RESILIENT MASSACHUSETTS ACTION TEAM (RMAT)

DRAFT

CLIMATE RESILIENCE DESIGN STANDARDS & GUIDELINES

SECTION 3: DRAFT CLIMATE RESILIENCE DESIGN STANDARDS OVERVIEW

DRAFT DOCUMENT FOR PUBLIC COMMENT PERIOD

DRAFT DATE: AUGUST 24, 2020

CONTRACT NUMBER: ENV 19 CC 02

OWNER: Massachusetts Executive Office of Energy and Environmental Affairs (EEA)

IN PARTNERSHIP WITH: Massachusetts Emergency Management Agency (MEMA)

RMAT TECHNICAL ASSISTANCE CONSULTANT TEAM:

Weston & Sampson AECOM Woods Hole Group ONE Architecture & Urbanism Dr. Jennifer Jacobs

RMAT CLIMATE RESILIENCE DESIGN STANDARDS AND GUIDELINES

Section 3 Table of Contents

3. CLIM	ATE RESILIENCE DESIGN STANDARDS OUTPUTS AND RELATIONSHIPS	1
3.1 CLI	MATE RESILIENCE DESIGN STANDARDS OVERVIEW	1
3.1.1	GOALS/OBJECTIVES	1
3.1.2	APPROACH	2
3.1.3	INTENDED USER/REVIEW	3
3.1.4	WHEN TO USE THE CLIMATE RESILIENCE DESIGN STANDARDS	4
3.1.5	LIMITATIONS	4
3.2 SE	A LEVEL RISE & STORM SURGE STANDARDS OUTPUTS & RELATIONSH	IIPS5
3.2.1	OUTPUTS OVERVIEW	5
3.2.2	DATA SOURCE	5
3.2.3	PLANNING HORIZONS	5
3.2.4	RETURN PERIOD	6
3.2.5	CUMULATIVE PROBABILITY	8
3.2.6	DESIGN CRITERIA	9
3.2.7	TIERED METHODOLOGY	11
3.3 EX	TREME PRECIPITATION STANDARDS OUTPUTS AND RELATIONSHIPS	14
3.3.1	OUTPUTS OVERVIEW	14
3.3.2	PLANNING HORIZONS	14
3.3.3	RETURN PERIOD	15
3.3.4	CUMULATIVE PROBABILITY	16
3.3.5	DESIGN CRITERIA	17
3.3.6	TIERED METHODOLOGY	18
3.4 EX	TREME HEAT STANDARDS OUTPUTS AND RELATIONSHIPS	26
3.4.1	OUTPUTS OVERVIEW	26
3.4.2	PLANNING HORIZONS	26
3.4.3	CONFIDENCE INTERVAL	27
3.4.4	DESIGN CRITERIA	28
3.4.5	TIERED METHODOLOGY	30
SECTION 3 A	ATTACHMENTS	40

Attachment 3.3A – Example Data Source Download for Extreme Precipitation -- LOCA Dataset

Attachment 3.3B - Draft Tiered Methodology Example for Extreme Precipitation Depth and Intensity, All Tiers

Attachment 3.4A - Data Source Download Example for Extreme Heat -- MACA Dataset

Attachment 3.4B - Draft Tiered Methodology Example for Extreme Heat – Avg. Temperature, All Tiers

Attachment 3.4C - Draft Tiered Methodology Example for Extreme Heat – Degree Days, All Tiers

Attachment 3.4D - Draft Tiered Methodology Example for Extreme Heat – Heat Waves, All Tiers

Attachment 3.4E - Draft Tiered Methodology Example for Extreme Heat – Heat Index, All Tiers

3. CLIMATE RESILIENCE DESIGN STANDARDS OUTPUTS AND RELATIONSHIPS


This section describes the Climate Resilience Design Standards outputs provided by the Climate Resilience Design Standards Tool (the Tool), and the relationships that inform those outputs.

3.1 CLIMATE RESILIENCE DESIGN STANDARDS OVERVIEW

3.1.1 GOALS/OBJECTIVES

The main objective of the Climate Resilience Design Standards ("Standards") is to provide a consistent basis-of-design across various projects in the Commonwealth for climate parameters: sea level rise and storm surge, extreme precipitation, and extreme heat. The term "standards" has been used in many different ways in climate resilience literature, so the RMAT developed a draft definition as follows: "A Climate Resilience Design Standard is a scientifically based process or method that produces a consistent outcome, which uniformly guides users in the selection of planning horizons, return period, and flexible design criteria, by climate parameter."

Many projects throughout the Commonwealth are currently using climate projections and data for design. The Standards will provide a uniform statewide methodology for consistent use of available climate projections. The Standards also bridge the gap between the climate data that have been developed and using that data for design by translating it into design criteria. The tiered methodology provided by the Standards, based on the recommended level of effort, informs users on how to calculate design criteria values for asset and project design.

Figure 3.1. Project Overview Emphasizing the Climate Resilience Design Standards Output from the Climate Resilience Design Standards Tool

3.1.2 APPROACH

The Climate Resilience Design Standards are one of the outputs of the online GIS-based Climate Resilience Design Standards Tool ("Tool"), the other main output of the Tool being the preliminary Climate Risk Screening Output (described in Section 2). Upon completing the necessary Project Inputs, users will first receive a preliminary Climate Risk Screening Output for their project and assets, by climate parameter (as discussed in Section 2). Users will then receive Climate Resilience Design Standards Outputs from the Tool. The Standards will be organized by climate parameter, and will include a recommended planning horizon, return period or confidence interval, design criteria, and tiered methodology for calculating design criteria values. These outputs will be automated in the web-based Tool and will include the following sections, as listed in Table 3.1.

Standard Output Recommendations	Example	Relationship Driving Recommendation
Planning Horizon ¹	2070	Useful Life
Return Period ^{2,6}	100-year (1% AEP)	Criticality ³ , Asset Type, and Useful/Exposure Service Life ⁴
Confidence Interval ^{5,6}	50 th percentile	Criticality, Asset Type, and Construction Type
Design Criteria ⁶	Rainfall depth, design flood elevation, cooling degree days, etc.	Asset Type and Location
Tiered Methodology ⁶	Tier 3 – High Level of Effort	Criticality and Useful Life

Table 3.1. Standard Output Recommendations Provided by the Tool

1. Intermediate planning horizon provided for coastal climate parameters only.

2. For coastal and precipitation climate parameters only.

3. For a description of Criticality, please refer to the Glossary of Terms and Section 2.1.4.

4. Precipitation is based on useful life of asset, Coastal is based on exposure service life of asset, which is defined as number of years from when an asset is first exposed to coastal flooding to the end of its service/useful life (estimated using probability of flooding maps from the Massachusetts Coastal Flood Risk Model (MC-FRM))

5. For heat climate parameters only.

6. Return period/confidence interval, design criteria and tiered methodology are provided for each of three climate parameters: sea level rise and storm surge, precipitation, and heat.

The Standards utilize existing available climate data and provide a consistent, repeatable methodology for developing design criteria values from the data. The methodologies are structured in tiers to reflect the level of effort associated with using the climate data to generate design criteria values.

Tier 3 is the greatest level of effort and the most site-specific method to calculate design criteria values out of the tiered methodologies. There are already Tier 3 data available statewide for coastal climate parameters through the Massachusetts Coast Flood Risk Model (MC-FRM). Some communities have also developed or are in the process of developing local site-specific extreme precipitation and extreme heat data and models for planning and design, such as Cambridge, Somerville, and Boston. Once Tier 3 data are available, the level of effort for generating design criteria values is reduced significantly. Where data are not available, the Tier 3 methodology generally utilizes downscaled global climate models (GCMs) to generate design criteria values.

Tier 2 is a moderate level of effort and utilizes existing established relationships between current and future climate scenarios and current design criteria to generate future climate design criteria values. These relationships are referenced often in climate studies, such as the present-day 100year rainfall event is similar to the 2070 25-year rainfall event. Where those relationships are not yet established for design criteria, such as the case for Heat Waves, Tier 3 or Tier 1 methods are recommended.

Tier 1 is the lowest level of effort and is only recommended for low and medium criticality assets with a useful life of less than 10 years. These projects should incorporate Tier 2 methods where feasible, but if not, should design for today and plan for resilience reinvestment in the future.

The tiered methodologies are provided with step-by-step instructions in downloadable PDFs for each climate parameter in the Tool. Users will need to follow the instructions to generate values for the recommended design criteria, using the recommended return period or confidence interval, and planning horizon. The relationships showing how tiers are determined and provided by the Tool as output, based on asset criticality and useful life, are shown in Figure 3.2, below. Please refer to Section 2 for additional information on asset criticality.

High Criticality	TIER 2	TIER 3	TIER 3
Medium Criticality	TIER 1	TIER 2	TIER 3
Low Criticality	TIER 1	TIER 2	TIER 2
	< 10 years	10 to 50 years	50 years +

3.1.3 INTENDED USER/REVIEW

Upon completion of the Project Inputs and review of the Climate Risk Screening Output (by the State Agency Project Managers, State Agency Program Managers, and Asset Owners, during preliminary project planning), it is expected that Technical Staff will proceed with calculating design criteria values for project design based on the Standards output recommendations. Standard procurement language will be provided to solicit Technical Staff to assist with calculating design criteria values for project design. If Tier 3 methodology calculations are performed, a technical peer review is recommended to review the calculation package. The Standards and

calculated design criteria values should then be considered in context of project design along with the Climate Resilience Design Guidelines (refer to Section 4).

3.1.4 WHEN TO USE THE CLIMATE RESILIENCE DESIGN STANDARDS

The Climate Resilience Design Standards are intended for use in design projects with physical assets owned and maintained by state agencies. The Standards will be accessible online and available for other projects in the Commonwealth.

The Tool should be completed as part of preliminary planning efforts before design commences. The Standards will be provided as an output from the Tool after users submit Project Inputs and receive their preliminary Climate Risk Screening Output. The Standards Output received by users should then be used to calculate design criteria values while proceeding into the project design phase.

3.1.5 LIMITATIONS

The Climate Resilience Design Standards are advisory and intended to be specific for climate resilience design of assets and consistent across agencies and municipalities. The Standards do not and are not intended to replace existing practices, regulatory requirements, codes, or existing standards required by other agencies. For example, if an asset is recommended to be designed to a 25-year return period through the Tool, but the asset is only designed to a 10-year return period based on other regulatory policy, the discrepancy should be reflected in the Forms presented as part of the Climate Design Guidelines (refer to Section 4).

The Standards provide tiered methodologies to calculate numerical values for design criteria, and those numerical values are not an output of the Tool. These methodologies are based on existing industry-accepted and scientific community-published sources, referenced in each downloadable PDF (See Section 3 Attachments).

The goal of the Standards is to provide a consistent basis-of design across various projects in the Commonwealth. There may, however, be additional asset types, design criteria, and/or climate parameters that are not included in the Standards. For example, the Commonwealth of Massachusetts is currently developing detailed precipitation and hydrologic design criteria values statewide, which would serve as Tier 3 data for precipitation design criteria, similar to how MC-FRM serves as Tier 3 data for sea level rise and storm surge design criteria. This first version of the Standards is therefore developed to be flexible and accommodate new climate parameters, data, design criteria, etc. in the future, as needed.

The Standards are not a replacement for a detailed risk and vulnerability assessment. Additional studies to evaluate climate risks and identify feasible adaptation strategies to mitigate those risks should be considered as part of design.

3.2 SEA LEVEL RISE & STORM SURGE STANDARDS OUTPUTS & RELATIONSHIPS

3.2.1 OUTPUTS OVERVIEW

Upon submission of Project Inputs and review of preliminary Climate Risk Screening Output, users will receive Standards for each climate parameter from the Tool. If users are not exposed to sea level rise/ storm surge, they will not receive Standards for this climate parameter. The Standards provided for sea level rise/ storm surge climate parameter include the following: recommended target and intermediate planning horizon, return period, design criteria, and tiered methodology to calculate design criteria values. These outputs are discussed in further detail in Sections 3.2.2 through 3.2.5, below.

3.2.2 DATA SOURCE

The Standards reference the Massachusetts Coast Flood Risk Model (MC-FRM) that is currently being developed by MassDOT. The MC-FRM is a probabilistic hydrodynamic model that uses the values for sea level rise on ResilientMA.org (RCP 8.5 scenario). The MC-FRM is capable of providing a range of design criteria outputs, including the design criteria listed in Section 3.2.6. Currently users will need to request design criteria information through the Tool, but future versions of the Tool will have some MC-FRM design criteria available directly as an output.

3.2.3 PLANNING HORIZONS

A planning horizon is defined as a future time period to which a project is recommended to be designed for, which allows the project to incorporate anticipated climate change projections. The Tool will provide two planning horizons for the project: Target and Intermediate. The Target Planning Horizon refers to the recommended planning horizon for incorporating climate resilience in the design of the asset. The Intermediate Planning Horizon is provided as an interim planning horizon if the Target Planning Horizon is not achievable in design. Recommended planning horizons provided by the Tool do not vary based on climate parameter but may vary by asset. However, the Intermediate Planning Horizon is only applicable for sea level rise and storm surge parameter, not for extreme precipitation and heat.

The recommended planning horizons are informed by the useful life of each asset, as indicated in Project Inputs. The relationships used to provide the recommended Target Planning Horizon and the recommended Intermediate Planning Horizon are based on asset useful life, as indicated in Table 3.2. For assets with useful life greater than or equal to 31 years (2050 and beyond), an Intermediate Planning Horizon of 2050 will be provided for flexible adaptation design considerations.

Table 3.2. Recommended	Table 3.2. Recommended Target Flamming Honzon's Flowded by the Tool, based on Asset Oserdi Life				
ASSET USEFUL LIFE	RECOMMENDED TARGET PLANNING HORIZON ¹ OUTPUT	RECOMMENDED INTERMEDIATE PLANNING HORIZON OUTPUT			
0 to 10 years	2030 ²	Not Applicable			
11 years to 20 years	2050 ³	Not Applicable			
21 years to 30 years	2050 ³	Not Applicable			
31 years to 40 years	2070 ⁴	2050			
41 years to 50 years	2070 ⁴	2050			
51 years to 60 years	2070 ⁴	2050			
61 years to 75 years	2090 ⁵	2050			
Greater than 75 years	2090 ⁵	2050			

Table 3.2. Recommended Target Planning Horizons Provided by the Tool, based on Asset Useful Life

1. The bounding years for the planning horizons are consistent with the SHMCAP and ResilientMA.org.

2. The bounding years for the 2030 planning horizon are 2020 through 2049.

3. The bounding years for the 2050 planning horizon are 2040 through 2069.

4. The bounding years for the 2070 planning horizon are 2060 through 2089.

5. The bounding years for the 2090 planning horizon are 2080 through 2099.

3.2.4 RETURN PERIOD

A return period is defined as the annual probability of occurrence of an event (also known as a recurrence interval). The Tool will provide a recommended return period for each asset in a project. The recommended return period will also be provided in terms of percent annual exceedance probability (% AEP or "annual probability"). This distinction is based on industry practice and is described in further detail in the Glossary of Terminology, Section 1.6. Different State Agencies and municipalities may have their own standards for return periods. The recommended return periods provided by the Tool are advisory and do not replace regulatory requirements. These recommended return periods for each climate parameter are based on industry standards and professional judgment, asset criticality, and useful life. For sea level rise/ storm surge, the recommended return periods for each Asset Category are shown in Table 3.3, below.

			Buildings/		Infrastructure				sources
URGE	Criticality ¹	Exposure Service Life ¹	Facilities	Transportation	Flood Control	Utilities	Solid/Haz. Waste	Coastal Ecosystems	Other
			Return Period (% AEP)	Return Period (% AEP)	Return Period (% AEP)	Return Period (% AEP)	Return Period (% AEP)	Return Period (% AEP)	Return Period (% AEP)
S	High	50-100 years	500-yr (0.2%)	1000-yr (0.1%)	500-yr (0.2%)	500-yr (0.2%)	1000-yr (0.1%)	Tidal Benchmarks ²	200-yr (0.5%)
STORM	Medium	50-100 years	200-yr (0.5%)	200-yr (0.5%)	200-yr (0.5%)	200-yr (0.5%)	200-yr (0.5%)	Tidal Benchmarks ²	100-yr (1%)
& ST	Low	50-100 years	100-yr (1%)	100-yr (1%)	100-yr (1%)	100-yr (1%)	100-yr (1%)	Tidal Benchmarks ²	100-yr (1%)
RISE	High	10-50 years	200-yr (0.5%)	500-yr (0.2%)	200-yr (0.5%)	200-yr (0.5%)	500-yr (0.2%)	Tidal Benchmarks ²	100-yr (1%)
	Medium	10-50 years	100-yr (1%)	200-yr (0.5%)	100-yr (1%)	100-yr (1%)	200-yr (0.5%)	Tidal Benchmarks ²	50-yr (2%)
LEVEL	Low	10-50 years	50-yr (2%)	100-yr (1%)	50-yr (2%)	50-yr (2%)	100-yr (1%)	Tidal Benchmarks ²	50-yr (2%)
SEA	High	10 years or less	100-yr (1%)	100-yr (1%)	100-yr (1%)	100-yr (1%)	100-yr (1%)	Tidal Benchmarks ²	100-yr (1%)
0)	Medium	10 years or less	50-yr (2%)	50-yr (2%)	50-yr (2%)	50-yr (2%)	50-yr (2%)	Tidal Benchmarks ²	50-yr (2%)
	Low	10 years or less	20-yr (5%)	20-yr (5%)	20-yr (5%)	20-yr (5%)	20-yr (5%)	Tidal Benchmarks ²	20-yr (5%)

Table 3.3. Recommended Return Periods Provided by the Tool for the Sea Level Rise & Storm Surge Climate Parameter

1. Criticality and Exposure Service Life are not outputs, but the relationship informs the recommended return period from the Tool.

2. Tidal datums are standard elevations defined by a certain phase of the tide and are used as reference to measure local water levels. Such datums are referenced to known fixed points called tidal benchmarks. Tidal benchmarks corresponding to present and future tidal elevations are outputs of MC-FRM. Tidal benchmarks are recommended for design of coastal ecosystems in lieu of return periods, since coastal ecosystems rely on daily tide cycles.

3.2.5 CUMULATIVE PROBABILITY

As described in Section 3.2.4, recommended return periods for assets by climate parameter are based on industry standards and professional judgment, asset criticality, and useful life. However, the recommended return period output from the Tool is also informed by an asset's cumulative probability of being exposed to a climate event. The median cumulative probability from sea level rise and storm surge for an asset can be calculated

Cumulative probability is defined as the measure of the total probability that a certain event will happen during a given period of time. Cumulative probability is calculated based on the equation:

 $p_n = 1 - (1 - p)^n$

where 'p_n' equals the cumulative probability over 'n' number of years and 'p' equals annual probability, which is not constant due to climate change.

based on the asset's recommended planning horizon and site-specific projected flood elevation from sea level rise and storm surge. The projected sea level rise and storm surge elevations for a site corresponding to different annual probabilities by planning horizon can be obtained from the Massachusetts Coast Flood Risk Model (MC-FRM), and are referred to as the "Probability of Exceedance (PEx)" output¹.

An example of how the recommended return periods relate to cumulative probabilities for a site for sea level rise/ storm surge over the intended useful life of a Flood Control Asset Type is shown in Table 3.4. An example site-specific PEx output table that shows projected flood elevations from sea level rise and storm surge corresponding to different annual exceedance probabilities by planning horizon is shown in Table 3.5.

