42.697117	-71.143995
		Quality	River	495 crossing nearest the Massachusetts Avenue		
				ramp to Route 495 southbound, Lawrence]		
W2538	MassDEP	Water	Shawsheen	[approximately 1900 feet upstream/north of Central	42.652195	-71.150971
		Quality	River	Street, Andover]		

Bacteria Data

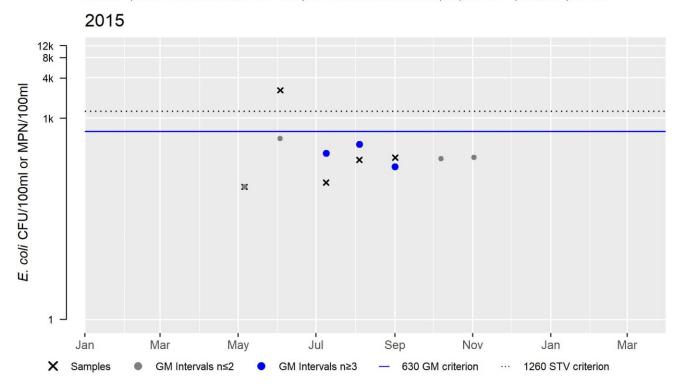
Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 8) (MassDEP Undated 6)


[Result units are CFU/100ml or MPN/100ml]

						Minimum	Maximum	Seasonal
						Sample	Sample	Geometric
						Result	Result	Mean
						(CFU/100ml	(CFU/100ml	(CFU/100ml
					Sample	or	or	or
Station Code	Organization	Indicator	Start Date	End Date	Count	MPN/100ml)	MPN/100ml)	MPN/100ml)
W2523	MassDEP	E. coli	05/06/15	09/01/15	5	160	3400	381
W2538	MassDEP	E. coli	05/06/15	09/01/15	5	95	2600	279

W2523 E. coli (90-day Interval), Secondary Contact Recreational Use Season

Var	Res
Samples	5
SeasGM	381
#GMI	3
#GMI Ex	1
%GMI Ex	33
n>STV	1
%n>STV	20


Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV

W2538 E. coli (90-day Interval), Secondary Contact Recreational Use Season

Var	Res
Samples	5
SeasGM	279
#GMI	3
#GMI Ex	0
%GMI Ex	0
n>STV	1
%n>STV	20

Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV

Proximal

Stream Buffer

0.52

0%

12.3%

43.1%

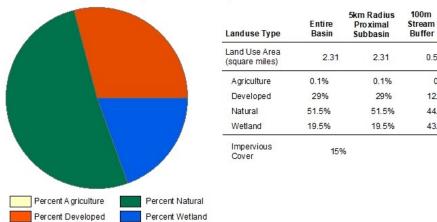
44.5%

0.52

0%

12.3%

44.5%


43.1%

Spring Brook (MA83-14)

Location:	Headwaters, wetland northeast of Route 3 Billerica, to confluence with Shawsheen River, Bedford.
AU Type:	RIVER
AU Size:	2.6 MILES
Classification/Qualifier:	В

Spring Brook - MA83-14

Watershed Area: 2.31 square miles including areas outside Massachusetts

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
2	5	(Dewatering*)		Added
2	5	Escherichia Coli (E. Coli)		Added

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
(Dewatering*)	Baseflow Depletion from Groundwater	Х				
	Withdrawals (N)					
Escherichia Coli (E. Coli)	Discharges from Municipal Separate Storm				Х	
	Sewer Systems (MS4) (N)					
Escherichia Coli (E. Coli)	Source Unknown (N)				Х	

Recommendations

2022 Recommendations

ALU: Additional chloride data and continuous specific conductance data should be collected in Spring Brook (MA83-14) to track chloride trends (in the vicinity of DEP Station W2535). Given the regional trend of increasing chloride, the use of de-icing products containing chloride should be minimized by all parties (i.e., highways/roads, municipalities, businesses, residences) in the Spring Brook sub-watershed.

Designated Use Attainment Decisions

Fish, other Aquatic Life and Wildlife

2022 Use Attainment	Alert
Not Supporting	NO
2022 Use Attainment Summary	
MassDEP staff conducted fish (Sample ID 6356), benthic (Sample ID B0934), and water quality (Sample ID	W2535)
surveys in Spring Brook approximately 250 feet upstream of the mouth of the brook (and the confluence	with the
Shawsheen River) in Bedford during summer 2015. The 22 June fish sample (n=36) included several intole	erant individuals
(banded sunfish, swamp darter), with 44% of the entire sample comprised of intolerant/moderately toler	ant
macrohabitat generalists, a good indicator in this warmwater fishery. However, the 5 August benthic sam	ple IBI score
was only 29, indicating that conditions were severely degraded for a low gradient location. Field sheet con	mments stated
"Very low flow in stream. Sand and bottom exposed. Isolated pools a couple weeks ago with river going u	nderground in
cobble past probe, but underwater now" (MassDEP Undated 8). A deployed probe recorded continuous D	O data for 16
days in late June and early July. All 10 7DADMins were <5.0 mg/L and most of the daily minima were <4.0	mg/L with a
minimum DO of 2.7 mg/L (note that these data were qualified and that the probe was actually deployed u	until the end of
August but most data were censored due to low flow conditions (MassDEP Undated 8)). Continuous temp	perature data
were measured over the same 16 days with a maximum of 25.1 °C (good for a WWF). Other water quality	indicators are
summarized as follows and were generally indicative of good conditions: pH was 7.1 S.U. (n=1), there was	s no indication
of nutrient enrichment (seasonal TP average was 0.083 mg/L with n=4, maximum DO diel shift was 2.2 mg	g/L, maximum
DO saturation was 82.0%, no observations of excessive filamentous algae), there were no exceedances ar	mong 2
aluminum samples (because dissolved Al data were compared to the total recoverable Al criteria, exceeded	ances cannot be
ruled out, however), and the maximum Total Ammonia Nitrogen was 0.072 mg/L. Among 4 chloride samp	oles, none had
concentrations greater than 230 mg/L (the criterion for chronic toxicity), but the maximum concentration	i was 230 mg/L
and the average was 200 mg/L. The one specific conductance measurement was 1009 μ s/cm (>994 μ s/cm	n, the estimated
chloride chronic criterion plus a 10% margin of error).	
The Aquatic Life Lice of Enring Brook (NAA92 14) is accessed as Not Supporting with a new impairment he	ing added for

The Aquatic Life Use of Spring Brook (MA83-14) is assessed as Not Supporting, with a new impairment being added for Dewatering. Although dissolved oxygen data and analysis of the benthic macroinvertebrate community provided a picture of the poor condition of Spring Brook, it is the BPJ of MassDEP analysts that these were by-products of the low flow state observed during most of the summer, which was likely influenced by the location of the monitoring station in the downstream portion of the brook that is within a Zone II Wellhead Protection Area for the Town of Bedford.

