

Department of Environmental Protection

One Winter Street Boston, MA 02108 • 617-292-5500

Charles D. Baker Governor

Karyn E. Polito Lieutenant Governor Matthew A. Beaton Secretary

> Martin Suuberg Commissioner

PUBLIC NOTICE MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER RESOURCES/ SURFACE WATER DISCHARGE PERMIT PROGRAM 1 WINTER STREET BOSTON, MA 02108 TEL#: (617) 292 -5500

Notice is hereby given that the following Tentative Determination to Issue Antidegradation Authorization To Discharge To an Outstanding Resource Water is being processed and the following actions being proposed thereon pursuant to the Massachusetts Clean Waters Act, as amended, (M.G.L. Chap. 21, §§ 26-53) and 314 CMR 2.06, 3.00 and 4.00:

NAME OF SITE	: 175 Wyman Street
SITE OWNER	: Hewlett Packard, Inc.
SITE OPERATOR	
(if different than owner)	: GZA GeoEnvironmental, Inc.
NPDES PERMIT NUMBER	
ASSIGNED BY EPA	: MAG910002
MASSDEP TRANSMITTAL	
NUMBER	: X275620
NAME OF RECEIVING WATER	L(S)
AND TOWN	: Cambridge Reservoir, Cambridge, MA
PERMIT AUTHORITY FOR DIS	CHARGE : NPDES Remediation General Permit (RGP), effective
	April 8, 2017
PROPOSED ACTION:	Tentative determination to issue Antidegradation Authorization To discharge to an Outstanding Resource Water discharge under the

discharge to an Outstanding Resource Water discharge under the Remediation General Permit (RGP). Discharge is from ongoing and long term groundwater treatment with discharge to Cambridge Reservoir, an Outstanding Resource Water (ORW).

A copy of the Notice of Intent (NOI), applicant's justification for authorization, and Tentative Determination to Issue Antidegradation Authorization To Discharge To an Outstanding Resource Water

This information is available in alternate format. Contact Michelle Waters-Ekanem, Director of Diversity/Civil Rights at 617-292-5751.

TTY# MassRelay Service 1-800-439-2370 MassDEP Website: www.mass.gov/dep (draft decision by MassDEP) are available here: <u>https://www.mass.gov/service-details/massdep-public-hearings-comment-opportunities</u> under "MassDEP Permits & Approvals".

Comments on the proposed action or requests for a public hearing thereon pursuant to 314 CMR 2.07 must be filed with MassDEP either by U.S. mail to: MassDEP, Regulatory Comment Box, 1 Winter Street, 5th floor, Boston, MA 02108, or by email to <u>dep.talks@mass.gov</u> (include "BASF Plainville RGP" in the subject line). All comments should include the sender's full name and address. Comments must be submitted by January 25, 2019. The public comment period is thirty (30) days after publication of this notice.

Lealdon Langley, Director Wetlands and Wastewater Program Department of Environmental Protection

<u>Tentative Determination to Issue Antidegradation Authorization</u> <u>To Discharge To an</u> <u>Outstanding Resource Water</u> <u>Fact Sheet</u>

I. APPLICANT, FACILITY INFORMATION, and DISCHARGE INFORMATION

Name and Address of site:

175 Wyman Street Waltham, MA 02451

Name and Address of Site Owner:

GZA GeoEnvironmental, Inc. 249 Vanderbilt Avenue Norwood, MA 02062

Discharge Information:

Discharge from the Site has been ongoing under NPDES Remediation General Permits (RGPs) since 2005. Following EPA Authorization according to the 2017 RGP, the groundwater containment and treatment system (GCTS) will continue to discharge to an on-property storm drain which eventually flows into an off-property storm water retention area, which discharges to the Cambridge Reservoir. The Massachusetts Surface Water Quality Standards (MASWQS) at 314 CMR 4.05 and 4.06 designate the Cambridge Reservoir as an Inland Water, Class A Public Water Supply, which is protected as an Outstanding Resource Water.

II. LIMITATIONS AND CONDITIONS

Discharge permit limitations are as listed in the 2017 Remediation General Permit (RGP) and are in conformance with 314 CMR 4.00, Massachusetts Surface Water Quality Standards (MASWQS.)

The applicant has demonstrated that an Antidegradation Authorization To Discharge To an Outstanding Resource Water (314 CMR 4.04(3)) may be issued by the Department of Environmental Protection pursuant to 314 CMR 4.04(5)(b).

III. MASSDEP AUTHORIZATION BASIS AND PERMITTING REQUIREMENT

MASWQS and the RGP state that discharges to ORWs in Massachusetts are ineligible for coverage unless an Antidegradation Authorization is granted by MassDEP. Therefore, as described in the Request for Authorization letter dated July 16, 2018, GZA GeoEnvironmental, Inc. submitted a description of how the project would demonstrate compliance with the MASWQS requirements for Antidegradation Authorization listed in 314 CMR 4.04(5)(a)(2) through 4.04(5)(a)(4).

Coverage under the 2017 RGP is required for this discharge in accordance with the Massachusetts Clean Water Act, M.G.L. c. 21, §§ 26-53; 314 CMR 3.03; and 314 CMR 4.00.

EPA's Authorization to discharge includes effluent limitations based on the location of discharge, aquatic life and human health protection criteria, and the MASWQS.

IV. COMMENT PERIOD, HEARING REQUESTS, AND PROCEDURES FOR FINAL DECISIONS

The public comment period for this authorization was published in the MEPA Environmental Monitor on December 26, 2018 and will extend until January 25, 2019. The public comment period is thirty (30) days following the date of publication.

A final decision on the issuance/denial of this permit will be made after the public notice period, and review of any comments received during this period.

V. STATE CONTACT INFORMATION

Additional information concerning the draft permit may be obtained between the hours of 9:00 a.m. and 5:00 p.m. Monday through Friday excluding holidays, from:

Jennifer Wood MassDEP Bureau of Water Resources 1 Winter Street Boston, MA 02108 617-654-6536 Jennifer.Wood@state.ma.us

Lealdon Langley, Director Wetlands and Wastewater Program Department of Environmental Protection

DATE

Department of Environmental Protection

One Winter Street Boston, MA 02108 • 617-292-5500

Charles D. Baker Governor

Karyn E. Polito Lieutenant Governor Matthew A. Beaton Secretary

> Martin Suuberg Commissioner

[Draft for Public Comment Only]

TENTATIVE DETERMINATION TO ISSUE ANTIDEGRADATION AUTHORIZATION TO DISCHARGE TO AN OUTSTANDING RESOURCE WATER

NAME OF SITE	: 175 Wyman Street
SITE OWNER	: Hewlett Packard, Inc.
SITE OPERATOR	
(if different than owner)	: GZA GeoEnvironmental, Inc.
NPDES PERMIT NUMBER	
ASSIGNED BY EPA	: MAG910002
MASSDEP TRANSMITTAL	
NUMBER	: X275620
NAME OF RECEIVING WATER(S)	
AND TOWN	: Cambridge Reservoir, Cambridge, MA
PERMIT AUTHORITY FOR DISCHARG	E : NPDES Remediation General Permit (RGP), effective April 8, 2017

The 2017 RGP was issued by both the Environmental Protection Agency (EPA) and the Massachusetts Department of Environmental Protection (MassDEP) on March 9, 2017, with an effective date of April 8, 2017 and is available for sites located in Massachusetts and New Hampshire that discharge 1.0 million gallons per day or less as a result of remediation activities from eight general categories including collection structure dewatering/remediation.

As required by the RGP, GZA GeoEnvironmental, Inc. submitted a Notice of Intent (NOI) on June 27, 2017 requesting discharge to Cambridge Reservoir, which MassDEP classifies as an Outstanding Resource Water (ORW). Section 1.3 of the 2017 RGP states that discharges to ORWs are ineligible for coverage unless an Antidegradation Authorization is granted by MassDEP, and therefore MassDEP was required to perform an additional review in accordance with the Antidegradation Provisions of the Massachusetts Surface Water Quality Standards (314 CMR 4.04) and MassDEP policy, "Implementation Procedures For The Antidegradation Provisions of the Massachusetts Surface Water Quality Standards,

This information is available in alternate format. Contact Michelle Waters-Ekanem, Director of Diversity/Civil Rights at 617-292-5751. TTY# MassRelay Service 1-800-439-2370 MassDEP Website: www.mass.gov/dep

Printed on Recycled Paper

314 CMR 4.00" ("the Policy") prior to Antidegradation Authorization of the discharge. Also, according to 314 CMR 4.04(5)(c), "Where an authorization Is at issue, the Department shall circulate a public notice in accordance with 314 CMR 2.06. Said notice shall state an authorization is under consideration by the Department, and indicate the Department's tentative determination. The applicant shall have the burden of justifying the authorization. Any authorization granted pursuant to 314 CMR 4.04 shall not extend beyond the expiration date of the permit."

Based on the NOI and additional information dated July 16, 2018, provided by GZA GeoEnvironmental, Inc. and pursuant to the authority granted by Chapter 21, Sections 26-53 of the Massachusetts General Laws, as amended, 314 CMR 2.00, and 314 CMR 4.00, MassDEP tentatively determined to issue the following Antidegradation Authorization To Discharge To an ORW.

MassDEP's Antidegradation Authorization does not provide final authorization for the discharge. With the completion of Antidegradation Authorization, the EPA can proceed with Authorization to discharge under the 2017 RGP.

Project Description

As described in the NOI, discharge from a groundwater containment and treatment system (GCTS) was installed at 175 Wyman Street, Waltham ("the Site") in 1997 to treat trichloroethene (TCE)affected groundwater associated with the Site. Coverage under the RGP was initially issued by the United States Environmental Protection Agency (EPA) on September 22, 2005 for discharges associated with the treatment system. The discharge is ongoing and long term and operates at a maximum effluent flow of 70 gallons per minute (gpm) and an average effluent flow of 30 gpm. The NOI is proposing the continued operation of the GCTS and associated discharge.

The NOI states the following:

"The Site consists primarily of an approximately 27.5-acre parcel located on the easterly side of Route 128 (Interstate Route 95) at 175 Wyman Street, in the north central section of Waltham."

"HP used the Site from 1959 to 1995 for the manufacture of medical equipment. New owners of the property undertook a significant redevelopment of the property in 2008 with demolition of prior buildings, construction of two new buildings, and other associated improvements consisting of parking, landscaping, and a stormwater retention basin."

"A GCTS designed to remove volatile organic compounds (VOCs) from the groundwater has been operating at the Site since September 19, 1997. The Site is governed under the Massachusetts Contingency Plan (MCP; 310 CMR 40.0000) under Release Tracking Number 3-13311. The GCTS consists of six groundwater recovery wells, a flow equalization tank, a tray aerator, a bag filtration system, liquidphase granular activated carbon/ion exchange adsorption unit and two vapor-phase granular activated carbon adsorption units, and associated instrumentation and controls." "Treated groundwater is discharged to an on-property storm drain which eventually flows into an offproperty storm water retention area, which in turn discharges to the Cambridge Reservoir".

Project Site

From the Site, discharge from the treatment system flows into an on-property storm drain which eventually flows into an off-property storm water retention area, which in turn discharges to the Cambridge Reservoir, which according to Massachusetts Surface Water Quality Standards 314 CMR 4.05 and 4.06 (MASWQS), is classified an Inland Water, Class A Public Water Supply and therefore also an Outstanding Resource Water.

Jurisdiction

The 2017 RGP authorization will include pollutant effluent limits based on submitted groundwater data and water quality criteria for freshwater in the MASWQS, which reference USEPA's *National Water Quality Criteria: 2002*, and available dilution at the point of discharge. The 2017 NOI included a Dilution Factor of 1 for the point of discharge based on low flow conditions.

In the previous EPA authorization for this Site dated May 25, 2011 ("2011 EPA Authorization") EPA allowed the Site to discharge according to the RGP issued on September 9, 2010 "2010 RGP". Since an NOI was submitted for the 2017 RGP, the Site continues to operate according the requirements put forth in the 2011 EPA Authorization. The 2011 EPA Authorization included monthly effluent limitations or monitoring for inorganics, VOCs, metal, fuel-related, and other parameters. The 2011 EPA Authorization is located at the following web link:

https://www3.epa.gov/region1/npdes/remediation/noi/2010/FormerHewlettPackardFacility2010NOI.p df.

MASWQS and the RGP state that discharges to ORWs in Massachusetts are ineligible for coverage unless an Antidegradation Authorization is granted by MassDEP. As described in the Request for Authorization letter dated July 16, 2018, GZA GeoEnvironmental, Inc. submitted a description of how the project would demonstrate compliance with the MASWQS requirements for Antidegradation Authorization listed in 314 CMR 4.04(5)(a)(2) through 4.04(5)(a)(4). These responses are paraphrased below.

- Item 1, based on 314 CMR 4.04(5)(a)(2):
 Are there less environmentally damaging alternative sites for the discharge, sources of disposal, or methods to eliminate the discharge that are reasonably available or feasible?
 - Response: The discharge is associated with a groundwater remediation system, which is subject to the Massachusetts Contingency Plan (MCP; 310 CMR 40.0000). As such, some of the elements of this question (relocation of activity, alternative methods of production or operation, etc.) are not applicable. The MCP, 310 CMR 40.0040 (specifically sections 40.0041 through 40.0045), outlines options for the management of discharges from remedial systems (referred to as "Remedial Wastewater"). The three categories for the discharge of Remedial Wastewater are Ground Surface and Subsurface Discharge, POTW Discharge, and Surface Water Discharge.

Ground Surface and Subsurface Discharge are not feasible because of shallow bedrock and low permeable overburden soil, and the presence of several subsurface drainage structures on site. Also, POTW Discharge is not a possibility because the nearest treatment facility prohibits the discharge of groundwater.

Accordingly, the feasible option for the discharge generated from the groundwater remediation system on the Site is to surface water.

• Item 2, based on 314 CMR 4.04(5)(a)(3):

To the maximum extent feasible, are the discharge and activity designed and conducted to minimize adverse impacts on water quality, including implementation of source reduction practices?

- Response: The existing groundwater remediation system utilizes six recovery wells to mitigate the off-Site migration of Site-related groundwater contaminants. The treatment of recovered groundwater utilizes applicable treatment components to remove Site-related contaminants (predominately TCE, cis-1,2-dichloroethene, and tetrachloroethene) plus metals (predominantly copper, iron, lead, selenium, and zinc) also present in the groundwater. The groundwater treatment system was reviewed by EPA and discharge of the treated water is authorized by EPA under the NPDES RGP. EPA imposed conditions are conservative and ensure that the discharge of treated groundwater does not result in exceedances of water quality standards for drinking water or for aquatic life. Nutrients, toxics, and hazardous substances are not utilized in the treatment process. As noted above, the discharge is associated with a groundwater remediation system, rather than an industrial process. The references to production processes, source reduction (in the sense implied), and raw materials do not apply. With respect to treatment technologies, process controls and system operation, it is GZA's opinion that the current system meets the requirements of the RGP and the MCP.
- Item 3, based on 314 CMR 4.04(5)(a)(4):
 Will the discharge impair existing uses of the receiving water or result in a level of water quality less than the specified for the Class?
 - Response: The existing discharge is subject to discharge limits set by EPA as to not impair the existing uses of the receiving water. As stipulated by the EPA, the discharge water is sampled and analyzed monthly to ensure compliance. Beginning in 1999, semiannual sampling for Site-related contaminants of surface water from the reservoir near the point of discharge has been performed. Since that time there was one occasion (June 2007) when a contaminant (TCE) was detected in the surface water; however, the reported concentrations (<1 ug/L) were below drinking water standards (5 ug/L).
- Item 4

Since expiration of the previous RGP on September 9, 2015, did discharge from the facility meet the requirements of the 2010 NOI?

Response: Since September 9, 2015, the effluent from the groundwater remediation system exceeded the discharge limits once. The exceedance was for TCE during the March 2016 monthly sampling event. The system was deactivated and the exceedance (13 ug/L vs. discharge limit of 5 ug/L) was reported to EPA. Corrective actions were performed and on March 30, 2016, the system was reactivated, and an effluent sample was collected confirming compliance with the discharge limits. These results were also communicated to the EPA. With this one exception the discharge from the remediation system has been in compliance since September 2015.

Conclusion

The NOI and Request for Authorization have sufficiently defined the nature and general elements of the project for the purposes of MassDEP review and demonstrated that impact on the ORW will be minimized to the extent practicable. Based on review of the documents provided and comments received, MassDEP determined that the discharge meets the requirements for authorization listed in 314 CMR 4.04(5)(b) and 314 CMR 4.04(5)(a)2-4 and is proposing to authorize the discharge, subject to the terms and conditions of EPA's authorization to discharge under the RGP.

Lealdon Langley, Director Wetlands and Wastewater Program Department of Environmental Protection [Date]

Proactive by Design

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com June 27, 2017 File No. 01.0015522.17

United States Environmental Protection Agency – Region 1 1 Congress Street, Suite 1100 Boston, Massachusetts 02114-2023

Re: Submittal of Notice of Intent (NOI) Remediation General Permit - Authorization #MAG910002 175 Wyman Street Waltham, Massachusetts

To Whom It May Concern:

GZA GeoEnvironmental, Inc. (GZA), on behalf of our client, HP, Inc. (HP), is submitting the attached Notice of Intent (NOI) form (Appendix A) for a Remediation General Permit (RGP) for the 175 Wyman Street project (the Site). A groundwater containment and treatment system (GCTS) was installed at the Site in 1997 to treat trichloroethene (TCE)-affected groundwater associated with the Site. Coverage under the National Pollutant Discharge Elimination System (NPDES) RGP was initially issued by the United States Environmental Protection Agency (EPA) on September 22, 2005 for discharges associated with the treatment system. With submission of this NOI, we are proposing the continued operation of the GCTS and associated discharge.

BACKGROUND

The Site consists primarily of an approximately 27.5-acre parcel located on the easterly side of Route 128 (Interstate Route 95) at 175 Wyman Street, in the north central section of Waltham (Figure 1 - Locus Plan). HP used the Site from 1959 to 1995 for the manufacture of medical equipment. New owners of the property undertook a significant redeveloped of the property in 2008 with demolition of prior buildings, construction of two new buildings, with other associated improvements consisting of parking, landscaping, and a stormwater retention basin.

As indicated previously, a GCTS designed to remove volatile organic compounds (VOCs) from the groundwater has been operating at the Site since September 19, 1997. The Site is governed under the Massachusetts Contingency Plan (MCP; 310 CMR 40.0000) under Release Tracking Number 3-13311. The GCTS consists of six groundwater recovery wells, a flow equalization tank, a tray aerator, a bag filtration system, liquid-phase granular activated carbon/ion exchange adsorption unit and two vapor-phase granular activated carbon adsorption units, and associated instrumentation and controls. A process flow diagram is illustrated in Figure 2.

Treated groundwater is discharged to an on-property storm drain which eventually flows into an off-property storm water retention area, which in turn discharges to the Cambridge Reservoir as shown on Figure 3. This discharge is currently performed in accordance with the following permits and approvals: coverage under the NPDES Remediation General Permit (Authorization #MAG910002); approval from the City of Cambridge Water Department; and a Massachusetts Highway Department (MHD) access permit (for discharge to the stormwater retention pond). Copies of these permits and approvals are included in Appendix B. In addition, copies of semi-annual status reports, including operational status of the GCTS and water quality monitoring of

June 27, 2017 US EPA – Region 1 File No. 01.0015522.17 *Page | 2*

the influent and effluent, are provided to the City of Cambridge Water Department and the Massachusetts Department of Environmental Protection.

NOTICE OF INTENT

This NOI application also includes the following items:

- Summary of historically believed present parameters of the influent groundwater is included in Table 1 and laboratory analytical results of the source water are included as Appendix C (note: because of the high concentration of some volatile organic compounds the detection limit of other compounds is elevated to above applicable effluent limits);
- Laboratory analytical results for the receiving water area are included as Appendix D;
- Calculation sheets for establishing effluent limitations are included as Appendix E;
- Review of Areas of Critical Environmental Concern indicate that the proposed discharge is not to an ACEC and a review of Federally Listed Endangered and Threatened Species in Massachusetts indicated that the Northern Long-eared Bat is located state-wide. However, this species is not likely to be present at the Site additionally the discharge does not impact habitat. In addition, review of the US Fish and Wildlife's online Information for Planning and Consultation (IPaC) service, indicated that federally listed species were not likely to be present within the action area of site activities (see Appendix F);
- Review of the Massachusetts Geographic Information Systems (MassGIS) DEP Priority Resources Map of Waltham shows that there are no ACECs and no habitats for Species of Special Concern or Threatened or Endangered Species within 500 feet of the subject site (Figure 4). Therefore, permit eligibility meets "Criterion A"; and
- Review of the electronic Massachusetts Cultural Resource Information System database, made available through Massachusetts Historical Commission, found that the are no properties listed or eligible for listing on the National Registry of Historic Places under the National Historic Preservation Act. Therefore, there will be no impact associated with this discharge to such properties. The documentation of this review can be found in Appendix G.