				INFRAST	RUCTURE		
		Exposure	Flood Control				
	Criticality	Service		Exar	nple Site – Bost	ton, MA	
SURGE	Criticality	Life	Return Period (% AEP)	Target Planning Horizon ¹	Base Flood Elevation (ft- BCB) ¹	<i>Median</i> Cumulative Probability ¹	
N SL	High	50-100 years	500-yr (0.2%)	2070	21.7	2%	
RISE/STORM	Medium	50-100 years	100-yr (1%)	2070	21.0	5%	
SE/S	Low	50-100 years	50-yr (2%)	2070	20.6	11%	
	High	10-50 years	100-yr (1%)	2050	19.3	2%	
SEA LEVEL	Medium	10-50 years	50-yr (2%)	2050	18.9	5%	
EA L	Low	10-50 years	25-yr (4%)	2050	18.4	11%	
SE	High	10 years or less	50-yr (2%)	2030	17.1	2%	
	Medium	10 years or less	25-yr (4%)	2030	16.7	5%	
	Low	10 years or less	10-yr (10%)	2030	16.2	10%	

Table 3.4. Draft Example of Cumulative Probability Informing the Recommended Return Periods

 for Sea Level Rise and Storm Surge Climate Parameter Output from the Tool

¹ PEx output is not a standard MC-FRM output and would need to be obtained from the MC-FRM.

1. The target planning horizons, base flood elevations, and median cumulative probability are examples site-specific to Joe Moakley Park in Boston, MA Only. The projected flood elevations are from the PEx shown in Table 3.5. The median cumulative probability was estimated using the planning horizons and projected flood elevations. The only column shown to users in the Tool is the output column with the recommended Return Period (% AEP).

Annual	Present	2030	2050	2070
Exceedance Probability	Base Flood Elevation (ft-BCB)	Base Flood Elevation (ft-BCB)	Base Flood Elevation (ft-BCB)	Base Flood Elevation (ft-BCB)
0.1	17.4	18.5	20.4	22.1
0.2	17.0	18.1	20.0	21.7
0.5	16.5	17.5	19.3	21.0
1	16.0	17.1	18.9	20.6
2	15.6	16.7	18.4	20.1
5	15.1	16.2	17.8	19.0
10	14.6	15.8	17.3	18.5
20	14.2	15.3	16.7	18.3
25	14.0	15.2	16.5	18.2

Table 3.5. Draft Examp	ole of Site-Specifi	c Probability o	f Exceedance (PEx) Output ¹
I abic J.J. Dian Lhann				

1. The base flood elevations are site-specific to Joe Moakley park in Boston, MA only. This type of output is not provided through the RMAT Standards, but it can be requested from the MC-FRM to estimate cumulative probabilities, such as is shown in Table 3.4. Users would receive the base flood elevation for the recommended return period (or Annual Exceedance Probability) and planning horizon from the MC-FRM.

3.2.6 DESIGN CRITERIA

Design criteria are design parameters generated by the Climate Resilience Design Standards as an output, which vary by climate parameter. Design criteria values are numerical values calculated by the user, based on recommended Tiered Methodology output from the Climate Resilience Design Standards Tool. The design criteria available as output from the Tool for sea level rise/ storm surge is shown in Table 3.6, below.

Table 3.6. Design Criteria Outputs from the Tool for the Sea Level Rise & Storm Surge Climate

 Parameter

	DESIGN CRITERIA
	Tidal Benchmarks
Sea Level Rise/Storm Surge	Base Flood Elevation (BFE)
	Design Flood Elevation (DFE)
	Wave Heights

Duration of Flooding	
Design Flood Velocity	
Wave Forces	
Scour or Erosion	

The assets designed for the sea level rise/ storm surge climate parameter will not all need to consider every design criterion presented in Table 3.6. These design criteria are only recommended for projects of a specific asset type and location. These variations are presented in Table 3.7, below.

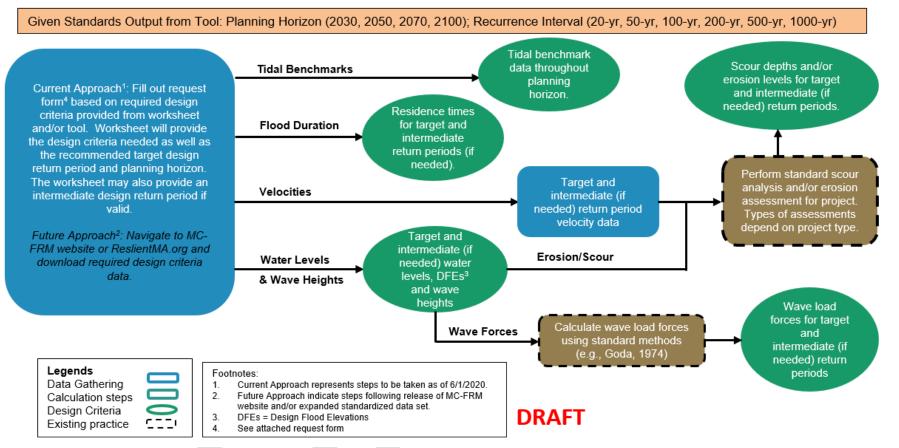
		Design Criteria Recommended For ¹		
Sea Level Rise/Storm Surge	Design Criteria	Asset Type	Project Location	
	Tidal Benchmarks	All assets	Located along the coast and/or within MC-FRM tidal benchmark shoreline for recommended planning horizon	
	Base Flood Elevation (BFE)	All assets	Located within MC-FRM recommended return period for recommended planning horizon	
	Design Flood Elevation (DFE)	All assets	Located within MC-FRM recommended return period for recommended planning horizon	
	Wave Heights	Infrastructure assets, building assets, coastal ecosystem assets	Located along the waterfront or within MC-FRM active wave zone	
	Duration of Flooding	Infrastructure assets, building assets, other natural resources ecosystems (other than coastal)	Located within MC-FRM recommended return period for recommended planning horizon	
	Design Flood Velocity	Infrastructure assets, building assets, coastal ecosystem assets	Located within MC-FRM recommended return period for recommended planning horizon	

Wave Forces	Infrastructure assets, building assets, coastal ecosystem assets	Located along the waterfront or within MC-FRM active wave zone
Scour or Erosion	Infrastructure assets and coastal ecosystem assets	Located within MC-FRM recommended return period for recommended planning horizon

1. Design criteria are recommended if <u>both</u> the asset type and project location are true.

3.2.7 TIERED METHODOLOGY

Tiered methodology is defined the recommended methodology to establish asset-specific design criteria values, by climate parameter. Tiered distinctions indicate the level of effort in calculation method approach. For the sea level rise/storm surge climate parameter, the data sources and methodologies recommended by the Standards for each design criteria are shown in Table 3.6, below. Since the MC-FRM provided Tier 3 data, there is no difference for methodologies based on criticality and useful life (refer to Figure 3.2). The design criteria values will be requested from the MC-FRM through the Tool as shown in Figure 3.3. See Table 3.9 and Figure 3.4 for an example of the output provided from MC-FRM.


Table 3.8. Data Sources & Methodologies Recommended from the Tool for the Sea Level Rise

 & Storm Surge Climate Parameter Design Criteria

Sea Level Rise/Storm Surge	Design Critoria	Data Sources & Methodologies					
	Design Criteria	Tier 3 - High Level of Effort	Tier 2 - Average Level of Effort	Tier 1 - Low Level of Effort			
	Tidal Benchmarks						
	Base Flood Elevation (BFE)						
	Design Flood Elevation (DFE)	Requested from MC-FRM					
/el Ri	Wave Heights						
ea Lev	Duration of Flooding						
Š	Design Flood Velocity						
	Wave Forces ¹	Calculated based on Design Criteria					
	Scour or Erosion ¹	from M	IC-FRM	Not required			

1. The design criteria for Wave Forces and Scour/Erosion are not outputs from the MC-FRM and need to be calculated using existing standard practices and MC-FRM outputs (as shown in Figure 3.3.).

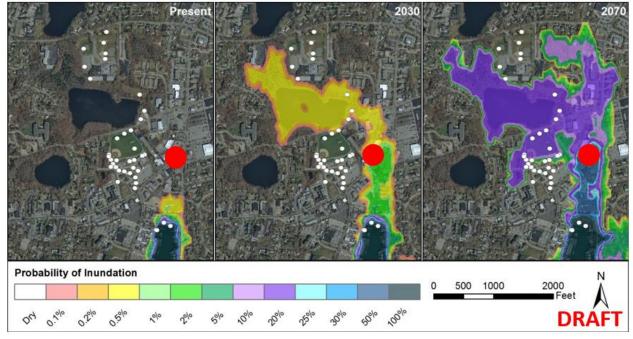

Figure 3.3. Draft Tiered Methodology to Assess Sea Level Risk & Storm Surge Design Criteria Values as Recommended by the Climate Resilience Design Standards output from the Climate Design Standards Tool

Table 3.9. Draft Example of Calculated Design Criteria Values for Sea Level Rise/ Storm Surge from MC-FRM based on recommended Standard Output provided by the Tool.

STANDARD OUTPUT	OUTPUT & MC-FRM EXAMPLE
Target Planning Horizon	2070
Intermediate Planning Horizon	2050
Return Period (% AEP)	500-yr (0.2%)
Base Flood Elevation	14.4 ft. NAVD88 – Intermediate 16.3 ft. NAVD88 – Target
Design Flood Elevation ¹	16.2 ft. NAVD88 – Intermediate 18.1 ft. NAVD88 – Target

1. Design Flood Elevation include freeboard and wave height.

Coastal Flooding Exposure Assessment – First Exposed in 2030

Figure 3.4. Draft Example map provided from the MC-FRM request. Future versions of the Tool intend to have the maps built into the GIS feature.

3.3 EXTREME PRECIPITATION STANDARDS OUTPUTS AND RELATIONSHIPS

3.3.1 OUTPUTS OVERVIEW

Upon submission of Project Inputs and review of preliminary Climate Risk Screening outputs, users will receive Standards for each climate parameter from the Tool. The Standards provided for the extreme precipitation climate parameter include the following: recommended planning horizon, return period, design criteria, and tiered methodology to calculate design criteria values. These outputs are discussed in further detail in Sections 3.3.2 through 3.3.5, below.

3.3.2 PLANNING HORIZONS

A planning horizon is defined as a future time period to which a project is recommended to be designed for, which allows the project to incorporate anticipated climate change projections. The Tool will provide a recommended planning horizon for incorporating climate resilience in the design of the asset. Recommended planning horizons provided by the Tool do not vary based on climate parameter but may vary by asset.

The recommended planning horizons are informed by the useful life of each asset, as indicated in Project Inputs. The relationships used to provide the recommended Planning Horizon are based on asset useful life, as indicated in Table 3.10.

ASSET USEFUL LIFE	RECOMMENDED PLANNING HORIZON ¹ OUTPUT
0 to 10 years	2030 ²
11 years to 20 years	2050 ³
21 years to 30 years	2050 ³
31 years to 40 years	2070 ⁴
41 years to 50 years	2070 ⁴
51 years to 60 years	2070 ⁴
61 years to 75 years	2090 ⁵
Greater than 75 years	2090 ⁵

Table 3.10. Recommended Planning Horizons Provided by the Tool, based on Asset Useful Life

1. The bounding years for the planning horizons are consistent with the SHMCAP and ResilientMA.org.

2. The bounding years for the 2030 planning horizon are 2020 through 2049.

3. The bounding years for the 2050 planning horizon are 2040 through 2069.

4. The bounding years for the 2070 planning horizon are 2060 through 2089.

5. The bounding years for the 2090 planning horizon are 2080 through 2099.

3.3.3 RETURN PERIOD

A return period is defined as the annual probability of occurrence of an event (also known as a recurrence interval). The Tool will provide a recommended return period for each asset in a project. The recommended return period will also be provided in terms of percent annual exceedance probability (AEP or "annual probability"). This distinction is based on industry practice and is described in further detail in the Glossary of Terminology, Section 1. Different State Agencies and municipalities may have their own standards for return periods. The recommended return periods provided by the Tool are advisory and do not replace regulatory requirements. These recommended return periods for each climate parameter are based on industry standards and professional judgment, asset criticality, and useful life. For extreme precipitation, exposure service life is equal to the asset's useful life. The recommended return periods for each Asset Category are shown in Table 3.11, below.

			BUILDINGS/ FACILITIES	FOR INFRASTRUCTURE			FOR NATURAL RESOURCES		
	Criticality	Useful Life		Transportation	Flood Control	Utilities	Solid/Haz. Waste	Coastal Ecosystem	Other
-			Return Period (Annual Probability)	Return Period (Annual Probability)	Return Period (Annual Probability)	Return Period (Annual Probability)	Return Period (Annual Probability)	Return Period (Annual Probability)	Return Period (Annual Probability)
A TIO	High	50-100 years	100-yr (1%)	100-yr (1%)	500-yr (0.2%)	100-yr (1%)	100-yr (1%)	N/A	200-yr (0.5%)
PRECIPITATION	Medium	50-100 years	50-yr (2%)	50-yr (2%)	100-yr (1%)	50-yr (2%)	50-yr (2%)	N/A	100-yr (1%)
PRE(Low	50-100 years	25-yr (4%)	25-yr (4%)	50-yr (2%)	25-yr (4%)	25-yr (4%)	N/A	100-yr (1%)
ME	High	10-50 years	50-yr (2%)	50-yr (2%)	100-yr (1%)	50-yr (2%)	50-yr (2%)	N/A	100-yr (1%)
EXTREME	Medium	10-50 years	25-yr (4%)	25-yr (4%)	50-yr (2%)	25-yr (4%)	25-yr (4%)	N/A	50-yr (2%)
ш	Low	10-50 years	10-yr (10%)	10-yr (10%)	25-yr (4%)	10-yr (10%)	10-yr (10%)	N/A	50-yr (2%)
	High	10 years or less	25-yr (4%)	25-yr (4%)	50-yr (2%)	25-yr (4%)	25-yr (4%)	N/A	100-yr (1%)
	Medium	10 years or less	10-yr (10%)	10-yr (10%)	25-yr (4%)	10-yr (10%)	10-yr (10%)	N/A	50-yr (2%)
	Low	10 years or less	5-yr (20%)	5-yr (20%)	10-yr (10%)	5-yr (20%)	5-yr (20%)	N/A	20-yr (5%)

Table 3.11. Recommended Return Periods Provided by the Tool for the Extreme Precipitation Climate Parameter

3.3.4 CUMULATIVE PROBABILITY

The recommended return periods for assets by climate parameter are based on industry standards and professional judgment, asset criticality, and useful life. However, the recommended return period output from the Tool is also informed by an asset's cumulative probability of being exposed to a climate event. The median cumulative probability from extreme precipitation for an asset can be calculated based on the asset's recommended

Cumulative probability is defined as the measure of the total probability that a certain event will happen during a given period of time. Cumulative probability is calculated based on the equation:

$$p_n = 1 - (1 - p)^n$$

where 'p_n' equals the cumulative probability over 'n' number of years and 'p' equals annual probability, which is not constant due to climate change.

planning horizon and site-specific projected design storm depths. The projected design storm depths corresponding to different annual probabilities by planning horizon can be estimated using the Tiered Methodology (discussed in Section 3.3.6).

An example of how the recommended return periods relate to cumulative probabilities for a site for extreme precipitation over the intended useful life of a Flood Control Asset Type is shown in Table 3.12. The median cumulative probability (based on the project planning horizon, projected rainfall depth, and approximation to current return period) informs the return period output provided by the Tool. An example of those calculation relationships is shown in Table 3.12, below.

			INFRASTRUCTURE				
			Flood Control				
	Criticality		Return	Example Site – South Boston, MA			
PRECIPITATION	Criticality	Useful Life	Period (Annual Probability)	Planning Horizon ¹	Projected Rainfall Depth (in.) ¹	Approximation to Current Return Period ¹	Median Cumulative Probability ¹
CIF	High	50-100 years	500-yr (0.2%)	2070	16.8	0.05%	2%
RE	Medium	50-100 years	100-yr (1%)	2070	11.2	0.2%	10%
	Low	50-100 years	50-yr (2%)	2070	9.7	0.5%	22%
EXTREME	High	10-50 years	100-yr (1%)	2050	10.1	0.2%	6%
СТR	Medium	10-50 years	50-yr (2%)	2050	8.8	0.5%	14%
ŵ	Low	10-50 years	25-yr (4%)	2050	7.5	2%	45%
	High	10 years or less	50-yr (2%)	2030	7.6	1.5%	14%
	Medium	10 years or less	25-yr (4%)	2030	6.7	3%	26%
	Low	10 years or less	10-yr (10%)	2030	5.5	5%	40%

Table 3.12. Draft Example of Cumulative Probability Calculation Informing the Recommended

 Return Periods for the Extreme Precipitation Climate Parameter Output from the Tool

1. The planning horizons, projected rainfall depths, and approximation to current return period all inform the median cumulative probability calculation presented, and are examples site-specific to Joe Moakley Park in Boston, MA Only. These four draft example columns inform the recommended return period calculated output provided by the Tool, but are NOT shown to users.

3.3.5 DESIGN CRITERIA

Design criteria are design parameters generated by the Climate Resilience Design Standards as an output, which vary by climate parameter. Design criteria values are numerical values calculated by the user, based on recommended Tiered Methodology output from the Climate Resilience Design Standards Tool. The design criteria available as output from the Tool for extreme precipitation is shown in Table 3.13, below.

Table 3.13. Design Criteria Outputs from the Tool for the Extreme Precipitation Climate Parameter

	Design Criteria
	Total Precipitation Depth for 24-hour Design Storms
	Peak intensity for 24-hour design storms
Extreme Precipitation	Riverine peak discharge
	Riverine peak flood elevation
	Duration of flooding for design storm
	Flood Pathways

The assets designed for the extreme precipitation climate parameter will not always receive every output design criterion presented in Table 3.14. These design criteria are only recommended for projects of a specific asset type and location. These variations are presented in Table 3.15, below.

Table 3.14. Project Type and Location When Design Criteria Output is Recommended from the Tool for the Extreme Precipitation Climate Parameter

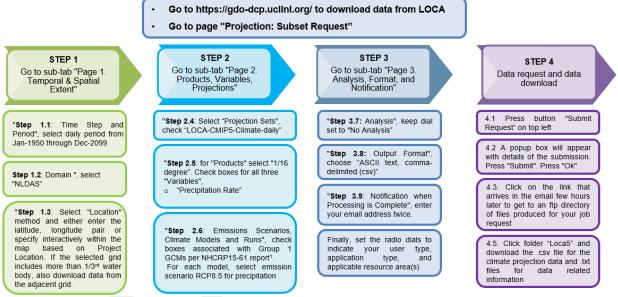
_	Design Criteria	Design Criteria Recommended For		
PRECIPITATION	Design Chiena	Asset Type	Project Location	
	Total Precipitation Depth for 24-hour Design Storms	All infrastructure, building and natural resource assets except coastal ecosystems	All locations	
EXTREME	Peak intensity for 24-hour design storms	All infrastructure, building and natural resource assets except coastal ecosystems	All locations	
EX.	Riverine peak discharge	All infrastructure, building and natural resource assets except coastal ecosystems	Located within riverine environment, 0.1 mile from a waterbody, and/or FEMA 500 year	

Riverine peak flood elevation	All infrastructure, building and natural resource assets except coastal ecosystems	Located within riverine environment, 0.1 mile from a waterbody, and/or FEMA 500 year
Duration of flooding for design storm	All infrastructure and building assets	All locations
Flood Pathway	s All infrastructure and building assets	Located within riverine environment, 0.1 mile from a waterbody, and/or FEMA 500 year

3.3.6 TIERED METHODOLOGY

Tiered methodology is defined the recommended methodology to establish asset-specific design criteria values, by climate parameter. Tiered distinctions indicate the level of effort in calculation method approach. For the extreme precipitation climate parameter, the data sources and methodologies recommended by the Standards for each design criteria are shown in Table 3.15, below. Further detailed methodology for calculating design criteria values are shown in Figures below. Example calculations using tiered methodology for determining design criteria values are included as Attachments at the end of Section 3.

