# Final Massachusetts Integrated List of Waters for the Clean Water Act 2022 Reporting Cycle

# Appendix 25 Ten Mile River Basin Assessment and Listing Decision Summary

Prepared by:

Watershed Planning Program

Division of Watershed Management, Bureau of Water Resources

Massachusetts Department of Environmental Protection

Commonwealth of Massachusetts
Executive Office of Energy and Environmental Affairs
Rebecca L. Tepper, Secretary

Massachusetts Department of Environmental Protection
Bonnie Heiple, Commissioner
Bureau of Water Resources

Kathleen M. Baskin, Assistant Commissioner

May 2023

CN 568.1 MassDEP

#### Massachusetts Department of Environmental Protection

MassDEP's mission is to protect and enhance the Commonwealth's natural resources – air, water, and land – to provide for the health, safety, and welfare of all people, and to ensure a clean and safe environment for future generations. In carrying out this mission MassDEP commits to address and advance environmental justice and equity for all people of the Commonwealth; provide meaningful, inclusive opportunities for people to participate in agency decisions that affect their lives; and ensure a diverse workforce that reflects the communities we serve.

#### Watershed Planning Program

The Watershed Planning Program is a statewide program in the Division of Watershed Management, Bureau of Water Resources, at MassDEP. We are stewards of the water resources of Massachusetts. Together with other state environmental agencies, we share in the duty and responsibility to protect, enhance, and restore the quality and value of the waters of the Commonwealth. We are guided by the federal Clean Water Act and work to secure the environmental, recreational, and public health benefits of clean water for the residents of Massachusetts. The Watershed Planning Program is organized into five Sections that each have a different technical focus under the Clean Water Act: (1) Surface Water Quality Standards; (2) Surface Water Quality Monitoring; (3) Data Management and Water Quality Assessment; (4) Total Maximum Daily Load; and (5) Nonpoint Source Pollution.

#### Disclaimer

References to trade names, commercial products, manufacturers, or distributors in this report constituted neither endorsement nor recommendation by MassDEP.

#### Contact Information

Watershed Planning Program Division of Watershed Management, Bureau of Water Resources Massachusetts Department of Environmental Protection 8 New Bond Street, Worcester, MA 01606 Website: <a href="https://www.mass.gov/guides/watershed-planning-program">https://www.mass.gov/guides/watershed-planning-program</a>

Email address: dep.wpp@mass.gov

# Notice of Availability

This report is available on the Massachusetts Department of Environmental Protection website: https://www.mass.gov/lists/integrated-lists-of-waters-related-reports.

# **Table of Contents**

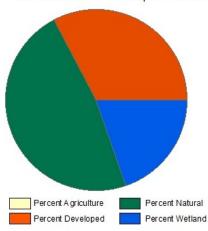
| 2022 Cycle Impairment Changes                  | 3  |
|------------------------------------------------|----|
| Bungay River (MA52-06)                         | 6  |
| Designated Use Attainment Decisions            | 6  |
| Cargill Pond (MA52004)                         |    |
| Central Pond (MA52006)                         | 17 |
| Supporting Information for Removed Impairments |    |
| Designated Use Attainment Decisions            | 23 |
| Coles Brook (MA52-11)                          | 26 |
| Falls Pond, North Basin (MA52013)              | 27 |
| Designated Use Attainment Decisions            | 27 |
| Falls Pond, South Basin (MA52014)              |    |
| Recommendations                                | 34 |
| Designated Use Attainment Decisions            |    |
| Fourmile Brook (MA52-10)                       |    |
| Greenwood Lake (MA52017)                       | 37 |
| Hoppin Hill Reservoir (MA52021)                |    |
| James V. Turner Reservoir (MA52022)            | 39 |
| Supporting Information for Removed Impairments | 40 |
| Designated Use Attainment Decisions            | 47 |
| Lake Como (MA52010)                            | 49 |
| Supporting Information for Removed Impairments | 49 |
| Recommendations                                | 49 |
| Designated Use Attainment Decisions            | 49 |
| Manchester Pond Reservoir (MA52026)            | 52 |
| Orrs Pond (MA52029)                            | 53 |
| Plain Street Pond (MA52032)                    | 54 |
| Supporting Information for Removed Impairments | 54 |
| Recommendations                                | 54 |
| Designated Use Attainment Decisions            | 54 |
| Scotts Brook (MA52-09)                         | 56 |
| Sevenmile River (MA52-07)                      | 57 |
| Recommendations                                | 57 |

| Designated Use Attainment Decisions | 57  |
|-------------------------------------|-----|
| Sevenmile River (MA52-08)           | 60  |
| Recommendations                     | 60  |
| Designated Use Attainment Decisions | 61  |
| Speedway Brook (MA52-05)            | 100 |
| Designated Use Attainment Decisions | 101 |
| Ten Mile River (MA52-01)            | 121 |
| Recommendations                     | 121 |
| Designated Use Attainment Decisions | 121 |
| Ten Mile River (MA52-02)            | 123 |
| Recommendations                     | 124 |
| Designated Use Attainment Decisions | 124 |
| Ten Mile River (MA52-03)            | 145 |
| Recommendations                     |     |
| Designated Use Attainment Decisions | 146 |
| Whiting Pond (MA52042)              | 157 |
| Recommendations                     | 157 |
| Designated Use Attainment Decisions | 157 |
| Data Sources                        | 163 |

# 2022 Cycle Impairment Changes

|                   |             | 2018/20<br>AU | 2022 AU  |                              |                   | Impairment<br>Change |
|-------------------|-------------|---------------|----------|------------------------------|-------------------|----------------------|
| Waterbody         | AU_ID       | Category      | Category | Impairment                   | ATTAINS Action ID | Summary              |
| Bungay River      | MA52-06     | 5             | 5        | Benthic Macroinvertebrates   |                   | Unchanged            |
| Bungay River      | MA52-06     | 5             | 5        | Dissolved Oxygen             |                   | Unchanged            |
| Cargill Pond      | MA52004     | 5             | 5        | Turbidity                    |                   | Unchanged            |
| Central Pond      | MA52006     | 5             | 5        | (Aquatic Plants              |                   | Changed              |
|                   |             |               |          | (Macrophytes)*)              |                   |                      |
| Central Pond      | MA52006     | 5             | 5        | Algae                        |                   | Unchanged            |
| Central Pond      | MA52006     | 5             | 5        | Dissolved Oxygen             |                   | Unchanged            |
| Central Pond      | MA52006     | 5             | 5        | Dissolved Oxygen             |                   | Unchanged            |
|                   |             |               |          | Supersaturation              |                   |                      |
| Central Pond      | MA52006     | 5             | 5        | Harmful Algal Blooms         |                   | Added                |
| Central Pond      | MA52006     | 5             | 5        | Nutrient/Eutrophication      |                   | Added                |
|                   |             |               |          | Biological Indicators        |                   |                      |
| Central Pond      | MA52006     | 5             | 5        | Organic Enrichment           |                   | Unchanged            |
|                   |             |               |          | (Sewage) Biological          |                   |                      |
|                   |             |               |          | Indicators                   |                   |                      |
| Central Pond      | MA52006     | 5             | 5        | Phosphorus, Total            |                   | Unchanged            |
| Coles Brook       | MA52-11     | 5             | 5        | (Dewatering*)                |                   | Unchanged            |
| Coles Brook       | MA52-11     | 5             | 5        | Dissolved Oxygen             |                   | Unchanged            |
| Coles Brook       | MA52-11     | 5             | 5        | Escherichia Coli (E. Coli)   |                   | Unchanged            |
| Falls Pond, North | MA52013     | 5             | 5        | Algae                        |                   | Unchanged            |
| Basin             | 1417.132013 |               | 3        | / ligac                      |                   | Onenangea            |
| Falls Pond, North | MA52013     | 5             | 5        | Dissolved Oxygen             |                   | Unchanged            |
| Basin             | 1417.132013 |               | 3        | Dissolved Oxygen             |                   | Onenangea            |
| Falls Pond, North | MA52013     | 5             | 5        | Mercury in Fish Tissue       |                   | Added                |
| Basin             | 1417.132013 |               | 3        | Wicreary III Fish Fisher     |                   | Added                |
| Falls Pond, North | MA52013     | 5             | 5        | Nutrient/Eutrophication      |                   | Unchanged            |
| Basin             | 1417.132013 |               | 3        | Biological Indicators        |                   | Onenangea            |
| Falls Pond, North | MA52013     | 5             | 5        | Phosphorus, Total            |                   | Unchanged            |
| Basin             | WIASZOIS    |               | 5        | Thosphorus, Total            |                   | Officialised         |
| Falls Pond, South | MA52014     | 4c            | 4c       | (Non-Native Aquatic Plants*) |                   | Unchanged            |
| Basin             | WIA32014    | 40            | 40       | (Non-Native Aquatic Flants ) |                   | Officialized         |
| Fourmile Brook    | MA52-10     | 5             | 5        | Sedimentation/Siltation      |                   | Unchanged            |
| Greenwood Lake    | MA52017     | 3             | 3        | None                         |                   | Unchanged            |
|                   |             | 3             | 3        | None                         |                   |                      |
| Hoppin Hill       | MA52021     | 3             | 3        | INOTIE                       |                   | Unchanged            |
| Reservoir         | MAESOSS     | 5             | Е        | (Aquatic Plants              |                   | Changed              |
| James V. Turner   | MA52022     | 5             | 5        | (Aquatic Plants              |                   | Changed              |
| Reservoir         | NAAE 2022   | -             | Г        | (Macrophytes)*)              |                   | Linchara and         |
| James V. Turner   | MA52022     | 5             | 5        | Algae                        |                   | Unchanged            |
| Reservoir         | NAAF2022    | -             |          | Discolused Owners            |                   | Linales              |
| James V. Turner   | MA52022     | 5             | 5        | Dissolved Oxygen             |                   | Unchanged            |
| Reservoir         | 14450000    | _             | -        | Supersaturation              |                   |                      |
| James V. Turner   | MA52022     | 5             | 5        | Harmful Algal Blooms         |                   | Unchanged            |
| Reservoir         |             |               |          |                              |                   |                      |
| James V. Turner   | MA52022     | 5             | 5        | Nutrient/Eutrophication      |                   | Added                |
| Reservoir         |             |               |          | Biological Indicators        |                   |                      |

|                   |         | 2018/20<br>AU | 2022 AU  |                               |                   | Impairment<br>Change |
|-------------------|---------|---------------|----------|-------------------------------|-------------------|----------------------|
| Waterbody         | AU_ID   | Category      | Category | Impairment                    | ATTAINS Action ID | Summary              |
| James V. Turner   | MA52022 | 5             | 5        | Organic Enrichment            |                   | Unchanged            |
| Reservoir         |         |               |          | (Sewage) Biological           |                   |                      |
|                   |         |               |          | Indicators                    |                   |                      |
| James V. Turner   | MA52022 | 5             | 5        | Phosphorus, Total             |                   | Unchanged            |
| Reservoir         |         |               |          |                               |                   |                      |
| Lake Como         | MA52010 | 5             | 5        | (Fanwort*)                    |                   | Added                |
| Lake Como         | MA52010 | 5             | 5        | (Non-Native Aquatic Plants*)  |                   | Removed              |
| Lake Como         | MA52010 | 5             | 5        | Algae                         |                   | Unchanged            |
| Lake Como         | MA52010 | 5             | 5        | Turbidity                     |                   | Unchanged            |
| Manchester Pond   | MA52026 | 3             | 3        | None                          |                   | Unchanged            |
| Reservoir         |         |               |          |                               |                   |                      |
| Orrs Pond         | MA52029 | 4c            | 4c       | (Eurasian Water Milfoil,      |                   | Unchanged            |
|                   |         |               |          | Myriophyllum Spicatum*)       |                   |                      |
| Plain Street Pond | MA52032 | 5             | 5        | (Fanwort*)                    |                   | Added                |
| Plain Street Pond | MA52032 | 5             | 5        | (Non-Native Aquatic Plants*)  |                   | Removed              |
| Plain Street Pond | MA52032 | 5             | 5        | Algae                         |                   | Unchanged            |
| Scotts Brook      | MA52-09 | 5             | 5        | (Dewatering*)                 |                   | Unchanged            |
| Scotts Brook      | MA52-09 | 5             | 5        | Escherichia Coli (E. Coli)    |                   | Unchanged            |
| Sevenmile River   | MA52-07 | 5             | 5        | Escherichia Coli (E. Coli)    |                   | Unchanged            |
| Sevenmile River   | MA52-08 | 5             | 5        | Benthic Macroinvertebrates    |                   | Added                |
| Sevenmile River   | MA52-08 | 5             | 5        | Escherichia Coli (E. Coli)    |                   | Unchanged            |
| Sevenmile River   | MA52-08 | 5             | 5        | Fecal Coliform                |                   | Unchanged            |
| Speedway Brook    | MA52-05 | 5             | 5        | (Alteration in Stream-side or |                   | Unchanged            |
|                   |         |               |          | Littoral Vegetative Covers*)  |                   |                      |
| Speedway Brook    | MA52-05 | 5             | 5        | (Habitat Assessment*)         |                   | Unchanged            |
| Speedway Brook    | MA52-05 | 5             | 5        | Benthic Macroinvertebrates    |                   | Unchanged            |
| Speedway Brook    | MA52-05 | 5             | 5        | Dissolved Oxygen              |                   | Unchanged            |
| Speedway Brook    | MA52-05 | 5             | 5        | Escherichia Coli (E. Coli)    |                   | Unchanged            |
| Speedway Brook    | MA52-05 | 5             | 5        | Fecal Coliform                |                   | Unchanged            |
| Speedway Brook    | MA52-05 | 5             | 5        | Metals                        |                   | Unchanged            |
| Speedway Brook    | MA52-05 | 5             | 5        | Sedimentation/Siltation       |                   | Unchanged            |
| Ten Mile River    | MA52-01 | 5             | 5        | Metals                        |                   | Unchanged            |
| Ten Mile River    | MA52-02 | 5             | 5        | Escherichia Coli (E. Coli)    |                   | Unchanged            |
| Ten Mile River    | MA52-02 | 5             | 5        | Fecal Coliform                |                   | Unchanged            |
| Ten Mile River    | MA52-02 | 5             | 5        | Metals                        |                   | Unchanged            |
| Ten Mile River    | MA52-03 | 5             | 5        | (Aquatic Plants               |                   | Unchanged            |
|                   |         |               |          | (Macrophytes)*)               |                   |                      |
| Ten Mile River    | MA52-03 | 5             | 5        | (Water Chestnut*)             |                   | Added                |
| Ten Mile River    | MA52-03 | 5             | 5        | Algae                         |                   | Unchanged            |
| Ten Mile River    | MA52-03 | 5             | 5        | Benthic Macroinvertebrates    |                   | Unchanged            |
| Ten Mile River    | MA52-03 | 5             | 5        | Chlordane in Fish Tissue      |                   | Unchanged            |
| Ten Mile River    | MA52-03 | 5             | 5        | Dissolved Oxygen              |                   | Unchanged            |
| Ten Mile River    | MA52-03 | 5             | 5        | Escherichia Coli (E. Coli)    |                   | Unchanged            |
| Ten Mile River    | MA52-03 | 5             | 5        | Fecal Coliform                |                   | Unchanged            |
| Ten Mile River    | MA52-03 | 5             | 5        | Nutrient/Eutrophication       |                   | Unchanged            |
|                   |         |               |          | Biological Indicators         |                   |                      |
| Ten Mile River    | MA52-03 | 5             | 5        | Organic Enrichment            |                   | Unchanged            |
|                   |         |               |          | (Sewage) Biological           |                   |                      |
|                   |         |               |          | Indicators                    |                   |                      |
| Ten Mile River    | MA52-03 | 5             | 5        | Phosphorus, Total             |                   | Unchanged            |


|                |         | 2018/20  |          |                        |                   | Impairment |
|----------------|---------|----------|----------|------------------------|-------------------|------------|
|                |         | AU       | 2022 AU  |                        |                   | Change     |
| Waterbody      | AU_ID   | Category | Category | Impairment             | ATTAINS Action ID | Summary    |
| Ten Mile River | MA52-03 | 5        | 5        | Unspecified Metals in  |                   | Unchanged  |
|                |         |          |          | Sediment               |                   |            |
| Whiting Pond   | MA52042 | 4a       | 4a       | Mercury in Fish Tissue | 33880             | Unchanged  |

# Bungay River (MA52-06)

| Location:                 | Headwaters, outlet Greenwood Lake, North Attleborough to mouth at inlet of Mechanics Pond (a Ten Mile River impoundment), Attleboro. |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| AU Type:                  | RIVER                                                                                                                                |
| AU Size:                  | 5.1 MILES                                                                                                                            |
| Classification/Qualifier: | B: WWF                                                                                                                               |

## Bungay River - MA52-06

Watershed Area: 7.48 square miles not including areas outside Massachusetts



| Landuse Type                    | Entire<br>Basin | 5km Radius<br>Proximal<br>Subbasin | 100m<br>Stream<br>Buffer | Proximal<br>Stream<br>Buffer |  |
|---------------------------------|-----------------|------------------------------------|--------------------------|------------------------------|--|
| Land Use Area<br>(square miles) | 7.48            | 4.96                               | 1.82                     | 1.26                         |  |
| Agriculture                     | 0.6%            | 1%                                 | 0.3%                     | 0.5%                         |  |
| Developed                       | 32.6%           | 33.3%                              | 24.4%                    | 23.4%                        |  |
| Natural                         | 47.2%           | 40.9%                              | 39.1%                    | 33.4%                        |  |
| Wetland                         | 19.6%           | 24.9%                              | 36.2%                    | 42.8%                        |  |
| Impervious<br>Cover             | 17.29           | %                                  |                          |                              |  |

| 2018/20 AU<br>Category | 2022 AU<br>Category | Impairment                 | ATTAINS Action ID | Impairment<br>Change<br>Summary |
|------------------------|---------------------|----------------------------|-------------------|---------------------------------|
| 5                      | 5                   | Benthic Macroinvertebrates |                   | Unchanged                       |
| 5                      | 5                   | Dissolved Oxygen           |                   | Unchanged                       |

| Impairment                 | Source (Confirmed Y/N) | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|----------------------------|------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| Benthic Macroinvertebrates | Source Unknown (N)     | Χ                                        |                  |           |                               |                                 |
| Dissolved Oxygen           | Source Unknown (N)     | Χ                                        |                  |           |                               |                                 |

# Designated Use Attainment Decisions

# Fish, other Aquatic Life and Wildlife

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | NO    |

#### **2022 Use Attainment Summary**

No recent data are available to assess the status of the Aquatic Life Use for the Bungay River, so it will continue to be assessed as Not Supporting, with the Benthic Macroinvertebrates and Dissolved Oxygen impairments being carried forward.

#### **Monitoring Stations**

| Station Code | Organization | Туре    | Water Body   | Station Description                        | Latitude  | Longitude  |
|--------------|--------------|---------|--------------|--------------------------------------------|-----------|------------|
| W0901        | MassDEP      | Water   | Bungay River | [at outlet of impoundment locally known as | 41.950024 | -71.291335 |
|              |              | Quality |              | Blackinton Pond approximately 400 feet     |           |            |
|              |              |         |              | downstream of North Main Street, (Route    |           |            |
|              |              |         |              | 152), Attleboro]                           |           |            |
| W2294        | MassDEP      | Water   | Bungay River | [North Main Street (Route 152), Attleboro] | 41.950000 | -71.290060 |
|              |              | Quality |              |                                            |           |            |

#### Physico-chemical Water Quality Information

#### Nutrients (Primary Producer Screening, Physico-chemical Screening)

### MassDEP Nutrient Enrichment Indicator Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[Summer seasonal total phosphorus data collected May-Sept]

| Station<br>Code | Data<br>Year | Seasonal<br>TP<br>Count | Seasonal<br>TP Min<br>(mg/L) | Seasonal<br>TP Max<br>(mg/L) | Seasonal<br>TP Avg<br>(mg/L) | Delta<br>DO<br>Max<br>(mg/L) | Delta<br>DO<br>Avg<br>(mg/L) | DO<br>Sat<br>Max<br>(%) | pH<br>Max<br>(SU) | Count<br>Algal<br>Obsv. | Dense/V. Dense Film/Fila. Algae |
|-----------------|--------------|-------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------|-------------------|-------------------------|---------------------------------|
| W0901           | 2011         |                         |                              |                              |                              |                              |                              | -                       |                   | 2                       | 0                               |
| W0901           | 2013         |                         |                              |                              |                              |                              |                              |                         |                   | 2                       | 0                               |
| W2294           | 2011         |                         |                              |                              |                              |                              |                              |                         |                   | 2                       | 0                               |
| W2294           | 2013         |                         |                              |                              |                              | -                            |                              | I                       |                   | 1                       | 0                               |

#### Fish Consumption

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Not Assessed                | NO    |
| 2022 Use Attainment Summary |       |

Although fish toxics sampling was done in 1986 just upstream of Holden Street and just downstream of North Main Street, Attleboro, no site-specific fish consumption advisory was issued by DPH. The Fish Consumption Use for Bungay River (MA52-06) is Not Assessed.

#### Aesthetic

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Fully Supporting            | NO    |
| 2022 Use Attainment Summary |       |

MassDEP staff recorded aesthetics observations at two sites along Bungay River in the summers of 2011 and 2013 as follows: North Main Street (Rt.152), Attleboro (W2294) (2011 & 2013) and at outlet of impoundment locally known as Blackinton Pond just downstream of North Main Street, (Rt. 152), Attleboro (W0901) (2011 & 2013). There were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DWM-WPP field sampling crews during the surveys at both stations (n=8). The Aesthetics Use for the Bungay River is assessed as Fully Supporting.

#### **Monitoring Stations**

| Station |              |         |              |                                                   |           |            |
|---------|--------------|---------|--------------|---------------------------------------------------|-----------|------------|
| Code    | Organization | Туре    | Water Body   | Station Description                               | Latitude  | Longitude  |
| W0901   | MassDEP      | Water   | Bungay River | [at outlet of impoundment locally known as        | 41.950024 | -71.291335 |
|         |              | Quality |              | Blackinton Pond approximately 400 feet downstream |           |            |
|         |              |         |              | of North Main Street, (Route 152), Attleboro]     |           |            |
| W2294   | MassDEP      | Water   | Bungay River | [North Main Street (Route 152), Attleboro]        | 41.950000 | -71.290060 |
|         |              | Quality |              |                                                   |           |            |

#### Aesthetic Observations

Aesthetics Summary Statements for MassDEP Stations (2011-2018) (MassDEP Undated 5)

|         |              |      | Field |                                                                            |
|---------|--------------|------|-------|----------------------------------------------------------------------------|
| Station |              | Data | Sheet |                                                                            |
| Code    | Waterbody    | Year | Count | Aesthetics Summary Statement                                               |
| W0901   | Bungay River | 2011 | 2     | There are insufficient data available to assess the Aesthetics Use for the |
|         |              |      |       | Bungay River. There were generally no noted objectionable conditions       |
|         |              |      |       | (odors, deposits, growths, or turbidity) recorded by MassDEP staff at      |
|         |              |      |       | station W0901 during surveys in summer 2011 and 2013, however, data        |
|         |              |      |       | were limited (n=2 each year).                                              |
| W0901   | Bungay River | 2013 | 2     | There are insufficient data available to assess the Aesthetics Use for the |
|         |              |      |       | Bungay River. There were generally no noted objectionable conditions       |
|         |              |      |       | (odors, deposits, growths, or turbidity) recorded by MassDEP staff at      |
|         |              |      |       | station W0901 during surveys in summer 2011 and 2013, however, data        |
|         |              |      |       | were limited (n=2 each year).                                              |
| W2294   | Bungay River | 2011 | 2     | MassDEP aesthetics observations for station W2294 on Bungay River can      |
|         |              |      |       | be summarized as follows: there were generally no noted objectionable      |
|         |              |      |       | conditions (odors, deposits, growths, or turbidity) recorded by DEP field  |
|         |              |      |       | sampling crews during summer 2011. However, there is insufficient          |
|         |              |      |       | information to assess the Aesthetics Use since data were limited (n=2).    |
| W2294   | Bungay River | 2013 | 2     | MassDEP aesthetics observations for station W2294 on Bungay River can      |
|         |              |      |       | be summarized as follows: there were generally no noted objectionable      |
|         |              |      |       | conditions (odors, deposits, growths, or turbidity) recorded by DEP field  |
|         |              |      |       | sampling crews during summer 2013. However, there is insufficient          |
|         |              |      |       | information to assess the Aesthetics Use since data were limited (n=2).    |

#### Observations of Filamentous/Film Algae at MassDEP Stations (2011-2018) (MassDEP Undated 7) (MassDEP Undated 5)

|         |           |                   | Field Sheet Count w/ Film & |                         |
|---------|-----------|-------------------|-----------------------------|-------------------------|
| Station |           |                   | Filamentous Algae           | Dense/ Very Dense       |
| Code    | Data Year | Field Sheet Count | Observations                | Film/ Filamentous Algae |
| W0901   | 2011      | 2                 | 2                           | 0                       |

| Station<br>Code | Data Year | Field Sheet Count | Field Sheet Count w/ Film &<br>Filamentous Algae<br>Observations | Dense/ Very Dense<br>Film/ Filamentous Algae |
|-----------------|-----------|-------------------|------------------------------------------------------------------|----------------------------------------------|
| W0901           | 2013      | 2                 | 2                                                                | 0                                            |
| W2294           | 2011      | 2                 | 2                                                                | 0                                            |
| W2294           | 2013      | 2                 | 1                                                                | 0                                            |

#### MassDEP Aesthetics Observations (2011-2018) (MassDEP Undated 7)

| Station |              | Data |                        |                      | Result | Total Field |
|---------|--------------|------|------------------------|----------------------|--------|-------------|
| Code    | Waterbody    | Year | Parameter              | Result               | Count  | Sheet Count |
| W0901   | Bungay River | 2011 | Color                  | None                 | 2      | 2           |
| W0901   | Bungay River | 2011 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2           |
| W0901   | Bungay River | 2011 | Odor                   | None                 | 2      | 2           |
| W0901   | Bungay River | 2011 | Scum                   | Not Applicable (N/A) | 2      | 2           |
| W0901   | Bungay River | 2011 | Turbidity              | Moderately Turbid    | 1      | 2           |
| W0901   | Bungay River | 2011 | Turbidity              | Slightly Turbid      | 1      | 2           |
| W0901   | Bungay River | 2013 | Color                  | Brownish             | 1      | 2           |
| W0901   | Bungay River | 2013 | Color                  | None                 | 1      | 2           |
| W0901   | Bungay River | 2013 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2           |
| W0901   | Bungay River | 2013 | Odor                   | Musty (Basement)     | 1      | 2           |
| W0901   | Bungay River | 2013 | Odor                   | None                 | 1      | 2           |
| W0901   | Bungay River | 2013 | Scum                   | Not Applicable (N/A) | 2      | 2           |
| W0901   | Bungay River | 2013 | Turbidity              | Moderately Turbid    | 2      | 2           |
| W2294   | Bungay River | 2011 | Color                  | None                 | 2      | 2           |
| W2294   | Bungay River | 2011 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2           |
| W2294   | Bungay River | 2011 | Odor                   | None                 | 2      | 2           |
| W2294   | Bungay River | 2011 | Scum                   | Not Applicable (N/A) | 2      | 2           |
| W2294   | Bungay River | 2011 | Turbidity              | Highly Turbid        | 1      | 2           |
| W2294   | Bungay River | 2011 | Turbidity              | Moderately Turbid    | 1      | 2           |
| W2294   | Bungay River | 2013 | Color                  | Brownish             | 1      | 2           |
| W2294   | Bungay River | 2013 | Color                  | None                 | 1      | 2           |
| W2294   | Bungay River | 2013 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2           |
| W2294   | Bungay River | 2013 | Odor                   | None                 | 2      | 2           |
| W2294   | Bungay River | 2013 | Scum                   | Not Applicable (N/A) | 2      | 2           |
| W2294   | Bungay River | 2013 | Turbidity              | Moderately Turbid    | 2      | 2           |

# Primary Contact Recreation

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Insufficient Information    | NO    |
| 2022 Use Attainment Summary |       |

*E. coli* bacteria samples were collected from the Bungay River at the following sampling stations in Attleboro (data years) as part the MassDEP Bacteria Source Tracking (BST) project: North Main Street (Rt.152) (W2294) and at the outlet of the impoundment locally known as Blackinton Pond, just downstream of North Main Street (Rt. 152) (W0901), during the summer of 2011 and 2013. Overall, the BST project found that *E. coli* concentrations ranged from 63 to 554MPN but found no correctable source of bacteria and concluded that Blackinton Pond is not a significant source of bacteria to the Bungay River. There were never more than two samples within a 90-day GM interval, therefore these data are too limited to assess the Primary Contact Recreational Use for Bungay River according to the CALM "Use Attainment Impairment Decision Schema", so it is assessed as Insufficient Information.

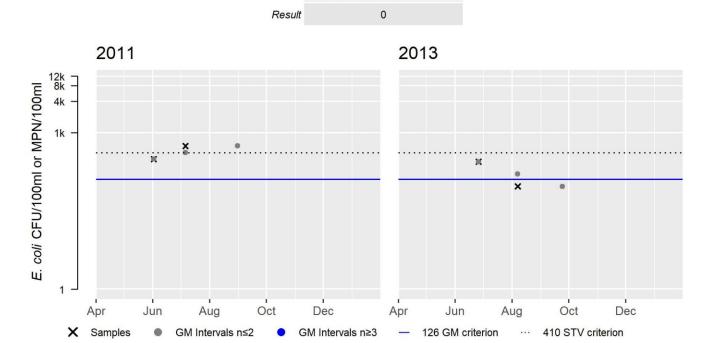
#### *Monitoring Stations*

| Station |              |         |              |                                                   |           |            |
|---------|--------------|---------|--------------|---------------------------------------------------|-----------|------------|
| Code    | Organization | Туре    | Water Body   | Station Description                               | Latitude  | Longitude  |
| W0901   | MassDEP      | Water   | Bungay River | [at outlet of impoundment locally known as        | 41.950024 | -71.291335 |
|         |              | Quality |              | Blackinton Pond approximately 400 feet downstream |           |            |
|         |              |         |              | of North Main Street, (Route 152), Attleboro]     |           |            |
| W2294   | MassDEP      | Water   | Bungay River | [North Main Street (Route 152), Attleboro]        | 41.950000 | -71.290060 |
|         |              | Quality |              |                                                   |           |            |

#### Bacteria Data

# Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 7) (MassDEP Undated 5)

[Result units are CFU/100ml or MPN/100ml]


| Station Code | Organization | Indicator | Start Date | End Date | Sample<br>Count | Minimum<br>Sample<br>Result | Maximum<br>Sample<br>Result | Seasonal<br>Geometric<br>Mean |
|--------------|--------------|-----------|------------|----------|-----------------|-----------------------------|-----------------------------|-------------------------------|
| W0901        | MassDEP      | E. coli   | 06/02/11   | 07/06/11 | 2               | 311                         | 554                         | 415                           |
| W0901        | MassDEP      | E. coli   | 06/26/13   | 08/07/13 | 2               | 93                          | 276                         | 160                           |
| W2294        | MassDEP      | E. coli   | 06/02/11   | 07/06/11 | 2               | 185                         | 185                         | 185                           |
| W2294        | MassDEP      | E. coli   | 06/26/13   | 08/07/13 | 2               | 63                          | 387                         | 156                           |

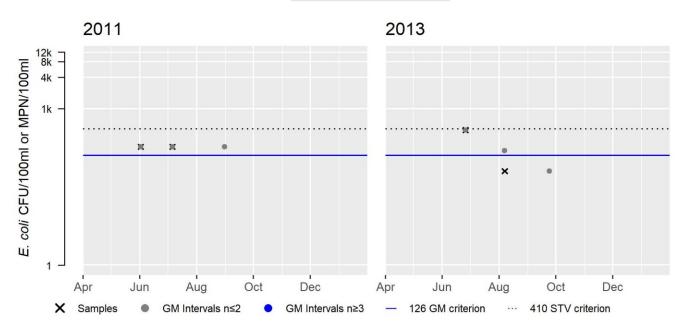
## W0901 E. coli (90-day Interval), Primary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 415 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 1   |
| %n>STV  | 50  |

Cumulative %GMI Ex (all years)

Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV




#### W2294 E. coli (90-day Interval), Primary Contact Recreational Use Season

| Var      | Res |
|----------|-----|
| Samples  | 2   |
| SeasGM   | 185 |
| #GMI     | 0   |
| #GMI Ex  | 0   |
| %GMI Ex  | 0   |
| n>STV    | 0   |
| 0/ =>CT/ | 0   |

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 156 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |

Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV





#### MassDEP Bacteria Source Tracking (BST) Summary Statement for 2011-2019 (MassDEP Undated 1)

#### Summary

BST work was conducted between 2011 and 2013 along the Bungay River AU (MA52-06) at two sites bracketing the locally named "Blackington Pond", which is located upstream of Main Street, Attleboro. *E. coli* concentrations ranged from 63 to 554MPN. No correctable source was ever found, and it was concluded that the pond itself is not a significant source of bacteria to the Bungay River.

#### Secondary Contact Recreation

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Insufficient Information    | NO    |
| 2022 Use Attainment Summary |       |

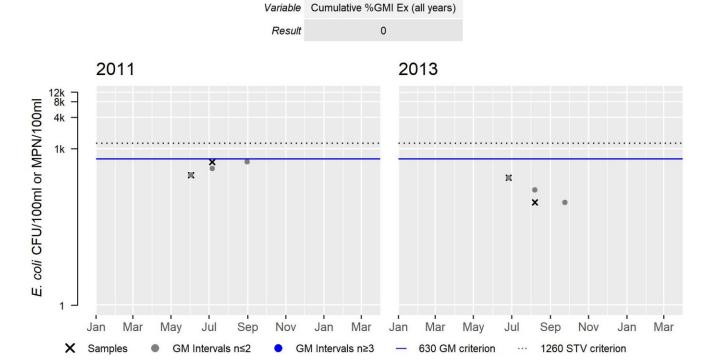
*E. coli* bacteria samples were collected from the Bungay River at the following sampling stations in Attleboro (data years) as part the MassDEP Bacteria Source Tracking (BST) project: North Main Street (Rt.152) (W2294) and at the outlet of the impoundment locally known as Blackinton Pond, just downstream of North Main Street (Rt. 152) (W0901), during the summer of 2011 and 2013. Overall, the BST project found that *E. coli* concentrations ranged from 63 to 554MPN but found no correctable source of bacteria and concluded that Blackinton Pond is not a significant source of bacteria to the Bungay River. There were never more than two samples within a 90-day GM interval, therefore these data are too limited to assess the Secondary Contact Recreational Use for Bungay River according to the CALM "Use Attainment Impairment Decision Schema", so it is assessed as Insufficient Information.

#### *Monitoring Stations*

| Station |              |         |              |                                                   |           |            |
|---------|--------------|---------|--------------|---------------------------------------------------|-----------|------------|
| Code    | Organization | Туре    | Water Body   | Station Description                               | Latitude  | Longitude  |
| W0901   | MassDEP      | Water   | Bungay River | [at outlet of impoundment locally known as        | 41.950024 | -71.291335 |
|         |              | Quality |              | Blackinton Pond approximately 400 feet downstream |           |            |
|         |              |         |              | of North Main Street, (Route 152), Attleboro]     |           |            |
| W2294   | MassDEP      | Water   | Bungay River | [North Main Street (Route 152), Attleboro]        | 41.950000 | -71.290060 |
|         |              | Quality |              |                                                   |           |            |

#### Bacteria Data

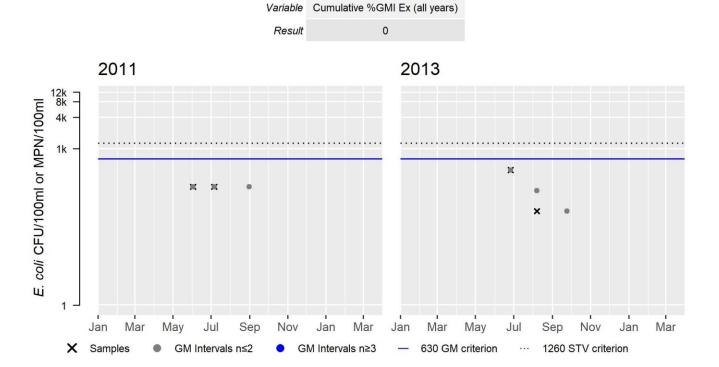
# Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 7) (MassDEP Undated 5)


[Result units are CFU/100ml or MPN/100ml]

|              |              |           |            |          | Sample | Minimum<br>Sample<br>Result<br>(CFU/100ml<br>or | Maximum Sample Result (CFU/100ml or | Seasonal<br>Geometric<br>Mean<br>(CFU/100ml<br>or |
|--------------|--------------|-----------|------------|----------|--------|-------------------------------------------------|-------------------------------------|---------------------------------------------------|
| Station Code | Organization | Indicator | Start Date | End Date | Count  | MPN/100ml)                                      | MPN/100ml)                          | MPN/100ml)                                        |
| W0901        | MassDEP      | E. coli   | 06/02/11   | 07/06/11 | 2      | 311                                             | 554                                 | 415                                               |
| W0901        | MassDEP      | E. coli   | 06/26/13   | 08/07/13 | 2      | 93                                              | 276                                 | 160                                               |
| W2294        | MassDEP      | E. coli   | 06/02/11   | 07/06/11 | 2      | 185                                             | 185                                 | 185                                               |
| W2294        | MassDEP      | E. coli   | 06/26/13   | 08/07/13 | 2      | 63                                              | 387                                 | 156                                               |

#### W0901 E. coli (90-day Interval), Secondary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 415 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |


Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV



W2294 E. coli (90-day Interval), Secondary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 185 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |

Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV



# Cargill Pond (MA52004)

| Location:                 | Plainville.     |
|---------------------------|-----------------|
| AU Type:                  | FRESHWATER LAKE |
| AU Size:                  | 2 ACRES         |
| Classification/Qualifier: | В               |

No usable data were available for Cargill Pond (MA52004) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

|            |          |            |                   | Impairment |
|------------|----------|------------|-------------------|------------|
| 2018/20 AU | 2022 AU  |            |                   | Change     |
| Category   | Category | Impairment | ATTAINS Action ID | Summary    |
| 5          | 5        | Turbidity  |                   | Unchanged  |

| Impairment | Source (Confirmed Y/N) | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|------------|------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| Turbidity  | Source Unknown (N)     |                                          |                  | Χ         | Х                             | Х                               |

# Central Pond (MA52006)

| Location:                 | Seekonk,MA/Pawtucket,RI/Providence,RI (size indicates portion in Massachusetts). |
|---------------------------|----------------------------------------------------------------------------------|
| AU Type:                  | FRESHWATER LAKE                                                                  |
| AU Size:                  | 6 ACRES                                                                          |
| Classification/Qualifier: | В                                                                                |

| 2018/20 AU | 2022 AU  |                                               |                   | Impairment<br>Change |
|------------|----------|-----------------------------------------------|-------------------|----------------------|
| Category   | Category | Impairment                                    | ATTAINS Action ID | Summary              |
| 5          | 5        | (Aquatic Plants (Macrophytes)*)               |                   | Changed              |
| 5          | 5        | Algae                                         |                   | Unchanged            |
| 5          | 5        | Dissolved Oxygen                              |                   | Unchanged            |
| 5          | 5        | Dissolved Oxygen Supersaturation              |                   | Unchanged            |
| 5          | 5        | Harmful Algal Blooms                          |                   | Added                |
| 5          | 5        | Nutrient/Eutrophication Biological Indicators |                   | Added                |
| 5          | 5        | Organic Enrichment (Sewage) Biological        |                   | Unchanged            |
|            |          | Indicators                                    |                   |                      |
| 5          | 5        | Phosphorus, Total                             |                   | Unchanged            |

| Impairment                                    | Source (Confirmed Y/N)                                           | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|-----------------------------------------------|------------------------------------------------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| (Aquatic Plants (Macrophytes)*)               | Discharges from Municipal Separate Storm                         | Х                                        |                  | Х         | Х                             | Х                               |
|                                               | Sewer Systems (MS4) (N)                                          |                                          |                  |           |                               |                                 |
| (Aquatic Plants (Macrophytes)*)               | Municipal (Urbanized High Density Area) (N)                      | X                                        |                  | Х         | Χ                             | Х                               |
| (Aquatic Plants (Macrophytes)*)               | Municipal Point Source Discharges (Y)                            | X                                        |                  | Х         | Χ                             | Х                               |
| Algae                                         | Discharges from Municipal Separate Storm Sewer Systems (MS4) (N) | Х                                        |                  | Х         | Х                             | Х                               |
| Algae                                         | Municipal (Urbanized High Density Area) (N)                      | Х                                        |                  | Χ         | Х                             | Х                               |
| Algae                                         | Municipal Point Source Discharges (Y)                            | Х                                        |                  | Χ         | Х                             | Х                               |
| Dissolved Oxygen                              | Discharges from Municipal Separate Storm                         | Х                                        |                  |           |                               |                                 |
| , -                                           | Sewer Systems (MS4) (N)                                          |                                          |                  |           |                               |                                 |
| Dissolved Oxygen                              | Municipal (Urbanized High Density Area) (N)                      | Х                                        |                  |           |                               |                                 |
| Dissolved Oxygen                              | Municipal Point Source Discharges (Y)                            | Х                                        |                  |           |                               |                                 |
| Dissolved Oxygen Supersaturation              | Discharges from Municipal Separate Storm Sewer Systems (MS4) (N) | Х                                        |                  |           |                               |                                 |
| Dissolved Oxygen Supersaturation              | Municipal (Urbanized High Density Area) (N)                      | Х                                        |                  |           |                               |                                 |
| Dissolved Oxygen Supersaturation              | Municipal Point Source Discharges (Y)                            | Х                                        |                  |           |                               |                                 |
| Harmful Algal Blooms                          | Discharges from Municipal Separate Storm                         |                                          |                  | Х         | Х                             | Х                               |
| 5                                             | Sewer Systems (MS4) (N)                                          |                                          |                  |           |                               |                                 |
| Harmful Algal Blooms                          | Municipal (Urbanized High Density Area) (N)                      |                                          |                  | Χ         | Х                             | Х                               |
| Harmful Algal Blooms                          | Municipal Point Source Discharges (Y)                            |                                          |                  | Χ         | Х                             | Х                               |
| Nutrient/Eutrophication Biological            | Discharges from Municipal Separate Storm                         | Х                                        |                  | Χ         | Х                             | Х                               |
| Indicators                                    | Sewer Systems (MS4) (N)                                          |                                          |                  |           |                               |                                 |
| Nutrient/Eutrophication Biological Indicators | Municipal (Urbanized High Density Area) (N)                      | Х                                        |                  | Х         | X                             | Х                               |

| Impairment                                        | Source (Confirmed Y/N)                                              | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|---------------------------------------------------|---------------------------------------------------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| Nutrient/Eutrophication Biological Indicators     | Municipal Point Source Discharges (Y)                               | Х                                        |                  | Х         | Х                             | Х                               |
| Organic Enrichment (Sewage) Biological Indicators | Discharges from Municipal Separate Storm<br>Sewer Systems (MS4) (N) | Х                                        |                  |           |                               |                                 |
| Organic Enrichment (Sewage) Biological Indicators | Municipal (Urbanized High Density Area) (N)                         | Х                                        |                  |           |                               |                                 |
| Organic Enrichment (Sewage) Biological Indicators | Municipal Point Source Discharges (Y)                               | Х                                        |                  |           |                               |                                 |
| Phosphorus, Total                                 | Discharges from Municipal Separate Storm<br>Sewer Systems (MS4) (N) | Х                                        |                  | Х         | Х                             | Х                               |
| Phosphorus, Total                                 | Municipal (Urbanized High Density Area) (N)                         | Х                                        |                  | Х         | Х                             | Х                               |
| Phosphorus, Total                                 | Municipal Point Source Discharges (Y)                               | Х                                        |                  | Х         | Х                             | Х                               |

# Supporting Information for Removed Impairments

| 2018/20 Removed |                 |                                                            |
|-----------------|-----------------|------------------------------------------------------------|
| Impairment      | Removal Reason  | Removal Comment                                            |
| Aquatic Plants  | Not caused by a | As described in detail in the 2022 CALM guidance           |
| (Macrophytes)   | pollutant (4c)  | document (MassDEP 2022), the mapping of Aquatic Plants     |
|                 |                 | (Macrophytes) impairments as a pollutant is being          |
|                 |                 | reevaluated. Central Pond (MA52006) was first listed as    |
|                 |                 | impaired for Noxious Aquatic Plants in 1992 and this cause |
|                 |                 | was remapped to Aquatic Plants (Macrophytes) during the    |
|                 |                 | 2008 IR cycle (MassDEP 2015). Although the original 1984   |
|                 |                 | data used to make the impairment could not be located,     |
|                 |                 | during a July 1997 synoptic survey, MassDEP staff noted    |
|                 |                 | that 10% of the pond was covered in dense or very dense    |
|                 |                 | vegetation; this was mostly algal mats, but also included  |
|                 |                 | the non-rooted, floating species, Lemna/Wolffia spp.       |
|                 |                 | (MassDEP 1997, MassDEP 2002). Google Earth images          |
|                 |                 | from September 2014 and August 2016 show that more         |
|                 |                 | than 25% of the pond was covered in vegetation (Google     |
|                 |                 | Earth Pro Undated). Nutrient/Eutrophication Biological     |
|                 |                 | Indicators is being added as an impairment based on the    |
|                 |                 | presence of non-rooted, floating, aquatic macrophyte       |
|                 |                 | species. Additionally, Aquatic Plants (Macrophytes) is     |
|                 |                 | being delisted as a pollutant and added again as a non-    |
|                 |                 | pollutant since more than 25% of the pond was covered in   |
|                 |                 | vegetation in recent years.                                |

Aquatic Plants (Macrophytes)

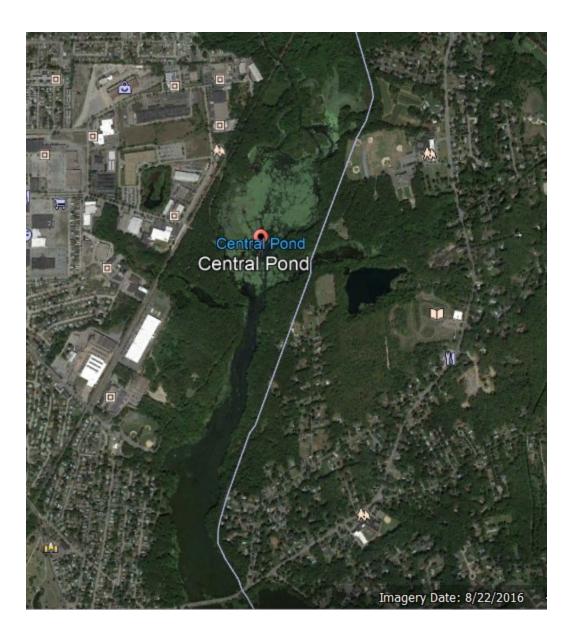
#### 1996 WBS Coding Sheet (MassDEP 2002):