Monitoring Stations

Station Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
6356	MassDEP	Fish	Spring Brook	Approximately 250 ft US of mouth at	42.49406	-71.25598
		Community		confluence with Shawsheen River., Bedford		
B0934	MassDEP	Benthic	Spring	[approximately 75 meters upstream of	42.494062	-71.255983
			Brook/	mouth at confluence with Shawsheen River,		
				Bedford, MA]		
W2535	MassDEP	Water	Spring Brook	[approximately 250 feet upstream of mouth	42.494062	-71.255983
		Quality		at confluence with Shawsheen River,		
				Bedford]		

Biological Monitoring Information

Benthic Macroinvertebrate Data

MassDEP Benthic Macroinvertebrate Data (2011-2017). (MassDEP Undated 5)

[Index Biological Condition Class: E= Exceptional, S= Satisfactory, MD= Moderately Degraded, SD= Severely Degraded; High Gradient IBI Thresholds: E= 100-75, S= 74-55, MD= 54-35, SD= 34-0; Low Gradient IBI Thresholds: E= 100-81, S= 80-62, MD= 61-38, SD= 37-0; R qualifier = Rarefaction (100ct) <55]

Station	Collection	Collection		Organism	Index	Index Biological
Code	Date	Method	Index Type	Count	Score	Condition Class
B0934	08/05/15	RBP multihab	Statewide_Low_Gradient	341	29	SD

Fish Community Data and DELTS

Fish Community Data (2012-2019) Provided by MassDFG. (MassDFG 2020) (MassDEP Undated 3)

[Sample Type: TP= Total Pickup, SP= Selective Pickup, Method: BT=Boat Shocking, BP= Backpack Shocking, BG= Barge Shocking, SE= Seine, SL= Snorkel, NS= Not Stated, MT= Minnow Trap, GN= Gillnet, FY= Fyke Net, Gradient: H = High, L = Low; I/MT MG= Intolerant/Moderately Tolerant Macrohabitat Generalist]

[Species List: AE = American Eel, BB = Brown Bullhead, BS = Banded Sunfish, GS = Golden Shiner, P = Pumpkinseed, RP = Redfin Pickerel, SD = Swamp Darter, YB = Yellow Bullhead]

Sample ID	Sample Date	Method	Sample Type	Gradient	Total Taxa	Total Ind	Cold Ind %	Fluvial Taxa	Fluvial Ind %	Intol Ind %	I/MT MG Taxa	1/MT MG Ind %	Notables	CFR	Species List
6356	06/22/15	NS	TP		8	36	0%	0	0%	8%	4	44%	Yes	No	AE, BB, BS, GS, P, RP, SD, YB,

Physico-chemical Water Quality Information

DO, pH, Temperature

MassDEP Long-term Continuous Dissolved Oxygen Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6) [7DADMin= 7-Day Average of the Daily Minima, 7DADA= 7-Day Average of the Daily Average, CW= Coldwater, WW= Warmwater]

Station Code	Start Date	End Date	Day Count	7day Count	30day Count	DO Min (mg/L)	Min 7DADMin (mg/L)	Min 7DADA (mg/L)	Delta DO Max (mg/L)	Count CW 7DADMin <6.0	Count CW 1Day Min <5.0	Count WW Early Life Stages 7DADA <6.5	Count WW Early Life Stages 1Day Min <5.0	Count WW Other Life Stages 7DADMin <5.0	Count WW Other Life Stages 1Day Min <4.0	Count CW 30DADA <8.0	Count WW Other Life Stages 30DADA <6.0
W2535	06/26/15	07/11/15	16	10	0	2.7	3.7	4.2	2.2	10	14	10	14	10	8	0	0

MassDEP Discrete Dissolved Oxygen Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[CW= Coldwater, WW= Warmwater]

					DO		Count WW	Count WW
Station			DO	DO Min	Avg	Count	Early Life Stages	Other Life
Code	Start Date	End Date	Count	(mg/L)	(mg/L)	CW <5.0	<5.0	Stages <4.0
W2535	07/30/15	09/23/15	1	6.8	6.8	0	0	0

MassDEP Long-term Continuous Temperature Data (Summer Index 2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[Summer Index is June 1 – Sept 15; Max Daily Mean= Maximum 24-Hour Average, 7DADM= 7-Day Average of the Daily Maxima, 7DADA= 7-Day Average of the Daily Average, CW= Coldwater, WW= Warmwater; NOTE: In the case of more than one row of data in the same year for a site, different types of temperature probes were deployed.]

Station Code	Start Date	End Date	Index Count	7day Count	Max Daily Mean (°C)	Max Temp (°C)	Max 7DADM (°C)	Max 7DADA (°C)	Count CWTier1 7DADM >20	Count CWTier1 Daily Mean >23.5	Count CWTier2 7DADA	Count CWTier2 Daily Mean >24.1	Count WW 7DADM >27.7	Count WW Daily Mean >28.3
W2535	06/26/15	07/11/15	16	10	23.0	25.1	23.7	21.5	10	0	3	0	0	0

24-hour Rolling Average Calculations for MassDEP Short- and Long-term Continuous Temperature Data (Summer Index 2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[Summer Index is June 1 – Sept 15; CW= Coldwater, WW= Warmwater; NOTE: In the case of more than one row of data in the same year for a site, different types of temperature probes were deployed.]

					Max 24hr	Count	Count	Count WW
			Count	24hr	Avg	CWTier1 24hr	CWTier2 24hr	24hr Avg
Station	Start		Days	Rolling	Rolling	Avg Rolling	Avg Rolling	Rolling
Code	Date	End Date	Deployed	Count	Temp (°C)	>23.5 °C	>24.1 °C	>28.3°C
W2535	06/25/15	07/11/15	16	740	23.0	0	0	0

MassDEP Discrete Temperature Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[Summer Index is June 1 – Sept 15; CW= Coldwater, WW= Warmwater]

					Temp					
Station	Start		Temp	Index	Max	Temp	Count	Count	Count	Count WW
Code	Date	End Date	Count	Count	(°C)	Avg (°C)	CW >20	CW >22	WW >28.3	>30.3
W2535	07/30/15	09/23/15	1	1	23.6	23.6	1	1	0	0

MassDEP Discrete pH Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

Station Code	Start Date	End Date	pH Count	pH Min (SU)	pH Max (SU)	pH Count <6.5 & >8.3	pH Count <6.0 & >8.8
W2535	07/30/15	09/23/15	1	7.1	7.1	0	0

Nutrients (Primary Producer Screening, Physico-chemical Screening)