 Table 3.15. Data Sources & Methodologies Recommended from the Tool for the Extreme


 Precipitation Design Criteria

N	Design	Data Sources & Methodologies			
	Criteria	Tier 3 - High Level of Effort	Tier 2 - Average Level of Effort	Tier 1 - Low Level of Effort	
PRECIPITATION	Total Precipitation Depth for 24- hour Design Storms	Downscaled GCMs (from ResilientMA.org or LOCA dataset) and extreme value distribution analysis	NCA4 CSSR values and increase the NOAA Atlas 14 values by the change percentage as indicated	Atlas-14 90% of the upper 90% C.I (DEP proposed approach)	
EXTREME	Peak intensity for 24-hour design storms ¹	Type III distribution to future design storms estimated from downscaled GCMs and extreme value distribution analysis	Type III distribution to future design storms estimated using NCA4 CSSR method	Type III distribution to future design storms estimated using Atlas-14 90% of the upper 90% C.I	
		Hydrologic/hydrau watershed/sub-watersh design s	ed scale using future	StreamStats using Zariello's Equation	

Riverine peak flood elevation ¹	Hydrologic/hydraulic modeling at watershed/sub-watershed scale using future design storms		Use Stage Discharge Curve from corresponding gage location used in StreamStats
Duration of flooding for design storm ¹	Hydrologic/hydraulic modeling at watershed/sub-	Not nee	eded.
Flood Pathways ¹	watershed scale using future design storms	Not nee	eded.

1. These criteria are calculated based on precipitation depths affected by climate change. The methods to calculate these criteria are consistent with existing industry practices, but they should use the future precipitation depths.

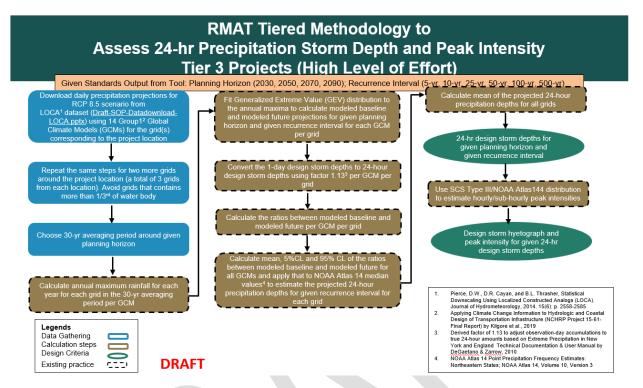

3.3.6.1 Data Source Download for Extreme Precipitation -- LOCA Dataset

Figure 3.5. Draft Methodology to Download Precipitation Climate Data and Projected as Recommended by the Climate Resilience Design Standards Tool

Refer to Attachment 3.3A for an example of data download from the LOCA dataset.

3.3.6.2 Draft Tiered Methodology for Extreme Precipitation Depth and Intensity – Tier 3

Figure 3.6. Draft Tier 3 Methodology to Assess Extreme Precipitation Design Criteria Values as Recommended by the Climate Resilience Design Standards Tool

Refer to Attachment 3.3B for an example of draft methodology to assess extreme precipitation intensity and depth for Tier 3.

3.3.6.3 Draft Proposed Scope for Tiered Methodology for Extreme Precipitation – Tier 2

Overall Goals/Objectives of Proposed Scope

Based on feedback received from various State entities, such as the Executive Office of Energy and Environmental Affair (EOEEA), Massachusetts Department of Environmental Protection (MA-DEP) and Massachusetts Department of Conservation and Recreation (MA-DCR) on the Draft Climate Resilience Design Standards (the Standards) related to extreme precipitation, the project team has identified the need to develop locally regionalized data to estimate future precipitation depths for Annual Exceedance Probability (AEP) design storms of 24-hr duration. Initially, in the Standards the "Tier 2 Method" (recommended tiered methodology) for generating design criteria values (e.g. rainfall depths, peak intensity) for the 24-hour AEP design storms was based on using readily available future projections data. Therefore, the "Tier 2 Method" was based on using the 13% and 22% increase to the present NOAA Atlas 14 values to estimate the future 24-hour design storm depths for the 2030/2050 and 2070 planning horizons, respectively. These percent increases were based on using guidance from the report developed by the U.S. Global Change Research Program (USGCRP) in 2017 called the Climate Science Special Report (CSSR) as part of the Fourth National Climate Assessment (NAC4). However, these percent increases provided in the 2017 CSSR were specific to the 5% AEP (20-year) storm, were based on using the

geographic area for all of Northeast, and did not include separate percent increase estimates for the four planning horizons of 2030, 2050, 2070 and 2090 that are consistent with the Commonwealth's State Hazard Mitigation and Climate Adaptation Plan (SHMCAP)².

Therefore, the primary objectives of this proposed scope of work are the following:

- Develop Statewide percent increase estimates for different Annual Exceedance Probability (AEP) design storms for each planning horizon for the Eastern and Western parts of the Commonwealth using industry-accepted standard methodology
- Receive consensus from the different State entities, academic and scientific experts on the percent increase estimates developed from this methodology
- Incorporate this tiered methodology as "Tier 2" methodology for the Draft Climate Resilience Design Standards Tool (the Tool)

Proposed Methodology

Since one of the objectives of this effort is to use industry-accepted standard methodology to develop the regionalized percent increase estimates, the methodology is based on using the report developed as part of the National Cooperative Highway Research Program (NCHRP) Project 15-61 with the final report published in 2019 titled "Applying Climate Change Information to Hydrologic and Coastal Design of Transportation Infrastructure" (referred to as "NCHRP 15-61 Report")³. The proposed methodology described in this scope has been presented, reviewed, and approved by EOEEA, DEP, DCR and leading academic and scientific experts from different universities in the Northeast, including Dr. Jennifer Jacobs (University of New Hampshire), Dr. Ellen Douglas (University of Massachusetts, Boston), Dr. Scott Steinschneider (Tufts University) and Dr. Jonathan Lamontagne (Tufts University). Also, Dr. Jacobs and Dr. Douglas are co-authors of the NCHRP 15-61 Report and have been able to vet that this proposed methodology follows NCHRP 15-61 guidelines.

The proposed methodology consists of the following steps:

 Step 1: Select locations corresponding to six (6) long-term weather station locations in Massachusetts. These stations will be selected such that there are three (3) locations in each of the two (2) NOAA Climate Regions (Coastal and Interior) as delineated in NOAA Atlas 14 Volume 10, shown in the figure below. These two climate regions for MA correspond approximately to the Eastern and Western parts of the State, so representative long-term weather stations will be selected from each Region for this analysis (e.g. weather stations in Eastern MA, such as Boston, Newburyport, East Wareham or Kingston-Plymouth and weather stations in Western MA, such as Pittsfield, Westfield and Worcester)

² Massachusetts Integrated State Hazard Mitigation and Climate Adaptation Plan, 2018 <u>https://www.mass.gov/service-details/massachusetts-integrated-state-hazard-mitigation-and-climate-adaptation-plan</u>

³ <u>http://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP1561FinalReport.pdf</u>

Figure 3.7. Climate regions delineated for NOAA Atlas 14 Volume 10. Source: https://www.nws.noaa.gov/oh/hdsc/PF_documents/Atlas14_Volume10.pdf

- Step 2: Download daily precipitation projections for each location for each of the 14 Group 1 global climate models (GCMs) in the Localized Constructed Analogs (LOCA)⁴ (Pierce et dataset. The LOCA dataset has also been used as part of the SHMCAP and the projections shown on ResilientMA.org. For this task, Group 1 GCMs are proposed to be used since these models are referred in the NCHRP 15-61 Report as the "most reliable" models that represent the most recent versions of reliable, very well-documented, longestablished GCMs from modeling groups that have been working in this area for decades. Download the projections for three (3) grids for each location per NCHRP15-61 guidance.
- Step 3: Calculate modeled baseline and modeled future design storm projections for each AEP storm for each location for each grid for each of the four planning horizons (2030s, 2050s, 2070s, 2090s) by fitting a Generalized Extreme Value Distribution (GEV) to annual maximum daily projections for each GCM.
- Step 4: Calculate ratios between modeled baseline and modeled future design storm projections for each location for each grid for each planning horizon for each GCM.
- Step 5: Calculate mean and 90 percent confidence interval for the ratios across the 14 GCMs between modeled baseline and modeled future design storm projections for each location for each grid for each planning horizon.
- Step 6: Estimate the projected design storm depths and 90 percent confidence interval design storm depths for each AEP storm for each location for each grid. Take the mean of the three grids for each location to estimate the projected design storm depths and 90 percent confidence interval design storm depths for each AEP storm.

⁴ Pierce, D.W., D.R. Cayan, and B.L. Thrasher. 2014. "Statistical Downscaling Using Localized Constructed Analogs (LOCA)." Journal of Hydrometeorology, Vol. 15, pp. 2558–2585

- Step 7: Compare the projected precipitation quantiles with NOAA Atlas 14 historical estimates for each future period for each location for all AEP storms, which would serve as a comparison between historical uncertainty and projected uncertainty from climate change.
- Step 8: Estimate the projected design storm depths and 90 percent confidence interval design storm depths for each AEP storm for each location for each planning horizon.
- Step 9: Calculate the regionalized percent increase between the projected 24-hour projected precipitation depths and NOAA historical estimates (using both mean and 90 percent confidence interval values), respectively for the three interior locations and the three coastal locations (corresponding to the NOAA climate regions) for more frequent AEP storms (2-yr, 5-yr, 10-yr) by near to mid-century (2030/2050) and late century (2070/2090)
- Step 10: Calculate the regionalized percent increase between the projected 24-hour projected precipitation depths and NOAA historical estimates (using both mean and 90 percent confidence interval values), respectively for the three interior locations and the three coastal locations (corresponding to the NOAA climate regions) for the less frequent AEP storms (25-yr, 50-yr, 100-yr) by near to mid-century (2030/2050) and late century (2070/2090).

Proposed Output

The final output from Steps 8 and 9 above will be reported as a table that will list the regionalized percent increase estimates for each region for 2030/2050 and 2070/2090 for the more frequent and the less frequent storms as illustrated in Table 3.16 below. The values reported in this table will be referenced in the Tier 2 Method of the Standards and the Tool to estimate the 24-hour design storm depths. These percent increases can then be applied for any location in Massachusetts and the future design storm depths for any AEP storm can be estimated by applying the relevant percent increase to the corresponding NOAA Atlas 14 24-hour design storm values for that location.

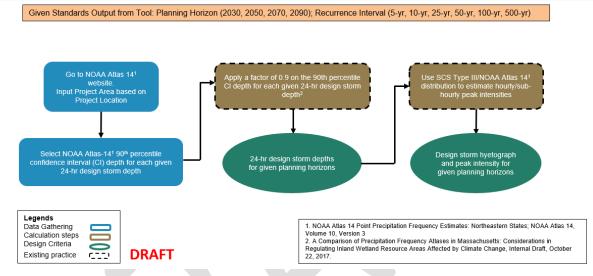
Table 3.16. Proposed Tier 2 percent increase to NOAA Atlas 14 values based on given planning horizon for each given 24-hr AEP design storm depth

Location	Design Storms	Mid-Century (2030/2050)	Late-century (2070/2100)	
Coastal Region	More Frequent*	+ X%	+ X%	
Coastal Region	Less Frequent**	+ X%	+ X%	
Inland Region	More Frequent*	+ X%	+ X%	
	Less Frequent**	+ X%	+ X%	
Man formation along the second s				

* More frequent includes 2-yr, 5-yr, 10-yr design storms

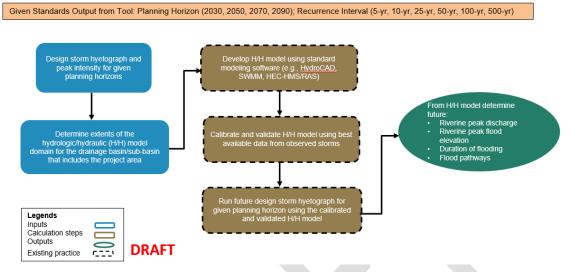
** Less frequent includes 25-yr, 50-yr, 100-yr, 200-yr, 500-yr

Limitations and Future Updates


The proposed approach is one of the first attempts in the Commonwealth to come up with regionalized percent increase estimates of rainfall design storm depths across the entire State. However, in addition to testing the approach to the six locations used in this analysis, this approach needs to be tested and verified at other locations in the State, which is expected to occur in the future. As new and updated climate projections data are available for the

Commonwealth, this approach may need to be updated. Also, as part of the Massachusetts Climate and Hydrologic Risk Project that is currently underway, the EOEEA along with leading experts from USGS, Tufts University and Cornell University will be developing climate projections for all of Massachusetts, which will include future design storm projections. The regionalized percent increase estimates developed as part of the Standards and the Tool may need to be updated when the Statewide Climate and Hydrologic Risk Project is complete.

3.3.6.4 Draft Tiered Methodology for Extreme Precipitation Depth and Intensity – Tier 1


Figure 3.8. Draft Tier 1 Methodology to Assess Extreme Precipitation Design Criteria Values as Recommended by the Climate Resilience Design Standards Tool

Refer to Attachment 3.3B for an example of draft methodology to assess extreme precipitation intensity and depth for Tier 1.

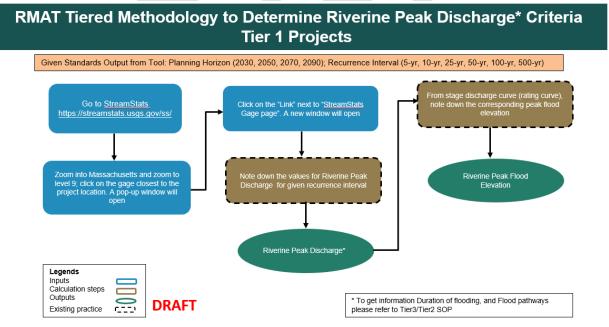

3.3.6.5 Draft Tiered Methodology for Riverine Peak Discharge - Tiers 3 and 2

Figure 3.9. Draft Tier 3/2 Methodology to Assess Extreme Precipitation Riverine Peak Discharge Design Criteria Values as Recommended by the Climate Resilience Design Standards Tool

3.3.6.6 Draft Tiered Methodology for Riverine Peak Discharge - Tier 1

Figure 3.10. Draft Tier 1 Methodology to Assess Extreme Precipitation Riverine Peak Discharge Design Criteria Values as Recommended by the Climate Resilience Design Standards Tool

3.4 EXTREME HEAT STANDARDS OUTPUTS AND RELATIONSHIPS

3.4.1 OUTPUTS OVERVIEW

Upon submission of Project Inputs and review of preliminary Climate Risk Screening outputs, users will receive Standards for each climate parameter from the Tool. The Standards provided for the extreme heat climate parameter include the following: recommended planning horizon, return period, design criteria, and tiered methodology to calculate design criteria values. These outputs are discussed in further detail in Sections 3.3.2 through 3.3.5, below.

3.4.2 PLANNING HORIZONS

A planning horizon is defined as a future time period to which a project is recommended to be designed for, which allows the project to incorporate anticipated climate change projections. The Tool will provide a recommended planning horizon for incorporating climate resilience in the design of the asset. Recommended planning horizons provided by the Tool do not vary based on climate parameter but may vary by asset.

The recommended planning horizons are informed by the useful life of each asset, as indicated in Project Inputs. The relationships used to provide the recommended Planning Horizon are based on asset useful life, and are indicated in Table 3.17, below.

ASSET USEFUL LIFE	RECOMMENDED PLANNING HORIZON ¹ OUTPUT
0 to 10 years	2030 ²
11 years to 20 years	2050 ³
21 years to 30 years	2050 ³
31 years to 40 years	2070 ⁴
41 years to 50 years	2070 ⁴
51 years to 60 years	2070 ⁴
61 years to 75 years	2090 ⁵
Greater than 75 years	2090 ⁵

Table 3.17. Recommended Planning Horizons Provided by the Tool, based on Asset Useful Life

1. The bounding years for the planning horizons are consistent with the SHMCAP and ResilientMA.org.

2. The bounding years for the 2030 planning horizon are 2020 through 2049.

3. The bounding years for the 2050 planning horizon are 2040 through 2069.

4. The bounding years for the 2070 planning horizon are 2060 through 2089.

5. The bounding years for the 2090 planning horizon are 2080 through 2099.

3.4.3 CONFIDENCE INTERVAL

A confidence interval is defined for this project as a range of values within which a design criterion falls, considering uncertainty in climate change projections. The confidence intervals usually correspond to the 10th, 50th and 90th percentile values based on climate change projections.

For the extreme heat climate parameter, the Tool will provide a recommended confidence interval for each asset, as opposed to a recommended return period. While asset useful life does inform the recommended return period output for the sea level rise/ storm surge and extreme precipitation climate parameters, it does not inform the recommended confidence interval output for the extreme heat climate parameter. This difference is because extreme heat design criteria do not depend on the asset's cumulative probability.

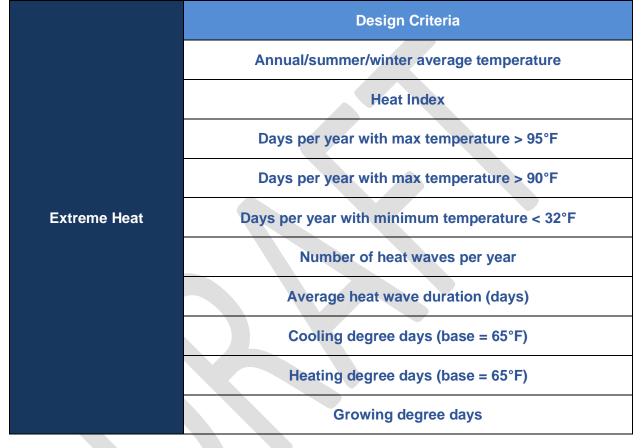
The confidence intervals recommended by the Tool are also dependent on asset construction type, as opposed to asset type for the sea level rise/ storm surge and extreme precipitation climate parameters. This difference is due to the difficulty in accommodating for extreme heat resilience in existing construction design. The output is therefore based on asset construction type in order to improve the standard of design criteria for new and existing construction projects, specific to the type of construction materials used each asset category.

The recommended confidence intervals for each asset category and construction type are shown in Table 3.18 and 3.19, below.

Table	e 3.18.	Reco	ommenc	bed	Confidence	ce	Inter	vals	by	Construction	l ype	(Infrastructure	and
Buildings/Facilities) Provided by the Tool for the Extreme Heat Climate Parameter													
				CO	NEIDENC	E IN	ITEE		SF		GS/EA	CIL ITIES &	

EXTREME HEAT		CONFIDENCE INTERVALS FOR BUILDINGS/FACILITIES & INFRASTRUCTURE					
	Criticality	New Construction	Major Repair/ Retrofit	Renovation	Maintenance (critical repair or environmental)		
	High	90th Percentile	90th Percentile	50th Percentile	50th Percentile		
	Medium	90th Percentile	50th Percentile	50th Percentile	50th Percentile		
	Low	50th Percentile	50th Percentile	10th Percentile	10th Percentile		

Table 3.19. Recommended Confidence Intervals by Construction Type (Na	atural Resources)
Provided by the Tool for the Extreme Heat Climate Parameter	


EXTREME HEAT		CONFIDENCE INTERVALS FOR NATURAL RESOURCES						
	Criticality	New Construction	Maintenance (environmental)	Restoration or Enhancement	Dam Removal			
	High	50th Percentile	50th Percentile	50th Percentile	50th Percentile			
XTR	Medium	50th Percentile	50th Percentile	50th Percentile	50th Percentile			
Ξ	Low	10th Percentile	10th Percentile	10th Percentile	10th Percentile			

3.4.4 DESIGN CRITERIA

Design criteria are design parameters generated by the Climate Resilience Design Standards as an output, which vary by climate parameter. Design criteria values are numerical values calculated by the user, based on recommended Tiered Methodology output from the Climate Resilience Design Standards Tool. The design criteria available as output from the Tool for extreme heat is shown in Table 3.20, below.

The assets designed for the extreme heat climate parameter will not always receive every output design criterion presented in Table 3.21. These design criteria are only recommended for projects of a specific asset type and location. These variations are presented in Table 3.22, below.