(Printed 05/13/96) Ten Mile(52) MA52006 WATERSHED: WBID: Central Pond TYPE: SIZE: Lake/Pond CLASS: B ORW?: Yes or No 139.00(acres) Water Supply?: Yes or No (415115/712027) LONGITUDE: Lake/Pond Name: Central Pond, Seekonk/Pawtucket, R.I./Providence, R.I. Ecoregion Name: (59) Northeastern Coastal Zone Description: Assessment Date: Begin Sampling: Water Quality Limited?: YES or NO. 9112 9609 8406 YES or NO 303(d) List?: Cycle: End Sampling: 8409 Lake Specific Information Significantly Publicly Owned: N E Significantly Publicly Owned: OF õ Trophic Status: M н D (U) Trophic Status: н S D Ø Trophic Trend: Acidity/Toxics Trend: Ι Trophic Trend: Ĭ Acidity/Toxics Trend: U Acidity Effects: N Acidity Effects: Not-Attain Non-Sop Not-Asses Support Threat Partial Uses OVERALL USE SUPPORT 139.00 139.0 ALUS 139.00 39,0 FISH CONSUMPTION 139.00 139.0 PRIMARY CONTACT 139.00 SECONDARY CONTACT 46.00 93.00 139.0 139.00 Aesthetics 139.0 1996 Nonattainment Causes Magnitude Code Size Magnitude Code Size 0500 - Metals 139.00 H 139.00 0900 - Nutrients M 2200 - Noxious aquatic plants 139.00 M 2400 - Total toxics 139.00 Н Nonattainment Sources 1996 Size Magnitude Size Magnitude Code Code 9000 - SOURCE UNKNOWN 139.00 Assessment Type 1996 Assessment Category = > M E (NA (Assessment Category => Evaluated) Media/Pollutants Assessed (Toxics Monitoring =>N) 1996 Toxics Monitoring => YES or NO 10 - Metals in sediments 11 - Metals in fish tissue Comments: SUSPENDED SOLIDS AND ALGAL "BLOOMS" REDUCE TRANSPARENCY TO BELOW SAFETY CRITERIA (4 FT. SECCHI DISK), VERY DENSE MACROPHYTE GROWTHS COVER NORTHERN END AND WESTERN LITTORAL ZONE OF THE POND, AND FISHING ADVISORY DUE TO LEAD IN FISH TISSUE. LIKELY NO CHANGE IN LOADING TO THIS RIVER SYSTEM SINCE SURVEY. 1996 - DATA TOO OLD TO MAKE ASSESSMENT Page 371

# 1997 Synoptic Survey Field Sheet (MassDEP 1997):

| LAKE/POND: Central Pand                                                                                                                  | SIZE (acres): 139 PALIS NO. 52006                                                  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| TOWN/CITY: Section                                                                                                                       | USGS TOPO. SHEET: E. Providence                                                    |  |  |  |
| DATE: 7/17/97 WATERSHED: 10 mile                                                                                                         |                                                                                    |  |  |  |
| ACCESS Location (describe each observation site and assign seque in descriptions (e.g., public boat ramp at west cove area off Simpson S | ntial numbers (1, 2, 3, etc.) to use in subsequent records; be specific t., etc.)] |  |  |  |
| Site (1) South end @ et 152 - sand                                                                                                       | lounch                                                                             |  |  |  |
| Site (2)                                                                                                                                 |                                                                                    |  |  |  |
| Site (3)                                                                                                                                 |                                                                                    |  |  |  |
| ACCESS - Type (for multiple observation sites use numbers in boxes to                                                                    |                                                                                    |  |  |  |
|                                                                                                                                          | al Boat Ramp 🖳 🗆 and/or Beach 🗆 🗀                                                  |  |  |  |
| Park                                                                                                                                     |                                                                                    |  |  |  |
| Other (describe):                                                                                                                        |                                                                                    |  |  |  |
|                                                                                                                                          |                                                                                    |  |  |  |
| ACCESS - Ownership (for multiple observation sites use numbers in b                                                                      | oxes that apply)                                                                   |  |  |  |
| Public 1 Private     Uncertain                                                                                                           |                                                                                    |  |  |  |
| Names of Owners                                                                                                                          | Name 🗆                                                                             |  |  |  |
| No. & Street                                                                                                                             | Name 🗆                                                                             |  |  |  |
| No. & Street                                                                                                                             | Name                                                                               |  |  |  |
| SIGN POSTINGS -                                                                                                                          |                                                                                    |  |  |  |
|                                                                                                                                          | Fishing Advisory or Ban  Public Access with Restrictions                           |  |  |  |
| Describe any restrictions [                                                                                                              | Empire Access with Mestilionous                                                    |  |  |  |
| (or other notes)                                                                                                                         |                                                                                    |  |  |  |
|                                                                                                                                          |                                                                                    |  |  |  |
| WATER /LAKE/QUALITY OBSERVATIONS                                                                                                         |                                                                                    |  |  |  |
| Turbidity: 🗗 🗆 Slight 🔲 🗆 Moderate 🗎 🗎 Excessive                                                                                         | Transparency:       <1.2 m.(4 ft.)     >1.2 m. (4 ft.)                             |  |  |  |
| Diss. Organics: Slight                                                                                                                   | ☐                                                                                  |  |  |  |
| Algal Bloom:                                                                                                                             | meters                                                                             |  |  |  |
| Bottom Type:                                                                                                                             | Sand   Gravel   Cobble   Boulders                                                  |  |  |  |
| Usegetation Other                                                                                                                        | - 0 0                                                                              |  |  |  |
| Other Observations: 1 01/4 5hccas in 2/92/                                                                                               |                                                                                    |  |  |  |
| □ Low Shoreline developmen                                                                                                               | 1,5                                                                                |  |  |  |
|                                                                                                                                          |                                                                                    |  |  |  |
| AESTNETICALLY OBJECTIONABLE - Substances attributable to wastewater or other discharges (point or nonpoint) that:                        |                                                                                    |  |  |  |
| Describe: SIT 0/9×                                                                                                                       | Describe: さんなく                                                                     |  |  |  |
| Produce objectionable odor, color, taste, or turbidity                                                                                   | □ Produce undesirable nuisance species of aquatic life                             |  |  |  |
| Describe:                                                                                                                                | Describe: 0/93 C                                                                   |  |  |  |
|                                                                                                                                          |                                                                                    |  |  |  |

| eipes      <br>nquaticum<br>erophyllum req<br>        Nelum<br> ATIONS:                                                   | NT:   But                                                                                                                 | eta                                                               | ng heads are evide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | na caroliniana<br>-ranae [<br>Myriophyllum | spicatum                                  |                                           |                                           |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| eipes      <br>nquaticum<br>erophyllum req<br>        Nelum<br> ATIONS:                                                   | ☐ Hydrilla verticill. ☐ ☐ ☐ Myrioph                                                                                       | eta                                                               | lydrocharis morsus  Dayber Day | ranae [<br>Myriophyllum                    | spicatum                                  | rsilee qua                                |                                           |
| erophyllum req                                                                                                            | ☐☐☐ Myrioph                                                                                                               | yllum heterophyllun<br>mation when flower                         | ng heads are evide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Myriophyllum                               | spicatum                                  |                                           | drifolia                                  |
| erophyllum req                                                                                                            | uiring further confin                                                                                                     | mation when flower                                                | ng heads are evide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ent)                                       |                                           |                                           |                                           |
| □□□ Nelumi                                                                                                                | _                                                                                                                         |                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                           |                                           |                                           |
| ATIONS:                                                                                                                   | bolutes 🔲 🗆                                                                                                               | Nymphoides peltat                                                 | a 🗌 🗌 🗎 Potai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mogeton crisp                              | us 🔲 🗀                                    | Trapa                                     |                                           |
|                                                                                                                           |                                                                                                                           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                           | natans                                    |
|                                                                                                                           |                                                                                                                           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                           |                                           |
|                                                                                                                           |                                                                                                                           | Plants                                                            | Subr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nergent Plant                              |                                           |                                           |                                           |
| dra                                                                                                                       | _ 0002                                                                                                                    | luphar                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı — — — — — — — — — — — — — — — — — — —    |                                           |                                           | <u> </u>                                  |
|                                                                                                                           |                                                                                                                           | enna                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ] [                                        |                                           |                                           |                                           |
|                                                                                                                           |                                                                                                                           | olfi a                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                         |                                           |                                           |                                           |
| 12                                                                                                                        | _ 000_                                                                                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           | <u> </u>                                  |                                           |
|                                                                                                                           |                                                                                                                           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ] [                                        |                                           |                                           |                                           |
| Rus                                                                                                                       | _ 000_                                                                                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                           |                                           |
|                                                                                                                           | _ 000 _                                                                                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ] [                                        |                                           |                                           |                                           |
|                                                                                                                           | _ 000_                                                                                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JD                                         |                                           |                                           |                                           |
|                                                                                                                           | _ 000_                                                                                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                           |                                           |
|                                                                                                                           | _ 000_                                                                                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                           |                                           |
|                                                                                                                           |                                                                                                                           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                           |                                           |
|                                                                                                                           |                                                                                                                           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on                                         |                                           |                                           |                                           |
| at observation                                                                                                            |                                                                                                                           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           |                                           |                                           |
|                                                                                                                           | or (S)ubmerent) pro                                                                                                       |                                                                   | t cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                                           |                                           |                                           |
| gent, (F)loating,                                                                                                         |                                                                                                                           | esent 🗌                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                           | · ·                                       |                                           |
| gent, (F)loating,<br>(observation sit                                                                                     | or (S)ubmerent) pro                                                                                                       | 75 - 100 %) plant co                                              | ver 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _ <u>*</u> □                               | <u>%</u>                                  | <u> </u>                                  | %                                         |
| gent, (F)loating,<br>(observation sit<br>gent, (F)loating,                                                                | , or (S)ubmerent] pro<br>te) with very dense (                                                                            | 75 - 100 %) plant co                                              | ver 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>*</u> -                                 |                                           | 0                                         | %                                         |
| gent, (F)loating,<br>(observation sit<br>gent, (F)loating,<br>urface covered t                                            | , or (S)ubmerent) pro<br>te) with very dense (<br>, or (S)ubmerent) pro                                                   | asent 🗌                                                           | ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                          |                                           | 0                                         | %                                         |
| gent, (F)loating,<br>(observation sit<br>gent, (F)loating,<br>urface covered t                                            | or (S)ubmerent) pro<br>te) with very dense (<br>, or (S)ubmerent) pro<br>with dense or very d                             | asent 🗌                                                           | ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                          |                                           | 0                                         | %                                         |
| gent, (F)loating,<br>(observation sit<br>gent, (F)loating,<br>urface covered to<br>ense and/or very                       | or (S)ubmerent) pro<br>te) with very dense (<br>, or (S)ubmerent) pro<br>with dense or very d                             | esent 🔲<br>75 - 100 %) plant co<br>esent 🔲<br>ense aquatic plants | ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                          |                                           |                                           | %                                         |
| gent, (F)loating,<br>(observation sit<br>gent, (F)loating,<br>urface covered to<br>ense and/or very                       | or (S)ubmerent) pro<br>te) with very dense (<br>, or (S)ubmerent) pro<br>with dense or very d<br>y dense plant beds_      | esent 🔲<br>75 - 100 %) plant co<br>esent 🔲<br>ense aquatic plants | ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30-55%                                     | %<br>                                     |                                           | %                                         |
| gent, (F)loating,<br>(observation sit<br>gent, (F)loating,<br>urface covered to<br>ense and/or very                       | or (S)ubmerent] protel with very dense ( or (S)ubmerent) prowith dense or very dense plant beds ake (estimated):          | esent                                                             | ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30-55%                                     | %<br>                                     | -/ mat                                    | %<br>                                     |
| gent, (F)loating, (observation sit gent, (F)loating, urface covered to ense and/or very itat over entire la MATE:  Oligol | or (S)ubmerent] protei with very dense ( or (S)ubmerent) prowith dense or very dense plant beds ake (estimated):  trophic | esent                                                             | ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30-55%                                     |                                           | -/ mat                                    | %<br>                                     |
| gent, (F)loating, (observation sit gent, (F)loating, urface covered to ense and/or very itat over entire la MATE:  Oligo  | or (S)ubmerent] protei with very dense ( or (S)ubmerent) prowith dense or very dense plant beds ake (estimated):          | esent                                                             | ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 - 55 %  Sphie Dy                        | % January 1975                            | -/ mat                                    | %<br>                                     |
| gent, (F)loating, (observation sit gent, (F)loating, urface covered to ense and/or very itat over entire la MATE:  Oligol | or (S)ubmerent] protei with very dense ( or (S)ubmerent) prowith dense or very dense plant beds ake (estimated):  trophic | esent                                                             | ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 - 55 %                                  | % Jajo                                    | -/ mat                                    | %<br>                                     |
|                                                                                                                           | Tus                                                                                                                       | 7.3 000 M                                                         | 100 Wolfi a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | 7.3 000 000 000 000 000 000 000 000 000 0 | 7.3 000 000 000 000 000 000 000 000 000 0 | 7.3 000 000 000 000 000 000 000 000 000 0 |


Google Earth image of Central Pond while mostly clear, 3/31/2002 (Google Earth Pro Undated):



Google Earth image of Central Pond, 9/11/2014 (Google Earth Pro Undated):



Google Earth image of Central Pond, 8/22/2016 (Google Earth Pro Undated):



#### Designated Use Attainment Decisions

#### Fish, other Aquatic Life and Wildlife

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | NO    |
| 2022 11 411 1 1 2   |       |

#### **2022 Use Attainment Summary**

Except for the re-evaluation of the Aquatic Plants Macrophyte impairment, no other recent data are available and therefore the Aquatic Life Use for Central Pond (MA52006) will continue to be assessed as Not Supporting. The impairments for Algae, Dissolved Oxygen, Dissolved Oxygen Supersaturation, Organic Enrichment (Sewage) Biological Indicators, and Total Phosphorus impairments are being carried forward. The Aquatic Plants (Macrophytes) impairment is being removed as a pollutant and added back as a non-pollutant, and a Nutrient/Eutrophication Biological Indicators impairment is being added.

#### Fish Consumption

| 2022 Use Attainment                                                                                     | Alert    |  |  |
|---------------------------------------------------------------------------------------------------------|----------|--|--|
| Not Assessed                                                                                            | NO       |  |  |
| 2022 Use Attainment Summary                                                                             |          |  |  |
| No fish toxics sampling has been conducted in Central Pond, therefore the Fish Consumption Use is Not A | ssessed. |  |  |

#### **Aesthetic**

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | NO    |

#### 2022 Use Attainment Summary

Cyanobacteria Harmful Algal Bloom (C-HAB) postings for Central Pond (MA52006) were reported to MassDPH for 155 days in 2018. No other more recent data are available. The Aesthetic Use for Central Pond will continue to be assessed as Not Supporting with the Algae and Total Phosphorus impairments being carried forward. The Aquatic Plants (Macrophytes) impairment is being removed as a pollutant and added back in as a non-pollutant and a Nutrient/Eutrophication Biological Indicators impairment is being added. Since C-HAB blooms >20 days in length were reported in a recent year, a new impairment for Harmful Algal Blooms is also being added.

#### Algal Bloom Information

Cyanobacteria Harmful Algal Bloom (C-HAB) Summary Statements for 2015-2019 MassDPH Data (Bailey, Logan April 15, 2021) (MassDEP Undated 3)

#### **C-HAB Summary Statement**

C-HAB postings for Central Pond (MA52006) were reported to MassDPH for 155 days in 2018. Since blooms >20 days in length were reported in a recent year, the Primary/Secondary Contact Recreational Uses and Aesthetics Use are assessed as Not Supporting.

#### Cyanobacteria Harmful Algal Bloom (C-HAB) Data (2015-2019) Provided by MassDPH (Bailey, Logan April 15, 2021)

| Waterbody    | Sample Analysis Used in Issuing Advisory | Bloom<br>Days,<br>2015 | Bloom<br>Days,<br>2016 | Bloom<br>Days,<br>2017 | Bloom<br>Days,<br>2018 | Bloom<br>Days,<br>2019 | # Years with<br>>20 Days of<br>Closure | >1<br>Posting<br>Per Year |
|--------------|------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------|---------------------------|
| Central Pond | Not issued or confirmed                  |                        |                        |                        | 155                    |                        | 1                                      | no                        |
|              | by sampling                              |                        |                        |                        |                        |                        |                                        |                           |

#### **Primary Contact Recreation**

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | NO    |
|                     |       |

#### **2022 Use Attainment Summary**

Cyanobacteria Harmful Algal Bloom (C-HAB) postings for Central Pond (MA52006) were reported to MassDPH for 155 days in 2018. No other more recent data are available. The Primary Contact Recreational Use for Central Pond will continue to be assessed as Not Supporting with the Algae and Total Phosphorus impairments being carried forward. The Aquatic Plants (Macrophytes) impairment is being removed as a pollutant and added back in as a non-pollutant and a Nutrient/Eutrophication Biological Indicators impairment is being added. Since C-HAB blooms >20 days in length were reported in a recent year, a new impairment for Harmful Algal Blooms is also being added.

#### **Secondary Contact Recreation**

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | NO    |

#### **2022 Use Attainment Summary**

Cyanobacteria Harmful Algal Bloom (C-HAB) postings for Central Pond (MA52006) were reported to MassDPH for 155 days in 2018. No other more recent data are available. The Secondary Contact Recreational Use for Central Pond will continue to be assessed as Not Supporting with the Algae and Total Phosphorus impairments being carried forward. The Aquatic Plants (Macrophytes) impairment is being removed as a pollutant and added back in as a non-pollutant and a Nutrient/Eutrophication Biological Indicators impairment is being added. Since C-HAB blooms >20 days in length were reported in a recent year, a new impairment for Harmful Algal Blooms is also being added.

# Coles Brook (MA52-11)

| Location:                 | Headwaters, Grassie Swamp west of Allens Lane, Rehoboth to mouth at inlet Central |
|---------------------------|-----------------------------------------------------------------------------------|
|                           | Pond, Seekonk.                                                                    |
| AU Type:                  | RIVER                                                                             |
| AU Size:                  | 4.2 MILES                                                                         |
| Classification/Qualifier: | В                                                                                 |

No usable data were available for Coles Brook (MA52-11) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

|            |          |                            |                   | Impairment |
|------------|----------|----------------------------|-------------------|------------|
| 2018/20 AU | 2022 AU  |                            |                   | Change     |
| Category   | Category | Impairment                 | ATTAINS Action ID | Summary    |
| 5          | 5        | (Dewatering*)              |                   | Unchanged  |
| 5          | 5        | Dissolved Oxygen           |                   | Unchanged  |
| 5          | 5        | Escherichia Coli (E. Coli) |                   | Unchanged  |

| Impairment                 | Source (Confirmed Y/N)              | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|----------------------------|-------------------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| (Dewatering*)              | Baseflow Depletion from Groundwater | Х                                        |                  |           |                               |                                 |
|                            | Withdrawals (N)                     |                                          |                  |           |                               |                                 |
| Dissolved Oxygen           | Baseflow Depletion from Groundwater | Х                                        |                  |           |                               |                                 |
|                            | Withdrawals (N)                     |                                          |                  |           |                               |                                 |
| Escherichia Coli (E. Coli) | Source Unknown (N)                  |                                          |                  |           | Х                             |                                 |

# Falls Pond, North Basin (MA52013)

| Location:                 | North Attleborough. |
|---------------------------|---------------------|
| AU Type:                  | FRESHWATER LAKE     |
| AU Size:                  | 54 ACRES            |
| Classification/Qualifier: | B: WWF              |

| 2018/20 AU<br>Category | 2022 AU<br>Category | Impairment                                    | ATTAINS Action ID | Impairment<br>Change<br>Summary |
|------------------------|---------------------|-----------------------------------------------|-------------------|---------------------------------|
| 5                      | 5                   | Algae                                         |                   | Unchanged                       |
| 5                      | 5                   | Dissolved Oxygen                              |                   | Unchanged                       |
| 5                      | 5                   | Mercury in Fish Tissue                        |                   | Added                           |
| 5                      | 5                   | Nutrient/Eutrophication Biological Indicators |                   | Unchanged                       |
| 5                      | 5                   | Phosphorus, Total                             |                   | Unchanged                       |

| Impairment                         | Source (Confirmed Y/N)                   | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|------------------------------------|------------------------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| Algae                              | Source Unknown (N)                       | X                                        |                  |           |                               |                                 |
| Dissolved Oxygen                   | Discharges from Municipal Separate Storm | Х                                        |                  |           |                               |                                 |
|                                    | Sewer Systems (MS4) (N)                  |                                          |                  |           |                               |                                 |
| Dissolved Oxygen                   | Internal Nutrient Recycling (N)          | Х                                        |                  |           |                               |                                 |
| Dissolved Oxygen                   | Source Unknown (N)                       | Х                                        |                  |           |                               |                                 |
| Mercury in Fish Tissue             | Atmospheric Deposition - Toxics (N)      |                                          | Χ                |           |                               |                                 |
| Mercury in Fish Tissue             | Source Unknown (N)                       |                                          | Χ                |           |                               |                                 |
| Nutrient/Eutrophication Biological | Source Unknown (N)                       | Х                                        |                  |           |                               |                                 |
| Indicators                         |                                          |                                          |                  |           |                               |                                 |
| Phosphorus, Total                  | Discharges from Municipal Separate Storm | Х                                        |                  |           |                               |                                 |
|                                    | Sewer Systems (MS4) (N)                  |                                          |                  |           |                               |                                 |
| Phosphorus, Total                  | Internal Nutrient Recycling (N)          | Х                                        |                  |           |                               |                                 |
| Phosphorus, Total                  | Source Unknown (N)                       | Х                                        |                  |           |                               |                                 |

### Designated Use Attainment Decisions

## Fish, other Aquatic Life and Wildlife

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Not Supporting              | NO    |
| 2022 Use Attainment Summary |       |

No recent data are available to assess the status of the Aquatic Life Use for Falls Pond, North Basin (MA52013), so it will continue to be assessed as Not Supporting. The impairments for algae, dissolved oxygen, nutrient eutrophication biological indicators, and total phosphorus are being carried forward.

#### Fish Consumption

| 2022 Use Attainment | Alert |
|---------------------|-------|
|---------------------|-------|

| Not Supporting | NO |
|----------------|----|
|----------------|----|

#### 2022 Use Attainment Summary

MassDEP biologists conducted fish toxics sampling at Falls Pond (North Basin) in North Attleborough in May 2018 as part of the probabilistic lake surveys (MAP2). Because of elevated mercury measured in largemouth bass fillets, MassDPH issued the following fish consumption advisories:

- "Children younger than 12 years of age, pregnant women, women of childbearing age who may become pregnant, and nursing mothers should not eat any of the affected fish species (largemouth bass) from this water body."
- "The general public should limit consumption of affected fish species (largemouth bass) to two meals per month."

Since there is a site specific DPH advisory for elevated mercury in fish tissue, the Fish Consumption Use for Falls Pond, North Basin (MA52013) is assessed as Not Supporting.

MassDEP fish toxics sampling information (2018-2020) and MassDPH Fish Consumption Advisory information (2019-2021) (MassDPH 2021) (MassDEP 2018) (MassDEP Undated 7).

MassDEP biologists conducted fish toxics sampling at Falls Pond (North Basin) in North Attleborough in May 2018 as part of the probabilistic lake surveys (MAP2). Because of elevated mercury measured in largemouth bass fillets, MassDPH issued the following fish consumption advisories:

- "Children younger than 12 years of age, pregnant women, women of childbearing age who may become pregnant, and nursing mothers should not eat any of the affected fish species (largemouth bass) from this water body."
- "The general public should limit consumption of affected fish species (largemouth bass) to two meals per month."

Since there is a site specific DPH advisory for elevated mercury in fish tissue, the Fish Consumption Use for Falls Pond (MA52013) is assessed as Not Supporting. The likely source, although not confirmed, is atmospheric deposition.

#### Aesthetic

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Insufficient Information    | YES   |
| 2022 Use Attainment Summary |       |

MassDEP aesthetics observations for station W2588 (the North Basin Town beach) on Falls Pond can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2015 (n=2). Too limited data are available to assess the Aesthetics Use for Falls Pond North Basin (MA52013), so it is assessed as having Insufficient Information. The Alert identified due to a phytoplankton bloom observed during an August 2002 survey, will be carried forwards.

#### **Monitoring Stations**

| Station |              |         |             |                                                    |           |            |
|---------|--------------|---------|-------------|----------------------------------------------------|-----------|------------|
| Code    | Organization | Type    | Water Body  | Station Description                                | Latitude  | Longitude  |
| W2588   | MassDEP      | Water   | Ten Mile    | [North Basin, from the town beach on Falls Pond (a | 41.968880 | -71.326227 |
|         |              | Quality | River/Falls | Ten Mile River impoundment), North Attleboro]      |           |            |
|         |              |         | Pond        |                                                    |           |            |

#### Aesthetic Observations

#### Aesthetics Summary Statements for MassDEP Stations (2011-2018) (MassDEP Undated 5)

| Station<br>Code | Waterbody                       | Data<br>Year | Field<br>Sheet<br>Count | Aesthetics Summary Statement                                                                                                                                                                                                                                                                                                                                                 |
|-----------------|---------------------------------|--------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W2588           | Ten Mile<br>River/Falls<br>Pond | 2015         | 2                       | MassDEP aesthetics observations for station W2588 on Ten Mile River/Falls Pond can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2015. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=2). |

#### Observations of Filamentous/Film Algae at MassDEP Stations (2011-2018) (MassDEP Undated 7) (MassDEP Undated 5)

|                 |           |                   | Field Sheet Count w/ Film &       |                                           |
|-----------------|-----------|-------------------|-----------------------------------|-------------------------------------------|
| Station<br>Code | Data Year | Field Sheet Count | Filamentous Algae<br>Observations | Dense/ Very Dense Film/ Filamentous Algae |
| W2588           | 2015      | 2                 | 0                                 | 0                                         |

#### MassDEP Aesthetics Observations (2011-2018) (MassDEP Undated 7)

| Station |                  | Data |                        |                      | Result | Total Field        |
|---------|------------------|------|------------------------|----------------------|--------|--------------------|
| Code    | Waterbody        | Year | Parameter              | Result               | Count  | <b>Sheet Count</b> |
| W2588   | Ten Mile         | 2015 | Color                  | None                 | 1      | 2                  |
|         | River/Falls Pond |      |                        |                      |        |                    |
| W2588   | Ten Mile         | 2015 | Color                  | NR                   | 1      | 2                  |
|         | River/Falls Pond |      |                        |                      |        |                    |
| W2588   | Ten Mile         | 2015 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
|         | River/Falls Pond |      |                        |                      |        |                    |
| W2588   | Ten Mile         | 2015 | Odor                   | None                 | 2      | 2                  |
|         | River/Falls Pond |      |                        |                      |        |                    |
| W2588   | Ten Mile         | 2015 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
|         | River/Falls Pond |      |                        |                      |        |                    |
| W2588   | Ten Mile         | 2015 | Turbidity              | NR                   | 1      | 2                  |
|         | River/Falls Pond |      |                        |                      |        |                    |
| W2588   | Ten Mile         | 2015 | Turbidity              | Slightly Turbid      | 1      | 2                  |
|         | River/Falls Pond |      |                        |                      |        |                    |

#### **Primary Contact Recreation**

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Insufficient Information    | YES   |
| 2022 Use Attainment Summary |       |

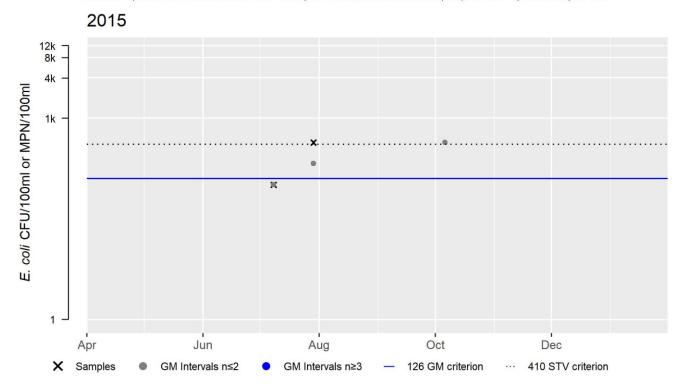
MassDEP staff conducted a limited amount of *E. coli* bacteria sampling in Falls Pond North Basin at the Town beach, North Attleboro (W2588) in 2015. Of the two samples collected, *E. coli* counts were once slightly above the 410 STV criterion, though the overall GM was 211 cfu/100ml. MassDEP staff also conducted Bacteria Source Tracking (BST) work at three sites along the shore of the pond in 2015, with *E. coli* concentrations ranging 53 to 770MPN, though no correctable source was ever found. Overall, too limited bacteria data are available to assess the Primary Contact Recreational Use for Falls Pond North Basin according to the CALM "Use Attainment Impairment Decision Schema", so this use will be assessed as Insufficient Information. The Alert for a phytoplankton bloom observed during an August 2002 survey is being carried forward.

#### *Monitoring Stations*

| Station<br>Code | Organization | Туре    | Water Body  | Station Description                                | Latitude  | Longitude  |
|-----------------|--------------|---------|-------------|----------------------------------------------------|-----------|------------|
| W2588           | MassDEP      | Water   | Ten Mile    | [North Basin, from the town beach on Falls Pond (a | 41.968880 | -71.326227 |
|                 |              | Quality | River/Falls | Ten Mile River impoundment), North Attleboro]      |           |            |
|                 |              |         | Pond        |                                                    |           |            |

#### Bacteria Data

Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 7) (MassDEP Undated 5)


[Result units are CFU/100ml or MPN/100ml]

|              |              |           |            |          |        | Minimum | Maximum | Seasonal  |
|--------------|--------------|-----------|------------|----------|--------|---------|---------|-----------|
|              |              |           |            |          | Sample | Sample  | Sample  | Geometric |
| Station Code | Organization | Indicator | Start Date | End Date | Count  | Result  | Result  | Mean      |
| W2588        | MassDEP      | E. coli   | 07/08/15   | 07/29/15 | 2      | 102     | 435     | 211       |

#### W2588 E. coli (90-day Interval), Primary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 211 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 1   |
| %n>STV  | 50  |

Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV



#### MassDEP Bacteria Source Tracking (BST) Summary Statement for 2011-2019 (MassDEP Undated 1)

#### Summary

BST samples were collected at 3 sites along the shore of the Falls Pond AU (MA52013) in 2015, with E.coli concentrations ranging 53 to 770MPN in dry weather conditions. No correctable source was ever found.

#### **Secondary Contact Recreation**

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Insufficient Information    | YES   |
| 2022 Use Attainment Summary |       |

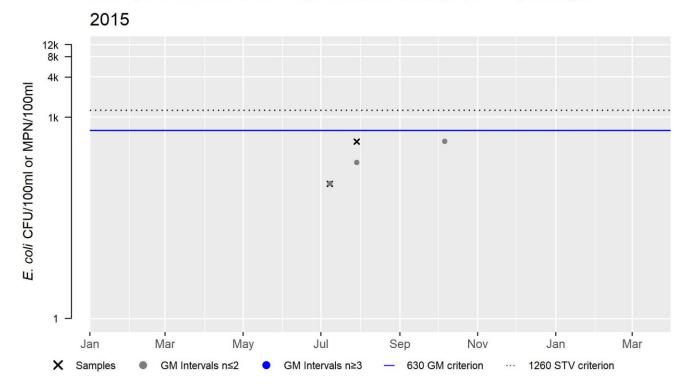
MassDEP staff conducted a limited amount of *E. coli* bacteria sampling in Falls Pond North Basin at the Town beach, North Attleboro (W2588) in 2015. Of the two samples collected, *E. coli* counts were both well below the 630 GM criterion with an overall GM of 211 cfu/100ml. MassDEP staff also conducted Bacteria Source Tracking (BST) at three sites along the shore of the pond in 2015, with *E. coli* concentrations ranging 53 to 770MPN, though no correctable source was ever found. Overall, too limited data are available to assess the Secondary Contact Recreational Use for Falls Pond North Basin according to the CALM "Use Attainment Impairment Decision Schema", so this use is assessed as Insufficient Information. The Alert for a phytoplankton bloom observed during an August 2002 survey is being carried forward.

#### **Monitoring Stations**

| Station<br>Code | Organization | Туре    | Water Body  | Station Description                                | Latitude  | Longitude  |
|-----------------|--------------|---------|-------------|----------------------------------------------------|-----------|------------|
| W2588           | MassDEP      | Water   | Ten Mile    | [North Basin, from the town beach on Falls Pond (a | 41.968880 | -71.326227 |
|                 |              | Quality | River/Falls | Ten Mile River impoundment), North Attleboro]      |           |            |
|                 |              |         | Pond        |                                                    |           |            |

#### Bacteria Data

# Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 7) (MassDEP Undated 5)


[Result units are CFU/100ml or MPN/100ml]

| [Nesult dilits are Ci | 0/1001111 01 WIF N/10 | Oiiiij    |            |          |        |            |            |            |
|-----------------------|-----------------------|-----------|------------|----------|--------|------------|------------|------------|
|                       |                       |           |            |          |        | Minimum    | Maximum    | Seasonal   |
|                       |                       |           |            |          |        | Sample     | Sample     | Geometric  |
|                       |                       |           |            |          |        | Result     | Result     | Mean       |
|                       |                       |           |            |          |        | (CFU/100ml | (CFU/100ml | (CFU/100ml |
|                       |                       |           |            |          | Sample | or         | or         | or         |
| Station Code          | Organization          | Indicator | Start Date | End Date | Count  | MPN/100ml) | MPN/100ml) | MPN/100ml) |
| W2588                 | MassDEP               | E. coli   | 07/08/15   | 07/29/15 | 2      | 102        | 435        | 211        |

## W2588 E. coli (90-day Interval), Secondary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 211 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |

 $Abbreviations: Samples = \#samples; SeasGM = Seasonal \ Geometric \ Mean \ (GM); \#GMI = number \ GM \ Intervals; \#GMI \ Ex = number \ GMI \ Exeedances; \\ n>STV = \#samples>Statistical \ Threshold \ Value \ (STV); \\ n>STV = percent \ samples>STV$ 



## Falls Pond, South Basin (MA52014)

| Location:                 | North Attleborough. |
|---------------------------|---------------------|
| AU Type:                  | FRESHWATER LAKE     |
| AU Size:                  | 50 ACRES            |
| Classification/Qualifier: | В                   |

| 2018/20 AU | 2022 AU  |                              |                   | Impairment<br>Change |
|------------|----------|------------------------------|-------------------|----------------------|
| Category   | Category | Impairment                   | ATTAINS Action ID | Summary              |
| 4c         | 4c       | (Non-Native Aquatic Plants*) |                   | Unchanged            |

| Impairment                   | Source (Confirmed Y/N)               | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|------------------------------|--------------------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| (Non-Native Aquatic Plants*) | Introduction of Non-native Organisms | Χ                                        |                  |           |                               |                                 |
|                              | (Accidental or Intentional) (Y)      |                                          |                  |           |                               |                                 |

#### Recommendations

#### **2022 Recommendations**

ALU: Conduct an aquatic macrophyte survey in the South Basin of Falls Pond when flowering heads are present to confirm the presence of the non-native *Myriophyllum heterophyllum* in the pond.

#### Designated Use Attainment Decisions

#### Fish, other Aquatic Life and Wildlife

| 2022 Use Attainment                                                                                       | Alert           |
|-----------------------------------------------------------------------------------------------------------|-----------------|
| Not Supporting                                                                                            | NO              |
| 2022 Use Attainment Summary                                                                               |                 |
| It was previously reported that Mass DEP staff noted the "likely" presence of the non-native aquatic mass | onhyte variable |

It was previously reported that MassDEP staff noted the "likely" presence of the non-native aquatic macrophyte, variable milfoil (*Myriophyllum heterophyllum*), in the South Basin of Falls Pond during a July 1997 synoptic survey. A recommendation will be made to confirm the presence of this specific non-native. The Aquatic Life Use will continue to be assessed as Not Supporting. The impairment for non-native aquatic plants will be carried forward.

#### **Biological Monitoring Information**

#### Non-native Aquatic Species Presence

#### MassDEP Non-Native Aquatic Invasive Species Records as of May 2021. (MassDEP 1997)

| Summary Statement                                        | Assessment Recommendation                                  |
|----------------------------------------------------------|------------------------------------------------------------|
| It was previously reported that MassDEP staff noted the  | Conduct an aquatic macrophyte survey in the South Basin of |
| presence of the non-native aquatic macrophyte, variable  | Falls Pond when flowering heads are present to confirm the |
| milfoil (Myriophyllum heterophyllum), in the South Basin | presence of the non-native Myriophyllum heterophyllum in   |
| of Falls Pond during a July 1997 synoptic survey.        | the pond.                                                  |

### Fish Consumption

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Not Assessed                | NO    |
| 2022 Use Attainment Summary |       |

Although fish toxics sampling was done in 1984 in Falls Pond, South Basin, no site-specific fish consumption advisory was issued by MA DPH. The Fish Consumption Use for Falls Pond, South Basin (MA52014) is Not Assessed.

### **Aesthetic**

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Not Assessed                | YES   |
| 2022 Use Attainment Summary |       |

There are no data available to assess the Aesthetic Use for Falls Pond, South Basin so it is Not Assessed. The alert for the density of the non-native macrophytes (approximately 25% of the lake area) is being carried forward (MassDEP 2006).

### **Primary Contact Recreation**

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Assessed        | YES   |
|                     |       |

### **2022 Use Attainment Summary**

There are no data available to assess the Primary Contact Use for Falls Pond, South Basin so it is Not Assessed. The alert for the density of the non-native macrophytes (approximately 25% of the lake area) is being carried forward (MassDEP 2006).

### Secondary Contact Recreation

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Assessed        | YES   |

### 2022 Use Attainment Summary

There are no data available to assess the Secondary Contact Use for Falls Pond, South Basin so it is Not Assessed. The alert for the density of the non-native macrophytes (approximately 25% of the lake area) is being carried forward (MassDEP 2006).

# Fourmile Brook (MA52-10)

| Location:                 | Headwaters, outlet Manchester Pond Reservoir, Attleboro to inlet Orrs Pond (a Sevenmile |  |
|---------------------------|-----------------------------------------------------------------------------------------|--|
|                           | River impoundment), Attleboro.                                                          |  |
| AU Type:                  | RIVER                                                                                   |  |
| AU Size:                  | 1 MILES                                                                                 |  |
| Classification/Qualifier: | A: PWS, ORW (Tributary)                                                                 |  |

No usable data were available for Fourmile Brook (MA52-10) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

|            |          |            |                   | Impairment |
|------------|----------|------------|-------------------|------------|
| 2018/20 AU | 2022 AU  |            |                   | Change     |
|            |          |            |                   |            |
| Category   | Category | Impairment | ATTAINS Action ID | Summary    |

| Impairment              | Source (Confirmed Y/N)            | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|-------------------------|-----------------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| Sedimentation/Siltation | Habitat Modification - other than | Х                                        |                  |           |                               |                                 |
|                         | Hydromodification (Y)             |                                          |                  |           |                               |                                 |

# Greenwood Lake (MA52017)

| Location:                 | Mansfield/North Attleborough. |
|---------------------------|-------------------------------|
| AU Type:                  | FRESHWATER LAKE               |
| AU Size:                  | 96 ACRES                      |
| Classification/Qualifier: | В                             |

No usable data were available for Greenwood Lake (MA52017) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

| 2018/20 AU<br>Category | 2022 AU<br>Category | Impairment | ATTAINS Action ID | Impairment<br>Change<br>Summary |
|------------------------|---------------------|------------|-------------------|---------------------------------|
| 3                      | 3                   | None       |                   | Unchanged                       |

# Hoppin Hill Reservoir (MA52021)

| Location:                 | North Attleborough.     |
|---------------------------|-------------------------|
| AU Type:                  | FRESHWATER LAKE         |
| AU Size:                  | 22 ACRES                |
| Classification/Qualifier: | A: PWS, ORW (Tributary) |

No usable data were available for Hoppin Hill Reservoir (MA52021) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

| 2018/20 AU<br>Category | 2022 AU<br>Category | Impairment | ATTAINS Action ID | Impairment<br>Change<br>Summary |
|------------------------|---------------------|------------|-------------------|---------------------------------|
| 3                      | 3                   | None       |                   | Unchanged                       |

# James V. Turner Reservoir (MA52022)

| Location:                 | Seekonk,MA/E. Providence,RI (size indicates portion in Massachusetts). |
|---------------------------|------------------------------------------------------------------------|
| AU Type:                  | FRESHWATER LAKE                                                        |
| AU Size:                  | 28 ACRES                                                               |
| Classification/Qualifier: | В                                                                      |

|            |          |                                               |                   | Impairment |
|------------|----------|-----------------------------------------------|-------------------|------------|
| 2018/20 AU | 2022 AU  |                                               |                   | Change     |
| Category   | Category | Impairment                                    | ATTAINS Action ID | Summary    |
| 5          | 5        | (Aquatic Plants (Macrophytes)*)               |                   | Changed    |
| 5          | 5        | Algae                                         |                   | Unchanged  |
| 5          | 5        | Dissolved Oxygen Supersaturation              |                   | Unchanged  |
| 5          | 5        | Harmful Algal Blooms                          |                   | Unchanged  |
| 5          | 5        | Nutrient/Eutrophication Biological Indicators |                   | Added      |
| 5          | 5        | Organic Enrichment (Sewage) Biological        |                   | Unchanged  |
|            |          | Indicators                                    |                   |            |
| 5          | 5        | Phosphorus, Total                             |                   | Unchanged  |

| Impairment                             | Source (Confirmed Y/N)                      | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|----------------------------------------|---------------------------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| (Aquatic Plants (Macrophytes)*)        | Discharges from Municipal Separate Storm    | Х                                        |                  | Х         | X                             | Х                               |
|                                        | Sewer Systems (MS4) (N)                     |                                          |                  |           |                               |                                 |
| (Aquatic Plants (Macrophytes)*)        | Municipal (Urbanized High Density Area) (N) | Х                                        |                  | Х         | Х                             | Х                               |
| (Aquatic Plants (Macrophytes)*)        | Municipal Point Source Discharges (Y)       | X                                        |                  | Х         | Х                             | Х                               |
| Algae                                  | Discharges from Municipal Separate Storm    | Х                                        |                  | Х         | Х                             | Х                               |
|                                        | Sewer Systems (MS4) (N)                     |                                          |                  |           |                               |                                 |
| Algae                                  | Municipal (Urbanized High Density Area) (N) | Х                                        |                  | Х         | Х                             | Х                               |
| Algae                                  | Municipal Point Source Discharges (Y)       | X                                        |                  | Х         | Х                             | Х                               |
| Dissolved Oxygen Supersaturation       | Discharges from Municipal Separate Storm    | Х                                        |                  |           |                               |                                 |
|                                        | Sewer Systems (MS4) (N)                     |                                          |                  |           |                               |                                 |
| Dissolved Oxygen Supersaturation       | Municipal (Urbanized High Density Area) (N) | Х                                        |                  |           |                               |                                 |
| Dissolved Oxygen Supersaturation       | Municipal Point Source Discharges (Y)       | Х                                        |                  |           |                               |                                 |
| Harmful Algal Blooms                   | Discharges from Municipal Separate Storm    |                                          |                  | Х         | Х                             | Х                               |
|                                        | Sewer Systems (MS4) (N)                     |                                          |                  |           |                               |                                 |
| Harmful Algal Blooms                   | Municipal (Urbanized High Density Area) (N) |                                          |                  | Х         | X                             | Х                               |
| Harmful Algal Blooms                   | Municipal Point Source Discharges (Y)       |                                          |                  | Х         | Х                             | Х                               |
| Nutrient/Eutrophication Biological     | Discharges from Municipal Separate Storm    | Х                                        |                  | Х         |                               | Х                               |
| Indicators                             | Sewer Systems (MS4) (N)                     |                                          |                  |           |                               |                                 |
| Nutrient/Eutrophication Biological     | Municipal (Urbanized High Density Area) (N) | Х                                        |                  | Х         |                               | Х                               |
| Indicators                             |                                             |                                          |                  |           |                               |                                 |
| Nutrient/Eutrophication Biological     | Municipal Point Source Discharges (Y)       | Х                                        |                  | Х         |                               | Х                               |
| Indicators                             |                                             |                                          |                  |           |                               |                                 |
| Organic Enrichment (Sewage) Biological | Discharges from Municipal Separate Storm    | Х                                        |                  |           |                               |                                 |
| Indicators                             | Sewer Systems (MS4) (N)                     |                                          |                  |           |                               |                                 |

| Impairment                                        | Source (Confirmed Y/N)                                              | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|---------------------------------------------------|---------------------------------------------------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| Organic Enrichment (Sewage) Biological Indicators | Municipal (Urbanized High Density Area) (N)                         | Х                                        |                  |           |                               |                                 |
| Organic Enrichment (Sewage) Biological Indicators | Municipal Point Source Discharges (Y)                               | Х                                        |                  |           |                               |                                 |
| Phosphorus, Total                                 | Discharges from Municipal Separate Storm<br>Sewer Systems (MS4) (N) | Х                                        |                  | Х         | Х                             | Х                               |
| Phosphorus, Total                                 | Municipal (Urbanized High Density Area) (N)                         | Х                                        |                  | Χ         | Х                             | Х                               |
| Phosphorus, Total                                 | Municipal Point Source Discharges (Y)                               | Х                                        |                  | Х         | Х                             | Х                               |

# Supporting Information for Removed Impairments

| 2018/20 Removed |                 |                                                            |
|-----------------|-----------------|------------------------------------------------------------|
| Impairment      | Removal Reason  | Removal Comment                                            |
| Aquatic Plants  | Not caused by a | As described in detail in the 2022 CALM guidance           |
| (Macrophytes)   | pollutant (4c)  | document (MassDEP 2022), the mapping of Aquatic Plants     |
|                 |                 | (Macrophytes) impairments as a pollutant is being          |
|                 |                 | reevaluated. The James V. Turner Reservoir (MA52022)       |
|                 |                 | was first listed as impaired for Noxious Aquatic Plants in |
|                 |                 | 1992 and this cause was remapped to Aquatic Plants         |
|                 |                 | (Macrophytes) during the 2008 IR cycle (MassDEP 2015).     |
|                 |                 | Although the original 1984 data used to make the           |
|                 |                 | impairment could not be located, during a July 1997        |
|                 |                 | synoptic survey conducted by MassDEP staff, they noted     |
|                 |                 | that 10% of the pond (the entire shoreline) was covered    |
|                 |                 | with Nymphaea sp. (lilies) and they also noted the         |
|                 |                 | presence of the non-rooted, floating species, Lemna sp.    |
|                 |                 | (MassDEP 1997, MassDEP 2002). In Google Earth images       |
|                 |                 | from July 2008, December 2009, and September 2014,         |
|                 |                 | more than half of the reservoir is covered in vegetation   |
|                 |                 | (Google Earth Pro Undated). Nutrient/Eutrophication        |
|                 |                 | Biological Indicators is being added as an impairment      |
|                 |                 | based on the presence of a non-rooted, floating, aquatic   |
|                 |                 | macrophyte species (Lemna sp.). Additionally, Aquatic      |
|                 |                 | Plants (Macrophytes) is being delisted as a pollutant and  |
|                 |                 | added again as a non-pollutant since more than 25% of      |
|                 |                 | the pond was covered in vegetation in recent years.        |

Aquatic Plants (Macrophytes)

1996 WBS Coding Sheet (MassDEP 2002):

Page 376

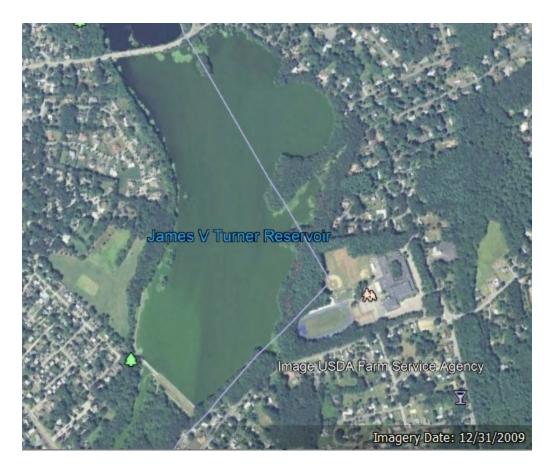
WBID: MA52022 WATERSHED: Ten Mile(52) (Printed 05/13/96) James V. Turner Reservoir 52022 NAME: CODE: Lake/Pond CLASS: B
ORW?: Yes or No
Water Supply?: Yes or No 124.00(acres) LATITUDE: 0 LONGITUDE: Lake/Pond Name: James V. Turner Reservoir, Seekonk/E. Providence, R.I. Ecoregion Name: () Description: Water Quality Limited?: Assessment Date: 9112 7609 Begin Sampling: 8406 YES or NO 94-96 End Sampling: 8409 303(d) List?: YES or NO Cycle: Lake Specific Information Significantly Publicly Owned: Significantly Publicly Owned: Trophic Status: Trophic Status: H D (U) 0 M E Trophic Trend: Acidity/Toxics Trend: S D C Trophic Trend: Acidity/Toxics Trend: I š Ι Acidity Effects: Acidity Effects: Support Threat Partial Non-Sup Not-Asses Not-Attain Uses OVERALL USE SUPPORT 124.00 124,0 124.00 ALUS 124.0 FISH CONSUMPTION 124.00 124.0 PRIMARY CONTACT 124.00 124.0 SECONDARY CONTACT 124.00 124.0 Aesthetics 124.00 Ш 124.0 Nonattainment Causes 1996 Code Size Magnitude Code Size Magnitude 0500 - Metals 124.00 H0900 - Nutrients 124.00 M 2200 - Noxious aquatic plant. 124.00 M 2400 - Total toxics 124.00 Nonattainment Sources 1996 Size Magnitude Magnitude Code Code Size 0200- MUNICIPAL POINT SOURCES 124.00 M/ 9000 - SOURCE UNKNOWN 124.00 Assessment Type 1996 Assessment Category = > M E NA (Assessment Category = > Evaluated ) Media/Pollutants Assessed (Toxics Monitoring =>Y) 1996 Toxics Monitoring => YES or NO 03 - Organics in fish tissue 09 - Metals in water column 10 - Metals in sediments 11 - Metals in fish tissue Comments: HISTORICALLY VERY E.34 TOTAL PHOSPHORUS LEVELS, ALGAL "BLC DMS" REDUCE THE TRANSPARENCY TO BELOW THE SAFETY CRITERIA (4 FT. SECCHI DISK), AND A FISHING ADVISORY DUE TO LEAD IN FISH FLESH ANALYSES. NO MANAGEMENT EFFORTS IMPLEMENTED TO DATE. 1996 - DATA TOO OLD TO MAKE ASSESSMENT.