Please do not hesitate to contact the undersigned at (781) 278-3700 if you have any questions or require further information.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

John A. Colbert, P.E. Senior Project Manager

William R. Norman, LSP Principal

Patrick F. Sheehan, P.E. Consultant/Reviewer

June 27, 2017 US EPA – Region 1 File No. 01.0015522.17 *Page | 3*

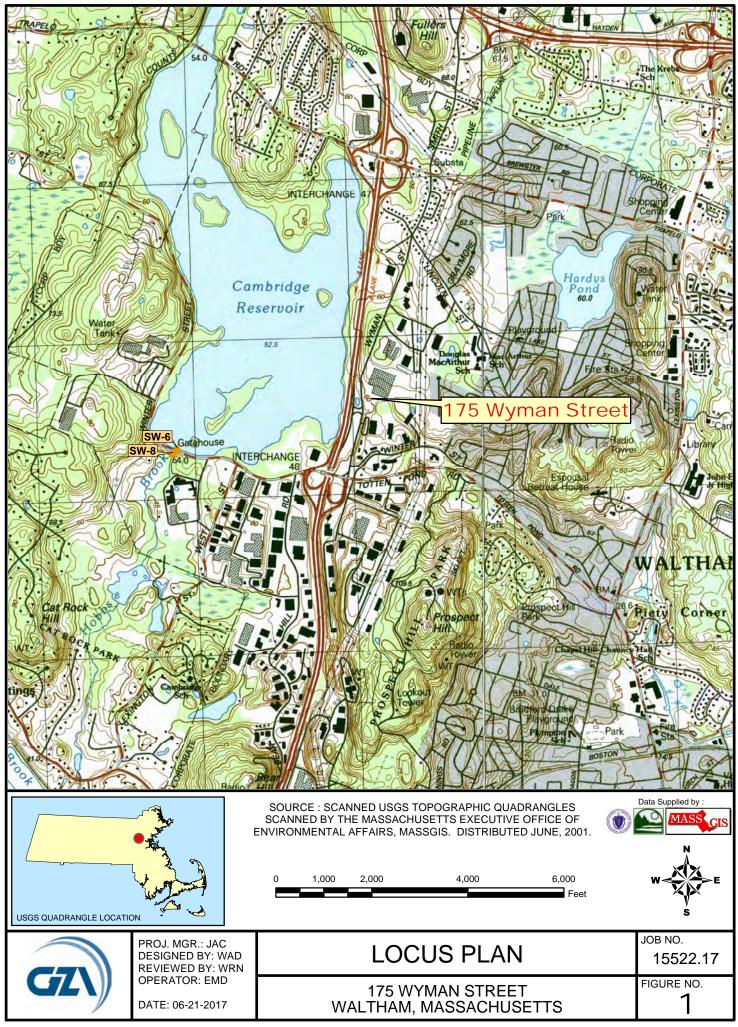
Enclosures:

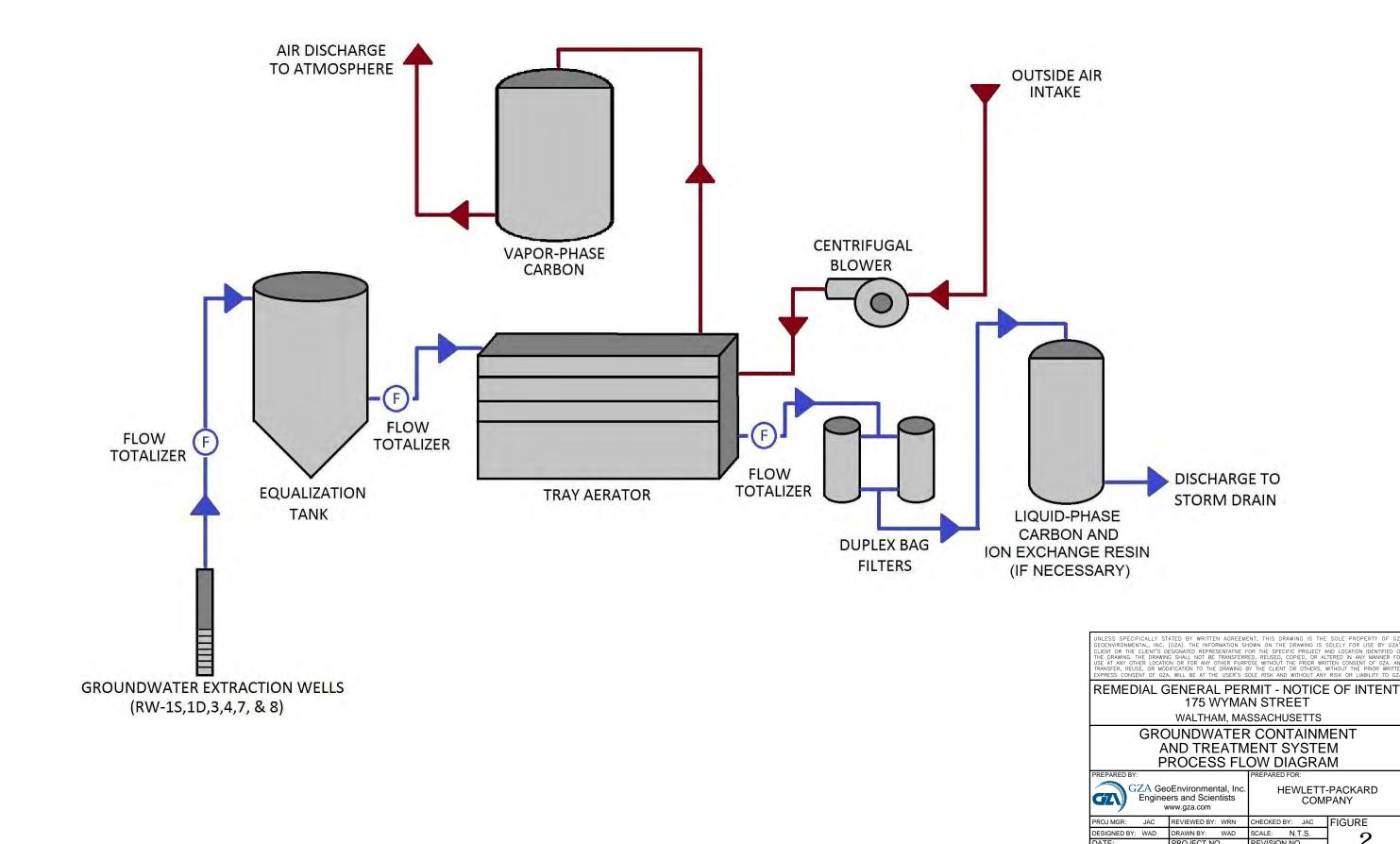
Table:	Table 1 – Summary of Historically Believed Present Parameters - Influent Groundwater Analytical Results
Figures:	Figure 1 - Site Locus Map Figure 2 - Groundwater Containment and Treatment System Process Flow Diagram
	Figure 3 – Site Plan Figure 4 – Site Scoring Map Showing 500 Foot & ½ Mile Radii
Appendices:	Appendix A - Notice of Intent Form
Appendices.	Appendix B – Discharge Approval Letters
	Appendix C – Influent Laboratory Analytical Report
	Appendix D – Receiving Water Laboratory Analytical Report
	Appendix E – Calculation Sheets for Effluent Limitations
	Appendix F - ACEC and Federally Listed Endangered and Threatened Species in Massachusetts Evaluation Appendix G – MACRIS Search Results

TABLES

TABLE 1 SUMMARY OF HISTORICALLY BELIEVED PRESENT PARAMETERS INFLUENT GROUNDWATER ANALYTICAL RESULTS

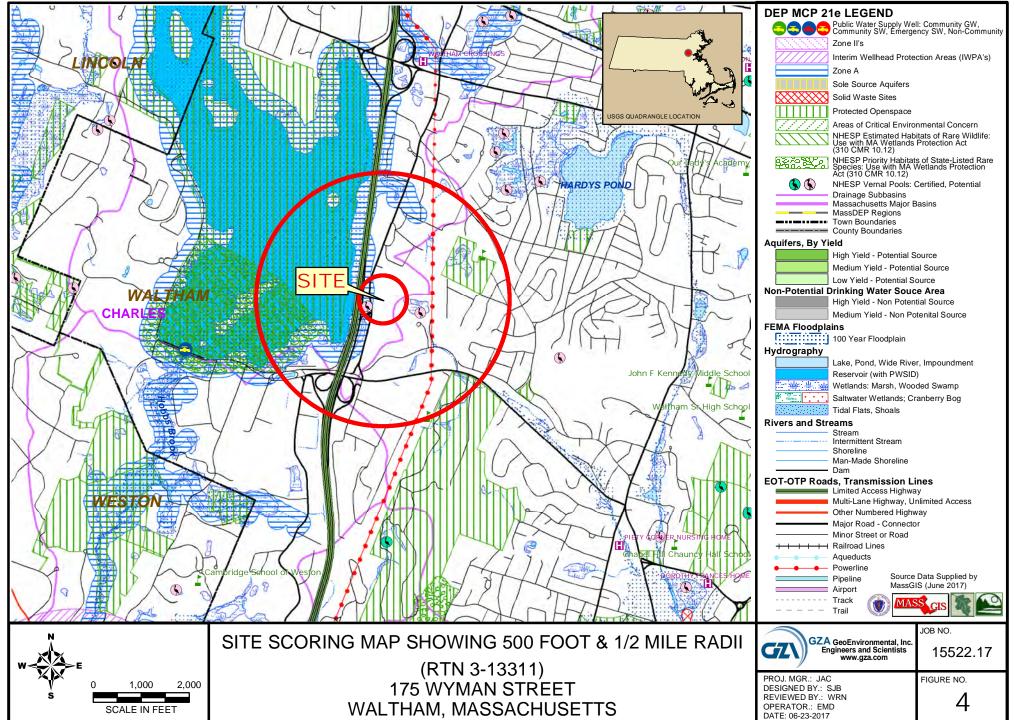
Sample Collection	System Influent Samples							
Date	TCE (ppb)	PCE (ppb)	DCE (ppb)	Fe (ppb)	Zn (ppb)	Cu (ppb)	Pb (ppb)	Se (ppb)
7/14/2016	6,600	50	25	343	53.1	52.4	7.6	2.5
8/11/2016	5,400	25	25	162	11.5	10.2	1.3	5.0
9/9/2016	4,600	25	25	144	11.0	8.5	1.2	2.5
10/6/2016	6,400	25	25	1,300	57.3	55	7.8	2.5
11/10/2016	8,200	59	25	1,410	78.6	38	6.9	2.5
12/8/2016	7,800	52	25	765	56.2	33	4.4	2.5
1/13/2017	9,300	65	25	3,690	25.5	51.4	25.3	2.5
2/8/2017	8,100	25	25	58	5.0	8	0.5	2.5
3/9/2017	6,400	25	25	538	43.1	17	1.6	2.5
4/7/2017	7,300	55	25	494	13.0	9	0.5	2.5
5/4/2017	7,400	59	25	95	11.3	7	0.25	2.5
5/4/2017	7,200	57	<u>25</u>	107	<u>6.73</u>	5.16	0.25	2.5
6/8/2017	7,400	47	25	116	16.3	8	0.5	2.5
Average	7,085	44	25	709	29.9	23	4.5	2.7
95th percentile	9,027	69	25	2295	68.7	54.2	15.4	3.8


Notice of Intent Application 175 Wyman Street, Waltham, Massachusetts


Notes:

- 1. Samples analyzed for VOCs via EPA Method 8260 and samples analyzed for metals via EPA Method 3005/6020 or 200.7.
- 2. Concentrations in *italics* represent half of the reported detection limit and concentrations with *italics* and <u>underline</u> are reported as estimated.
- 3. TCE = Trichloroethylene; PCE = Tetrachloroethylene; DCE = cis-1,2-Dichloroethylene; Fe = iron; Zn = zinc; Cu = copper; Pb = Lead; Se = Selenium.
- 4. For a complete list of target analytes and detection limits, see attached laboratory data sheets.
- 5. Two sets of samples were collected on May 4, 2017 to statisfy the NOI application and compliance with the existing RGP permit.
- 6. Calculated concentrations in bold have been used to represent influent concentrations to calculate water quality effluent standards.

FIGURES



REMEDIAL GENERAL PERMIT - NOTICE OF INTENT 175 WYMAN STREET WALTHAM, MASSACHUSETTS							
GROUNDWATER CONTAINMENT AND TREATMENT SYSTEM PROCESS FLOW DIAGRAM							
Enginee	Environmental, Inc. ers and Scientists ww.gza.com	PREPARED FOR: HEWLETT COM	-PACKARD PANY				
PROJ MGR: JAC DESIGNED BY: WAD	REVIEWED BY: WRN DRAWN BY: WAD	CHECKED BY: JAC SCALE: N.T.S.	FIGURE				
DATE: 06-21-2017	PROJECT NO. 01.0015522.17	REVISION NO.	2				

APPENDIX A

NOTICE OF INTENT FORM

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:			
	Street:			
	City:		State:	Zip:
2. Site owner	Contact Person:			
	Telephone:	Email:		
	Mailing address:			
	Street:			
Owner is (check one): □ Federal □ State/Tribal □ Private □ Other; if so, specify:	City: St			Zip:
3. Site operator, if different than owner	Contact Person:			
	Telephone:	Email:		
	Mailing address:			
	Street:		1	
	City:		State:	Zip:
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):			
	□ MA Chapter 21e; list RTN(s):	□ CERCI	.A	
NPDES permit is (check all that apply: \Box RGP \Box DGP \Box CGP	□ NH Groundwater Management Permit or	\Box UIC Pr	•	
\square MSGP \square Individual NPDES permit \square Other; if so, specify:	Groundwater Release Detection Permit:		Pretreatmen	t
		□ CWA S	Section 404	

B. Receiving water information:

1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classification of receiving water(s):
Receiving water is (check any that apply):	Resource Water □ Ocean Sanctuary □ territorial sea □ `	Wild and Scenic River
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one): \Box Yes \Box	l No
Are sensitive receptors present near the site? (check one): If yes, specify:	□ Yes □ No	
3. Indicate if the receiving water(s) is listed in the State's I pollutants indicated. Also, indicate if a final TMDL is avail 4.6 of the RGP.		
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Append		ctions in
5. Indicate the requested dilution factor for the calculation accordance with the instructions in Appendix V for sites in		
6. Has the operator received confirmation from the approp If yes, indicate date confirmation received:	riate State for the 7Q10and dilution factor indicated? (che	eck one): □ Yes □ No
7. Has the operator attached a summary of receiving water (check one): \Box Yes \Box No	sampling results as required in Part 4.2 of the RGP in ac	cordance with the instruction in Appendix VIII?

C. Source water information:

1. Source water(s) is (check any that apply):			
Contaminated groundwater	□ Contaminated surface water	□ The receiving water	□ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	\Box A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	□ Other; if so, specify:
\Box Yes \Box No	□ Yes □ No		

2. Source water contaminants:					
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance				
the RGP? (check one): \Box Yes \Box No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): \Box Yes \Box No				
3. Has the source water been previously chlorinated or otherwise contains residual chlorine? (check one): Yes No					

D. Discharge information

1. The discharge(s) is a(n) (check any that apply): Existing discharge New discharge New source					
Outfall(s):	Outfall location(s): (Latitude, Longitude)				
Discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) via (check any that apply): D	to the receiving water □ Indirect discharge if so specify.				
Discharges enter the receiving water(s) via (check any that appry).	se to the receiving water \Box mandet discharge, it so, specify.				
\Box A private storm sewer system \Box A municipal storm sewer system					
If the discharge enters the receiving water via a private or municipal storm sewer sys	item:				
Has notification been provided to the owner of this system? (check one): \Box Yes \Box N	No				
Has the operator has received permission from the owner to use such system for discharges? (check one): \Box Yes \Box No, if so, explain, with an estimated timeframe for obtaining permission:					
Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): 🗆 Yes 🗆 No					
Provide the expected start and end dates of discharge(s) (month/year):					
Indicate if the discharge is expected to occur over a duration of: \Box less than 12 mor	ths \Box 12 months or more \Box is an emergency discharge				
Has the operator attached a site plan in accordance with the instructions in D, above	$?$ (check one): \Box Yes \Box No				

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
 I – Petroleum-Related Site Remediation II – Non-Petroleum-Related Site Remediation III – Contaminated Site Dewatering IV – Dewatering of Pipelines and Tanks V – Aquifer Pump Testing VI – Well Development/Rehabilitation VII – Collection Structure Dewatering/Remediation VIII – Dredge-Related Dewatering 	 A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile Organic Compounds F. Fuels Parameters 					
	 b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H) 					
	Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)					
	 A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				
	 D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile Organic Compounds F. Fuels Parameters 					

4. Influent and Effluent Characteristics

Parameter or or believed believed	Known	Known Known				Infl	luent	Effluent Limitations	
		or # of ieved samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 µg/L	
Arsenic								104 µg/L	
Cadmium								10.2 µg/L	
Chromium III								323 µg/L	
Chromium VI								323 µg/L	
Copper								242 µg/L	
Iron								5,000 μg/L	
Lead								160 µg/L	
Mercury								0.739 μg/L	
Nickel								1,450 µg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOC	s	·	·	·	·	·		·	·
Total BTEX								100 µg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 µg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

Parameter	Known or believed absent	Known or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
						Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 µg/L	
1,4 Dichlorobenzene								5.0 µg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 µg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 µg/L	
Methylene Chloride								4.6 µg/L	
1,1,1 Trichloroethane								200 µg/L	
1,1,2 Trichloroethane								5.0 µg/L	
Trichloroethylene								5.0 µg/L	
Tetrachloroethylene								5.0 µg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	ר. ר								
Total Phthalates								190 µg/L	
Diethylhexyl phthalate								101 µg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene									
Benzo(a)pyrene								1	
Benzo(b)fluoranthene								1	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								1	
Dibenzo(a,h)anthracene								1	
Indeno(1,2,3-cd)pyrene								1	

Parameter	Known	Known or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
	or believed absent					Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 µg/L	
Naphthalene								20 µg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 µg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu	re, hardness,	salinity, LC	50, addition	al pollutar	nts present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)

 \Box Adsorption/Absorption \Box Advanced Oxidation Processes \Box Air Stripping \Box Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption \Box Ion Exchange \Box Precipitation/Coagulation/Flocculation \Box Separation/Filtration \Box Other; if so, specify:

2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.

Identify each major treatment component (check any that apply):

 \Box Fractionation tanks \Box Equalization tank \Box Oil/water separator \Box Mechanical filter \Box Media filter

 \Box Chemical feed tank \Box Air stripping unit \Box Bag filter \Box Other; if so, specify:

Indicate if either of the following will occur (check any that apply):

 \Box Chlorination \Box De-chlorination

3. Provide the **design flow capacity** in gallons per minute (gpm) of the most limiting component.

Indicate the most limiting component:

Is use of a flow meter feasible? (check one): \Box Yes \Box No, if so, provide justification:

Provide the proposed maximum effluent flow in gpm.

Provide the average effluent flow in gpm.

If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:

4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): \Box Yes \Box No

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)

🗆 Algaecides/biocides 🗆 Antifoams 🗆 Coagulants 🗆 Corrosion/scale inhibitors 🗆 Disinfectants 🗆 Flocculants 🗆 Neutralizing agents 🗆 Oxidants 🗆 Oxygen 🗆

scavengers \Box pH conditioners \Box Bioremedial agents, including microbes \Box Chlorine or chemicals containing chlorine \Box Other; if so, specify:

2. Provide the following information for each chemical/additive, using attachments, if necessary:

a. Product name, chemical formula, and manufacturer of the chemical/additive;

b. Purpose or use of the chemical/additive or remedial agent;

c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;

d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;

e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and

f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).

3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): \Box Yes \Box No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?