Table 3.21. Project Type and Location When Design Criteria Output is Recommended from the
Tool for the Extreme Heat Climate Parameter

	Design Criteria	Design Criteria Recommended For				
	Design Chiena	Asset Type	Project Location			
	Annual/summer/winter average temperature	All assets				
	Heat Index	All buildings and infrastructure assets, open space assets				
Ę	Days per year with max temperature > 95°F	All assets excluding coastal ecosystems and open space assets				
ME HEA	Days per year with max temperature > 90°F	All buildings and infrastructure assets	All locations			
EXTREME HEAT	Days per year with minimum temperature < 32°F	All buildings and infrastructure assets				
	Number of heat waves per year	All buildings and infrastructure assets, open space assets				
	Average heat wave duration (days)	All buildings and infrastructure assets, open space assets				
	Cooling degree days (base = 65°F)	All buildings assets				
	Heating degree days (base = 65°F)	All buildings assets				
	Growing degree days	All natural resources assets excluding coastal ecosystems				

3.4.5 TIERED METHODOLOGY

Tiered methodology is defined the recommended methodology to establish asset-specific design criteria values, by climate parameter. Tiered distinctions indicate the level of effort in calculation method approach. For the extreme heat climate parameter, the data sources and methodologies recommended by the Standards for each design criteria are shown in Table 3.22, below. Further detailed methodology for calculating design criteria values are shown in Figures below. Example calculations using tiered methodology for determining design criteria values will be presented as Attachments in future draft versions of this Section 3 document.

Table 3.22. Data Sources & Methodologies Recommended	from the Tool for the Extreme Heat
Design Criteria	

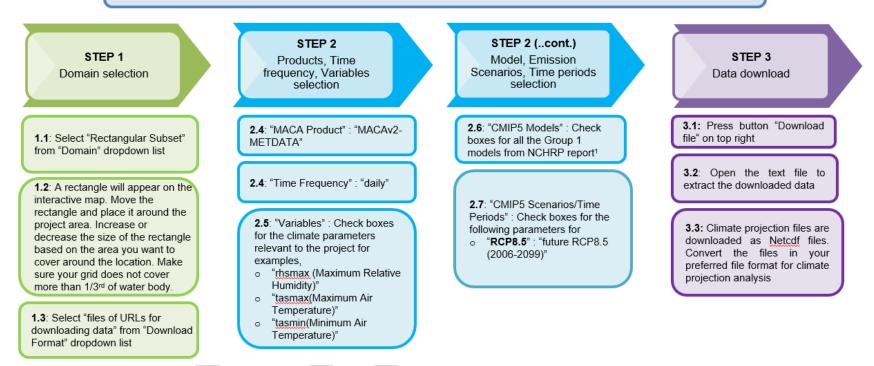
	Decian Critoria	Data Sources & Methodologies			
	Design Criteria	Tier 3 - High Level of Effort	Tier 2 - Average Level of Effort	Tier 1 - Low Level of Effort	
	Annual/summer/winter average temperature		ResilientMA.org		
	Heat Index		Percent increase to historic maximums based on City of Cambridge Climate Change Projections Report		
АТ	Days per year with max temperature > 95°F		ResilientMA.org		
EXTREME HEAT	Days per year with max temperature > 90°F				
EXTRE	Days per year with minimum temperature < 32°F	Downscaled GCMs (from MACA dataset)			
	Number of heat waves per year ¹		Number of historic heat waves from nearest weather station data ²		
	Average heat wave duration (days) ¹			er station data ²	
	Cooling degree days (base = 65°F)		ResilientMA.org		
	Heating degree days (base = 65°F)				
	Growing degree days				

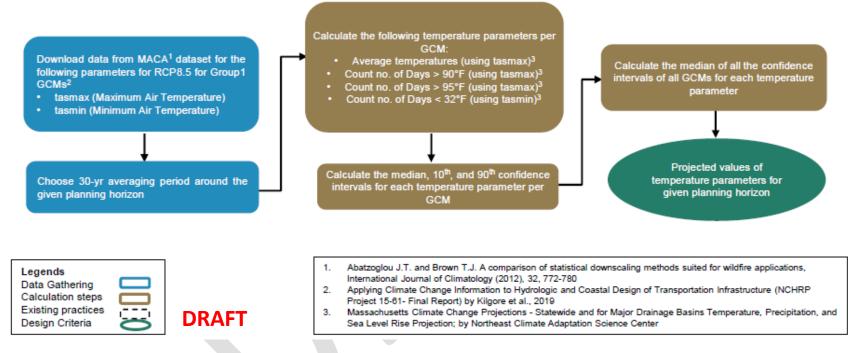
1. These items are design criteria that are calculated based on historic data. The methods to develop these criteria do not change.

2. Based on lack of existing published relationships for current and future number and duration of heat waves, historical information is recommended for the Tier 2 method. Users may select the Tier 3 method to calculate future heat wave design criteria as needed.

3.4.5.1 Data Source Download for Extreme Heat -- MACA Dataset

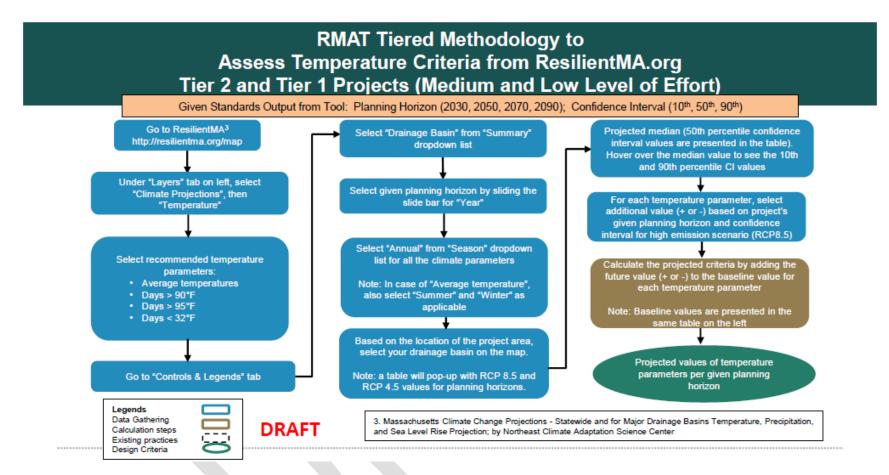
Go to https://climate.northwestknowledge.net/MACA/data_portal.php to download data from Multivariate Adaptive Constructed Analogs (MACA) data portal




Figure 3.11. Draft Methodology to Download Heat Climate Data and Projected as Recommended by the Climate Resilience Design Standards Tool

Refer to Attachment 3.4A for an example of data download from the MACA dataset.

3.4.5.2 Draft Tiered Methodology for Extreme Heat – Average Temperature


RMAT Tiered Methodology to Assess Temperature Criteria Tier 3 Projects (High Level of Effort)

Given Standards Output from Tool: Planning Horizon (2030, 2050, 2070, 2090); Confidence Interval (10th, 50th, 90th)

Figure 3.12. Draft Tier 3 Methodology to Assess Average Temperature Design Criteria Values as Recommended by the Extreme Heat Climate Parameter Climate Resilience Design Standards Output

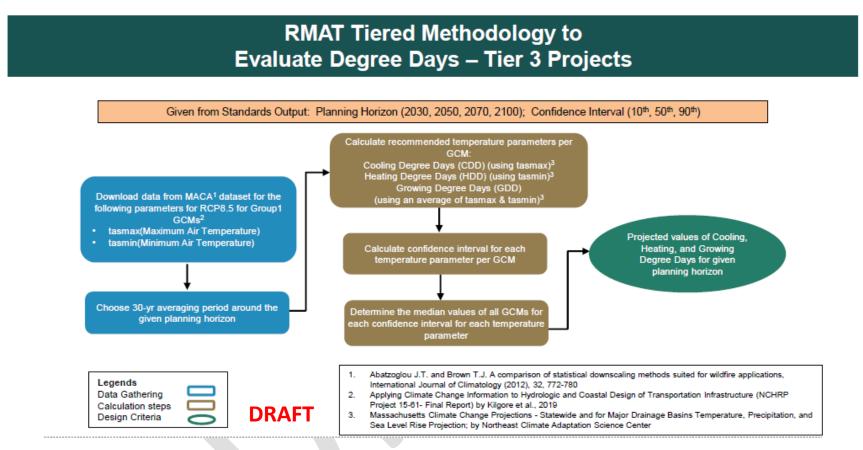

Refer to Attachment 3.4B for an example of draft methodology to assess extreme heat average temperature design criteria values for Tier 3 methodology.

Figure 3.13. Draft Tier 1 and 2 Methodology to Assess Average Temperature Criteria Values as Recommended by the Extreme Heat Climate Parameter Climate Resilience Design Standards Output

Refer to Attachment 3.4B for an example of draft methodology to assess extreme heat average temperature design criteria values for Tier 2/1 methodology.

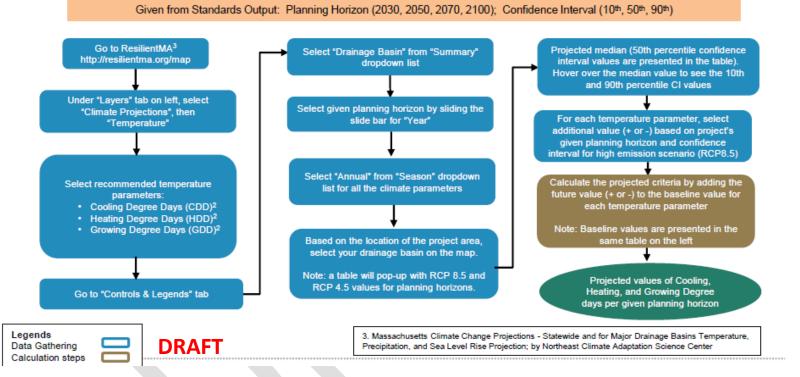

3.4.5.3 Draft Tiered Methodology for Extreme Heat – Degree Days

Figure 3.14. Draft Tier 3 Methodology to Assess Degree Days Design Criteria Values as Recommended by the Extreme Heat Climate Parameter Climate Resilience Design Standards Output

Refer to Attachment 3.4C for an example of draft methodology to evaluate extreme heat degree days design criteria values for Tier 3 methodology.

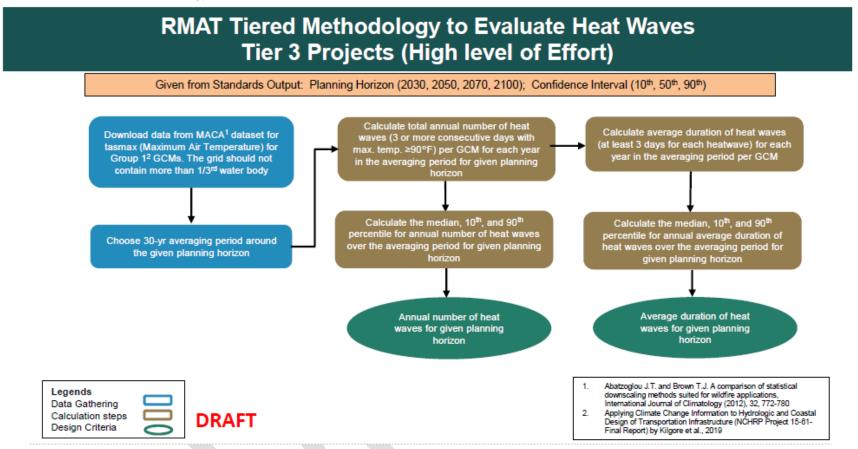

RMAT Tiered Methodology to Evaluate Degree Days from ResilientMA.org - Tier 2 and Tier 1 Projects

Figure 3.15. Draft Tier 2/1 Methodology to Assess Degree Days Design Criteria Values as Recommended by the Extreme Heat Climate Parameter Climate Resilience Design Standards Output

Refer to Attachment 3.4C for an example of draft methodology to evaluate extreme heat degree days design criteria values for Tier 2/1 methodology.

3.4.5.4 Draft Tiered Methodology for Extreme Heat – Heat Waves

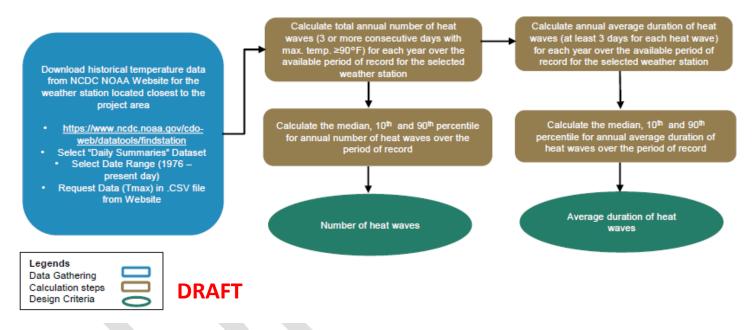


Figure 3.16. Draft Tier 3 Methodology to Evaluate Heat Waves Design Criteria Values as Recommended by the Extreme Heat Climate Parameter Climate Resilience Design Standards Output

Refer to Attachment 3.4D for an example of draft methodology to evaluate extreme heat waves design criteria values for Tier 3 methodology.

RMAT Tiered Methodology to Evaluate Number and Duration of Heat Waves Tier 2 and Tier 1 Projects

Given from Standards Output: Planning Horizon (2030, 2050, 2070, 2100); Confidence Interval (10th, 50th, 90th)

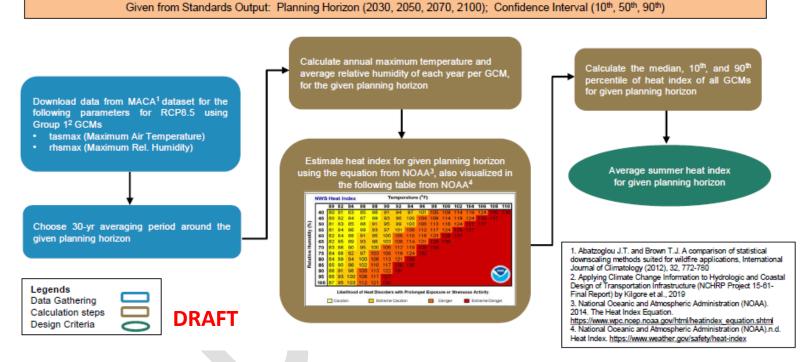


Figure 3.17. Draft Tier 1 and 2 Methodology to Assess the Number and Duration of Heat Waves Design Criteria Values as Recommended by the Extreme Heat Climate Parameter Climate Resilience Design Standards Output

Refer to Attachment 3.4D for an example of draft methodology to evaluate extreme heat waves design criteria values for Tier 2/1 methodology.

3.4.5.5 Draft Proposed Scope for Tiered Methodology for Extreme Heat – Heat Index

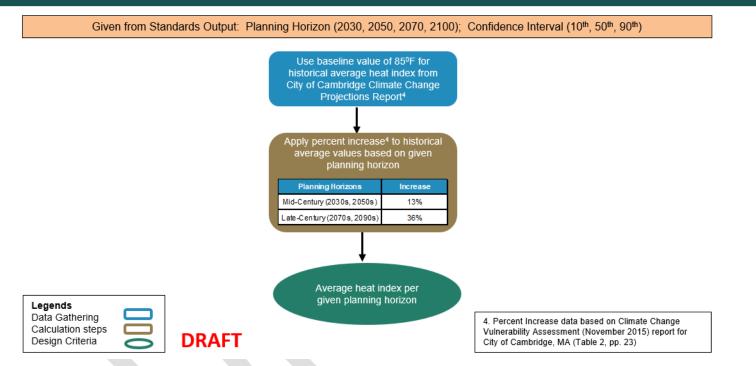


Figure 3.18. Draft Tier 3 Methodology to Evaluate Heat Index Design Criteria Values as Recommended by the Extreme Heat Climate Parameter Climate Resilience Design Standards Output

Refer to Attachment 3.4E for an example of draft methodology to evaluate extreme heat index design criteria values for Tier 3 methodology.

RMAT Tiered Methodology to Evaluate Heat Index Tier 2 and Tier 1 Projects

Figure 3.19. Draft Tier 1 and 2 Methodology to Evaluate Heat Index Design Criteria Values as Recommended by the Extreme Heat Climate Parameter Climate Resilience Design Standards Output

Refer to Attachment 3.4E for an example of draft methodology to evaluate extreme heat index design criteria values for Tier 2/1 methodology.

Section 3 Attachments

Attachment 3.3A – Example Data Source Download for Extreme Precipitation -- LOCA Dataset Attachment 3.3B - Draft Tiered Methodology Example for Extreme Precipitation Depth and Intensity, All Tiers

Attachment 3.4A - Data Source Download Example for Extreme Heat -- MACA Dataset

Attachment 3.4B - Draft Tiered Methodology Example for Extreme Heat – Avg. Temp., All Tiers

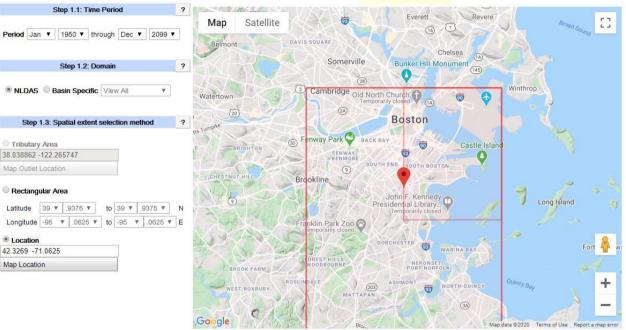
Attachment 3.4C - Draft Tiered Methodology Example for Extreme Heat - Degree Days, All Tiers

Attachment 3.4D - Draft Tiered Methodology Example for Extreme Heat – Heat Waves, All Tiers

Attachment 3.4E - Draft Tiered Methodology Example for Extreme Heat – Heat Index, All Tiers

Attachment 3.3A – Example Data Source Download for Extreme Precipitation -- LOCA Dataset

RMAT Methodology to Download Data from LOCA Website


	 Go to https://gdo-dcp.ucllnl.org/ Go to page "Projection: Subset R 		
STEP 1 Go to sub-tab "Page 1. Temporal & Spatial Extent"	STEP 2 Go to sub-tab "Page 2. Products, Variables, Projections"	STEP 3 Go to sub-tab "Page 3. Analysis, Format, and Notification"	STEP 4 Data request and data download
"Step 1.1: Time Step and Period", select daily period from Jan-1950 through Dec-2099 Step 1.2: Domain ", select "NLDAS" "Step 1.3: Select "Location" method and either enter the latitude, longitude pair or specify interactively within the map based on Project Location. If the selected grid includes more than 1/3 rd water body, also download data from the adjacent grid.	"Step 2.4: Select "Projection Sets", check "LOCA-CMIP5-Climate-daily" "Step 2.5: for "Products" select "1/16 degree". Check boxes for all three "Variables", o "Precipitation Rate" "Step 2.6: Emissions Scenarios, Climate Models and Runs", check boxes associated with Group 1 GCMs per NHCRP15-61 report ¹ . For each model, select emission scenario RCP8.5 for precipitation	 "Step 3.7: Analysis", keep dial set to "No Analysis" "Step 3.8: Output Format", choose "ASCII text, commadelimited (csv)" "Step 3.9: Notification when Processing is Complete", enter your email address twice. Finally, set the radio dials to indicate your user type, application type, and applicable resource area(s) 	 4.1 Press button "Submit Request" on top left 4.2 A popup box will appear with details of the submission. Press "Submit". Press "Ok". 4.3. Click on the link that arrives in the email few hours later to get to an ftp directory of files produced for your job request 4.5. Click folder "Loca5" and download the .csv file for the climate projection data and .txt files for data related information