# 1997 Synoptic Survey Field Sheet (MassDEP 1997):

| Jomes. V.                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LAKEIPOND: Turner Reservoir                                                                                                            | SIZE (acres): 124 PALIS NO. 52022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                        | USGS TOPO. SHEET: E. Providence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DATE: 7/17/17 WATERSHED: 10 Mile                                                                                                       | OBSERVERS: De Cesore 10 she 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ACCESS - Location (describe each observation site and assign sequin descriptions (e.g., public boat ramp at west cove area off Simpson | uential numbers (1, 2, 3, etc.) to use in subsequent records; be specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                        | 152 conssing (Turner   Central Res.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Site (2)                                                                                                                               | , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Site (3)                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ACCESS Type (for multiple observation sites use numbers in boxes                                                                       | s that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Formal Boat Ramp 🔲 🔲 and/or Beach 🔲 🔲 Infon                                                                                            | mal Boat Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Park 🗌 🖂 🗎 Conservation Area 🔲 🔲 Right-of-Way: Road                                                                                    | ☑ Other □ □ □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Other (describe):                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ACCESS Ownership (for multiple observation sites use numbers in                                                                        | n boxes that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Public   -   Private   -   Uncertain                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Names of OwnersNo. & Stre                                                                                                              | et Name 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| No. & Stre                                                                                                                             | et Name 🗍                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                        | et Name 🗌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SIGN POSTINGS                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                        | Fishing Advisory or Ban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| /                                                                                                                                      | Public Access with Restrictions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Describe any restrictions (or other notes)                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WATER /LAKE QUALITY OBSERVATIONS -                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Turbidity:                                                                                                                             | Transparency: □ □ □ <1.2 m.(4 ft.) ☑ □ >1.2 m. (4 ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Diss. Organics:                                                                                                                        | The standard |
| Algal Bloom:           Slight           Moderate           Dense                                                                       | meters meters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1                                                                                                                                      | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                        | Sand Carvel Cobble Cobble Soulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ☑ ☐ Vegetation Other ☐                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Other Observations: 10w Shoreline devilopment                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AESTHETICALLY OBJECTIONABLE - Substances attributable to                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Describe: 5.1 +                                                                                                                        | Float as debris scum or other matter to form a nuisance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                        | Describe: Algal Mats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ☐ ☐ Produce objectionable odor, color, taste, or turbidity                                                                             | Profits C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Describe:                                                                                                                              | Describe: A/9 ac.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| RECORD OF AQUATIO                                                                                                                         | PLANT "SPECIE                 | S" OBSERVED                                        | Knotweed               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------|
| NON-NATIVE WETLAN                                                                                                                         | DS SPECIES PRES               | SENT:                                              | Lythrum Salicaria      | ☐ ☐ Phragmite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es sp.                                                                            |          |
| NON-NATIVE AQUATIO                                                                                                                        | SPECIES PRESE                 | NT: 🔲 🗎 🖪 Ba                                       | itomus umbeliatus      | ☐ ☐ Cabomba ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | roliniana 🔲 🔲 🗆 Egeria e                                                          | densa    |
| □ □ □ Eichornia cra                                                                                                                       | ssipes 🔲 🔲                    | ☐ Hydrilla vertici                                 | Wata □□□ H)            | drocharis morsus-ran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e 🗌 🗌 🗎 Marsiles quad                                                             | drifolia |
| □□□ Myriophyllum                                                                                                                          | aquaticum                     | □□□ Myriop                                         | hyllum heterophyllum   | □□□ Myn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ophyllum spicatum                                                                 |          |
| □□□ M.sp. (M.he                                                                                                                           | nterophyllum requ             | uiring further conf                                | irmation when flowerin | ng heads are evident) ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                   |          |
| 🗌 🔲 🔲 Najas minor                                                                                                                         | □ □ □ Nelumb                  | oolutea 🔲 🗆 🗎                                      | Nymphoides peltata     | □ □ □ Potamoge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oton crispus 🔲 🗎 🗆 Trapa i                                                        | natans   |
| NATIVE SPECIES POPU                                                                                                                       | JLATIONS:                     |                                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
| Emergent Plants                                                                                                                           |                               | Floating Le                                        | af Plants              | Submerg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ent Plants                                                                        |          |
| Do Sagitari                                                                                                                               |                               |                                                    | Nymphoez               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | none                                                                              |          |
| To Pant dor                                                                                                                               |                               |                                                    | Nuplor                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
| Tris.                                                                                                                                     | <u> </u>                      | _ ජා                                               | Lemnz                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
| 000 🚣                                                                                                                                     |                               | _ 000_                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
| 000                                                                                                                                       |                               | _ 000_                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
| 000                                                                                                                                       |                               | _ 000_                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
| 000                                                                                                                                       |                               | _ 000_                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
| 000                                                                                                                                       |                               | _ 000_                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
| 000                                                                                                                                       |                               | _ 000_                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
| 000                                                                                                                                       |                               | _ 000_                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
| 000                                                                                                                                       |                               | _ 000_                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
| 000                                                                                                                                       |                               | _ 000_                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
| AQUATIC PLANT DEN                                                                                                                         |                               |                                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
| ı                                                                                                                                         |                               |                                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · C                                                                               |          |
| Forms [(E)me                                                                                                                              | ergent, (F)loating,           | or (S)ubmerent) p                                  | resent 🗌               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
| 1                                                                                                                                         | •                             | -                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>*</u>                                                                          | %        |
| Forms [(E)me                                                                                                                              | ergent, (F)loating,           | or (S)ubmerent) p                                  | eresent 🗌              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E(Vitas)                                                                          |          |
| Percent of entire lake                                                                                                                    | surface covered v             | vith dense or very                                 | dense aquatic plants   | /O % Forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F(IIIIES)                                                                         |          |
| Describe locations of o                                                                                                                   | dense and/or very             | dense plant beds                                   | entire she             | reline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   |          |
| · · · · · · · · · · · · · · · · · · ·                                                                                                     |                               |                                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
| Loss of open water had<br>ASSESSMENTS —                                                                                                   | bitat over entire k           | ike (estimated):                                   | □ 90 - 100 % [         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0-55% □≤25%                                                                       |          |
|                                                                                                                                           | TIMATE:   Olioof              | rophic   Meso                                      | otrophic [] Eutroph    | 7 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g∕v.<br>□ Dystrophic □ Undete                                                     | rmined   |
| TROPHIC STATUS EST                                                                                                                        |                               |                                                    |                        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |          |
| TROPHIC STATUS EST<br>305(b) USE IMPAIRME                                                                                                 | NT ASSESSMENT                 | 'S (Acres):                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |          |
| 305(b) USE IMPAIRME<br>USES                                                                                                               | NT ASSESSMENT<br>Full Support | S (Acres):<br>Threatened                           | Partial Support        | Non-support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Not Assessed                                                                      |          |
| 305(b) USE IMPAIRME<br>USES<br>Aquatic Life<br>Fish Consumption                                                                           |                               | Threatened                                         | Partial Support        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1240                                                                              |          |
| 305(b) USE IMPAIRME USES Aquatic Life Fish Consumption Primary Contact Secondary Contact                                                  | Full Support                  |                                                    |                        | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1240                                                                              |          |
| 305(b) USE IMPAIRME USES Aquatic Life Fish Consumption Primary Contact Secondary Contact Aesthetics  CAUSES: Noxious Turbidity Metals (0) | Full Support                  | ze /2 acres acres / Mag - Size // A a Size _ acres | / Magnitude H          | 12.0<br>  12.0<br>  12.0<br>  12.0<br>  Exotic plants (2600) Size   Situation (1500) Size   Situation (1100) Size   Si | Sizeacres / Magnitude teacres / Magnitude teacres / Magnitude teacres / Magnitude | _        |

James V Turner Reselvoir


Image MassGIS, Commonwealth of Massachusetts EOE

Google Earth image of James V. Turner Reservoir while mostly clear, 3/31/2005 (Google Earth Pro Undated):

Google Earth image of James V. Turner Reservoir, 7/2/2008 (Google Earth Pro Undated):



Google Earth image of James V. Turner Reservoir, 12/31/2009 (Google Earth Pro Undated):



Google Earth image of James V. Turner Reservoir, 9/11/2014 (Google Earth Pro Undated):



## Designated Use Attainment Decisions

### Fish, other Aquatic Life and Wildlife

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | NO    |
|                     |       |

### **2022 Use Attainment Summary**

Except for the re-evaluation of the Aquatic Plants Macrophyte impairment, no other recent data are available and therefore the Aquatic Life Use for James V. Turner Reservoir (MA52022) will continue to be assessed as Not Supporting. The impairments for Algae, Dissolved Oxygen Supersaturation, Organic Enrichment (Sewage) Biological Indicators and Total Phosphorus impairments are being carried forward. The Aquatic Plants (Macrophytes) impairment is being removed as a pollutant and added back as a non-pollutant, and a Nutrient/Eutrophication Biological Indicators impairment is being added.

### Fish Consumption

| 2022 Use Attainment                                                                                                        | Alert |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
| Not Assessed                                                                                                               | NO    |  |  |  |  |
| 2022 Use Attainment Summary                                                                                                |       |  |  |  |  |
| Although fish toxics sampling was done in 1984 in James V. Turner Reservoir, no site-specific fish consumption advisory is |       |  |  |  |  |
| in place, therefore the Fish Consumption Use for James V. Turner Reservoir (MA52022) is Not Assessed.                      |       |  |  |  |  |

### **Aesthetic**

| 2022 Use Attainment | Alert |
|---------------------|-------|
|---------------------|-------|

| Not Supporting | NO |
|----------------|----|
|                |    |

### 2022 Use Attainment Summary

C-HAB postings for Turner Reservoir (MA52022) were reported to MassDPH for 155 days in 2018. Since the bloom was >20 days in length and reported in a recent year, this reinforces the existing impairment for Harmful Algal Blooms in Turner Reservoir. No other more recent data are available. The Aesthetic Use for James V. Turner Reservoir will continue to be assessed as Not Supporting with the Algae, Total Phosphorus, and Harmful Algal Blooms impairments being carried forward. The Aquatic Plants (Macrophytes) impairment is being removed as a pollutant and added back in as a non-pollutant and the Nutrient/Eutrophication Biological Indicators impairment is being added.

### Algal Bloom Information

Cyanobacteria Harmful Algal Bloom (C-HAB) Summary Statements for 2015-2019 MassDPH Data (Bailey, Logan April 15, 2021) (MassDEP Undated 3)

### **C-HAB Summary Statement**

C-HAB postings for Turner Reservoir (MA52022) were reported to MassDPH for 155 days in 2018. Since blooms >20 days in length were reported in a recent year, the Primary/Secondary Contact Recreational Uses and Aesthetics Use are assessed as Not Supporting.

### Cyanobacteria Harmful Algal Bloom (C-HAB) Data (2015-2019) Provided by MassDPH (Bailey, Logan April 15, 2021)

|                  |                         |       | 6.    | 61    | 61    |       | "···                     |               |
|------------------|-------------------------|-------|-------|-------|-------|-------|--------------------------|---------------|
|                  | Sample Analysis Used    | Bloom | Bloom | Bloom | Bloom | Bloom | # Years with >20 Days of | >1<br>Posting |
|                  | Sample Analysis Used    | Days, | Days, | Days, | Days, | Days, | ,                        |               |
| Waterbody        | in Issuing Advisory     | 2015  | 2016  | 2017  | 2018  | 2019  | Closure                  | Per Year      |
| Turner Reservoir | Not issued or confirmed |       |       |       | 155   |       | 1                        | no            |
|                  | by sampling             |       |       |       |       |       |                          |               |

### **Primary Contact Recreation**

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | NO    |
|                     |       |

### 2022 Use Attainment Summary

C-HAB postings for Turner Reservoir (MA52022) were reported to MassDPH for 155 days in 2018. Since the bloom was >20 days in length and reported in a recent year, this reinforces the existing impairment for Harmful Algal Blooms in Turner Reservoir. No other more recent data are available. The Primary Contact Recreational Use for James V. Turner Reservoir will continue to be assessed as Not Supporting with the Algae, Total Phosphorus, and Harmful Algal Blooms impairments being carried forward. The Aquatic Plants (Macrophytes) impairment is being removed as a pollutant and added back in as a non-pollutant and the Nutrient/Eutrophication Biological Indicators impairment is being added.

### Secondary Contact Recreation

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | NO    |

### 2022 Use Attainment Summary

C-HAB postings for Turner Reservoir (MA52022) were reported to MassDPH for 155 days in 2018. Since the bloom was >20 days in length and reported in a recent year, this reinforces the existing impairment for Harmful Algal Blooms in Turner Reservoir. No other more recent data are available. The Secondary Contact Recreational Use for James V. Turner Reservoir will continue to be assessed as Not Supporting with the Algae, Total Phosphorus, and Harmful Algal Blooms impairments being carried forward. The Aquatic Plants (Macrophytes) impairment is being removed as a pollutant and added back in as a non-pollutant and the Nutrient/Eutrophication Biological Indicators impairment is being added.

# Lake Como (MA52010)

| Location:                 | Attleboro.      |
|---------------------------|-----------------|
| AU Type:                  | FRESHWATER LAKE |
| AU Size:                  | 5 ACRES         |
| Classification/Qualifier: | В               |

| 2018/20 AU<br>Category | 2022 AU<br>Category | Impairment                   | ATTAINS Action ID | Impairment<br>Change<br>Summary |
|------------------------|---------------------|------------------------------|-------------------|---------------------------------|
| 5                      | 5                   | (Fanwort*)                   |                   | Added                           |
| 5                      | 5                   | (Non-Native Aquatic Plants*) |                   | Removed                         |
| 5                      | 5                   | Algae                        |                   | Unchanged                       |
| 5                      | 5                   | Turbidity                    |                   | Unchanged                       |

| Impairment | Source (Confirmed Y/N)               | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|------------|--------------------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| (Fanwort*) | Introduction of Non-native Organisms | Х                                        |                  | Χ         | Х                             | Х                               |
|            | (Accidental or Intentional) (Y)      |                                          |                  |           |                               |                                 |
| Algae      | Source Unknown (N)                   | Х                                        |                  | Χ         | Х                             | Х                               |
| Turbidity  | Source Unknown (N)                   | Х                                        |                  | Х         | Х                             | Х                               |

## Supporting Information for Removed Impairments

| 2018/20 Removed           |                          |                                                                |
|---------------------------|--------------------------|----------------------------------------------------------------|
| Impairment                | Removal Reason           | Removal Comment                                                |
| Non-Native Aquatic Plants | Clarification of listing | The generic Non-Native Aquatic Plants impairment code is being |
|                           | cause                    | removed since the species-specific Fanwort impairment is being |
|                           |                          | added.                                                         |

### Non-Native Aquatic Plants

The generic "Non-Native Aquatic Plants" impairment is being removed since the specific macrophyte Fanwort (*Cabomba caroliniana*) impairment is being added.

### Recommendations

### **2022 Recommendations**

ALU: Conduct an aquatic macrophyte survey in Lake Como when flowering heads are present to determine if any non-native species of *Myriophyllum* are infesting the lake.

## Designated Use Attainment Decisions

### Fish, other Aquatic Life and Wildlife

| 2022 Use Attainment Alert |  |
|---------------------------|--|
|---------------------------|--|

| Not Supporting | YES |
|----------------|-----|
|----------------|-----|

### 2022 Use Attainment Summary

As was previously reported, MassDEP staff identified an infestation of the non-native aquatic macrophyte, fanwort (*Cabomba caroliniana*), in Lake Como during a July 1997 synoptic survey. A review of DEP aquatic invasive species records revealed that the presence of *Myriophyllum* sp. was also noted during the synoptic survey. No other data are available to assess the status of the Aquatic Life Use so it will continue to be assessed as Not Supporting with the Algae and Turbidity impairments being carried forward. The generic Non-Native Aquatic Plants impairment is being removed since the Fanwort impairment is being added and an Alert is being identified for the possible infestation of non-native *Myriophyllum* species.

### **Biological Monitoring Information**

### Non-native Aquatic Species Presence

### MassDEP Non-Native Aquatic Invasive Species Records as of May 2021. (MassDEP 1997)

| Summary Statement                                                               | Assessment Recommendation            |
|---------------------------------------------------------------------------------|--------------------------------------|
| As was previously reported, MassDEP staff identified an infestation of the non- | Conduct an aquatic macrophyte        |
| native aquatic macrophyte, fanwort (Cabomba caroliniana), in Lake Como during   | survey in Lake Como when flowering   |
| a July 1997 synoptic survey. A review of DEP aquatic invasive species records   | heads are present to determine if    |
| revealed that the presence of Myriophyllum sp. was also noted during the        | any non-native species of            |
| synoptic survey. An aquatic macrophyte survey should be conducted to            | Myriophyllum are infesting the lake. |
| determine whether any of the non-native species of Myriophyllum are present in  |                                      |
| the lake and an Alert should be issued.                                         |                                      |

### Fish Consumption

| 2022 Use Attainment                                                                                          | Alert |  |
|--------------------------------------------------------------------------------------------------------------|-------|--|
| Not Assessed                                                                                                 | NO    |  |
| 2022 Use Attainment Summary                                                                                  |       |  |
| No fish toxics sampling has been conducted in Lake Como, therefore the Fish Consumption Use is Not Assessed. |       |  |

### Aesthetic

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | YES   |
|                     |       |

### **2022 Use Attainment Summary**

As was previously reported, MassDEP staff identified an infestation of the non-native aquatic macrophyte, fanwort (*Cabomba caroliniana*), in Lake Como during a July 1997 synoptic survey. A review of DEP aquatic invasive species records revealed that the presence of *Myriophyllum* sp. was also noted during the synoptic survey. No other data are available to assess the status of the Aesthetics Use so it will continue to be assessed as Not Supporting with the Algae and Turbidity impairments being carried forward. The generic Non-Native Aquatic Plants impairment is being removed since the Fanwort impairment is being added and an Alert is being identified for the possible infestation of non-native *Myriophyllum* species.

### **Primary Contact Recreation**

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Not Supporting              | YES   |
| 2022 Use Attainment Summary |       |

As was previously reported, MassDEP staff identified an infestation of the non-native aquatic macrophyte, fanwort (*Cabomba caroliniana*), in Lake Como during a July 1997 synoptic survey. A review of DEP aquatic invasive species records revealed that the presence of *Myriophyllum* sp. was also noted during the synoptic survey. No other data are available to assess the status of the Primary Contact Recreational Use so it will continue to be assessed as Not Supporting with the Algae and Turbidity impairments being carried forward. The generic Non-Native Aquatic Plants impairment is being removed since the Fanwort impairment is being added and an Alert is being identified for the possible infestation of non-native *Myriophyllum* species.

### **Secondary Contact Recreation**

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | YES   |

### 2022 Use Attainment Summary

As was previously reported, MassDEP staff identified an infestation of the non-native aquatic macrophyte, fanwort (*Cabomba caroliniana*), in Lake Como during a July 1997 synoptic survey. A review of DEP aquatic invasive species records revealed that the presence of *Myriophyllum* sp. was also noted during the synoptic survey. No other data are available to assess the status of the Secondary Contact Recreational Use so it will continue to be assessed as Not Supporting with the Algae and Turbidity impairments being carried forward. The generic Non-Native Aquatic Plants impairment is being removed since the Fanwort impairment is being added and an Alert is being identified for the possible infestation of non-native *Myriophyllum* species.

# Manchester Pond Reservoir (MA52026)

| Location:                 | Attleboro.                             |
|---------------------------|----------------------------------------|
| AU Type:                  | FRESHWATER LAKE                        |
| AU Size:                  | 238 ACRES                              |
| Classification/Qualifier: | A: PWS, ORW (PWS and Tributary to PWS) |

No usable data were available for Manchester Pond Reservoir (MA52026) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

| 2018/20 AU | 2022 AU  |            |                   | Impairment<br>Change |
|------------|----------|------------|-------------------|----------------------|
| Category   | Category | Impairment | ATTAINS Action ID | Summary              |
| 3          | 3        | None       |                   | Unchanged            |

# Orrs Pond (MA52029)

| Location:                 | Attleboro.      |
|---------------------------|-----------------|
| AU Type:                  | FRESHWATER LAKE |
| AU Size:                  | 58 ACRES        |
| Classification/Qualifier: | A: PWS, ORW     |

No usable data were available for Orrs Pond (MA52029) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.

| 2018/20 AU<br>Category | 2022 AU<br>Category | Impairment                            | ATTAINS Action ID | Impairment<br>Change<br>Summary |
|------------------------|---------------------|---------------------------------------|-------------------|---------------------------------|
| 4c                     | 4c                  | (Eurasian Water Milfoil, Myriophyllum |                   | Unchanged                       |
|                        |                     | Spicatum*)                            |                   |                                 |

| Impairment                            | Source (Confirmed Y/N)               | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|---------------------------------------|--------------------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| (Eurasian Water Milfoil, Myriophyllum | Introduction of Non-native Organisms | Х                                        |                  |           |                               |                                 |
| Spicatum*)                            | (Accidental or Intentional) (Y)      |                                          |                  |           |                               |                                 |

# Plain Street Pond (MA52032)

| Location:                 | Mansfield.      |
|---------------------------|-----------------|
| AU Type:                  | FRESHWATER LAKE |
| AU Size:                  | 12 ACRES        |
| Classification/Qualifier: | В               |

|            |          |                              |                   | Impairment |
|------------|----------|------------------------------|-------------------|------------|
| 2018/20 AU | 2022 AU  |                              |                   | Change     |
| Category   | Category | Impairment                   | ATTAINS Action ID | Summary    |
| 5          | 5        | (Fanwort*)                   |                   | Added      |
| 5          | 5        | (Non-Native Aquatic Plants*) |                   | Removed    |
| 5          | 5        | Algae                        |                   | Unchanged  |

| Impairment | Source (Confirmed Y/N)               | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|------------|--------------------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| (Fanwort*) | Introduction of Non-native Organisms | Χ                                        |                  |           |                               |                                 |
|            | (Accidental or Intentional) (Y)      |                                          |                  |           |                               |                                 |
| Algae      | Source Unknown (N)                   |                                          |                  | Χ         | Χ                             | Χ                               |

## Supporting Information for Removed Impairments

|                           | <u> </u>                 |                                                            |
|---------------------------|--------------------------|------------------------------------------------------------|
| 2018/20 Removed           |                          |                                                            |
| Impairment                | Removal Reason           | Removal Comment                                            |
| Non-Native Aquatic Plants | Clarification of listing | The generic Non-Native plants impairment code is being     |
|                           | cause                    | delisted and replaced with the specific fanwort impairment |
|                           |                          | code.                                                      |

### Non-Native Aquatic Plants

The generic "Non-Native Aquatic Plants" impairment is being removed since the specific macrophyte Fanwort (*Cabomba caroliniana*) impairment is being added.

### Recommendations

### **2022 Recommendations**

ALU: Conduct an aquatic macrophyte survey in Plain Street Pond when flowering heads are present to determine if any non-native species of *Myriophyllum* are infesting the pond.

### Designated Use Attainment Decisions

### Fish, other Aquatic Life and Wildlife

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | YES   |

### 2022 Use Attainment Summary

As was previously reported, MassDEP staff identified an infestation of the non-native aquatic macrophyte, fanwort (*Cabomba caroliniana*), in Plain Street Pond during a July 1997 synoptic survey. A review of DEP aquatic invasive species records revealed that the presence of *Myriophyllum* sp. was also noted during the synoptic survey.

The Aquatic Life Use for Plain Street Pond will continue to be assessed as Not Supporting. The generic Non-Native Aquatic Plants impairment is being removed since the species-specific Fanwort (*Cabomba caroliniana*) impairment is being added. An Alert is also being identified for the possible infestation of a non-native *Myriophyllum* species.

### **Biological Monitoring Information**

### Non-native Aquatic Species Presence

### MassDEP Non-Native Aquatic Invasive Species Records as of May 2021. (MassDEP 1997)

| Summary Statement                                                                 | Assessment Recommendation        |
|-----------------------------------------------------------------------------------|----------------------------------|
| As was previously reported, MassDEP staff identified an infestation of the non-   | Conduct an aquatic macrophyte    |
| native aquatic macrophyte, fanwort (Cabomba caroliniana), in Plain Street Pond    | survey in Plain Street Pond when |
| during a July 1997 synoptic survey. A review of DEP aquatic invasive species      | flowering heads are present to   |
| records revealed that the presence of Myriophyllum sp. was also noted during the  | determine if any non-native      |
| synoptic survey. An aquatic macrophyte survey should be conducted to determine    | species of Myriophyllum are      |
| whether any of the non-native species of Myriophyllum are present in the lake and | infesting the pond.              |
| an Alert should be issued.                                                        |                                  |

### Fish Consumption

| 2022 Use Attainment                                                                          | Alert                      |
|----------------------------------------------------------------------------------------------|----------------------------|
| Not Assessed                                                                                 | NO                         |
| 2022 Use Attainment Summary                                                                  |                            |
| No fish toxics sampling has been conducted in Plain Street Pond; therefore, the Fish Consump | otion Use is Not Assessed. |

### Aesthetic

| 2022 Use Attainment                                                                 | Alert                                |
|-------------------------------------------------------------------------------------|--------------------------------------|
| Not Supporting                                                                      | NO                                   |
| 2022 Use Attainment Summary                                                         |                                      |
| Since no new data are available, the Aesthetic Use for Plain Street Pond will conti | nue to be assessed as Not Supporting |
| with the Algae impairment being carried forward.                                    |                                      |

### **Primary Contact Recreation**

| 2022 Use Attainment                                                                                       | Alert          |
|-----------------------------------------------------------------------------------------------------------|----------------|
| Not Supporting                                                                                            | NO             |
| 2022 Use Attainment Summary                                                                               |                |
| Since no new data are available, the Primary Contact Recreational Use for Plain Street Pond will continue | to be assessed |
| as Not Supporting with the Algae impairment being carried forward.                                        |                |

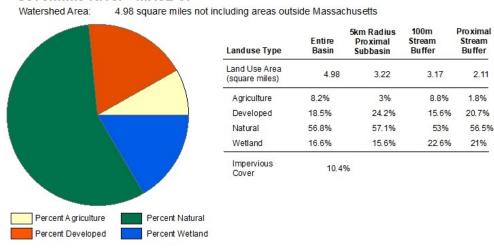
### Secondary Contact Recreation

| 2022 Use Attainment                                                                                       | Alert    |
|-----------------------------------------------------------------------------------------------------------|----------|
| Not Supporting                                                                                            | NO       |
| 2022 Use Attainment Summary                                                                               |          |
| Since no new data are available, the Secondary Contact Recreational Use for Plain Street Pond will contin | ue to be |
| assessed as Not Supporting with the Algae impairment being carried forward.                               |          |

# Scotts Brook (MA52-09)

| Location:                 | Headwaters, north of High Street, North Attleborough to mouth at confluence with Ten Mile River, North Attleborough. |
|---------------------------|----------------------------------------------------------------------------------------------------------------------|
| AU Type:                  | RIVER                                                                                                                |
| AU Size:                  | 2.1 MILES                                                                                                            |
| Classification/Qualifier: | В                                                                                                                    |

No usable data were available for Scotts Brook (MA52-09) for the 2022 Integrated Reporting cycle, therefore its category, use attainments, impairments, associated actions, and sources remain unchanged from the previous cycle.


| 2018/20 AU<br>Category | 2022 AU<br>Category | Impairment                 | ATTAINS Action ID | Impairment<br>Change<br>Summary |
|------------------------|---------------------|----------------------------|-------------------|---------------------------------|
| 5                      | 5                   | (Dewatering*)              |                   | Unchanged                       |
| 5                      | 5                   | Escherichia Coli (E. Coli) |                   | Unchanged                       |

| Impairment                 | Source (Confirmed Y/N) | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|----------------------------|------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| (Dewatering*)              | Source Unknown (N)     | Χ                                        |                  |           |                               |                                 |
| Escherichia Coli (E. Coli) | Source Unknown (N)     |                                          |                  |           | Х                             |                                 |

# Sevenmile River (MA52-07)

| Location:                 | Headwaters, outlet Hoppin Hill Reservoir, North Attleborough to inlet Orrs Pond, |
|---------------------------|----------------------------------------------------------------------------------|
|                           | Attleboro (through former 2006 segment: Luther Reservoir MA52025).               |
| AU Type:                  | RIVER                                                                            |
| AU Size:                  | 3.2 MILES                                                                        |
| Classification/Qualifier: | A: PWS, ORW                                                                      |

## Sevenmile River - MA52-07



|            |          |                            |                   | Impairment |
|------------|----------|----------------------------|-------------------|------------|
| 2018/20 AU | 2022 AU  |                            |                   | Change     |
| Category   | Category | Impairment                 | ATTAINS Action ID | Summary    |
| 5          | 5        | Escherichia Coli (E. Coli) |                   | Unchanged  |

| Impairment                 | Source (Confirmed Y/N) | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|----------------------------|------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| Escherichia Coli (E. Coli) | Source Unknown (N)     |                                          |                  |           | Χ                             |                                 |

### Recommendations

### **2022 Recommendations**

ALU: Conduct an aquatic macrophyte survey in the Luther Reservoir impoundment of the Sevenmile River (MA52-07) when flowering heads are present, to determine if any non-native species of *Myriophyllum* are infesting the reservoir.

### Designated Use Attainment Decisions

### Fish, other Aquatic Life and Wildlife

| 2022 Use Attainment      | Alert |
|--------------------------|-------|
| Insufficient Information | YES   |

### 2022 Use Attainment Summary

MassDFG biologists conducted backpack electrofishing in this Sevenmile River AU (MA52-07) upstream of Draper Ave, North Attleboro (SampleID 5460) in June 2015. Although pumpkinseed (a moderately pollution tolerant macrohabitat generalist) was present and comprised half of the sample in the low gradient habitat, only four fish were captured. During validation of MassDEP aquatic invasive species records, it was noted that DEP biologists listed "*Myriophyllum* sp." on the field sheet for a July 1997 synoptic survey of Luther Reservoir, located just downstream of Old Post Road in Attleboro (now part of this Sevenmile River AU - MA52-07). Too limited data are available to assess the status of the Aquatic Life Use for this Sevenmile River AU (MA52-07), so it is assessed as Insufficient Information. An Alert is being identified for the possible infestation of a non-native *Myriophyllum* species in the Luther Reservoir impoundment.

### **Monitoring Stations**

| Station Code | Organization | Туре      | Water Body | Station Description              | Latitude | Longitude |
|--------------|--------------|-----------|------------|----------------------------------|----------|-----------|
| 5460         | MassDFG      | Fish      | Seven Mile | Draper Ave (US), North Attleboro | 41.95194 | -71.34177 |
|              |              | Community | River      |                                  |          |           |

### **Biological Monitoring Information**

### Fish Community Data and DELTS

### Fish Community Data (2012-2019) Provided by MassDFG. (MassDFG 2020) (MassDEP Undated 2)

[Sample Type: TP= Total Pickup, SP= Selective Pickup, Method: BT=Boat Shocking, BP= Backpack Shocking, BG= Barge Shocking, SE= Seine, SL= Snorkel, NS= Not Stated, MT= Minnow Trap, GN= Gillnet, FY= Fyke Net, Gradient: H = High, L = Low; I/MT MG= Intolerant/Moderately Tolerant Macrohabitat Generalist]

[Species List: B = Bluegill, GS = Golden Shiner, P = Pumpkinseed]

| Sample ID | Sample Date | Method | Sample Type | Gradient | Total Taxa | Total Ind | Cold Ind % | Fluvial Taxa | Fluvial Ind % | Intol Ind % | I/MT MG Taxa | I/MT MG Ind % | Notables | CFR | Species List |
|-----------|-------------|--------|-------------|----------|------------|-----------|------------|--------------|---------------|-------------|--------------|---------------|----------|-----|--------------|
| 5460      | 06/17/15    | BP     | TP          | L        | 3          | 4         | 0%         | 0            | 0%            | 0%          | 1            | 50%           | No       | No  | B, GS, P,    |

### Non-native Aquatic Species Presence

### MassDEP Non-Native Aquatic Invasive Species Records as of May 2021. (MassDEP 1997)

| Summary Statement                                                          | Assessment Recommendation                    |
|----------------------------------------------------------------------------|----------------------------------------------|
| During validation of MassDEP aquatic invasive species records, it was      | Conduct an aquatic macrophyte survey in      |
| noted that DEP biologists listed "Myriophyllum sp." on the field sheet for | the Luther Reservoir impoundment of the      |
| a July 1997 synoptic survey of Luther Reservoir (now part of Sevenmile     | Sevenmile River (MA52-07) when flowering     |
| River MA52-07). An aquatic macrophyte survey should be conducted to        | heads are present to determine if any non-   |
| determine whether any of the non-native Myriophyllum species are           | native species of Myriophyllum are infesting |
| infesting the pond and an Alert should be issued.                          | the reservoir.                               |

### Fish Consumption

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Assessed        | NO    |

### **2022 Use Attainment Summary**

Although fish toxics sampling was done in 1984 just upstream of Draper Avenue, North Attleboro and in 1986 just downstream of Sunset Road, Attleboro in the Luther Reservoir impoundment, no site-specific fish consumption advisory is in place, therefore the Fish Consumption Use for this Sevenmile River AU (MA52-07) is Not Assessed.

### Aesthetic

| 2022 Use Attainment                                                                                                 | Alert |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| Not Assessed                                                                                                        | NO    |  |  |  |
| 2022 Use Attainment Summary                                                                                         |       |  |  |  |
| No data are available to assess the status of the Aesthetic Use for this Sevenmile River AU (MA52-07), so it is Not |       |  |  |  |
| Assessed.                                                                                                           |       |  |  |  |

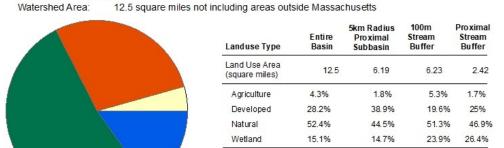
### **Primary Contact Recreation**

| 2022 Use Attainment                                                                                                       | Alert |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
| Not Supporting                                                                                                            | NO    |  |  |  |  |
| 2022 Use Attainment Summary                                                                                               |       |  |  |  |  |
| No recent bacteria data are available to assess the status of the Primary Contact Recreation Use for this Sevenmile River |       |  |  |  |  |

No recent bacteria data are available to assess the status of the Primary Contact Recreation Use for this Sevenmile River AU (MA52-07), so it will continue to be assessed as Not Supporting with the *E. coli* impairment being carried forward.

### **Secondary Contact Recreation**

| 2022 Use Attainment                                                                                                   | Alert |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
| Not Assessed                                                                                                          | NO    |  |  |  |  |
| 2022 Use Attainment Summary                                                                                           |       |  |  |  |  |
| No recent bacteria data are available to assess the status of the Secondary Contact Recreation Use for this Sevenmile |       |  |  |  |  |
| River AU (MA52-07), so it is Not Assessed.                                                                            |       |  |  |  |  |


# Sevenmile River (MA52-08)

| Location:                 | Outlet Orrs Pond, Attleboro to mouth at confluence with Ten Mile River, Pawtucket, |  |  |
|---------------------------|------------------------------------------------------------------------------------|--|--|
|                           | Rhode Island.                                                                      |  |  |
| AU Type:                  | RIVER                                                                              |  |  |
| AU Size:                  | 3.4 MILES                                                                          |  |  |
| Classification/Qualifier: | В                                                                                  |  |  |

### Sevenmile River - MA52-08

Percent A griculture

Percent Developed



Impervious

Cover

Percent Natural

Percent Wetland

| 2018/20 AU<br>Category | 2022 AU<br>Category | Impairment                 | ATTAINS Action ID | Impairment<br>Change<br>Summary |
|------------------------|---------------------|----------------------------|-------------------|---------------------------------|
| 5                      | 5                   | Benthic Macroinvertebrates |                   | Added                           |
| 5                      | 5                   | Escherichia Coli (E. Coli) |                   | Unchanged                       |
| 5                      | 5                   | Fecal Coliform             |                   | Unchanged                       |

15.4%

| Impairment                 | Source (Confirmed Y/N) | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|----------------------------|------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| Benthic Macroinvertebrates | Source Unknown (N)     | Х                                        |                  |           |                               |                                 |
| Escherichia Coli (E. Coli) | Source Unknown (N)     |                                          |                  |           | Х                             |                                 |
| Fecal Coliform             | Source Unknown (N)     |                                          |                  |           | Х                             |                                 |

### Recommendations

### 2022 Recommendations

ALU: Additional benthic macroinvertebrates sampling should be conducted to clarify the extent of impairment to the benthic community in the Sevenmile River (MA52-08).

### Designated Use Attainment Decisions

### Fish, other Aquatic Life and Wildlife

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | NO    |
|                     |       |

#### **2022 Use Attainment Summary**

Benthic and water quality monitoring was conducted at one site along this Sevenmile River AU (MA52-08) by MassDEP staff approximately 440 ft downstream from Roy Avenue, Attleboro (W2179, B0702) as part of the MAP2 monitoring project during the summer of 2011. The benthic sample (B0702) IBI score was indicative of moderately degraded conditions (54). The water quality monitoring data (including both deployed probe and discrete sampling efforts at Station W2179) were indicative of good conditions: minimum DO 5.1mg/L, with a minimum 3-5DADMin of 5.6mg/L (three 3-5-day deploys), the maximum temperature was 26°C (7-DADM always <27.7°C, max 24hr rolling average 24.4°C during the continuous probe deployment from June 1 to September 15, 2011), discrete pH measurements ranged from 6.7 to 6.8SU (n=6). There were generally no physico-chemical indicators of nutrient enrichment issues (max diel DO shift was a little high at 3.2mg/L, but max DO saturation was only 107.1%, there were no observations of dense/very dense filamentous algae, and the seasonal average total phosphorus concentration was low -- only 0.026mg/L (n=5, max 0.03mg/L). Specific conductance and chloride concentrations were both low (max 447μS/cm, n=6 and 130mg/L n=5, respectively), as was total ammonia-nitrogen (TAN) (max 0.07mg/L, n=5 with no toxicity estimated). Aside from one exceedance of the chronic criterion for lead (TU of 1.6 in September 2011) there were no other acute or chronic metals criteria exceedances (n=3) (note, dissolved Al data were compared to total recoverable Al criteria, so exceedances cannot be ruled out). The Aquatic Life Use of this Sevenmile River AU (MA52-08) is assessed as Not Supporting based on the moderately degraded condition of the benthic community.