(check one): \Box Yes \Box No

G. Endangered Species Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- □ **FWS Criterion A**: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
- □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No
- □ **FWS Criterion C**: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes □ No

2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): 🗆 Yes 🗆 No

Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): \Box Yes \Box No; if yes, attach.

H. National Historic Preservation Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- □ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
- Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
- Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.

2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): 🗆 Yes 🗆 No

Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \Box No

I. Supplemental information

Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.

Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): \Box Yes \Box No Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): \Box Yes \Box No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

A BMPP meeting the requirements of this general permit will be implemented upon initiation of the BMPP certification statement: discharge.

Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes 🔳	No 🗆					
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes 🔳	No 🗆					
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes 🔳	No 🗆 NA 🗆					
discharges, including a copy of this NOI, if requested.							
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site							
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes 🔳	No 🗆 NA 🗆					
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge							
permit(s). Additional discharge permit is (check one): 🗆 RGP 🗆 DGP 🗆 CGP 🗆 MSGP 🗖 Individual NPDES permit	Check one: Yes \Box	No 🗆 NA 🔳					
□ Other; if so, specify:							
Signature: Date: 6/27/17							
Print Name and Title: William R. Norman, Principal, LSP, GZA Geo Environmental, Inc.							
		1					

APPENDIX B

DISCHARGE APPROVAL LETTERS

CAMBRIDGE WATER DEFT.

CITY OF CAMBRIDGE

MASSACHUSETTS

WATER DEPARTMENT 250 FRESH POND PARKWAY CAMBRIDGE, MASS. 02130

617-349-4770

September 15, 1997

William Norman, L.S.P. Principal GZA GeoEnvironmental, Inc. 320 Needham Street Newton Upper Falls, MA 02164

Re: Request for Approval Groundwater Treatment System Discharge 175 Wyman Street Waltham, Massachusetts

Dear Mr. Normah

The Cambridge Water Department (CWD) would like to acknowledge the tremendous efforts that you and your staff have made in the development and implementation of the groundwater remediation program for the above referenced site. Your early inclusion of the CWD in the design process, as well as your efforts to address our water quality concerns are very much appreciated.

As requested in your letter of April 28, 1997, the CWD does approve the discharge of treated groundwater into Hobbs Brook Reservoir as part of the implementation of the Immediate Response Action Plan for this site. As part of this approval the CWD would like to receive copies of all analytical test results for water quality samples collected and be notified within 24 hours of a controller-initiated shutdown of the system and any corrective actions that are being taken or considered.

Please call me if you have any questions regarding this approval.

Very truly yours, This Thitm Chip Norton Watershed Manager

cc: Michael Nicoloro, CWD Cambridge Water Board Paul Dadak, Hewlett Packard Kyle MacAfee, DEP-NERO William F. Weld

IASSI

HIGHWA

Argeo Paul Cellucci Lieutenant Governor James J. Kerasiotes Secretary

Laurinda T. Bed Commission

Permit No. 496-0271

PERMIT - WALTHAM

Subject to all the terms, conditions, and restrictions printed or written below, and on the reverse side hereof, permission is hereby granted to GZA Geoenvironmental, Inc. to enter upon the State Highway known as northbound Route 128/ Interstate 95 at the Wyman Street interchange for the purpose of discharging treated groundwater from the aquifer surrounding the Hewlett Packard Facility on Wyman Street into the State owned drainage system and detention pond via an on-site stormwater catch basin.

This Permit requires periodic inspection of the detention pond to ensure conformance with the National Pollution Discharge Elimination System Permit Exclusion.

Any and all technical data derived from the afore-mentioned operation shall be forwarded to the MHD District Four Environmental Engineer.

WORK HOURS: 9:00 A.M. thru 3:00 P.M. Monday thru Friday

Provisions shall be made for the safety and protection of any Pedestrian Traffic during the work period.

The work will be performed as per plans on file at the Massachusetts Highway Department District Four Permits Office.

The Grantee shall notify the District Permits Engineer at (617) 648-6100, two (2) days prior to the start of work.

Massachusetts Highway Department • District 4 • 519 Appleton St., Arlington, MA 02174 • (617) 645-6127

The Grantee shall make contact with the Area Contract Specialist III via Pager Telephone Number #617-644-3602, forty-eight hours prior to start of work. No work shall be authorized without said notification.

A copy of this permit must be on the job site at all times for inspection. Failure to have this permit available will result in suspension of the rights granted by this permit.

This permit is issued with the stipulation that it may be modified or revoked at any time at the discretion of the District Four Highway Director or his representative without rendering said Department or the Commonwealth of Massachusetts liable in any way.

Free flow of traffic shall be maintained at all times.

When in the opinion of the Engineer, this operation constitutes a hazard to traffic in any area, the Grantee may be required to suspend operations during certain hours and to remove his equipment from the roadway.

The Grantee will be responsible for any damage caused by his operation to curbing, structures, roadway, etc..

The Grantee shall be responsible for any ponding of water which may develop within the State Highway Layout, caused by this work.

No work shall be authorized during snow, sleet, or ice storms and subsequent snow removal operations. No bituminous concrete shall be installed between November 15, 199 and April 15, 199.

The Highway surface shall be kept clean of debris at all times and shall be thoroughly cleaned at the completion of this permit.

At the completion of this permit, all disturbed areas shall be restored to a condition equal or similar to that which existed prior to the work.

The Grantee shall indemnify and save harmless the Commonwealth and its Highway Department against all suits, claims or liability of every name and nature arising at any time out of or in consequence of the acts of the Grantee in the performance of the work covered by this permit and or failure to comply with terms and conditions of the permit whether by themselves or their employees or subcontractors.

APPLICANT'S REPRESENTATIVE: Pat Sheehan TELEPHONE NUMBER: 617-630-6190

PERMIT CONTINUED

(SEE OTHER SIDE FOR ADDITIONAL CONDITIONS)

122

No work shall be done under this permit until the Grantee shall have communicated with and received instructions from the District Highway Director of the Massachusetts Highway Department at 519 Appleton Street, Arlington, Ma. 02174.

This permit shall be void unless the work herein contemplated shall have been completed before June 11, 1997.

Dated at Arlington this 11th day of June, 1996.

Massachusetts Highway Department,

By

Sherman Eidelman, P.E. District Highway Director

WJD

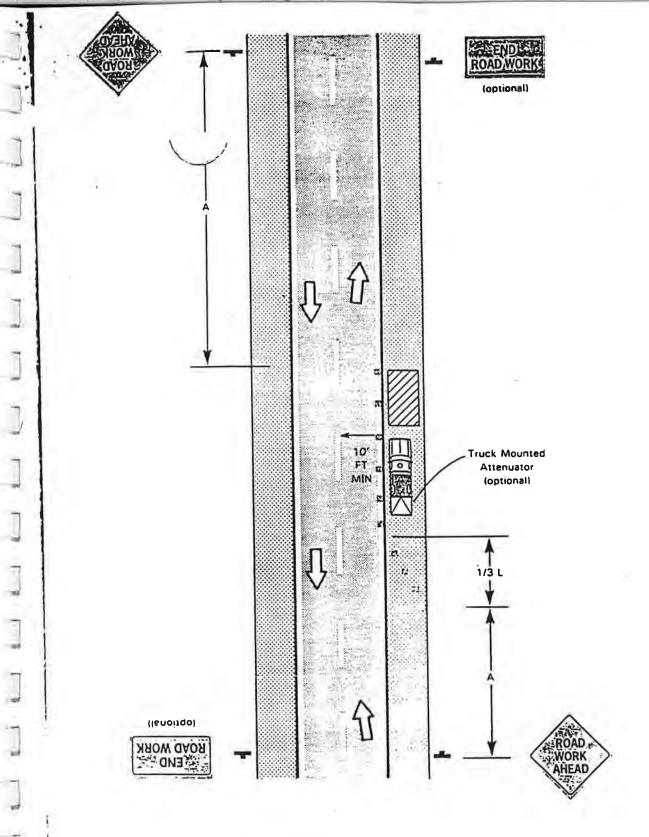


Figure TA-6. Shoulder work with minor encroachment.

APPENDIX C

INFLUENT LABORATORY ANALYTICAL REPORT

ANALYTICAL REPORT

Lab Number:	L1621793
Client:	GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062
ATTN: Phone:	Bill Davis (781) 278-5769
Project Name: Project Number:	HP WALTHAM 01.0015522.16
Report Date:	07/22/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	HP WALTHAM
Project Number:	01.0015522.16

 Lab Number:
 L1621793

 Report Date:
 07/22/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1621793-01	INF	WATER	WALTHAM, MA	07/14/16 09:30	07/14/16
L1621793-02	MID	WATER	WALTHAM, MA	07/14/16 09:30	07/14/16
L1621793-03	EFF	WATER	WALTHAM, MA	07/14/16 09:30	07/14/16

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1621793

 Report Date:
 07/22/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Compos Melissa Cripps

Authorized Signature:

Title: Technical Director/Representative

Date: 07/22/16

ORGANICS

VOLATILES

				Serial_N	o:07221615:24
Project Name:	HP WALTHAM			Lab Number:	L1621793
Project Number:	01.0015522.16			Report Date:	07/22/16
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1621793-01 INF WALTHAM, MA Water 1,8260C 07/18/16 13:15 PD	D		Date Collected: Date Received: Field Prep:	07/14/16 09:30 07/14/16 Not Specified

Volatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug 1,1-Dichloroethane ND ug Chloroform ND ug Chloroform ND ug 1,2-Dichloropropane ND ug 1,2-Dichloropropane ND ug Dibromochloromethane ND ug 1,1,2-Trichloroethane ND ug Tetrachloroethene 50 ug Chlorobenzene ND ug 1,1-Trichloroethane ND ug 1,2-Dichloropropene ND ug 1,1-Trichloroethane ND ug 1,1-Trichloroethane ND ug 1,1,1-Trichloroethane ND ug 1,1,1-Trichloropenpene ND ug Itans-1,3-Dichloropropene ND ug Itans-1,3-Dichloropropene ND ug Itans-1,2-Z-Tetrachloroethane ND ug Itans-1,2-Z-Tetrachloroethane ND ug Gluene <th>/1 75 /1 75 /1 50 /1 180 /1 50 /1 50 /1 50 /1 50 /1 50 /1 50</th> <th>) </th> <th>100 100 100 100 100 100 100 100</th>	/1 75 /1 75 /1 50 /1 180 /1 50 /1 50 /1 50 /1 50 /1 50 /1 50) 	100 100 100 100 100 100 100 100
1,1-Dichloroethane ND ug Chloroform ND ug Carbon tetrachloride ND ug 1,2-Dichloropropane ND ug Dibromochloromethane ND ug 1,1,2-Trichloroethane ND ug Tetrachloroethane ND ug 1,1,2-Trichloroethane ND ug Trichlorofluoromethane ND ug 1,2-Dichloroethane ND ug 1,1,1-Trichloroethane ND ug 1,2-Dichloropthane ND ug I,1,1-Trichloroethane ND ug Bromodichloropropene ND ug I,1,2,2-Tetrachloroethane ND ug Benzene ND ug Toluene ND ug Ethylbenzene ND ug Chloromethane ND ug Bromomethane ND ug Stromethane ND ug Stromethane ND ug Stromet	/ 75 / 75 / 50 / 180 / 50 / 75 / 50) 	100 100 100 100 100
Chloroform ND ug Carbon tetrachloride ND ug 1,2-Dichloropropane ND ug Dibromochloromethane ND ug 1,1,2-Trichloroethane ND ug 1,1,2-Trichloroethane ND ug Tetrachloroethane ND ug 1,1,2-Trichloroethane ND ug Trichloroethane ND ug 1,2-Dichloroethane ND ug 1,2-Dichloroethane ND ug 1,1-Trichloroethane ND ug 1,1,1-Trichloroethane ND ug 1,1,1-Trichloropropene ND ug Irans-1,3-Dichloropropene ND ug Bromodichloromethane ND ug 1,1,2,2-Tetrachloroethane ND ug I,1,2,2-Tetrachloroethane ND ug Benzene ND ug Toluene ND ug Ethylbenzene ND ug Chloromethane ND ug Bromomethane ND ug	/1 75 /1 50 /1 180 /1 50 /1 50 /1 75 /1 50) 	100 100 100 100
Carbon tetrachlorideNDug1,2-DichloropropaneNDug1,2-DichloropropaneNDugDibromochloromethaneNDug1,1,2-TrichloroethaneNDugTetrachloroethane50ugChlorobenzeneNDug1,2-DichloroethaneNDug1,2-DichloroethaneNDug1,2-DichloroethaneNDug1,2-DichloroethaneNDug1,2-DichloroethaneNDug1,1-TrichloroethaneNDug1,1,1-TrichloroethaneNDug1,1,2-DichloropropeneNDugEromodichloropropeneNDugItans-1,3-DichloropropeneNDugBromoformNDug1,1,2,2-TetrachloroethaneNDugEnzeneNDugTolueneNDugEthylbenzeneNDugBromomethaneNDugBromomethaneNDugEthylbenzeneNDugEthylbenzeneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDug <td>/ 50 / 180 / 50 / 75 / 50</td> <td>) </td> <td>100 100 100</td>	/ 50 / 180 / 50 / 75 / 50) 	100 100 100
1,2-DichloropropaneNDugDibromochloromethaneNDug1,1,2-TrichloroethaneNDug1,1,2-TrichloroethaneS0ugTetrachloroethene50ugChlorobenzeneNDugTrichlorofluoromethaneNDug1,2-DichloroethaneNDug1,2-DichloroethaneNDug1,1-TrichloroethaneNDug1,1-TrichloroethaneNDug1,1,1-TrichloroethaneNDugBromodichloropropeneNDug1,2-DichloropropeneNDugtrans-1,3-DichloropropeneNDugEromoformNDug1,1,2,2-TetrachloroethaneNDugEnzeneNDugTolueneNDugEthylbenzeneNDugBromomethaneNDugEthylbenzeneNDugBromomethaneNDugEthylbenzeneNDugEthylbenzeneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDug <tr< td=""><td>/ 180 / 50 / 75 / 50</td><td>) </td><td>100 100</td></tr<>	/ 180 / 50 / 75 / 50) 	100 100
DibromochloromethaneNDug1,1,2-TrichloroethaneNDugTetrachloroethane50ugChlorobenzeneNDugTrichlorofluoromethaneNDug1,2-DichloroethaneNDug1,1-TrichloroethaneNDug1,1,1-TrichloroethaneNDug1,1,1-TrichloroethaneNDug1,1,1-TrichloroethaneNDug1,1,1-TrichloroptopeneNDugtrans-1,3-DichloropropeneNDugIsomoformNDug1,1,2,2-TetrachloroethaneNDugChloromethaneNDugTolueneNDugEthylbenzeneNDugBromomethaneNDugChloromethaneNDugTolueneNDugEthylbenzeneNDugChloromethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromome	/I 50 /I 75 /I 50		100
1,1,2-Trichloroethane ND ug Tetrachloroethane 50 ug Chlorobenzene ND ug Trichlorofluoromethane ND ug 1,2-Dichloroethane ND ug 1,2-Dichloroethane ND ug 1,1,1-Trichloroethane ND ug 1,1,1-Trichloroethane ND ug Bromodichloromethane ND ug trans-1,3-Dichloropropene ND ug I,1,2,2-Tetrachloroethane ND ug I,1,2,2-Tetrachloroethane ND ug Chloromethane ND ug I,1,2,2-Tetrachloroethane ND ug Benzene ND ug Chloromethane ND ug Ethylbenzene ND ug Bromomethane ND ug Chloromethane ND ug Toluene ND ug Ethylbenzene ND ug Bromomethane ND ug Bromomethane ND ug <t< td=""><td>/I 75 /I 50</td><td></td><td></td></t<>	/I 75 /I 50		
Tetrachloroethene50ugChlorobenzeneNDugTrichlorofluoromethaneNDug1,2-DichloroethaneNDug1,1,1-TrichloroethaneNDugtrans-1,3-DichloropropeneNDugcis-1,3-DichloropropeneNDuggromooformNDug1,1,2,2-TetrachloroethaneNDugChloromethaneNDugtrans-1,3-DichloropropeneNDuggromooformNDug1,1,2,2-TetrachloroethaneNDugTolueneNDugEthylbenzeneNDugBromomethaneNDugChloromethaneNDugTolueneNDugEthylbenzeneNDugBromomethaneNDugBromomethaneNDugChloromethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneNDugBromomethaneND	/I 50		100
Chlorobenzene ND ug Trichlorofluoromethane ND ug 1,2-Dichloroethane ND ug 1,1-Trichloroethane ND ug Bromodichloromethane ND ug Bromodichloromethane ND ug Bromodichloropropene ND ug trans-1,3-Dichloropropene ND ug Bromoform ND ug 1,1,2,2-Tetrachloroethane ND ug Toluene ND ug Ethylbenzene ND ug Bromomethane ND ug Toluene ND ug Ethylbenzene ND ug Chloromethane ND ug Ethylbenzene ND ug Bromomethane ND <t< td=""><td>-</td><td></td><td>100</td></t<>	-		100
TrichlorofluoromethaneNDug1,2-DichloroethaneNDug1,1,1-TrichloroethaneNDugBromodichloromethaneNDugtrans-1,3-DichloropropeneNDugcis-1,3-DichloropropeneNDugBromoformNDug1,1,2,2-TetrachloroethaneNDugEnzeneNDugChloromethaneNDugBenzeneNDugTolueneNDugEthylbenzeneNDugBromomethaneNDugChloromethaneNDugBromomethaneNDugB	/I 50		100
1,2-DichloroethaneNDug1,1,1-TrichloroethaneNDugBromodichloromethaneNDugtrans-1,3-DichloropropeneNDugcis-1,3-DichloropropeneNDugBromoformNDug1,1,2,2-TetrachloroethaneNDugEnzeneNDugTolueneNDugEthylbenzeneNDugBromomethaneNDugChloromethaneNDugEthylbenzeneNDugBromomethaneNDugBromome			100
1,1,1-TrichloroethaneNDugBromodichloromethaneNDugtrans-1,3-DichloropropeneNDugcis-1,3-DichloropropeneNDugBromoformNDug1,1,2,2-TetrachloroethaneNDugBenzeneNDugTolueneNDugEthylbenzeneNDugBromomethaneNDugChloromethaneNDugBromomethane	/I 250)	100
BromodichloromethaneNDugBromodichloropropeneNDugtrans-1,3-DichloropropeneNDugcis-1,3-DichloropropeneNDugBromoformNDug1,1,2,2-TetrachloroethaneNDugBenzeneNDugTolueneNDugEthylbenzeneNDugBromomethane </td <td>/I 50</td> <td></td> <td>100</td>	/I 50		100
trans-1,3-Dichloropropene ND ug cis-1,3-Dichloropropene ND ug Bromoform ND ug 1,1,2,2-Tetrachloroethane ND ug Benzene ND ug Toluene ND ug Ethylbenzene ND ug Ethylbenzene ND ug	/I 50		100
cis-1,3-Dichloropropene ND up Bromoform ND up 1,1,2,2-Tetrachloroethane ND up Benzene ND up Toluene ND up Ethylbenzene ND up Chloromethane ND up	/I 50		100
Bromoform ND ug 1,1,2,2-Tetrachloroethane ND ug Benzene ND ug Toluene ND ug Ethylbenzene ND ug Chloromethane ND ug	/I 50		100
1,1,2,2-Tetrachloroethane ND ug Benzene ND ug Toluene ND ug Ethylbenzene ND ug Chloromethane ND ug	/I 50		100
Benzene ND ug Toluene ND ug Ethylbenzene ND ug Chloromethane ND ug	/I 200)	100
Toluene ND ug Ethylbenzene ND ug Chloromethane ND ug	/I 50		100
Ethylbenzene ND ug Chloromethane ND ug Bromomethane ND ug	/I 50		100
Chloromethane ND ug Bromomethane ND ug	/I 75		100
Bromomethane ND up	/I 50		100
	/I 250)	100
Vinvl chloride ND uv	/I 100)	100
	/I 100)	100
Chloroethane ND u	/I 100)	100
1,1-Dichloroethene ND up	/I 50		100
trans-1,2-Dichloroethene ND up	/I 75		100
Trichloroethene 6600 ug	/ 50		100
1,2-Dichlorobenzene ND up	• • • • •)	100
1,3-Dichlorobenzene ND ug	-)	100
1,4-Dichlorobenzene ND ug	/ 250)	100