West

DRAFT

Infrastructure (NCHRP Project 15-61- Final Report) by Kilgore et al., 2019

LOCA Dataset: Project Area and Time Selection

Lat: 42.2617 Lon: -71.0292

LOCA Dataset: Projection Set and Variables Selection

	Enter specifications on three page form below. Then press 'Submit Request'.										
Submit Request		Form Status	s (completed == gre 3 2.4 2.5 2.6 3.7			:	Size (%, 100 max): 6				
Page 1: Temporal 8	Spatial Extent	Page 2: Products, Variat	oles, Projections	Page 3: Analysis, Fo	rmat, & Notification						
	Step 2.4: Select Projection Set (Green text indicates projection set form completed) ?										
	BCSD-CMIP3-Climate-monthly BCSD-CMIP5-Climate-monthly BCSD-CMIP3-Climate-daily BCCAv2-CMIP5-Climate-daily BCSD-CMIP3-Hydrology-monthly BCSD-CMIP5-Climate-daily BCSD-CMIP3-Hydrology-monthly BCSD-CMIP5-Climate-daily										
BCSD-CMIP3- Climate-monthly	BCCAv2-CMIP3 Climate-daily	BCSD-CMIP3- Hydrology-monthly	BCSD-CMIP5- Climate-monthly	BCCAv2-CMIP5- Climate-daily	BCSD-CMIP5- Hydrology-monthly	LOCA-CMIP5- Climate-daily					
	Step 2.5: Products & Variables daily projections ?										
	ProductsVariablesImage: 1/16 degree LOCA projectionsImage: Precipitation Rate (mm/day)Image: 1/16 degree Observed data (1950-2005)Image: Image: Ima										

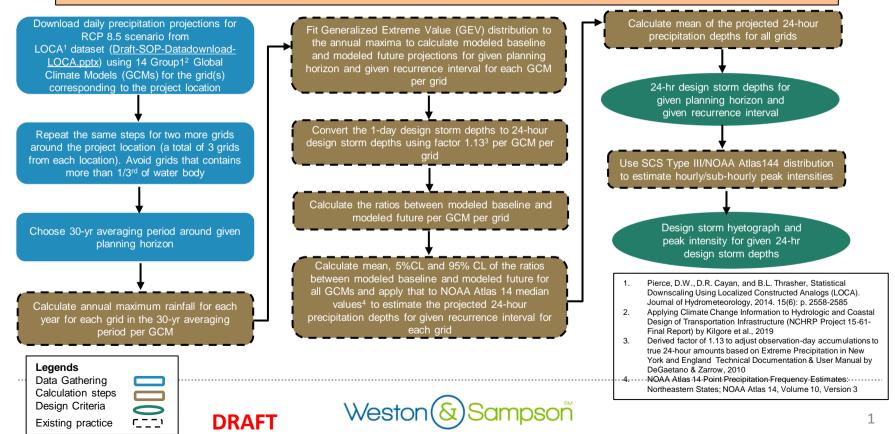
LOCA Dataset: Group1* GCM Selections for Emission Scenario RCP8.5

										?
De-select all runs					No	ne				
Select all runs					4	AII.				
Climate Models:		Er	nis	sion	ns P	ath	: R	CP	3.5	
access1-0										
access1-3										
bcc-csm1-1										
bcc-csm1-1-m										
canesm2										
ccsm4					1					
cesm1-bgc										
cesm1-cam5										
cmcc-cm										
cmcc-cms										
cnrm-cm5										
csiro-mk3-6-0										
ec-earth										
fgoals-g2										
gfdl-cm3										
gfdl-esm2g										
gfdl-esm2m										
giss-e2-h	1									
giss-e2-r	1									
hadgem2-ao										
hadgem2-cc										
hadgem2-es										
inmcm4										
ipsl-cm5a-Ir										
ipsl-cm5a-mr										
miroc-esm										
miroc-esm-chem										
miroc5										
mpi-esm-lr										
mpi-esm-mr										
mri-cgcm3										
noresm1-m										

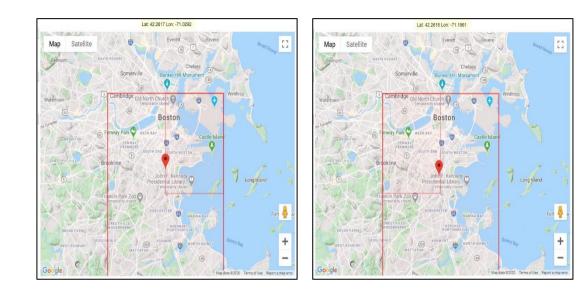
* Applying Climate Change Information to Hydrologic and Coastal Design of Transportation Infrastructure (NCHRP Project 15-61- Final Report) by Kilgore et al., 2019

LOCA Dataset: Type of Analysis, Output Format, and Others

Enter specification	ons on three page form below. Then press	'Submit Request'.	?
Submit Request	m Status (completed == green) 1 1.2 1.3 2.4 2.5 2.6 3.7 3.8 3.9 3.10	Size (%, 100 max): 181	
Page 1: Temporal & Spatial Extent	Page 2: Products, Variables, Projections	Page 3: Analysis, Format, & Notifica	ation
			_
	Step 3.7: Analysis		?
	No Analysis (Extracting Time Series of Statistics Period Mean Period Standard Deviation Spatial Mean Spatial Standard Deviation	nly)	
	Step 3.8: Output Format		?
	 NetCDF ASCII text, comma-delimited (csv) 		
Step	p 3.9: Notification when Processing is Corr	plete	?
roy.rupsa@wseinc.com	Email Address		
roy.rupsa@wseinc.com	Email Address Confirm		
LynnPrecip	Tag/Label for request (Optional, charact	ers may be letters, numbers, or '_')	
	Step 3.10: Usage Information		
serving various sectors and entitie For sector, please make one or m	-	ication lists, please make one selection.	
Entity	Application	Sector(s)	
Govt Federal Govt State	Research Environmental Documentation	Water Quantity Water Quality	
Govt State			
Research Institut		Energy	
 Academic Institu 		Air Quality	
Private Sector	Other	Ecosystem - Land	
Non-Govt. Organ	nization	Ecosystem - Aquatic	
Other		 Social Systems Other 	



Attachment 3.3B - Draft Tiered Methodology Example for Extreme Precipitation Depth and Intensity, All Tiers



RMAT Tiered Methodology to Assess 24-hr Precipitation Storm Depth and Peak Intensity Tier 3 Projects (High Level of Effort)

Given Standards Output from Tool: Planning Horizon (2030, 2050, 2070, 2090); Recurrence Interval (5-yr, 10-yr, 25-yr, 50-yr, 100-yr, 500-yr)

RMAT Tiered Methodology to Assess 24-hr Precipitation Storm Depth Tier 3 Example: Moakley Park, South Boston, MA (Step1: Selecting project area, the inset LOCA grid was considered for analysis)

snip of the third grid.

RMAT Tiered Methodology to Assess 24-hr Precipitation Storm Depth

Tier 3 Example: Moakley Park, South Boston, MA (Step2: Calculating Annual Maximum for each GCM each Grid for RCP 8.5)

	Max of bcc-	Max of bcc-	Max of	Max of cnrm-	Max of csiro-	Max of gfdl-	Max of giss-	Max of giss-	IVIAX UI	Max ui	Max of	Max of ipsl-	Max of	Max of mri-
YEAR	csm1-1.1	csm1-1-m.1	ccsm4.6	cm5.1	mk3-6-0.1	cm3.1	e2-h.6	e2-r.6	hadgem2- ao 1	hadgem2- cc 1	inmem4.1	cm5a-lr.1	miroc5.1	egem3.1
2060	208.7	170.6	221.6	189.3	317.2	139.8	194.6	171.1	173.6	183.2	154.5	175.5	146.2	128.9
2061	173.0	163.2	157.1	182.5	152.1	125.6	146.5	156.9	160.6	171.5	125.3	169.7	144.3	119.9
2062	111.9	152.9	145.4	151.6	125.8	124.8	127.3	133.6	150.4	122.3	116.4	143.6	140.2	117.3
2063	109.7	135.1	129.2	130.0	119.0	116.1	124.7	114.6	142.2	117.6	112.9	124.2	135.5	107.4
2064	104.9	134.4	120.3	92.5	92.7	109.5	123.4	111.6	118.1	116.2	112.2	97.9	125.4	104.3
2065	92.4	132.1	109.3	92.2	91.3	107.8	110.4	105.9	117.4	109.8	101.8	90.3	117.1	103.8
2066	92.0	124.4	108.8	87.5	90.3	104.0	100.6	99.2	107.9	93.9	100.7	90.1	113.3	91.3
2067	85.6	118.6	99.6	87.1	90.2	96.6	88.5	98.7	102.0	89.9	91.2	89.9	107.9	91.0
2068	85.0	112.8	90.8	86.8	87.3	95.9	88.2	98.3	100.3	87.5	85.8	85.5	103.3	89.9
2069	82.1	111.1	76.8	85.1	83.9	93.1	82.5	87.6	99.3	86.5	75.9	80.9	100.0	88.5
2070	81.8	105.2	74.7	78.6	82.0	91.9	81.7	86.1	98.8	84.6	73.8	80.4	93.7	87.0
2071	73.3	98.7	72.1	78.0	81.9	87.6	80.8	76.5	98.2	79.3	72.4	78.4	88.9	84.5
2072	72.5	91.1	69.9	77.9	79.5	85.9	78.6	69.1	90.0	77.9	71.0	76.3	88.9	78.0
2073	72.2	90.5	68.1	77.6	76.3	80.3	75.6	68.3	87.9	77.1	71.0	72.7	86.8	74.9
2074	69.1	86.3	68.0	71.0	76.2	78.0	74.9	65.4	84.1	75.1	70.6	71.2	81.9	73.2
2075	67.6	82.4	66.3	68.6	75.9	75.1	72.6	64.5	81.8	74.7	70.2	70.8	74.6	73.0
2076	66.9	79.1	66.2	68.1	75.2	74.2	70.5	64.1	76.3	73.6	68.1	69.9	73.7	72.1
2077	66.8	75.4	65.4	67.3	70.7	74.0	66.5	63.8	74.9	73.4	63.1	69.7	70.7	71.3
2078	65.6	74.0	62.6	65.0	70.3	73.2	64.7	62.2	74.4	72.4	61.1	68.8	68.5	66.4
2079	65.1	68.0	61.2	64.3	69.1	73.2	64.6	61.2	74.4	72.3	59.8	68.2	68.2	66.4
2080	64.7	67.7	61.1	60.6	66.9	70.9	61.6	59.5	73.8	67.9	59.3	64.9	66.9	65.3
2081	62.6	67.0	59.0	59.1	66.0	68.9	61.4	59.2	71.8	63.8	58.0	62.9	65.7	65.0
2082	61.3	65.8	57.1	56.6	65.0	68.0	56.0	58.7	62.5	59.0	51.3	62.6	61.4	59.1
2083	60.5	65.1	53.8	54.5	62.1	60.8	55.7	56.5	62.4	58.9	49.0	60.0	60.1	52.3
2084	54.7	64.4	53.6	49.9	61.7	60.2	52.2	56.4	60.3	58.9	47.0	59.1	59.7	51.3
2085	54.7	61.1	51.2	49.4	58.0	56.5	51.2	52.2	56.0	58.5	45.9	54.1	57.8	50.2
2086	50.1	51.4	45.6	47.0	57.4	55.0	50.1	48.3	55.3	56.3	45.5	53.9	54.5	48.9
2087	43.8	49.8	43.4	46.8	53.5	52.5	48.0	47.7	55.1	54.6	45.3	50.4	54.4	46.5
2088	40.9	45.6	40.8	43.8	50.8	50.5	46.4	45.8	51.5	53.6	43.7	44.9	54.1	40.6
2089	28.1	40.4	36.5	41.2	47.8	42.4	44.9	37.5	50.5	46.6	43.0	44.0	50.2	40.1

Westor DSON

RMAT Tiered Methodology to Assess 24-hr Precipitation Storm Depth

Tier 3 Example: Moakley Park, South Boston, MA (Step3: Fitting GEV Distribution on annual maxima of each grid for each GCM)

	Year	Rank	Max of bcc- csm1-1.1	ь1	Ь2	Max of bcc- csm1-1-m.1	ь1	ь2	Max of ccsm4.6	ь1	ь2	Max of cnrm- cm5.1	ь1	ь2	Max of csiro- mk3-6-0.1	Ы	Ь2
	2060	1	208.71	6.96	6.96	170.61	5.69	5.69	221.58	7.39	7.39	189.26	6.31	6.31	317.22	10.57	10.57
	2061	2	173.04	5.57	5.37	163.16	5.25	5.06	157.13	5.06	4.88	182.48	5.87	5.66	152.11	4.90	4.72
	2062	3	111.94	3.47	3.23	152.89	4.74	4.41	145.41	4.51	4.19	151.57	4.70	4.37	125.79	3.90	3.62
	2063	4	109.66	3.28	2.93	135.07	4.04	3.60	129.24	3.86	3.45	129.98	3.88	3.47	119.04	3.56	3.18
	2064	5	104.93	3.02	2.58	134.39	3.86	3.31	120.34	3.46	2.96	92.48	2.66	2.28	92.67	2.66	2.28
	2065	6	92.40 91.96	2.55	2.09	132.09	3.64	2.99	109.28	3.01	2.48	92.16 87.52	2.54	2.09	91.25	2.52	2.07
	2066 2067	8	91.96	2.43 2.16	1.91	124.36 118.61	3.29 3.00	2.58	108.83 99.63	2.88	2.26 1.89	87.52	2.31	1.82 1.65	90.31 90.21	2.39	1.88
	2067	8	85.59	2.05	1.62 1.47	112.78	3.00	2.25 1.94	99.63	2.52 2.19	1.89	87.07	2.20 2.09	1.65	90.21	2.28 2.11	1.71 1.50
	2069	3 10	82.12	1.89	1.47	112.70	2.55	1.73	76.80	1.77	1.20	85.12	1.96	1.33	83.86	1.93	1.31
	2003	11	81.81	1.79	1.15	105.16	2.30	1.48	74.71	1.63	1.05	78.59	1.72	1.10	82.04	1.33	1.15
	2071	12	73.29	1.52	0.92	98.71	2.04	1.24	72.07	1.49	0.91	78.01	1.61	0.98	81.90	1.69	1.03
	2072	13	72.54	1.42	0.81	91.09	1.78	1.02	69.88	1.37	0.78	77.91	1.52	0.87	79.51	1.55	0.89
	2073	14	72.18	1.33	0.71	90.53	1.66	0.89	68.11	1.25	0.67	77.59	1.43	0.76	76.28	1.40	0.75
	2074	15	69.13	1.19	0.60	86.34	1.49	0.74	67.96	1.17	0.59	71.05	1.22	0.61	76.24	1.31	0.66
	2075	16	67.65	1.09	0.51	82.42	1.33	0.62	66.32	1.07	0.50	68.58	1.10	0.51	75.89	1.22	0.57
	2076	17	66.87	1.00	0.43	79.15	1.18	0.51	66.19	0.99	0.42	68.07	1.02	0.44	75.20	1.12	0.48
	2077	18	66.78	0.92	0.36	75.39	1.04	0.41	65.41	0.90	0.35	67.33	0.93	0.36	70.74	0.98	0.38
	2078	19	65.60	0.83	0.30	73.99	0.94	0.33	62.64	0.79	0.28	65.00	0.82	0.29	70.27	0.89	0.32
	2079	20	65.08	0.75	0.24	67.99	0.78	0.25	61.16	0.70	0.23	64.27	0.74	0.24	69.15	0.79	0.26
	2080	21	64.67	0.67	0.19	67.69	0.70	0.20	61.11	0.63	0.18	60.55	0.63	0.18	66.86	0.69	0.20
	2081	22	62.56	0.58	0.14	66.98	0.62	0.15	59.04	0.54	0.14	59.12	0.54	0.14	66.01	0.61	0.15
	2082	23	61.25 60.52	0.49	0.11	65.79 65.08	0.53	0.11	57.07 53.76	0.46	0.10	56.61 54.54	0.46	0.10	65.03 62.13	0.52	0.11
	2083 2084	24	60.52 54.71	0.42	0.07	64.38	0.45	0.08	53.76	0.37	0.07	54.54	0.38	0.07	62.13	0.43 0.35	0.08 0.05
	2084	25 26 27	54.67	0.31 0.25	0.04 0.03	61.13	0.37 0.28	0.05 0.03	53.64	0.31 0.24	0.04 0.03	49.87	0.29	0.04 0.02	57.98	0.35	0.05
	2085	20	50.08	0.25	0.03	51.35	0.28	0.03	45.65	0.24	0.03	47.01	0.25	0.02	57.42	0.27	0.03
	2088	28	43.76	0.10	0.00	49.85	0.10	0.00	43.45	0.10	0.00	46.79	0.16	0.00	53.47	0.20	0.00
	2088	29	40.95	0.05	0.00	45.56	0.05	0.00	40.79	0.05	0.00	43.82	0.05	0.00	50.76	0.02	0.00
	2089	30	28.13	0.00	0.00	40.44	0.00	0.00	36.53	0.00	0.00	41.18	0.00	0.00	47.77	0.00	0.00
# of years	30	50	20.10	0.00	0.00	-0.44	0.00	0.00	00.00	0.00	0.00	47.10	0.00	0.00		0.00	0.00
,	L-Moments			48	36		57	42		51	39		49	37		53	40
GEV w/ Lmom	lambda1		78.92		50	92.80	21		81.19	5.		80.32	.0	5.	86.53	50	.0
	lambda2		17.57			20.43			20.54			18.65			19.12		
1	lambda3		5.81			3.35			7.58			6.62			9.36		
1	skew		0.33			0.16			0.37			0.35			0.49		

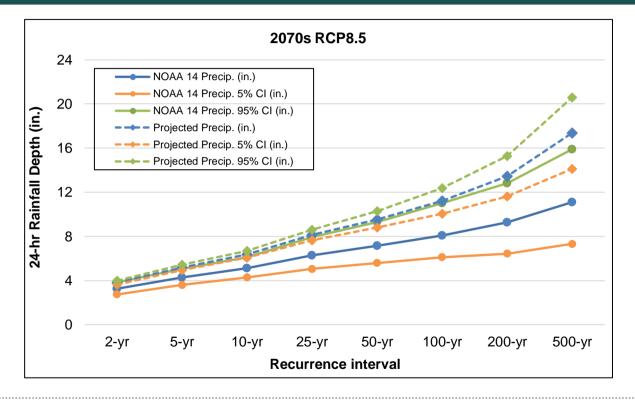
RMAT Tiered Methodology to Assess 24-hr Precipitation Storm Depth

Tier 3 Example: Moakley Park, South Boston, MA (Step4: Calculate ratios between baseline and future for each GCM for each grid)

	2070s (2060-2089) RCP8.5 Grid1													
T-yr Event		Max of bcc- csm1-1-m.1	Max of ccsm4.6	Max of cnrm cm5.1	Max of csiro mk3-6-0.1	Max of gfdl- cm3.1	Max of giss- e2-h.6	Max of giss- e2-r.6	Max of hadgem2- ao.1	Max of hadgem2- cc.1	Max of inmcm4.1	Max of ipsl- cm5a-ir.1	Max of miroc5.1	Max of mri- cgcm3.1
	Ratios to modeled baseline													
2-yr, 24-hr	1.14	1.47	1.15	1.10	1.16	1.10	1.13	1.09	1.31	1.30	1.12	1.18	1.19	1.24
5-yr, 24-hr	1.15	1.51	1.30	1.16	1.20	1.05	1.24	1.10	1.32	1.27	1.18	1.29	1.22	1.25
10-yr, 24-hr	1.16	1.50	1.41	1.21	1.29	1.02	1.31	1.11	1.32	1.28	1.19	1.40	1.25	1.21
25-yr, 24-hr	1.17	1.45	1.55	1.30	1.49	0.99	1.39	1.13	1.32	1.32	1.18	1.61	1.30	1.15
50-yr, 24-hr	1.19	1.40	1.66	1.39	1.71	0.96	1.45	1.15	1.31	1.37	1.16	1.80	1.33	1.09
100-yr, 24-hr	1.20	1.34	1.78	1.48	1.99	0.94	1.51	1.17	1.30	1.43	1.13	2.03	1.36	1.03
200-yr, 24-hr	1.22	1.28	1.90	1.58	2.36	0.92	1.56	1.19	1.29	1.50	1.09	2.31	1.40	0.97
500-yr, 24-hr	1.25	1.19	2.08	1.74	3.01	0.89	1.63	1.22	1.27	1.61	1.04	2.75	1.45	0.89

RMAT Tiered Methodology to Assess 24-hr Precipitation Storm Depth Tier 3 Example: Moakley Park, South Boston, MA (Step5: calculating mean of the ratios for all GCMs and adding ratios to NOAA Atlas 14 Values)