### **Monitoring Stations**

| Station Code | Organization | Туре             | Water Body          | Station Description                                                                                                                                    | Latitude  | Longitude  |
|--------------|--------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|
| B0702        | MassDEP      | Benthic          | Sevenmile<br>River/ | [approximately 135 meters downstream from Roy Avenue, Attleboro, MA]                                                                                   | 41.917866 | -71.352161 |
| W0183        | MassDEP      | Water<br>Quality | Sevenmile<br>River  | [County Street, Attleboro]                                                                                                                             | 41.901258 | -71.343429 |
| W0900        | MassDEP      | Water<br>Quality | Sevenmile<br>River  | [Pitas Avenue, Attleboro]                                                                                                                              | 41.910298 | -71.351910 |
| W2179        | MassDEP      | Water<br>Quality | Sevenmile<br>River  | [approximately 440 feet downstream from Roy Avenue, Attleboro]                                                                                         | 41.917866 | -71.352161 |
| W2417        | MassDEP      | Water<br>Quality | Sevenmile<br>River  | [approximately 120 feet upstream of confluence with Ten Mile River, Pawtucket, Rhode Island]                                                           | 41.894620 | -71.340481 |
| W2421        | MassDEP      | Water<br>Quality | Sevenmile<br>River  | [approximately 650 feet downstream/south of Pitas Avenue, Attleboro (upstream of influence of unnamed tributary draining Sweedens Swamp)]              | 41.908564 | -71.351341 |
| W2423        | MassDEP      | Water<br>Quality | Sevenmile<br>River  | [Roy Avenue, Attleboro]                                                                                                                                | 41.918904 | -71.352300 |
| W2424        | MassDEP      | Water<br>Quality | Sevenmile<br>River  | [Read Street, Attleboro]                                                                                                                               | 41.925726 | -71.341611 |
| W2493        | MassDEP      | Water<br>Quality | Sevenmile<br>River  | [approximately 2200 feet downstream<br>(southeast) of County Street, Attleboro, MA<br>(just downstream of Crest Drive pump station,<br>Pawtucket, RI)] | 41.898152 | -71.339842 |

| Station Code | Organization | Туре    | Water Body | Station Description                           | Latitude  | Longitude  |
|--------------|--------------|---------|------------|-----------------------------------------------|-----------|------------|
| W2587        | MassDEP      | Water   | Sevenmile  | [325 feet downstream/south of Route 95,       | 41.904353 | -71.346752 |
|              |              | Quality | River      | Attleboro]                                    |           |            |
| W2659        | MassDEP      | Water   | Sevenmile  | [approximately 910 feet upstream of Route 95, | 41.906938 | -71.349929 |
|              |              | Quality | River      | Attleboro]                                    |           |            |

### **Biological Monitoring Information**

#### Benthic Macroinvertebrate Data

### MassDEP Benthic Macroinvertebrate Data (2011-2017). (MassDEP Undated 4)

[Index Biological Condition Class: E= Exceptional, S= Satisfactory, MD= Moderately Degraded, SD= Severely Degraded; High Gradient IBI Thresholds: E= 100-75, S= 74-55, MD= 54-35, SD= 34-0; Low Gradient IBI Thresholds: E= 100-81, S= 80-62, MD= 61-38, SD= 37-0; R qualifier = Rarefaction (100ct) <55]

| Station<br>Code | Collection<br>Date | Collection<br>Method | Index Type             | Organism<br>Count | Index<br>Score | Index Biological<br>Condition Class |   |
|-----------------|--------------------|----------------------|------------------------|-------------------|----------------|-------------------------------------|---|
|                 |                    |                      |                        |                   |                |                                     | 1 |
| B0702           | 08/01/11           | RBP multihab         | Statewide_Low_Gradient | 98                | 54             | MD                                  |   |

### Physico-chemical Water Quality Information

### DO, pH, Temperature

MassDEP Short-term Continuous Dissolved Oxygen Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5) [Note: Most deploys 3-5 days in length; Day Count= total # of days over all deploys; XDADMin= 3-5 Day Average of the Daily Minima, XDADA= 3-5 Day Average of the Daily Average, CW= Coldwater, WW= Warmwater]

| Station Code | Data Year | Deploys Count | Day Count | DO Min (mg/L) | Min XDADMin (mg/L) | Min XDADA (mg/L) | Delta DO Max (mg/L) | Count CW XDADMin<br><6.0 | Count CW 1Day Min<br><5.0 | Count WW Early Life<br>Stages XDADA <6.5 | Count WW Early Life<br>Stages 1Day Min <5.0 | Count WW Other Life<br>Stages XDADMin <5.0 | Count WW Other Life<br>Stages 1Day Min <4.0 |   |
|--------------|-----------|---------------|-----------|---------------|--------------------|------------------|---------------------|--------------------------|---------------------------|------------------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|---|
| W2179        | 2011      | 3             | 12        | 5.1           | 5.6                | 6.4              | 3.2                 | 1                        | 0                         | 0                                        | 0                                           | 0                                          | 0                                           | ì |

### MassDEP Discrete Dissolved Oxygen Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[CW= Coldwater, WW= Warmwater]

|         |            |                 |       |        | DO     |         | Count WW          | Count WW    |
|---------|------------|-----------------|-------|--------|--------|---------|-------------------|-------------|
| Station |            |                 | DO    | DO Min | Avg    | Count   | Early Life Stages | Other Life  |
| Code    | Start Date | <b>End Date</b> | Count | (mg/L) | (mg/L) | CW <5.0 | <5.0              | Stages <4.0 |
| W2179   | 05/25/11   | 10/11/11        | _     | 7.1    | 7.4    | ^       |                   | 0           |

MassDEP Long-term Continuous Temperature Data (Summer Index 2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[Summer Index is June 1 – Sept 15; Max Daily Mean= Maximum 24-Hour Average, 7DADM= 7-Day Average of the Daily Maxima, 7DADA= 7-Day Average of the Daily Average, CW= Coldwater, WW= Warmwater; NOTE: In the case of more than one row of data in the same year for a site, different types of temperature probes were deployed.]

| Station Code | Start Date | End Date | Index Count | 7day Count | Max Daily Mean (°C) | Max Temp (°C) | Мах 7DADM (°C) | Max 7DADA (°C) | Count CWTier1 7DADM<br>>20 | Count CWTier1 Daily<br>Mean >23.5 | Count CWTier2 7DADA | Count CWTier2 Daily<br>Mean >24.1 | Count WW 7DADM<br>>27.7 | Count WW Daily Mean >28.3 |
|--------------|------------|----------|-------------|------------|---------------------|---------------|----------------|----------------|----------------------------|-----------------------------------|---------------------|-----------------------------------|-------------------------|---------------------------|
| W2179        | 06/01/11   | 09/15/11 | 107         | 107        | 24.3                | 26.0          | 24.3           | 22.8           | 76                         | 2                                 | 41                  | 1                                 | 0                       | 0                         |

# MassDEP Short-term Continuous Temperature Data (Summer Index 2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[Summer Index is June 1 – Sept 15; Most Deploys 3-5 Days in Length; Day Count= total # of days over all deploys; Max Daily Mean= Maximum 24-Hour Average, XDADM= 3-5 Day Average of the Daily Maxima, XDADA= 3-5 Day Average of the Daily Average, CW= Coldwater, WW= Warmwater]

| Station Code | Data Year | Deploys Count | Day Count | Max Daily Mean (°C) | Max Temp (°C) | Мах ХDADM (°С) | Max XDADA (°C) | Count CWTier1<br>XDADM >20 | Count CWTier1 Daily<br>Mean >23.5 | Count CWTier2<br>XDADA >21 | Count CWTier2 Daily<br>Mean >24.1 | Count WW XDADM >27.7 | Count WW Daily<br>Mean >28.3 |
|--------------|-----------|---------------|-----------|---------------------|---------------|----------------|----------------|----------------------------|-----------------------------------|----------------------------|-----------------------------------|----------------------|------------------------------|
| W2179        | 2011      | 3             | 12        | 22.5                | 24.0          | 22.8           | 21.8           | 2                          | 0                                 | 1                          | 0                                 | 0                    | 0                            |

# 24-hour Rolling Average Calculations for MassDEP Short- and Long-term Continuous Temperature Data (Summer Index 2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[Summer Index is June 1 – Sept 15; CW= Coldwater, WW= Warmwater; NOTE: In the case of more than one row of data in the same year for a site, different types of temperature probes were deployed.]

|         | ,,       |          |          |         |           |              |              |          |
|---------|----------|----------|----------|---------|-----------|--------------|--------------|----------|
|         |          |          |          |         | Max 24hr  | Count        | Count        | Count WW |
|         |          |          | Count    | 24hr    | Avg       | CWTier1 24hr | CWTier2 24hr | 24hr Avg |
| Station | Start    |          | Days     | Rolling | Rolling   | Avg Rolling  | Avg Rolling  | Rolling  |
| Code    | Date     | End Date | Deployed | Count   | Temp (°C) | >23.5 °C     | >24.1 °C     | >28.3°C  |
| W2179   | 06/01/11 | 09/15/11 | 107      | 5136    | 24.4      | 137          | 37           | 0        |
| W2179   | 06/17/11 | 08/24/11 | 68       | 577     | 23.5      | 0            | 0            | 0        |

### MassDEP Discrete Temperature Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[Summer Index is June 1 – Sept 15; CW= Coldwater, WW= Warmwater]

|         |          |                 |       |       | Temp |          |        |        |          |                 |
|---------|----------|-----------------|-------|-------|------|----------|--------|--------|----------|-----------------|
| Station | Start    |                 | Temp  | Index | Max  | Temp     | Count  | Count  | Count    | <b>Count WW</b> |
| Code    | Date     | <b>End Date</b> | Count | Count | (°C) | Avg (°C) | CW >20 | CW >22 | WW >28.3 | >30.3           |
| W2179   | 05/25/11 | 10/11/11        | 8     | 6     | 22.7 | 18.7     | 2      | 1      | 0        | 0               |

### MassDEP Discrete pH Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

| Station<br>Code | Start Date | End Date | pH Count | pH Min<br>(SU) | pH Max<br>(SU) | pH Count<br><6.5 & >8.3 | pH Count<br><6.0 & >8.8 |
|-----------------|------------|----------|----------|----------------|----------------|-------------------------|-------------------------|
| W2179           | 05/25/11   | 10/11/11 | 6        | 6.7            | 6.8            | 0                       | 0                       |

### Nutrients (Primary Producer Screening, Physico-chemical Screening)

MassDEP Nutrient Enrichment Indicator Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[Summer seasonal total phosphorus data collected May-Sept]

| Station | Data | Seasonal<br>TP | Seasonal<br>TP Min | Seasonal<br>TP Max | Seasonal<br>TP Avg | Delta<br>DO<br>Max | Delta<br>DO<br>Avg | DO<br>Sat<br>Max | pH<br>Max | Count<br>Algal | Dense/V. Dense Film/Fila. |
|---------|------|----------------|--------------------|--------------------|--------------------|--------------------|--------------------|------------------|-----------|----------------|---------------------------|
| Code    | Year | Count          | (mg/L)             | (mg/L)             | (mg/L)             | (mg/L)             | (mg/L)             | (%)              | (SU)      | Obsv.          | Algae                     |
| W0183   | 2013 |                |                    |                    |                    |                    |                    |                  |           | 3              | 0                         |
| W0183   | 2014 |                |                    |                    |                    |                    |                    |                  |           | 2              | 0                         |
| W0183   | 2015 |                |                    |                    |                    |                    |                    |                  |           | 3              | 0                         |
| W0900   | 2016 |                |                    |                    |                    |                    |                    |                  |           | 1              | 0                         |
| W0900   | 2017 |                |                    |                    |                    |                    |                    |                  |           | 2              | 0                         |
| W2179   | 2011 | 5              | 0.023              | 0.030              | 0.026              | 3.2                | 1.4                | 107.1            | 6.8       | 2              | 0                         |
| W2417   | 2013 |                |                    |                    |                    |                    |                    |                  |           | 3              | 0                         |
| W2417   | 2014 |                |                    |                    |                    |                    |                    |                  |           | 2              | 0                         |
| W2421   | 2013 |                |                    |                    |                    |                    |                    |                  |           | 2              | 0                         |
| W2421   | 2016 |                |                    |                    |                    |                    |                    |                  |           | 2              | 0                         |
| W2421   | 2017 |                |                    |                    |                    |                    |                    |                  |           | 1              | 0                         |
| W2423   | 2013 |                |                    |                    |                    |                    |                    |                  |           | 2              | 0                         |
| W2424   | 2013 |                |                    |                    |                    |                    |                    |                  |           | 2              | 0                         |
| W2493   | 2014 |                |                    |                    |                    |                    |                    |                  |           | 2              | 0                         |
| W2587   | 2015 |                |                    |                    |                    |                    |                    |                  |           | 4              | 0                         |
| W2587   | 2016 |                |                    |                    |                    |                    |                    |                  |           | 2              | 0                         |
| W2659   | 2016 |                |                    |                    |                    |                    |                    |                  |           | 2              | 0                         |

### Toxics and other pollutants (metals, ammonia, chloride, chlorine)

MassDEP Clean Metals Water Column Data (2011-2018), Acute Criteria Violations. (MassDEP Undated 7) (MassDEP Undated 5)

[CMC= Criterion Maximum Concentration, TU= Toxic Unit]

| Station<br>Code | Data<br>Year |   |   | Cd CMC<br>TU >1 | Cr III CMC<br>TU >1 | Cu CMC<br>TU >1 | Pb CMC<br>TU >1 |   | Ag CMC<br>TU >1 | Zn CMC<br>TU >1 |
|-----------------|--------------|---|---|-----------------|---------------------|-----------------|-----------------|---|-----------------|-----------------|
| W2179           | 2011         | 3 | 0 | 0               | 0                   | 0               | 0               | 0 | 0               | 0               |

# MassDEP Clean Metals Water Column Data (2011-2018), Chronic Criteria Violations. (MassDEP Undated 7) (MassDEP Undated 5)

[CCC= Criterion Continuous Concentration, TU= Toxic Unit]

| Station<br>Code |      |   |   |   | Cr III CCC<br>TU >1 |   |   | Ni CCC<br>TU >1 | Se CCC<br>TU >1 |   |
|-----------------|------|---|---|---|---------------------|---|---|-----------------|-----------------|---|
| W2179           | 2011 | 3 | 0 | 0 | 0                   | 0 | 1 | 0               | 0               | 0 |

# MassDEP Clean Metals Water Column Data (2011-2018), Selected TU Calculations. (MassDEP Undated 7) (MassDEP Undated 5)

[CMC= Criterion Maximum Concentration, CCC= Criterion Continuous Concentration, TU= Toxic Unit]

| Station |             |           |           |           |           |           |           |
|---------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Code    | Sample Date | Cd CMC TU | Cd CCC TU | Cu CMC TU | Cu CCC TU | Pb CMC TU | Pb CCC TU |
| W2179   | 07/19/11    | 0.2       | 0.4       | 0.3       | 0.42      | 0.0       | 0.4       |
| W2179   | 08/24/11    | 0.2       | 0.5       | 0.2       | 0.27      | 0.0       | 0.5       |
| W2179   | 09/08/11    | 0.3       | 0.6       | 0.5       | 0.64      | 0.1       | 1.6       |

### MassDEP Dissolved Aluminum Water Column Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[Since only dissolved aluminum data were available, these data were compared to the default freshwater criteria for total recoverable aluminum (TRA), presented in Appendix E of MassDEP's 2022 CALM. As dissolved Al is a fraction of TRA, an exceedance count of 0 does not rule out violations of the TRA criteria. CMC= Criterion Maximum Concentration, CCC= Criterion Continuous Concentration, TU= Toxic Unit]

|       |      | Dissolved<br>Al Count |       | Al Max<br>(mg/L) |       |     | AI CCC<br>TU Max | AI CMC<br>TU >1 | AI CCC<br>TU >1 |
|-------|------|-----------------------|-------|------------------|-------|-----|------------------|-----------------|-----------------|
| W2179 | 2011 | 3                     | 0.007 | 0.034            | 0.016 | 0.1 | 0.1              | 0               | 0               |

### MassDEP Total Ammonia Nitrogen (TAN) Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[TAN= NH3 + NH4+]

| Station<br>Code | Data<br>Year | TAN<br>Count | TAN Min<br>(mg/L) | TAN Max<br>(mg/L) | TAN Avg<br>(mg/L) | Count TAN >Chronic | Count TAN >Acute |
|-----------------|--------------|--------------|-------------------|-------------------|-------------------|--------------------|------------------|
| W2179           | 2011         | 5            | 0.020             | 0.070             | 0.044             | 0                  | 0                |

### MassDEP Chloride Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

|         |      |          |            |            |            | Count    | Count    |
|---------|------|----------|------------|------------|------------|----------|----------|
| Station | Data | Chloride | Chloride   | Chloride   | Chloride   | Chloride | Chloride |
| Code    | Year | Count    | Min (mg/L) | Max (mg/L) | Avg (mg/L) | >230     | >860     |
| W2179   | 2011 | 5        | 93         | 130        | 109        | 0        | 0        |

# MassDEP Discrete Specific Conductance Data (2011-2018) Compared to Estimated Chloride Criteria. (MassDEP Undated 7) (MassDEP Undated 5)

| Station Code | Start Date | End Date | SpCond Count | SpCond Min<br>(µs/cm) | SpCond Max<br>(µs/cm) | Count SpCond<br>>904 | Count SpCond<br>>994 | Count SpCond<br>>3193 | Count SpCond<br>>3512 | Consecutive<br>sets >904 | Consecutive<br>sets >994 |
|--------------|------------|----------|--------------|-----------------------|-----------------------|----------------------|----------------------|-----------------------|-----------------------|--------------------------|--------------------------|
| W2179        | 05/25/11   | 10/11/11 | 6            | 418                   | 447                   | 0                    | 0                    | 0                     | 0                     | 0                        | 0                        |

### Fish Consumption

| 2022 Use Attainment                                                                                                       | Alert |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|
| Not Assessed                                                                                                              | NO    |  |  |  |  |  |
| 2022 Use Attainment Summary                                                                                               |       |  |  |  |  |  |
| Although fish toxics sampling was done in 1986 just upstream of Read Street, Attleboro, no site-specific fish consumption |       |  |  |  |  |  |

advisory is in place, therefore the Fish Consumption Use for this Sevenmile River AU (MA52-08) is Not Assessed.

### Aesthetic

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Fully Supporting            | YES   |
| 2022 Use Attainment Summary |       |

MassDEP staff recorded aesthetics observations at eleven sites along this Sevenmile River AU (MA52-08) in Attleboro between the summers of 2013 and 2017 (n=45) as follows: at Read St (W2424) (2013), Roy Avenue (W2423) (2013), ~ 440 ft downstream from Roy Avenue (W2179) (2011), due east between the eastern ends of Lockwood and Simpson avenues (W2740) (2017), Pitas Avenue (W0900) (2016, 2017), ~ 650 ft downstream of Pitas Avenue (W2421) (2013, 2016, 2017), ~ 910 ft upstream of Rt. 95 (W2659) (2016), ~ 325 ft downstream of Rt. 95 (W2587) (2015, 2016), County St. (W0183) (2013-2015), ~ 2200 ft downstream of County St (W2493) (2014), ~ 120 ft upstream of confluence with Ten Mile River, Pawtucket, RI (W2417) (2013, 2014). There were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DWM-WPP field sampling crews during the surveys at most of the stations, although the water was observed to be moderately turbid at County St. (W0183) on all site visits in 2013 and 2015 (n=7). The Aesthetics Use for Sevenmile River (MA52-08) is assessed as Fully Supporting, with an Alert identified due to the moderate turbidity observed at County St. in 2013 and 2015.

### *Monitoring Stations*

| Station |              |         |            |                                                     |           |            |
|---------|--------------|---------|------------|-----------------------------------------------------|-----------|------------|
| Code    | Organization | Type    | Water Body | Station Description                                 | Latitude  | Longitude  |
| W0183   | MassDEP      | Water   | Sevenmile  | [County Street, Attleboro]                          | 41.901258 | -71.343429 |
|         |              | Quality | River      |                                                     |           |            |
| W0900   | MassDEP      | Water   | Sevenmile  | [Pitas Avenue, Attleboro]                           | 41.910298 | -71.351910 |
|         |              | Quality | River      |                                                     |           |            |
| W2179   | MassDEP      | Water   | Sevenmile  | [approximately 440 feet downstream from Roy         | 41.917866 | -71.352161 |
|         |              | Quality | River      | Avenue, Attleboro]                                  |           |            |
| W2417   | MassDEP      | Water   | Sevenmile  | [approximately 120 feet upstream of confluence with | 41.894620 | -71.340481 |
|         |              | Quality | River      | Ten Mile River, Pawtucket, Rhode Island]            |           |            |
| W2421   | MassDEP      | Water   | Sevenmile  | [approximately 650 feet downstream/south of Pitas   | 41.908564 | -71.351341 |
|         |              | Quality | River      | Avenue, Attleboro (upstream of influence of         |           |            |
|         |              |         |            | unnamed tributary draining Sweedens Swamp)]         |           |            |
| W2423   | MassDEP      | Water   | Sevenmile  | [Roy Avenue, Attleboro]                             | 41.918904 | -71.352300 |
|         |              | Quality | River      |                                                     |           |            |
| W2424   | MassDEP      | Water   | Sevenmile  | [Read Street, Attleboro]                            | 41.925726 | -71.341611 |
|         |              | Quality | River      |                                                     |           |            |
| W2493   | MassDEP      | Water   | Sevenmile  | [approximately 2200 feet downstream (southeast) of  | 41.898152 | -71.339842 |
|         |              | Quality | River      | County Street, Attleboro, MA (just downstream of    |           |            |
|         |              |         |            | Crest Drive pump station, Pawtucket, RI)]           |           |            |
| W2587   | MassDEP      | Water   | Sevenmile  | [325 feet downstream/south of Route 95, Attleboro]  | 41.904353 | -71.346752 |
|         |              | Quality | River      |                                                     |           |            |
| W2659   | MassDEP      | Water   | Sevenmile  | [approximately 910 feet upstream of Route 95,       | 41.906938 | -71.349929 |
|         |              | Quality | River      | Attleboro]                                          |           |            |
| W2740   | MassDEP      | Water   | Sevenmile  | [due east between the eastern ends of Lockwood and  | 41.914846 | -71.352554 |
|         |              | Quality | River      | Simpson avenues, Attleboro]                         |           |            |

### Aesthetic Observations

Aesthetics Summary Statements for MassDEP Stations (2011-2018) (MassDEP Undated 5)

|                                         |                    |      | Field |                                                                                                                                                 |
|-----------------------------------------|--------------------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Station                                 |                    | Data | Sheet |                                                                                                                                                 |
| Code                                    | Waterbody          | Year | Count | Aesthetics Summary Statement                                                                                                                    |
| W0183                                   | Sevenmile          | 2013 | 3     | The Aesthetics use for this Sevenmile River AU (MA52-08) is assessed as                                                                         |
|                                         | River              |      |       | Fully Supporting based on observations (generally no odors, deposits, or                                                                        |
|                                         |                    |      |       | growths) by MassDEP staff during field surveys at station W0183 in                                                                              |
|                                         |                    |      |       | summer 2013 (n=3), 2014 (n=2), and 2015 (n=4). However, the use is                                                                              |
|                                         |                    |      |       | identified with an Alert status since the water was moderately turbid on all                                                                    |
|                                         |                    |      |       | site visits in 2013 and 2015.                                                                                                                   |
| W0183                                   | Sevenmile          | 2014 | 2     | The Aesthetics use for this Sevenmile River AU (MA52-08) is assessed as                                                                         |
|                                         | River              |      |       | Fully Supporting based on observations (generally no odors, deposits, or                                                                        |
|                                         |                    |      |       | growths) by MassDEP staff during field surveys at station W0183 in                                                                              |
|                                         |                    |      |       | summer 2013 (n=3), 2014 (n=2), and 2015 (n=4). However, the use is                                                                              |
|                                         |                    |      |       | identified with an Alert status since the water was moderately turbid on all                                                                    |
|                                         |                    |      |       | site visits in 2013 and 2015.                                                                                                                   |
| W0183                                   | Sevenmile          | 2015 | 4     | The Aesthetics use for this Sevenmile River AU (MA52-08) is assessed as                                                                         |
|                                         | River              |      |       | Fully Supporting based on observations (generally no odors, deposits, or                                                                        |
|                                         |                    |      |       | growths) by MassDEP staff during field surveys at station W0183 in                                                                              |
|                                         |                    |      |       | summer 2013 (n=3), 2014 (n=2), and 2015 (n=4). However, the use is identified with an Alert status since the water was moderately turbid on all |
|                                         |                    |      |       | site visits in 2013 and 2015.                                                                                                                   |
| W0900                                   | Sevenmile          | 2016 | 1     | There are insufficient data available to assess the Aesthetics Use for the                                                                      |
| *************************************** | River              | 2010 | _     | Sevenmile River. There were generally no noted objectionable conditions                                                                         |
|                                         |                    |      |       | (odors, deposits, growths, or turbidity) recorded by MassDEP staff at                                                                           |
|                                         |                    |      |       | station W0900 during surveys in summer 2016 and 2017, however, data                                                                             |
|                                         |                    |      |       | were limited (n= 1 & 2 respectively).                                                                                                           |
| W0900                                   | Sevenmile          | 2017 | 2     | There are insufficient data available to assess the Aesthetics Use for the                                                                      |
|                                         | River              |      |       | Sevenmile River. There were generally no noted objectionable conditions                                                                         |
|                                         |                    |      |       | (odors, deposits, growths, or turbidity) recorded by MassDEP staff at                                                                           |
|                                         |                    |      |       | station W0900 during surveys in summer 2016 and 2017, however, data                                                                             |
|                                         |                    |      |       | were limited (n= 1 & 2 respectively).                                                                                                           |
| W2179                                   | Sevenmile          | 2011 | 6     | MassDEP aesthetics observations for station W2179/MAP2-004 on                                                                                   |
|                                         | River              |      |       | Sevenmile River can be summarized as follows: there were generally no                                                                           |
|                                         |                    |      |       | noted objectionable conditions (odors, deposits, growths, or turbidity)                                                                         |
| 14/2/17                                 | Covernile          | 2012 | 3     | recorded by DEP field sampling crews during summer 2011.  MassDEP aesthetics observations for station W2417 on Sevenmile River                  |
| W2417                                   | Sevenmile<br>River | 2013 | 3     | can be summarized as follows: there were generally no noted                                                                                     |
|                                         | Rivei              |      |       | objectionable conditions (odors, deposits, growths, or turbidity) recorded                                                                      |
|                                         |                    |      |       | by DEP field sampling crews during summer 2013.                                                                                                 |
| W2417                                   | Sevenmile          | 2014 | 2     | MassDEP aesthetics observations for station W2417 on Sevenmile River                                                                            |
| ,                                       | River              |      | _     | can be summarized as follows: there were generally no noted                                                                                     |
|                                         |                    |      |       | objectionable conditions (odors, deposits, growths, or turbidity) recorded                                                                      |
|                                         |                    |      |       | by DEP field sampling crews during summer 2014. However, there is                                                                               |
|                                         |                    |      |       | insufficient information to assess the Aesthetics Use since data were                                                                           |
|                                         |                    |      |       | limited (n=2).                                                                                                                                  |

| Station<br>Code | Waterbody          | Data<br>Year | Field<br>Sheet<br>Count | Aesthetics Summary Statement                                                                                                                                                                                                                                                                                                                                       |
|-----------------|--------------------|--------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W2421           | Sevenmile<br>River | 2013         | 2                       | MassDEP aesthetics observations for station W2421 on Sevenmile River can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2013. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=2). |
| W2421           | Sevenmile<br>River | 2016         | 2                       | MassDEP aesthetics observations for station W2421 on Sevenmile River can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2016. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=2). |
| W2421           | Sevenmile<br>River | 2017         | 2                       | MassDEP aesthetics observations for station W2421 on Sevenmile River can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2017. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=2). |
| W2423           | Sevenmile<br>River | 2013         | 2                       | MassDEP aesthetics observations for station W2423 on Sevenmile River can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2013. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=2). |
| W2424           | Sevenmile<br>River | 2013         | 2                       | MassDEP aesthetics observations for station W2424 on Sevenmile River can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2013. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=2). |
| W2493           | Sevenmile<br>River | 2014         | 2                       | MassDEP aesthetics observations for station W2493 on Sevenmile River can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2014. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=2). |
| W2587           | Sevenmile<br>River | 2015         | 4                       | MassDEP aesthetics observations for station W2587 on Sevenmile River can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2015.                                                                                                        |

| Station |                    | Data | Field<br>Sheet |                                                                                                                                                                                                                                                                                                                                                                    |
|---------|--------------------|------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Code    | Waterbody          | Year | Count          | Aesthetics Summary Statement                                                                                                                                                                                                                                                                                                                                       |
| W2587   | Sevenmile<br>River | 2016 | 2              | MassDEP aesthetics observations for station W2587 on Sevenmile River can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2016. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=2). |
| W2659   | Sevenmile<br>River | 2016 | 2              | MassDEP aesthetics observations for station W2659 on Sevenmile River can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2016. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=2). |
| W2740   | Sevenmile<br>River | 2017 | 2              | MassDEP aesthetics observations for station W2740 on Sevenmile River can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2017. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=2). |

### Observations of Filamentous/Film Algae at MassDEP Stations (2011-2018) (MassDEP Undated 7) (MassDEP Undated 5)

| Station |           |                   | Filamentous Algae | Dense/ Very Dense       |
|---------|-----------|-------------------|-------------------|-------------------------|
| Code    | Data Year | Field Sheet Count | Observations      | Film/ Filamentous Algae |
| W0183   | 2013      | 3                 | 3                 | 0                       |
| W0183   | 2014      | 2                 | 2                 | 0                       |
| W0183   | 2015      | 4                 | 3                 | 0                       |
| W0900   | 2016      | 1                 | 1                 | 0                       |
| W0900   | 2017      | 2                 | 2                 | 0                       |
| W2179   | 2011      | 6                 | 2                 | 0                       |
| W2417   | 2013      | 3                 | 3                 | 0                       |
| W2417   | 2014      | 2                 | 2                 | 0                       |
| W2421   | 2013      | 2                 | 2                 | 0                       |
| W2421   | 2016      | 2                 | 2                 | 0                       |
| W2421   | 2017      | 2                 | 1                 | 0                       |
| W2423   | 2013      | 2                 | 2                 | 0                       |
| W2424   | 2013      | 2                 | 2                 | 0                       |
| W2493   | 2014      | 2                 | 2                 | 0                       |
| W2587   | 2015      | 4                 | 4                 | 0                       |
| W2587   | 2016      | 2                 | 2                 | 0                       |
| W2659   | 2016      | 2                 | 2                 | 0                       |
| W2740   | 2017      | 2                 | 0                 | 0                       |

MassDEP Aesthetics Observations (2011-2018) (MassDEP Undated 7)

| Station |                 | Data |                        |                      | Result | Total Field        |
|---------|-----------------|------|------------------------|----------------------|--------|--------------------|
| Code    | Waterbody       | Year | Parameter              | Result               | Count  | <b>Sheet Count</b> |
| W0183   | Sevenmile River | 2013 | Color                  | None                 | 3      | 3                  |
| W0183   | Sevenmile River | 2013 | Objectionable Deposits | Not Applicable (N/A) | 3      | 3                  |
| W0183   | Sevenmile River | 2013 | Odor                   | None                 | 3      | 3                  |
| W0183   | Sevenmile River | 2013 | Scum                   | Not Applicable (N/A) | 3      | 3                  |
| W0183   | Sevenmile River | 2013 | Turbidity              | Moderately Turbid    | 3      | 3                  |
| W0183   | Sevenmile River | 2014 | Color                  | None                 | 2      | 2                  |
| W0183   | Sevenmile River | 2014 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
| W0183   | Sevenmile River | 2014 | Odor                   | None                 | 2      | 2                  |
| W0183   | Sevenmile River | 2014 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W0183   | Sevenmile River | 2014 | Turbidity              | Slightly Turbid      | 2      | 2                  |
| W0183   | Sevenmile River | 2015 | Color                  | None                 | 4      | 4                  |
| W0183   | Sevenmile River | 2015 | Objectionable Deposits | Not Applicable (N/A) | 4      | 4                  |
| W0183   | Sevenmile River | 2015 | Odor                   | None                 | 4      | 4                  |
| W0183   | Sevenmile River | 2015 | Scum                   | Not Applicable (N/A) | 4      | 4                  |
| W0183   | Sevenmile River | 2015 | Turbidity              | Moderately Turbid    | 4      | 4                  |
| W0900   | Sevenmile River | 2016 | Color                  | None                 | 1      | 1                  |
| W0900   | Sevenmile River | 2016 | Objectionable Deposits | Not Applicable (N/A) | 1      | 1                  |
| W0900   | Sevenmile River | 2016 | Odor                   | None                 | 1      | 1                  |
| W0900   | Sevenmile River | 2016 | Scum                   | Not Applicable (N/A) | 1      | 1                  |
| W0900   | Sevenmile River | 2016 | Turbidity              | Slightly Turbid      | 1      | 1                  |
| W0900   | Sevenmile River | 2017 | Color                  | None                 | 2      | 2                  |
| W0900   | Sevenmile River | 2017 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
| W0900   | Sevenmile River | 2017 | Odor                   | None                 | 2      | 2                  |
| W0900   | Sevenmile River | 2017 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W0900   | Sevenmile River | 2017 | Turbidity              | Moderately Turbid    | 1      | 2                  |
| W0900   | Sevenmile River | 2017 | Turbidity              | Slightly Turbid      | 1      | 2                  |
| W2179   | Sevenmile River | 2011 | Color                  | Greyish              | 1      | 6                  |
| W2179   | Sevenmile River | 2011 | Color                  | Light Yellow/Tan     | 3      | 6                  |
| W2179   | Sevenmile River | 2011 | Color                  | None                 | 2      | 6                  |
| W2179   | Sevenmile River | 2011 | Objectionable Deposits | No                   | 6      | 6                  |
| W2179   | Sevenmile River | 2011 | Odor                   | None                 | 6      | 6                  |
| W2179   | Sevenmile River | 2011 | Scum                   | No                   | 6      | 6                  |
| W2179   | Sevenmile River | 2011 | Turbidity              | Moderately Turbid    | 3      | 6                  |
| W2179   | Sevenmile River | 2011 | Turbidity              | None                 | 2      | 6                  |
| W2179   | Sevenmile River | 2011 | Turbidity              | Slightly Turbid      | 1      | 6                  |
| W2417   | Sevenmile River | 2013 | Color                  | None                 | 3      | 3                  |
| W2417   | Sevenmile River | 2013 | Objectionable Deposits | Not Applicable (N/A) | 3      | 3                  |
| W2417   | Sevenmile River | 2013 | Odor                   | None                 | 3      | 3                  |
| W2417   | Sevenmile River | 2013 | Scum                   | Not Applicable (N/A) | 3      | 3                  |
| W2417   | Sevenmile River | 2013 | Turbidity              | Slightly Turbid      | 3      | 3                  |
| W2417   | Sevenmile River | 2014 | Color                  | None                 | 2      | 2                  |
| W2417   | Sevenmile River | 2014 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
| W2417   | Sevenmile River | 2014 | Odor                   | None                 | 2      | 2                  |
| W2417   | Sevenmile River | 2014 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W2417   | Sevenmile River | 2014 | Turbidity              | Slightly Turbid      | 2      | 2                  |
| W2421   | Sevenmile River | 2013 | Color                  | None                 | 2      | 2                  |

| Station |                 | Data |                        |                      | Result | Total Field        |
|---------|-----------------|------|------------------------|----------------------|--------|--------------------|
| Code    | Waterbody       | Year | Parameter              | Result               | Count  | <b>Sheet Count</b> |
| W2421   | Sevenmile River | 2013 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
| W2421   | Sevenmile River | 2013 | Odor                   | None                 | 2      | 2                  |
| W2421   | Sevenmile River | 2013 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W2421   | Sevenmile River | 2013 | Turbidity              | Slightly Turbid      | 2      | 2                  |
| W2421   | Sevenmile River | 2016 | Color                  | None                 | 2      | 2                  |
| W2421   | Sevenmile River | 2016 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
| W2421   | Sevenmile River | 2016 | Odor                   | None                 | 2      | 2                  |
| W2421   | Sevenmile River | 2016 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W2421   | Sevenmile River | 2016 | Turbidity              | Moderately Turbid    | 2      | 2                  |
| W2421   | Sevenmile River | 2017 | Color                  | None                 | 2      | 2                  |
| W2421   | Sevenmile River | 2017 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
| W2421   | Sevenmile River | 2017 | Odor                   | None                 | 2      | 2                  |
| W2421   | Sevenmile River | 2017 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W2421   | Sevenmile River | 2017 | Turbidity              | Moderately Turbid    | 1      | 2                  |
| W2421   | Sevenmile River | 2017 | Turbidity              | Slightly Turbid      | 1      | 2                  |
| W2423   | Sevenmile River | 2013 | Color                  | None                 | 2      | 2                  |
| W2423   | Sevenmile River | 2013 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
| W2423   | Sevenmile River | 2013 | Odor                   | None                 | 2      | 2                  |
| W2423   | Sevenmile River | 2013 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W2423   | Sevenmile River | 2013 | Turbidity              | None                 | 1      | 2                  |
| W2423   | Sevenmile River | 2013 | Turbidity              | Slightly Turbid      | 1      | 2                  |
| W2424   | Sevenmile River | 2013 | Color                  | None                 | 2      | 2                  |
| W2424   | Sevenmile River | 2013 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
| W2424   | Sevenmile River | 2013 | Odor                   | None                 | 2      | 2                  |
| W2424   | Sevenmile River | 2013 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W2424   | Sevenmile River | 2013 | Turbidity              | Slightly Turbid      | 2      | 2                  |
| W2493   | Sevenmile River | 2014 | Color                  | None                 | 2      | 2                  |
| W2493   | Sevenmile River | 2014 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
| W2493   | Sevenmile River | 2014 | Odor                   | None                 | 2      | 2                  |
| W2493   | Sevenmile River | 2014 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W2493   | Sevenmile River | 2014 | Turbidity              | Slightly Turbid      | 2      | 2                  |
| W2587   | Sevenmile River | 2015 | Color                  | None                 | 4      | 4                  |
| W2587   | Sevenmile River | 2015 | Objectionable Deposits | Not Applicable (N/A) | 4      | 4                  |
| W2587   | Sevenmile River | 2015 | Odor                   | None                 | 4      | 4                  |
| W2587   | Sevenmile River | 2015 | Scum                   | Not Applicable (N/A) | 4      | 4                  |
| W2587   | Sevenmile River | 2015 | Turbidity              | Moderately Turbid    | 1      | 4                  |
| W2587   | Sevenmile River | 2015 | Turbidity              | None                 | 1      | 4                  |
| W2587   | Sevenmile River | 2015 | Turbidity              | Slightly Turbid      | 2      | 4                  |
| W2587   | Sevenmile River | 2016 | Color                  | None                 | 2      | 2                  |
| W2587   | Sevenmile River | 2016 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
| W2587   | Sevenmile River | 2016 | Odor                   | None                 | 2      | 2                  |
| W2587   | Sevenmile River | 2016 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W2587   | Sevenmile River | 2016 | Turbidity              | Slightly Turbid      | 2      | 2                  |
| W2659   | Sevenmile River | 2016 | Color                  | None                 | 2      | 2                  |
| W2659   | Sevenmile River | 2016 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
| W2659   | Sevenmile River | 2016 | Odor                   | None                 | 2      | 2                  |

| Station |                 | Data |                        |                      | Result | Total Field        |
|---------|-----------------|------|------------------------|----------------------|--------|--------------------|
| Code    | Waterbody       | Year | Parameter              | Result               | Count  | <b>Sheet Count</b> |
| W2659   | Sevenmile River | 2016 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W2659   | Sevenmile River | 2016 | Turbidity              | Slightly Turbid      | 2      | 2                  |
| W2740   | Sevenmile River | 2017 | Color                  | None                 | 2      | 2                  |
| W2740   | Sevenmile River | 2017 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
| W2740   | Sevenmile River | 2017 | Odor                   | None                 | 2      | 2                  |
| W2740   | Sevenmile River | 2017 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W2740   | Sevenmile River | 2017 | Turbidity              | Moderately Turbid    | 1      | 2                  |
| W2740   | Sevenmile River | 2017 | Turbidity              | Slightly Turbid      | 1      | 2                  |

#### **Primary Contact Recreation**

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Not Supporting              | NO    |
| 2022 Use Attainment Summary |       |

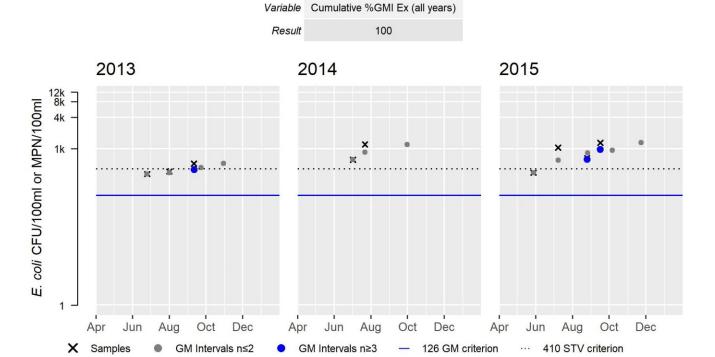
E. coli (and occasionally Enterococcus) bacteria samples were collected at ten stations in Attleboro (and one in Pawtucket, RI), along this Sevenmile River AU (MA52-08) as part of the MAP2 monitoring project during the summer of 2011 and the MassDEP Bacteria Source Tracking (BST) project during the summers of 2013 to 2017. Overall, samples were collected between one and four times per year at: Read St (W2424) (2013), Roy Avenue (W2423) (2013), ~ 440 ft downstream from Roy Avenue (W2179) (2011), due east between the eastern ends of Lockwood and Simpson avenues (W2740) (2017), Pitas Avenue (W0900) (2016, 2017), ~ 650 ft downstream of Pitas Avenue (W2421) (2013, 2016, 2017), ~ 910 ft upstream of Rt. 95 (W2659) (2016), ~ 325 ft downstream of Rt. 95 (W2587) (2015, 2016), County St. (W0183) (2013-2015), ~ 2200 ft downstream of County St (W2493) (2014), ~ 120 ft upstream of confluence with Ten Mile River, Pawtucket, RI (W2417) (2013, 2014). There were only sufficient samples to calculate usable GMs at four of the stations, namely W2179, W2587, W0183 and W2417 (n=20). Data analysis of these single and multi-year, low frequency E. coli datasets indicated generally poor water quality conditions (elevated bacteria) at all four sample stations; as 100% of intervals had GMs > 126 cfu/100ml, the single year datasets had seasonal GMs of 422 (at W2179), 752 (at W2587) and 384 (at W2417) and 100% of the cumulative GMs were >126 cfu/100ml for the multi-year dataset (at W0183). BST project notes indicated that the dry weather bacteria concentrations seemed to fluctuate widely from year to year, with 2016 showing comparatively much higher counts. However, detergents, ammonia/potassium and human marker analysis data collected in 2016 at Pitas Avenue were not indicative of a human source. Also, a "none" human marker analysis result was recorded at the downstream end of the AU in 2014. No correctable source was ever found. The available Enterococcus data were too limited to assess the Primary Contact Recreational Use for this AU according to the CALM "Use Attainment Impairment Decision Schema". The Primary Contact Recreational Use for this Sevenmile River AU (MA52-08) will continue to be assessed as Not Supporting with the E. coli and Fecal coliform impairments being carried forward.

#### **Monitoring Stations**

| Station |              |         |            |                                                     |           |            |
|---------|--------------|---------|------------|-----------------------------------------------------|-----------|------------|
| Code    | Organization | Type    | Water Body | Station Description                                 | Latitude  | Longitude  |
| W0183   | MassDEP      | Water   | Sevenmile  | [County Street, Attleboro]                          | 41.901258 | -71.343429 |
|         |              | Quality | River      |                                                     |           |            |
| W0900   | MassDEP      | Water   | Sevenmile  | [Pitas Avenue, Attleboro]                           | 41.910298 | -71.351910 |
|         |              | Quality | River      |                                                     |           |            |
| W2179   | MassDEP      | Water   | Sevenmile  | [approximately 440 feet downstream from Roy         | 41.917866 | -71.352161 |
|         |              | Quality | River      | Avenue, Attleboro]                                  |           |            |
| W2417   | MassDEP      | Water   | Sevenmile  | [approximately 120 feet upstream of confluence with | 41.894620 | -71.340481 |
|         |              | Quality | River      | Ten Mile River, Pawtucket, Rhode Island]            |           |            |

| Station |              |         |            |                                                    |           |            |
|---------|--------------|---------|------------|----------------------------------------------------|-----------|------------|
| Code    | Organization | Туре    | Water Body | Station Description                                | Latitude  | Longitude  |
| W2421   | MassDEP      | Water   | Sevenmile  | [approximately 650 feet downstream/south of Pitas  | 41.908564 | -71.351341 |
|         |              | Quality | River      | Avenue, Attleboro (upstream of influence of        |           |            |
|         |              |         |            | unnamed tributary draining Sweedens Swamp)]        |           |            |
| W2423   | MassDEP      | Water   | Sevenmile  | [Roy Avenue, Attleboro]                            | 41.918904 | -71.352300 |
|         |              | Quality | River      |                                                    |           |            |
| W2424   | MassDEP      | Water   | Sevenmile  | [Read Street, Attleboro]                           | 41.925726 | -71.341611 |
|         |              | Quality | River      |                                                    |           |            |
| W2493   | MassDEP      | Water   | Sevenmile  | [approximately 2200 feet downstream (southeast) of | 41.898152 | -71.339842 |
|         |              | Quality | River      | County Street, Attleboro, MA (just downstream of   |           |            |
|         |              |         |            | Crest Drive pump station, Pawtucket, RI)]          |           |            |
| W2587   | MassDEP      | Water   | Sevenmile  | [325 feet downstream/south of Route 95, Attleboro] | 41.904353 | -71.346752 |
|         |              | Quality | River      |                                                    |           |            |
| W2659   | MassDEP      | Water   | Sevenmile  | [approximately 910 feet upstream of Route 95,      | 41.906938 | -71.349929 |
|         |              | Quality | River      | Attleboro]                                         |           |            |
| W2740   | MassDEP      | Water   | Sevenmile  | [due east between the eastern ends of Lockwood and | 41.914846 | -71.352554 |
|         |              | Quality | River      | Simpson avenues, Attleboro]                        |           |            |

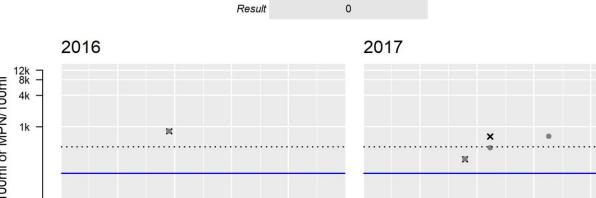
#### Bacteria Data


# Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 7) (MassDEP Undated 5)

[Result units are CFU/100ml or MPN/100ml]

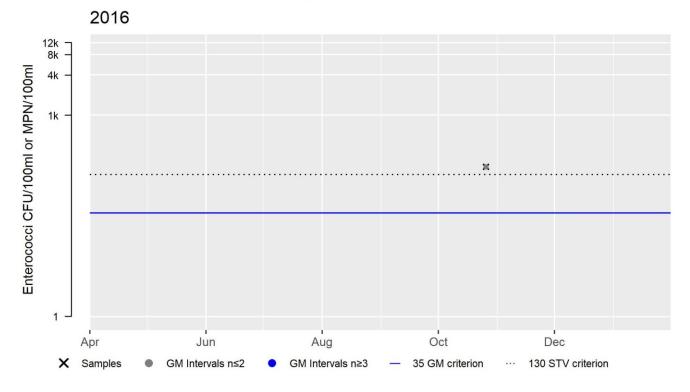
|              |              |             |            |          |        | Minimum | Maximum | Seasonal  |
|--------------|--------------|-------------|------------|----------|--------|---------|---------|-----------|
|              |              |             |            |          | Sample | Sample  | Sample  | Geometric |
| Station Code | Organization | Indicator   | Start Date | End Date | Count  | Result  | Result  | Mean      |
| W0183        | MassDEP      | E. coli     | 06/25/13   | 09/11/13 | 3      | 326     | 517     | 395       |
| W0183        | MassDEP      | E. coli     | 07/02/14   | 07/22/14 | 2      | 613     | 1200    | 858       |
| W0183        | MassDEP      | E. coli     | 05/28/15   | 09/16/15 | 4      | 345     | 1300    | 746       |
| W0900        | MassDEP      | E. coli     | 07/26/16   | 07/26/16 | 1      | 816     | 816     | 816       |
| W0900        | MassDEP      | Enterococci | 10/26/16   | 10/26/16 | 1      | 170     | 170     | 170       |
| W0900        | MassDEP      | E. coli     | 07/19/17   | 08/15/17 | 2      | 238     | 649     | 393       |
| W2179        | MassDEP      | E. coli     | 05/17/11   | 09/26/11 | 6      | 185     | 1730    | 422       |
| W2417        | MassDEP      | E. coli     | 06/25/13   | 09/11/13 | 3      | 248     | 816     | 384       |
| W2417        | MassDEP      | E. coli     | 07/02/14   | 07/22/14 | 2      | 345     | 727     | 501       |
| W2417        | MassDEP      | Enterococci | 08/19/14   | 08/19/14 | 1      | 130     | 130     | 130       |
| W2421        | MassDEP      | E. coli     | 06/25/13   | 08/01/13 | 2      | 326     | 326     | 326       |
| W2421        | MassDEP      | E. coli     | 07/20/16   | 07/26/16 | 2      | 1470    | 2419.6  | 1886      |
| W2421        | MassDEP      | E. coli     | 07/19/17   | 08/15/17 | 2      | 210     | 410     | 293       |
| W2423        | MassDEP      | E. coli     | 06/25/13   | 08/01/13 | 2      | 210     | 291     | 247       |
| W2424        | MassDEP      | E. coli     | 06/25/13   | 08/01/13 | 2      | 51      | 66      | 58        |
| W2493        | MassDEP      | E. coli     | 07/02/14   | 07/22/14 | 2      | 345     | 579     | 447       |
| W2587        | MassDEP      | E. coli     | 05/28/15   | 09/16/15 | 4      | 201     | 1350    | 752       |
| W2587        | MassDEP      | E. coli     | 07/20/16   | 07/26/16 | 2      | 1050    | 2419.6  | 1594      |
| W2659        | MassDEP      | E. coli     | 07/20/16   | 07/26/16 | 2      | 1250    | 1990    | 1577      |
| W2740        | MassDEP      | E. coli     | 07/19/17   | 08/15/17 | 2      | 17      | 866     | 121       |

# W0183 E. coli (90-day Interval), Primary Contact Recreational Use Season


| Var     | Res | es | Var     | Res |
|---------|-----|----|---------|-----|
| Samples | 3   |    | Samples | 2   |
| SeasGM  | 395 | 55 | SeasGM  | 858 |
| #GMI    | 1   |    | #GMI    | 0   |
| SMI Ex  | 1   |    | #GMI Ex | 0   |
| GMI Ex  | 100 | 90 | %GMI Ex | 0   |
| n>STV   | 1   |    | n>STV   | 2   |
| 6n>STV  | 33  | 3  | %n>STV  | 100 |

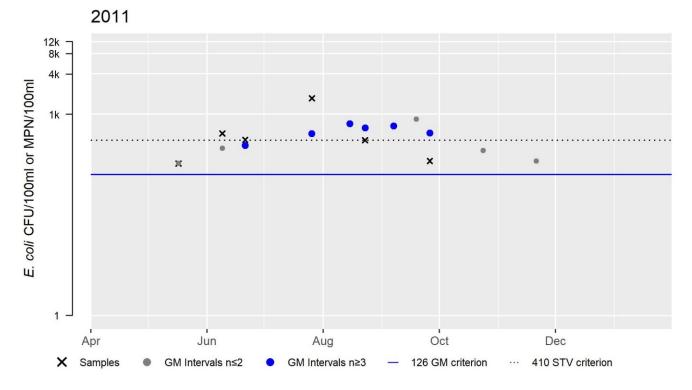


# W0900 E. coli (90-day Interval), Primary Contact Recreational Use Season


| Var     | Res |
|---------|-----|
| Samples | 1   |
| SeasGM  | 816 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 1   |
| %n>STV  | 100 |

Cumulative %GMI Ex (all years)



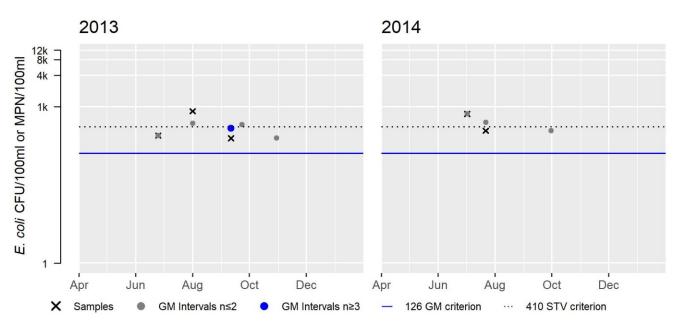

# W0900 Enterococci (90-day Interval), Primary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 1   |
| SeasGM  | 170 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 1   |
| %n>STV  | 100 |