MassDEP Nutrient Enrichment Indicator Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6) [Summer seasonal total phosphorus data collected May-Sept]

		Seasonal	Seasonal	Seasonal	Seasonal	Delta DO	Delta DO	DO Sat	pН	Count	Dense/V. Dense
Station	Data	ТР	TP Min	TP Max	TP Avg	Max	Avg	Max	Max	Algal	Film/Fila.
Code	Year	Count	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(%)	(SU)	Obsv.	Algae
W2535	2015	4	0.036	0.140	0.083	2.2	1.1	82.0	7.1	4	0

Toxics and other pollutants (metals, ammonia, chloride, chlorine)

MassDEP Dissolved Aluminum Water Column Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6) [Since only dissolved aluminum data were available, these data were compared to the default freshwater criteria for total recoverable aluminum (TRA), presented in Appendix E of MassDEP's 2022 CALM. As dissolved Al is a fraction of TRA, an exceedance count of 0 does not rule out violations of the TRA criteria. CMC= Criterion Maximum Concentration, CCC= Criterion Continuous Concentration, TU= Toxic Unit]

Station Code	Data Year	Dissolved Al Count	Al Min (mg/L)	Al Max (mg/L)	-			Al CMC TU >1	Al CCC TU >1
W2535	2015	3	0.051	0.071	0.060	0.2	0.3	0	0

MassDEP Total Ammonia Nitrogen (TAN) Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[TAN= NH3 + NH4+]

Station	Data	TAN	TAN Min	TAN Max	TAN Avg	Count TAN	Count TAN
Code	Year	Count	(mg/L)	(mg/L)	(mg/L)	>Chronic	>Acute
W2535	2015	4	0.040	0.072	0.051	0	0

MassDEP Chloride Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

						Count	Count
Station	Data	Chloride	Chloride	Chloride	Chloride	Chloride	Chloride
Code	Year	Count	Min (mg/L)	Max (mg/L)	Avg (mg/L)	>230	>860
W2535	2015	4	140	230	200	0	0

MassDEP Discrete Specific Conductance Data (2011-2018) Compared to Estimated Chloride Criteria. (MassDEP Undated 8) (MassDEP Undated 6)

Station Code	Start Date	End Date	SpCond Count	SpCond Min (µs/cm)	SpCond Max (μs/cm)	Count SpCond >904	Count SpCond >994	Count SpCond >3193	Count SpCond >3512	Consecutive sets >904	Consecutive sets >994
W2535	07/30/15	09/23/15	1	1009	1009	1	1	0	0	0	0

Fish Consumption

2022 Use Attainment	Alert
Not Assessed	NO
2022 Use Attainment Summary	
No fish toxics sampling has been conducted in Spring Brook (MA83-14), so the Fish Consumption	Use is Not Assessed.

Aesthetic

2022 Use Attainment Alert	
---------------------------	--

Fully Supporting	NO
2022 Use Attainment Summary	

MassDEP field crews conducted surveys of Spring Brook approximately 250 feet upstream of the mouth of the brook (and the confluence with the Shawsheen River) in Bedford (W2535) during summer 2015. On four site visits, there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded.

The Aesthetics Use of Spring Brook (MA83-14) is assessed as Fully Supporting based on the observations of MassDEP field sampling staff during summer 2015.

Monitoring Stations

Station Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
W2535	MassDEP	Water Quality	Spring Brook	[approximately 250 feet upstream of mouth at confluence with Shawsheen River, Bedford]	42.494062	-71.255983

Aesthetic Observations

Aesthetics Summary Statements for MassDEP Stations (2011-2018) (MassDEP Undated 6)

Station Code	Waterbody	Data Year	Field Sheet Count	Aesthetics Summary Statement
W2535	Spring Brook	2015	4	MassDEP aesthetics observations for station W2535 on Spring Brook can
				be summarized as follows: there were generally no noted objectionable
				conditions (odors, deposits, growths, or turbidity) recorded by DEP field
				sampling crews during summer 2015.

Observations of Filamentous/Film Algae at MassDEP Stations (2011-2018) (MassDEP Undated 8) (MassDEP Undated 6)

Station			Field Sheet Count w/ Film & Filamentous Algae Dense/ Very D	
Code	Data Year	Field Sheet Count	Observations	Film/ Filamentous Algae
W2535	2015	4	4	0

MassDEP Aesthetics Observations (2011-2018) (MassDEP Undated 8)

Station		Data			Result	Total Field
Code	Waterbody	Year	Parameter	Result	Count	Sheet Count
W2535	Spring Brook	2015	Color	Light Yellow/Tan	2	4
W2535	Spring Brook	2015	Color	None	1	4
W2535	Spring Brook	2015	Color	Reddish	1	4
W2535	Spring Brook	2015	Objectionable Deposits	No	4	4
W2535	Spring Brook	2015	Odor	None	4	4
W2535	Spring Brook	2015	Scum	No	3	4
W2535	Spring Brook	2015	Scum	Yes	1	4
W2535	Spring Brook	2015	Turbidity	None	3	4
W2535	Spring Brook	2015	Turbidity	Slightly Turbid	1	4

Primary Contact Recreation

2022 Use Attainment	Alert
Not Supporting	NO
2022 Use Attainment Summary	
MassDEP field crews collected E. coli bacteria data (n=4) in Spring Brook approximately 250 fee	et upstream of the mouth

of the brook (and the confluence with the Shawsheen River) in Bedford (W2535) during summer 2015. Analysis of this limited frequency dataset indicated that 100% of intervals had GMs exceeding 126 cfu/100mL, two samples exceeded the 410 cfu/100mL STV, and that the seasonal GM was 532 cfu/100mL. During these site visits, there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded.

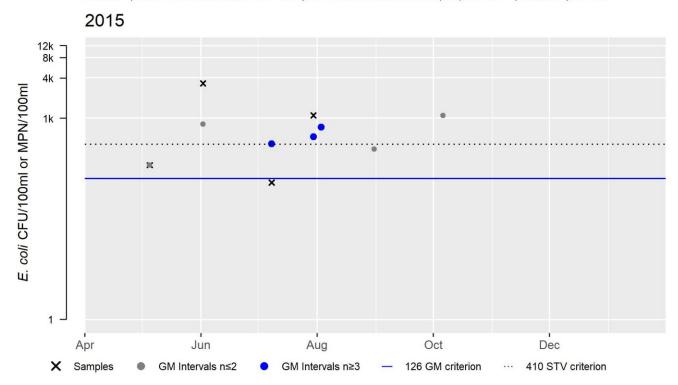
The Primary Contact Recreational Use of Spring Brook (MA83-14) is assessed as Not Supporting with a new impairment for Escherichia Coli (E. Coli).