	2070s (2060-2089) RCP8.5 Grid1											
Recurrence intervals	NOAA 14 Precip. (in.)	NOAA 14 Precip. 5% CI (in.)	NOAA 14 Precip. 95% CI (in.)	No. of Models	Mean of ratios	Std Dev. of ratios	5% CL of ratios	95% CL of ratios	Projected Precip. (in.)	Projected Precip. 5% CI (in.)	Projected Precip. 95% CI (in.)	
2-yr	3.3	2.8	3.8	14	1.19	0.11	1.15	1.24	3.9	3.7	4.0	
5-yr	4.3	3.6	5.1	14	1.23	0.11	1.18	1.28	5.3	5.1	5.5	
10-yr	5.1	4.3	6.1	14	1.26	0.13	1.21	1.32	6.5	6.2	6.7	
25-yr	6.3	5.1	8.0	14	1.31	0.18	1.23	1.39	8.2	7.8	8.7	
50-yr	7.2	5.6	9.3	14	1.35	0.24	1.25	1.46	9.7	8.9	10.4	
100-yr	8.1	6.1	11.0	14	1.41	0.33	1.26	1.55	11.4	10.2	12.6	
200-yr	9.3	6.4	12.8	14	1.47	0.45	1.27	1.67	13.6	11.8	15.4	
500-yr	11.1	7.3	15.9	14	1.57	0.65	1.29	1.86	17.5	14.3	20.6	



RMAT Tiered Methodology to Assess 24-hr Precipitation Storm Depth Tier 3 Example: Moakley Park, South Boston, MA (Step5: calculating mean of the projected 24-hour precipitation depths for all grids)

2070s (2060-2089) RCP8.5 Average of the Grids									
Recurrence intervals	Projected Precip. (in.)	Projected Precip. 5% CI (in.)	Projected Precip. 95% CI (in.)						
2-yr	3.8	3.6	4.0						
5-yr	5.2	4.9	5.4						
10-yr	6.4	6.1	6.7						
25-yr	8.1	7.6	8.6						
50-yr	9.5	8.8	10.3						
100-yr	11.2	10.1	12.4						
200-yr	13.5	11.6	15.3						
500-yr	17.4	14.1	20.6						

RMAT Tiered Methodology to Assess 24-hr Precipitation Storm Depth Tier 3 Example: Moakley Park, South Boston, MA (Step6: comparing the projected precipitation quantiles with NOAA Atlas 14 historical estimates)

RMAT Tiered Methodology to Assess 24-hr Precipitation Storm Depth and Peak Intensity Tier 3 Example: Moakley Park, South Boston, MA (Step7: 24-hr design storm hyetographs for peak intensity for given planning horizon and design storm)

Recurrence Interval (Years)	NOAA Atlas 14 Present Baseline -24hr (in)	Tier3 2070 Values -24hr (in)
2-yr	3.3	3.8
5-yr	4.3	5.2
10-yr	5.1	6.4
25-yr	6.3	8.1
50-yr	7.2	9.5
100-yr	8.1	11.2
200-yr	9.3	13.5
500-yr	11.1	17.4

10yr -24 hr 2070s		6.4 in	
Duration (hr)	Ratio	Cumulative depth (in.)	Hourly peak intensity (in./hr)
0	0	0	0
1	0.01	0.06	0.06
2	0.02	0.13	0.06
3	0.03	0.19	0.07
4	0.04	0.27	0.08
5	0.06	0.36	0.09
6	0.07	0.45	0.10
7	0.09	0.57	0.12
8	0.11	0.72	0.15
9	0.15	0.92	0.20
10	0.19	1.19	0.27
11	0.25	1.58	0.38
12	0.50	3.15	1.58
13	0.75	4.73	1.58
14	0.81	5.11	0.38
15	0.85	5.38	0.27
16	0.89	5.58	0.20
17	0.91	5.73	0.15
18	0.93	5.85	0.12
19	0.94	5.94	0.10
20	0.96	6.03	0.09
21	0.97	6.11	0.08
22	0.98	6.18	0.07
23	0.99	6.24	0.06
	1	6.30	0.06

RMAT Tiered Methodology to Assess 24-hr Precipitation Storm Depth and Peak Intensity - Tier 2 Projects (Medium Level of Effort)

Given Standards Output from Tool: Planning Horizon (2030, 2050, 2070, 2090); Recurrence Interval (5-yr, 10-yr, 25-yr, 50-yr, 100-yr, 500-yr) Apply percent increase² to NOAA median values based on given planning horizon for each given 24-hr design storm depth Go to NOAA Atlas 141 website. **Planning Horizons** Increase Input Project Area based on Mid-Century (2030, 2050) 13% **Project Location** Use SCS Type III/NOAA Atlas 141 distribution to estimate hourly/sub-Late-Century (2070, 2100) 22% hourly peak intensities Select NOAA Atlas-14¹ median value for each given 24-hr design storm depth Design storm hyetograph 24-hr design storm depths and peak intensity for for given planning horizon and design storm given design storm depths Leaends Data Gathering Calculation steps 1. NOAA Atlas 14 Point Precipitation Frequency Estimates: Northeastern States; NOAA Atlas 14, Design Criteria Volume 10. Version 3 2. USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment (Fig: Existing practice 7.7; RCP 8.5 Scenario; Page 220) Note: Refer to Section 3.3.6.3 for proposed scope to update

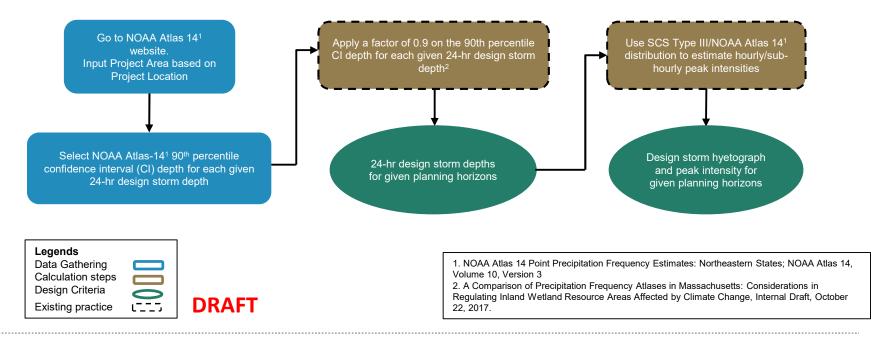
DRAFT

percent increase for Tier 2.

RMAT Tiered Methodology to Assess 24-hr Precipitation Storm Depth and Peak Intensity

Tier 2 Example: Moakley Park, South Boston, MA

(24-hr design storm depths for given planning horizon and design storm)


Recurrence Interval (Years)	NOAA Atlas 14 Present Baseline - 24hr (in)	Tier2 - 2030 Values 13% increase on NOAA baseline (in)	Tier2 - 2070 Values 22% increase on NOAA baseline (in)
2-yr	3.3	3.7	4.0
5-yr	4.3	4.8	5.2
10-yr	5.1	5.8	6.2
25-yr	6.3	7.1	7.7
50-yr	7.2	8.1	8.7
100-yr	8.1	9.1	9.9
200-yr	9.3	10.5	11.3
500-yr	11.1	12.5	13.5

RMAT Tiered Methodology to Assess 24-hr Precipitation Storm Depth and Peak Intensity - Tier 1 Projects (Low Level of Effort)

Given Standards Output from Tool: Planning Horizon (2030, 2050, 2070, 2090); Recurrence Interval (5-yr, 10-yr, 25-yr, 50-yr, 100-yr, 500-yr)

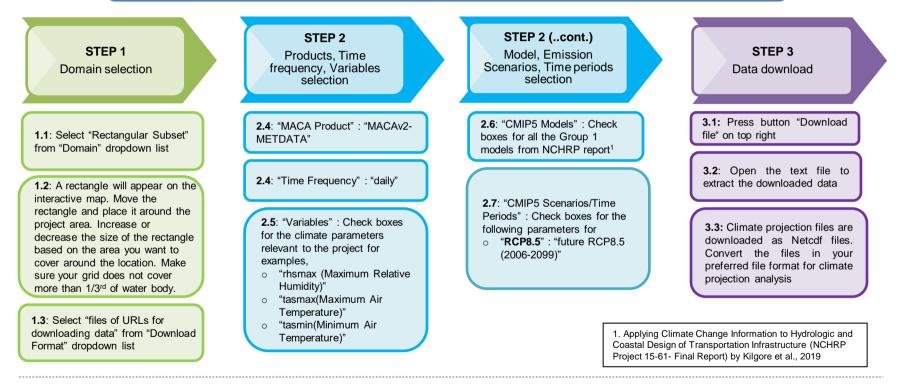
RMAT Tiered Methodology to Assess 24-hr Precipitation Storm Depth and Peak Intensity

Tier 1 Example: Moakley Park, South Boston, MA (24-hr design storm depths for given recurrence intervals)

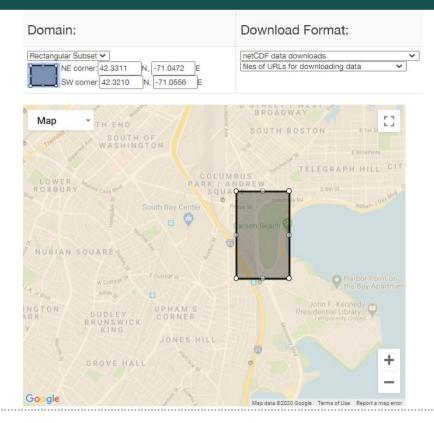
Recurrence Interval (Years)	NOAA Atlas 14 Present Baseline - 24hr (in)	NOAA Atlas 14 Present Baseline - 24hr (90th percentile) (in)	Tier3 90% of 90th percentile of NOAA baseline (in)
2-yr	3.3	3.8	3.4
5-yr	4.3	5.1	4.6
10-yr	5.1	6.1	5.5
25-yr	6.3	8.0	7.2
50-yr	7.2	9.3	8.4
100-yr	8.1	11.0	9.9
200-yr	9.3	12.8	11.5
500-yr	11.1	15.9	14.3

RMAT Tiered Methodology to Assess 24-hr Precipitation Storm Depth and Peak Intensity Comparison Across Tiers for Moakley Park, South Boston, MA

Recurrence Interval (Years)	NOAA Atlas 14 Present Baseline (in)	Tier 3 2070 Values (in)	Tier 2 2070 Values (in)	Tier 1 values (in)
2-yr	3.3	3.8	4.0	3.4
5-yr	4.3	5.2	5.2	4.6
10-yr	5.1	6.4	6.2	5.5
25-yr	6.3	8.1	7.7	7.2
50-yr	7.2	9.5	8.7	8.4
100-yr	8.1	11.2	9.9	9.9
200-yr	9.3	13.5	11.3	11.5
500-yr	11.1	17.4	13.5	14.3



Attachment 3.4A - Data Source Download Example for Extreme Heat -- MACA Dataset


RMAT Methodology to Download Data from MACA Website

 Go to https://climate.northwestknowledge.net/MACA/data_portal.php to download data from Multivariate Adaptive Constructed Analogs (MACA) data portal

MACA Dataset: Project Area, and Download Format Selection

MACA Dataset: Product, Time Frequency, and Variables Selection

MACA PRODUCT

MACAv2-LIVNEH
 MACAv1-METDATA
 MACAv2-METDATA

TIME FREQUENCY

daily

O monthly

O Annual

O DJF(Dec-Feb)

O MAM (March-May)

O JJA (June-Aug)

O SON (Sept-Nov)

VARIABLES

Select All DeSelect All

huss (Specific Humidity)

pr (Precipitation)

🗹 rhsmax (Maximum Relative Humidity)

Image: Image:

rsds (Downwelling Solar Radiation)

tasmin(Minimum Air Temperature)

🗹 tasmax(Maximum Air Temperature)

vpd (Vapor Pressure Deficit)

uas (Eastward Wind Component)

vas (Northward Wind Component)

MACA Dataset: Group1* GCM Selections

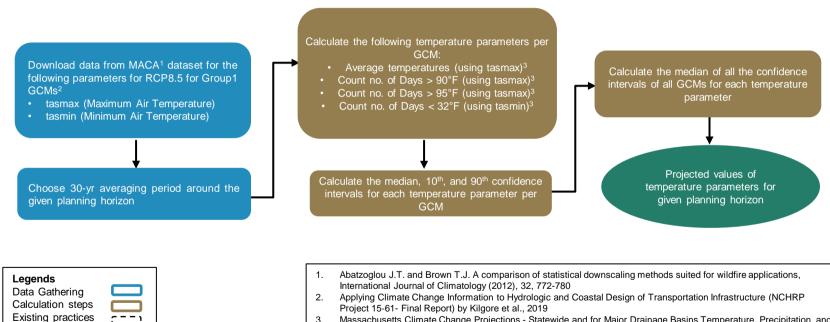
CMIP5 MODELS

- Select All DeSelect All
- ✓ bcc-csm1-1-m (China)
- BNU-ESM (China)
- CanESM2 (Canada)
- CCSM4 (USA)
- CNRM-CM5 (France)
- CSIRO-Mk3-6-0 (Australia)
- GFDL-ESM2G (USA)
- GFDL-ESM2M (USA)
- HadGEM2-CC365 (United Kingdom)
- HadGEM2-ES365 (United Kingdom)
- 🗹 inmem4 (Russia)
- IPSL-CM5A-LR (France)
- IPSL-CM5A-MR (France)
- IPSL-CM5B-LR (France)
- 🗹 MIROC5 (Japan)
- MIROC-ESM (Japan)
- MIROC-ESM-CHEM (Japan)
- MRI-CGCM3 (Japan)
- NorESM1-M (Norway)

*Applying Climate Change Information to Hydrologic and Coastal Design of Transportation Infrastructure (NCHRP Project 15-61- Final Report) by Kilgore et al., 2019

MACA Dataset: Emission Scenario (RCP8.5) and Time Selection

RCP 8.5 Crcp85 (2006-2010) cp85 (2011-2015) cp85 (2016-2020) cp85 (2021-2025) cp85 (2026-2030) cp85 (2031-2035) cp85 (2036-2040) cp85 (2041-2045) cp85 (2046-2050) cp85 (2051-2055) cp85 (2056-2060) cp85 (2061-2065) cp85 (2066-2070) cp85 (2071-2075) cp85 (2076-2080) cp85 (2081-2085) cp85 (2086-2090) cp85 (2091-2095) cp85 (2096-2099) future RCP8.5 (2006-2099) □ future RCP8.5 (2006 2099



Attachment 3.4B - Draft Tiered Methodology Example for Extreme Heat – Avg. Temperature, All Tiers

RMAT Tiered Methodology to Assess Temperature Criteria Tier 3 Projects (High Level of Effort)

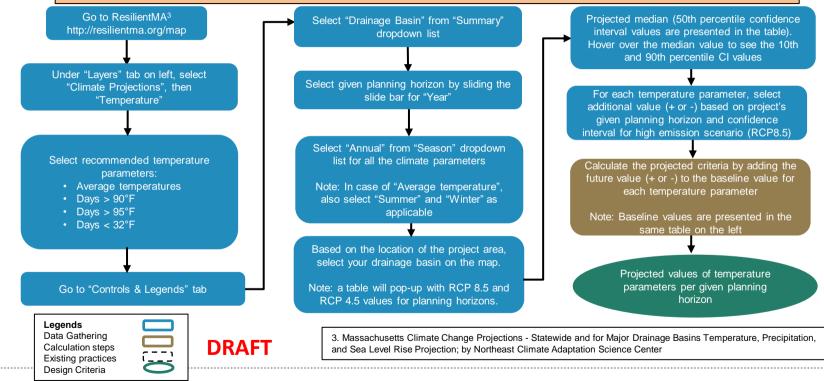
Given Standards Output from Tool: Planning Horizon (2030, 2050, 2070, 2090); Confidence Interval (10th, 50th, 90th)

 Massachusetts Climate Change Projections - Statewide and for Major Drainage Basins Temperature, Precipitation, and Sea Level Rise Projection; by Northeast Climate Adaptation Science Center

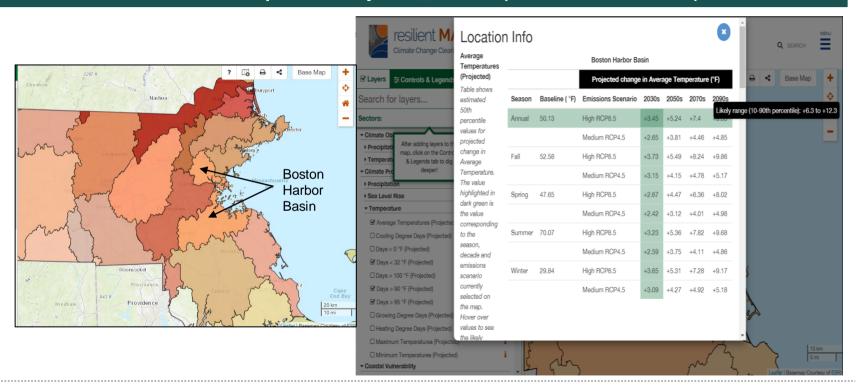
Design Criteria

RMAT Tiered Methodology to Assess Temperature Criteria (Step1: Calculate days above 90°F for each GCM) Tier 3 Example: Moakley Park, Boston

YEAR	bcc-csm1-1	bcc-csm1-1-m	CCSM4	CNRM-CM5	CSIRO-Mk3-6-0	HadGEM2-CC365	inmcm4	IPSL-CM5A-LR	IPSL-CM5B-LR	MIROC5	MRI-CGCM3
2060	28	24	34	14	28	69	23	38	68	42	16
2061	16	54	46	18	27	47	26	18	21	52	37
2062	4	31	51	39	17	68	19	16	56	32	16
2063	25	23	23	48	40	66	17	42	37	28	25
2064	55	66	36	36	51	41	20	51	15	52	34
2065	35	66	30	18	46	63	1	58	60	53	17
2066	27	37	32	9	33	64	27	30	42	36	17
2067	42	39	41	19	49	52	9	21	34	53	20
2068	34	32	44	28	54	78	24	40	32	33	34
2069	59	44	21	37	30	49	8	58	48	52	22
2070	46	55	40	41	39	54	6	64	60	27	29
2071	39	40	33	54	19	61	18	59	41	48	26
2072	13	57	40	33	34	31	5	49	65	34	22
2073	54	43	50	58	48	59	11	51	29	56	30
2074	40	21	44	21	66	47	26	59	73	52	36
2075	59	46	37	20	50	72	5	42	34	57	35
2076	30	56	42	50	34	39	4	30	58	67	23
2077	47	23	31	33	48	65	7	51	61	41	21
2078	49	33	35	67	53	65	10	60	55	44	16
2079	50	24	38	33	21	51	25	47	64	43	26
2080	70	34	45	40	42	68	25	64	58	66	38
2081	76	39	47	35	55	72	23	66	49	36	29
2082	68	43	54	42	50	93	18	47	47	47	20
2083	33	30	53	30	32	81	26	70	46	45	19
2084	47	54	52	35	53	41	26	57	46	48	21
2085	40	46	54	26	49	85	7	57	24	73	39
2086	61	64	42	15	47	85	16	40	46	55	26
2087	22	40	33	19	53	61	16	39	55	45	29
2088	44	47	52	53	64	45	27	56	57	41	24
2089	71	52	61	42	53	63	8	50	88	64	35
10th percentile	17	23	30	15	22	41	5	22	25	32	16
50th percentile	43	42	42	34	48	63	18	51	49	48	26
90th percentile	70	63	54	54	55	85	26	64	68	66	37


RMAT Tiered Methodology to Assess Temperature Criteria (Step 2: Calculate Median, 10th and 90th percentiles for all GCMs) Tier 3 Example: Moakley Park, Boston

2070s	Avg temp (°F)	g temp (°F) # days > 90°F		# days < 32⁰F
10 th percentile	64.9	22	5	65
Median	66.7	43	16	45
90 th percentile	90 th percentile 69.5		28	24