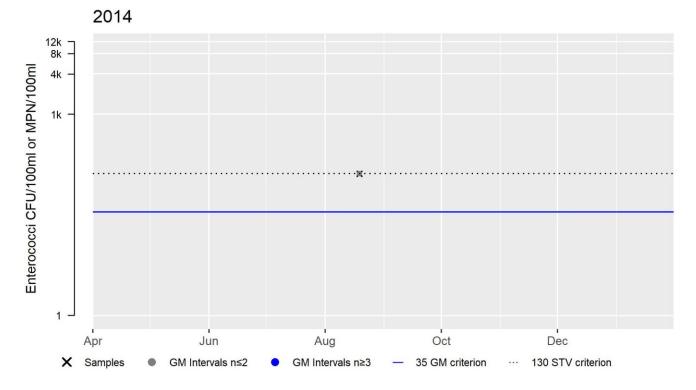
# W2179 E. coli (90-day Interval), Primary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 6   |
| SeasGM  | 422 |
| #GMI    | 6   |
| #GMI Ex | 6   |
| %GMI Ex | 100 |
| n>STV   | 4   |
| %n>STV  | 67  |



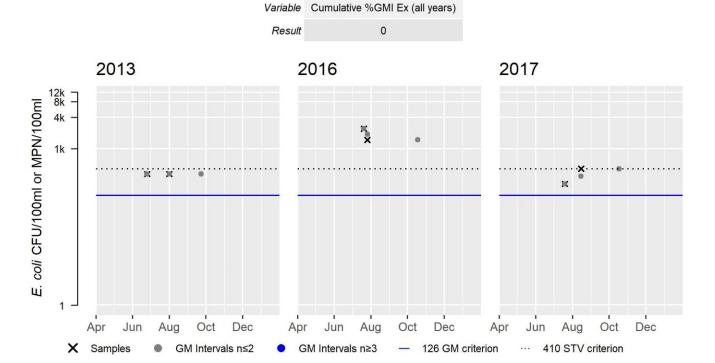

# W2417 E. coli (90-day Interval), Primary Contact Recreational Use Season

| Var      | Res |
|----------|-----|
| Samples  | 3   |
| SeasGM   | 384 |
| #GMI     | 1   |
| #GMI Ex  | 1   |
| %GMI Ex  | 100 |
| n>STV    | 1   |
| 0/ =>CT/ | 22  |

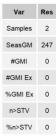

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 501 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 1   |
| %n>STV  | 50  |

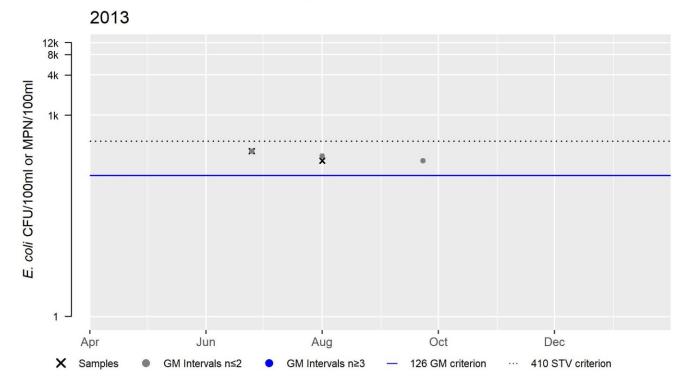





# W2417 Enterococci (90-day Interval), Primary Contact Recreational Use Season

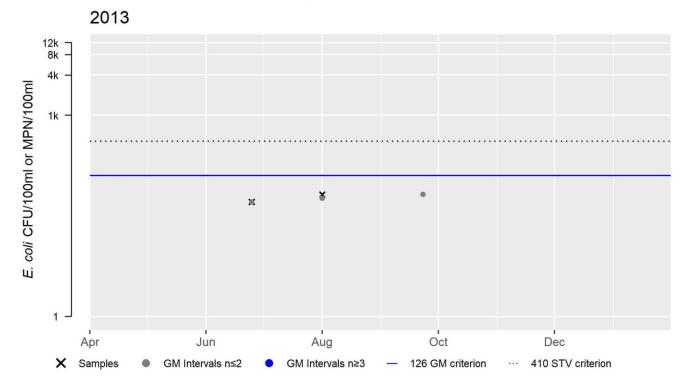
| Var     | Res |
|---------|-----|
| Samples | 1   |
| SeasGM  | 130 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |





W2421 E. coli (90-day Interval), Primary Contact Recreational Use Season

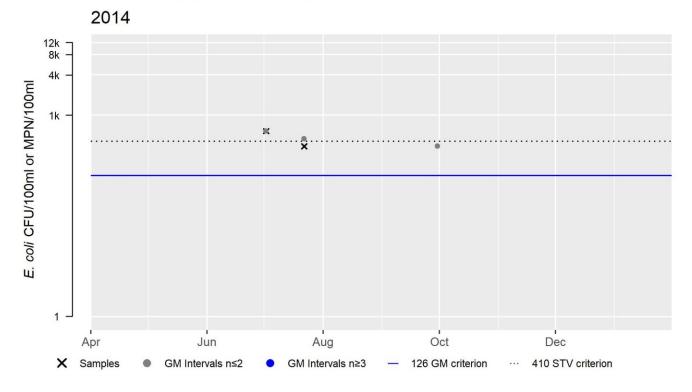
| Var     | Res | s | Var     | Res  |
|---------|-----|---|---------|------|
| Samples | 2   |   | Samples | 2    |
| SeasGM  | 326 | 3 | SeasGM  | 1886 |
| #GMI    | 0   |   | #GMI    | 0    |
| #GMI Ex | 0   |   | #GMI Ex | 0    |
| 6GMI Ex | 0   | 9 | %GMI Ex | 0    |
| n>STV   | 0   |   | n>STV   | 2    |
| %n>STV  | 0   |   | %n>STV  | 100  |




# W2423 E. coli (90-day Interval), Primary Contact Recreational Use Season





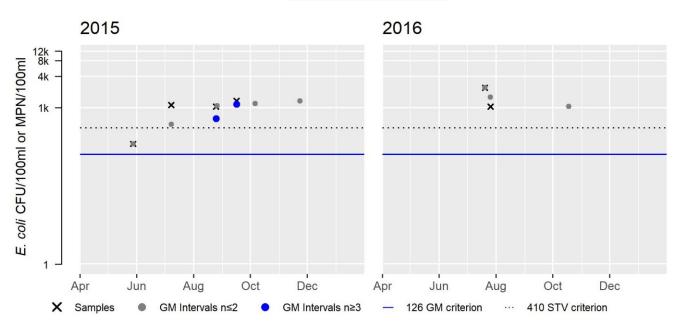

# W2424 E. coli (90-day Interval), Primary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 58  |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |



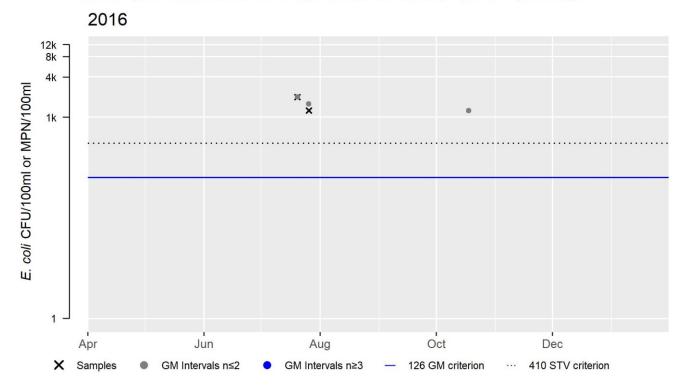
# W2493 E. coli (90-day Interval), Primary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 447 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 1   |
| %n>STV  | 50  |




# W2587 E. coli (90-day Interval), Primary Contact Recreational Use Season

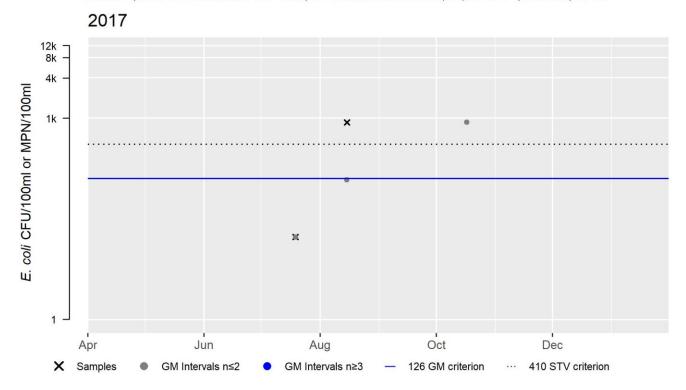
| Var     | Res |
|---------|-----|
| Samples | 4   |
| SeasGM  | 752 |
| #GMI    | 2   |
| #GMI Ex | 2   |
| %GMI Ex | 100 |
| n>STV   | 3   |
| %n>ST/  | 75  |


| Var     | Res  |
|---------|------|
| Samples | 2    |
| SeasGM  | 1594 |
| #GMI    | 0    |
| #GMI Ex | 0    |
| %GMI Ex | 0    |
| n>STV   | 2    |
| %n>STV  | 100  |





# W2659 E. coli (90-day Interval), Primary Contact Recreational Use Season


| Var     | Res  |
|---------|------|
| Samples | 2    |
| SeasGM  | 1577 |
| #GMI    | 0    |
| #GMI Ex | 0    |
| %GMI Ex | 0    |
| n>STV   | 2    |
| %n>STV  | 100  |



#### W2740 E. coli (90-day Interval), Primary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 121 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 1   |
| %n>STV  | 50  |

Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV



#### MassDEP Bacteria Source Tracking (BST) Summary Statement for 2011-2019 (MassDEP Undated 1)

#### Summary

BST work was conducted between 2013 and 2017 at 13 sites along the Sevenmile River AU (MA52-08) and an additional 7 unnamed tributary sites; with E.coli concentrations ranging 11 to >2,419.6MPN. Overall the dry weather bacteria concentrations seemed to fluctuate widely from year to year, with 2016 showing comparatively much higher counts. However, detergents, ammonia/potassium and human marker analysis data collected in 2016 at Pitas Avenue were not indicative of a human source. Also a "none" human marker analysis result was recorded at the bottom of the AU in 2014. No correctable source was ever found.

#### Secondary Contact Recreation

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Fully Supporting            | YES   |
| 2022 Use Attainment Summary |       |

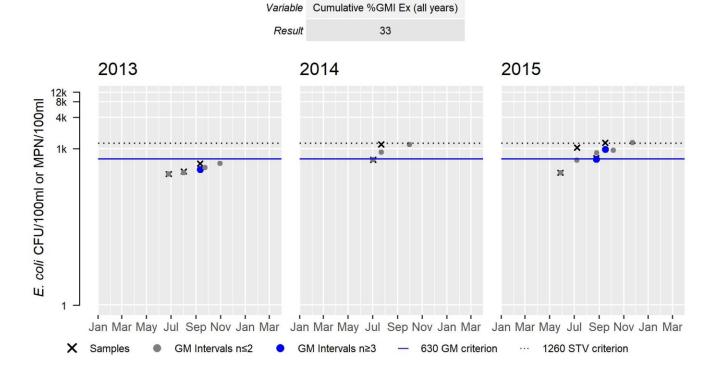
E. coli (and occasionally Enterococcus) bacteria samples were collected at ten stations in Attleboro (and one in Pawtucket, RI), along this Sevenmile River AU (MA52-08) as part of the MAP2 monitoring project during the summer of 2011 and the MassDEP Bacteria Source Tracking (BST) project during the summers of 2013 to 2017. The available Enterococcus data were too limited to assess the Secondary Contact Recreational Use for this AU according to the CALM "Use Attainment Impairment Decision Schema". Overall, the E. coli samples were collected between one and four times per year at: Read St (W2424) (2013), Roy Avenue (W2423) (2013), ~ 440 ft downstream from Roy Avenue (W2179) (2011), due east between the eastern ends of Lockwood and Simpson avenues (W2740) (2017), Pitas Avenue (W0900) (2016, 2017), ~ 650 ft downstream of Pitas Avenue (W2421) (2013, 2016, 2017), ~ 910 ft upstream of Rt. 95 (W2659) (2016), ~ 325 ft downstream of Rt. 95 (W2587) (2015, 2016), County St. (W0183) (2013-2015), ~ 2200 ft downstream of County St (W2493) (2014), ~ 120 ft upstream of confluence with Ten Mile River, Pawtucket, RI (W2417) (2013, 2014). There were only sufficient samples to calculate usable GMs at four of the stations, namely W2179, W2587, W0183 and W2417 (n=20). Data analysis of these single and multi-year, low frequency E. coli datasets at all four sample stations can be summarized as follows: while at times GMs exceeded 630 cfu/100ml (33% of intervals at W2179 and 50% at W2587), seasonal GMs were often low (422 cfu at W2179) (384 cfu at W2417); and while the seasonal GM exceeded the 630 cfu/100ml criterion at W2587 in 2015 (752 cfu), at most only one sample at each station per year at any station exceeded the 1260 cfu/100ml STV. For the multi-year dataset (at W0183) while 33% of the cumulative GMs were >630 cfu/100ml only one sample in 2015 exceeded the 1260 cfu/100ml STV. BST project notes indicated that the dry weather bacteria concentrations seemed to fluctuate widely from year to year, with 2016 showing comparatively much higher counts. However, detergents, ammonia/potassium and human marker analysis data collected in 2016 at Pitas Avenue were not indicative of a human source. Also, a "none" human marker analysis result was recorded at the downstream end of the AU in 2014. No correctable source was ever found. The Secondary Contact Recreational Use for this Sevenmile River AU (MA52-08) will continue to be assessed as Fully Supporting based on the E. coli data collected by MassDEP staff between 2011 and 2017, however, an Alert will be identified due to the elevated E. coli in the river just downstream of Rt.95 (Station W2587) and incidences of occasional extremely high E. coli counts throughout the AU.

#### **Monitoring Stations**

| Station |              |         |            |                                                     |           |            |
|---------|--------------|---------|------------|-----------------------------------------------------|-----------|------------|
| Code    | Organization | Type    | Water Body | Station Description                                 | Latitude  | Longitude  |
| W0183   | MassDEP      | Water   | Sevenmile  | [County Street, Attleboro]                          | 41.901258 | -71.343429 |
|         |              | Quality | River      |                                                     |           |            |
| W0900   | MassDEP      | Water   | Sevenmile  | [Pitas Avenue, Attleboro]                           | 41.910298 | -71.351910 |
|         |              | Quality | River      |                                                     |           |            |
| W2179   | MassDEP      | Water   | Sevenmile  | [approximately 440 feet downstream from Roy         | 41.917866 | -71.352161 |
|         |              | Quality | River      | Avenue, Attleboro]                                  |           |            |
| W2417   | MassDEP      | Water   | Sevenmile  | [approximately 120 feet upstream of confluence with | 41.894620 | -71.340481 |
|         |              | Quality | River      | Ten Mile River, Pawtucket, Rhode Island]            |           |            |
| W2421   | MassDEP      | Water   | Sevenmile  | [approximately 650 feet downstream/south of Pitas   | 41.908564 | -71.351341 |
|         |              | Quality | River      | Avenue, Attleboro (upstream of influence of         |           |            |
|         |              |         |            | unnamed tributary draining Sweedens Swamp)]         |           |            |
| W2423   | MassDEP      | Water   | Sevenmile  | [Roy Avenue, Attleboro]                             | 41.918904 | -71.352300 |
|         |              | Quality | River      |                                                     |           |            |
| W2424   | MassDEP      | Water   | Sevenmile  | [Read Street, Attleboro]                            | 41.925726 | -71.341611 |
|         |              | Quality | River      |                                                     |           |            |
| W2493   | MassDEP      | Water   | Sevenmile  | [approximately 2200 feet downstream (southeast) of  | 41.898152 | -71.339842 |
|         |              | Quality | River      | County Street, Attleboro, MA (just downstream of    |           |            |
|         |              |         |            | Crest Drive pump station, Pawtucket, RI)]           |           |            |
| W2587   | MassDEP      | Water   | Sevenmile  | [325 feet downstream/south of Route 95, Attleboro]  | 41.904353 | -71.346752 |
|         |              | Quality | River      |                                                     |           |            |
| W2659   | MassDEP      | Water   | Sevenmile  | [approximately 910 feet upstream of Route 95,       | 41.906938 | -71.349929 |
|         |              | Quality | River      | Attleboro]                                          |           |            |

| Statio | n            |         |            |                                                    |           |            |
|--------|--------------|---------|------------|----------------------------------------------------|-----------|------------|
| Code   | Organization | Type    | Water Body | Station Description                                | Latitude  | Longitude  |
| W274   | O MassDEP    | Water   | Sevenmile  | [due east between the eastern ends of Lockwood and | 41.914846 | -71.352554 |
|        |              | Quality | River      | Simpson avenues, Attleboro]                        |           |            |

#### Bacteria Data

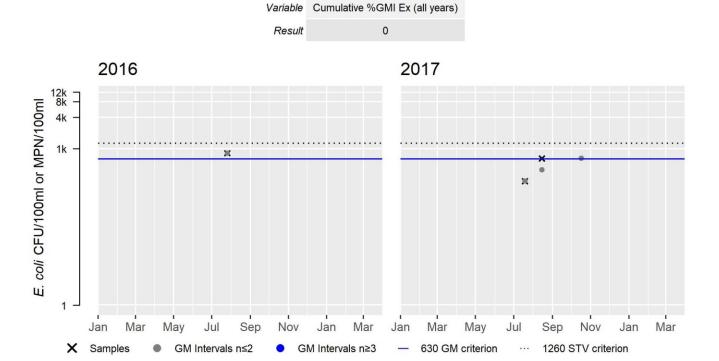

# Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 7) (MassDEP Undated 5)

[Result units are CFU/100ml or MPN/100ml]

|              |              |           |            |          |        | Minimum<br>Sample<br>Result<br>(CFU/100ml | Maximum<br>Sample<br>Result<br>(CFU/100ml | Seasonal<br>Geometric<br>Mean<br>(CFU/100ml |
|--------------|--------------|-----------|------------|----------|--------|-------------------------------------------|-------------------------------------------|---------------------------------------------|
|              |              |           |            |          | Sample | or                                        | or                                        | or                                          |
| Station Code | Organization | Indicator | Start Date | End Date | Count  | MPN/100ml)                                | MPN/100ml)                                | MPN/100ml)                                  |
| W0183        | MassDEP      | E. coli   | 06/25/13   | 09/11/13 | 3      | 326                                       | 517                                       | 395                                         |
| W0183        | MassDEP      | E. coli   | 07/02/14   | 07/22/14 | 2      | 613                                       | 1200                                      | 858                                         |
| W0183        | MassDEP      | E. coli   | 05/28/15   | 09/16/15 | 4      | 345                                       | 1300                                      | 746                                         |
| W0900        | MassDEP      | E. coli   | 07/26/16   | 07/26/16 | 1      | 816                                       | 816                                       | 816                                         |
| W0900        | MassDEP      | E. coli   | 07/19/17   | 08/15/17 | 2      | 238                                       | 649                                       | 393                                         |
| W2179        | MassDEP      | E. coli   | 05/17/11   | 09/26/11 | 6      | 185                                       | 1730                                      | 422                                         |
| W2417        | MassDEP      | E. coli   | 06/25/13   | 09/11/13 | 3      | 248                                       | 816                                       | 384                                         |
| W2417        | MassDEP      | E. coli   | 07/02/14   | 07/22/14 | 2      | 345                                       | 727                                       | 501                                         |
| W2421        | MassDEP      | E. coli   | 06/25/13   | 08/01/13 | 2      | 326                                       | 326                                       | 326                                         |
| W2421        | MassDEP      | E. coli   | 07/20/16   | 07/26/16 | 2      | 1470                                      | 2419.6                                    | 1886                                        |
| W2421        | MassDEP      | E. coli   | 07/19/17   | 08/15/17 | 2      | 210                                       | 410                                       | 293                                         |
| W2423        | MassDEP      | E. coli   | 06/25/13   | 08/01/13 | 2      | 210                                       | 291                                       | 247                                         |
| W2424        | MassDEP      | E. coli   | 06/25/13   | 08/01/13 | 2      | 51                                        | 66                                        | 58                                          |
| W2493        | MassDEP      | E. coli   | 07/02/14   | 07/22/14 | 2      | 345                                       | 579                                       | 447                                         |
| W2587        | MassDEP      | E. coli   | 05/28/15   | 09/16/15 | 4      | 201                                       | 1350                                      | 752                                         |
| W2587        | MassDEP      | E. coli   | 07/20/16   | 07/26/16 | 2      | 1050                                      | 2419.6                                    | 1594                                        |
| W2659        | MassDEP      | E. coli   | 07/20/16   | 07/26/16 | 2      | 1250                                      | 1990                                      | 1577                                        |
| W2740        | MassDEP      | E. coli   | 07/19/17   | 08/15/17 | 2      | 17                                        | 866                                       | 121                                         |

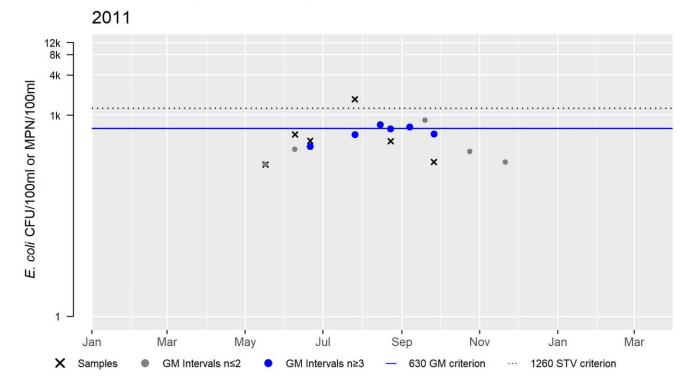
W0183 E. coli (90-day Interval), Secondary Contact Recreational Use Season

| Var     | Res |   | Var     | Res |
|---------|-----|---|---------|-----|
| Samples | 3   |   | Samples | 2   |
| SeasGM  | 395 | : | SeasGM  | 858 |
| #GMI    | 1   |   | #GMI    | 0   |
| #GMI Ex | 0   |   | #GMI Ex | 0   |
| %GMI Ex | 0   | 9 | %GMI Ex | 0   |
| n>STV   | 0   |   | n>STV   | 0   |
| %n>STV  | 0   |   | %n>STV  | 0   |



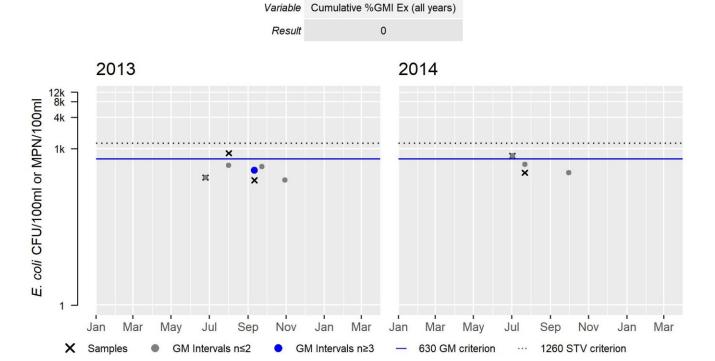

# W0900 E. coli (90-day Interval), Secondary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 1   |
| SeasGM  | 816 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |


Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV

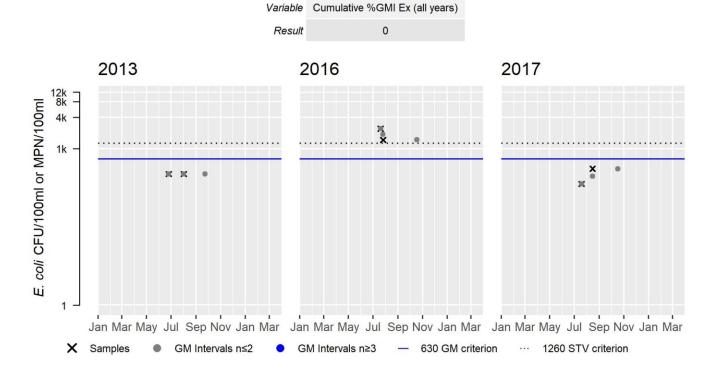
Variable




# W2179 E. coli (90-day Interval), Secondary Contact Recreational Use Season

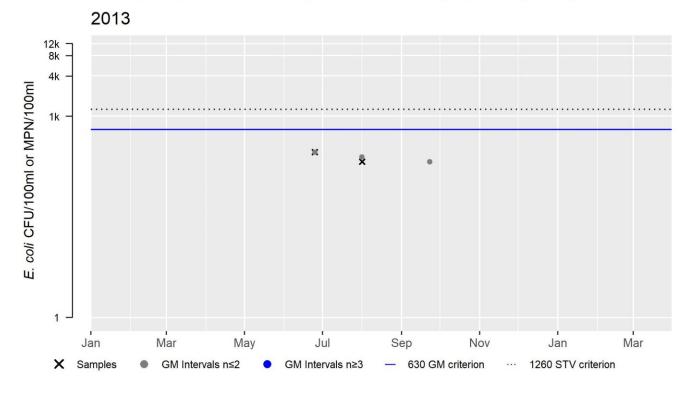
| Var     | Res |
|---------|-----|
| Samples | 6   |
| SeasGM  | 422 |
| #GMI    | 6   |
| #GMI Ex | 2   |
| %GMI Ex | 33  |
| n>STV   | 1   |
| %n>STV  | 17  |




W2417 E. coli (90-day Interval), Secondary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 3   |
| SeasGM  | 384 |
| #GMI    | 1   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |




W2421 E. coli (90-day Interval), Secondary Contact Recreational Use Season

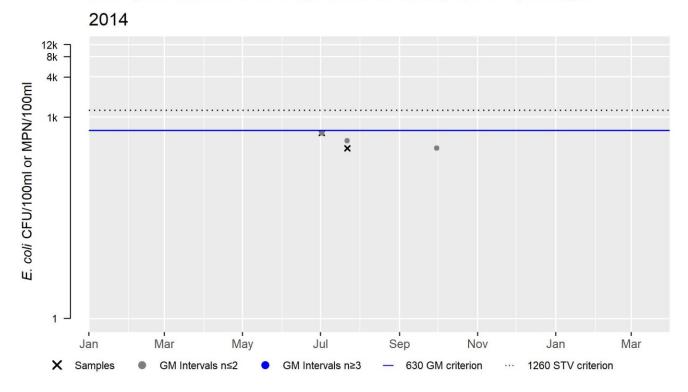
| Var     | Res | s | Var     | Res  |
|---------|-----|---|---------|------|
| Samples | 2   |   | Samples | 2    |
| SeasGM  | 326 | 3 | SeasGM  | 1886 |
| #GMI    | 0   |   | #GMI    | 0    |
| #GMI Ex | 0   |   | #GMI Ex | 0    |
| %GMI Ex | 0   |   | %GMI Ex | 0    |
| n>STV   | 0   |   | n>STV   | 2    |
| %n>STV  | 0   |   | %n>STV  | 100  |




# W2423 E. coli (90-day Interval), Secondary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 247 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |

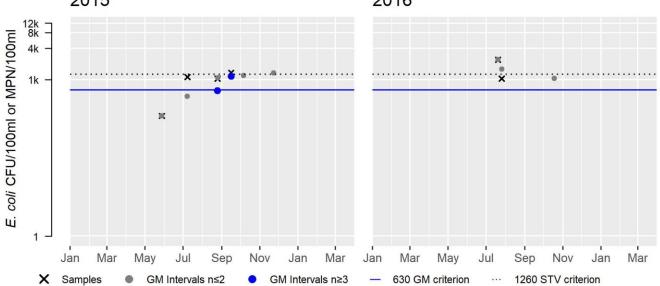



W2424 E. coli (90-day Interval), Secondary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 58  |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |

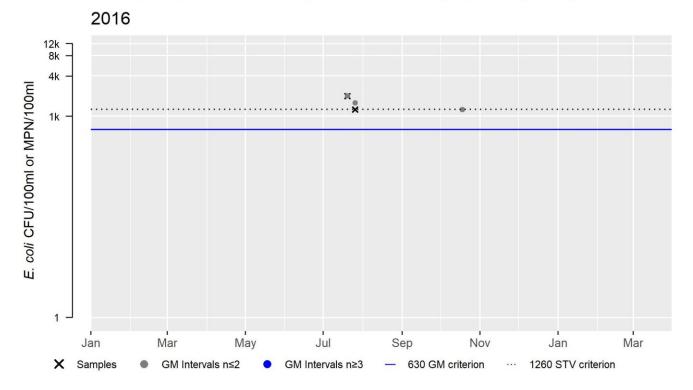


# W2493 E. coli (90-day Interval), Secondary Contact Recreational Use Season


| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 447 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |

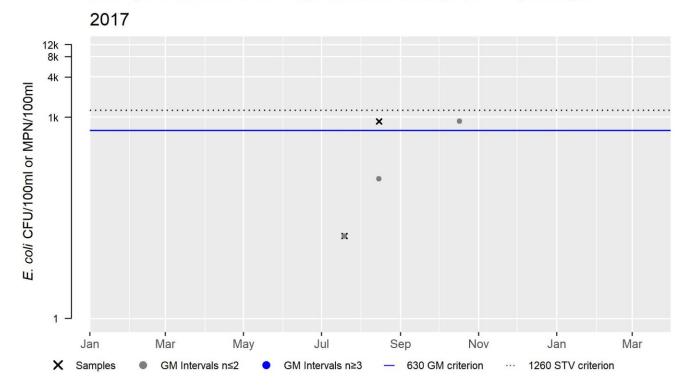


W2587 E. coli (90-day Interval), Secondary Contact Recreational Use Season


| Var     | Res |
|---------|-----|
| Samples | 4   |
| SeasGM  | 752 |
| #GMI    | 2   |
| #GMI Ex | 1   |
| %GMI Ex | 50  |
| n>STV   | 1   |
| %n>STV  | 25  |



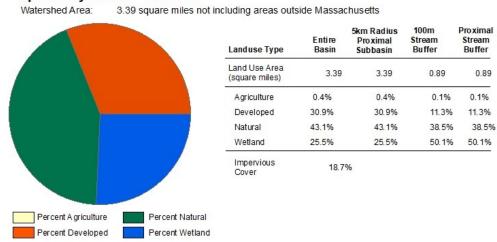



# W2659 E. coli (90-day Interval), Secondary Contact Recreational Use Season

| Var     | Res  |
|---------|------|
| Samples | 2    |
| SeasGM  | 1577 |
| #GMI    | 0    |
| #GMI Ex | 0    |
| %GMI Ex | 0    |
| n>STV   | 1    |
| %n>STV  | 50   |



# W2740 E. coli (90-day Interval), Secondary Contact Recreational Use Season


| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 121 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |



# Speedway Brook (MA52-05)

| Location:                 | (locally known as Thacher Brook) Headwaters, Attleboro to mouth at inlet of Dodgeville |  |  |
|---------------------------|----------------------------------------------------------------------------------------|--|--|
|                           | Pond (a Ten Mile River impoundment), Attleboro.                                        |  |  |
| AU Type:                  | RIVER                                                                                  |  |  |
| AU Size:                  | 0.9 MILES                                                                              |  |  |
| Classification/Qualifier: | B: WWF                                                                                 |  |  |

#### Speedway Brook - MA52-05



| 2018/20 AU | 2022 AU  |                                                            |                   | Impairment<br>Change |
|------------|----------|------------------------------------------------------------|-------------------|----------------------|
| Category   | Category | Impairment                                                 | ATTAINS Action ID | Summary              |
| 5          | 5        | (Alteration in Stream-side or Littoral Vegetative Covers*) |                   | Unchanged            |
| 5          | 5        | (Habitat Assessment*)                                      |                   | Unchanged            |
| 5          | 5        | Benthic Macroinvertebrates                                 |                   | Unchanged            |
| 5          | 5        | Dissolved Oxygen                                           |                   | Unchanged            |
| 5          | 5        | Escherichia Coli (E. Coli)                                 |                   | Unchanged            |
| 5          | 5        | Fecal Coliform                                             |                   | Unchanged            |
| 5          | 5        | Metals                                                     |                   | Unchanged            |
| 5          | 5        | Sedimentation/Siltation                                    |                   | Unchanged            |

| Impairment                             | Source (Confirmed Y/N) | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|----------------------------------------|------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| (Alteration in Stream-side or Littoral | Source Unknown (N)     | Х                                        |                  |           |                               |                                 |
| Vegetative Covers*)                    |                        |                                          |                  |           |                               |                                 |
| (Habitat Assessment*)                  | Source Unknown (N)     | Х                                        |                  |           |                               |                                 |

| Impairment                 | Source (Confirmed Y/N) | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|----------------------------|------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| Benthic Macroinvertebrates | Source Unknown (N)     | X                                        |                  |           |                               |                                 |
| Dissolved Oxygen           | Source Unknown (N)     | Х                                        |                  |           |                               |                                 |
| Escherichia Coli (E. Coli) | Source Unknown (N)     |                                          |                  |           | Х                             |                                 |
| Escherichia Coli (E. Coli) | Waterfowl (Y)          |                                          |                  |           | Х                             |                                 |
| Fecal Coliform             | Source Unknown (N)     |                                          |                  |           | Х                             |                                 |
| Fecal Coliform             | Waterfowl (Y)          |                                          |                  |           | Х                             |                                 |
| Metals                     | Source Unknown (N)     | Х                                        |                  |           |                               |                                 |
| Sedimentation/Siltation    | Source Unknown (N)     | Х                                        |                  |           |                               |                                 |

#### Designated Use Attainment Decisions

#### Fish, other Aquatic Life and Wildlife

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Not Supporting              | NO    |
| 2022 Use Attainment Summary |       |

Except for very limited records of algal observations no other recent data are available to assess the status of the Aquatic Life Use for Speedway Brook, so it will continue to be assessed as Not Supporting. The Alterations in Stream-side or Littoral Vegetative Covers, Benthic Macroinvertebrates, Dissolved Oxygen, Habitat Assessment, Metals, and Sedimentation/Siltation impairments are being carried forward.

#### **Monitoring Stations**

| <b>Station Code</b> | Organization | Туре    | Water Body | Station Description                           | Latitude  | Longitude  |
|---------------------|--------------|---------|------------|-----------------------------------------------|-----------|------------|
| W0180               | MassDEP      | Water   | Speedway   | [Route 152, Attleboro]                        | 41.927261 | -71.285224 |
|                     |              | Quality | Brook      |                                               |           |            |
| W1517               | MassDEP      | Water   | Speedway   | [Dexter Street, Attleboro]                    | 41.928698 | -71.280345 |
|                     |              | Quality | Brook      |                                               |           |            |
| W1618               | MassDEP      | Water   | Speedway   | [at emergence from culvert south of Maple     | 41.935108 | -71.275443 |
|                     |              | Quality | Brook      | Street, Attleboro]                            |           |            |
| W2494               | MassDEP      | Water   | Speedway   | [approximately 1300 feet upstream (northeast) | 41.931486 | -71.277031 |
|                     |              | Quality | Brook      | of Dexter Street (downstream of unnamed       |           |            |
|                     |              |         |            | tributary), Attleboro]                        |           |            |

#### Physico-chemical Water Quality Information

#### Nutrients (Primary Producer Screening, Physico-chemical Screening)

**MassDEP Nutrient Enrichment Indicator Data (2011-2018).** (MassDEP Undated 7) (MassDEP Undated 5) [Summer seasonal total phosphorus data collected May-Sept]

| Station | Dete | Seasonal<br>TP | Seasonal<br>TP Min | Seasonal<br>TP Max | Seasonal | Delta<br>DO | Delta<br>DO | DO<br>Sat<br>Max | рН   | Count | Dense/V. Dense |
|---------|------|----------------|--------------------|--------------------|----------|-------------|-------------|------------------|------|-------|----------------|
|         | Data |                |                    | _                  | TP Avg   | Max         | Avg         | _                | Max  | Algal | Film/Fila.     |
| Code    | Year | Count          | (mg/L)             | (mg/L)             | (mg/L)   | (mg/L)      | (mg/L)      | (%)              | (SU) | Obsv. | Algae          |
| W0180   | 2013 |                |                    |                    |          |             |             |                  |      | 3     | 0              |
| W0180   | 2014 |                |                    |                    |          | 1           |             |                  |      | 1     | 0              |
| W0180   | 2015 |                |                    |                    |          |             |             |                  |      | 4     | 1              |
| W0180   | 2016 |                |                    |                    |          |             |             |                  |      | 2     | 0              |
| W1517   | 2013 |                |                    |                    |          |             |             |                  |      | 3     | 0              |
| W1517   | 2014 |                |                    |                    |          |             |             |                  |      | 2     | 0              |
| W1517   | 2015 |                |                    |                    |          |             |             |                  |      | 4     | 0              |
| W1517   | 2016 |                |                    |                    |          |             |             |                  |      | 2     | 0              |
| W1618   | 2011 |                |                    |                    |          |             |             |                  |      | 3     | 0              |
| W1618   | 2014 |                |                    |                    |          |             |             |                  |      | 3     | 0              |
| W1618   | 2015 |                |                    |                    |          |             |             |                  |      | 4     | 0              |
| W1618   | 2016 |                |                    |                    |          |             |             |                  |      | 2     | 0              |
| W2494   | 2014 |                |                    |                    |          |             |             |                  |      | 2     | 0              |
| W2494   | 2015 |                |                    |                    |          |             |             |                  |      | 4     | 0              |
| W2494   | 2016 |                |                    |                    |          |             |             |                  |      | 2     | 0              |

#### Fish Consumption

| 2022 Use Attainment                                                                                    | Alert        |
|--------------------------------------------------------------------------------------------------------|--------------|
| Not Assessed                                                                                           | NO           |
| 2022 Use Attainment Summary                                                                            |              |
| No site-specific fish consumption advisory has been issued by DPH; therefore, the Fish Consumption Use | for Speedway |

No site-specific fish consumption advisory has been issued by DPH; therefore, the Fish Consumption Use for Speedway Brook (MA52-05) is Not Assessed.

#### Aesthetic

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Fully Supporting            | NO    |
| 2022 Har Attainment Comment |       |

#### 2022 Use Attainment Summary

MassDEP staff recorded aesthetics observations at four sites in Attleboro along Speedway Brook between the summers of 2011 and 2016 as follows: at emergence from culvert south of Maple Street (W1618) (2011, 2014, 2015, 2016), approximately 1300 feet upstream (northeast) of Dexter Street (W2494) (2014, 2015, 2016), Dexter Street (W1517) (2013, 2014, 2015), and Rt.152 (W0180) (2013, 2014, 2015, 2016). There were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DWM-WPP field sampling crews during the surveys at all four stations (n=43). The Aesthetics Use for Speedway Brook is assessed as Fully Supporting.

#### **Monitoring Stations**

| Station |              |         |            |                            |           |            |
|---------|--------------|---------|------------|----------------------------|-----------|------------|
| Code    | Organization | Type    | Water Body | Station Description        | Latitude  | Longitude  |
| W0180   | MassDEP      | Water   | Speedway   | [Route 152, Attleboro]     | 41.927261 | -71.285224 |
|         |              | Quality | Brook      |                            |           |            |
| W1517   | MassDEP      | Water   | Speedway   | [Dexter Street, Attleboro] | 41.928698 | -71.280345 |
|         |              | Quality | Brook      |                            |           |            |

| Station |              |         |            |                                                   |           |            |
|---------|--------------|---------|------------|---------------------------------------------------|-----------|------------|
| Code    | Organization | Туре    | Water Body | Station Description                               | Latitude  | Longitude  |
| W1618   | MassDEP      | Water   | Speedway   | [at emergence from culvert south of Maple Street, | 41.935108 | -71.275443 |
|         |              | Quality | Brook      | Attleboro]                                        |           |            |
| W2494   | MassDEP      | Water   | Speedway   | [approximately 1300 feet upstream (northeast) of  | 41.931486 | -71.277031 |
|         |              | Quality | Brook      | Dexter Street (downstream of unnamed tributary),  |           |            |
|         |              |         |            | Attleboro]                                        |           |            |

#### Aesthetic Observations

# Aesthetics Summary Statements for MassDEP Stations (2011-2018) (MassDEP Undated 5)

| Ct-ti           |                   | D-4-         | Field<br>Sheet |                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|-------------------|--------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Station<br>Code | Waterbody         | Data<br>Year | Count          | Aesthetics Summary Statement                                                                                                                                                                                                                                                                                                                                      |
| W0180           | Speedway<br>Brook | 2013         | 4              | MassDEP aesthetics observations for station W0180 on Speedway Brook can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2013.                                                                                                        |
| W0180           | Speedway<br>Brook | 2014         | 1              | MassDEP aesthetics observations for station W0180 on Speedway Brook can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2014. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=1). |
| W0180           | Speedway<br>Brook | 2015         | 4              | MassDEP aesthetics observations for station W0180 on Speedway Brook can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2015.                                                                                                        |
| W0180           | Speedway<br>Brook | 2016         | 2              | MassDEP aesthetics observations for station W0180 on Speedway Brook can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2016. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=2). |
| W1517           | Speedway<br>Brook | 2013         | 3              | MassDEP aesthetics observations for station W1517 on Speedway Brook can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2013.                                                                                                        |
| W1517           | Speedway<br>Brook | 2014         | 3              | MassDEP aesthetics observations for station W1517 on Speedway Brook can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2014.                                                                                                        |
| W1517           | Speedway<br>Brook | 2015         | 4              | MassDEP aesthetics observations for station W1517 on Speedway Brook can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2015.                                                                                                        |

| Station<br>Code | Waterbody         | Data<br>Year | Field<br>Sheet<br>Count | Aesthetics Summary Statement                                                                                                                                                                                                                                                                                                                                      |
|-----------------|-------------------|--------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W1517           | Speedway<br>Brook | 2016         | 2                       | MassDEP aesthetics observations for station W1517 on Speedway Brook can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2016. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=2). |
| W1618           | Speedway<br>Brook | 2011         | 3                       | MassDEP aesthetics observations for station W1618 on Speedway Brook can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2011.                                                                                                        |
| W1618           | Speedway<br>Brook | 2014         | 3                       | MassDEP aesthetics observations for station W1618 on Speedway Brook can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2014.                                                                                                        |
| W1618           | Speedway<br>Brook | 2015         | 4                       | MassDEP aesthetics observations for station W1618 on Speedway Brook can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2015.                                                                                                        |
| W1618           | Speedway<br>Brook | 2016         | 2                       | MassDEP aesthetics observations for station W1618 on Speedway Brook can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2016. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=2). |
| W2494           | Speedway<br>Brook | 2014         | 2                       | MassDEP aesthetics observations for station W2494 on Speedway Brook can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2014. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=2). |
| W2494           | Speedway<br>Brook | 2015         | 4                       | MassDEP aesthetics observations for station W2494 on Speedway Brook can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2015.                                                                                                        |
| W2494           | Speedway<br>Brook | 2016         | 2                       | MassDEP aesthetics observations for station W2494 on Speedway Brook can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2016. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=2). |

Observations of Filamentous/Film Algae at MassDEP Stations (2011-2018) (MassDEP Undated 7) (MassDEP Undated 5)

| Station<br>Code | Data Year | Field Sheet Count | Field Sheet Count w/ Film &<br>Filamentous Algae<br>Observations | Dense/ Very Dense Film/ Filamentous Algae |
|-----------------|-----------|-------------------|------------------------------------------------------------------|-------------------------------------------|
| W0180           | 2013      | 4                 | 3                                                                | 0                                         |
| W0180           | 2014      | 1                 | 1                                                                | 0                                         |
| W0180           | 2015      | 4                 | 4                                                                | 1                                         |
| W0180           | 2016      | 2                 | 2                                                                | 0                                         |
| W1517           | 2013      | 3                 | 3                                                                | 0                                         |
| W1517           | 2014      | 3                 | 2                                                                | 0                                         |
| W1517           | 2015      | 4                 | 4                                                                | 0                                         |
| W1517           | 2016      | 2                 | 2                                                                | 0                                         |
| W1618           | 2011      | 3                 | 3                                                                | 0                                         |
| W1618           | 2014      | 3                 | 3                                                                | 0                                         |
| W1618           | 2015      | 4                 | 4                                                                | 0                                         |
| W1618           | 2016      | 2                 | 2                                                                | 0                                         |
| W2494           | 2014      | 2                 | 2                                                                | 0                                         |
| W2494           | 2015      | 4                 | 4                                                                | 0                                         |
| W2494           | 2016      | 2                 | 2                                                                | 0                                         |