Monitoring Stations

Station Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
W2535	MassDEP	Water Quality	Spring Brook	[approximately 250 feet upstream of mouth at confluence with Shawsheen River, Bedford]	42.494062	-71.255983

Bacteria Data

Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 8) (MassDEP Undated 6)


[Result units are CFU/100ml or MPN/100ml]

						Minimum	Maximum	Seasonal
					Sample	Sample	Sample	Geometric
Station Code	Organization	Indicator	Start Date	End Date	Count	Result	Result	Mean
W2535	MassDEP	E. coli	05/05/15	07/30/15	4	110	3300	532

W2535 E. coli (90-day Interval), Primary Contact Recreational Use Season

Var	Res
Samples	4
SeasGM	532
#GMI	3
#GMI Ex	3
%GMI Ex	100
n>STV	2
%n>STV	50

Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV

Secondary Contact Recreation

2022 Use Attainment	Alert
Fully Supporting	NO
2022 Use Attainment Summary	

MassDEP field crews collected *E. coli* bacteria data (n=4) in Spring Brook approximately 250 feet upstream of the mouth of the brook (and the confluence with the Shawsheen River) in Bedford (W2535) during summer 2015. Analysis of this limited frequency dataset indicated that 33% of intervals had GMs exceeding 630 cfu/100mL, one sample exceeded the 1260 cfu/100mL STV, and that the seasonal GM was 532 cfu/100mL. During these site visits, there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded.

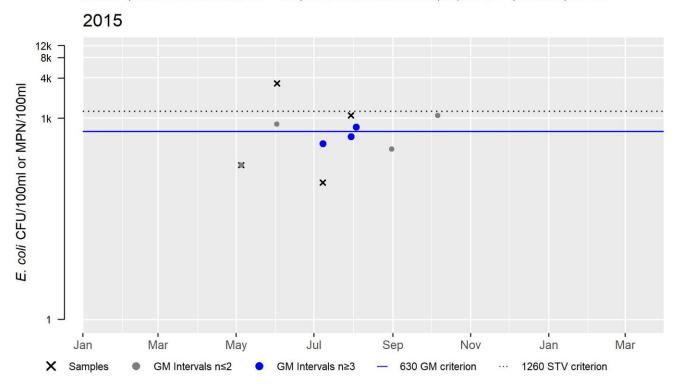
The Secondary Contact Recreational Use of Spring Brook (MA83-14) is assessed as Fully Supporting.

Monitoring Stations

Station						
Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
W2535	MassDEP	Water	Spring Brook	[approximately 250 feet upstream of mouth at	42.494062	-71.255983
		Quality		confluence with Shawsheen River, Bedford]		

Bacteria Data

Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 8) (MassDEP Undated 6)


[Result units are CFU/100ml or MPN/100ml]

						Minimum	Maximum	Seasonal
						Sample	Sample	Geometric
						Result	Result	Mean
						(CFU/100ml	(CFU/100ml	(CFU/100ml
					Sample	or	or	or
Station Code	Organization	Indicator	Start Date	End Date	Count	MPN/100ml)	MPN/100ml)	MPN/100ml)
W2535	MassDEP	E. coli	05/05/15	07/30/15	4	110	3300	532

W2535 E. coli (90-day Interval), Secondary Contact Recreational Use Season

Var	Res
Samples	4
SeasGM	532
#GMI	3
#GMI Ex	1
%GMI Ex	33
n>STV	1
%n>STV	25

Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV

Strong Water Brook (MA83-07)

Location:	Headwaters northeast of Long Pond, Tewksbury to confluence with Shawsheen River,
	Tewksbury.
AU Type:	RIVER
AU Size:	4.9 MILES
Classification/Qualifier:	В

No usable data were available for Strong Water Brook (MA83-07) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
4a	4a	Escherichia Coli (E. Coli)	2587	Unchanged
4a	4a	Fecal Coliform	2587	Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
Escherichia Coli (E. Coli)	Discharges from Municipal Separate Storm				Х	
	Sewer Systems (MS4) (N)					
Fecal Coliform	Discharges from Municipal Separate Storm				Х	
	Sewer Systems (MS4) (N)					

Unnamed Tributary (MA83-15)

Location:	Unnamed tributary to Meadow Brook, also known as "Pinnacle Brook" - from small wetland east of Route 93, Andover, to confluence with Meadow Brook, Tewksbury (includes intermittent portion).
AU Type:	RIVER
AU Size:	2.1 MILES
Classification/Qualifier:	В

No usable data were available for Unnamed Tributary (MA83-15) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
5	5	(Dewatering*)		Unchanged
5	5	Chloride		Unchanged
5	5	Escherichia Coli (E. Coli)	2587	Unchanged
5	5	Fecal Coliform	2587	Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
(Dewatering*)	Baseflow Depletion from Groundwater Withdrawals (N)	х				
Chloride	Highway/Road/Bridge Runoff (Non- construction Related) (Y)	Х				
Escherichia Coli (E. Coli)	Animal Feeding Operations (NPS) (N)				Х	
Fecal Coliform	Animal Feeding Operations (NPS) (N)				Х	

Unnamed Tributary (MA83-16)

Location:	Unnamed tributary to Shawsheen River also known as "Fosters Brook" - outlet Fosters Pond, Andover through River Street Pond to confluence with Shawsheen River at Lowell Junction Pond, Andover.
AU Type:	RIVER
AU Size:	1 MILES
Classification/Qualifier:	В

No usable data were available for Unnamed Tributary (MA83-16) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

Category Category Impairment ATT	AINS Action ID Summary
3 3 None	Unchanged

Unnamed Tributary (MA83-20)

Location:	Unnamed intermittent tributary to the Shawsheen River, from Dascomb Road, Andover to confluence with Shawsheen River, Tewksbury.
AU Type:	RIVER
AU Size:	0.9 MILES
Classification/Qualifier:	В

No usable data were available for Unnamed Tributary (MA83-20) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU	2022 AU			Impairment Change
Category	Category	Impairment	ATTAINS Action ID	Summary
5	5	Chloride		Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
Chloride	Highway/Road/Bridge Runoff (Non-	Х				
	construction Related) (Y)					

Unnamed Tributary (MA83-21)

Location:	Unnamed intermittent tributary to the Shawsheen River locally known as 'Sutton Brook', from headwaters north of Research Drive, Wilmington to confluence with the Shawsheen River, Tewksbury.
AU Type:	RIVER
AU Size:	3 MILES
Classification/Qualifier:	В

No usable data were available for Unnamed Tributary (MA83-21) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU	2018/20 AU 2022 AU			Impairment Change	
Category	Category	Impairment	ATTAINS Action ID	Summary	
4a	4a	Escherichia Coli (E. Coli)	2587	Unchanged	