RMAT Tiered Methodology to Assess Temperature Criteria from ResilientMA.org Tier 2 and Tier 1 Projects (Medium and Low Level of Effort)

Given Standards Output from Tool: Planning Horizon (2030, 2050, 2070, 2090); Confidence Interval (10th, 50th, 90th)

RMAT Tiered Methodology to Assess Temperature Criteria from ResilientMA.org Tier 2/1 Example: Moakley Park, Boston (Boston Harbor Basin)

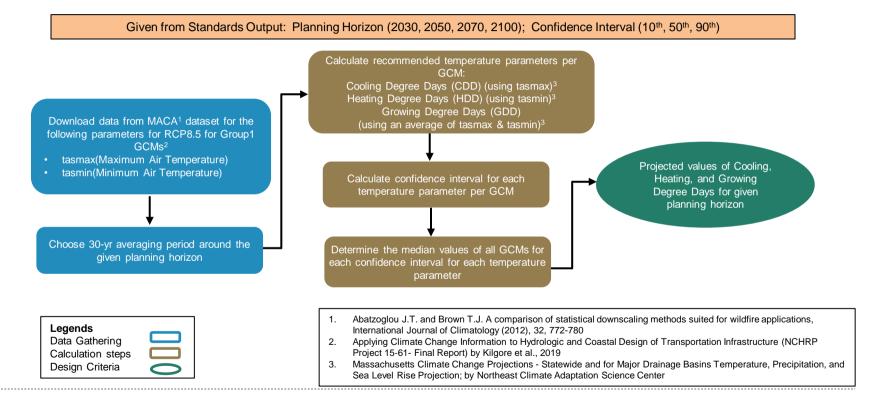
RMAT Tiered Methodology to Assess Temperature Criteria from ResilientMA.org Tier 2/1 Example: Moakley Park, Boston (Boston Harbor Basin)

2070s	Avg temp (°F)	# days > 90°F	# days > 95°F	# days < 32°F
10th percentile	55.3	28	9	84
Median	57.5	48	20	72
90th percentile	60.4	63	35	52

RMAT Tiered Methodology to Assess Temperature Criteria Comparison Across Tiers Example: Moakley Park, Boston

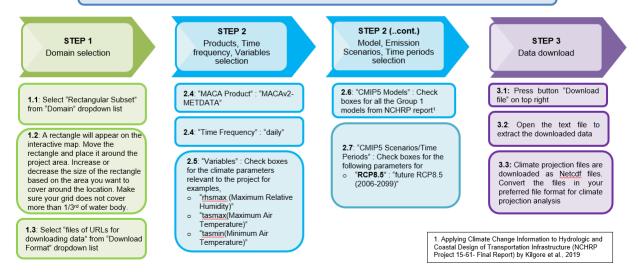
2070s	Tier 3 Avg temp (°F)	Tier 2/1 Avg temp (°F)	Tier 3 # days > 90°F	Tier 2/1 # days > 90°F	Tier 3 # days > 95°F	Tier 2/1 # days > 95°F	Tier 3 # days < 32°F	Tier 2/1 # days < 32°F
10 th percentile	64.6	55.3	22	28	5	9	65	84
Median	66.3	57.5	43	48	16	20	45	72
90 th percentile	69.4	60.4	63	63	28	35	24	52

REFERENCES


- 1. Abatzoglou J.T. and Brown T.J. A comparison of statistical downscaling methods suited for wildfire applications, International Journal of Climatology (2012), 32, 772-780
- Applying Climate Change Information to Hydrologic and Coastal Design of Transportation Infrastructure (NCHRP Project 15-61- Final Report) by Kilgore et al., 2019
- 3. Massachusetts Climate Change Projections Statewide and for Major Drainage Basins Temperature, Precipitation, and Sea Level Rise Projections; by Northeast Climate Adaptation Science Center and published by Massachusetts Executive Office of Energy and Environmental Affairs, 2018.

Attachment 3.4C - Draft Tiered Methodology Example for Extreme Heat – Degree Days, All Tiers

RMAT Tiered Methodology to Evaluate Degree Days – Tier 3 Projects



RMAT Tiered Methodology to Evaluate Degree Days - Tier 3 Projects (Step 0: Complete MACA data download)

RMAT Methodology to Download Data from MACA Website

 Go to https://climate.northwestknowledge.net/MACA/data_portal.php to download data from Multivariate Adaptive Constructed Analogs (MACA) data portal

RMAT Tiered Methodology to Evaluate Degree Days - Tier 3 Projects (Step 1: Calculate Average Daily Temp. from tasmax and tasmin) Example: 2070s CDDs for Moakley Park, Boston

							2060-2089						
yyyy-mm-dd	Year	Month	bcc-csm1-1	bcc-csm1-1-m	CCSM4	CNRM-CM5	CSIRO-Mk3-6-0	HadGEM2-CC365	inmcm4	IPSL-CM5A-LR	IPSL-CM5B-LR	MIROC5	MRI-CGCM3
1/1/2060	2060	1	41.8	48.6	42.1	45.7	41.5	33.2	24.9	51.5	39.6	39.8	49.0
1/2/2060	2060	1	53.1	28.5	41.1	46.0	35.2	40.4	30.5	51.8	37.5	33.4	53.1
1/3/2060	2060	1	54.2	23.9	42.4	36.6	36.1	39.9	28.7	42.6	34.2	38.5	41.2
1/4/2060	2060	1	50.8	33.1	37.5	37.0	36.7	43.3	33.0	33.2	39.6	38.4	31.3
1/5/2060	2060	1	65.7	39.8	30.3	36.7	37.5	45.8	35.2	30.3	41.1	38.9	39.7
1/6/2060	2060	1	54.6	41.2	29.5	33.1	37.3	39.5	46.5	41.1	37.4	40.3	43.5
1/7/2060	2060	1	50.0	34.9	26.8	31.7	40.1	40.0	38.4	43.5	40.0	40.2	50.3
1/8/2060	2060	1	51.4	27.4	27.7	38.0	36.3	40.6	31.9	43.7	45.1	40.8	52.6
1/9/2060	2060	1	53.8	42.2	33.1	43.2	30.5	39.1	42.5	35.5	42.8	40.4	58.3
1/10/2060	2060	1	48.0	40.0	25.8	38.5	25.8	34.7	53.5	32.2	39.3	37.4	41.2
1/11/2060	2060	1	36.2	33.1	29.1	43.8	29.6	33.6	64.4	36.7	40.1	35.7	29.3
1/12/2060	2060	1	36.7	37.3	38.0	44.0	35.4	38.0	48.0	26.1	37.3	36.9	32.2
1/13/2060	2060	1	45.9	35.0	50.9	47.3	35.8	45.3	43.2	26.1	32.7	37.8	46.7
1/14/2060	2060	1	35.5	24.5	43.5	42.6	36.5	43.7	33.7	39.4	33.2	33.7	41.5
1/15/2060	2060	1	33.9	21.1	28.0	43.7	39.4	36.5	14.3	41.5	36.2	27.7	28.4
1/16/2060	2060	1	40.0	20.5	23.0	43.1	40.7	33.9	17.4	39.7	35.2	36.2	18.4
1/17/2060	2060	1	43.3	37.7	30.3	50.8	44.9	38.8	32.7	36.5	36.8	37.6	21.1
1/18/2060	2060	1	39.8	37.6	39.6	50.4	47.1	46.4	36.2	39.2	45.3	29.2	37.8
1/19/2060	2060	1	32.4	39.7	37.8	42.1	48.5	44.5	21.0	44.4	33.2	30.2	34.2
1/20/2060	2060	1	40.9	25.5	43.8	35.6	45.9	45.2	15.1	46.3	23.6	36.1	20.8
1/21/2060	2060	1	46.5	22.2	35.2	36.7	38.8	34.3	24.2	38.0	31.4	32.3	31.2
1/22/2060		1	40.7	13.5	23.2	39.0	25.8	39.5	29.9	29.2	36.6	21.9	44.2
1/23/2060	2060	1	30.0	9.5	45.9	31.5	38.7	41.3	36.4	43.4	40.6	22.3	44.5
1/24/2060		1	27.6	15.6	31.9	33.9	38.9	37.7	43.7	36.3	33.0	22.5	32.1
1/25/2060		1	35.6	29.6	27.8	32.6	38.5	29.4	37.7	32.6	30.4	27.3	27.5
1/26/2060		1	37.7	40.4	36.1	29.5	37.5	32.1	33.9	37.3	37.5	38.4	19.8
1/27/2060		1	35.9	43.9	34.1	25.2	41.6	31.1	37.8	27.4	36.1	44.1	23.9
1/28/2060		1	40.2	47.9	44.2	29.7	42.9	32.7	36.7	25.3	43.9	43.9	27.4
1/29/2060		1	42.9	49.3	35.7	35.4	41.7	30.7	38.4	19.4	47.0	41.7	33.8
1/30/2060		1	39.6	47.0	39.9	38.5	41.9	23.0	43.2	20.4	42.2	48.4	45.3
1/31/2060		1	34.7	41.6	25.4	43.9	42.8	21.2	40.2	23.6	32.3	48.3	42.3
2/1/2060		2	29.4	33.8	23.4	45.4	43.9	16.8	42.6	21.8	33.7	44.1	50.3
2/2/2060		2	30.7	32.9	23.9	48.9	49.3	18.9	38.0	33.6	36.0	41.2	44.1
2/3/2060		2	35.2	35.7	39.9	54.7	51.9	25.2	32.1	21.1	43.3	39.4	32.2
2/4/2060		2	32.2	36.9	38.4	42.8	44.7	32.9	39.7	26.7	42.1	42.1	30.6
2/5/2060		2	30.0	38.3	30.5	33.8	34.7	35.1	26.1	25.8	47.2	36.8	33.3
2/6/2060	_060	2	34.3	29.8	41.5	35.8	23.5	35.4	23.7	12.7	51.4	29.1	46.4
12/24/2089		12	47.2	47.2	31.7	47.0	46.8	42.3	47.9	49.9	43.4	29.8	46.2
12/25/2089		12	42.7	38.9	27.8	46.1	44.3	44.2	53.1	53.8	33.0	31.6	47.0
12/26/2089		12	42.0	37.0	28.0	41.0	50.4	53.7	45.3	49.2	23.9	24.9	38.8
12/27/2089		12	35.4	33.4	29.9	39.4	57.5	47.9	39.7	41.2	25.3	21.6	44.7
12/28/2089		12	34.8	36.7	32.1	41.1	57.1	48.5	40.7	45.8	38.8	16.6	56.9
12/29/2089		12	42.8	34.7	36.7	31.7	41.5	60.0	32.0	49.6	62.4	17.4	59.8
	2089	12	44.4	33.7	36.8	32.9	37.3	56.1	31.4	41.7	65.5	29.7	51.3
12/31/2089	2089	12	49.9	30.8	49.0	41.9	37.3	43.4	26.0	31.7	59.5	38.3	34.9

RMAT Tiered Methodology to Evaluate Degree Days - Tier 3 Projects (Step 2: Calculate the sum of degree days for all GCMs) Example: 2070s CDDs for Moakley Park, Boston

Row Labels	Sum of bcc-csm1-1	Sum of bcc-csm1-1-m	Sum of CCSM4	Sum of CNRM-CM5	Sum of CSIRO-Mk3-6-0	Sum of HadGEM2-CC365	Sum of inmcm4	Sum of IPSL-CM5A-LR	Sum of IPSL-CM5B-LR	Sum of MIROC5	Sum of MRI-CGCM3
2060	1387	1262	1281	1212	1304	2017	1223	1521	1811	1663	1127
2061	1115	1737	1510	1046	1373	1892	1263	1156	1271	1707	1473
2062	872	1627	1641	1611	1224	2077	1108	1129	1733	1399	1071
2063	1324	1276	1398	1635	1571	1966	1109	1569	1715	1423	1354
2064	1833	1780	1237	1475	1719	1725	1057	1915	1203	1745	1425
2065	1617	2139	1348	1417	1484	2040	1037	1899	1729	1679	1098
2066	1479	1468	1589	920	1424	2052	1306	1517	1428	1615	1143
2067	1566	1342	1565	1211	1726	1813	916	1343	1690	1767	1085
2068	1520	1460	1597	1250	1815	2397	1132	1677	1492	1385	1450
2069	1898	1580	1240	1575	1420	1641	987	1962	1566	1727	1262
2070	1556	1641	1553	1798	1509	1946	918	1908	1884	1365	1402
2071	1622	1540	1370	1873	1350	2047	1153	1883	1771	1662	1370
2072	1088	1670	1528	1435	1454	1672	915	1792	1851	1569	1307
2073	1697	1469	1508	1761	1663	2132	1042	1874	1342	1816	1498
2074	1415	1217	1793	1430	1972	1969	1382	2016	2161	1628	1586
2075	1813	1713	1555	1230	1826	2194	848	1707	1544	1828	1454
2076	1519	1745	1498	1775	1392	1797	892	1579	1704	1896	1158
2077	1769	1361	1269	1459	1746	2100	1082	1915	2034	1647	1174
2078	1528	1526	1565	2194	1828	2131	1001	2114	1796	1696	1207
2079	1788	1293	1491	1486	1346	2000	1135	1983	2060	1574	1388
2080	1979	1531	1622	1554	1526	2106	1224	2057	1886	2072	1626
2081	2071	1491	1549	1517	1806	2403	1276	1951	1801	1582	1476
2082	1851	1575	1695	1651	1792	2757	1184	1932	1618	1836	1219
2083	1483	1516	1740	1217	1479	2436	1336	2140	1777	1727	1182
2084	1549	1750	1800	1520	1713	1831	1270	1930	1708	1711	1324
2085	1678	1759	1765	1449	1854	2504	1081	1846	1504	2188	1668
2086	1825	2002	1711	1191	1611	2640	1113	1725	1858	1830	1301
2087	1339	1605	1355	1397	1958	2103	1081	1612	1825	1590	1377
2088	1613	1676	1697	1820	1840	1818	1467	2134	1786	1723	1379
2089	2168	1647	1781	1585	1848	2107	939	1964	2320	1939	1563
Min	872	1217	1237	920	1224	1641	848	1129	1203	1365	1071
Max	2168	2139	1800	2194	1972	2757	1467	2140	2320	2188	1668
Med	1590	1577	1554	1481	1637	2049	1109	1891	1752	1702	1362
Mean	1599	1580	1542	1490	1619	2077	1116	1792	1729	1700	1338
10th percentile	1136	1278	1270	1193	1347	1732	915	1360	1351	1401	1101
50th percentile	1590	1577	1554	1481	1637	2049	1109	1891	1752	1702	1362
90th percentile	1971	1778	1780	1818	1853	2498	1333	2108	2058	1935	1583

Cooling Degree Days (CDD)

Months of May to

September

Sum days of avg. daily temp

- 65 > 0

Heating Degree

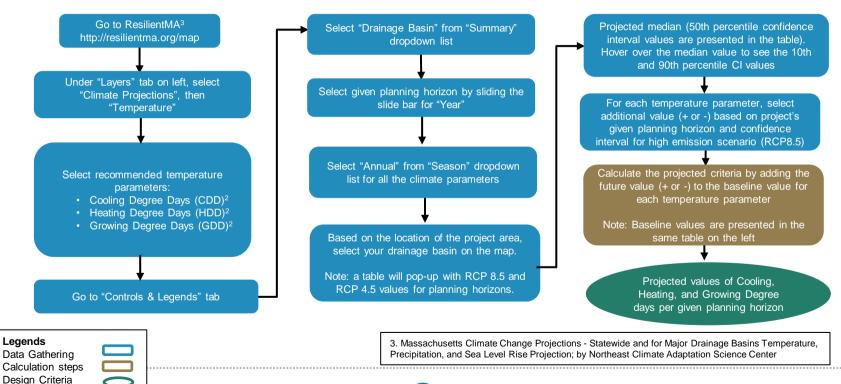
Davs (HDD)

Months of October to April

Sum days of

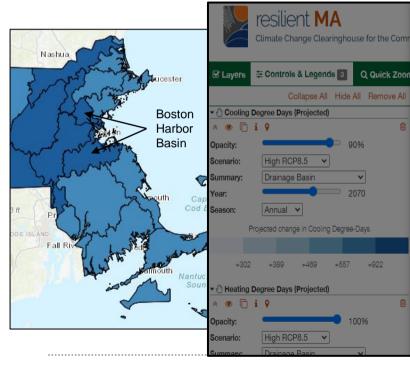
65 - avg. daily

temp > 0


RMAT Tiered Methodology to Evaluate Degree Days - Tier 3 Projects (Step 2: Calculate Median, 10th, and 90th percentiles for all GCMs) Example: 2070s Degree Days for Moakley Park, Boston

2070s	CDD	HDD	GDD
10th percentile	1278	3344	4021
Median	1590	3785	4374
90th percentile	1853	4419	5051

RMAT Tiered Methodology to Evaluate Degree Days from ResilientMA.org - Tier 2 and Tier 1 Projects


Given from Standards Output: Planning Horizon (2030, 2050, 2070, 2100); Confidence Interval (10th, 50th, 90th)

DRAF1

RMAT Tiered Methodology to Evaluate Degree Days from ResilientMA.org - Tier 2 and Tier 1 Projects Example: 2070s CDDs for Moakley Park, Boston (Boston Harbor Basin)

Location Info

Cooling Degree Days

(Projected) Table shows estimated 50th percentile values for projected change in Cooling Degree Days. The value highlighted in dark green is the value corresponding to the season, decade and emissions scenario currently selected on the map. Hover over values to see the likely range (10th to 90th percentile) for any given value. Proiected decreases are denoted by a minus (-) sian .