#### MassDEP Aesthetics Observations (2011-2018) (MassDEP Undated 7)

| Station |                | Data |                        |                      | Result | Total Field        |
|---------|----------------|------|------------------------|----------------------|--------|--------------------|
| Code    | Waterbody      | Year | Parameter              | Result               | Count  | <b>Sheet Count</b> |
| W0180   | Speedway Brook | 2013 | Color                  | Light Yellow/Tan     | 1      | 4                  |
| W0180   | Speedway Brook | 2013 | Color                  | None                 | 2      | 4                  |
| W0180   | Speedway Brook | 2013 | Color                  | NR                   | 1      | 4                  |
| W0180   | Speedway Brook | 2013 | Objectionable Deposits | Not Applicable (N/A) | 4      | 4                  |
| W0180   | Speedway Brook | 2013 | Odor                   | Musty (Basement)     | 1      | 4                  |
| W0180   | Speedway Brook | 2013 | Odor                   | None                 | 2      | 4                  |
| W0180   | Speedway Brook | 2013 | Odor                   | NR                   | 1      | 4                  |
| W0180   | Speedway Brook | 2013 | Scum                   | Not Applicable (N/A) | 4      | 4                  |
| W0180   | Speedway Brook | 2013 | Turbidity              | Moderately Turbid    | 1      | 4                  |
| W0180   | Speedway Brook | 2013 | Turbidity              | NR                   | 1      | 4                  |
| W0180   | Speedway Brook | 2013 | Turbidity              | Slightly Turbid      | 2      | 4                  |
| W0180   | Speedway Brook | 2014 | Color                  | None                 | 1      | 1                  |
| W0180   | Speedway Brook | 2014 | Objectionable Deposits | Not Applicable (N/A) | 1      | 1                  |
| W0180   | Speedway Brook | 2014 | Odor                   | None                 | 1      | 1                  |
| W0180   | Speedway Brook | 2014 | Scum                   | Yes                  | 1      | 1                  |
| W0180   | Speedway Brook | 2014 | Turbidity              | Slightly Turbid      | 1      | 1                  |
| W0180   | Speedway Brook | 2015 | Color                  | Light Yellow/Tan     | 1      | 4                  |
| W0180   | Speedway Brook | 2015 | Color                  | None                 | 3      | 4                  |
| W0180   | Speedway Brook | 2015 | Objectionable Deposits | Not Applicable (N/A) | 4      | 4                  |
| W0180   | Speedway Brook | 2015 | Odor                   | None                 | 4      | 4                  |
| W0180   | Speedway Brook | 2015 | Scum                   | Not Applicable (N/A) | 4      | 4                  |
| W0180   | Speedway Brook | 2015 | Turbidity              | Moderately Turbid    | 1      | 4                  |
| W0180   | Speedway Brook | 2015 | Turbidity              | Slightly Turbid      | 3      | 4                  |
| W0180   | Speedway Brook | 2016 | Color                  | Light Yellow/Tan     | 1      | 2                  |
| W0180   | Speedway Brook | 2016 | Color                  | None                 | 1      | 2                  |
| W0180   | Speedway Brook | 2016 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |

| Station |                | Data |                        |                      | Result | Total Field        |
|---------|----------------|------|------------------------|----------------------|--------|--------------------|
| Code    | Waterbody      | Year | Parameter              | Result               | Count  | <b>Sheet Count</b> |
| W0180   | Speedway Brook | 2016 | Odor                   | None                 | 2      | 2                  |
| W0180   | Speedway Brook | 2016 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W0180   | Speedway Brook | 2016 | Turbidity              | Slightly Turbid      | 2      | 2                  |
| W1517   | Speedway Brook | 2013 | Color                  | Light Yellow/Tan     | 1      | 3                  |
| W1517   | Speedway Brook | 2013 | Color                  | None                 | 2      | 3                  |
| W1517   | Speedway Brook | 2013 | Objectionable Deposits | Not Applicable (N/A) | 3      | 3                  |
| W1517   | Speedway Brook | 2013 | Odor                   | None                 | 3      | 3                  |
| W1517   | Speedway Brook | 2013 | Scum                   | Not Applicable (N/A) | 3      | 3                  |
| W1517   | Speedway Brook | 2013 | Turbidity              | Moderately Turbid    | 1      | 3                  |
| W1517   | Speedway Brook | 2013 | Turbidity              | Slightly Turbid      | 2      | 3                  |
| W1517   | Speedway Brook | 2014 | Color                  | Light Yellow/Tan     | 1      | 3                  |
| W1517   | Speedway Brook | 2014 | Color                  | None                 | 2      | 3                  |
| W1517   | Speedway Brook | 2014 | Objectionable Deposits | Not Applicable (N/A) | 3      | 3                  |
| W1517   | Speedway Brook | 2014 | Odor                   | None                 | 3      | 3                  |
| W1517   | Speedway Brook | 2014 | Scum                   | Not Applicable (N/A) | 2      | 3                  |
| W1517   | Speedway Brook | 2014 | Scum                   | Yes                  | 1      | 3                  |
| W1517   | Speedway Brook | 2014 | Turbidity              | Moderately Turbid    | 1      | 3                  |
| W1517   | Speedway Brook | 2014 | Turbidity              | Slightly Turbid      | 2      | 3                  |
| W1517   | Speedway Brook | 2015 | Color                  | None                 | 4      | 4                  |
| W1517   | Speedway Brook | 2015 | Objectionable Deposits | Not Applicable (N/A) | 4      | 4                  |
| W1517   | Speedway Brook | 2015 | Odor                   | None                 | 4      | 4                  |
| W1517   | Speedway Brook | 2015 | Scum                   | Not Applicable (N/A) | 4      | 4                  |
| W1517   | Speedway Brook | 2015 | Turbidity              | Moderately Turbid    | 2      | 4                  |
| W1517   | Speedway Brook | 2015 | Turbidity              | Slightly Turbid      | 2      | 4                  |
| W1517   | Speedway Brook | 2016 | Color                  | Light Yellow/Tan     | 1      | 2                  |
| W1517   | Speedway Brook | 2016 | Color                  | None                 | 1      | 2                  |
| W1517   | Speedway Brook | 2016 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
| W1517   | Speedway Brook | 2016 | Odor                   | None                 | 2      | 2                  |
| W1517   | Speedway Brook | 2016 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W1517   | Speedway Brook | 2016 | Turbidity              | Slightly Turbid      | 2      | 2                  |
| W1618   | Speedway Brook | 2011 | Color                  | None                 | 3      | 3                  |
| W1618   | Speedway Brook | 2011 | Objectionable Deposits | Not Applicable (N/A) | 3      | 3                  |
| W1618   | Speedway Brook | 2011 | Odor                   | Musty (Basement)     | 1      | 3                  |
| W1618   | Speedway Brook | 2011 | Odor                   | None                 | 1      | 3                  |
| W1618   | Speedway Brook | 2011 | Odor                   | Other                | 1      | 3                  |
| W1618   | Speedway Brook | 2011 | Scum                   | Not Applicable (N/A) | 3      | 3                  |
| W1618   | Speedway Brook | 2011 | Turbidity              | None                 | 1      | 3                  |
| W1618   | Speedway Brook | 2011 | Turbidity              | Slightly Turbid      | 2      | 3                  |
| W1618   | Speedway Brook | 2014 | Color                  | None                 | 3      | 3                  |
| W1618   | Speedway Brook | 2014 | Objectionable Deposits | Not Applicable (N/A) | 3      | 3                  |
| W1618   | Speedway Brook | 2014 | Odor                   | None                 | 3      | 3                  |
| W1618   | Speedway Brook | 2014 | Scum                   | Not Applicable (N/A) | 3      | 3                  |
| W1618   | Speedway Brook | 2014 | Turbidity              | Slightly Turbid      | 3      | 3                  |
| W1618   | Speedway Brook | 2015 | Color                  | None                 | 4      | 4                  |
| W1618   | Speedway Brook | 2015 | Objectionable Deposits | Not Applicable (N/A) | 4      | 4                  |
| W1618   | Speedway Brook | 2015 | Odor                   | None                 | 3      | 4                  |

| Station |                | Data |                        |                      | Result | Total Field        |
|---------|----------------|------|------------------------|----------------------|--------|--------------------|
| Code    | Waterbody      | Year | Parameter              | Result               | Count  | <b>Sheet Count</b> |
| W1618   | Speedway Brook | 2015 | Odor                   | Septic               | 1      | 4                  |
| W1618   | Speedway Brook | 2015 | Scum                   | Not Applicable (N/A) | 4      | 4                  |
| W1618   | Speedway Brook | 2015 | Turbidity              | Moderately Turbid    | 1      | 4                  |
| W1618   | Speedway Brook | 2015 | Turbidity              | Slightly Turbid      | 3      | 4                  |
| W1618   | Speedway Brook | 2016 | Color                  | Light Yellow/Tan     | 1      | 2                  |
| W1618   | Speedway Brook | 2016 | Color                  | None                 | 1      | 2                  |
| W1618   | Speedway Brook | 2016 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
| W1618   | Speedway Brook | 2016 | Odor                   | None                 | 2      | 2                  |
| W1618   | Speedway Brook | 2016 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W1618   | Speedway Brook | 2016 | Turbidity              | Slightly Turbid      | 2      | 2                  |
| W2494   | Speedway Brook | 2014 | Color                  | None                 | 2      | 2                  |
| W2494   | Speedway Brook | 2014 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
| W2494   | Speedway Brook | 2014 | Odor                   | None                 | 2      | 2                  |
| W2494   | Speedway Brook | 2014 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W2494   | Speedway Brook | 2014 | Turbidity              | Moderately Turbid    | 1      | 2                  |
| W2494   | Speedway Brook | 2014 | Turbidity              | Slightly Turbid      | 1      | 2                  |
| W2494   | Speedway Brook | 2015 | Color                  | None                 | 4      | 4                  |
| W2494   | Speedway Brook | 2015 | Objectionable Deposits | Not Applicable (N/A) | 4      | 4                  |
| W2494   | Speedway Brook | 2015 | Odor                   | None                 | 4      | 4                  |
| W2494   | Speedway Brook | 2015 | Scum                   | Not Applicable (N/A) | 4      | 4                  |
| W2494   | Speedway Brook | 2015 | Turbidity              | Moderately Turbid    | 2      | 4                  |
| W2494   | Speedway Brook | 2015 | Turbidity              | Slightly Turbid      | 2      | 4                  |
| W2494   | Speedway Brook | 2016 | Color                  | Light Yellow/Tan     | 1      | 2                  |
| W2494   | Speedway Brook | 2016 | Color                  | None                 | 1      | 2                  |
| W2494   | Speedway Brook | 2016 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2                  |
| W2494   | Speedway Brook | 2016 | Odor                   | None                 | 2      | 2                  |
| W2494   | Speedway Brook | 2016 | Scum                   | Not Applicable (N/A) | 2      | 2                  |
| W2494   | Speedway Brook | 2016 | Turbidity              | Slightly Turbid      | 2      | 2                  |

## Primary Contact Recreation

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Not Supporting              | NO    |
| 2022 Use Attainment Summary |       |

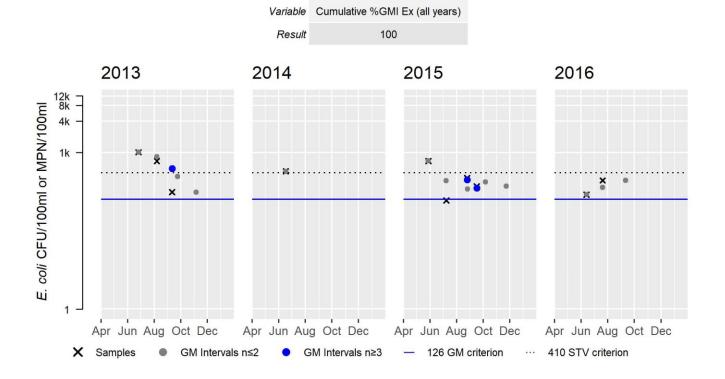
E. coli (and occasionally Enterococcus) bacteria samples were collected from Speedway Brook at four sampling stations in Attleboro as part the MassDEP Bacteria Source Tracking (BST) project. The available Enterococcus data were too limited to assess the Primary Contact Recreational Use for this AU according to the CALM "Use Attainment Impairment Decision Schema". E. coli samples were collected between one and four times per year during the summers of 2013 to 2016 at: the emergence from culvert south of Maple Street (W1618) approximately 1300 feet upstream (northeast) of Dexter Street (W2494), Dexter Street (W1517) and Rt.152 (W0180). Data analysis of these single and multi-year, low frequency E. coli datasets (when enough data were available according to the CALM "Use Attainment Impairment Decision Schema") indicated generally poor water quality conditions (elevated bacteria) at the majority of sample stations, as 100% of intervals (in the single year dataset at W2494 in 2015) and 50-100% of intervals (in the two-year datasets) had GMs > 126 cfu/100ml; also with the single year dataset the seasonal GM was 361 cfu/100ml and for the two-year datasets 67-100% of the cumulative GMs were >126 cfu/100ml. BST project notes indicated that human marker analysis results at Rt.152 in 2014 were "weak", indicating a possible human source(s); however, it was concluded that this is more likely the result of industrial source optical brighteners (such as a car wash or laundry) combining with fecal matter from the ducks and geese on the pond at the Brook Haven Estates condo complex. Based on intermittently elevated E. coli and detergents at Maple Street in 2015 and 2016, it was concluded that an early season intermittent human source may still exist within the drainage infrastructure upstream of Maple Street. The Primary Contact Recreational Use for Speedway Brook will continue to be assessed as Not Supporting with both the E. coli and Fecal Coliform impairments being carried forward.

#### **Monitoring Stations**

| Station |              |         |            |                                                   |           |            |
|---------|--------------|---------|------------|---------------------------------------------------|-----------|------------|
| Code    | Organization | Type    | Water Body | Station Description                               | Latitude  | Longitude  |
| W0180   | MassDEP      | Water   | Speedway   | [Route 152, Attleboro]                            | 41.927261 | -71.285224 |
|         |              | Quality | Brook      |                                                   |           |            |
| W1517   | MassDEP      | Water   | Speedway   | [Dexter Street, Attleboro]                        | 41.928698 | -71.280345 |
|         |              | Quality | Brook      |                                                   |           |            |
| W1618   | MassDEP      | Water   | Speedway   | [at emergence from culvert south of Maple Street, | 41.935108 | -71.275443 |
|         |              | Quality | Brook      | Attleboro]                                        |           |            |
| W2494   | MassDEP      | Water   | Speedway   | [approximately 1300 feet upstream (northeast) of  | 41.931486 | -71.277031 |
|         |              | Quality | Brook      | Dexter Street (downstream of unnamed tributary),  |           |            |
|         |              |         |            | Attleboro]                                        |           |            |

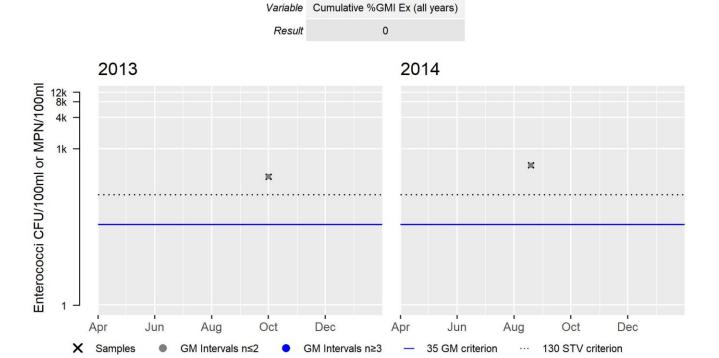
#### Bacteria Data

## Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 7) (MassDEP Undated 5)


[Result units are CFU/100ml or MPN/100ml]

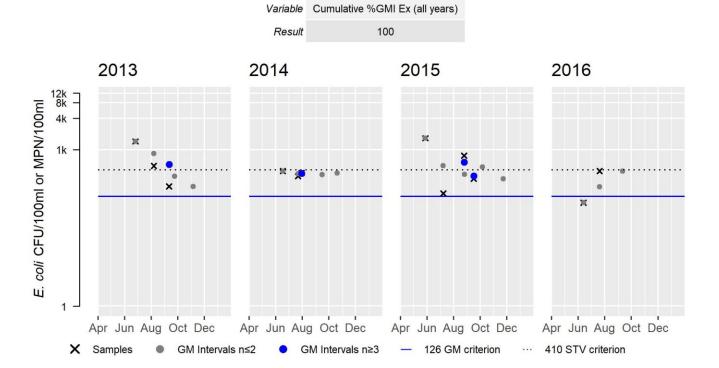
|              |              |             |            |          |        | Minimum | Maximum | Seasonal  |
|--------------|--------------|-------------|------------|----------|--------|---------|---------|-----------|
|              |              |             |            |          | Sample | Sample  | Sample  | Geometric |
| Station Code | Organization | Indicator   | Start Date | End Date | Count  | Result  | Result  | Mean      |
| W0180        | MassDEP      | E. coli     | 06/26/13   | 09/11/13 | 3      | 173     | 1010    | 493       |
| W0180        | MassDEP      | Enterococci | 10/01/13   | 10/01/13 | 1      | 290     | 290     | 290       |
| W0180        | MassDEP      | E. coli     | 06/17/14   | 06/17/14 | 1      | 435     | 435     | 435       |
| W0180        | MassDEP      | Enterococci | 08/19/14   | 08/19/14 | 1      | 480     | 480     | 480       |
| W0180        | MassDEP      | E. coli     | 05/28/15   | 09/16/15 | 4      | 120     | 687     | 279       |
| W0180        | MassDEP      | E. coli     | 06/13/16   | 07/20/16 | 2      | 155     | 291     | 212       |
| W1517        | MassDEP      | E. coli     | 06/26/13   | 09/11/13 | 3      | 196     | 1440    | 516       |
| W1517        | MassDEP      | E. coli     | 06/17/14   | 07/30/14 | 3      | 308     | 387     | 348       |
| W1517        | MassDEP      | Enterococci | 08/19/14   | 08/19/14 | 1      | 700     | 700     | 700       |
| W1517        | MassDEP      | E. coli     | 05/28/15   | 09/16/15 | 4      | 145     | 1660    | 476       |
| W1517        | MassDEP      | E. coli     | 06/13/16   | 07/20/16 | 2      | 96      | 387     | 193       |
| W1618        | MassDEP      | E. coli     | 06/02/11   | 09/20/11 | 3      | 146     | 980     | 329       |

|              |              |             |            |          |        | Minimum | Maximum | Seasonal  |
|--------------|--------------|-------------|------------|----------|--------|---------|---------|-----------|
|              |              |             |            |          | Sample | Sample  | Sample  | Geometric |
| Station Code | Organization | Indicator   | Start Date | End Date | Count  | Result  | Result  | Mean      |
| W1618        | MassDEP      | E. coli     | 06/17/14   | 07/30/14 | 3      | 105     | 556     | 225       |
| W1618        | MassDEP      | Enterococci | 08/19/14   | 08/19/14 | 1      | 44      | 44      | 44        |
| W1618        | MassDEP      | E. coli     | 05/28/15   | 09/16/15 | 4      | 88      | 1730    | 242       |
| W1618        | MassDEP      | E. coli     | 06/13/16   | 07/20/16 | 2      | 261     | 305     | 282       |
| W2494        | MassDEP      | E. coli     | 07/22/14   | 07/30/14 | 2      | 579     | 613     | 596       |
| W2494        | MassDEP      | E. coli     | 05/28/15   | 09/16/15 | 4      | 96      | 1730    | 361       |
| W2494        | MassDEP      | E. coli     | 06/13/16   | 07/20/16 | 2      | 59      | 565     | 183       |


### W0180 E. coli (90-day Interval), Primary Contact Recreational Use Season

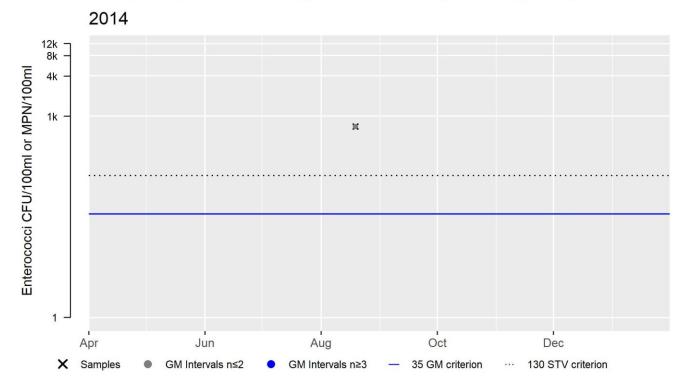
| Var     | Res | s | Var     | Res |
|---------|-----|---|---------|-----|
| Samples | 3   |   | Samples | 1   |
| SeasGM  | 493 | 3 | SeasGM  | 435 |
| #GMI    | 1   |   | #GMI    | 0   |
| #GMI Ex | 1   |   | #GMI Ex | 0   |
| %GMI Ex | 100 |   | %GMI Ex | 0   |
| n>STV   | 2   |   | n>STV   | 1   |
| %n>STV  | 67  |   | %n>STV  | 100 |




## W0180 Enterococci (90-day Interval), Primary Contact Recreational Use Season

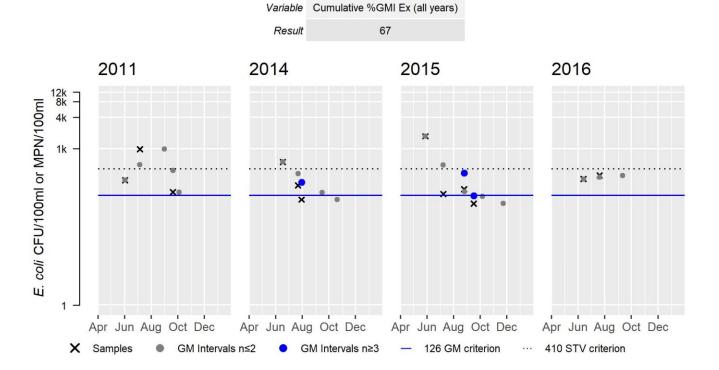
| Var     | Res |
|---------|-----|
| Samples | 1   |
| SeasGM  | 290 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 1   |
| %n>STV  | 100 |




W1517 E. coli (90-day Interval), Primary Contact Recreational Use Season

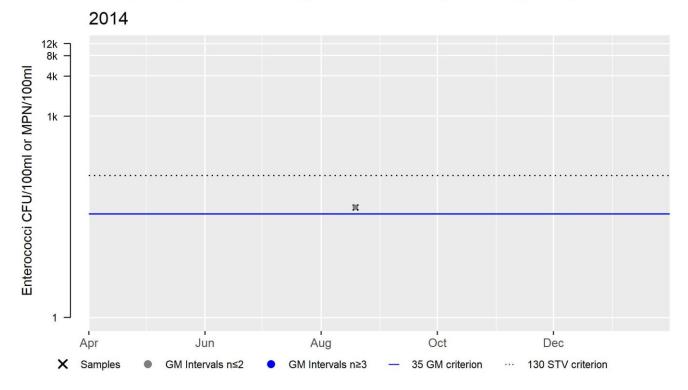
| Var     | Res | Var     | Res |
|---------|-----|---------|-----|
| Samples | 3   | Samples | 3   |
| SeasGM  | 516 | SeasGM  | 348 |
| #GMI    | 1   | #GMI    | 1   |
| #GMI Ex | 1   | #GMI Ex | 1   |
| %GMI Ex | 100 | %GMI Ex | 100 |
| n>STV   | 2   | n>STV   | 0   |
| %n>STV  | 67  | %n>STV  | 0   |




## W1517 Enterococci (90-day Interval), Primary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 1   |
| SeasGM  | 700 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 1   |
| %n>STV  | 100 |

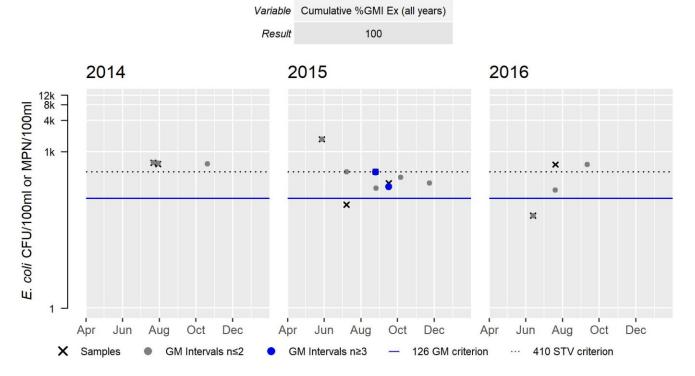



### W1618 E. coli (90-day Interval), Primary Contact Recreational Use Season

| Var     | Res | Var     | Res |
|---------|-----|---------|-----|
| Samples | 3   | Samples | 3   |
| SeasGM  | 329 | SeasGM  | 225 |
| #GMI    | 0   | #GMI    | 1   |
| #GMI Ex | 0   | #GMI Ex | 1   |
| %GMI Ex | 0   | %GMI Ex | 100 |
| n>STV   | 1   | n>STV   | 1   |
| %n>STV  | 33  | %n>STV  | 33  |



## W1618 Enterococci (90-day Interval), Primary Contact Recreational Use Season


| Var     | Res |
|---------|-----|
| Samples | 1   |
| SeasGM  | 44  |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |



#### W2494 E. coli (90-day Interval), Primary Contact Recreational Use Season

| Var     | Res | Var     | Res |
|---------|-----|---------|-----|
| Samples | 2   | Samples | 4   |
| SeasGM  | 596 | SeasGM  | 361 |
| #GMI    | 0   | #GMI    | 2   |
| #GMI Ex | 0   | #GMI Ex | 2   |
| %GMI Ex | 0   | %GMI Ex | 100 |
| n>STV   | 2   | n>STV   | 2   |
| %n>STV  | 100 | %n>STV  | 50  |

Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV



#### MassDEP Bacteria Source Tracking (BST) Summary Statement for 2011-2019 (MassDEP Undated 1)

#### Summary

Prior to 2011, BST work was conducted along the Speedway Brook AU (MA52-05) and within the stormwater infrastructure upgradient of Maple Street; with a max *E. coli* concentration of 19,863MPN. In 2011 human sources of bacteria were found and corrected by the City of Attleboro. Additional BST work was conducted between 2011 and 2016 years at 6 sites along Speedway Brook and an additional 4 unnamed tributary sites: with *E. coli* concentrations ranging 105 to 1,733MPN. Human marker analysis results at Rt.152 in 2014 were "weak", indicating a human source(s); however, it was concluded that this is likely the result of industrial source optical brighteners (such as a car wash or laundry) combining with fecal matter from the ducks and geese on the pond at the Brook Haven Estates condo complex. Based on intermittently elevated *E. coli* and detergents at Maple Street in 2015 and 2016, it was concluded that an early season intermittent human source may still exist within the drainage infrastructure upstream of Maple Street.

#### Secondary Contact Recreation

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Fully Supporting    | NO    |

#### 2022 Use Attainment Summary

E. coli (and occasionally Enterococcus) bacteria samples were collected from Speedway Brood at four sampling stations in Attleboro as part the MassDEP Bacteria Source Tracking (BST) project. The available Enterococcus data were too limited to assess the Secondary Contact Recreational Use for this AU according to the CALM "Use Attainment Impairment Decision Schema". E. coli samples were collected between one and four times per year during the summers of 2013 to 2016 at: the emergence from culvert south of Maple Street (W1618) approximately 1300 feet upstream (northeast) of Dexter Street (W2494), Dexter Street (W1517) and Rt.152 (W0180). Data analysis of these single and multi-year, low frequency E. coli datasets (when enough data were available according to the CALM "Use Attainment Impairment Decision Schema") indicated generally good conditions at the majority of sample stations as none of the intervals had GMs > 630 cfu/100ml; at most only one sample a year exceeded the 1260 STV and also with the single year dataset (at W2494 in 2015) the seasonal GM was only 361 cfu/100ml.

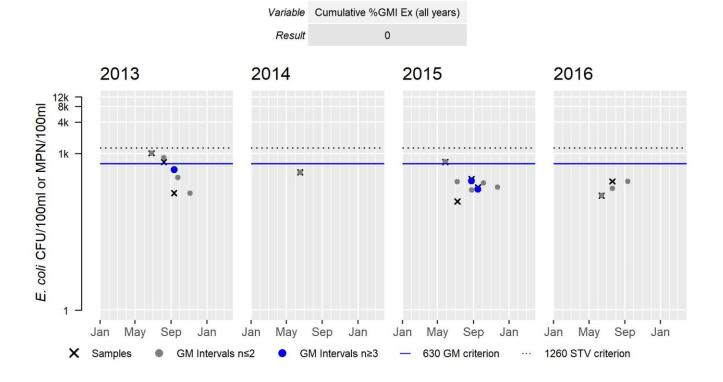
The Secondary Contact Recreational Use for Speedway Brook is assessed as Fully Supporting based on the recent *E. coli* data collected by the MassDEP BST project in 2013-2015 that does not exceed the "Use Attainment Impairment Decision Schema" described in the 2022 CALM (MassDEP 2022). The prior impairment for E. coli is being removed from this use only (E. coli remains an impairment for Primary Contact Recreation).

#### **Monitoring Stations**

| Station |              |         |            |                                                   |           |            |
|---------|--------------|---------|------------|---------------------------------------------------|-----------|------------|
| Code    | Organization | Туре    | Water Body | Station Description                               | Latitude  | Longitude  |
| W0180   | MassDEP      | Water   | Speedway   | [Route 152, Attleboro]                            | 41.927261 | -71.285224 |
|         |              | Quality | Brook      |                                                   |           |            |
| W1517   | MassDEP      | Water   | Speedway   | [Dexter Street, Attleboro]                        | 41.928698 | -71.280345 |
|         |              | Quality | Brook      |                                                   |           |            |
| W1618   | MassDEP      | Water   | Speedway   | [at emergence from culvert south of Maple Street, | 41.935108 | -71.275443 |
|         |              | Quality | Brook      | Attleboro]                                        |           |            |
| W2494   | MassDEP      | Water   | Speedway   | [approximately 1300 feet upstream (northeast) of  | 41.931486 | -71.277031 |
|         |              | Quality | Brook      | Dexter Street (downstream of unnamed tributary),  |           |            |
|         |              |         |            | Attleboro]                                        |           |            |

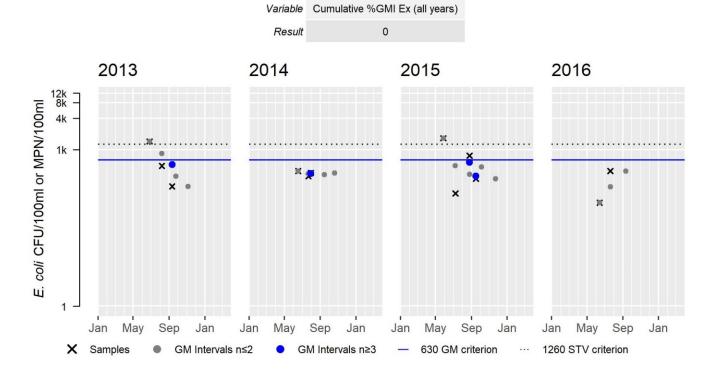
#### Bacteria Data

## Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 7) (MassDEP Undated 5)


[Result units are CFU/100ml or MPN/100ml]

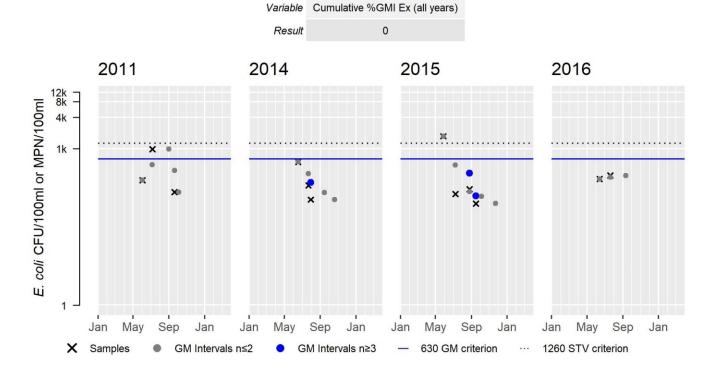
|              |              |           |            |          | Sample | Minimum<br>Sample<br>Result<br>(CFU/100ml<br>or | Maximum<br>Sample<br>Result<br>(CFU/100ml<br>or | Seasonal<br>Geometric<br>Mean<br>(CFU/100ml<br>or |
|--------------|--------------|-----------|------------|----------|--------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------|
| Station Code | Organization | Indicator | Start Date | End Date | Count  | MPN/100ml)                                      | MPN/100ml)                                      | MPN/100ml)                                        |
| W0180        | MassDEP      | E. coli   | 06/26/13   | 09/11/13 | 3      | 173                                             | 1010                                            | 493                                               |
| W0180        | MassDEP      | E. coli   | 06/17/14   | 06/17/14 | 1      | 435                                             | 435                                             | 435                                               |
| W0180        | MassDEP      | E. coli   | 05/28/15   | 09/16/15 | 4      | 120                                             | 687                                             | 279                                               |
| W0180        | MassDEP      | E. coli   | 06/13/16   | 07/20/16 | 2      | 155                                             | 291                                             | 212                                               |
| W1517        | MassDEP      | E. coli   | 06/26/13   | 09/11/13 | 3      | 196                                             | 1440                                            | 516                                               |
| W1517        | MassDEP      | E. coli   | 06/17/14   | 07/30/14 | 3      | 308                                             | 387                                             | 348                                               |
| W1517        | MassDEP      | E. coli   | 05/28/15   | 09/16/15 | 4      | 145                                             | 1660                                            | 476                                               |
| W1517        | MassDEP      | E. coli   | 06/13/16   | 07/20/16 | 2      | 96                                              | 387                                             | 193                                               |
| W1618        | MassDEP      | E. coli   | 06/02/11   | 09/20/11 | 3      | 146                                             | 980                                             | 329                                               |

| Station Code | Organization | Indicator | Start Date | End Date | Sample<br>Count | Minimum Sample Result (CFU/100ml or MPN/100ml) | Maximum Sample Result (CFU/100ml or MPN/100ml) | Seasonal<br>Geometric<br>Mean<br>(CFU/100ml<br>or<br>MPN/100ml) |
|--------------|--------------|-----------|------------|----------|-----------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|
| W1618        | MassDEP      | E. coli   | 06/17/14   | 07/30/14 | 3               | 105                                            | 556                                            | 225                                                             |
| W1618        | MassDEP      | E. coli   | 05/28/15   | 09/16/15 | 4               | 88                                             | 1730                                           | 242                                                             |
| W1618        | MassDEP      | E. coli   | 06/13/16   | 07/20/16 | 2               | 261                                            | 305                                            | 282                                                             |
| W2494        | MassDEP      | E. coli   | 07/22/14   | 07/30/14 | 2               | 579                                            | 613                                            | 596                                                             |
| W2494        | MassDEP      | E. coli   | 05/28/15   | 09/16/15 | 4               | 96                                             | 1730                                           | 361                                                             |
| W2494        | MassDEP      | E. coli   | 06/13/16   | 07/20/16 | 2               | 59                                             | 565                                            | 183                                                             |


## W0180 E. coli (90-day Interval), Secondary Contact Recreational Use Season

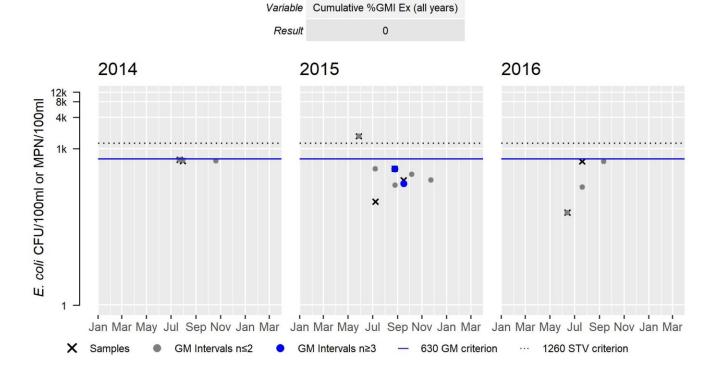
| Var     | Res | 3 | Var     | Res |
|---------|-----|---|---------|-----|
| Samples | 3   |   | Samples | 1   |
| SeasGM  | 493 | 3 | SeasGM  | 435 |
| #GMI    | 1   |   | #GMI    | 0   |
| #GMI Ex | 0   |   | #GMI Ex | 0   |
| %GMI Ex | 0   |   | %GMI Ex | 0   |
| n>STV   | 0   |   | n>STV   | 0   |
| %n>STV  | 0   |   | %n>STV  | 0   |




W1517 E. coli (90-day Interval), Secondary Contact Recreational Use Season

| Var     | Res | Var     | Res | Va   | Var R  |
|---------|-----|---------|-----|------|--------|
| Samples | 3   | Samples | 3   | Samp | mples  |
| SeasGM  | 516 | SeasGM  | 348 | Seas | asGM 4 |
| #GMI    | 1   | #GMI    | 1   | #GI  | GMI :  |
| #GMI Ex | 0   | #GMI Ex | 0   | #GMI | MI Ex  |
| %GMI Ex | 0   | %GMI Ex | 0   | %GM  | MI Ex  |
| n>STV   | 1   | n>STV   | 0   | n>S  | STV    |
| %n>STV  | 33  | %n>STV  | 0   | %n>5 | >STV 2 |



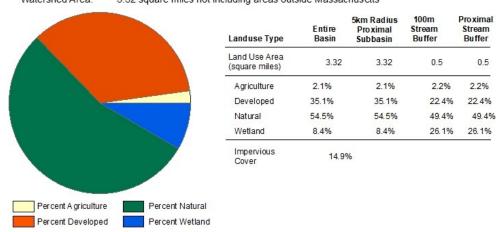

W1618 E. coli (90-day Interval), Secondary Contact Recreational Use Season

| Var     | Res | Var     | Res |
|---------|-----|---------|-----|
| Samples | 3   | Samples | 3   |
| SeasGM  | 329 | SeasGM  | 225 |
| #GMI    | 0   | #GMI    | 1   |
| #GMI Ex | 0   | #GMI Ex | 0   |
| %GMI Ex | 0   | %GMI Ex | 0   |
| n>STV   | 0   | n>STV   | 0   |
| %n>STV  | 0   | %n>STV  | 0   |



W2494 E. coli (90-day Interval), Secondary Contact Recreational Use Season


| Var     | Res |   | Var     | Res |
|---------|-----|---|---------|-----|
| Samples | 2   |   | Samples | 4   |
| SeasGM  | 596 |   | SeasGM  | 361 |
| #GMI    | 0   |   | #GMI    | 2   |
| #GMI Ex | 0   |   | #GMI Ex | 0   |
| %GMI Ex | 0   | 9 | %GMI Ex | 0   |
| n>STV   | 0   |   | n>STV   | 1   |
| %n>STV  | 0   |   | %n>STV  | 25  |




## Ten Mile River (MA52-01)

| Location:                 | Headwaters, outlet Cargill Pond, Plainville to West Bacon Street, Plainville (through former |
|---------------------------|----------------------------------------------------------------------------------------------|
|                           | 2006 segment: Fuller Pond MA52016).                                                          |
| AU Type:                  | RIVER                                                                                        |
| AU Size:                  | 1.5 MILES                                                                                    |
| Classification/Qualifier: | B: WWF, HQW                                                                                  |

#### Ten Mile River - MA52-01





|            |          |            |                   | Impairment |
|------------|----------|------------|-------------------|------------|
| 2018/20 AU | 2022 AU  |            |                   | Change     |
| Category   | Category | Impairment | ATTAINS Action ID | Summary    |
| 5          | 5        | Metals     |                   | Unchanged  |

| Impairment | Source (Confirmed Y/N)     | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|------------|----------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| Metals     | Contaminated Sediments (N) | Χ                                        |                  |           |                               |                                 |

#### Recommendations

#### **2022 Recommendations**

ALU: Conduct an aquatic macrophyte survey in the Fuller Pond impoundment of the Ten Mile River (MA52-01) when flowering heads are present, to determine if any non-native species of *Myriophyllum* are infesting the pond.

### Designated Use Attainment Decisions

#### Fish, other Aquatic Life and Wildlife

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | YES   |
|                     |       |

#### 2022 Use Attainment Summary

During validation of MassDEP aquatic invasive species records, it was noted that DEP biologists listed "*Myriophyllum* sp." on the field sheet for a July 1997 synoptic survey of Fuller Pond, located just upstream of Fuller Street in Plainville (now part of Ten Mile River MA52-01). The Aquatic Life Use for this Ten Mile River AU (MA52-01) will continue to be assessed as Not Supporting, with the metals impairment carried forward. An alert is also being identified for the possible infestation of non-native *Myriophyllum* species in the Fuller Pond impoundment of this Ten Mile River AU (MA52-01).

#### **Biological Monitoring Information**

#### Non-native Aquatic Species Presence

#### MassDEP Non-Native Aquatic Invasive Species Records as of May 2021. (MassDEP 1997)

| Summary Statement                                                            | Assessment Recommendation                  |
|------------------------------------------------------------------------------|--------------------------------------------|
| During validation of MassDEP aquatic invasive species records, it was        | Conduct an aquatic macrophyte survey in    |
| noted that DEP biologists listed "Myriophyllum sp." on the field sheet for a | the Fuller Pond impoundment of the Ten     |
| July 1997 synoptic survey of Fuller Pond (now part of Ten Mile River         | Mile River (MA52-01) when flowering        |
| MA52-01). An aquatic macrophyte survey should be conducted to                | heads are present to determine if any non- |
| determine whether any of the non-native Myriophyllum species are             | native species of Myriophyllum are         |
| infesting the pond and an Alert should be issued.                            | infesting the pond.                        |

#### Fish Consumption

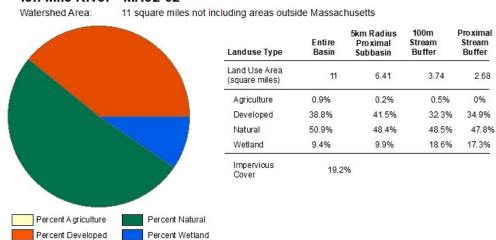
| 2022 Use Attainment                                                                                            | Alert             |
|----------------------------------------------------------------------------------------------------------------|-------------------|
| Not Assessed                                                                                                   | NO                |
| 2022 Use Attainment Summary                                                                                    |                   |
| Although fish toxics sampling was conducted in this Ten Mile River AU (MA52-01) in 1984 just upstream of       | of Fuller Street, |
| Plainville, no site-specific fish consumption advisory is in place, therefore the Fish Consumption Use for the | nis Ten Mile      |
| River (MA52-01) is Not Assessed.                                                                               |                   |

#### **Aesthetic**

| 2022 Use Attainment                                                                                         | Alert  |
|-------------------------------------------------------------------------------------------------------------|--------|
| Not Assessed                                                                                                | NO     |
| 2022 Use Attainment Summary                                                                                 |        |
| No data are available to assess the status of the Aesthetic Use for this Ten Mile River AU (MA52-01), so it | is Not |
| Assessed.                                                                                                   |        |

#### **Primary Contact Recreation**

| 2022 Use Attainment                                                                                        | Alert           |
|------------------------------------------------------------------------------------------------------------|-----------------|
| Not Assessed                                                                                               | NO              |
| 2022 Use Attainment Summary                                                                                |                 |
| No bacteria data are available to assess the Primary Contact Recreational Use for this Ten Mile River AU ( | MA52-01), so it |
| is Not Assessed.                                                                                           |                 |


#### Secondary Contact Recreation

| 2022 Use Attainment                                                                                       | Alert           |
|-----------------------------------------------------------------------------------------------------------|-----------------|
| Not Assessed                                                                                              | NO              |
| 2022 Use Attainment Summary                                                                               |                 |
| No bacteria data are available to assess the Secondary Contact Recreational Use for this Ten Mile River A | U (MA52-01), so |
| it is Not Assessed.                                                                                       |                 |

## Ten Mile River (MA52-02)

| Location:                 | West Bacon Street, Plainville to North Attleborough WWTP discharge (NPDES: MA0101036), Attleboro (excluding 0.9 miles through Falls Pond segment MA52013, but including through former 2006 segment: Wetherells Pond MA52041) (HQW qualifier applies to portion of river upstream of Whiting Pond Dam (NATID: MA00859)). |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AU Type:                  | RIVER                                                                                                                                                                                                                                                                                                                    |
| AU Size:                  | 4.1 MILES                                                                                                                                                                                                                                                                                                                |
| Classification/Qualifier: | B: WWF, HQW* (*HQW qualifier applies to portion of river upstream of Whiting Pond                                                                                                                                                                                                                                        |
|                           | Dam)                                                                                                                                                                                                                                                                                                                     |

#### Ten Mile River - MA52-02



|            |          |                            |                   | Impairment |
|------------|----------|----------------------------|-------------------|------------|
| 2018/20 AU | 2022 AU  |                            |                   | Change     |
| Category   | Category | Impairment                 | ATTAINS Action ID | Summary    |
| 5          | 5        | Escherichia Coli (E. Coli) |                   | Unchanged  |
| 5          | 5        | Fecal Coliform             |                   | Unchanged  |
| 5          | 5        | Metals                     |                   | Unchanged  |

| Impairment                 | Source (Confirmed Y/N)     | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|----------------------------|----------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| Escherichia Coli (E. Coli) | Source Unknown (N)         |                                          |                  |           | X                             |                                 |
| Fecal Coliform             | Source Unknown (N)         |                                          |                  |           | Х                             |                                 |
| Metals                     | Contaminated Sediments (N) | Х                                        |                  |           |                               |                                 |

#### Recommendations

#### 2022 Recommendations

ALU: Conduct additional water quality monitoring on this Ten Mile River AU (MA52-02), being sure to include an evaluation of DO at Rt.1, Attleboro, where low DO was noted to be associated with low flow conditions in 2007. Also reevaluate the metals (due to elevated concentrations noted prior to 1992) to confirm if the Ten Mile River (MA52-02) should continue to be impaired for metals. Many industrial discharges have been eliminated from the watershed since 1992.

#### Designated Use Attainment Decisions

#### Fish, other Aquatic Life and Wildlife

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | YES   |

#### 2022 Use Attainment Summary

MassDFG biologists conducted backpack electrofishing at two sites along this Ten Mile River AU (MA52-02) during the summer of 2019, from up to downstream as follows: downstream of West Bacon Street, Plainville (SampleID 8576) and above and below Freeman Street, North Attleboro (SampleID 8540). The sample collected in a low-moderate gradient habitat reach upstream of Falls Pond at West Bacon Street (SampleID 8576) consisted of nine Redfin pickerel (a moderately pollution tolerant macrohabitat generalist). The low gradient habitat sample taken from downstream of Falls Pond at Freeman Street (SampleID 8576) was 55% comprised of intolerant/moderately tolerant macrohabitat generalist fishes (largemouth bass, pumpkinseed and redfin pickerel).

The Aquatic Life Use for this Ten Mile River AU (MA52-02) will continue to be assessed as Not Supporting, with the metals impairment carried forward. The Alert identified for low DO will also be carried forward.

#### *Monitoring Stations*

| <b>Station Code</b> | Organization | Туре      | Water Body | Station Description                           | Latitude  | Longitude  |
|---------------------|--------------|-----------|------------|-----------------------------------------------|-----------|------------|
| 8540                | MassDFG      | Fish      | Ten Mile   | above and below Freeman Street, North         | 41.96616  | -71.30891  |
|                     |              | Community | River      | Attleborough                                  |           |            |
| 8576                | MassDFG      | Fish      | Ten Mile   | West Bacon St d.s., Plainville                | 42.00234  | -71.33890  |
|                     |              | Community | River      |                                               |           |            |
| W0169               | MassDEP      | Water     | Ten Mile   | [Route 1, North Attleborough]                 | 41.974633 | -71.329576 |
|                     |              | Quality   | River      |                                               |           |            |
| W0904               | MassDEP      | Water     | Ten Mile   | [Fisher Street, North Attleborough]           | 41.986132 | -71.329522 |
|                     |              | Quality   | River      |                                               |           |            |
| W1594               | MassDEP      | Water     | Ten Mile   | [downstream at Orne Street, North             | 41.982719 | -71.328462 |
|                     |              | Quality   | River      | Attleborough (this portion of the Ten Mile    |           |            |
|                     |              |           |            | River not depicted on the 1987 USGS           |           |            |
|                     |              |           |            | Attleboro quadrangle)]                        |           |            |
| W2348               | MassDEP      | Water     | Ten Mile   | [just upstream of culvert under Route 1/Elm   | 41.981317 | -71.329580 |
|                     |              | Quality   | River      | Street intersection, North Attleborough (this |           |            |
|                     |              |           |            | portion of the Ten Mile River not depicted    |           |            |
|                     |              |           |            | on the 1987 USGS Attleboro quadrangle)]       |           |            |
| W2349               | MassDEP      | Water     | Ten Mile   | [North Washington Street, North               | 41.992433 | -71.329822 |
|                     |              | Quality   | River      | Attleborough]                                 |           |            |
| W2589               | MassDEP      | Water     | Ten Mile   | [outlet of Falls Pond, just downstream of     | 41.970938 | -71.318217 |
|                     |              | Quality   | River      | Mount Hope Street bridge, North Attleboro]    |           |            |

#### **Biological Monitoring Information**

#### Fish Community Data and DELTS

#### Fish Community Data (2012-2019) Provided by MassDFG. (MassDFG 2020) (MassDEP Undated 2)

[Sample Type: TP= Total Pickup, SP= Selective Pickup, Method: BT=Boat Shocking, BP= Backpack Shocking, BG= Barge Shocking, SE= Seine, SL= Snorkel, NS= Not Stated, MT= Minnow Trap, GN= Gillnet, FY= Fyke Net, Gradient: H = High, L = Low; I/MT MG= Intolerant/Moderately Tolerant Macrohabitat Generalist]

[Species List: B = Bluegill, BB = Brown Bullhead, LMB = Largemouth Bass, P = Pumpkinseed, RP = Redfin Pickerel, YB = Yellow Bullhead]

| Sample ID | Sample Date | Method | Sample Type | Gradient | Total Taxa | Total Ind | Cold Ind % | Fluvial Taxa | Fluvial Ind % | Intol Ind % | I/MT MG Taxa | I/MT MG Ind % | Notables | CFR | Species List           |
|-----------|-------------|--------|-------------|----------|------------|-----------|------------|--------------|---------------|-------------|--------------|---------------|----------|-----|------------------------|
| 8540      | 08/12/19    | BP     | TP          | L        | 6          | 38        | 0%         | 0            | 0%            | 0%          | 3            | 55%           | No       | No  | B, BB, LMB, P, RP, YB, |
| 8576      | 07/15/19    | BP     | TP          |          | 1          | 9         | 0%         | 0            | 0%            | 0%          | 1            | 100%          | No       | No  | RP,                    |

#### Physico-chemical Water Quality Information

#### Nutrients (Primary Producer Screening, Physico-chemical Screening)

MassDEP Nutrient Enrichment Indicator Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[Summer seasonal total phosphorus data collected May-Sept]

| Station<br>Code | Data<br>Year | Seasonal<br>TP<br>Count | Seasonal<br>TP Min<br>(mg/L) | Seasonal<br>TP Max<br>(mg/L) | Seasonal<br>TP Avg<br>(mg/L) | Delta<br>DO<br>Max<br>(mg/L) | Delta<br>DO<br>Avg<br>(mg/L) | DO<br>Sat<br>Max<br>(%) | pH<br>Max<br>(SU) | Count<br>Algal<br>Obsv. | Dense/V. Dense Film/Fila. Algae |
|-----------------|--------------|-------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------|-------------------|-------------------------|---------------------------------|
| W0169           | 2015         |                         |                              |                              |                              |                              |                              |                         |                   | 1                       | 0                               |
| W0904           | 2013         |                         |                              |                              |                              |                              |                              |                         |                   | 2                       | 0                               |
| W1594           | 2013         |                         |                              |                              |                              |                              |                              |                         |                   | 3                       | 0                               |
| W2348           | 2012         |                         |                              |                              |                              |                              |                              |                         |                   | 1                       | 0                               |
| W2348           | 2013         |                         |                              |                              |                              |                              |                              |                         |                   | 2                       | 0                               |
| W2349           | 2012         |                         |                              |                              |                              |                              |                              |                         |                   | 1                       | 0                               |
| W2349           | 2013         |                         |                              |                              |                              |                              |                              |                         |                   | 2                       | 0                               |
| W2589           | 2015         |                         |                              |                              |                              |                              |                              |                         |                   | 2                       | 0                               |

#### Fish Consumption

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Not Assessed                | NO    |
| 2022 Use Attainment Summary |       |

Although fish toxics sampling was conducted in this Ten Mile River AU (MA52-02) in 1984 near Cedar Road, Attleboro, no site-specific fish consumption advisory is in place, therefore the Fish Consumption Use for this Ten Mile River (MA52-02) is Not Assessed.