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
Escherichia Coli (E. Coli)	Discharges from Municipal Separate Storm				Х	
	Sewer Systems (MS4) (N)					

Vine Brook (MA83-06)

Vine Brook - MA83-06

Location:	Headwaters (southeast of Granny Hill) near Grant Street, Lexington to confluence with Shawsheen River, Bedford (through former 2014 segment: Butterfield Pond MA83003).
AU Type:	RIVER
AU Size:	6.8 MILES
Classification/Qualifier:	В

Watershed Area: 10.13 square miles including areas outside Massachusetts 100m Proximal 5km Radius Entire Basin Stream Buffer Stream Buffer Proximal Subbasin Landuse Type Land Use Area (square miles) 10.13 6.07 2.49 1.39 Agriculture 0.2% 0% 0% 0% Developed 43.6% 47.2% 32.8% 36.7% Natural 35.2% 28.1% 43.7% 40.1% Wetland 12.5% 12.7% 32% 35.2% Impervious Cover 27.5% Percent A griculture Percent Natural Percent Developed Percent Wetland

2018/20 AU Category	2022 AU Category	Impairment	ATTAINS Action ID	Impairment Change Summary
5	5	(Curly-leaf Pondweed*)		Added
5	5	Benthic Macroinvertebrates		Added
5	5	Chloride		Added
5	5	Dissolved Oxygen		Unchanged
5	5	Escherichia Coli (E. Coli)		Added
5	5	Turbidity		Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
(Curly-leaf Pondweed*)	Introduction of Non-native Organisms	Х				
	(Accidental or Intentional) (Y)					
Benthic Macroinvertebrates	Source Unknown (N)	Х				
Chloride	Highway/Road/Bridge Runoff (Non-	Х				
	construction Related) (Y)					
Chloride	Impervious Surface/Parking Lot Runoff (Y)	Х				

106

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
Dissolved Oxygen	Baseflow Depletion from Groundwater Withdrawals (N)	Х				
Dissolved Oxygen	Source Unknown (N)	Х				
Escherichia Coli (E. Coli)	Discharges from Municipal Separate Storm Sewer Systems (MS4) (N)				Х	
Escherichia Coli (E. Coli)	Source Unknown (N)				Х	
Turbidity	Sand/Gravel/Rock Mining or Quarries (N)			Х	Х	Х

Designated Use Attainment Decisions

Fish, other Aquatic Life and Wildlife

2022 Use Attainment	Alert
Not Supporting	NO
2022 Use Attainment Summary	
MassDEP staff conducted benthic (B0921) and water quality (W2522) surveys in Vine Brook just downstr	eam/west of the
Route 62 eastbound ramp to Route 3 northbound, Bedford during the summer of 2015. The July benthic	sample IBI score
was 18, indicating that conditions were severely degraded for a low gradient location. A probe was deplo	•
DO for 17 days in late June and early July. All 11 7DADMins were <5.0 and about half the daily minima we	-
Continuous temperature data were measured over 82 days in the summer index period with a maximum	
(good for a WWF). Other water quality indicators were generally indicative of good conditions and are su	
follows: pH ranged from 6.4-6.5 S.U. (n=3), there was no indication of nutrient enrichment (seasonal TP a	-
0.039 mg/L with n=5, maximum DO diel shift was 2.7 mg/L, no observations of excessive filamentous alg	
no exceedances among 2 clean metals samples or 2 aluminum samples (because dissolved Al data were	
total recoverable Al criteria, exceedances cannot be ruled out, however), and the maximum Total Ammo	
was 0.088 mg/L. Among 5 chloride samples, 3 had concentrations greater than 230 mg/L (the criterion fo	
toxicity), with a maximum of 280 mg/L. Similarly, 2 of 3 specific conductance measurements were >994 μ	
estimated chloride chronic criterion plus a 10% margin of error), with a maximum of 1265 μ s/cm. Additic	•
infestation of curly-leaf pondweed (<i>Potamogeton crispus</i>) was previously observed in Vine Brook (but no	
on) by MassDEP staff conducting a field survey at the Terrace Hall Ave crossing in Burlington (W0357) in J	
The Aquatic Life Use of Vine Brook (MA83-06) is assessed as Not Supporting with the DO impairment bei	-
forward. New for this cycle, Benthic Macroinvertebrates, Curly-leaf Pondweed, and Chloride impairment	-
added. Besides major roadways near the site, there are significant parking lots and residential areas in the	
(27.5% impervious cover), and I-95 crosses the brook roughly mid-way through the AU. Given the region	
increasing chloride concentrations, the use of de-icing products containing chloride should be minimized	by all parties
(i.e., highways/roads, municipalities, businesses, residences) in the Vine Brook sub-watershed.	

Monitoring Stations

Station Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
B0921	MassDEP	Benthic	Vine Brook/	[just downstream/west of the Route 62 eastbound ramp to Route 3 northbound,	42.501785	-71.240716
				Bedford, MA]		

Station Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
W2522	MassDEP	Water	Vine Brook	[just downstream/west of the Route 62	42.501785	-71.240716
		Quality		eastbound ramp to Route 3 northbound,		
				Bedford]		

Biological Monitoring Information

Benthic Macroinvertebrate Data

MassDEP Benthic Macroinvertebrate Data (2011-2017). (MassDEP Undated 5)

[Index Biological Condition Class: E= Exceptional, S= Satisfactory, MD= Moderately Degraded, SD= Severely Degraded; High Gradient IBI Thresholds: E= 100-75, S= 74-55, MD= 54-35, SD= 34-0; Low Gradient IBI Thresholds: E= 100-81, S= 80-62, MD= 61-38, SD= 37-0; R qualifier = Rarefaction (100ct) <55]

Station	Collection	Collection		Organism	Index	Index Biological
Code	Date	Method	Index Type	Count	Score	Condition Class
B0921	07/23/15	RBP multihab	Statewide_Low_Gradient	331	18	SD

Non-native Aquatic Species Presence

MassDEP Non-Native Aquatic Invasive Species Records as of May 2021. (MassDEP Undated 1)

Summary Statement
MassDEP staff identified an infestation of the non-native aquatic macrophyte, curly-leaf pondweed (Potamogeton
crispus), in Vine Brook (MA83-06) in the vicinity of water quality station W0357 in 2005.