					;	Serial_N	0:07221615:24
Project Name:	HP WALTHAM				Lab Nu	mber:	L1621793
Project Number:	01.0015522.16				Report	Date:	07/22/16
		SAMP	LE RESULTS	6			
Lab ID:	L1621793-01	D			Date Col	lected:	07/14/16 09:30
Client ID:	INF				Date Red	ceived:	07/14/16
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab							
Methyl tert butyl ether		ND		ug/l	100		100
p/m-Xylene		ND		ug/l	100		100
o-Xylene		ND		ug/l	100		100
cis-1,2-Dichloroethene		ND		ug/l	50		100
Dichlorodifluoromethane		ND		ug/l	500		100
Naphthalene		ND		ug/l	250		100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	97		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	97		70-130	

			Serial_No:07221615:24		
Project Name:	HP WALTHAM		Lab Number:	L1621793	
Project Number:	01.0015522.16		Report Date:	07/22/16	
		SAMPLE RESULTS			
Lab ID:	L1621793-02		Date Collected:	07/14/16 09:30	
Client ID:	MID		Date Received:	07/14/16	
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified	
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	07/18/16 13:52				
Analyst:	PD				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	0.63		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					:	Serial_N	0:07221615:24
Project Name:	HP WALTHAM				Lab Nu	mber:	L1621793
Project Number:	01.0015522.16				Report	Date:	07/22/16
		SAMP		6			
Lab ID:	L1621793-02				Date Col	lected:	07/14/16 09:30
Client ID:	MID				Date Re	ceived:	07/14/16
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab							
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	92		70-130	
Dibromofluoromethane	97		70-130	

			Serial_No:07221615:24		
Project Name:	HP WALTHAM		Lab Number:	L1621793	
Project Number:	01.0015522.16		Report Date:	07/22/16	
		SAMPLE RESULTS			
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1621793-03 EFF WALTHAM, MA Water 1,8260C 07/18/16 14:29 PD		Date Collected: Date Received: Field Prep:	07/14/16 09:30 07/14/16 Not Specified	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

				Serial_No:07221615:24				
Project Name:	HP WALTHAM				Lab Nu	mber:	L1621793	
Project Number:	01.0015522.16				Report	Date:	07/22/16	
		SAMP		5				
Lab ID:	L1621793-03				Date Col	llected:	07/14/16 09:30	
Client ID:	EFF				Date Re	ceived:	07/14/16	
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westboroug	jh Lab						
Methyl tert butyl ether		ND		ug/l	1.0		1	
p/m-Xylene		ND		ug/l	1.0		1	
o-Xylene		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	0.50		1	
Dichlorodifluoromethane		ND		ug/l	5.0		1	
Naphthalene		ND		ug/l	2.5		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	97		70-130	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1621793

 Project Number:
 01.0015522.16
 Report Date:
 07/22/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	07/18/16 12:02
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lat	o for sample(s): 01-0	3 Batch:	WG914991-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

Project Name:	HP WALTHAM	Lab Number:	L1621793
Project Number:	01.0015522.16	Report Date:	07/22/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	07/18/16 12:02
Analyst:	PD

arameter	Result Q	ualifier Units	RL	MDL	
olatile Organics by GC/MS -	Westborough Lab fo	r sample(s): 01-0	3 Batch:	WG914991-5	
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dichlorodifluoromethane	ND	ug/l	5.0		
Naphthalene	ND	ug/l	2.5		

		A	cceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	100		70-130
Toluene-d8	103		70-130
4-Bromofluorobenzene	95		70-130
Dibromofluoromethane	99		70-130

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSI %Reco		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Bat	ch: WG914991-3	WG914991-4			
Methylene chloride	95		100		70-130	5		20
1,1-Dichloroethane	100		110		70-130	10		20
Chloroform	93		98		70-130	5		20
Carbon tetrachloride	79		84		63-132	6		20
1,2-Dichloropropane	110		110		70-130	0		20
Dibromochloromethane	100		100		63-130	0		20
1,1,2-Trichloroethane	120		120		70-130	0		20
Tetrachloroethene	100		110		70-130	10		20
Chlorobenzene	110		110		75-130	0		25
Trichlorofluoromethane	81		83		62-150	2		20
1,2-Dichloroethane	93		96		70-130	3		20
1,1,1-Trichloroethane	80		85		67-130	6		20
Bromodichloromethane	93		93		67-130	0		20
trans-1,3-Dichloropropene	84		88		70-130	5		20
cis-1,3-Dichloropropene	89		88		70-130	1		20
1,1-Dichloropropene	92		97		70-130	5		20
Bromoform	98		99		54-136	1		20
1,1,2,2-Tetrachloroethane	120		130		67-130	8		20
Benzene	100		100		70-130	0		25
Toluene	110		120		70-130	9		25
Ethylbenzene	110		110		70-130	0		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual		-CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-03	Batch:	WG914991-3	WG914991-4			
Chloromethane	90			89		64-130	1		20
Bromomethane	49			50		39-139	2		20
Vinyl chloride	98			98		55-140	0		20
Chloroethane	120			120		55-138	0		20
1,1-Dichloroethene	84			92		61-145	9		25
trans-1,2-Dichloroethene	93			100		70-130	7		20
Trichloroethene	94			98		70-130	4		25
1,2-Dichlorobenzene	120			120		70-130	0		20
1,3-Dichlorobenzene	120			120		70-130	0		20
1,4-Dichlorobenzene	120			120		70-130	0		20
Methyl tert butyl ether	86			92		63-130	7		20
p/m-Xylene	110			115		70-130	4		20
o-Xylene	115			120		70-130	4		20
cis-1,2-Dichloroethene	99			110		70-130	11		20
Dibromomethane	100			100		70-130	0		20
1,4-Dichlorobutane	130			130		70-130	0		20
1,2,3-Trichloropropane	120			120		64-130	0		20
Styrene	115			125		70-130	8		20
Dichlorodifluoromethane	60			60		36-147	0		20
Acetone	130			120		58-148	8		20
Carbon disulfide	95			100		51-130	5		20

Project Name: HP WALTHAM Project Number: 01.0015522.16

Parameter	LCS %Recovery	Qual	-	CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 E	Batch:	WG914991-3	WG914991-4			
2-Butanone	120		1	130		63-138	8		20
Vinyl acetate	93		1	100		70-130	7		20
4-Methyl-2-pentanone	120		1	140	Q	59-130	15		20
2-Hexanone	120		1	120		57-130	0		20
Ethyl methacrylate	99		1	110		70-130	11		20
Acrylonitrile	130		1	140	Q	70-130	7		20
Bromochloromethane	100		1	110		70-130	10		20
Tetrahydrofuran	130		1	130		58-130	0		20
2,2-Dichloropropane	62	Q		67		63-133	8		20
1,2-Dibromoethane	100		1	110		70-130	10		20
1,3-Dichloropropane	110		1	120		70-130	9		20
1,1,1,2-Tetrachloroethane	100		1	100		64-130	0		20
Bromobenzene	110		1	120		70-130	9		20
n-Butylbenzene	120		1	120		53-136	0		20
sec-Butylbenzene	120		1	120		70-130	0		20
tert-Butylbenzene	110		1	110		70-130	0		20
o-Chlorotoluene	120		1	110		70-130	9		20
p-Chlorotoluene	110		1	110		70-130	0		20
1,2-Dibromo-3-chloropropane	110		1	110		41-144	0		20
Hexachlorobutadiene	100		1	100		63-130	0		20
Isopropylbenzene	110		1	120		70-130	9		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 E	Batch:	WG914991-3	WG914991-4			
p-IsopropyItoluene	120			120		70-130	0		20
Naphthalene	130			140	Q	70-130	7		20
n-Propylbenzene	120			120		69-130	0		20
1,2,3-Trichlorobenzene	130			130		70-130	0		20
1,2,4-Trichlorobenzene	120			120		70-130	0		20
1,3,5-Trimethylbenzene	110			120		64-130	9		20
1,2,4-Trimethylbenzene	110			110		70-130	0		20
trans-1,4-Dichloro-2-butene	110			110		70-130	0		20
Ethyl ether	100			110		59-134	10		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	98		96		70-130	
Toluene-d8	106		90 109		70-130	
4-Bromofluorobenzene	98		98		70-130	
Dibromofluoromethane	98		98 97		70-130	
Disformentatio	50		51		10 100	

METALS

Project Name:	HP W	ALTHAM					Lab Nu	mber:	L16217	93	
Project Number:	01.00	15522.16					Report	Date:	07/22/1	6	
				SAMPL	E RES	ULTS					
Lab ID:	L1621	793-01					Date Co	ollected:	07/14/1	6 09:30	
Client ID:	INF						Date Re	eceived:	07/14/1	6	
Sample Location:	WALT	HAM, MA					Field Pr	ep:	Not Spe	ecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.0524		mg/l	0.0020		1	07/19/16 11:40	0 07/19/16 16:35	EPA 3005A	1,6020A	AM
Iron, Total	0.343		mg/l	0.050		1	07/19/16 11:40	07/19/16 18:36	EPA 3005A	19,200.7	AB
Lead, Total	0.0076		mg/l	0.0020		1	07/19/16 11:40	07/19/16 16:35	EPA 3005A	1,6020A	AM
			0.								

1

1

07/19/16 11:40 07/19/16 16:35 EPA 3005A

07/19/16 11:40 07/19/16 16:35 EPA 3005A

1,6020A

1,6020A

AM

AM

Selenium, Total

Zinc, Total

ND

0.0531

mg/l

mg/l

0.010

0.0200

--

1,6020A

1,6020A

AM

AM

Project Name:	HP W	ALTHAM					Lab Nu	mber:	L16217	93	
Project Number:	01.00	15522.16					Report	Date:	07/22/1	6	
-				SAMPL	E RES	ULTS	-				
Lab ID:	L1621	793-03					Date Co	ollected:	07/14/1	6 09:30	
Client ID:	EFF						Date Re	eceived:	07/14/1	6	
Sample Location:	WALT	HAM, MA					Field Pr	ep:	Not Spe	ecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.0028		mg/l	0.0010		1	07/19/16 11:40	07/19/16 16:48	EPA 3005A	1,6020A	AM
Iron, Total	ND		mg/l	0.050		1	07/19/16 11:40	07/19/16 20:08	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.0010		1	07/19/16 11:40) 07/19/16 16:48	EPA 3005A	1,6020A	AM

1

1

07/19/16 11:40 07/19/16 16:48 EPA 3005A

07/19/16 11:40 07/19/16 16:48 EPA 3005A

0.005

0.0100

mg/l

mg/l

Selenium, Total

Zinc, Total

ND

ND

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1621793

 Report Date:
 07/22/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL		ilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01,03 B	Batch: WC	G914908-1					
Iron, Total	ND	mg/l	0.050		1	07/19/16 11:40	07/19/16 18:24	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Man	sfield Lab for sample(s):	01,03 E	Batch: Wo	G91490	9-1				
Copper, Total	ND	mg/l	0.0010		1	07/19/16 11:40	07/19/16 17:07	1,6020A	AM
Lead, Total	ND	mg/l	0.0010		1	07/19/16 11:40	07/19/16 17:07	1,6020A	AM
Selenium, Total	ND	mg/l	0.005		1	07/19/16 11:40	07/19/16 17:07	1,6020A	AM
Zinc, Total	ND	mg/l	0.0100		1	07/19/16 11:40	07/19/16 17:07	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated samp	ole(s): 01,03 Bate	ch: WG91	4908-2					
Iron, Total	93		-		85-115	-		
Total Metals - Mansfield Lab Associated samp	ole(s): 01,03 Bate	ch: WG91	1909-2					
Copper, Total	98		-		80-120	-		
Lead, Total	110		-		80-120	-		
Selenium, Total	111		-		80-120	-		
Zinc, Total	102		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name:	HP WALTHAM	Dal
Project Number:	01.0015522.16	

 Lab Number:
 L1621793

 Report Date:
 07/22/16

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qua	RPD al Limits
Total Metals - Mansfield Lab A	Associated sam	nple(s): 01,03	QC Bat	ch ID: WG914	908-4	QC Samp	ole: L1621793-01	1 Client ID: INF		
Iron, Total	0.343	1	1.25	91		-	-	75-125	-	20
Total Metals - Mansfield Lab A	Associated sam	nple(s): 01,03	QC Bat	ch ID: WG914	909-4	QC Samp	ole: L1621793-01	1 Client ID: INF		
Copper, Total	0.0524	0.25	0.2909	95		-	-	75-125	-	20
Lead, Total	0.0076	0.51	0.5358	104		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.121	101		-	-	75-125	-	20
Zinc, Total	0.0531	0.5	0.4935	88		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1621793

 Report Date:
 07/22/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01,03	B QC Batch ID: W	VG914908-3 QC Sample:	L1621793-01	Client ID:	INF	
Iron, Total	0.343	0.369	mg/l	7		20
Total Metals - Mansfield Lab Associated sample(s): 01,03	B QC Batch ID: V	VG914909-3 QC Sample:	L1621793-01	Client ID:	INF	
Copper, Total	0.0524	0.0491	mg/l	6	_	20
Lead, Total	0.0076	0.0080	mg/l	5		20
Selenium, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.0531	0.0468	mg/l	13		20

INORGANICS & MISCELLANEOUS

neral Chemistry - Wes	stborough Lab	mg/l	10		10	-	07/15/16 19:3	0 1,9251	LA
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
Lab ID: Client ID: Sample Location: Matrix:	L1621793-01 INF WALTHAM, MA Water						Received:	07/14/16 09:: 07/14/16 Not Specified	
			SAMPLE	RESUL	ГS				
Project Number:	01.0015522.16					Repo	rt Date:	07/22/16	
Project Name:	HP WALTHAM					Lab N	lumber:	L1621793	
							Serial_No:07	221615:24	

							Serial_No:072	221615:24	
Project Name:	HP WALTHAM					Lab N	lumber:	L1621793	
Project Number:	01.0015522.16					Repo	rt Date:	07/22/16	
			SAMPLE	RESUL	ſS				
Lab ID:	L1621793-03					Date	Collected:	07/14/16 09:3	80
Client ID:	EFF					Date		07/14/16	
Sample Location: Matrix:	WALTHAM, MA Water					Field	Prep:	Not Specified	
Matrix.	Water								
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
neral Chemistry - We	stborough Lab								
loride	590	mg/l	10		10	-	07/15/16 19:32	2 1,9251	LA

 Lab Number:
 L1621793

 Report Date:
 07/22/16

Project Name:HP WALTHAMProject Number:01.0015522.16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab for sam	ple(s): 01	,03 Ba	tch: WC	914063-1				
Chloride	ND	mg/l	1.0		1	-	07/15/16 19:11	1,9251	LA

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery Qua	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	ssociated sample(s): 01,0	Batch: WG9140	63-2				
Chloride	100	-		90-110	-		

		Matrix Spike Analysis Batch Quality Control	
Project Name:	HP WALTHAM	Lab Number:	L1621793
Project Number:	01.0015522.16	Report Date:	07/22/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery Ial Limits R	RPD PD Qual Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01,03	QC Batch II	D: WG914063-4	QC Sample: L162	1675-03 Client I	D: MS Sample
Chloride	5.8	20	26	101	-	-	58-140	- 7

Project Name:	HP WALTHAM	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L1621793
Project Number:	01.0015522.16		Report Date:	07/22/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associat	ed sample(s): 01,03 QC	C Batch ID: WG914063-3	QC Sample: L1	621675-03	Client ID: DUP Sample
Chloride	5.8	6.1	mg/l	5	7

Lab Number: L1621793 Report Date: 07/22/16

Project Name:HP WALTHAMProject Number:01.0015522.16

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Information Temp								
Container ID	Container Type	Cooler	рΗ	deg Ċ	Pres	Seal	Analysis(*)	
L1621793-01A	Vial HCI preserved	А	N/A	2.5	Y	Absent	8260(14)	
L1621793-01B	Vial HCI preserved	А	N/A	2.5	Y	Absent	8260(14)	
L1621793-01C	Vial HCI preserved	А	N/A	2.5	Y	Absent	8260(14)	
L1621793-01D	Plastic 120ml HNO3 preserved	A	<2	2.5	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)	
L1621793-01E	Plastic 60ml unpreserved	А	7	2.5	Y	Absent	CL-9251(28)	
L1621793-02A	Vial HCI preserved	А	N/A	2.5	Y	Absent	8260(14)	
L1621793-02B	Vial HCI preserved	А	N/A	2.5	Y	Absent	8260(14)	
L1621793-02C	Vial HCI preserved	А	N/A	2.5	Y	Absent	8260(14)	
L1621793-03A	Vial HCI preserved	А	N/A	2.5	Y	Absent	8260(14)	
L1621793-03B	Vial HCI preserved	А	N/A	2.5	Y	Absent	8260(14)	
L1621793-03C	Vial HCI preserved	А	N/A	2.5	Y	Absent	8260(14)	
L1621793-03D	Plastic 120ml HNO3 preserved	A	<2	2.5	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)	
L1621793-03E	Plastic 60ml unpreserved	А	8	2.5	Y	Absent	CL-9251(28)	

Project Name: HP WALTHAM

Project Number: 01.0015522.16

Lab Number: L1621793

Report Date: 07/22/16

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte able was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:HP WALTHAMProject Number:01.0015522.16

Lab Number: L1621793

Report Date: 07/22/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1621793

 Report Date:
 07/22/16

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol. EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 9010: <u>NPW:</u> Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: <u>NPW:</u> Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane SM 2540D: TSS SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene. EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA 8270-SIM: NPW and SCM: Alkylated PAHs. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene. Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol. The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility: Drinking Water EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT. Non-Potable Water EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:07221615:24

ALPHA	CHAIN O	F CUSTODY	PAGEOF	Date Rec'd in Lab	7/14/16	ALPHA JOD #: L1631793
8 Walkup Drive	320 Forbes Blvd	Project Information		Report Informa	tion - Data Deliverable	s Billing Information
Westboro, MA (Tel: 508-898-9	01581 Mansfield, MA 02048	Project Name: HP	Waltham	D ADEx	C EMAIL	□ Same as Client info PO #:
Client Information	on	Project Location:	than Ma	Regulatory Req	uirements & Proje	ct Information Requirements
Client: GZA		Project #: 01,00155	22.16		ICP Analytical Methods	□ Yes □ No CT RCP Analytical Methods DG? (Required for MCP Inorganics)
		Project Manager: T	albert	Ger Yes Ger No GW1	Standards (Info Required I	for Metals & EPH with Targets)
Norm	randerbilf An and Mr 92062	ALPHA Quote #:	07/01/	Yes I No NPDI Other State /Fed		Criteria
Phone: 78(-	-983-1357	Turn-Around Time		the second secon		
	roject Information:	■Standard □ RUSH Date Due:	(only confirmed if pre-approved!)	VOC: A B260 D 624 D 524.200-1	EPH: DRanges & Targets D RCRA8 DP13 VPH: DRanges & Targets D Ranges Only TPH: DRanges & Targets D Ranges Only TPH: DQuant Only DFinoo.	SAMPLE INFO Filtration Field Lab to do Preservation
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection Date Tim	e Sample Sampler Matrix Initials	VOC: A SVOC: METALS:	VPH: DR	Preservation Lab to do Sample Comments
21793-01	INF	7/14/16 9300	Gh BD	X	X	
d2_	MIN	1 995-	1	X		3
03	EFF	1 1000-		X	X.	X 5
	1					
Container Type P= Plastic A= Amber glass V= Vial G= Glass	Preservative A= None B= HCl C= HNO ₃ D= H₂SO₄		Container Type Preservative	V Ha	P [2 Mi z
B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 37 of 37		Relinquished By:	Date/Time 7/14/16 101 1/4/16 19:15	Receive		All samples submitted are subject to Alpha's Terms and Conditions. See reverse side. FORM NO: 01-01 (rev. 12-Mar-2012)

ANALYTICAL REPORT

Lab Number:	L1625352
Client:	GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062
ATTN: Phone:	Bill Davis (781) 278-5769
Project Name: Project Number:	HP WALTHAM 1552216
Report Date:	08/19/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:08191613:45

Project Name:HP WALTHAMProject Number:1552216

 Lab Number:
 L1625352

 Report Date:
 08/19/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1625352-01	INF	WATER	WALTHAM, MA	08/11/16 10:20	08/12/16
L1625352-02	MID	WATER	WALTHAM, MA	08/11/16 10:27	08/12/16
L1625352-03	EFF	WATER	WALTHAM, MA	08/11/16 10:40	08/12/16
L1625352-04	TRIP BLANK	WATER	WALTHAM, MA	08/11/16 00:00	08/12/16

Project Name: HP WALTHAM Project Number: 1552216

 Lab Number:
 L1625352

 Report Date:
 08/19/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: HP WALTHAM Project Number: 1552216

 Lab Number:
 L1625352

 Report Date:
 08/19/16

Case Narrative (continued)

Sample Receipt

A Trip Blank was received in the laboratory, but not listed on the Chain of Custody, and was not analyzed. The sample collection times were obtained from the container labels.