#### **Aesthetic**

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Fully Supporting    | NO    |

#### 2022 Use Attainment Summary

MassDEP staff recorded aesthetics observations at six sites along this Ten Mile River AU (MA52-02) in North Attleboro from up to downstream stations (data years) as follows: North Washington Street (W2349) (2012, 2013); Fisher Street (W0904) (2013); downstream at Orne Street (W1594) (2013); just upstream of the culvert under Rt.1/Elm Street intersection (W2348) (2012, 2013); Rt.1 (W0169) (2015) and at the outlet of Falls Pond (W2589) (2015). There were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DWM-WPP field sampling crews at any of these sites during the surveys at these stations. The Aesthetics Use for this Ten Mile River AU (MA52-02) is assessed as Fully Supporting based on the lack of objectionable conditions at any of the sites sampled by MassDEP staff in 2012, 2013, or 2015.

#### **Monitoring Stations**

| Station |              |         |            |                                                       |           |            |
|---------|--------------|---------|------------|-------------------------------------------------------|-----------|------------|
| Code    | Organization | Туре    | Water Body | Station Description                                   | Latitude  | Longitude  |
| W0169   | MassDEP      | Water   | Ten Mile   | [Route 1, North Attleborough]                         | 41.974633 | -71.329576 |
|         |              | Quality | River      |                                                       |           |            |
| W0904   | MassDEP      | Water   | Ten Mile   | [Fisher Street, North Attleborough]                   | 41.986132 | -71.329522 |
|         |              | Quality | River      |                                                       |           |            |
| W1594   | MassDEP      | Water   | Ten Mile   | [downstream at Orne Street, North Attleborough        | 41.982719 | -71.328462 |
|         |              | Quality | River      | (this portion of the Ten Mile River not depicted on   |           |            |
|         |              |         |            | the 1987 USGS Attleboro quadrangle)]                  |           |            |
| W2348   | MassDEP      | Water   | Ten Mile   | [just upstream of culvert under Route 1/Elm Street    | 41.981317 | -71.329580 |
|         |              | Quality | River      | intersection, North Attleborough (this portion of the |           |            |
|         |              |         |            | Ten Mile River not depicted on the 1987 USGS          |           |            |
|         |              |         |            | Attleboro quadrangle)]                                |           |            |
| W2349   | MassDEP      | Water   | Ten Mile   | [North Washington Street, North Attleborough]         | 41.992433 | -71.329822 |
|         |              | Quality | River      |                                                       |           |            |
| W2589   | MassDEP      | Water   | Ten Mile   | [outlet of Falls Pond, just downstream of Mount       | 41.970938 | -71.318217 |
|         |              | Quality | River      | Hope Street bridge, North Attleboro]                  |           |            |

#### Aesthetic Observations

#### Aesthetics Summary Statements for MassDEP Stations (2011-2018) (MassDEP Undated 5)

|         |                | _    | Field |                                                                                                                                                                                                                                                                                                        |
|---------|----------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Station |                | Data | Sheet |                                                                                                                                                                                                                                                                                                        |
| Code    | Waterbody      | Year | Count | Aesthetics Summary Statement                                                                                                                                                                                                                                                                           |
| W0169   | Ten Mile River | 2015 | 2     | MassDEP aesthetics observations for station W0169 on Ten Mile River can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2015. However, data are limited (n=2              |
|         |                |      |       | observations).                                                                                                                                                                                                                                                                                         |
| W0904   | Ten Mile River | 2013 | 2     | There are insufficient data available to assess the Aesthetics Use for the Ten Mile River. There were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by MassDEP staff at station W0904 during surveys in summer 2013, however, data were limited (n=2). |
| W1594   | Ten Mile River | 2013 | 3     | MassDEP aesthetics observations for station W1594 on Ten Mile River can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2013.                                             |

|         |                |      | Field |                                                                           |
|---------|----------------|------|-------|---------------------------------------------------------------------------|
| Station | Mataubad.      | Data | Sheet | A a abla abias Company Chatamana                                          |
| Code    | Waterbody      | Year | Count | Aesthetics Summary Statement                                              |
| W2348   | Ten Mile River | 2012 | 2     | MassDEP aesthetics observations for station W2348 on Ten Mile River can   |
|         |                |      |       | be summarized as follows: there were generally no noted objectionable     |
|         |                |      |       | conditions (odors, deposits, growths, or turbidity) recorded by DEP field |
|         |                |      |       | sampling crews during summer 2012. However, there is insufficient         |
|         |                |      |       | information to assess the Aesthetics Use since data were limited (n=2).   |
| W2348   | Ten Mile River | 2013 | 2     | MassDEP aesthetics observations for station W2348 on Ten Mile River can   |
|         |                |      |       | be summarized as follows: there were generally no noted objectionable     |
|         |                |      |       | conditions (odors, deposits, growths, or turbidity) recorded by DEP field |
|         |                |      |       | sampling crews during summer 2013. However, there is insufficient         |
|         |                |      |       | information to assess the Aesthetics Use since data were limited (n=2).   |
| W2349   | Ten Mile River | 2012 | 2     | MassDEP aesthetics observations for station W2349 on Ten Mile River can   |
|         |                |      |       | be summarized as follows: there were generally no noted objectionable     |
|         |                |      |       | conditions (odors, deposits, growths, or turbidity) recorded by DEP field |
|         |                |      |       | sampling crews during summer 2012. However, there is insufficient         |
|         |                |      |       | information to assess the Aesthetics Use since data were limited (n=2).   |
| W2349   | Ten Mile River | 2013 | 2     | MassDEP aesthetics observations for station W2349 on Ten Mile River can   |
|         |                |      |       | be summarized as follows: there were generally no noted objectionable     |
|         |                |      |       | conditions (odors, deposits, growths, or turbidity) recorded by DEP field |
|         |                |      |       | sampling crews during summer 2013. However, there is insufficient         |
|         |                |      |       | information to assess the Aesthetics Use since data were limited (n=2).   |
| W2589   | Ten Mile River | 2015 | 2     | MassDEP aesthetics observations for station W2589 on Ten Mile River can   |
|         |                |      |       | be summarized as follows: there were generally no noted objectionable     |
|         |                |      |       | conditions (odors, deposits, growths, or turbidity) recorded by DEP field |
|         |                |      |       | sampling crews during summer 2015. However, there is insufficient         |
|         |                |      |       | information to assess the Aesthetics Use since data were limited (n=2).   |

### Observations of Filamentous/Film Algae at MassDEP Stations (2011-2018) (MassDEP Undated 7) (MassDEP Undated 5)

| Station<br>Code | Data Year | Field Sheet Count | Field Sheet Count w/ Film &<br>Filamentous Algae<br>Observations | Dense/ Very Dense Film/ Filamentous Algae |
|-----------------|-----------|-------------------|------------------------------------------------------------------|-------------------------------------------|
| W0169           | 2015      | 2                 | 1                                                                | 0                                         |
| W0904           | 2013      | 2                 | 2                                                                | 0                                         |
| W1594           | 2013      | 3                 | 3                                                                | 0                                         |
| W2348           | 2012      | 2                 | 1                                                                | 0                                         |
| W2348           | 2013      | 2                 | 2                                                                | 0                                         |
| W2349           | 2012      | 2                 | 1                                                                | 0                                         |
| W2349           | 2013      | 2                 | 2                                                                | 0                                         |
| W2589           | 2015      | 2                 | 2                                                                | 0                                         |

## MassDEP Aesthetics Observations (2011-2018) (MassDEP Undated 7)

| Station |                | Data |                        |                      | Result | Total Field |
|---------|----------------|------|------------------------|----------------------|--------|-------------|
| Code    | Waterbody      | Year | Parameter              | Result               | Count  | Sheet Count |
| W0169   | Ten Mile River | 2015 | Color                  | None                 | 2      | 2           |
| W0169   | Ten Mile River | 2015 | Objectionable Deposits | Not Applicable (N/A) | 2      | 2           |
| W0169   | Ten Mile River | 2015 | Odor                   | None                 | 2      | 2           |

| Station |                | Data |                               |                      | Result | Total Field        |
|---------|----------------|------|-------------------------------|----------------------|--------|--------------------|
| Code    | Waterbody      | Year | Parameter                     | Result               | Count  | <b>Sheet Count</b> |
| W0169   | Ten Mile River | 2015 | Scum                          | Not Applicable (N/A) | 2      | 2                  |
| W0169   | Ten Mile River | 2015 | Turbidity                     | Moderately Turbid    | 2      | 2                  |
| W0904   | Ten Mile River | 2013 | Color                         | None                 | 2      | 2                  |
| W0904   | Ten Mile River | 2013 | Objectionable Deposits        | Not Applicable (N/A) | 2      | 2                  |
| W0904   | Ten Mile River | 2013 | Odor                          | None                 | 2      | 2                  |
| W0904   | Ten Mile River | 2013 | Scum                          | Not Applicable (N/A) | 2      | 2                  |
| W0904   | Ten Mile River | 2013 | Turbidity                     | Slightly Turbid      | 2      | 2                  |
| W1594   | Ten Mile River | 2013 | Color                         | None                 | 3      | 3                  |
| W1594   | Ten Mile River | 2013 | Objectionable Deposits        | Not Applicable (N/A) | 3      | 3                  |
| W1594   | Ten Mile River | 2013 | Odor                          | None                 | 3      | 3                  |
| W1594   | Ten Mile River | 2013 | Scum                          | Not Applicable (N/A) | 3      | 3                  |
| W1594   | Ten Mile River | 2013 | Turbidity                     | Slightly Turbid      | 3      | 3                  |
| W2348   | Ten Mile River | 2012 | Color                         | None                 | 1      | 2                  |
| W2348   | Ten Mile River | 2012 | Color                         | NR                   | 1      | 2                  |
| W2348   | Ten Mile River | 2012 | Objectionable Deposits        | Not Applicable (N/A) | 2      | 2                  |
| W2348   | Ten Mile River | 2012 | Odor                          | None                 | 1      | 2                  |
| W2348   | Ten Mile River | 2012 | Odor                          | NR                   | 1      | 2                  |
| W2348   | Ten Mile River | 2012 | Scum                          | Not Applicable (N/A) | 2      | 2                  |
| W2348   | Ten Mile River | 2012 | Turbidity                     | NR                   | 1      | 2                  |
| W2348   | Ten Mile River | 2012 | Turbidity                     | Slightly Turbid      | 1      | 2                  |
| W2348   | Ten Mile River | 2013 | Color                         | None                 | 2      | 2                  |
| W2348   | Ten Mile River | 2013 | Objectionable Deposits        | Not Applicable (N/A) | 2      | 2                  |
| W2348   | Ten Mile River | 2013 | Odor                          | None                 | 2      | 2                  |
| W2348   | Ten Mile River | 2013 | Scum                          | Not Applicable (N/A) | 2      | 2                  |
| W2348   | Ten Mile River | 2013 | Turbidity                     | Slightly Turbid      | 2      | 2                  |
| W2349   | Ten Mile River | 2012 | Color                         | None                 | 1      | 2                  |
| W2349   | Ten Mile River | 2012 | Color                         | NR                   | 1      | 2                  |
| W2349   | Ten Mile River | 2012 | Objectionable Deposits        | Not Applicable (N/A) | 2      | 2                  |
| W2349   | Ten Mile River | 2012 | Odor                          | None                 | 1      | 2                  |
| W2349   | Ten Mile River | 2012 | Odor                          | NR                   | 1      | 2                  |
| W2349   | Ten Mile River | 2012 | Scum                          | Not Applicable (N/A) | 2      | 2                  |
| W2349   | Ten Mile River | 2012 | Turbidity                     | NR                   | 1      | 2                  |
| W2349   | Ten Mile River | 2012 | Turbidity                     | Slightly Turbid      | 1      | 2                  |
| W2349   | Ten Mile River | 2013 | Color                         | None                 | 2      | 2                  |
| W2349   | Ten Mile River | 2013 | Objectionable Deposits        | Not Applicable (N/A) | 2      | 2                  |
| W2349   | Ten Mile River | 2013 | Odor                          | None                 | 2      | 2                  |
| W2349   | Ten Mile River | 2013 | Scum                          | Not Applicable (N/A) | 2      | 2                  |
| W2349   | Ten Mile River | 2013 | 3 Turbidity Slightly Turbid 2 |                      | 2      |                    |
| W2589   | Ten Mile River | 2015 | 5 Color None 2                |                      | 2      |                    |
| W2589   | Ten Mile River | 2015 | Objectionable Deposits        | Not Applicable (N/A) | 2      | 2                  |
| W2589   | Ten Mile River | 2015 | Odor                          | None                 | 2      | 2                  |
| W2589   | Ten Mile River | 2015 | Scum                          | Not Applicable (N/A) | 2      | 2                  |
| W2589   | Ten Mile River | 2015 | Turbidity                     | Slightly Turbid      | 2      | 2                  |

#### **Primary Contact Recreation**

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | NO    |

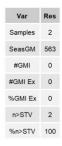
#### 2022 Use Attainment Summary

E. coli (and occasionally Enterococcus) bacteria samples were collected (1 to 3 times per year) by MassDEP staff from this Ten Mile River AU (MA 52-02) between 2012 and 2015 at the following sampling stations (data years): North Washington Street (W2349) (2012, 2013); Fisher Street (W0904) (2013); downstream at Orne Street (W1594) (2013); just upstream of the culvert under Rt.1/Elm Street intersection (W2348) (2012, 2013); Rt.1 (W0169) (2015) and at the outlet of Falls Pond (W2589) (2015). Data analysis of this low frequency multi-year dataset indicated insufficient samples to calculate usable GMs i.e., there were never more than two samples within a 90-day GM interval. However, six out of the fifteen E. coli samples exceed the 410 cfu/100ml STV with seasonal GMs ranging 54-921 cfu/100ml; and both Enteroccocus samples exceed the 130 cfu/100ml STV, with a max of 250 cfu/100ml just upstream of the culvert under Rt.1/Elm Street (W2348). MassDEP staff also conducted Bacteria Source Tracking (BST) work between 2011 and 2013 at six sites along this Ten Mile River AU. Despite the identification of hotspot areas, human marker analysis in 2012 was "inconclusive" and no correctable source was ever found. Too limited data are available to assess the Primary Recreational Use for this Ten Mile River AU (MA52-02) according to the CALM "Use Attainment Impairment Decision Schema". The Primary Contact Recreational Use will, therefore, continue to be assessed as Not Supporting, with the E. coli and Fecal Coliform impairments being carried forward.

#### *Monitoring Stations*

| Station |              |         |            |                                                       |           |            |
|---------|--------------|---------|------------|-------------------------------------------------------|-----------|------------|
| Code    | Organization | Type    | Water Body | Station Description                                   | Latitude  | Longitude  |
| W0169   | MassDEP      | Water   | Ten Mile   | [Route 1, North Attleborough]                         | 41.974633 | -71.329576 |
|         |              | Quality | River      |                                                       |           |            |
| W0904   | MassDEP      | Water   | Ten Mile   | [Fisher Street, North Attleborough]                   | 41.986132 | -71.329522 |
|         |              | Quality | River      |                                                       |           |            |
| W1594   | MassDEP      | Water   | Ten Mile   | [downstream at Orne Street, North Attleborough        | 41.982719 | -71.328462 |
|         |              | Quality | River      | (this portion of the Ten Mile River not depicted on   |           |            |
|         |              |         |            | the 1987 USGS Attleboro quadrangle)]                  |           |            |
| W2348   | MassDEP      | Water   | Ten Mile   | [just upstream of culvert under Route 1/Elm Street    | 41.981317 | -71.329580 |
|         |              | Quality | River      | intersection, North Attleborough (this portion of the |           |            |
|         |              |         |            | Ten Mile River not depicted on the 1987 USGS          |           |            |
|         |              |         |            | Attleboro quadrangle)]                                |           |            |
| W2349   | MassDEP      | Water   | Ten Mile   | [North Washington Street, North Attleborough]         | 41.992433 | -71.329822 |
|         |              | Quality | River      |                                                       |           |            |
| W2589   | MassDEP      | Water   | Ten Mile   | [outlet of Falls Pond, just downstream of Mount       | 41.970938 | -71.318217 |
|         |              | Quality | River      | Hope Street bridge, North Attleboro]                  |           |            |

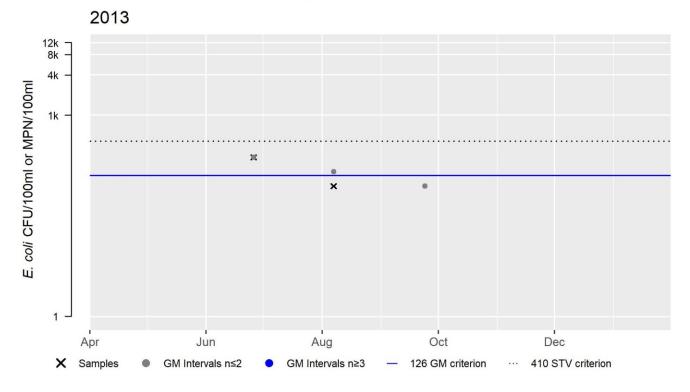
#### Bacteria Data


# **Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis)** (MassDEP Undated 7) (MassDEP Undated 5)


[Result units are CFU/100ml or MPN/100ml]

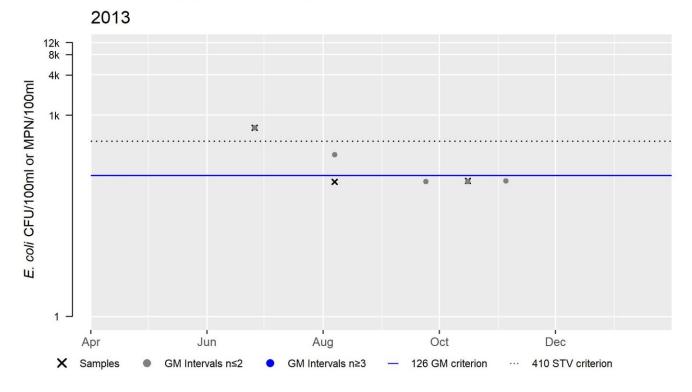
|              |              |             |            |                 |        | Minimum | Maximum | Seasonal  |
|--------------|--------------|-------------|------------|-----------------|--------|---------|---------|-----------|
|              |              |             |            |                 | Sample | Sample  | Sample  | Geometric |
| Station Code | Organization | Indicator   | Start Date | <b>End Date</b> | Count  | Result  | Result  | Mean      |
| W0169        | MassDEP      | E. coli     | 07/08/15   | 07/29/15        | 2      | 411     | 770     | 563       |
| W0904        | MassDEP      | E. coli     | 06/26/13   | 08/07/13        | 2      | 88      | 236     | 144       |
| W1594        | MassDEP      | E. coli     | 06/26/13   | 10/16/13        | 3      | 102     | 649     | 191       |
| W2348        | MassDEP      | E. coli     | 08/08/12   | 08/08/12        | 1      | 770     | 770     | 770       |
| W2348        | MassDEP      | Enterococci | 09/26/12   | 09/26/12        | 1      | 250     | 250     | 250       |

|              |              |             |            |                 |        | Minimum | Maximum | Seasonal  |
|--------------|--------------|-------------|------------|-----------------|--------|---------|---------|-----------|
|              |              |             |            |                 | Sample | Sample  | Sample  | Geometric |
| Station Code | Organization | Indicator   | Start Date | <b>End Date</b> | Count  | Result  | Result  | Mean      |
| W2348        | MassDEP      | E. coli     | 06/26/13   | 08/07/13        | 2      | 128     | 548     | 265       |
| W2349        | MassDEP      | E. coli     | 08/08/12   | 08/08/12        | 1      | 921     | 921     | 921       |
| W2349        | MassDEP      | Enterococci | 08/22/12   | 08/22/12        | 1      | 160     | 160     | 160       |
| W2349        | MassDEP      | E. coli     | 06/26/13   | 08/07/13        | 2      | 82      | 172     | 119       |
| W2589        | MassDEP      | E. coli     | 07/08/15   | 07/29/15        | 2      | 53      | 55      | 54        |


W0169 E. coli (90-day Interval), Primary Contact Recreational Use Season



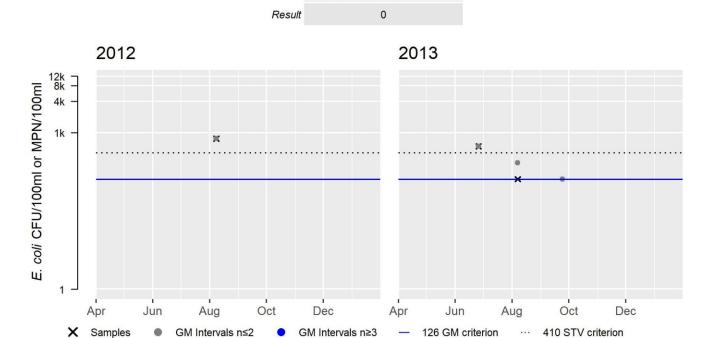



## W0904 E. coli (90-day Interval), Primary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 144 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |

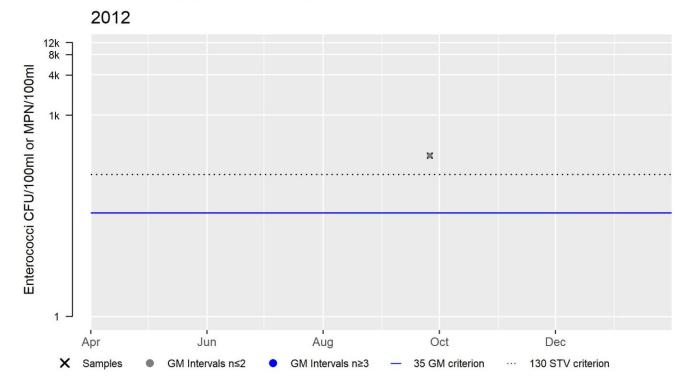


## W1594 E. coli (90-day Interval), Primary Contact Recreational Use Season


| Var     | Res |
|---------|-----|
| Samples | 3   |
| SeasGM  | 191 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 1   |
| %n>STV  | 33  |



## W2348 E. coli (90-day Interval), Primary Contact Recreational Use Season


| Var     | Res |
|---------|-----|
| Samples | 1   |
| SeasGM  | 770 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 1   |
| %n>STV  | 100 |

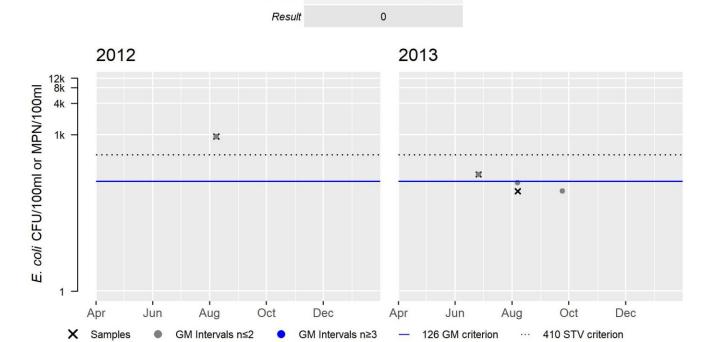
Cumulative %GMI Ex (all years)



## W2348 Enterococci (90-day Interval), Primary Contact Recreational Use Season

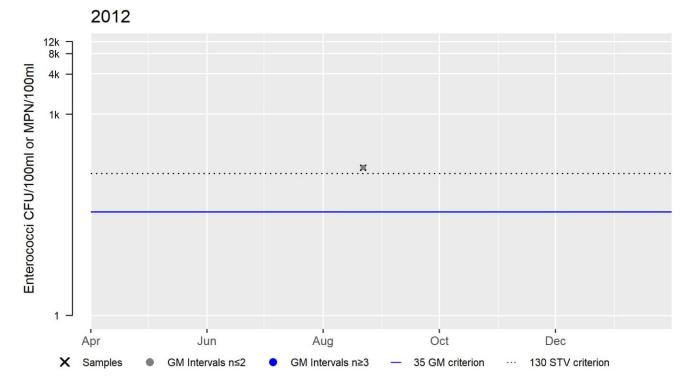
| Var     | Res |
|---------|-----|
| Samples | 1   |
| SeasGM  | 250 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 1   |
| %n>STV  | 100 |




## W2349 E. coli (90-day Interval), Primary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 1   |
| SeasGM  | 921 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 1   |
| %n>STV  | 100 |

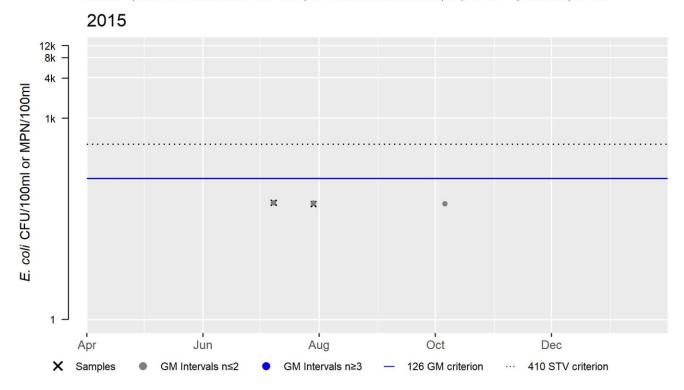
Cumulative %GMI Ex (all years)


Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV

Variable



## W2349 Enterococci (90-day Interval), Primary Contact Recreational Use Season


| Var     | Res |
|---------|-----|
| Samples | 1   |
| SeasGM  | 160 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 1   |
| %n>STV  | 100 |



#### W2589 E. coli (90-day Interval), Primary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 54  |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |

Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV



#### MassDEP Bacteria Source Tracking (BST) Summary Statement for 2011-2019 (MassDEP Undated 1)

#### Summary

Prior to 2011, BST work was conducted along the Ten Mile River AU (MA52-02), with a max *E. coli* concentration of 1,733MPN. Additional BST work was conducted between 2011 and 2013 years at 6 sites along the Ten Mile River, with *E. coli* concentrations ranging 82 to 921MPN. Despite the identification of hotspot areas, human marker analysis in 2012 was "inconclusive". No correctable source was ever found. BST samples were also collected along the shore at Whiting Pond (n=4) (tributary to this Ten Mile River AU) in 2015. At Whiting Pond a great number of waterfowl and waterfowl fecal matter were observed on the Town beach, which was most likely to be a source of bacteria at this location.

#### Secondary Contact Recreation

| 2022 Use Attainment      | Alert |
|--------------------------|-------|
| Insufficient Information | NO    |

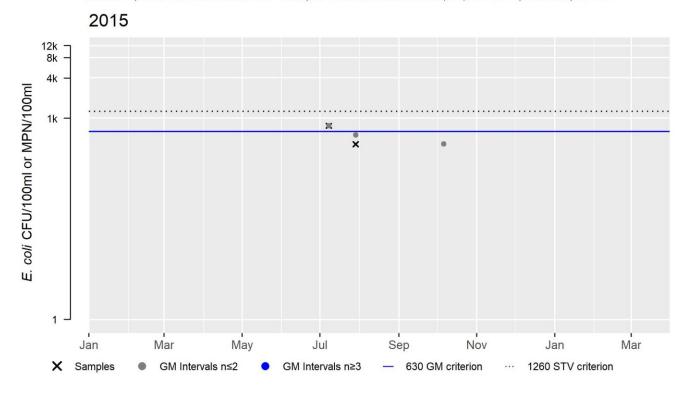
#### 2022 Use Attainment Summary

E. coli bacteria samples were collected (1 to 3 times per year) by MassDEP staff from this Ten Mile River AU (MA 52-02) between 2012 and 2015 at the following sampling stations (data years): North Washington Street (W2349) (2012, 2013); Fisher Street (W0904) (2013); downstream at Orne Street (W1594) (2013); just upstream of the culvert under Rt.1/Elm Street intersection (W2348) (2012, 2013); Rt.1 (W0169) (2015) and at the outlet of Falls Pond (W2589) (2015). Data analysis of this low frequency multi-year dataset indicated insufficient samples to calculate usable GMs i.e., there were never more than two samples within a 90-day GM interval. However, it can be noted that none of the 15 E. coli samples exceeded the 1260 cfu/100ml STV, with seasonal GMs ranging 54-921 cfu/100ml. Too limited data are available to assess the Secondary Recreational Use for this Ten Mile River AU (MA52-02) according to the CALM "Use Attainment Impairment Decision Schema", so the Secondary Contact Recreational Use is assessed as Insufficient Information.

#### **Monitoring Stations**

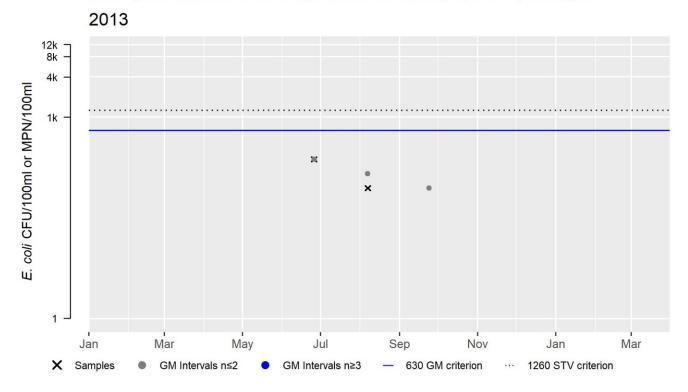
| Station |              |         |            |                                                       |           |            |
|---------|--------------|---------|------------|-------------------------------------------------------|-----------|------------|
| Code    | Organization | Туре    | Water Body | Station Description                                   | Latitude  | Longitude  |
| W0169   | MassDEP      | Water   | Ten Mile   | [Route 1, North Attleborough]                         | 41.974633 | -71.329576 |
|         |              | Quality | River      |                                                       |           |            |
| W0904   | MassDEP      | Water   | Ten Mile   | [Fisher Street, North Attleborough]                   | 41.986132 | -71.329522 |
|         |              | Quality | River      |                                                       |           |            |
| W1594   | MassDEP      | Water   | Ten Mile   | [downstream at Orne Street, North Attleborough        | 41.982719 | -71.328462 |
|         |              | Quality | River      | (this portion of the Ten Mile River not depicted on   |           |            |
|         |              |         |            | the 1987 USGS Attleboro quadrangle)]                  |           |            |
| W2348   | MassDEP      | Water   | Ten Mile   | [just upstream of culvert under Route 1/Elm Street    | 41.981317 | -71.329580 |
|         |              | Quality | River      | intersection, North Attleborough (this portion of the |           |            |
|         |              |         |            | Ten Mile River not depicted on the 1987 USGS          |           |            |
|         |              |         |            | Attleboro quadrangle)]                                |           |            |
| W2349   | MassDEP      | Water   | Ten Mile   | [North Washington Street, North Attleborough]         | 41.992433 | -71.329822 |
|         |              | Quality | River      |                                                       |           |            |
| W2589   | MassDEP      | Water   | Ten Mile   | [outlet of Falls Pond, just downstream of Mount       | 41.970938 | -71.318217 |
|         |              | Quality | River      | Hope Street bridge, North Attleboro]                  |           |            |

#### Bacteria Data


## **Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis)** (MassDEP Undated 7) (MassDEP Undated 5)

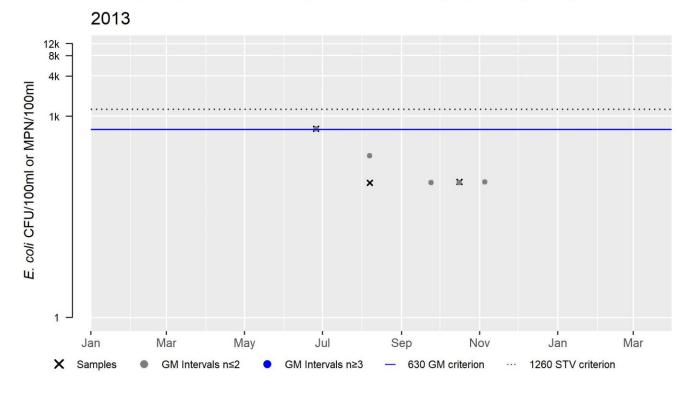
[Result units are CFU/100ml or MPN/100ml]

|              |              |           |            |          | Sample | Minimum<br>Sample<br>Result<br>(CFU/100ml<br>or | Maximum<br>Sample<br>Result<br>(CFU/100ml<br>or | Seasonal<br>Geometric<br>Mean<br>(CFU/100ml<br>or |
|--------------|--------------|-----------|------------|----------|--------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------|
| Station Code | Organization | Indicator | Start Date | End Date | Count  | MPN/100ml)                                      | MPN/100ml)                                      | MPN/100ml)                                        |
| W0169        | MassDEP      | E. coli   | 07/08/15   | 07/29/15 | 2      | 411                                             | 770                                             | 563                                               |
| W0904        | MassDEP      | E. coli   | 06/26/13   | 08/07/13 | 2      | 88                                              | 236                                             | 144                                               |
| W1594        | MassDEP      | E. coli   | 06/26/13   | 10/16/13 | 3      | 102                                             | 649                                             | 191                                               |
| W2348        | MassDEP      | E. coli   | 08/08/12   | 08/08/12 | 1      | 770                                             | 770                                             | 770                                               |
| W2348        | MassDEP      | E. coli   | 06/26/13   | 08/07/13 | 2      | 128                                             | 548                                             | 265                                               |
| W2349        | MassDEP      | E. coli   | 08/08/12   | 08/08/12 | 1      | 921                                             | 921                                             | 921                                               |
| W2349        | MassDEP      | E. coli   | 06/26/13   | 08/07/13 | 2      | 82                                              | 172                                             | 119                                               |
| W2589        | MassDEP      | E. coli   | 07/08/15   | 07/29/15 | 2      | 53                                              | 55                                              | 54                                                |


## W0169 E. coli (90-day Interval), Secondary Contact Recreational Use Season

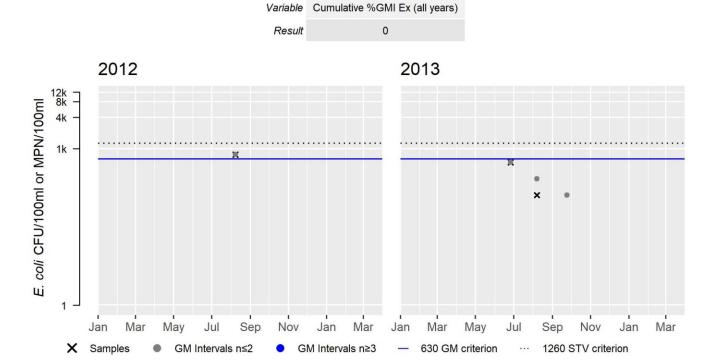
| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 563 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |




## W0904 E. coli (90-day Interval), Secondary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 144 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |

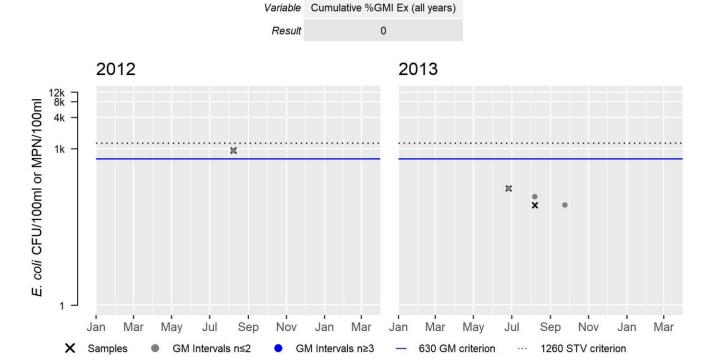



## W1594 E. coli (90-day Interval), Secondary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 3   |
| SeasGM  | 191 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |



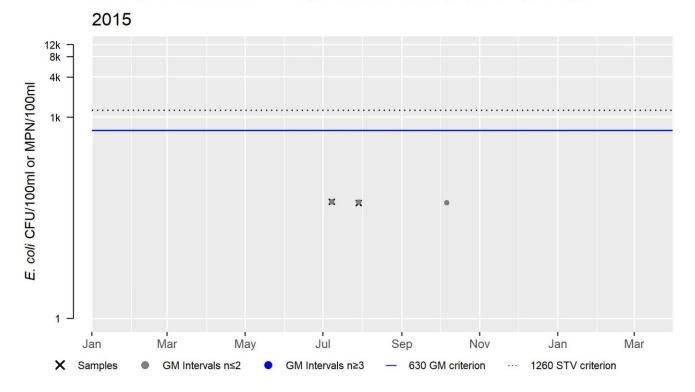
W2348 E. coli (90-day Interval), Secondary Contact Recreational Use Season


| Var     | Res |
|---------|-----|
| Samples | 1   |
| SeasGM  | 770 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |



# W2349 E. coli (90-day Interval), Secondary Contact Recreational Use Season

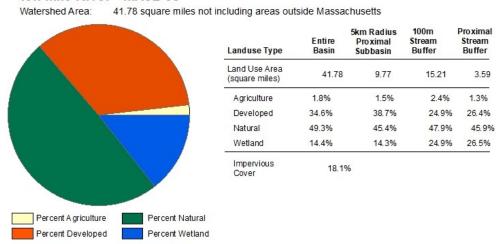
| Var     | Res |
|---------|-----|
| Samples | 1   |
| SeasGM  | 921 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |


 $Abbreviations: Samples = \#samples; SeasGM = Seasonal \ Geometric \ Mean \ (GM); \#GMI = number \ GM \ Intervals; \#GMI \ Ex = number \ GMI \ Exeedances; \\ \%GMI \ Ex = percent \ GMI \ Exeedances; n>STV = \#samples>Statistical \ Threshold \ Value \ (STV); \%n>STV = percent \ samples>STV$ 



# W2589 E. coli (90-day Interval), Secondary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 54  |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |


 $Abbreviations: Samples = \#samples; SeasGM = Seasonal \ Geometric \ Mean \ (GM); \#GMI = number \ GM \ Intervals; \#GMI \ Ex = number \ GMI \ Exeedances; \\ n>STV = \#samples>Statistical \ Threshold \ Value \ (STV); \\ n>STV = percent \ samples>STV$ 



# Ten Mile River (MA52-03)

| Location:                 | North Attleborough WWTP discharge (NPDES: MA0101036), Attleboro to the MA/RI         |
|---------------------------|--------------------------------------------------------------------------------------|
|                           | border near Central Avenue, Seekonk, MA/Pawtucket, RI (through former 2006 segments: |
|                           | Farmers Pond MA52015, Mechanics Pond MA52027, Dodgeville Pond MA52011,               |
|                           | Hebronville Pond MA52020).                                                           |
| AU Type:                  | RIVER                                                                                |
| AU Size:                  | 9.1 MILES                                                                            |
| Classification/Qualifier: | B: WWF                                                                               |

## Ten Mile River - MA52-03



|            |          |                                               |                   | Impairment |
|------------|----------|-----------------------------------------------|-------------------|------------|
| 2018/20 AU | 2022 AU  |                                               |                   | Change     |
| Category   | Category | Impairment                                    | ATTAINS Action ID | Summary    |
| 5          | 5        | (Aquatic Plants (Macrophytes)*)               |                   | Unchanged  |
| 5          | 5        | (Water Chestnut*)                             |                   | Added      |
| 5          | 5        | Algae                                         |                   | Unchanged  |
| 5          | 5        | Benthic Macroinvertebrates                    |                   | Unchanged  |
| 5          | 5        | Chlordane in Fish Tissue                      |                   | Unchanged  |
| 5          | 5        | Dissolved Oxygen                              |                   | Unchanged  |
| 5          | 5        | Escherichia Coli (E. Coli)                    |                   | Unchanged  |
| 5          | 5        | Fecal Coliform                                |                   | Unchanged  |
| 5          | 5        | Nutrient/Eutrophication Biological Indicators |                   | Unchanged  |
| 5          | 5        | Organic Enrichment (Sewage) Biological        |                   | Unchanged  |
|            |          | Indicators                                    |                   |            |
| 5          | 5        | Phosphorus, Total                             |                   | Unchanged  |
| 5          | 5        | Unspecified Metals in Sediment                |                   | Unchanged  |

| Impairment                                        | Source (Confirmed Y/N)                                              | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|---------------------------------------------------|---------------------------------------------------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| (Aquatic Plants (Macrophytes)*)                   | Discharges from Municipal Separate Storm                            | X                                        |                  | Х         | Х                             | Х                               |
|                                                   | Sewer Systems (MS4) (N)                                             |                                          |                  |           |                               |                                 |
| (Aquatic Plants (Macrophytes)*)                   | Municipal Point Source Discharges (Y)                               | Х                                        |                  | Х         | Х                             | Х                               |
| (Water Chestnut*)                                 | Introduction of Non-native Organisms                                | Х                                        |                  |           |                               |                                 |
|                                                   | (Accidental or Intentional) (Y)                                     |                                          |                  |           |                               |                                 |
| Algae                                             | Discharges from Municipal Separate Storm                            | Х                                        |                  | Х         | Х                             | Х                               |
|                                                   | Sewer Systems (MS4) (N)                                             |                                          |                  |           |                               |                                 |
| Algae                                             | Municipal Point Source Discharges (Y)                               | Х                                        |                  | Х         | Х                             | Х                               |
| Benthic Macroinvertebrates                        | Source Unknown (N)                                                  | Х                                        |                  |           |                               |                                 |
| Chlordane in Fish Tissue                          | Source Unknown (N)                                                  |                                          | Х                |           |                               |                                 |
| Dissolved Oxygen                                  | Discharges from Municipal Separate Storm                            | Х                                        |                  |           |                               |                                 |
|                                                   | Sewer Systems (MS4) (N)                                             |                                          |                  |           |                               |                                 |
| Dissolved Oxygen                                  | Municipal Point Source Discharges (Y)                               | Х                                        |                  |           |                               |                                 |
| Escherichia Coli (E. Coli)                        | Discharges from Municipal Separate Storm                            |                                          |                  |           | Х                             |                                 |
|                                                   | Sewer Systems (MS4) (N)                                             |                                          |                  |           |                               |                                 |
| Escherichia Coli (E. Coli)                        | Municipal Point Source Discharges (Y)                               |                                          |                  |           | Х                             |                                 |
| Fecal Coliform                                    | Discharges from Municipal Separate Storm                            |                                          |                  |           | Х                             |                                 |
|                                                   | Sewer Systems (MS4) (N)                                             |                                          |                  |           |                               |                                 |
| Fecal Coliform                                    | Municipal Point Source Discharges (Y)                               |                                          |                  |           | Х                             |                                 |
| Nutrient/Eutrophication Biological                | Discharges from Municipal Separate Storm                            | Х                                        |                  | Х         | Х                             | Х                               |
| Indicators                                        | Sewer Systems (MS4) (N)                                             |                                          |                  |           |                               |                                 |
| Nutrient/Eutrophication Biological                | Municipal Point Source Discharges (Y)                               | Х                                        |                  | Х         | X                             | X                               |
| Indicators                                        |                                                                     |                                          |                  |           |                               |                                 |
| Organic Enrichment (Sewage) Biological            | Discharges from Municipal Separate Storm                            | Х                                        |                  |           |                               |                                 |
| Indicators                                        | Sewer Systems (MS4) (N)                                             |                                          |                  |           |                               |                                 |
| Organic Enrichment (Sewage) Biological Indicators | Municipal Point Source Discharges (Y)                               | Х                                        |                  |           |                               |                                 |
| Phosphorus, Total                                 | Discharges from Municipal Separate Storm<br>Sewer Systems (MS4) (N) | Х                                        |                  | Х         | Х                             | Х                               |
| Phosphorus, Total                                 | Municipal Point Source Discharges (Y)                               | Х                                        |                  | Х         | Х                             | Х                               |
| Unspecified Metals in Sediment                    | Contaminated Sediments (N)                                          | Х                                        |                  |           |                               |                                 |

# Recommendations

## **2022 Recommendations**

ALU: Water quality monitoring should be conducted in this Ten Mile River AU (MA52-03) to reevaluate biological and water quality conditions since the NPDES permits for both the North Attleboro (MA0101036) and Attleboro (MA0100595) WWTPs required reduction of Total Phosphorus concentrations in the effluent discharges (April to October limits in 2008 permits 0.1mg/L down from 1.0mg/L in the 1999 permits) so improved conditions should be occurring. Sampling should be conducted with good spatial representativeness (including both free flowing and impounded reaches) along the river for potential delisting of nutrient enrichment related impairments (Algae, Dissolved Oxygen, Nutrient/Eutrophication Biological Indicators, Organic Enrichment (Sewage) Biological Indicators, and Total Phosphorus).

# Designated Use Attainment Decisions

#### Fish, other Aquatic Life and Wildlife

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | NO    |

#### 2022 Use Attainment Summary

MassDFG biologists conducted backpack electrofishing at three sites spread roughly throughout the upper-middle section of this Ten Mile River AU (MA52-03) in August 2019 from up to downstream as follows: Olive Street, Attleboro (SampleID 8539), Thacher Street, Attleboro (SampleID 8538), below Dodgeville Pond off S. Main Street (SampleID 8541). Fish collected in the low gradient habitat included the fluvial taxon (tessellated darter) comprising between 5 and 11% of the samples as well as other intolerant/moderately tolerant macrohabitat generalist fishes such as pumpkinseed, redfin pickerel, chain pickerel and banded sunfish. The non-native aquatic macrophyte water chestnut (Trapa natans) was noted to be present in the drawn down Dodgeville Pond impoundment upstream of Thatcher Street (SampleID 8538). MassDEP biologists conducted benthic and water quality sampling downstream of Pond Street, Seekonk (W2210) as part of the MAP2 monitoring project during the summer of 2011. The benthic sample (B0730) IBI score was indicative of moderately degraded conditions (40). Water quality monitoring data (including both deployed probe and discrete sampling efforts) can be summarized as follows: minimum DO 5.9mg/L, with a minimum 3-5DADMin of 6.2mg/L (three 3-5-day deploys), maximum temperature 29.9°C (7-DADM always <27.7°C, max 24hr rolling average 27.8°C during the continuous probe deployment from June 1 to September 15), discrete pH measurements ranged from 6.9 to 7.1SU (n=6). There were no physico-chemical indicators of nutrient enrichment issues (max diel DO shift 1.0mg/L, max DO saturation only 97.5%, no observations of dense/very dense filamentous algae) although the seasonal average total phosphorus concentration was 0.098mg/L (n=5, max 0.14mg/L). Specific conductance and chloride concentrations were both low (max 597µS/cm (n=6) and 140mg/L (n=5) respectively), as was total ammonia-nitrogen (TAN) (max 0.18mg/L, n=3 with no toxicity indicated). There were no acute criteria exceedances for any metals (copper was at criteria TU=1.0 in the August sample) although both samples exceeded the chronic criteria for copper (TU's of 1.16 and 1.39) and for lead (TU's of 1.3 and 1.8) (n=2) (note, dissolved Al data were compared to total recoverable Al criteria, so exceedances cannot be ruled out). Too limited metals data are available to make a use impairment decision at this time, but additional sampling will be recommended.