Physico-chemical Water Quality Information

DO, pH, Temperature

MassDEP Long-term Continuous Dissolved Oxygen Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6) [7DADMin= 7-Day Average of the Daily Minima, 7DADA= 7-Day Average of the Daily Average, CW= Coldwater, WW= Warmwater]

Station Code	Start Date	End Date	Day Count	7day Count	30day Count	DO Min (mg/L)	Min 7DADMin (mg/L)	Min 7DADA (mg/L)	Delta DO Max (mg/L)	Count CW 7DADMin <6.0	Count CW 1Day Min <5.0	Count WW Early Life Stages 7DADA <6.5	Count WW Early Life Stages 1Day Min <5.0	Count WW Other Life Stages 7DADMin <5.0	Count WW Other Life Stages 1Day Min <4.0	Count CW 30DADA <8.0	Count WW Other Life Stages 30DADA <6.0
W2522	06/26/15	07/12/15	17	11	0	3.5	3.8	4.7	2.7	11	17	11	17	11	8	0	0

MassDEP Discrete Dissolved Oxygen Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[CW= Coldwater, WW= Warmwater]

					DO		Count WW	Count WW
Station			DO	DO Min	Avg	Count	Early Life Stages	Other Life
Code	Start Date	End Date	Count	(mg/L)	(mg/L)	CW <5.0	<5.0	Stages <4.0
W2522	07/30/15	09/23/15	3	0.4	0.7	3	3	3

MassDEP Long-term Continuous Temperature Data (Summer Index 2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[Summer Index is June 1 – Sept 15; Max Daily Mean= Maximum 24-Hour Average, 7DADM= 7-Day Average of the Daily Maxima, 7DADA= 7-Day Average of the Daily Average, CW= Coldwater, WW= Warmwater; NOTE: In the case of more than one row of data in the same year for a site, different types of temperature probes were deployed.]

	,	/1													
-	Station Code	Start Date	End Date	Index Count	7day Count	Max Daily Mean (°C)	Max Temp (°C)	Max 7DADM (°C)	Max 7DADA (°C)	Count CWTier1 7DADM >20	Count CWTier1 Daily Mean >23.5	Count CWTier2 7DADA >21	Count CWTier2 Daily Mean >24.1	Count WW 7DADM >27.7	Count WW Daily Mean >28.3
	W2522	06/26/15	09/15/15	82	79	24.7	26.5	24.7	23.6	67	9	45	6	0	0

24-hour Rolling Average Calculations for MassDEP Short- and Long-term Continuous Temperature Data (Summer Index 2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[Summer Index is June 1 – Sept 15; CW= Coldwater, WW= Warmwater; NOTE: In the case of more than one row of data in the same year for a site, different types of temperature probes were deployed.]

					Max 24hr	Count	Count	Count WW
			Count	24hr	Avg	CWTier1 24hr	CWTier2 24hr	24hr Avg
Station	Start		Days	Rolling	Rolling	Avg Rolling	Avg Rolling	Rolling
Code	Date	End Date	Deployed	Count	Temp (°C)	>23.5 °C	>24.1 °C	>28.3°C
W2522	06/25/15	09/15/15	82	3909	25.0	448	222	0

MassDEP Discrete Temperature Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[Summer Index is June 1 – Sept 15; CW= Coldwater, WW= Warmwater]

					Temp					
Station	Start		Temp	Index	Max	Temp	Count	Count	Count	Count WW
Code	Date	End Date	Count	Count	(°C)	Avg (°C)	CW >20	CW >22	WW >28.3	>30.3
W2522	07/30/15	09/23/15	3	2	22.3	20.4	2	1	0	0

MassDEP Discrete pH Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

Station Code	Start Date	End Date	pH Count	pH Min (SU)	pH Max (SU)	pH Count <6.5 & >8.3	pH Count <6.0 & >8.8
W2522	07/30/15	09/23/15	3	6.4	6.5	1	0

Nutrients (Primary Producer Screening, Physico-chemical Screening)

MassDEP Nutrient Enrichment Indicator Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6) [Summer seasonal total phosphorus data collected May-Sept]

						Delta	Delta	DO			Dense/V.
		Seasonal	Seasonal	Seasonal	Seasonal	DO	DO	Sat	рН	Count	Dense
Station	Data	ТР	TP Min	TP Max	TP Avg	Max	Avg	Max	Max	Algal	Film/Fila.
Code	Year	Count	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(%)	(SU)	Obsv.	Algae
W2522	2015	5	0.015	0.061	0.039	2.7	1.5	9.7	6.5	3	0

Toxics and other pollutants (metals, ammonia, chloride, chlorine)

MassDEP Clean Metals Water Column Data (2011-2018), Acute Criteria Violations. (MassDEP Undated 8) (MassDEP Undated 6)

	Data				Cr III CMC				•	
Code	Year	Count	TU >1	TU >1	TU >1	10>1	TU >1	10>1	TU >1	TU >1
W2522	2015	2	0	0	0	0	0	0	0	0

[CMC= Criterion Maximum Concentration, TU= Toxic Unit]

MassDEP Clean Metals Water Column Data (2011-2018), Chronic Criteria Violations. (MassDEP Undated 8) (MassDEP Undated 6)

[CCC= Criterion Continuous Concentration, TU= Toxic Unit]

Station Code	Data Year	Metals Count		Cd CCC TU >1	Cr III CCC TU >1	Cu CCC TU >1	Pb CCC TU >1	Ni CCC TU >1	Se CCC TU >1	Zn CCC TU >1
W2522	2015	2	0	0	0	0	0	0	0	0

MassDEP Dissolved Aluminum Water Column Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

[Since only dissolved aluminum data were available, these data were compared to the default freshwater criteria for total recoverable aluminum (TRA), presented in Appendix E of MassDEP's 2022 CALM. As dissolved Al is a fraction of TRA, an exceedance count of 0 does not rule out violations of the TRA criteria. CMC= Criterion Maximum Concentration, CCC= Criterion Continuous Concentration, TU= Toxic Unit]

		Dissolved Al Count		Al Max (mg/L)	•	Al CMC TU Max	Al CCC TU Max	Al CMC TU >1	Al CCC TU >1
W2522	2015	2	0.051	0.051	0.051	0.1	0.2	0	0

MassDEP Total Ammonia Nitrogen (TAN) Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6) [TAN= NH3 + NH4+]

Station	Data	TAN	TAN Min	TAN Max	TAN Avg	Count TAN	Count TAN
Code	Year	Count	(mg/L)	(mg/L)	(mg/L)	>Chronic	>Acute
W2522	2015	5	0.040	0.088	0.054	0	0

MassDEP Chloride Data (2011-2018). (MassDEP Undated 8) (MassDEP Undated 6)

						Count	Count
Station	Data	Chloride	Chloride	Chloride	Chloride	Chloride	Chloride
Code	Year	Count	Min (mg/L)	Max (mg/L)	Avg (mg/L)	>230	>860
W2522	2015	5	160	280	226	3	0

MassDEP Discrete Specific Conductance Data (2011-2018) Compared to Estimated Chloride Criteria. (MassDEP Undated 8) (MassDEP Undated 6)

SpCond Count Count SpCond Count SpCond Count SpCond Count SpCond **Station Code** SpCond Min SpCond Max Consecutive Consecutive Start Date sets >904 Date sets >994 (ms/cm) (ms/cm) >3512 >3193 >904 >994 End W2522 07/30/15 09/23/15 736 2 0 n n 0 3 1265

Fish Consumption

2022 Use Attainment	Alert
Not Assessed	NO
2022 Use Attainment Summary	

No fish toxics sampling has been conducted in Vine Brook (MA83-06) so the Fish Consumption Use is Not Assessed.