Chloride

The WG923271-4 MS recovery (150%), performed on L1625352-01, does not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Custen Walker Cristin Walker

Title: Technical Director/Representative

Date: 08/19/16

ORGANICS

VOLATILES

				Serial_N	o:08191613:45
Project Name:	HP WALTHAM			Lab Number:	L1625352
Project Number:	1552216			Report Date:	08/19/16
			SAMPLE RESULTS		
Lab ID:	L1625352-01	D		Date Collected:	08/11/16 10:20
Client ID:	INF			Date Received:	08/12/16
Sample Location:	WALTHAM, MA			Field Prep:	Not Specified
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	08/15/16 13:40				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	300		100
1,1-Dichloroethane	ND		ug/l	75		100
Chloroform	ND		ug/l	75		100
Carbon tetrachloride	ND		ug/l	50		100
1,2-Dichloropropane	ND		ug/l	180		100
Dibromochloromethane	ND		ug/l	50		100
1,1,2-Trichloroethane	ND		ug/l	75		100
Tetrachloroethene	ND		ug/l	50		100
Chlorobenzene	ND		ug/l	50		100
Trichlorofluoromethane	ND		ug/l	250		100
1,2-Dichloroethane	ND		ug/l	50		100
1,1,1-Trichloroethane	ND		ug/l	50		100
Bromodichloromethane	ND		ug/l	50		100
trans-1,3-Dichloropropene	ND		ug/l	50		100
cis-1,3-Dichloropropene	ND		ug/l	50		100
Bromoform	ND		ug/l	200		100
1,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Benzene	ND		ug/l	50		100
Toluene	ND		ug/l	75		100
Ethylbenzene	ND		ug/l	50		100
Chloromethane	ND		ug/l	250		100
Bromomethane	ND		ug/l	100		100
Vinyl chloride	ND		ug/l	100		100
Chloroethane	ND		ug/l	100		100
1,1-Dichloroethene	ND		ug/l	50		100
trans-1,2-Dichloroethene	ND		ug/l	75		100
Trichloroethene	5400		ug/l	50		100
1,2-Dichlorobenzene	ND		ug/l	250		100
1,3-Dichlorobenzene	ND		ug/l	250		100
1,4-Dichlorobenzene	ND		ug/l	250		100

Analyst:

PD

					:	Serial_N	0:08191613:45
Project Name:	HP WALTHAM				Lab Nu	mber:	L1625352
Project Number:	1552216				Report	Date:	08/19/16
		SAMP	LE RESULTS	6			
Lab ID:	L1625352-01	D			Date Col	lected:	08/11/16 10:20
Client ID:	INF				Date Ree	ceived:	08/12/16
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboro	ugh Lab					
Methyl tert butyl ether		ND		ug/l	100		100
p/m-Xylene		ND		ug/l	100		100
o-Xylene		ND		ug/l	100		100
cis-1,2-Dichloroethene		ND		ug/l	50		100
Dichlorodifluoromethane		ND		ug/l	500		100
Naphthalene		ND		ug/l	250		100

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	84	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	98	70-130
Dibromofluoromethane	96	70-130

			Serial_No:08191613:45			
Project Name:	HP WALTHAM		Lab Number:	L1625352		
Project Number:	1552216		Report Date:	08/19/16		
		SAMPLE RESULTS				
Lab ID:	L1625352-02		Date Collected:	08/11/16 10:27		
Client ID:	MID		Date Received:	08/12/16		
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified		
Matrix:	Water					
Analytical Method:	1,8260C					
Analytical Date:	08/15/16 14:12					
Analyst:	PD					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	0.92		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					:	Serial_No	0:08191613:45
Project Name:	HP WALTHAM				Lab Nu	mber:	L1625352
Project Number:	1552216				Report	Date:	08/19/16
		SAMP		6			
Lab ID:	L1625352-02				Date Col	lected:	08/11/16 10:27
Client ID:	MID				Date Red	ceived:	08/12/16
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	ıh Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	87		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	98		70-130	

			Serial_No:08191613:45		
Project Name:	HP WALTHAM		Lab Number:	L1625352	
Project Number:	1552216		Report Date:	08/19/16	
		SAMPLE RESULTS			
Lab ID:	L1625352-03		Date Collected:	08/11/16 10:40	
Client ID:	EFF		Date Received:	08/12/16	
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified	
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	08/15/16 14:45				
Analyst:	PD				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					\$	Serial_N	0:08191613:45
Project Name:	HP WALTHAM				Lab Nu	mber:	L1625352
Project Number:	1552216				Report	Date:	08/19/16
		SAMP		6			
Lab ID:	L1625352-03				Date Col	lected:	08/11/16 10:40
Client ID:	EFF				Date Red	ceived:	08/12/16
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westborou	gh Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	87		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	98		70-130	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1625352

 Project Number:
 1552216
 Report Date:
 08/19/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	08/15/16 12:34
Analyst:	PD

arameter	Result	Qualifier Uni	ts RL	MDL
olatile Organics by GC/MS - V	/estborough Lat	o for sample(s):	01-03 Batch	: WG922875-5
Methylene chloride	ND	uç	/l 3.0	
1,1-Dichloroethane	ND	ug	/I 0.75	
Chloroform	ND	ug	/I 0.75	
Carbon tetrachloride	ND	uç	/I 0.50	
1,2-Dichloropropane	ND	uç	/l 1.8	
Dibromochloromethane	ND	uç	/I 0.50	
1,1,2-Trichloroethane	ND	uç	/I 0.75	
Tetrachloroethene	ND	uç	/I 0.50	
Chlorobenzene	ND	uç	/I 0.50	
Trichlorofluoromethane	ND	uç	/l 2.5	
1,2-Dichloroethane	ND	ug	/I 0.50	
1,1,1-Trichloroethane	ND	ug	/I 0.50	
Bromodichloromethane	ND	ug	/I 0.50	
trans-1,3-Dichloropropene	ND	ug	/I 0.50	
cis-1,3-Dichloropropene	ND	ug	/l 0.50	
Bromoform	ND	ug	/l 2.0	
1,1,2,2-Tetrachloroethane	ND	uç	/I 0.50	
Benzene	ND	uç	/I 0.50	
Toluene	ND	ug	/I 0.75	
Ethylbenzene	ND	ug	/I 0.50	
Chloromethane	ND	ug	/l 2.5	
Bromomethane	ND	ug	/l 1.0	
Vinyl chloride	ND	ug	/l 1.0	
Chloroethane	ND	ug	/l 1.0	
1,1-Dichloroethene	ND	ug	/I 0.50	
trans-1,2-Dichloroethene	ND	ug	/I 0.75	
Trichloroethene	ND	ug	/I 0.50	
1,2-Dichlorobenzene	ND	ug	/l 2.5	
1,3-Dichlorobenzene	ND	ug	/l 2.5	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1625352

 Project Number:
 1552216
 Report Date:
 08/19/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	08/15/16 12:34
Analyst:	PD

Parameter	Result	Qualifier Units	RL	MDL
/olatile Organics by GC/MS - Westh	orough Lab	for sample(s): 01-03	Batch:	WG922875-5
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dichlorodifluoromethane	ND	ug/l	5.0	
Naphthalene	ND	ug/l	2.5	

		ŀ	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	84		70-130
Toluene-d8	98		70-130
4-Bromofluorobenzene	98		70-130
Dibromofluoromethane	97		70-130

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1625352

Report Date: 08/19/16

Parameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - Westborough I	ab Associated	sample(s):	01-03	Batch:	WG922875-3	WG922875-4				
Methylene chloride	100			94		70-130	6		20	
1,1-Dichloroethane	86			79		70-130	8		20	
Chloroform	92			85		70-130	8		20	
Carbon tetrachloride	91			85		63-132	7		20	
1,2-Dichloropropane	81			77		70-130	5		20	
Dibromochloromethane	92			86		63-130	7		20	
1,1,2-Trichloroethane	98			89		70-130	10		20	
2-Chloroethylvinyl ether	86			82		70-130	5		20	
Tetrachloroethene	110			100		70-130	10		20	
Chlorobenzene	100			96		75-130	4		25	
Trichlorofluoromethane	99			74		62-150	29	Q	20	
1,2-Dichloroethane	80			75		70-130	6		20	
1,1,1-Trichloroethane	97			88		67-130	10		20	
Bromodichloromethane	91			84		67-130	8		20	
trans-1,3-Dichloropropene	80			74		70-130	8		20	
cis-1,3-Dichloropropene	81			77		70-130	5		20	
1,1-Dichloropropene	89			84		70-130	6		20	
Bromoform	100			98		54-136	2		20	
1,1,2,2-Tetrachloroethane	94			91		67-130	3		20	
Benzene	95			88		70-130	8		25	
Toluene	100			93		70-130	7		25	

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L1625352 Report Date: 08/19/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG922875-3 WG922875-4 Ethylbenzene 92 70-130 20 99 7 Chloromethane 38 Q 38 Q 64-130 0 20 Bromomethane 80 39-139 20 87 8 Vinyl chloride 20 62 58 55-140 7 Chloroethane 61 55-138 14 20 70 61-145 25 1.1-Dichloroethene 110 100 10 trans-1,2-Dichloroethene 110 99 70-130 11 20 Trichloroethene 96 90 70-130 25 6 1.2-Dichlorobenzene 70-130 20 100 97 3 1,3-Dichlorobenzene 70-130 20 100 97 3 100 96 70-130 20 1.4-Dichlorobenzene 4 Methyl tert butyl ether 100 92 63-130 8 20 p/m-Xylene 105 95 70-130 20 10 o-Xylene 70-130 20 105 100 5 cis-1,2-Dichloroethene 98 70-130 20 100 2 Dibromomethane 91 70-130 20 97 6 1,4-Dichlorobutane 77 74 70-130 4 20 Q Q Q lodomethane 33 44 70-130 29 20 1,2,3-Trichloropropane 64-130 20 86 83 4 100 70-130 20 Styrene 100 0 Dichlorodifluoromethane 88 98 36-147 11 20

Lab Control Sample Analysis

Batch Quality Control

 Lab Number:
 L1625352

 Report Date:
 08/19/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG922875-3 WG922875-4 80 68 58-148 16 20 Acetone Carbon disulfide 92 82 51-130 11 20 2-Butanone 63-138 20 75 70 7 Q Q 20 Vinyl acetate 60 56 70-130 7 4-Methyl-2-pentanone 67 64 59-130 5 20 2-Hexanone 57-130 20 68 64 6 Ethyl methacrylate 86 83 70-130 4 20 Acrolein 78 73 70-130 20 7 Acrylonitrile 70-130 20 82 76 8 Bromochloromethane 70-130 20 120 110 9 Tetrahydrofuran 65 58-130 20 70 7 2,2-Dichloropropane 85 77 63-133 10 20 1.2-Dibromoethane 100 99 70-130 20 1 1,3-Dichloropropane 85 70-130 20 90 6 1,1,1,2-Tetrachloroethane 99 64-130 20 100 1 Bromobenzene 100 70-130 20 100 0 n-Butylbenzene 94 86 53-136 9 20 sec-Butylbenzene 100 95 70-130 5 20 tert-Butylbenzene 99 70-130 20 110 11 o-Chlorotoluene 90 70-130 20 96 6 p-Chlorotoluene 88 70-130 20 94 7

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1625352

Report Date: 08/19/16

Parameter	LCS %Recovery	Qual	LCSD %Recove	ery Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - Westborough I	ab Associated	sample(s):	01-03 Batc	h: WG922875-3	WG922875-4				
1,2-Dibromo-3-chloropropane	88		89		41-144	1		20	
Hexachlorobutadiene	100		96		63-130	4		20	
Isopropylbenzene	100		99		70-130	1		20	
p-Isopropyltoluene	100		96		70-130	4		20	
Naphthalene	88		84		70-130	5		20	
n-Propylbenzene	100		92		69-130	8		20	
1,2,3-Trichlorobenzene	98		93		70-130	5		20	
1,2,4-Trichlorobenzene	100		92		70-130	8		20	
1,3,5-Trimethylbenzene	100		93		64-130	7		20	
1,3,5-Trichlorobenzene	100		94		70-130	6		20	
1,2,4-Trimethylbenzene	100		95		70-130	5		20	
trans-1,4-Dichloro-2-butene	67	Q	62	Q	70-130	8		20	
Halothane	110		100		70-130	10		20	
Ethyl ether	100		74		59-134	30	Q	20	
Methyl Acetate	68	Q	62	Q	70-130	9		20	
Ethyl Acetate	74		74		70-130	0		20	
Isopropyl Ether	69	Q	64	Q	70-130	8		20	
Cyclohexane	83		77		70-130	8		20	
Tert-Butyl Alcohol	88		84		70-130	5		20	
Ethyl-Tert-Butyl-Ether	86		80		70-130	7		20	
Tertiary-Amyl Methyl Ether	96		91		66-130	5		20	

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM Project Number: 1552216

Lab Number: L1625352 Report Date: 08/19/16

Parameter	LCS %Recovery	Qual		LCSD lecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03	Batch:	WG922875-3	WG922875-4				
1,4-Dioxane	106			112		56-162	6		20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	110			100		70-130	10		20	
Methyl cyclohexane	100			93		70-130	7		20	
p-Diethylbenzene	100			93		70-130	7		20	
4-Ethyltoluene	100			98		70-130	2		20	
1,2,4,5-Tetramethylbenzene	100			98		70-130	2		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1.2-Dichloroethane-d4	82		81		70-130	
,						
Toluene-d8	98		98		70-130	
4-Bromofluorobenzene	94		94		70-130	
Dibromofluoromethane	101		101		70-130	

METALS

Serial_No:08191613:45

1,6020A

1,6020A

1,6020A

TT

TT

TT

08/15/16 07:45 08/17/16 16:51 EPA 3005A

08/15/16 07:45 08/17/16 16:51 EPA 3005A

08/15/16 07:45 08/17/16 16:51 EPA 3005A

Project Name: Project Number:		ALTHAM					Lab Nu Report		L16253		
,	10022			SAMPL	E RES	ULTS				0	
Lab ID:	L1625	352-01					Date Co	ollected:	08/11/1	6 10:20	
Client ID:	INF						Date Re	eceived:	08/12/1	6	
Sample Location:	WALT	HAM, MA					Field Pr	rep:	Not Spe	cified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.0102		mg/l	0.0010		1	08/15/16 07:4	5 08/17/16 16:51	EPA 3005A	1,6020A	тт
Iron, Total	0.162		mg/l	0.050		4	00/45/40 07 4	5 08/15/16 14:22		19,200.7	JH

1

1

1

0.0010

0.005

0.0100

--

--

mg/l

mg/l

mg/l

Lead, Total

Zinc, Total

Selenium, Total

0.0013

0.0115

ND

Serial_No:08191613:45

1,6020A

1,6020A

1,6020A

TT

TT

TT

08/15/16 07:45 08/17/16 16:54 EPA 3005A

08/15/16 07:45 08/17/16 16:54 EPA 3005A

08/15/16 07:45 08/17/16 16:54 EPA 3005A

Project Name: Project Number:		ALTHAM 16					Lab Nu Report		L16253 08/19/1		
				SAMPL	E RES	ULTS					
Lab ID:	L1625	352-03					Date Co	ollected:	08/11/1	6 10:40	
Client ID:	EFF						Date Re	eceived:	08/12/1	6	
Sample Location:	WALT	HAM, MA					Field Pr	ep:	Not Spe	cified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.0020		mg/l	0.0010		1	08/15/16 07:4	5 08/17/16 16:54	EPA 3005A	1,6020A	ТТ

1

1

1

0.0010

0.005

0.0100

--

mg/l

mg/l

mg/l

Lead, Total

Zinc, Total

Selenium, Total

ND

ND

ND

Project Name:HP WALTHAMProject Number:1552216

 Lab Number:
 L1625352

 Report Date:
 08/19/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	ld Lab for sample(s):	01,03 B	atch: W	G92271	7-1				
Copper, Total	ND	mg/l	0.0010		1	08/15/16 07:45	08/17/16 15:44	1,6020A	TT
Lead, Total	ND	mg/l	0.0010		1	08/15/16 07:45	08/17/16 15:44	1,6020A	ТТ
Selenium, Total	ND	mg/l	0.005		1	08/15/16 07:45	08/17/16 15:44	1,6020A	ТТ
Zinc, Total	ND	mg/l	0.0100		1	08/15/16 07:45	08/17/16 15:44	1,6020A	ТТ

Prep Information

Digestion Method: EPA 3005A

			•	memou	Analyst
Total Metals - Mansfield Lab for sample(s): 01,03 Batch: WG9227	718-1				
Iron, Total ND mg/l 0.050	1	08/15/16 07:45	08/15/16 11:55	5 19,200.7	JH

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM Project Number: 1552216

Lab Number: L1625352 Report Date: 08/19/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bate	ch: WG922	2717-2					
Copper, Total	103		-		80-120	-		
Lead, Total	106		-		80-120	-		
Selenium, Total	115		-		80-120	-		
Zinc, Total	95		-		80-120	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bate	ch: WG922	2718-2					
Iron, Total	95		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name:	HP WALTHAM	Batch Quality Control
Project Number:	1552216	

 Lab Number:
 L1625352

 Report Date:
 08/19/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recov Qual Limit		RPD Qual Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01,03	QC Bato	h ID: WG922 ⁻	717-3	WG922717-4	QC Sample	: L1625257-05	6 Client ID	: MS Sample
Copper, Total	ND	0.25	0.2524	101		0.2672	107	75-12	5 6	20
Lead, Total	ND	0.51	0.5679	111		0.6011	118	75-12	5 6	20
Selenium, Total	ND	0.12	0.132	110		0.134	112	75-12	5 2	20
Zinc, Total	ND	0.5	0.4973	99		0.5174	103	75-12	5 4	20
Total Metals - Mansfield Lab	Associated san	nple(s): 01,03	QC Bato	h ID: WG922 ⁻	718-4	QC Sample	e: L1625425-0	1 Client ID:	MS Sample)
Iron, Total	0.355	1	1.09	74	Q	-	-	75-12	5 -	20

INORGANICS & MISCELLANEOUS

								Serial_No:08	191613:45	
Project Name:	HP WALTHAM						Lab N	lumber:	L1625352	
Project Number:	1552216						Repo	rt Date:	08/19/16	
				SAMPLE	RESUL	rs				
Lab ID: Client ID: Sample Location: Matrix:	L1625352-01 INF WALTHAM, MA Water							Received:	08/11/16 10:2 08/12/16 Not Specified	
Parameter	Result Qual	lifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	stborough Lab									
loride	580		mg/l	10		10	-	08/17/16 17:57	7 1,9251	MR

							Serial_No:08	191613:45	
Project Name:	HP WALTHAM					Lab N	lumber:	L1625352	
Project Number:	1552216					Repo	rt Date:	08/19/16	
			SAMPLE	RESUL	rs				
Lab ID:	L1625352-03					Date	Collected:	08/11/16 10:4	40
Client ID:	EFF							08/12/16	
Sample Location: Matrix:	WALTHAM, MA Water					Field	Prep:	Not Specified	1
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
eneral Chemistry - We	stborough Lab								
loride	580	mg/l	10		10	-	08/17/16 18:03	3 1,9251	M

Project Name:HP WALTHAMProject Number:1552216

 Lab Number:
 L1625352

 Report Date:
 08/19/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab for san	nple(s): 01	,03 Bat	tch: WG	923271-1				
Chloride	ND	mg/l	1.0		1	-	08/17/16 17:13	1,9251	MR

Lab Control Sample Analysis Batch Quality Control

90-110

-

Lab Number: L1625352 Report Date: 08/19/16

LCS LCSD %Recovery Limits %Recovery %Recovery RPD **RPD** Limits Parameter Qual Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01,03 Batch: WG923271-2

-

107

Project Name:

Chloride

Project Number:

HP WALTHAM

1552216

		Matrix Spike Analysis Batch Quality Control		
Project Name:	HP WALTHAM	Baton Quanty Control	Lab Number:	L1625352
Project Number:	1552216		Report Date:	08/19/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	R Qual	Recovery Limits	RPD Q	RPD Limits
General Chemistry - Westborou	ugh Lab Asso	ciated samp	ole(s): 01,03	QC Batch II	D: WG92	23271-4	QC Sample: L1	625352	-01 Clien	nt ID: INF	
Chloride	580	20	610	150	Q	-	-		58-140	-	7

rameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Project Number:	1552216				R	eport Date	: 08/19/16
Project Name:	HP WALTHAM		Batch Quality Control	La	Lab Number:		

General Chemistry - Westborough Lab	Associated sample(s): 01,03	QC Batch ID: WG923271-3	QC Sample: L162	25352-01	Client ID: INF	
Chloride	580	590	mg/l	2		7

Serial_No:08191613:45

Lab Number: L1625352 Report Date: 08/19/16

Project Name: HP WALTHAM

Project Number: 1552216

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Info	rmation			Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)		
L1625352-01A	Vial HCI preserved	А	N/A	5.3	Y	Absent	8260(14)		
L1625352-01B	Vial HCI preserved	А	N/A	5.3	Y	Absent	8260(14)		
L1625352-01C	Vial HCI preserved	А	N/A	5.3	Y	Absent	8260(14)		
L1625352-01D	Plastic 250ml HNO3 preserved	A	<2	5.3	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)		
L1625352-01E	Plastic 60ml unpreserved	А	7	5.3	Y	Absent	CL-9251(28)		
L1625352-02A	Vial HCI preserved	А	N/A	5.3	Y	Absent	8260(14)		
L1625352-02B	Vial HCl preserved	А	N/A	5.3	Y	Absent	8260(14)		
L1625352-02C	Vial HCI preserved	А	N/A	5.3	Y	Absent	8260(14)		
L1625352-03A	Vial HCI preserved	А	N/A	5.3	Y	Absent	8260(14)		
L1625352-03B	Vial HCI preserved	А	N/A	5.3	Y	Absent	8260(14)		
L1625352-03C	Vial HCI preserved	А	N/A	5.3	Y	Absent	8260(14)		
L1625352-03D	Plastic 250ml HNO3 preserved	A	<2	5.3	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)		
L1625352-03E	Plastic 60ml unpreserved	А	7	5.3	Y	Absent	CL-9251(28)		
L1625352-04A	Vial HCI preserved	А	N/A	5.3	Υ	Absent	HOLD-8260(14)		
L1625352-04B	Vial HCI preserved	А	N/A	5.3	Y	Absent	HOLD-8260(14)		

Serial_No:08191613:45

L1625352

Project Name: HP WALTHAM

Project Number: 1552216

Report Date:

Lab Number:

te: 08/19/16

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

GLOSSARY

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the rep

Report Format: Data Usability Report

Serial_No:08191613:45

Project Name: HP WALTHAM

Project Number: 1552216

Lab Number: L1625352

Report Date: 08/19/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: HP WALTHAM Project Number: 1552216

 Lab Number:
 L1625352

 Report Date:
 08/19/16

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 300: <u>DW</u>: Bromide EPA 6860: <u>NPW and SCM</u>: Perchlorate EPA 9010: <u>NPW and SCM</u>: Amenable Cyanide Distillation EPA 9012B: <u>NPW</u>: Total Cyanide EPA 9050A: <u>NPW</u>: Specific Conductance SM3500: <u>NPW</u>: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: <u>DW</u>: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS EPA 3005A <u>NPW</u> EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: *EPA 3050B*

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 628: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:08191613:45

ALPHA	CHAI	N OF CU	STODY		OF	Date R	ec'd in La	16: 81	12/1	(ALPH	A Jo	b #:	1162	535	2
8 Walkup Drive	320 Forbes Blvd	Projec	t Information	in a spice		Repo	rt Inform	ation - D	ata Deliv	erab	les	Billing	g Info	ormatio	on		
Westboro, MA (Tel: 508-898-9	01581 Mansfield, MA 02044 220 Tel: 508-822-9300	Project	Name: HP	Walth	am		Ex	E EM	AIL.		1	Same	e as C	lient inf	o PO #:		
Client Information	on	Project	Location:	Ithan,	MA	Regul	atory Re	quireme	ents &	Proj	ect Inf	ormati	ion R	equire	ements		
Client: 200	Vorderbild	-Aue Project		216					lytical Meth		2002		es 🗆 I	No CT	RCP Analyt	ical Method	ds
Address: Nor	Wood MA		Vanager: Tak	ncih	and				Required order of the second s								
(77	A		Quote #:	n Cow	01	Ves I	No NPI	DES RGP									
Phone: 751	983 125	1	Around Time		-	d Othe	I State /Fe	1	1	11	1	_	Criter	а	111		
- ()	I. davis Paza	COM Stan		H (only confirmed if pre-app			102	URCP 15	VPH: LRanges & Targets D Ranges Only D PCB D PFC Ranges Only	s Only	/ /	N	it i				
	0			 (only contirmed if pre-ap) 	proved!)	X.SI	D 524.2	42 48	Rang	5	print	127	+ /	/			то
Additional P	roject Informatior	1: Date I	Jue:			ANALYSIS	PAH DS	EPH: LRanges of LRCRAB	000	TH: Douant Only FL	inger	for	/	/	/ / SAM	PLE INFO	-
						A 0 624	1/0/2	20	arget arget	12	i la	St	/	11	Filtra		L
					44		NCP ,	Cert	Ser 1	1 ino	onid	4		/ /	/ 🗆 Fie	b to do	#
						£8260	D ABN S: DMCP	ange	ange	luant	10/0	n/ /		/	Prese	ervation	BOTT
ALPHA Lab ID		150.0	Collection	Sample	Sampler	Voc:	METALS: DABN D	TALS	t: D.	0	5/5		/	11	/ 🗆 Lat	b to do	L
(Lab Use Only)	Sample	ID		me Matrix	Initials	2/2	ME			5/	N				Sample C	omments	E S
25352.01	INF	19	5/11/14	GW	Com	X				X	X						5
.02	MID		1	1		X											2
(0)	ERF		V	V	V	X				X	X	-	-				0
						6				r				_			5
						1											
1																	
																	-
									+ +	-		-					
Container Type	Preservative					11				0	0			_			
P= Plastic A= Amber glass	A= None B= HCI				ner Type	V				9	9						
V= Vial G= Glass B= Bacteria cup	C= HNO ₃ D= H ₂ SO ₄	10		Pres	servative	12				A	C						
C= Cube O= Other	E= NaOH F= MeOH G= NaHSO4	Relingu	ished By:	Date/		47	Recei	ved By		ert	Date/Tir		Alls	amples	s submitted a	are subject	to
E= Encore D= BOD Bottle	H = Na ₂ S ₂ O ₃ I= Ascorbic Àcid J = NH₄CI	wing	March	8/10/16	010	1/2/	gge	ph	~ AAL 3/12/16			1150	Alph	na's Ter	ms and Con		
Page 38 of 38	K= Zn Acetate O= Other	F.	July -	0110116	100	CI2	m	(2/10/16	-11	:20			Tevers	e side. -01 (rev. 12-Mar	2012)	

ANALYTICAL REPORT

Lab Number:	L1628422
Client:	GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062
ATTN: Phone:	Bill Davis (781) 278-5769
Project Name:	HP WALTHAM
Project Number:	01.0015522.16
Report Date:	09/19/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:09191617:05

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1628422

 Report Date:
 09/19/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1628422-01	INF	WATER	WALTHAM, MA	09/09/16 10:00	09/09/16
L1628422-02	MID	WATER	WALTHAM, MA	09/09/16 09:45	09/09/16
L1628422-03	EFF	WATER	WALTHAM, MA	09/09/16 09:30	09/09/16

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1628422

 Report Date:
 09/19/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

fina I Ing Lura L Troy

Title: Technical Director/Representative

Date: 09/19/16

ORGANICS

VOLATILES

				Serial_N	o:09191617:05
Project Name:	HP WALTHAM			Lab Number:	L1628422
Project Number:	01.0015522.16			Report Date:	09/19/16
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1628422-01 INF WALTHAM, MA Water 1,8260C 09/16/16 17:31 BD	D		Date Collected: Date Received: Field Prep:	09/09/16 10:00 09/09/16 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	300		100
1,1-Dichloroethane	ND		ug/l	75		100
Chloroform	ND		ug/l	75		100
Carbon tetrachloride	ND		ug/l	50		100
1,2-Dichloropropane	ND		ug/l	180		100
Dibromochloromethane	ND		ug/l	50		100
1,1,2-Trichloroethane	ND		ug/l	75		100
Tetrachloroethene	ND		ug/l	50		100
Chlorobenzene	ND		ug/l	50		100
Trichlorofluoromethane	ND		ug/l	250		100
1,2-Dichloroethane	ND		ug/l	50		100
1,1,1-Trichloroethane	ND		ug/l	50		100
Bromodichloromethane	ND		ug/l	50		100
trans-1,3-Dichloropropene	ND		ug/l	50		100
cis-1,3-Dichloropropene	ND		ug/l	50		100
Bromoform	ND		ug/l	200		100
1,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Benzene	ND		ug/l	50		100
Toluene	ND		ug/l	75		100
Ethylbenzene	ND		ug/l	50		100
Chloromethane	ND		ug/l	250		100
Bromomethane	ND		ug/l	100		100
Vinyl chloride	ND		ug/l	100		100
Chloroethane	ND		ug/l	100		100
1,1-Dichloroethene	ND		ug/l	50		100
trans-1,2-Dichloroethene	ND		ug/l	75		100
Trichloroethene	4600		ug/l	50		100
1,2-Dichlorobenzene	ND		ug/l	250		100
1,3-Dichlorobenzene	ND		ug/l	250		100
1,4-Dichlorobenzene	ND		ug/l	250		100

					;	Serial_N	0:09191617:05
Project Name:	HP WALTHAM				Lab Nu	mber:	L1628422
Project Number:	01.0015522.16				Report	Date:	09/19/16
		SAMP	LE RESULTS	6			
Lab ID:	L1628422-01	D			Date Col	lected:	09/09/16 10:00
Client ID:	INF				Date Ree	ceived:	09/09/16
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboro	ugh Lab					
Methyl tert butyl ether		ND		ug/l	100		100
p/m-Xylene		ND		ug/l	100		100
o-Xylene		ND		ug/l	100		100
cis-1,2-Dichloroethene		ND		ug/l	50		100
Dichlorodifluoromethane		ND		ug/l	500		100
Naphthalene		ND		ug/l	250		100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	99		70-130	

			Serial_No:09191617:05				
Project Name:	HP WALTHAM		Lab Number:	L1628422			
Project Number:	01.0015522.16		Report Date:	09/19/16			
		SAMPLE RESULTS					
Lab ID:	L1628422-02		Date Collected:	09/09/16 09:45			
Client ID:	MID		Date Received:	09/09/16			
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified			
Matrix:	Water						
Analytical Method:	1,8260C						
Analytical Date:	09/16/16 16:22						
Analyst:	BD						

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

			Serial_No:0919161					
Project Name:	HP WALTHAM				Lab Nu	mber:	L1628422	
Project Number:	01.0015522.16				Report	Date:	09/19/16	
		SAMP	LE RESULTS	3				
Lab ID:	L1628422-02				Date Col	lected:	09/09/16 09:45	
Client ID:	MID				Date Red	ceived:	09/09/16	
Sample Location:	WALTHAM, MA				Field Pre	p:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westboroug	h Lab						
Methyl tert butyl ether		ND		ug/l	1.0		1	
p/m-Xylene		ND		ug/l	1.0		1	
o-Xylene		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	0.50		1	
Dichlorodifluoromethane		ND		ug/l	5.0		1	
Naphthalene		ND		ug/l	2.5		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	103		70-130	

			Serial_N	o:09191617:05
Project Name:	HP WALTHAM		Lab Number:	L1628422
Project Number:	01.0015522.16		Report Date:	09/19/16
		SAMPLE RESULTS		
Lab ID:	L1628422-03		Date Collected:	09/09/16 09:30
Client ID:	EFF		Date Received:	09/09/16
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	09/16/16 16:57			
Analyst:	BD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Madhadana aktorida	ND			0.0		
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

		Serial_No:0919					o:09191617:05
Project Name:	HP WALTHAM				Lab Nu	mber:	L1628422
Project Number:	01.0015522.16				Report	Date:	09/19/16
		SAMP	LE RESULTS	5			
Lab ID:	L1628422-03				Date Col	llected:	09/09/16 09:30
Client ID:	EFF				Date Ree	ceived:	09/09/16
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	h Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	103		70-130	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1628422

 Project Number:
 01.0015522.16
 Report Date:
 09/19/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	09/16/16 11:38
Analyst:	PK

arameter	Result	Qualifier Units	RL	MDL
platile Organics by GC/MS	- Westborough La	b for sample(s): 01-03	B Batch:	WG933166-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1628422

 Project Number:
 01.0015522.16
 Report Date:
 09/19/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	09/16/16 11:38
Analyst:	PK

Parameter	Result	Qualifier Units	RL	MDL
/olatile Organics by GC/MS - West	orough Lab	o for sample(s): 01-03	Batch:	WG933166-5
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dichlorodifluoromethane	ND	ug/l	5.0	
Naphthalene	ND	ug/l	2.5	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	104		70-130		
Toluene-d8	93		70-130		
4-Bromofluorobenzene	103		70-130		
Dibromofluoromethane	101		70-130		

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch:	WG933166-3	WG933166-4			
Methylene chloride	110		100		70-130	10		20
1,1-Dichloroethane	110		110		70-130	0		20
Chloroform	110		110		70-130	0		20
Carbon tetrachloride	120		110		63-132	9		20
1,2-Dichloropropane	110		110		70-130	0		20
Dibromochloromethane	83		82		63-130	1		20
1,1,2-Trichloroethane	93		92		70-130	1		20
2-Chloroethylvinyl ether	110		100		70-130	10		20
Tetrachloroethene	98		94		70-130	4		20
Chlorobenzene	100		98		75-130	2		25
Trichlorofluoromethane	97		91		62-150	6		20
1,2-Dichloroethane	110		110		70-130	0		20
1,1,1-Trichloroethane	110		100		67-130	10		20
Bromodichloromethane	110		110		67-130	0		20
trans-1,3-Dichloropropene	85		84		70-130	1		20
cis-1,3-Dichloropropene	110		110		70-130	0		20
1,1-Dichloropropene	110		100		70-130	10		20
Bromoform	74		74		54-136	0		20
1,1,2,2-Tetrachloroethane	87		87		67-130	0		20
Benzene	110		110		70-130	0		25
Toluene	100		97		70-130	3		25

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual		CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	01-03	Batch:	WG933166-3	WG933166-4				
Ethylbenzene	100			100		70-130	0		20	
Chloromethane	76			72		64-130	5		20	
Bromomethane	94			83		39-139	12		20	
Vinyl chloride	96			92		55-140	4		20	
Chloroethane	110			100		55-138	10		20	
1,1-Dichloroethene	93			91		61-145	2		25	
trans-1,2-Dichloroethene	110			100		70-130	10		20	
Trichloroethene	110			110		70-130	0		25	
1,2-Dichlorobenzene	92			91		70-130	1		20	
1,3-Dichlorobenzene	97			95		70-130	2		20	
1,4-Dichlorobenzene	95			94		70-130	1		20	
Methyl tert butyl ether	100			100		63-130	0		20	
p/m-Xylene	105			100		70-130	5		20	
o-Xylene	105			100		70-130	5		20	
cis-1,2-Dichloroethene	110			110		70-130	0		20	
Dibromomethane	110			110		70-130	0		20	
1,4-Dichlorobutane	96			96		70-130	0		20	
lodomethane	80			80		70-130	0		20	
1,2,3-Trichloropropane	88			89		64-130	1		20	
Styrene	110			105		70-130	5		20	
Dichlorodifluoromethane	65			60		36-147	8		20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough I	ab Associated	sample(s):	01-03 Batch:	WG933166-3	WG933166-4			
Acetone	74		71		58-148	4		20
Carbon disulfide	87		82		51-130	6		20
2-Butanone	85		91		63-138	7		20
Vinyl acetate	96		97		70-130	1		20
4-Methyl-2-pentanone	76		79		59-130	4		20
2-Hexanone	76		74		57-130	3		20
Ethyl methacrylate	80		80		70-130	0		20
Acrolein	78		78		70-130	0		20
Acrylonitrile	90		94		70-130	4		20
Bromochloromethane	110		110		70-130	0		20
Tetrahydrofuran	82		84		58-130	2		20
2,2-Dichloropropane	130		130		63-133	0		20
1,2-Dibromoethane	92		93		70-130	1		20
1,3-Dichloropropane	94		93		70-130	1		20
1,1,1,2-Tetrachloroethane	100		97		64-130	3		20
Bromobenzene	98		97		70-130	1		20
n-Butylbenzene	100		96		53-136	4		20
sec-Butylbenzene	100		99		70-130	1		20
tert-Butylbenzene	100		96		70-130	4		20
o-Chlorotoluene	95		100		70-130	5		20
p-Chlorotoluene	100		100		70-130	0		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD .imits
/olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch:	WG933166-3	WG933166-4		
1,2-Dibromo-3-chloropropane	68		69		41-144	1	20
Hexachlorobutadiene	94		87		63-130	8	20
lsopropylbenzene	100		100		70-130	0	20
p-Isopropyltoluene	100		98		70-130	2	20
Naphthalene	64	Q	66	Q	70-130	3	20
n-Propylbenzene	100		100		69-130	0	20
1,2,3-Trichlorobenzene	63	Q	65	Q	70-130	3	20
1,2,4-Trichlorobenzene	82		82		70-130	0	20
1,3,5-Trimethylbenzene	100		100		64-130	0	20
1,3,5-Trichlorobenzene	95		90		70-130	5	20
1,2,4-Trimethylbenzene	100		100		70-130	0	20
trans-1,4-Dichloro-2-butene	92		89		70-130	3	20
Halothane	100		100		70-130	0	 20
Ethyl ether	94		97		59-134	3	20
Methyl Acetate	92		92		70-130	0	 20
Ethyl Acetate	93		98		70-130	5	 20
Isopropyl Ether	110		110		70-130	0	20
Cyclohexane	100		94		70-130	6	20
Tert-Butyl Alcohol	92		100		70-130	8	20
Ethyl-Tert-Butyl-Ether	110		110		70-130	0	20
Tertiary-Amyl Methyl Ether	100		100		66-130	0	20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	/ Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-03 Batch:	WG933166-3	WG933166-4			
1,4-Dioxane	82		78		56-162	5		20
1,1,2-Trichloro-1,2,2-Trifluoroethane	98		93		70-130	5		20
Methyl cyclohexane	100		99		70-130	1		20
p-Diethylbenzene	100		97		70-130	3		20
4-Ethyltoluene	100		100		70-130	0		20
1,2,4,5-Tetramethylbenzene	98		95		70-130	3		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	100		101		70-130	
Toluene-d8	96		94		70-130	
4-Bromofluorobenzene	106		106		70-130	
Dibromofluoromethane	102		104		70-130	

METALS

Serial_No:09191617:05

Project Name: Project Number:		ALTHAM 5522.16					Lab Nu Report		L16284 09/19/1		
				SAMPL	E RES	ULTS					
Lab ID:	L16284	422-01					Date Co	llected:	09/09/1	6 10:00	
Client ID:	INF						Date Re	ceived:	09/09/1	6	
Sample Location:	WALTI	HAM, MA					Field Pr	ep:	Not Spe	ecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Manst	field Lab										
Copper, Total	0.00845		mg/l	0.00100		1	09/13/16 08:35	5 09/13/16 12:56	EPA 3005A	1,6020A	BV
Iron, Total	0.144		mg/l	0.050		1	09/13/16 08:35	5 09/13/16 21:33	EPA 3005A	19,200.7	PS
Lead, Total	0.00119		mg/l	0.00100		1	09/13/16 08:35	5 09/13/16 12:56	EPA 3005A	1,6020A	BV
Selenium, Total	ND		mg/l	0.00500		_		09/13/16 12:56		1,6020A	BV