		Boston Harbor Ba	asin		
		Pro	Jected change ir	n Cooling Degr	ee-Days
Season	Baseline (Degree-Days)	Emissions Scenario	2030s	2050s	2070s
Annual	636.02	High RCP8.5	+354.4	+610.57	+945.7
		Medium RCP4.5	+287.17	+410.99	+480.55
Fall	60.45	High RCP8.5	+76.44	+134.55	+228.28
		Medium RCP4.5	+66.02	+93.43	+108.47
Spring	26.94	High RCP8.5	+25.97	+46.22	+79.5
		Medium RCP4.5	+19.11	+26.82	+34.14
Summer	544.48	High RCP8.5	+252.78	+436.2	+654.41
		Medium RCP4.5	+205.06	+300.54	+335.98
Winter	0.00	High RCP8.5	+1.62	+2.76	+1.98
		Medium RCP4.5	+1.17	+2.08	+0.65

RMAT Tiered Methodology to Evaluate Degree Days from ResilientMA.org - Tier 2 and Tier 1 Projects Example: Moakley Park, Boston

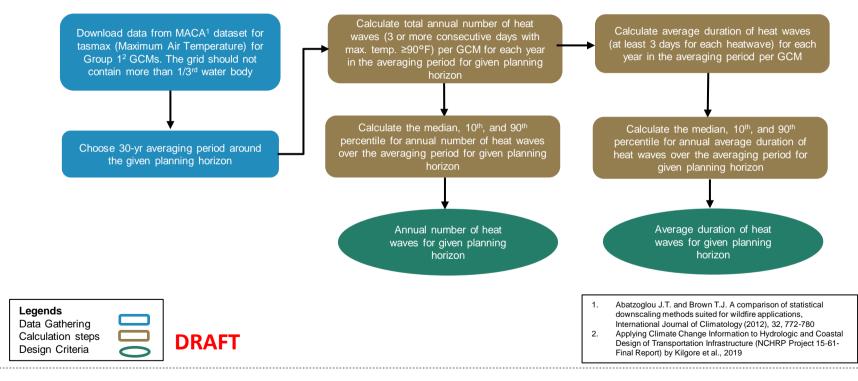
Planning Horizon	Percentile	Cooling Degree Days			
	10th percentile	1198			
2070s	50th percentile	1582			
	90th percentile	2040			

RMAT Tiered Methodology Cooling Degree Days – Comparison Across Tiers Example: Moakley Park, Boston

Planning Horizon	Percentile	Tier 3 Cooling Degree Days	Tier 2/1 Cooling Degree Days			
	10th percentile	1278	1198			
2070s	50th percentile	1590	1582			
	90th percentile	1853	2040			

REFERENCES

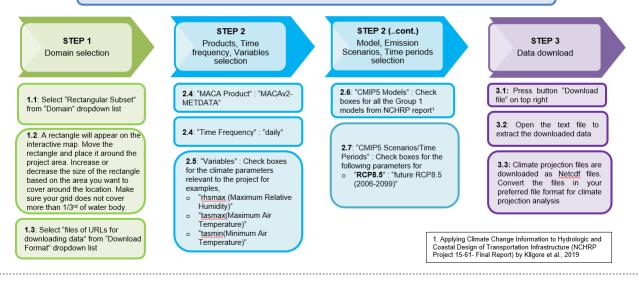
- 1. Abatzoglou J.T. and Brown T.J. A comparison of statistical downscaling methods suited for wildfire applications, International Journal of Climatology (2012), 32, 772-780
- 2. Applying Climate Change Information to Hydrologic and Coastal Design of Transportation Infrastructure (NCHRP Project 15-61- Final Report) by Kilgore et al., 2019
- 3. Massachusetts Climate Change Projections Statewide and for Major Drainage Basins Temperature, Precipitation, and Sea Level Rise Projections; by Northeast Climate Adaptation Science Center and published by Massachusetts Executive Office of Energy and Environmental Affairs



Attachment 3.4D - Draft Tiered Methodology Example for Extreme Heat – Heat Waves, All Tiers

RMAT Tiered Methodology to Evaluate Heat Waves Tier 3 Projects (High level of Effort)

Given from Standards Output: Planning Horizon (2030, 2050, 2070, 2100); Confidence Interval (10th, 50th, 90th)



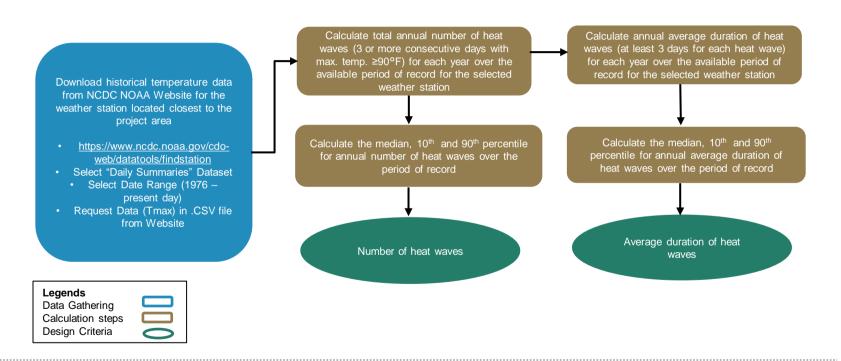
RMAT Tiered Methodology to Evaluate Heat Waves- Tier 3 Projects (Step 0: Complete MACA data download)

RMAT Methodology to Download Data from MACA Website

 Go to https://climate.northwestknowledge.net/MACA/data_portal.php to download data from Multivariate Adaptive Constructed Analogs (MACA) data portal

RMAT Tiered Methodology to Evaluate Heat Waves - Tier 3 Projects (Step 1: Calculate Days ≥90°F) Example: Moakley Park, Boston

Year	Sum of bcc- csm1-1	Sum of bcc- csm1-1-m	Sum of CCSM4	Sum of CNRM-CM5	Sum of CSIRO- Mk3-6-0	Sum of HadGEM2- CC365	Sum of inmcm4	Sum of IPSL- CM5A-LR	Sum of IPSL- CM5B-LR	Sum of MIROC5	Sum of MRI- CGCM3
2060	3	4	6	2	3	9	4	4	7	5	3
2061	2	8	7	2	3	5	2	2	2	8	5
2062	1	3	5	6	2	9	4	2	4	5	4
2063	2	3	3	5	7	5	4	4	5	4	4
2064	5	8	6	7	9	7	1	8	2	7	8
2065	6	6	4	3	6	7	0	5	9	8	1
2066	4	4	3	1	5	8	2	4	5	5	1
2067	8	8	6	2	7	7	1	4	4	7	4
2068	5	5	5	4	8	6	4	3	3	6	6
2069	8	3	2	4	4	7	0	8	6	10	2
2070	4	7	7	6	4	6	1	6	9	3	3
2071	5	6	5	7	2	9	2	7	5	5	4
2072	1	8	4	4	4	4	0	8	9	3	3
2073	3	8	5	9	7	8	1	8	6	6	4
2074	6	2	6	3	9	6	4	9	4	6	3
2075	7	6	5	3	7	8	1	3	5	9	6
2076	3	8	6	7	6	5	0	5	4	7	4
2077	6	3	3	4	7	6	2	9	8	4	3
2078	7	4	3	7	6	9	1	6	5	5	2
2079	6	2	5	5	3	8	4	6	9	6	3
2080	5	5	7	6	4	6	3	7	6	8	4
2081	8	6	7	4	7	8	3	7	7	4	6
2082	7	3	9	8	4	8	1	8	4	8	3
2083	4	5	9	2	3	5	3	8	6	5	2
2084	6	8	9	6	6	7	3	9	4	7	4
2085	4	6	7	3	7	6	2	5	3	10	5
2086	8	6	4	2	5	10	1	3	6	8	5
2087	3	3	5	2	4	8	1	6	9	4	4
2088	5	4	5	7	5	6	4	6	7	6	3
2089	4	9	11	7	4	6	0	4	6	10	5
Min	1	2	2	1	2	4	0	2	2	3	1
Max	8	9	11	9	9	10	4	9	9	10	8
Med	5	6	5	4	5	7	2	6	6	6	4
Mean	5	5	6	5	5	7	2	6	6	6	4
10th percentile	2	3	3	2	3	5	0	3	3	4	2
50th percentile	5	6	5	4	5	7	2	6	6	6	4
90th percentile	8	8	9	7	8	9	4	9	9	10	6


RMAT Tiered Methodology to Evaluate Heat Waves - Tier 3 Projects (Step 2: Calculate Median, 10th, and 90th percentiles for all GCMs) Example: Moakley Park, Boston

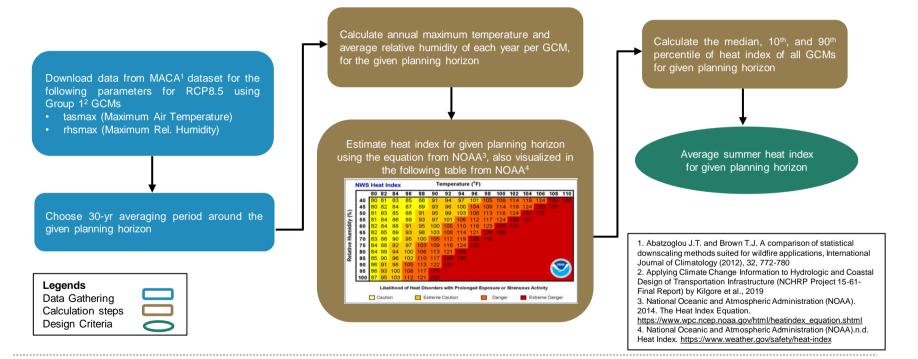
2070	# of Heat Waves
10th percentile	3
Median	5
90th percentile	8

RMAT Tiered Methodology to Evaluate Number and Duration of Heat Waves Tier 2 and Tier 1 Projects

Given from Standards Output: Planning Horizon (2030, 2050, 2070, 2100); Confidence Interval (10th, 50th, 90th)

REFERENCES

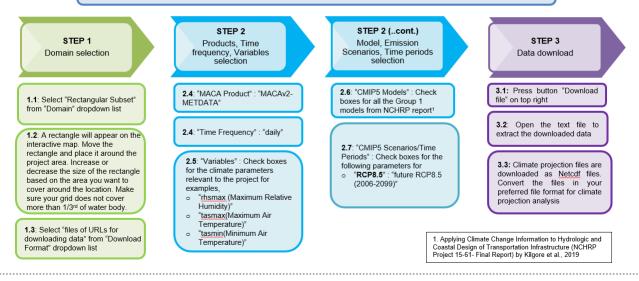
- 1. Abatzoglou J.T. and Brown T.J. A comparison of statistical downscaling methods suited for wildfire applications, International Journal of Climatology (2012), 32, 772-780
- 2. Applying Climate Change Information to Hydrologic and Coastal Design of Transportation Infrastructure (NCHRP Project 15-61- Final Report) by Kilgore et al., 2019



Attachment 3.4E - Draft Tiered Methodology Example for Extreme Heat – Heat Index, All Tiers

RMAT Tiered Methodology to Evaluate Heat Index Tier 3 Projects (Highest Level of Effort)

Given from Standards Output: Planning Horizon (2030, 2050, 2070, 2100); Confidence Interval (10th, 50th, 90th)



RMAT Tiered Methodology to Evaluate Heat Index - Tier 3 Projects (Step 0: Complete MACA data download)

RMAT Methodology to Download Data from MACA Website

 Go to https://climate.northwestknowledge.net/MACA/data_portal.php to download data from Multivariate Adaptive Constructed Analogs (MACA) data portal

RMAT Tiered Methodology to Evaluate Heat Index - Tier 3 Projects (Step 1: Calculate the median max. temp. and median avg. rel. humidity) Example: Moakley Park, Boston

						20	70s Tasmax																	
		Max of hcc.	Max of bcc-	Max of	Max of CNRM-	Max of	Max of	Max of	Max of IPSL-	Max of IPSL-	Max of	Max of MRI-	Median Max											
Ro	w Labels	csm1-1	csm1-1-m	CCSM4	CM5	CSIRO-Mk3-6-	HadGEM2-	inmcm4	CM5A-LR	CM5B-LR	MIROC5	CGCM3	of Max-											
	*					0	CC365						Temp											
	2060	104.5	99.3	99.9 102.0	97.1 99.1	102.1 102.0	105.7	97.7	98.2	100.4	101.0	97.6 105.2	99.87											
	2061 2062	96.4 92.2	102.4	102.0	99.1 104.8	102.0	105.0 109.2	99.3 96.7	101.0 99.3	101.6	101.3 97.0	97.0	101.64 100.43											
	2062	101.4	101.5	105.0	104.8	101.0	105.3	90.7	100.7	99.1	99.4	102.0	101.41											
	2003	101.4	103.2	100.8	103.8	101.8	105.5	97.9	100.7	96.7	102.7	96.7	101.41	1				1	1					
	2065	98.0	102.3	101.2	96.8	107.9	107.7	92.6	102.0	98.8	101.1	96.9		Average of	Average	Average	Average	Average of		Average	Average		Average	RHavg
	2066	100.6	101.4	98.7	94.5	107.9	107.5	99.7	102.6	103.3	99.6	97.6	YEAR	bcc-csm1-1			NRM- of CSIRO- M5 Mk3-6-0	HadGEM2- CC365	of inmcm4	of IPSL- CM5A-LR	of IPSL- CM5B-LR	of MIROC5		MEDIAN OF
	2067	99.4	101.6	101.9	96.9	107.8	102.9	96.7	97.6	101.8	100.0	98.2	-		csm1-1-m	CM5							CGCM3	ALL GCMS
	2068	100.0	101.8	99.2	101.7	105.1	109.6	97.2	105.0	99.1	100.7	98.3	2060	78.5	79.2	79.4	78.7	76.7	78.9	79.4	74.6	79.1	79.2	79.0
	2069	103.3	102.0	100.0	104.7	102.1	101.2	102.0	101.9	100.0	101.4	96.7	2061	79.5	78.6	79.2	81.2	75.9	80.3	76.7	77.7	76.9	77.8	78.2
	2070	101.9	101.8	104.2	103.6	101.1	107.7	94.8	104.2	100.5	98.5	105.2	2062	79.5	79.4	79.2	80.1	76.5	80.6	76.6	77.2	78.9	79.4	79.3
	2071	102.8	103.3	100.5	105.3	98.7	108.1	95.2	99.2	100.6	104.1	100.9	2063	79.6	80.1	76.8	79.6	75.1	78.2	77.2	77.2	77.8	79.6	78.0
	2072	94.1	108.0	103.1	97.2	103.7	104.7	93.8	100.6	103.2	103.4	98.1	2064	76.8	77.7	78.6	79.1	76.0	79.5	76.0	77.8	77.6	79.2	77.7
	2073	105.8	100.8	104.5	103.4	103.1	111.8	92.5	102.6	101.0	102.6	98.1	2065	79.4	78.0	78.7	77.6	74.1	79.4	76.2	77.7	75.9	78.9	77.8
	2074	102.3	98.9	104.4	99.5	107.7	107.6	99.6	100.1	104.0	100.0	104.6	2066	79.6	79.6	80.3	79.9	74.6	79.9	76.6	77.3	78.9	78.5	79.3
	2075	102.5	101.0	104.7	102.4	106.1	109.6	93.3	102.9	97.7	101.5	98.2	2067	79.5	78.3	79.3	78.3	76.5	80.2	75.6	78.6	78.0	78.6	78.4
	2076	102.0	101.2	102.7	103.2	101.9	106.4	93.1	99.1	102.6	100.8	98.5	2068	79.1	80.4	78.3	76.7	75.8	80.9	76.9	75.6	79.3	79.2	78.7
	2077	102.4	95.1	98.7	97.1	103.0	113.4	103.4	105.9	100.2	102.1	98.1	2069	78.3	77.7	80.2	77.6	76.4	79.7	75.7	76.1	77.1	77.8	77.6
	2078	105.3	99.8	102.1	107.8	104.6	108.3	95.4	105.8	100.1	101.9	98.7	2070	79.0	78.4	77.9	78.0	76.5	79.1	74.6	77.6	78.3	80.2	78.1
	2079	101.2	102.5	102.2	98.9	98.3	105.7	98.6	103.2	102.3	105.2	97.7	2071	78.6	79.3	76.9	82.2	74.6	79.1	77.1	75.5	77.1	79.7	77.8
	2080	104.1	100.9	103.6	102.3	104.8	109.1	97.4	104.5	102.6	103.0	98.6	2072	79.1	77.8	78.0	78.2	78.1	79.7	75.0	76.5	77.1	80.0	78.0
	2081	104.3	104.5	104.9	103.2	104.8	113.7	98.6	104.2	100.1	98.7	96.3	2073	77.4	78.2	77.6	78.9	76.6	79.5	74.7	75.9	77.3	76.4	77.3
	2082	103.8	102.9	102.1	103.4	104.4	112.8	95.9	103.1	102.0	101.5	100.9	2074	80.0	80.9	80.3	76.9	74.4	80.1	76.7	76.5	76.9	79.5	78.2
	2083	100.3	97.9	102.9	98.8	101.2	112.0	95.5	102.6	102.5	100.0	100.0	2075	78.8	80.2	79.3	78.8	74.7	78.7	77.1	75.8	77.9	78.3	78.5
	2084	101.5	103.4	103.2	97.3	102.1	104.6	99.9	106.0	102.5	98.2	97.8	2076	79.5	79.4	77.2	79.7	75.0	79.5	76.3	77.1	77.2	78.7	78.0
	2085	102.6	101.6	104.9	98.5	100.9	112.9	93.9	109.2	101.3	102.4	96.9	2070	79.5	79.4	78.0	79.1	75.5	80.3	75.9	75.4	79.8	78.9	78.5
	2086	105.1	104.8	107.2	97.1	104.8	112.5	98.7	105.8	102.3	99.7	102.2	2078	79.2	81.1	77.3	79.1	75.7	80.3	75.5	76.0	79.8	80.0	78.5
	2087	96.9	103.9	100.2	96.8	103.3	109.7	102.6	107.3	101.3	105.1	97.4	2078	79.2	77.8	79.4	81.2	76.4	80.2	75.5	76.0	77.1	78.0	78.5
	2088	102.4	102.8	105.3	101.3	103.6	111.6	99.4	106.4	102.0	100.7	100.6	2079	78.9	80.8	79.4	81.2	73.5	77.6	75.9	77.1	76.5	78.0	77.5
	2089	108.0	105.0	107.5	101.8	110.3	105.1	91.9	105.6	107.5	105.5	101.7	2080	77.9	78.8	78.3	78.6	73.5	79.6	73.9	74.8	76.5	79.4	78.1
												⊩	2081	79.3	78.8	78.3	78.0	74.2	80.0	73.9	74.8	76.5	80.7	78.1
												⊩		79.3	78.6									
												⊩	2083			79.0	79.9	74.3	79.2	74.4	76.0	79.1	79.0	79.0
												⊩	2084	77.4	80.5	78.3	79.6	76.3	79.9	76.3	74.8	79.2	79.1	78.7
												⊩	2085	79.8	79.1	77.2	81.9	75.8	79.1	73.9	78.0	76.2	80.1	78.5
												l-	2086	78.9	77.8	80.2	79.3	74.0	78.6	73.9	78.7	76.5	79.1	78.7
													2087	80.7	80.1	78.4	80.5	75.2	81.5	76.2	78.6	78.5	78.5	78.6
	NP	AFT										l l	2088	80.3	80.3	77.9	78.4	75.8	79.4	74.9	76.0	78.7	78.4	78.4
												L	2089	77.4	79.5	77.7	78.9	75.1	79.2	75.1	78.8	77.1	78.1	77.9

RMAT Tiered Methodology to Evaluate Heat Index - Tier 3 Projects (Step 2: Calculate heat index per year based on the NOAA Heat Index Eqn.) Example: Moakley Park, Boston

HI = -42.379 + 2.04901523*T + 10.14333127*RH -.22475541*T*RH - .00683783*T*T - .05481717*RH*RH + .00122874*T*T*RH + .00085282*T*RH*RH -.00000199*T*T*RH*RH

where,

HI = Heat Index

T = Temperature (tasmax)

RI = Relative Humidity (average rhsmax)

2070s Data									
Year	RHavg Median of All GCMs	Median Max of Max-Temp	Heat Index (As PerNOAA Eqn.)						
2060	79	100	158						
2061	78	102	164						
2062	79	100	159						
2063	78	101	162						
2064	78	102	166						
2065	78	101	160						
2066	79	101	160						
2067	78	100	158						
2068	79	101	160						
2069	78	102	164						
2070	78	102	165						
10th percentile	78	100	158						

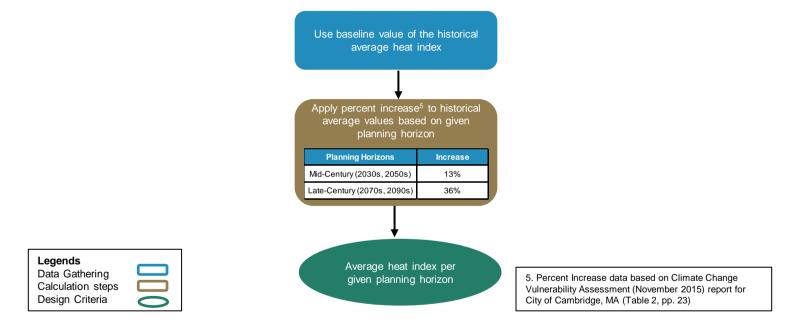
78

79

50th percentile

90th percentile

166


177

102

104

RMAT Tiered Methodology to Evaluate Heat Index Tier 2 and Tier 1 Projects

Given from Standards Output: Planning Horizon (2030, 2050, 2070, 2100); Confidence Interval (10th, 50th, 90th)

REFERENCES

- 1. Abatzoglou J.T. and Brown T.J. A comparison of statistical downscaling methods suited for wildfire applications, International Journal of Climatology (2012), 32, 772-780
- 2. Applying Climate Change Information to Hydrologic and Coastal Design of Transportation Infrastructure (NCHRP Project 15-61- Final Report) by Kilgore et al., 2019
- 3. National Oceanic and Atmospheric Administration (NOAA). 2014. The Heat Index Equation. https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
- 4. National Oceanic and Atmospheric Administration (NOAA).n.d. Heat Index. https://www.weather.gov/safety/heat-index
- 5. Climate Change Vulnerability Assessment (November 2015) report for City of Cambridge, MA