The Aquatic Life Use for this Ten Mile River AU (MA52-03) will continue to be assessed as Not Supporting with the nutrient enrichment indicators (Algae, Dissolved Oxygen, Nutrient/Eutrophication Biological Indicators, Organic Enrichment (Sewage) Biological Indicators, and Total Phosphorus), Benthic Macroinvertebrates, Aquatic Plants (Macrophytes), and Unspecified Metals in Sediment impairments being carried forward. A new impairment for Water Chestnut (*T. natans*) is being added.

#### **Monitoring Stations**

| Station Code | Organization | Туре      | Water Body | Station Description                      | Latitude  | Longitude  |
|--------------|--------------|-----------|------------|------------------------------------------|-----------|------------|
| 8538         | MassDFG      | Fish      | Ten Mile   | upstream of Thacher Street, Attleboro    | 41.92767  | -71.28916  |
|              |              | Community | River      |                                          |           |            |
| 8539         | MassDFG      | Fish      | Ten Mile   | above and below Olive Street, Attleboro  | 41.93695  | -71.29069  |
|              |              | Community | River      |                                          |           |            |
| 8541         | MassDFG      | Fish      | Ten Mile   | Below Dodegville Pond Demers bros 453    | 41.92156  | -71.29842  |
|              |              | Community | River      | South main Street, Attleboro             |           |            |
| B0730        | MassDEP      | Benthic   | Ten Mile   | [approximately 850 meters downstream     | 41.896400 | -71.333215 |
|              |              |           | River/     | from Pond Street, Seekonk, MA]           |           |            |
| W2210        | MassDEP      | Water     | Ten Mile   | [approximately 2780 feet downstream from | 41.896400 | -71.333215 |
|              |              | Quality   | River      | Pond Street, Seekonk]                    |           |            |

**Biological Monitoring Information** 

Benthic Macroinvertebrate Data

MassDEP Benthic Macroinvertebrate Data (2011-2017). (MassDEP Undated 4)

[Index Biological Condition Class: E= Exceptional, S= Satisfactory, MD= Moderately Degraded, SD= Severely Degraded; High Gradient IBI Thresholds: E= 100-75, S= 74-55, MD= 54-35, SD= 34-0; Low Gradient IBI Thresholds: E= 100-81, S= 80-62, MD= 61-38, SD= 37-0; R qualifier = Rarefaction (100ct) <55]

| Station | Collection | Collection  |                        | Organism | Index | Index Biological |
|---------|------------|-------------|------------------------|----------|-------|------------------|
| Code    | Date       | Method      | Index Type             | Count    | Score | Condition Class  |
| B0730   | 08/01/11   | RBP kicknet | Central_Hills_100ct_SE | 105      | 40    | MD               |

#### Fish Community Data and DELTS

#### Fish Community Data (2012-2019) Provided by MassDFG. (MassDFG 2020) (MassDEP Undated 2)

[Sample Type: TP= Total Pickup, SP= Selective Pickup, Method: BT=Boat Shocking, BP= Backpack Shocking, BG= Barge Shocking, SE= Seine, SL= Snorkel, NS= Not Stated, MT= Minnow Trap, GN= Gillnet, FY= Fyke Net, Gradient: H = High, L = Low; I/MT MG= Intolerant/Moderately Tolerant Macrohabitat Generalist]

[Species List: AE = American Eel, B = Bluegill, BS = Banded Sunfish, CP = Chain Pickerel, GS = Golden Shiner, P = Pumpkinseed, RP = Redfin Pickerel, TD = Tesselated Darter, YB = Yellow Bullhead]

| Sample ID | Sample Date | Method | Sample Type | Gradient | Total Taxa | Total Ind | Cold Ind % | Fluvial Taxa | Fluvial Ind % | Intol Ind % | I/MT MG Taxa | I/MT MG Ind % | Notables | CFR | Species List                     |
|-----------|-------------|--------|-------------|----------|------------|-----------|------------|--------------|---------------|-------------|--------------|---------------|----------|-----|----------------------------------|
| 8538      | 08/12/19    | BP     | TP          | L        | 5          | 9         | 0%         | 1            | 11%           | 0%          | 2            | 67%           | No       | No  | AE, B, P, RP, TD,                |
| 8539      | 08/12/19    | BP     | TP          | L        | 5          | 16        | 0%         | 1            | 6%            | 0%          | 2            | 50%           | Yes      | No  | AE, B, P, RP, TD,                |
| 8541      | 08/13/19    | ВР     | TP          | L        | 8          | 38        | 0%         | 1            | 5%            | 5%          | 3            | 58%           | No       | No  | AE, B, BS, CP, GS, P, TD,<br>YB, |

#### Physico-chemical Water Quality Information

#### DO, pH, Temperature

MassDEP Short-term Continuous Dissolved Oxygen Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5) [Note: Most deploys 3-5 days in length; Day Count= total # of days over all deploys; XDADMin= 3-5 Day Average of the Daily Minima,

XDADA= 3-5 Day Average of the Daily Average, CW= Coldwater, WW= Warmwater]

| Station Code | Data Year | Deploys Count | Day Count | DO Min (mg/L) | Min XDADMin (mg/L) | Min XDADA (mg/L) | Delta DO Max (mg/L) | Count CW XDADMin <6.0 | Count CW 1Day Min<br><5.0 | Count WW Early Life<br>Stages XDADA <6.5 | Count WW Early Life<br>Stages 1Day Min <5.0 | Count WW Other Life<br>Stages XDADMin <5.0 | Count WW Other Life<br>Stages 1Day Min <4.0 |
|--------------|-----------|---------------|-----------|---------------|--------------------|------------------|---------------------|-----------------------|---------------------------|------------------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| W2210        | 2011      | 3             | 12        | 5.9           | 6.2                | 6.5              | 1                   | 0                     | 0                         | 0                                        | 0                                           | 0                                          | 0                                           |

#### MassDEP Discrete Dissolved Oxygen Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[CW= Coldwater, WW= Warmwater]

| [       | ,          |          |       |        |        |                         |          |             |
|---------|------------|----------|-------|--------|--------|-------------------------|----------|-------------|
|         |            |          |       |        | DO     |                         | Count WW | Count WW    |
| Station |            |          | DO    | DO Min | Avg    | Count Early Life Stages |          | Other Life  |
| Code    | Start Date | End Date | Count | (mg/L) | (mg/L) | CW <5.0                 | <5.0     | Stages <4.0 |
| W2210   | 05/25/11   | 10/11/11 | 6     | 6.5    | 7.5    | 0                       | 0        | 0           |

# MassDEP Long-term Continuous Temperature Data (Summer Index 2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[Summer Index is June 1 – Sept 15; Max Daily Mean= Maximum 24-Hour Average, 7DADM= 7-Day Average of the Daily Maxima, 7DADA= 7-Day Average of the Daily Average, CW= Coldwater, WW= Warmwater; NOTE: In the case of more than one row of data in the same year for a site, different types of temperature probes were deployed.]

| Station Code | Start Date | End Date | Index Count | 7 day Count | Max Daily Mean (°C) | Max Temp (°C) | Max 7DADM (°C) | Max 7DADA (°C) | Count CWTier1 7DADM<br>>20 | Count CWTier1 Daily<br>Mean >23.5 | Count CWTier2 7DADA >21 | Count CWTier2 Daily<br>Mean >24.1 | Count WW 7DADM >27.7 | Count WW Daily Mean >28.3 |
|--------------|------------|----------|-------------|-------------|---------------------|---------------|----------------|----------------|----------------------------|-----------------------------------|-------------------------|-----------------------------------|----------------------|---------------------------|
| W2210        | 06/01/11   | 09/15/11 | 107         | 107         | 27.6                | 29.9          | 27.5           | 26.0           | 107                        | 49                                | 88                      | 34                                | 0                    | 0                         |

# MassDEP Short-term Continuous Temperature Data (Summer Index 2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[Summer Index is June 1 – Sept 15; Most Deploys 3-5 Days in Length; Day Count= total # of days over all deploys; Max Daily Mean= Maximum 24-Hour Average, XDADM= 3-5 Day Average of the Daily Maxima, XDADA= 3-5 Day Average of the Daily Average, CW= Coldwater, WW= Warmwater]

| Station Code | Data Year | Deploys Count | Day Count | Max Daily Mean (°C) | Max Temp (°C) | Max XDADM (°C) | Max XDADA (°C) | Count CWTier1<br>XDADM >20 | Count CWTier1 Daily<br>Mean >23.5 | Count CWTier2<br>XDADA >21 | Count CWTier2 Daily<br>Mean >24.1 | Count WW XDADM >27.7 | Count WW Daily<br>Mean >28.3 |
|--------------|-----------|---------------|-----------|---------------------|---------------|----------------|----------------|----------------------------|-----------------------------------|----------------------------|-----------------------------------|----------------------|------------------------------|
| W2210        | 2011      | 3             | 12        | 26.8                | 27.9          | 25.9           | 24.8           | 3                          | 6                                 | 3                          | 3                                 | 0                    | 0                            |

# **24-hour Rolling Average Calculations for MassDEP Short- and Long-term Continuous Temperature Data (Summer Index 2011-2018).** (MassDEP Undated 7) (MassDEP Undated 5)

[Summer Index is June 1 – Sept 15; CW= Coldwater, WW= Warmwater; NOTE: In the case of more than one row of data in the same year for a site, different types of temperature probes were deployed.]

|         |          |          |          |         | Max 24hr  | Count        | Count        | <b>Count WW</b> |
|---------|----------|----------|----------|---------|-----------|--------------|--------------|-----------------|
|         |          |          | Count    | 24hr    | Avg       | CWTier1 24hr | CWTier2 24hr | 24hr Avg        |
| Station | Start    |          | Days     | Rolling | Rolling   | Avg Rolling  | Avg Rolling  | Rolling         |
| Code    | Date     | End Date | Deployed | Count   | Temp (°C) | >23.5 °C     | >24.1 °C     | >28.3°C         |
| 14/2240 | 06/01/11 | 09/15/11 | 107      | 5136    | 27.8      | 2449         | 1676         | n               |
| W2210   | 06/01/11 | 09/13/11 | 107      | 3130    | 27.0      | 2443         | 1070         | 0               |

#### MassDEP Discrete Temperature Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[Summer Index is June 1 – Sept 15; CW= Coldwater, WW= Warmwater]

|         |          |                 |       |       | Temp |          |        |        |          |                 |
|---------|----------|-----------------|-------|-------|------|----------|--------|--------|----------|-----------------|
| Station | Start    |                 | Temp  | Index | Max  | Temp     | Count  | Count  | Count    | <b>Count WW</b> |
| Code    | Date     | <b>End Date</b> | Count | Count | (°C) | Avg (°C) | CW >20 | CW >22 | WW >28.3 | >30.3           |
| W2210   | 05/25/11 | 10/11/11        | 8     | 6     | 26.7 | 21.4     | 6      | 4      | 0        | 0               |

MassDEP Discrete pH Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

| Station<br>Code | Start Date | End Date | pH Count | pH Min<br>(SU) | pH Max<br>(SU) | pH Count<br><6.5 & >8.3 | pH Count<br><6.0 & >8.8 |
|-----------------|------------|----------|----------|----------------|----------------|-------------------------|-------------------------|
| W2210           | 05/25/11   | 10/11/11 | 6        | 6.9            | 7.1            | 0                       | 0                       |

#### Nutrients (Primary Producer Screening, Physico-chemical Screening)

MassDEP Nutrient Enrichment Indicator Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[Summer seasonal total phosphorus data collected May-Sept]

|         |      |          |          |          |          | Delta  | Delta  | DO   |      |       | Dense/V.   |
|---------|------|----------|----------|----------|----------|--------|--------|------|------|-------|------------|
|         |      | Seasonal | Seasonal | Seasonal | Seasonal | DO     | DO     | Sat  | pН   | Count | Dense      |
| Station | Data | TP       | TP Min   | TP Max   | TP Avg   | Max    | Avg    | Max  | Max  | Algal | Film/Fila. |
| Code    | Year | Count    | (mg/L)   | (mg/L)   | (mg/L)   | (mg/L) | (mg/L) | (%)  | (SU) | Obsv. | Algae      |
| W2210   | 2011 | 5        | 0.075    | 0.140    | 0.098    | 1.0    | 0.7    | 97.5 | 7.1  | 5     | 0          |

#### Toxics and other pollutants (metals, ammonia, chloride, chlorine)

MassDEP Clean Metals Water Column Data (2011-2018), Acute Criteria Violations. (MassDEP Undated 7) (MassDEP Undated 5)

[CMC= Criterion Maximum Concentration, TU= Toxic Unit]

| Station<br>Code | Data<br>Year |   |   | Cd CMC<br>TU >1 | Cr III CMC<br>TU >1 | Cu CMC<br>TU >1 | Pb CMC<br>TU >1 |   | Ag CMC<br>TU >1 | Zn CMC<br>TU >1 |
|-----------------|--------------|---|---|-----------------|---------------------|-----------------|-----------------|---|-----------------|-----------------|
| W2210           | 2011         | 2 | 0 | 0               | 0                   | 0               | 0               | 0 | 0               | 0               |

# MassDEP Clean Metals Water Column Data (2011-2018), Chronic Criteria Violations. (MassDEP Undated 7) (MassDEP Undated 5)

[CCC= Criterion Continuous Concentration, TU= Toxic Unit]

|       | Data<br>Year |   |   |   | Cr III CCC<br>TU >1 |   |   |   | Se CCC<br>TU >1 |   |   |
|-------|--------------|---|---|---|---------------------|---|---|---|-----------------|---|---|
| W2210 | 2011         | 2 | 0 | 0 | 0                   | 2 | 2 | 0 | 0               | 0 | l |

# MassDEP Clean Metals Water Column Data (2011-2018), Selected TU Calculations. (MassDEP Undated 7) (MassDEP Undated 5)

[CMC= Criterion Maximum Concentration, CCC= Criterion Continuous Concentration, TU= Toxic Unit]

| Station<br>Code | Sample Date | Cd CMC TU | Cd CCC TU | Cu CMC TU | Cu CCC TU | Pb CMC TU | Pb CCC TU |
|-----------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|
| W2210           | 07/19/11    | 0.1       | 0.4       | 0.8       | 1.16      | 0.0       | 1.3       |
| W2210           | 08/24/11    | 0.1       | 0.3       | 1.0       | 1.39      | 0.1       | 1.8       |

# MassDEP Dissolved Aluminum Water Column Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[Since only dissolved aluminum data were available, these data were compared to the default freshwater criteria for total recoverable aluminum (TRA), presented in Appendix E of MassDEP's 2022 CALM. As dissolved Al is a fraction of TRA, an exceedance count of 0 does not rule out violations of the TRA criteria. CMC= Criterion Maximum Concentration, CCC= Criterion Continuous Concentration, TU= Toxic Unit]

|       |      | Dissolved<br>Al Count |       |       |       | Al CMC<br>TU Max | AI CCC<br>TU Max |   | AI CCC<br>TU >1 |
|-------|------|-----------------------|-------|-------|-------|------------------|------------------|---|-----------------|
| W2210 | 2011 | 2                     | 0.014 | 0.016 | 0.015 | 0.0              | 0.1              | 0 | 0               |

# MassDEP Total Ammonia Nitrogen (TAN) Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

[TAN= NH3 + NH4+]

| Station<br>Code | Data<br>Year | TAN<br>Count | TAN Min<br>(mg/L) | TAN Max<br>(mg/L) | TAN Avg<br>(mg/L) | Count TAN >Chronic | Count TAN >Acute |
|-----------------|--------------|--------------|-------------------|-------------------|-------------------|--------------------|------------------|
| W2210           | 2011         | 5            | 0.050             | 0.180             | 0.092             | 0                  | 0                |

## MassDEP Chloride Data (2011-2018). (MassDEP Undated 7) (MassDEP Undated 5)

|         |      |          |            |            |            | Count    | Count    |
|---------|------|----------|------------|------------|------------|----------|----------|
| Station | Data | Chloride | Chloride   | Chloride   | Chloride   | Chloride | Chloride |
| Code    | Year | Count    | Min (mg/L) | Max (mg/L) | Avg (mg/L) | >230     | >860     |
| W2210   | 2011 | 5        | 84         | 140        | 106        | 0        | 0        |

# MassDEP Discrete Specific Conductance Data (2011-2018) Compared to Estimated Chloride Criteria. (MassDEP Undated 7) (MassDEP Undated 5)

| Station Code | Start Date | End Date | SpCond Count | SpCond Min<br>(µs/cm) | SpCond Max<br>(μs/cm) | Count SpCond<br>>904 | Count SpCond<br>>994 | Count SpCond<br>>3193 | Count SpCond<br>>3512 | Consecutive<br>sets >904 | Consecutive<br>sets >994 |
|--------------|------------|----------|--------------|-----------------------|-----------------------|----------------------|----------------------|-----------------------|-----------------------|--------------------------|--------------------------|
| W2210        | 05/25/11   | 10/11/11 | 6            | 404                   | 597                   | 0                    | 0                    | 0                     | 0                     | 0                        | 0                        |

### Fish Consumption

| 2022 Use Attainment | Alert |
|---------------------|-------|
| Not Supporting      | NO    |
|                     |       |

#### 2022 Use Attainment Summary

Because of the site-specific fish consumption advisory for the Mechanics Pond impoundment of this Ten Mile River AU (MA52-03), the Fish Consumption Use will continue to be assessed as Not Supporting with the chlordane in Fish Tissue impairment being carried forward. The advisory recommends the following: Children under 12, pregnant women, nursing mothers, and women of childbearing age who may become pregnant should refrain from consuming white perch from Mechanics Pond, Dodgeville Pond, and the section of the Ten Mile River that connects them, and the section of the Ten Mile River that connects them to two meals per month.

As reported in (MassDEP 2006), fish were collected from the Mechanics Pond impoundment of this Ten Mile River AU (MA52-03) in June 2002. Three fillet composites each of largemouth bass, white perch, pumpkinseed, bluegill, and black crappie were analyzed for heavy metals, PCB, organochlorine pesticides, and percent lipids (Maietta 2007). Due to the presence of elevated chlordane in white perch, MA DPH issued the following advisory recommending:

- "Children under 12, pregnant women, nursing mothers, and women of childbearing age who may become pregnant should refrain from consuming white perch from Mechanics Pond"
- "The general public should limit the consumption of white perch caught from Mechanics Pond to two meals per month".

#### Aesthetic

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Not Supporting              | YES   |
| 2022 Use Attainment Summary |       |

MassDEP staff recorded aesthetics observations as part of the MAP2 monitoring project in summer 2011, close to the downstream end of this Ten Mile River AU (MA52-03), approximately 2780 feet downstream from Pond Street, Seekonk (W2210/Map2-068). There were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DWM-WPP field sampling crews during the surveys (n=6). However, because this sampling station was not located in the impounded reaches of the river, where it was originally documented with dense duckweed and filamentous algae cover during a 2002 synoptic survey (MassDEP 2006), it cannot be confirmed if the excessive algal growth and aquatic plants continue to impair the aesthetics in that section of the Ten Mile River. Therefore, the Aesthetics Use for this Ten Mile River AU (MA52-03) will continue to be assessed as Not Supporting with the Algae, Nutrient/Eutrophication Biological indicators, Total Phosphorus, and Aquatic Plants (Macrophytes) impairments being carried forward. The prior Alert identified for trash in the river at Olive Street in 2007 (MassDEP Undated 6) will also be carried forward, since this location was not observed in 2011.

### **Monitoring Stations**

| Statio | 1            |         |            |                                               |           |            |
|--------|--------------|---------|------------|-----------------------------------------------|-----------|------------|
| Code   | Organization | Туре    | Water Body | Station Description                           | Latitude  | Longitude  |
| W221   | ) MassDEP    | Water   | Ten Mile   | [approximately 2780 feet downstream from Pond | 41.896400 | -71.333215 |
|        |              | Quality | River      | Street, Seekonk]                              |           |            |

#### Aesthetic Observations

#### Aesthetics Summary Statements for MassDEP Stations (2011-2018) (MassDEP Undated 5)

| Station<br>Code | Waterbody      | Data<br>Year | Field<br>Sheet<br>Count | Aesthetics Summary Statement                                               |
|-----------------|----------------|--------------|-------------------------|----------------------------------------------------------------------------|
| W2210           | Ten Mile River | 2011         | 6                       | MassDEP aesthetics observations for station W2210/MAP2-068 on Ten          |
|                 |                |              |                         | Mile River can be summarized as follows: there were generally no noted     |
|                 |                |              |                         | objectionable conditions (odors, deposits, growths, or turbidity) recorded |
|                 |                |              |                         | by DEP field sampling crews during summer 2011.                            |

#### Observations of Filamentous/Film Algae at MassDEP Stations (2011-2018) (MassDEP Undated 7) (MassDEP Undated 5)

|         |           |                   | Field Sheet Count w/ Film & |                         |
|---------|-----------|-------------------|-----------------------------|-------------------------|
| Station |           |                   | Filamentous Algae           | Dense/ Very Dense       |
| Code    | Data Year | Field Sheet Count | Observations                | Film/ Filamentous Algae |
| W2210   | 2011      | 6                 | 5                           | 0                       |

#### MassDEP Aesthetics Observations (2011-2018) (MassDEP Undated 7)

| Station |                | Data |                        |                  | Result | Total Field        |
|---------|----------------|------|------------------------|------------------|--------|--------------------|
| Code    | Waterbody      | Year | Parameter              | Result           | Count  | <b>Sheet Count</b> |
| W2210   | Ten Mile River | 2011 | Color                  | Light Yellow/Tan | 6      | 6                  |
| W2210   | Ten Mile River | 2011 | Objectionable Deposits | No               | 5      | 6                  |
| W2210   | Ten Mile River | 2011 | Objectionable Deposits | Yes              | 1      | 6                  |
| W2210   | Ten Mile River | 2011 | Odor                   | Musty (Basement) | 2      | 6                  |
| W2210   | Ten Mile River | 2011 | Odor                   | None             | 4      | 6                  |
| W2210   | Ten Mile River | 2011 | Scum                   | No               | 6      | 6                  |
| W2210   | Ten Mile River | 2011 | Turbidity              | None             | 1      | 6                  |
| W2210   | Ten Mile River | 2011 | Turbidity              | Slightly Turbid  | 5      | 6                  |

#### **Primary Contact Recreation**

| 2022 Use Attainment |     |  |  |
|---------------------|-----|--|--|
| Not Supporting      | YES |  |  |

#### 2022 Use Attainment Summary

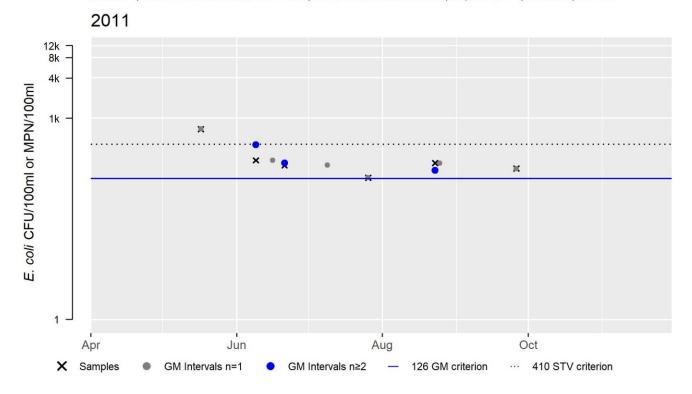
E. coli bacteria samples were collected by MassDEP staff approximately 2780 feet downstream from Pond Street, Seekonk (W2210) six times during the summer of 2011. Analysis of this single year limited frequency data indicated 100% of intervals had GMs >126 cfu/100ml and a seasonal GM of 233 cfu/100ml. Although there were generally no objectionable conditions observed, this sampling station was not located in the impounded reaches of the river where the aesthetics problems were originally documented. Therefore, the Primary Contact Recreational Use for this Ten Mile River AU (MA52-03) will continue to be assessed as Not Supporting with the Algae, Aquatic Plants (Macrophytes), Nutrient/Eutrophication Biological indicators, Total Phosphorus, E. Coli, and Fecal Coliform impairments being carried forward. The prior Alert identified for trash in the river at Olive Street in 2007 (MassDEP Undated 6) will also be carried forward.

#### **Monitoring Stations**

| Station<br>Code | Organization | Туре    | Water Body | Station Description                           | Latitude  | Longitude  |
|-----------------|--------------|---------|------------|-----------------------------------------------|-----------|------------|
| W2210           | MassDEP      | Water   | Ten Mile   | [approximately 2780 feet downstream from Pond | 41.896400 | -71.333215 |
|                 |              | Quality | River      | Street, Seekonk]                              |           |            |

#### Bacteria Data

Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (30-day Interval Analysis) (MassDEP Undated 7) (MassDEP Undated 5)


[Result units are CFU/100ml or MPN/100ml]

|              |              |           |            |                 |        | Minimum | Maximum | Seasonal  |
|--------------|--------------|-----------|------------|-----------------|--------|---------|---------|-----------|
|              |              |           |            |                 | Sample | Sample  | Sample  | Geometric |
| Station Code | Organization | Indicator | Start Date | <b>End Date</b> | Count  | Result  | Result  | Mean      |
| W2210        | MassDEP      | E. coli   | 05/17/11   | 09/26/11        | 6      | 130     | 687     | 233       |

# W2210 E. coli (30-day Interval), Primary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 6   |
| SeasGM  | 233 |
| #GMI    | 3   |
| #GMI Ex | 3   |
| %GMI Ex | 100 |
| n>STV   | 1   |
| %n>STV  | 17  |

Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV



#### Secondary Contact Recreation

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Not Supporting              | YES   |
| 2022 Use Attainment Summary |       |

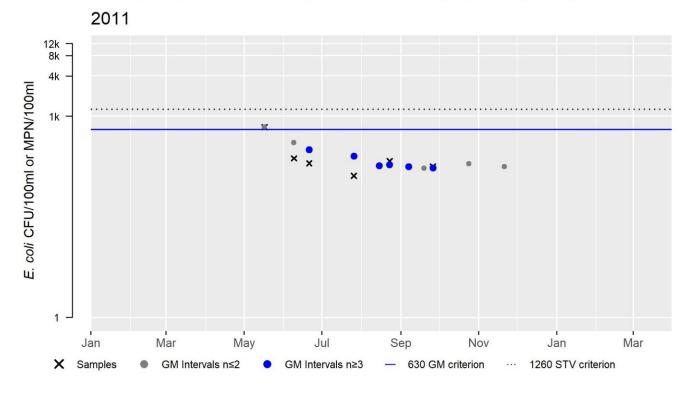
E. coli bacteria samples were collected by MassDEP staff close to the downstream end of this Ten Mile River AU (MA52-03) approximately 2780 feet downstream from Pond Street, Seekonk (W2210) six times during the summer of 2011. Analysis of this single year limited frequency data indicated none of the intervals had GMs >630 cfu/100ml with a seasonal GM of 233 cfu/100ml and no exceedances of the STV (1260 cfu/100mls). Although there were generally no objectionable conditions observed, this sampling station was not located in the impounded reaches of the river where the aesthetics problems were originally documented. Therefore, the Secondary Contact Recreational Use for this Ten Mile River AU (MA52-03) will continue to be assessed as Not Supporting with the Algae, Aquatic Plants (Macrophytes), Nutrient/Eutrophication Biological indicators, and Total Phosphorus impairments being carried forward. The prior Alert identified for trash in the river at Olive Street in 2007 (MassDEP Undated 6) will also be carried forward.

# **Monitoring Stations**

| Station |              |         |            |                                               |           |            |
|---------|--------------|---------|------------|-----------------------------------------------|-----------|------------|
| Code    | Organization | Туре    | Water Body | Station Description                           | Latitude  | Longitude  |
| W2210   | MassDEP      | Water   | Ten Mile   | [approximately 2780 feet downstream from Pond | 41.896400 | -71.333215 |
|         |              | Quality | River      | Street, Seekonk]                              |           |            |

#### Bacteria Data

Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 7) (MassDEP Undated 5)


[Result units are CFU/100ml or MPN/100ml]

| [Nesult utilts are Cr C | )/ 100mm of Wir N/ 10 | Offinj    |            |          |        |            |            |            |
|-------------------------|-----------------------|-----------|------------|----------|--------|------------|------------|------------|
|                         |                       |           |            |          |        | Minimum    | Maximum    | Seasonal   |
|                         |                       |           |            |          |        | Sample     | Sample     | Geometric  |
|                         |                       |           |            |          |        | Result     | Result     | Mean       |
|                         |                       |           |            |          |        | (CFU/100ml | (CFU/100ml | (CFU/100ml |
|                         |                       |           |            |          | Sample | or         | or         | or         |
| Station Code            | Organization          | Indicator | Start Date | End Date | Count  | MPN/100ml) | MPN/100ml) | MPN/100ml) |
| W2210                   | MassDEP               | E. coli   | 05/17/11   | 09/26/11 | 6      | 130        | 687        | 233        |

# W2210 E. coli (90-day Interval), Secondary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 6   |
| SeasGM  | 233 |
| #GMI    | 6   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 0   |
| %n>STV  | 0   |

 $Abbreviations: Samples = \#samples; SeasGM = Seasonal \ Geometric \ Mean \ (GM); \#GMI = number \ GM \ Intervals; \#GMI \ Ex = number \ GMI \ Exeedances; \\ n>STV = \#samples>Statistical \ Threshold \ Value \ (STV); \\ n>STV = percent \ samples>STV$ 



# Whiting Pond (MA52042)

| Location:                 | North Attleborough/Plainville. |
|---------------------------|--------------------------------|
| AU Type:                  | FRESHWATER LAKE                |
| AU Size:                  | 24 ACRES                       |
| Classification/Qualifier: | B: WWF, HQW                    |

| 2018/20 AU | 2022 AU  |                        |                   | Impairment<br>Change |
|------------|----------|------------------------|-------------------|----------------------|
| Category   | Category | Impairment             | ATTAINS Action ID | Summary              |
| 4a         | 4a       | Mercury in Fish Tissue | 33880             | Unchanged            |

| Impairment             | Source (Confirmed Y/N)              | Fish, other Aquatic<br>Life and Wildlife | Fish Consumption | Aesthetic | Primary Contact<br>Recreation | Secondary Contact<br>Recreation |
|------------------------|-------------------------------------|------------------------------------------|------------------|-----------|-------------------------------|---------------------------------|
| Mercury in Fish Tissue | Atmospheric Deposition - Toxics (Y) |                                          | Χ                |           |                               |                                 |
| Mercury in Fish Tissue | Source Unknown (N)                  |                                          | Х                |           |                               |                                 |

#### Recommendations

#### 2022 Recommendations

REC: Conduct additional bacteria sampling/analysis on Whiting Pond to better evaluate if the pond should be impaired for *E. coli*.

# Designated Use Attainment Decisions

## Fish, other Aquatic Life and Wildlife

| 2022 Use Attainment                                                                                        | Alert       |
|------------------------------------------------------------------------------------------------------------|-------------|
| Not Assessed                                                                                               | NO          |
| 2022 Use Attainment Summary                                                                                |             |
| No data are available to assess the status of the Aquatic Life Use for Whiting Pond (MA52042), so it is No | t Assessed. |

# Fish Consumption

| 2022 Use Attainment                                                                                    | Alert             |
|--------------------------------------------------------------------------------------------------------|-------------------|
| Not Supporting                                                                                         | NO                |
| 2022 Use Attainment Summary                                                                            |                   |
| Because of the site-specific fish consumption advisory for this Whitings Pond AU (MA52042) due to merc | ury               |
| contamination, the Fish Consumption Use will continue to be assessed as Not Supporting with the mercu  | ry in Fish Tissue |
| impairment being carried forward.                                                                      |                   |

As reported in (MassDEP 2006) fish were collected from this Whiting Pond AU (MA52042) in June 2002. Three fillet composites of largemouth bass, bluegill, pumpkinseed, black crappie, and brown bullhead were analyzed for heavy metals, PCB, organochlorine pesticides, and percent lipids (Maietta 2007). Due to the presence of elevated mercury in largemouth bass and bluegill samples, MA DPH issued the following advisory recommending:

- "Children under 12, pregnant women, nursing mothers, and women of childbearing age who may become pregnant should refrain from consuming bluegill and largemouth bass from Whitings Pond"
- "The general public should limit consumption of bluegill and largemouth bass caught from Whitings Pond to two meals per month".

#### Aesthetic

| 2022 Use Attainment         | Alert |
|-----------------------------|-------|
| Insufficient Information    | NO    |
| 2022 Use Attainment Summary |       |

MassDEP aesthetics observations for station W2590 (the Town beach) on Whiting Pond can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2015 (n=1). Too limited data are available to assess the Aesthetics Use for Whiting Pond (MA52042), so it is assessed as having Insufficient Information.

## **Monitoring Stations**

| Station |              |         |               |                                                |           |            |
|---------|--------------|---------|---------------|------------------------------------------------|-----------|------------|
| Code    | Organization | Type    | Water Body    | Station Description                            | Latitude  | Longitude  |
| W2590   | MassDEP      | Water   | Ten Mile      | [from the town beach on Whiting Pond (an       | 41.994566 | -71.336185 |
|         |              | Quality | River/Whiting | impoundment on a braid of the Ten Mile River), |           |            |
|         |              |         | Pond          | North Attleboro]                               |           |            |

#### Aesthetic Observations

#### Aesthetics Summary Statements for MassDEP Stations (2011-2018) (MassDEP Undated 5)

| Station<br>Code | Waterbody                         | Data<br>Year | Field<br>Sheet<br>Count | Aesthetics Summary Statement                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|-----------------------------------|--------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W2590           | Ten Mile<br>River/Whiting<br>Pond | 2015         | 1                       | MassDEP aesthetics observations for station W2590 on Ten Mile River/Whiting Pond can be summarized as follows: there were generally no noted objectionable conditions (odors, deposits, growths, or turbidity) recorded by DEP field sampling crews during summer 2015. However, there is insufficient information to assess the Aesthetics Use since data were limited (n=1). |

#### Observations of Filamentous/Film Algae at MassDEP Stations (2011-2018) (MassDEP Undated 7) (MassDEP Undated 5)

|         |           |                   | Field Sheet Count w/ Film & |                         |
|---------|-----------|-------------------|-----------------------------|-------------------------|
| Station |           |                   | Filamentous Algae           | Dense/ Very Dense       |
| Code    | Data Year | Field Sheet Count | Observations                | Film/ Filamentous Algae |
| W2590   | 2015      | 1                 | 0                           | 0                       |

#### MassDEP Aesthetics Observations (2011-2018) (MassDEP Undated 7)

| Station |                                   | Data |                        |                      | Result | Total Field |
|---------|-----------------------------------|------|------------------------|----------------------|--------|-------------|
| Code    | Waterbody                         | Year | Parameter              | Result               | Count  | Sheet Count |
| W2590   | Ten Mile<br>River/Whiting<br>Pond | 2015 | Color                  | NR                   | 1      | 1           |
| W2590   | Ten Mile<br>River/Whiting<br>Pond | 2015 | Objectionable Deposits | Not Applicable (N/A) | 1      | 1           |
| W2590   | Ten Mile<br>River/Whiting<br>Pond | 2015 | Odor                   | None                 | 1      | 1           |
| W2590   | Ten Mile<br>River/Whiting<br>Pond | 2015 | Scum                   | Not Applicable (N/A) | 1      | 1           |
| W2590   | Ten Mile<br>River/Whiting<br>Pond | 2015 | Turbidity              | NR                   | 1      | 1           |

### **Primary Contact Recreation**

| 2022 Use Attainment      | Alert |
|--------------------------|-------|
| Insufficient Information | YES   |
|                          |       |

#### 2022 Use Attainment Summary

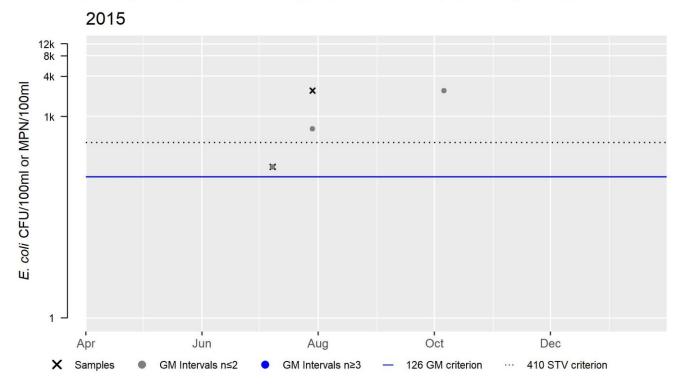
MassDEP staff conducted a limited amount of *E. coli* bacteria sampling in Whiting Pond (an impoundment on a braid of the Ten Mile River) at the Town beach in North Attleboro (W2590) in 2015. Of the two samples collected, *E. coli* counts were elevated (both above 126 cfu/100ml and one above the 410 STV criterion, with an overall GM of 656 cfu/100ml). MassDEP staff also conducted Bacteria Source Tracking (BST) work at four sites along the shore of Whiting Pond in 2015, with a max *E. coli* of 2,419.6MPN. Waterfowl and waterfowl fecal matter were an observed source of bacteria on the Town beach. Overall, too limited data are available to assess the Primary Contact Recreational Use for Whiting Pond according to the CALM "Use Attainment Impairment Decision Schema", so this use is assessed as Insufficient Information. An alert is being identified for elevated *E. coli* bacteria based on high counts at the Town beach in 2015.

## *Monitoring Stations*

|   | ation<br>ode | Organization | Туре    | Water Body    | Station Description                            | Latitude  | Longitude  |
|---|--------------|--------------|---------|---------------|------------------------------------------------|-----------|------------|
| W | 2590         | MassDEP      | Water   | Ten Mile      | [from the town beach on Whiting Pond (an       | 41.994566 | -71.336185 |
|   |              |              | Quality | River/Whiting | impoundment on a braid of the Ten Mile River), |           |            |
|   |              |              |         | Pond          | North Attleboro]                               |           |            |

#### Bacteria Data

Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 7) (MassDEP Undated 5)


[Result units are CFU/100ml or MPN/100ml]

|              |              |           |            |                 |        | Minimum | Maximum | Seasonal  |
|--------------|--------------|-----------|------------|-----------------|--------|---------|---------|-----------|
|              |              |           |            |                 | Sample | Sample  | Sample  | Geometric |
| Station Code | Organization | Indicator | Start Date | <b>End Date</b> | Count  | Result  | Result  | Mean      |
| W2590        | MassDEP      | E. coli   | 07/08/15   | 07/29/15        | 2      | 178     | 2420    | 656       |

# W2590 E. coli (90-day Interval), Primary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 656 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 1   |
| %n>STV  | 50  |

Abbreviations: Samples = #samples; SeasGM = Seasonal Geometric Mean (GM); #GMI = number GM Intervals; #GMI Ex = number GMI Exeedances; %GMI Ex = percent GMI Exeedances; n>STV = #samples>Statistical Threshold Value (STV); %n>STV = percent samples>STV



## MassDEP Bacteria Source Tracking (BST) Summary Statement for 2011-2019 (MassDEP Undated 1)

#### **Summary**

BST samples were collected at 4 sites along the shore of the Whiting Pond AU (MA52042) in 2015, with a max *E. coli* concentration of 2,419.6 in dry weather conditions. A great number of waterfowl and waterfowl fecal matter were observed on the Town beach, which was most likely to be a source of bacteria at this location. No correctable source was ever found.

## Secondary Contact Recreation

| 2022 Use Attainment         | Alert |  |  |  |  |
|-----------------------------|-------|--|--|--|--|
| Insufficient Information    | NO    |  |  |  |  |
| 2022 Use Attainment Summary |       |  |  |  |  |

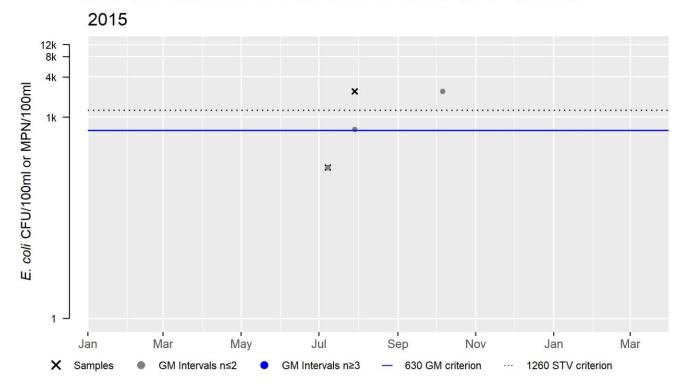
MassDEP staff conducted a limited amount of *E. coli* bacteria sampling in Whiting Pond (an impoundment on a braid of the Ten Mile River) at the Town beach in North Attleboro (W2590) in 2015. Of the two samples collected, *E. coli* counts were once greater than 630 cfu/100ml and greater than the 1260 STV criterion. MassDEP also conducted BST work at four sites along the shore of Whiting Pond in 2015, with a max *E. coli* of 2,419.6MPN. Waterfowl and waterfowl fecal matter were an observed source of bacteria on the Town beach. Too limited data are available to assess the Secondary Contact Recreational Use for Whiting Pond according to the CALM "Use Attainment Impairment Decision Schema", so this use is assessed as Insufficient Information.

## **Monitoring Stations**

| Station |              |         |               |                                                |           |            |
|---------|--------------|---------|---------------|------------------------------------------------|-----------|------------|
| Code    | Organization | Туре    | Water Body    | Station Description                            | Latitude  | Longitude  |
| W2590   | MassDEP      | Water   | Ten Mile      | [from the town beach on Whiting Pond (an       | 41.994566 | -71.336185 |
|         |              | Quality | River/Whiting | impoundment on a braid of the Ten Mile River), |           |            |
|         |              |         | Pond          | North Attleboro]                               |           |            |

#### Bacteria Data

# Bacteria Data Collected by MassDEP and External Data Providers 2011-2020 (90-day Interval Analysis) (MassDEP Undated 7) (MassDEP Undated 5)


[Result units are CFU/100ml or MPN/100ml]

|              |              |           |            |                 |        | Minimum    | Maximum    | Seasonal   |
|--------------|--------------|-----------|------------|-----------------|--------|------------|------------|------------|
|              |              |           |            |                 |        | Sample     | Sample     | Geometric  |
|              |              |           |            |                 |        | Result     | Result     | Mean       |
|              |              |           |            |                 |        | (CFU/100ml | (CFU/100ml | (CFU/100ml |
|              |              |           |            |                 | Sample | or         | or         | or         |
| Station Code | Organization | Indicator | Start Date | <b>End Date</b> | Count  | MPN/100ml) | MPN/100ml) | MPN/100ml) |
| W2590        | MassDEP      | E. coli   | 07/08/15   | 07/29/15        | 2      | 178        | 2420       | 656        |

# W2590 E. coli (90-day Interval), Secondary Contact Recreational Use Season

| Var     | Res |
|---------|-----|
| Samples | 2   |
| SeasGM  | 656 |
| #GMI    | 0   |
| #GMI Ex | 0   |
| %GMI Ex | 0   |
| n>STV   | 1   |
| %n>STV  | 50  |

 $Abbreviations: Samples = \#samples; SeasGM = Seasonal \ Geometric \ Mean \ (GM); \#GMI = number \ GM \ Intervals; \#GMI \ Ex = number \ GMI \ Exeedances; \\ n>STV = \#samples>Statistical \ Threshold \ Value \ (STV); \\ n>STV = percent \ samples>STV$ 



## **Data Sources**

- Bailey, Logan. "Email providing Harmful Algal Bloom advisory data (2015-2019) in the attached spreadsheet "HAB\_Advisory\_Data\_forDEP"." Email to Laurie Kennedy (MassDEP Watershed Planning Program) and others with subject line "RE: Beaches Bill reporting data", Environmental Toxicology Program, Bureau of Environmental Health, Massachusetts Department of Public Health, Boston, MA, April 15, 2021.
- Google Earth Pro. "Satellite Imagery of selected stream and lake/pond segments." Massachusetts, Undated.
- Maietta, R. J. "1983-2007 Fish Toxics Monitoring Survey List." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, 2007.
- MassDEP. "2015 Scanned Project Files, Ten Mile watershed lake survey data, 1997, D01-31.PDF." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, 1997.
- —. "2018 DWM Environmental Monitoring Overview." CN 444.0. Division of Watershed Management, Massachusetts Department of Environmental Protection. 2018. https://www.mass.gov/doc/2018-environmental-monitoring-summary/download (accessed July 2021).
- MassDEP. "Integrated Listing History 1992-2014 INTLIST\_HISTORY.xlsx." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, 2015.
- MassDEP. "Massachusetts Consolidated Assessment and Listing Methodology (CALM) Guidance Manual for the 2022 Reporting Cycle." CN 564.0, Watershed Planning Program, Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, 2022.
- MassDEP. "Open file analysis of 2011-2019 bacteria source tracking data collected by MassDEP Southeast Regional Office staff." Southeast Regional Office, Massachusetts Department of Environmental Protection, Lakeville, MA, Undated 1.
- MassDEP. "Open file analysis of DFG 2012-2019 fish community data using 2022 CALM guidance." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, Undated 2.
- MassDEP. "Open file analysis of external water quality data (potential date range 2011-2020) using 2022 CALM guidance." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, Undated 3.
- MassDEP. "Open file analysis of MassDEP WPP benthic survey data (2011-2018) using 2022 CALM guidance."

  Watershed Planning Program, Massachusetts Department of Environmental Protection, Worcester, MA,
  Undated 4.
- MassDEP. "Open file analysis of MassDEP WPP water quality data collected between 2011 and 2018 using 2022 CALM guidance." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, Undated 5.
- MassDEP. "Open files of repository documents for the 2016 Integrated Report cycle." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, Undated 6.

- MassDEP. "Open files of unpublished, validated water quality monitoring data, field sheet data, and GIS datalayers in development." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, Undated 7.
- MassDEP. "Scanned historical 305(b) and 303(d) coding sheets tenmile91\_02\_searchable." Division of Watershed Management, Massachusetts Department of Environmental Protection, Worcester, MA, 2002.
- MassDEP. "Ten Mile River Watershed 2002 Water Quality Assessment Report." CN 137.5, Division of Watershed Managament, Massachusetts Department of Environmental Protection, Worcester, MA, 2006.
- MassDFG. Fish Community Data 1964-2019. Database submitted to MassDEP on 24 November 2020. Division of Fisheries and Wildlife, Massachusetts Department of Fish and Game. Westborough, MA, November 24, 2020.
- MassDPH. "Freshwater Fish Consumption Advisory List." Bureau of Environmental Health, Massachusetts Department of Public Health. June 2021. https://www.mass.gov/doc/public-health-freshwater-fish-consumption-advisories-2021/download (accessed July 2021).