0.01000

1

09/13/16 08:35 09/13/16 12:56 EPA 3005A

mg/l

1,6020A

ΒV

0.01098

Zinc, Total

Serial_No:09191617:05

Project Name: Project Number:		ALTHAM 5522.16					Lab Nu Report		L162842 09/19/10		
				SAMPL	E RES	ULTS					
Lab ID:	L1628	422-03					Date Co	llected:	09/09/1	6 09:30	
Client ID:	EFF						Date Re	ceived:	09/09/1	6	
Sample Location:	WALT	HAM, MA					Field Pr	ep:	Not Spe	cified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.00281		mg/l	0.00100		1	09/13/16 08:35	5 09/13/16 13:00	EPA 3005A	1,6020A	BV
Iron, Total	ND		mg/l	0.050		1	09/13/16 08:35	09/13/16 21:38	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.00100		1	09/13/16 08:35	5 09/13/16 13:00	EPA 3005A	1,6020A	BV
Selenium, Total	ND		mg/l	0.00500		1	00/13/16 08:35	09/13/16 13:00	EPA 3005A	1,6020A	BV

1

09/13/16 08:35 09/13/16 13:00 EPA 3005A

0.01000

mg/l

1,6020A

ΒV

Zinc, Total

ND

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1628422

 Report Date:
 09/19/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01,03 B	atch: W	G931259)-1				
Iron, Total	ND	mg/l	0.050		1	09/13/16 08:35	09/13/16 19:10	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Ma	ansfield Lab for sample(s)	: 01,03	Batch: Wo	G93126	2-1				
Copper, Total	ND	mg/l	0.00100		1	09/13/16 08:35	09/13/16 12:26	6 1,6020A	BV
Lead, Total	ND	mg/l	0.00050		1	09/13/16 08:35	09/13/16 12:26	5 1,6020A	BV
Selenium, Total	ND	mg/l	0.00500		1	09/13/16 08:35	09/13/16 12:26	5 1,6020A	BV
Zinc, Total	ND	mg/l	0.01000		1	09/13/16 08:35	09/13/16 12:26	5 1,6020A	BV

Prep Information

Digestion Method: EPA 3005A

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Batc	ch: WG931	1259-2					
Iron, Total	96		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Batc	ch: WG931	1262-2					
Copper, Total	104		-		80-120	-		
Lead, Total	110		-		80-120	-		
Selenium, Total	108		-		80-120	-		
Zinc, Total	105		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name:	HP WALTHAM
Project Number:	01.0015522.16

 Lab Number:
 L1628422

 Report Date:
 09/19/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield L	_ab Associated sam	ple(s): 01,03	QC Bat	ch ID: WG931	259-4	QC Samp	ole: L1628464-0	1 Client ID: MS	Sample	
Iron, Total	5.50	1	6.21	71	Q	-	-	75-125	-	20
Total Metals - Mansfield L	Lab Associated sam	ple(s): 01,03	QC Bat	ch ID: WG931	262-4	QC Samp	ole: L1628464-0	1 Client ID: MS	Sample	
Copper, Total	0.0061	0.25	0.2580	101		-	-	75-125	-	20
Lead, Total	0.00206	0.51	0.5503	107		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.137	114	_	-	-	75-125	-	20
Zinc, Total	0.0111	0.5	0.5135	100	_	-	-	75-125	-	20

Project Name: Project Number:	HP WALTHAM 01.0015522.16				licate Anal Quality Contro		_	.ab Number: Report Date:	L1628422 09/19/16
Parameter		1	Native Sample	Dupli	icate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield	Lab Associated sample(s):	01,03	QC Batch ID:	WG931259-3	QC Sample:	L1628464-01	Client ID:	DUP Sample	Э
Iron, Total			5.50		5.61	mg/l	2		20
otal Metals - Mansfield	Lab Associated sample(s):	01,03	QC Batch ID:	WG931262-3	QC Sample:	L1628464-01	Client ID:	DUP Sample	Э
Lead, Total			0.00206		0.00209	mg/l	1		20

INORGANICS & MISCELLANEOUS

							Serial_No:09	191617:05	
Project Name:	HP WALTHAM					Lab N	lumber:	L1628422	
Project Number:	01.0015522.16					Repo	rt Date:	09/19/16	
			SAMPLE	RESUL	TS				
Lab ID: Client ID: Sample Location: Matrix:	L1628422-01 INF WALTHAM, MA Water						Received:	09/09/16 10:0 09/09/16 Not Specified	
Parameter	Result Qualifier	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	stborough Lab								
loride	550	mg/l	10		10	-	09/13/16 21:26	6 1,9251	ML

neral Chemistry - We loride	stborough Lab	mg/l	10		10	_	09/13/16 21:28	8 1,9251	ML
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
Lab ID: Client ID: Sample Location: Matrix:	L1628422-03 EFF WALTHAM, MA Water					Date Collected: Date Received: Field Prep:		09/09/16 09:30 09/09/16 Not Specified	
			SAMPLE	RESUL	тs				
Project Number:	01.0015522.16					Repo	rt Date:	09/19/16	
Project Name:	HP WALTHAM					Lab Number: Lab Number:		L1628422	
					Serial_No:09191617:05				

 Lab Number:
 L1628422

 Report Date:
 09/19/16

Project Name:HP WALTHAMProject Number:01.0015522.16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab for sam	ple(s): 01	,03 Ba	tch: WO	G931519-1				
Chloride	ND	mg/l	1.0		1	-	09/13/16 21:05	1,9251	ML

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery C	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	ssociated sample(s): 0	01,03	Batch: WG93157	9-2				
Chloride	103		-		90-110	-		

		Matrix Spike Analysis Batch Quality Control		
Project Name:	HP WALTHAM		Lab Number:	L1628422
Project Number:	01.0015522.16		Report Date:	09/19/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Q	Recovery ual Limits RPI	RPD D Qual Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01,03	QC Batch II	D: WG931519-4	QC Sample: L16	28252-01 Client ID:	MS Sample
Chloride	ND	20	21	105	-	-	58-140 -	7

Project Name:	HP WALTHAM	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L1628422
Project Number:	01.0015522.16		Report Date:	09/19/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associate	ed sample(s): 01,03 QC Ba	tch ID: WG931519-3 0	QC Sample: L162	28252-01	Client ID: DUP Sample
Chloride	ND	ND	mg/l	NC	7

 Lab Number:
 L1628422

 Report Date:
 09/19/16

Project Name:HP WALTHAMProject Number:01.0015522.16

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1628422-01A	Vial HCI preserved	А	N/A	5.8	Y	Absent	8260(14)
L1628422-01B	Vial HCI preserved	А	N/A	5.8	Y	Absent	8260(14)
L1628422-01C	Vial HCI preserved	А	N/A	5.8	Y	Absent	8260(14)
L1628422-01D	Plastic 250ml HNO3 preserved	A	<2	5.8	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1628422-01E	Plastic 60ml unpreserved	А	7	5.8	Y	Absent	CL-9251(28)
L1628422-02A	Vial HCI preserved	А	N/A	5.8	Y	Absent	8260(14)
L1628422-02B	Vial HCI preserved	А	N/A	5.8	Y	Absent	8260(14)
L1628422-02C	Vial HCI preserved	А	N/A	5.8	Y	Absent	8260(14)
L1628422-03A	Vial HCI preserved	А	N/A	5.8	Y	Absent	8260(14)
L1628422-03B	Vial HCI preserved	А	N/A	5.8	Y	Absent	8260(14)
L1628422-03C	Vial HCI preserved	А	N/A	5.8	Y	Absent	8260(14)
L1628422-03D	Plastic 250ml HNO3 preserved	A	<2	5.8	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1628422-03E	Plastic 60ml unpreserved	А	7	5.8	Y	Absent	CL-9251(28)

L1628422

09/19/16

Lab Number:

Report Date:

Project Name: HP WALTHAM

Project Number: 01.0015522.16

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	 Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	 Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the rep

Report Format: Data Usability Report

Project Name:HP WALTHAMProject Number:01.0015522.16

Lab Number: L1628422

Report Date: 09/19/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1628422

 Report Date:
 09/19/16

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 300: <u>DW</u>: Bromide EPA 6860: <u>NPW and SCM</u>: Perchlorate EPA 9010: <u>NPW and SCM</u>: Amenable Cyanide Distillation EPA 9012B: <u>NPW</u>: Total Cyanide EPA 9050A: <u>NPW</u>: Specific Conductance SM3500: <u>NPW</u>: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: <u>DW</u>: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS EPA 3005A <u>NPW</u> EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: *EPA 3050B*

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 628: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Дерна	CHAIN	OF CUS	TOD	РА	GE	_OF	Dat	e Rec	'd in La	1b:9/	91	16	-		ALPH	A Job	#:	6284	1224
	200 Faches Blud	Project In	formation	-			Re	port	nform	ation	- Dat	a Deliv	erab	les			mation		
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92	320 Forbes Blvd 1581 Mansfield, MA 02048 20 Tel: 508-822-9300	Project Nam	ne: HP	' ti	12/10	alu		ADEx		Q E	EMAIL				□ Same	e as Cli	ent info	PO #:	
Client Informatio	n	Project Nam Project Loca	ation: Wa	Hha	m	na,				and the second se		_	_	ject Ir	format	ion Re	quirem	ents	
Client: GZA		Project #:	11.00155	1211	6							cal Met		SDG?	Q Y (Require			CP Analytical	Methods
		Ace Project Man	ager: J.	Col	bert		DY	es 🗆 I	No GW	1 Stan	dards				letals & E				
Nama	Vanderb. It ad Ma, 02:	162 ALPHA Qu							No NP tate /Fe							Criteria	r		
Phone: 7-81-	983-1357	the second se	und Time					1	Xa		13 13	131	1	/	11	1	/ /	11	
	vis @ 979. (974 roject Information:	Date Due		SH (only co	nfirmed if pre-ap	pproved!)	ANALVO	SVOC: 0 40: 0 624 0 524 5	METALS: DMCP 1 PAH	EPH: DRCRAS DMCP 14 DRCP J	Ranges & Targets DPp.	D PCB D PCC Ranges Only	TH: DQuant Only C.	Our of Hingerprint	M. E. C. K. E			SAMPLE Filtration Field Lab to Preserva Lab to	do B
ALPHA Lab ID (Lab Use Only)	Sample ID)	Collection Date		Sample Matrix	Sampler Initials	Koc:	SVOC:	IETAL	PH. C	Hall Ha	PCB	Ë	2 m		/ /			Ē
2842201	TWE	01	11	Time	-	R ()	X	-/			/ -					$\left(\right)$		Sample Com	ments 5
a drig	MID	1			Ger	30	X	-	-	-			1	X					2
107	10110			15am	50	Rh	2	-	-	-							-		,
05	EFF		V 9:	30au	6-1-	DD					-		~	X					5
Container Type	Preservative A= None				Conta	iner Type	V						P	P					
A= Amber glass V= Vial G= Glass	B= HCI C= HNO ₃ D= H ₂ SO ₄				Pre	servative	HEL						/	HM.S					
B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 38 of 38		Relinquishe	ed/By:		9/9/1	/Time 16 135pr 4 1640	M, C	Cr	1	ved By A	1: E	- -	9/	Date/1 9/16	īme 73]* [СМО	Alpha See r	a's Terms everse s	ubmitted are and Condition ide.	ons.

ANALYTICAL REPORT

Lab Number:	L1631900
Client:	GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062
ATTN:	John Colbert
Phone: Project Name:	(781) 278-3700 HP WALTHAM
Project Number: Report Date:	01.0015522.16 10/13/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:10131611:46

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1631900

 Report Date:
 10/13/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time Receive Date
L1631900-01	INF	WATER	WALTHAM, MA	10/06/16 00:00 10/06/16
L1631900-02	MID	WATER	WALTHAM, MA	10/06/16 00:00 10/06/16
L1631900-03	EFF	WATER	WALTHAM, MA	10/06/16 00:00 10/06/16

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1631900

 Report Date:
 10/13/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

fina I Imp Lura L Troy

Title: Technical Director/Representative

Date: 10/13/16

ORGANICS

VOLATILES

				Serial_N	o:10131611:46
Project Name:	HP WALTHAM			Lab Number:	L1631900
Project Number:	01.0015522.16			Report Date:	10/13/16
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1631900-01 INF WALTHAM, MA Water 1,8260C 10/11/16 16:36 PD	D		Date Collected: Date Received: Field Prep:	10/06/16 00:00 10/06/16 Not Specified

ND ug/l 75 100 Chlorolorm ND ug/l 75 100 Chlorolorm ND ug/l 50 100 Chlorolorm ND ug/l 50 100 Chlorolormethane ND ug/l 50 100 Chloronchloromethane ND ug/l 50 100 Chlorobenzene ND ug/l 50 100 L2-Dichloropropene ND ug/l 50 100 Stranodichlororoppane ND ug/l 50 100 Stranodichlororoppane ND ug/l 50 100 Stranodichlororoppane ND </th <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RL</th> <th>MDL</th> <th>Dilution Factor</th>	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
NDug175-100ChlorolormNDug175-100Carbon tetrachlorideNDug150-100Carbon tetrachlorideNDug150-100L2-DichloropropaneNDug150-100DibromochloromethaneNDug150-100L2-DichloropthaneNDug150-100FetrachlorotethaneNDug150-100ChlorobenzeneNDug150-100ChlorobenzeneNDug150-100ChlorobenzeneNDug150-100L2-DichloropthaneNDug150-100L2-DichloropthaneNDug150-100L2-DichloroptopeneNDug150-100L2-DichloroptopeneNDug150-100Stans-1,3-DichloroptopeneNDug150-100Stans-1,3-DichloroptopeneNDug150-100Stans-1,3-DichloroptopeneNDug150-100Stans-1,3-DichloroptopeneNDug150-100Stans-1,3-DichloroptopeneNDug150-100Stans-1,3-DichloroptopeneNDug150-100Stans-1,3-DichloroptopeneNDug1100-100Sta	Volatile Organics by GC/MS - Westb	orough Lab					
ND ug/l 75 100 Carbon tetrachloride ND ug/l 50 100 1,2-Dichloropropane ND ug/l 50 100 1,2-Dichloropropane ND ug/l 50 100 1,1-2-Trichloroethane ND ug/l 50 100 1,1-2-Trichloroethane ND ug/l 50 100 Fetrachloroethane ND ug/l 50 100 1,2-Dichloroethane ND ug/l 50 100 3romodichloromethane ND ug/l 50 100 asrnas-1,3-Dichloropropene ND ug/l 50 100 <tr< td=""><td>Methylene chloride</td><td>ND</td><td></td><td>ug/l</td><td>300</td><td></td><td>100</td></tr<>	Methylene chloride	ND		ug/l	300		100
Auton tetrachloride ND ug/l 50 100 1,2-Dichloropropane ND ug/l 50 100 Dibromochloromethane ND ug/l 50 100 1,1,2-Trichloroethane ND ug/l 50 100 Fetrachloroethane ND ug/l 50 100 Shorobenzene ND ug/l 50 100 Shorobenzene ND ug/l 50 100 Shorobenzene ND ug/l 50 100 Lichloroethane ND ug/l 50 100 Li,1-Trichloroethane ND ug/l 50 100 Sito-Solchloropropene ND ug/l 50 100 Sito-Solchloropropene ND ug/l 50 100 Sito-Solchloropropene ND ug/l 50 100 <	1,1-Dichloroethane	ND		ug/l	75		100
NDug/l180-100DibronochloromethaneNDug/l50100L1,1_2-TrichloroethaneNDug/l50100FetrachloroethaneNDug/l50100ChlorobenzeneNDug/l50100ChlorobenzeneNDug/l50100ChlorobenzeneNDug/l50100L2.DichloroethaneNDug/l50100L3.DichloropthaneNDug/l50100ArmodichloromethaneNDug/l50100ArmodichloroptopeneNDug/l50100BrenzeneNDug/l50100BrenzeneNDug/l50100BrenzeneNDug/l50100BrenzeneNDug/l50100BrenzeneNDug/l50100InducentaneNDug/l50100InducentaneNDug/l50100InducentaneNDug/l50100InducentaneNDug/l50100InducentaneNDug/l50100InducentaneNDug/l100100InducentaneNDug/l100100In	Chloroform	ND		ug/l	75		100
ND ug/l 50 100 1,1,2-Trichloroethane ND ug/l 75 100 Fetrachloroethane ND ug/l 50 100 Chlorobenzene ND ug/l 50 100 Chlorobenzene ND ug/l 50 100 L,2-Dichloroethane ND ug/l 50 100 L,1-Trichloroethane ND ug/l 50 100 J,2-Dichloroptopene ND ug/l 50 100 J,2-Dichloroptopene ND ug/l 50 100 Stromodichloromethane ND ug/l 50 100 Stromodichloropropene ND ug/l 50 100 Stromodichloropropene ND ug/l 50 100 Stromodichloropropene ND ug/l 50 100 <t< td=""><td>Carbon tetrachloride</td><td>ND</td><td></td><td>ug/l</td><td>50</td><td></td><td>100</td></t<>	Carbon tetrachloride	ND		ug/l	50		100
1,2-Trichloroethane ND ug/l 75 100 Fetrachloroethane ND ug/l 50 100 Chlorobenzene ND ug/l 50 100 Trichloroethane ND ug/l 50 100 1,1-Trichloroethane ND ug/l 50 100 3romodichloromethane ND ug/l 50 100 storodichloropropene ND ug/l 50 100 arans-1,3-Dichloropropene ND ug/l 50 100 stornoform ND ug/l 50 100 storatof ND ug/l 50 100 Storomethane <	1,2-Dichloropropane	ND		ug/l	180		100
ND ug/l 50 100 Chlorobenzene ND ug/l 50 100 Chlorobenzene ND ug/l 50 100 Trichlorofluoromethane ND ug/l 50 100 1,1-Trichloroethane ND ug/l 50 100 Romodichloromethane ND ug/l 50 100 Romodichloropropene ND ug/l 50 100 Stranoform ND ug/l 50 100 Stranomethane ND ug/l<	Dibromochloromethane	ND		ug/l	50		100
ND ug/ 50 100 Trichlorofluoromethane ND ug/ 250 100 1,2-Dichloroethane ND ug/ 50 100 1,1-Trichloroethane ND ug/ 50 100 3romodichloromethane ND ug/ 50 100 arns-1,3-Dichloropropene ND ug/ 50 100 ars-1,3-Dichloropropene ND ug/ 50 100 3romoform ND ug/ 50 100 1,1,2:2-Tetrachloroethane ND ug/ 50 100 3romoform ND ug/ 50 100 1,1,2:2-Tetrachloroethane ND ug/ 50 100 1,1,2:2-Tetrachloroethane ND ug/ 50 100 Chloromethane ND ug/ 100 100	1,1,2-Trichloroethane	ND		ug/l	75		100
nrichlorofluoromethane ND ug/ 250 100 1,2-Dichloroethane ND ug/ 50 100 1,1-Trichloroethane ND ug/ 50 100 3romodichloromethane ND ug/ 50 100 arms-1,3-Dichloropropene ND ug/ 50 100 arms-1,3-Dichloropthane ND ug/ 50 100 arms-1,3-Dichloropthane ND ug/ 50 100 arms-1,3-Dichloroethane ND ug/ 100 100 chloroethane ND ug/ 100	Tetrachloroethene	ND		ug/l	50		100
Application ND ug/l 50 100 I,1,1-Trichloroethane ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 Bromodichloropropene ND ug/l 50 100 Bromoform ND ug/l 50 100 Bromomethane ND ug/l 50 100 Bromomethane ND ug/l 50 100 Bromomethane ND ug/l 100 100 Chloromethane ND ug/l 100 100	Chlorobenzene	ND		ug/l	50		100
ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 Bromodichloropropene ND ug/l 50 100 Bromodicm ND ug/l 50 100 Bromodicm ND ug/l 50 100 Bromodichloropropene ND ug/l 50 100 Bromodichloropropene ND ug/l 50 100 Bromodichloropropene ND ug/l 100 100 Chloropethane ND ug/l 100 100 Ly-Dic	Trichlorofluoromethane	ND		ug/l	250		100
ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 rans-1,3-Dichloropropene ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 Bromodichloropropene ND ug/l 100 100 Chloropropene ND ug/l 100 100 Chloropropene ND ug/l 100 100	1,2-Dichloroethane	ND		ug/l	50		100
ND ug/l 50 100 sis-1,3-Dichloropropene ND ug/l 50 100 Bromoform ND ug/l 50 100 Bromoform ND ug/l 200 100 Bromoform ND ug/l 50 100 Benzene ND ug/l 50 100 Genzene ND ug/l 50 100 Foluene ND ug/l 50 100 Chloromethane ND ug/l 50 100 Chloromethane ND ug/l 50 100 Chloromethane ND ug/l 100 100 Chloroethane ND ug/l 100 100 Chloroethane ND ug/l 100 100 L1-Dichloroethene ND ug/l 50 <td>1,1,1-Trichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>50</td> <td></td> <td>100</td>	1,1,1-Trichloroethane	ND		ug/l	50		100
ND ug/l 50 100 Bromoform ND ug/l 200 100 Bromoform ND ug/l 200 100 Bromoform ND ug/l 50 100 Foluene ND ug/l 50 100 Ethylbenzene ND ug/l 100 100 Stromomethane ND ug/l 100 100 Chloroethane ND ug/l 100 100 L1-Dichloroethene ND ug/l 50 <	Bromodichloromethane	ND		ug/l	50		100
ND ug/l 200 100 1,1,2,2-Tetrachloroethane ND ug/l 50 100 Benzene ND ug/l 50 100 Genzene ND ug/l 50 100 Foluene ND ug/l 75 100 Ethylbenzene ND ug/l 50 100 Chloromethane ND ug/l 50 100 Stromoform ND ug/l 50 100 Chloromethane ND ug/l 100 100 Stromoform ND ug/l 100 100 Chloroethane ND ug/l 100 100 I,1-Dichloroethene ND ug/l 50 100 I,1-Dichloroethene ND ug/l 50 100 I,2-Dichloroethene ND ug/l	trans-1,3-Dichloropropene	ND		ug/l	50		100
ND ug/l 50 100 Benzene ND ug/l 50 100 Foluene ND ug/l 50 100 Foluene ND ug/l 75 100 Ethylbenzene ND ug/l 50 100 Chloromethane ND ug/l 50 100 Stromomethane ND ug/l 250 100 Stromomethane ND ug/l 100 100 Stromomethane ND ug/l 100 100 Stromomethane ND ug/l 100 100 L1-Dichloroethene ND ug/l 50 100 L1-Dichloroethene ND ug/l 50 100 L1-Dichloroethene ND ug/l 50 100 L2-Dichlorobenzene ND ug/l	cis-1,3-Dichloropropene	ND		ug/l	50		100
ND ug/l 50 100 Foluene ND ug/l 75 100 Ethylbenzene ND ug/l 50 100 Chloromethane ND ug/l 50 100 Stromomethane ND ug/l 250 100 Othoromethane ND ug/l 100 100 Stromomethane ND ug/l 100 100 Chloroethane ND ug/l 100 100 Chloroethane ND ug/l 100 100 I,1-Dichloroethene ND ug/l 50 100 I,1-Dichloroethene ND ug/l 50 100 Irichloroethene 6400 ug/l 50 100 I,2-Dichlorobenzene ND ug/l 250 100	Bromoform	ND		ug/l	200		100
Foluene ND ug/l 75 100 Ethylbenzene ND ug/l 50 100 Chloromethane ND ug/l 250 100 Bromomethane ND ug/l 100 100 Bromomethane ND ug/l 100 100 Chloromethane ND ug/l 100 100 Jinyl chloride ND ug/l 100 100 Chloroethane ND ug/l 100 100 I,1-Dichloroethene ND ug/l 50 100 I,1-Dichloroethene ND ug/l 75 100 Irrichloroethene 6400 ug/l 50 100 I,2-Dichlorobenzene ND ug/l 250 100	1,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Ethylbenzene ND ug/l 50 100 Chloromethane ND ug/l 250 100 Bromomethane ND ug/l 100 100 Bromomethane ND ug/l 100 100 Vinyl chloride ND ug/l 100 100 Chloroethane ND ug/l 100 100 L,1-Dichloroethene ND ug/l 50 100 rans-1,2-Dichloroethene ND ug/l 50 100 I,2-Dichloroethene ND ug/l 50 100 I,2-Dichloroethene ND ug/l 50 100 I,2-Dichlorobenzene ND ug/l 50 100 I,2-Dichlorobenzene ND ug/l 250 100	Benzene	ND		ug/l	50		100
ND ug/l 250 100 Bromomethane ND ug/l 100 100 Aromomethane ND ug/l 100 100 /inyl chloride ND ug/l 100 100 /inyl chloride ND ug/l 100 100 Chloroethane ND ug/l 100 100 I,1-Dichloroethene ND ug/l 50 100 rans-1,2-Dichloroethene ND ug/l 75 100 rrichloroethene ND ug/l 50 100 I,2-Dichlorobenzene ND ug/l 50 100 I,2-Dichlorobenzene ND ug/l 250 100	Toluene	ND		ug/l	75		100
ND ug/l 100 100 /inyl chloride ND ug/l 100 100 Chloroethane ND ug/l 100 100 L1-Dichloroethene ND ug/l 50 100 rans-1,2-Dichloroethene ND ug/l 50 100 rrichloroethene ND ug/l 50 100 rans-1,2-Dichloroethene ND ug/l 50 100 I,2-Dichloroethene ND ug/l 50 100 I,2-Dichloroethene 6400 ug/l 50 100 I,2-Dichlorobenzene ND ug/l 250 100	Ethylbenzene	ND		ug/l	50		100
ND ug/l 100 100 Chloroethane ND ug/l 100 100 L1-Dichloroethene ND ug/l 50 100 rans-1,2-Dichloroethene ND ug/l 50 100 rans-1,2-Dichloroethene ND ug/l 75 100 rans-1,2-Dichloroethene ND ug/l 50 100 I,2-Dichloroethene ND ug/l 50 100 I,2-Dichloroethene ND ug/l 50 100 I,2-Dichlorobenzene ND ug/l 250 100	Chloromethane	ND		ug/l	250		100
ND ug/l 100 100 I,1-Dichloroethene ND ug/l 50 100 rans-1,2-Dichloroethene ND ug/l 75 100 rrichloroethene ND ug/l 50 100 rans-1,2-Dichloroethene 6400 ug/l 50 100 I,2-Dichloroethene 6400 ug/l 250 100 I,2-Dichlorobenzene ND ug/l 250 100	Bromomethane	ND		ug/l	100		100
ND ug/l 50 100 rans-1,2-Dichloroethene ND ug/l 75 100 rans-1,2-Dichloroethene 6400 ug/l 50 100 I,2-Dichloroethene 6400 ug/l 50 100 I,2-Dichloroethene ND ug/l 250 100 I,2-Dichlorobenzene ND ug/l 250 100	Vinyl chloride	ND		ug/l	100		100
ND ug/l 75 100 Irichloroethene 6400 ug/l 50 100 I,2-Dichlorobenzene ND ug/l 250 100 I,3-Dichlorobenzene ND ug/l 250 100	Chloroethane	ND		ug/l	100		100
Instruction 6400 ug/l 50 100 1,2-Dichlorobenzene ND ug/l 250 100 1,3-Dichlorobenzene ND ug/l 250 100	1,1-Dichloroethene	ND		ug/l	50		100
ND ug/l 250 100 I,3-Dichlorobenzene ND ug/l 250 100	trans-1,2-Dichloroethene	ND		ug/l	75		100
l,3-Dichlorobenzene ND ug/l 250 100	Trichloroethene	6400		ug/l	50		100
5	1,2-Dichlorobenzene	ND		ug/l	250		100
I,4-Dichlorobenzene ND ug/I 250 100	1,3-Dichlorobenzene	ND		ug/l	250		100
	1,4-Dichlorobenzene	ND		ug/l	250		100