Aesthetic

2022 Use Attainment	Alert
Not Supporting	NO
2022 Use Attainment Summary	

MassDEP field crews conducted surveys in Vine Brook just downstream/west of the Route 62 eastbound ramp to Route 3 northbound, Bedford (W2522) on five occasions during summer 2015. There were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded. According to information compiled in the 2016 reporting cycle, MassDEP sampling in 1995 found issues with turbidity in Butterfield Pond (in the upstream third of the AU) due to adjacent sand and gravel operations (MassDEP Undated 7). Since recent sampling was not conducted in that area of the brook, there is insufficient information to delist this impairment so Turbidity will be carried forward. The Aesthetics Use for Vine Brook (MA83-06) is therefore assessed as Not Supporting.

Monitoring Stations

Station						
Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
W2522	MassDEP	Water	Vine Brook	[just downstream/west of the Route 62 eastbound	42.501785	-71.240716
		Quality		ramp to Route 3 northbound, Bedford]		

Aesthetic Observations

Aesthetics Summary Statements for MassDEP Stations (2011-2018) (MassDEP Undated 6)

Station Code	Waterbody	Data Year	Field Sheet Count	Aesthetics Summary Statement
W2522	Vine Brook	2015	5	MassDEP aesthetics observations for station W2522/MAP2-682 on Vine
				Brook can be summarized as follows: there were generally no noted
				objectionable conditions (odors, deposits, growths, or turbidity) recorded
				by DEP field sampling crews during summer 2015.

Observations of Filamentous/Film Algae at MassDEP Stations (2011-2018) (MassDEP Undated 8) (MassDEP Undated 6)

				Field Sheet Count w/ Film &	
S	Station			Filamentous Algae	Dense/ Very Dense
	Code	Data Year	Field Sheet Count	Observations	Film/ Filamentous Algae
١	W2522	2015	5	3	0

MassDEP Aesthetics Observations (2011-2018) (MassDEP Undated 8)

Station		Data			Result	Total Field
Code	Waterbody	Year	Parameter	Result	Count	Sheet Count
W2522	Vine Brook	2015	Color	Light Yellow/Tan	5	5
W2522	Vine Brook	2015	Objectionable Deposits	No	2	5
W2522	Vine Brook	2015	Objectionable Deposits	Yes	3	5

Station		Data			Result	Total Field
Code	Waterbody	Year	Parameter	Result	Count	Sheet Count
W2522	Vine Brook	2015	Odor	None	5	5
W2522	Vine Brook	2015	Scum	No	5	5
W2522	Vine Brook	2015	Turbidity	None	2	5
W2522	Vine Brook	2015	Turbidity	Slightly Turbid	3	5

Primary Contact Recreation

2022 Use Attainment	Alert
Not Supporting	NO
2022 Use Attainment Summary	

MassDEP staff collected *E. coli* bacteria samples in Vine Brook just downstream/west of the Route 62 eastbound ramp to Route 3 northbound, Bedford (W2522) on five occasions during summer 2015. Analysis of this limited frequency dataset indicated that 80% of intervals had GMs exceeding 126 cfu/100mL, one sample exceeded the 410 cfu/100mL STV, and that the seasonal GM was 159 cfu/100mL. During these site visits, field crews generally did not note any objectionable conditions (odors, deposits, growths, or turbidity).

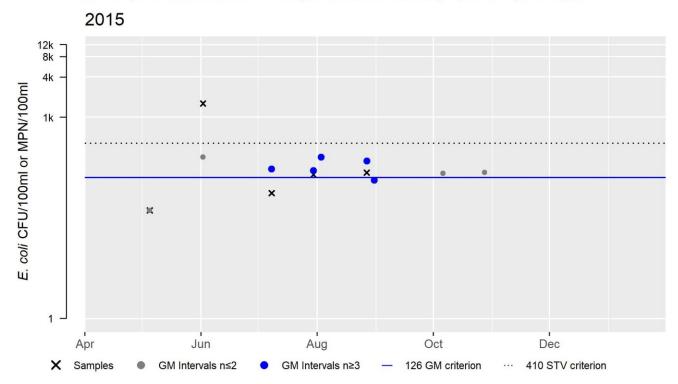
The Primary Contact Recreational Use for Vine Brook (MA83-06) is assessed as Not Supporting with a new impairment for Escherichia Coli (E. Coli). The Turbidity impairment will also be carried forward. According to information compiled in the 2016 reporting cycle, MassDEP sampling in 1995 found issues with turbidity in Butterfield Pond (in the upstream third of the AU) due to adjacent sand and gravel operations (MassDEP Undated 7); since recent sampling was not conducted nearby, there is insufficient information to delist this impairment.

Monitoring Stations

Station Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
W2522	MassDEP	Water Quality	Vine Brook	[just downstream/west of the Route 62 eastbound ramp to Route 3 northbound, Bedford]	42.501785	-71.240716

Bacteria Data

Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 8) (MassDEP Undated 6)


[Result units are CFU/100ml or MPN/100ml]

						Minimum	Maximum	Seasonal
					Sample	Sample	Sample	Geometric
Station Code	Organization	Indicator	Start Date	End Date	Count	Result	Result	Mean

W2522 E. coli (90-day Interval), Primary Contact Recreational Use Season

Var	Res
Samples	5
SeasGM	159
#GMI	5
#GMI Ex	4
%GMI Ex	80
n>STV	1
%n>STV	20

Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV

Secondary Contact Recreation

2022 Use Attainment	Alert
Not Supporting	NO
2022 Use Attainment Summary	

MassDEP staff collected *E. coli* bacteria samples in Vine Brook just downstream/west of the Route 62 eastbound ramp to Route 3 northbound, Bedford (W2522) on five occasions during summer 2015. Analysis of this limited frequency dataset indicated that no intervals had GMs exceeding 630 cfu/100mL, but one sample exceeded the 1260 cfu/100mL STV. During these site visits, field crews generally did not note any objectionable conditions (odors, deposits, growths, or turbidity).

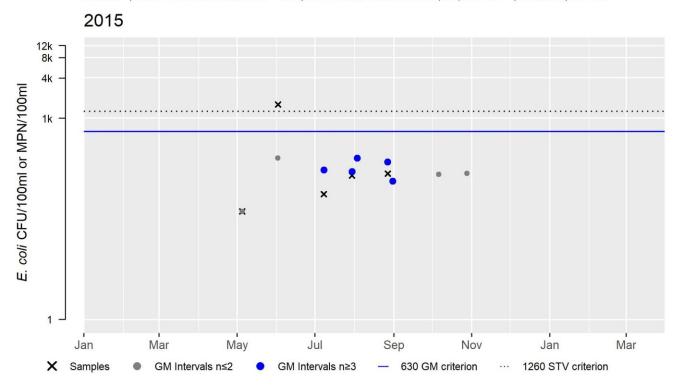
Although bacteria data were generally indicative of good conditions, the Secondary Contact Recreational Use for Vine Brook (MA83-06) will continue to be assessed as Not Supporting with the Turbidity impairment being carried forward. According to information compiled in the 2016 reporting cycle, MassDEP sampling in 1995 found issues with turbidity in Butterfield Pond (in the upstream third of the AU) due to adjacent sand and gravel operations (MassDEP Undated 7); since recent sampling was not conducted in that area of the brook, there is insufficient information to delist this impairment.

Monitoring Stations

Station Code	Organization	Туре	Water Body	Station Description	Latitude	Longitude
W2522	MassDEP	Water Quality	Vine Brook	[just downstream/west of the Route 62 eastbound ramp to Route 3 northbound, Bedford]	42.501785	-71.240716

Bacteria Data

Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 8) (MassDEP Undated 6)


[Result units are CFU/100ml or MPN/100ml]

						Minimum	Maximum	Seasonal
						Sample	Sample	Geometric
						Result	Result	Mean
						(CFU/100ml	(CFU/100ml	(CFU/100ml
					Sample	or	or	or
Station Code	Organization	Indicator	Start Date	End Date	Count	MPN/100ml)	MPN/100ml)	MPN/100ml)
W2522	MassDEP	E. coli	05/05/15	08/27/15	5	41	1600	159

W2522 E. coli (90-day Interval), Secondary Contact Recreational Use Season

Var	Res
Samples	5
SeasGM	159
#GMI	5
#GMI Ex	0
%GMI Ex	0
n>STV	1
%n>STV	20

Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV

Webb Brook (MA83-22)

Location:	Headwaters north of Webb Brook Road, Billerica to confluence with Shawsheen River, Billerica.
AU Type:	RIVER
AU Size:	1.6 MILES
Classification/Qualifier:	В

No usable data were available for Webb Brook (MA83-22) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

2018/20 AU	2022 AU			Impairment Change
Category	Category	Impairment	ATTAINS Action ID	Summary
5	5	Escherichia Coli (E. Coli)		Unchanged

Impairment	Source (Confirmed Y/N)	Fish, other Aquatic Life and Wildlife	Fish Consumption	Aesthetic	Primary Contact Recreation	Secondary Contact Recreation
Escherichia Coli (E. Coli)	Discharges from Municipal Separate Storm				Х	Х
	Sewer Systems (MS4) (N)					

Data Sources

- Chase, B. "Diadromous Fish Restoration Priority List Version 4.0 All Regions (Excel sheet)." Massachusetts Division of Marine Fisheries, New Bedford, MA, 2020.
- Google Earth Pro. "Satellite Imagery of selected stream and lake/pond segments." Massachusetts, Undated.
- Kashiwagi, M., and T. Richards. "Development of Target Fish Community Models for Massachusetts Mainstem Rivers Technical Report." Division of Fisheries and Wildlife, Massachusetts Department of Fish and Game, Westborough, Massachusetts, 2009.
- MassDEP. "2015 Scanned Project Files, Shawsheen watershed lake survey data, 1995, D01-28.PDF." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, 1995.
- MassDEP. "Freshwater Aquatic Invasive Species Database Open Project Files." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, Undated 1.
- MassDEP. "Integrated Listing History 1992-2014 INTLIST_HISTORY.xlsx." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, 2015.
- MassDEP. "Massachusetts Consolidated Assessment and Listing Methodology (CALM) Guidance Manual for the 2022 Reporting Cycle." CN 564.0, Watershed Planning Program, Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, 2022.
- MassDEP. "Open file analysis of 2005-2017 fish community data in comparison with the Target Fish Community model." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, Massachusetts, Undated 2.
- MassDEP. "Open file analysis of DFG 2012-2019 fish community data using 2022 CALM guidance." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, Undated 3.
- MassDEP. "Open file analysis of external water quality data (potential date range 2011-2020) using 2022 CALM guidance." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, Undated 4.
- MassDEP. "Open file analysis of MassDEP WPP benthic survey data (2011-2018) using 2022 CALM guidance." Watershed Planning Program, Massachusetts Department of Environmental Protection, Worcester, MA, Undated 5.
- MassDEP. "Open file analysis of MassDEP WPP water quality data collected between 2011 and 2018 using 2022 CALM guidance." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, Undated 6.
- MassDEP. "Open files of repository documents for the 2016 Integrated Report cycle." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, Undated 7.

- MassDEP. "Open files of unpublished, validated water quality monitoring data, field sheet data, and GIS datalayers in development." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, Undated 8.
- MassDEP. "Scanned historical 305(b) and 303(d) coding sheets shaw303_1997.pdf." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, 1997.
- MassDFG. *Fish Community Data 1964-2019.* Database submitted to MassDEP on 24 November 2020. Division of Fisheries and Wildlife, Massachusetts Department of Fish and Game. Westborough, MA, November 24, 2020.
- MassDFG. *Fish Population Data 1998-2017.* Database. Prod. Division of Fisheries and Wildlife, Massachusetts Department of Fish and Game. Westborough, Massachusetts, 2018.
- MassDPH. "Freshwater Fish Consumption Advisory List." Bureau of Environmental Health, Massachusetts Department of Public Health. June 2021. https://www.mass.gov/doc/public-health-freshwater-fishconsumption-advisories-2021/download (accessed July 2021).
- UMass-Amherst. "2014-2017 water quality monitoring data submitted to MassDEP WPP portal on 8/13/2018." University of Massachusetts - Amherst, Amherst, MA, 2018.
- USFWS. "Two Dams on the Shawsheen River to Come Down." U.S. Fish & Wildlife Service. December 14, 2016. https://www.fws.gov/press-release/2016-12/two-dams-shawsheen-river-come-down (accessed August 2021).
- Wildman, Nick. "RE: Request for updated Access Habitat and Dam Removal Database for DEP." Email to Laurie Kennedy (MassDEP Watershed Planning Program) with attachment indicating status of DER priority projects, Massachusetts Division of Ecological Restoration, Boston, MA, April 15, 2021.