					Ş	Serial_N	o:10131611:46
Project Name:	HP WALTHAM				Lab Nu	mber:	L1631900
Project Number:	01.0015522.16				Report	Date:	10/13/16
		SAMP	LE RESULTS	6			
Lab ID:	L1631900-01	D			Date Col	lected:	10/06/16 00:00
Client ID:	INF				Date Red	ceived:	10/06/16
Sample Location:	WALTHAM, MA				Field Pre	p:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboro	ugh Lab					
Methyl tert butyl ether		ND		ug/l	100		100
p/m-Xylene		ND		ug/l	100		100
o-Xylene		ND		ug/l	100		100
cis-1,2-Dichloroethene		ND		ug/l	50		100
Dichlorodifluoromethane		ND		ug/l	500		100
Naphthalene		ND		ug/l	250		100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	95		70-130	

			Serial_No:10131611:46			
Project Name:	HP WALTHAM		Lab Number:	L1631900		
Project Number:	01.0015522.16		Report Date:	10/13/16		
		SAMPLE RESULTS				
Lab ID:	L1631900-02		Date Collected:	10/06/16 00:00		
Client ID:	MID		Date Received:	10/06/16		
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified		
Matrix:	Water					
Analytical Method:	1,8260C					
Analytical Date:	10/11/16 16:01					
Analyst:	PD					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	4.0		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					:	Serial_N	o:10131611:46
Project Name:	HP WALTHAM				Lab Nu	mber:	L1631900
Project Number:	01.0015522.16				Report	Date:	10/13/16
		SAMP		6			
Lab ID:	L1631900-02				Date Col	llected:	10/06/16 00:00
Client ID:	MID				Date Re	ceived:	10/06/16
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	h Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	108		70-130	
Dibromofluoromethane	99		70-130	

			Serial_N	o:10131611:46
Project Name:	HP WALTHAM		Lab Number:	L1631900
Project Number:	01.0015522.16		Report Date:	10/13/16
		SAMPLE RESULTS		
Lab ID:	L1631900-03		Date Collected:	10/06/16 00:00
Client ID:	EFF		Date Received:	10/06/16
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	10/12/16 13:04			
Analyst:	PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	0.91		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					:	Serial_No	o:10131611:46
Project Name:	HP WALTHAM				Lab Nu	mber:	L1631900
Project Number:	01.0015522.16				Report	Date:	10/13/16
		SAMP		6			
Lab ID:	L1631900-03				Date Col	lected:	10/06/16 00:00
Client ID:	EFF				Date Re	ceived:	10/06/16
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	h Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	83		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	115		70-130	
Dibromofluoromethane	91		70-130	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1631900

 Project Number:
 01.0015522.16
 Report Date:
 10/13/16

Analytical Method:	1,8260C
Analytical Date:	10/11/16 12:33
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lal	o for sample(s): 01-0	02 Batch:	WG941196-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

Project Name:	HP WALTHAM	Lab Number:	L1631900
Project Number:	01.0015522.16	Report Date:	10/13/16

Analytical Method:	1,8260C
Analytical Date:	10/11/16 12:33
Analyst:	PD

Diatile Organics by GC/MS - West 1,4-Dichlorobenzene Methyl tert butyl ether	borough Lab f	for sample(s): 01-02	Batch:	WC041106 E
,				WG941196-5
Mathyl tart butyl athar	ND	ug/l	2.5	
	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dichlorodifluoromethane	ND	ug/l	5.0	
Naphthalene	ND	ug/l	2.5	

		A	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	103		70-130
Toluene-d8	103		70-130
4-Bromofluorobenzene	110		70-130
Dibromofluoromethane	100		70-130

 Project Name:
 HP WALTHAM
 Lab Number:
 L1631900

 Project Number:
 01.0015522.16
 Report Date:
 10/13/16

Analytical Method:	1,8260C
Analytical Date:	10/12/16 12:08
Analyst:	PD

arameter	Result	Qualifier U	nits	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s	s): 03	Batch:	WG941471-5
Methylene chloride	ND		ug/l	3.0	
1,1-Dichloroethane	ND		ug/l	0.75	
Chloroform	ND		ug/l	0.75	
Carbon tetrachloride	ND		ug/l	0.50	
1,2-Dichloropropane	ND		ug/l	1.8	
Dibromochloromethane	ND		ug/l	0.50	
1,1,2-Trichloroethane	ND		ug/l	0.75	
Tetrachloroethene	ND		ug/l	0.50	
Chlorobenzene	ND		ug/l	0.50	
Trichlorofluoromethane	ND		ug/l	2.5	
1,2-Dichloroethane	ND		ug/l	0.50	
1,1,1-Trichloroethane	ND		ug/l	0.50	
Bromodichloromethane	ND		ug/l	0.50	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
Bromoform	ND		ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	0.75	
Ethylbenzene	ND		ug/l	0.50	
Chloromethane	ND		ug/l	2.5	
Bromomethane	ND		ug/l	1.0	
Vinyl chloride	ND		ug/l	1.0	
Chloroethane	ND		ug/l	1.0	
1,1-Dichloroethene	ND		ug/l	0.50	
trans-1,2-Dichloroethene	ND		ug/l	0.75	
Trichloroethene	ND		ug/l	0.50	
1,2-Dichlorobenzene	ND		ug/l	2.5	
1,3-Dichlorobenzene	ND		ug/l	2.5	

Project Name:	HP WALTHAM	Lab Number:	L1631900
Project Number:	01.0015522.16	Report Date:	10/13/16

Analytical Method:	1,8260C
Analytical Date:	10/12/16 12:08
Analyst:	PD

Parameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by GC/MS -	Westborough La	b for sampl	e(s): 03	Batch:	WG941471-5	
1,4-Dichlorobenzene	ND		ug/l	2.5		
Methyl tert butyl ether	ND		ug/l	1.0		
p/m-Xylene	ND		ug/l	1.0		
o-Xylene	ND		ug/l	1.0		
cis-1,2-Dichloroethene	ND		ug/l	0.50		
Dichlorodifluoromethane	ND		ug/l	5.0		
Naphthalene	ND		ug/l	2.5		

	Acceptance				
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	84		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	113		70-130		
Dibromofluoromethane	92		70-130		

Project Name: HP WALTHAM Project Number: 01.0015522.16

Parameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	01-02	Batch:	WG941196-3	WG941196-4			
Methylene chloride	93			96		70-130	3		20
1,1-Dichloroethane	96			100		70-130	4		20
Chloroform	100			100		70-130	0		20
Carbon tetrachloride	110			110		63-132	0		20
1,2-Dichloropropane	96			99		70-130	3		20
Dibromochloromethane	89			91		63-130	2		20
1,1,2-Trichloroethane	97			100		70-130	3		20
2-Chloroethylvinyl ether	89			95		70-130	7		20
Tetrachloroethene	94			97		70-130	3		20
Chlorobenzene	98			100		75-130	2		25
Trichlorofluoromethane	85			88		62-150	3		20
1,2-Dichloroethane	97			100		70-130	3		20
1,1,1-Trichloroethane	99			100		67-130	1		20
Bromodichloromethane	100			100		67-130	0		20
trans-1,3-Dichloropropene	89			92		70-130	3		20
cis-1,3-Dichloropropene	100			100		70-130	0		20
1,1-Dichloropropene	95			98		70-130	3		20
Bromoform	86			88		54-136	2		20
1,1,2,2-Tetrachloroethane	100			100		67-130	0		20
Benzene	100			100		70-130	0		25
Toluene	100			100		70-130	0		25

Project Name: HP WALTHAM Project Number: 01.0015522.16

Parameter	LCS %Recovery	Qual		-CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02	Batch:	WG941196-3	WG941196-4			
Ethylbenzene	100			100		70-130	0		20
Chloromethane	48	Q		48	Q	64-130	0		20
Bromomethane	80			94		39-139	16		20
Vinyl chloride	70			69		55-140	1		20
Chloroethane	90			94		55-138	4		20
1,1-Dichloroethene	86			90		61-145	5		25
trans-1,2-Dichloroethene	98			100		70-130	2		20
Trichloroethene	100			100		70-130	0		25
1,2-Dichlorobenzene	97			87		70-130	11		20
1,3-Dichlorobenzene	99			100		70-130	1		20
1,4-Dichlorobenzene	99			100		70-130	1		20
Methyl tert butyl ether	99			100		63-130	1		20
p/m-Xylene	100			105		70-130	5		20
o-Xylene	100			105		70-130	5		20
cis-1,2-Dichloroethene	98			100		70-130	2		20
Dibromomethane	99			100		70-130	1		20
1,4-Dichlorobutane	100			110		70-130	10		20
lodomethane	74			78		70-130	5		20
1,2,3-Trichloropropane	100			100		64-130	0		20
Styrene	105			110		70-130	5		20
Dichlorodifluoromethane	62			70		36-147	12		20

Project Name: HP WALTHAM Project Number: 01.0015522.16

Parameter	LCS %Recovery	Qual		CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	_ab Associated	sample(s):	01-02	Batch:	WG941196-3	WG941196-4			
Acetone	65			71		58-148	9		20
Carbon disulfide	82			100		51-130	20		20
2-Butanone	79			85		63-138	7		20
Vinyl acetate	89			92		70-130	3		20
4-Methyl-2-pentanone	82			82		59-130	0		20
2-Hexanone	70			74		57-130	6		20
Ethyl methacrylate	86			91		70-130	6		20
Acrolein	73			80		70-130	9		20
Acrylonitrile	85			91		70-130	7		20
Bromochloromethane	100			110		70-130	10		20
Tetrahydrofuran	74			80		58-130	8		20
2,2-Dichloropropane	120			120		63-133	0		20
1,2-Dibromoethane	99			100		70-130	1		20
1,3-Dichloropropane	97			100		70-130	3		20
1,1,1,2-Tetrachloroethane	100			100		64-130	0		20
Bromobenzene	100			100		70-130	0		20
n-Butylbenzene	96			98		53-136	2		20
sec-Butylbenzene	100			100		70-130	0		20
tert-Butylbenzene	100			100		70-130	0		20
o-Chlorotoluene	99			100		70-130	1		20
p-Chlorotoluene	110			110		70-130	0		20

Project Name: HP WALTHAM Project Number: 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batc	h: WG941196-3	WG941196-4				
1,2-Dibromo-3-chloropropane	66		84		41-144	24	Q	20	
Hexachlorobutadiene	81		86		63-130	6		20	
Isopropylbenzene	110		110		70-130	0		20	
p-Isopropyltoluene	100		100		70-130	0		20	
Naphthalene	76		80		70-130	5		20	
n-Propylbenzene	110		110		69-130	0		20	
1,2,3-Trichlorobenzene	63	Q	67	Q	70-130	6		20	
1,2,4-Trichlorobenzene	75		78		70-130	4		20	
1,3,5-Trimethylbenzene	100		110		64-130	10		20	
1,3,5-Trichlorobenzene	84		88		70-130	5		20	
1,2,4-Trimethylbenzene	110		110		70-130	0		20	
trans-1,4-Dichloro-2-butene	95		100		70-130	5		20	
Halothane	95		99		70-130	4		20	
Ethyl ether	97		99		59-134	2		20	
Methyl Acetate	84		91		70-130	8		20	
Ethyl Acetate	85		90		70-130	6		20	
Isopropyl Ether	93		97		70-130	4		20	
Cyclohexane	84		89		70-130	6		20	
Tert-Butyl Alcohol	106		116		70-130	9		20	
Ethyl-Tert-Butyl-Ether	100		110		70-130	10		20	
Tertiary-Amyl Methyl Ether	97		100		66-130	3		20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual		-CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - Westborough I	ab Associated	sample(s):	01-02	Batch:	WG941196-3	WG941196-4				
1,4-Dioxane	94			104		56-162	10		20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	87			88		70-130	1		20	
Methyl cyclohexane	87			91		70-130	4		20	
p-Diethylbenzene	99			100		70-130	1		20	
4-Ethyltoluene	110			110		70-130	0		20	
1,2,4,5-Tetramethylbenzene	81			100		70-130	21	Q	20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	102		103		70-130	
Toluene-d8	103		103		70-130	
4-Bromofluorobenzene	113		109		70-130	
Dibromofluoromethane	101		102		70-130	

Project Name: HP WALTHAM Project Number: 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 03	Batch: WGS	941471-3	WG941471-4			
Methylene chloride	89		100		70-130	12	20	
1,1-Dichloroethane	96		94		70-130	2	20	
Chloroform	97		98		70-130	1	20	
Carbon tetrachloride	89		88		63-132	1	20	
1,2-Dichloropropane	91		92		70-130	1	20	
Dibromochloromethane	88		93		63-130	6	20	
1,1,2-Trichloroethane	93		97		70-130	4	20	
Tetrachloroethene	93		92		70-130	1	20	
Chlorobenzene	92		94		75-130	2	25	
Trichlorofluoromethane	87		84		62-150	4	20	
1,2-Dichloroethane	85		86		70-130	1	20	
1,1,1-Trichloroethane	97		96		67-130	1	20	
Bromodichloromethane	92		93		67-130	1	20	
trans-1,3-Dichloropropene	85		88		70-130	3	20	
cis-1,3-Dichloropropene	85		87		70-130	2	20	
1,1-Dichloropropene	96		94		70-130	2	20	
Bromoform	93		94		54-136	1	20	
1,1,2,2-Tetrachloroethane	96		100		67-130	4	20	
Benzene	99		98		70-130	1	25	
Toluene	100		100		70-130	0	25	
Ethylbenzene	100		100		70-130	0	20	

Lab Control Sample Analysis

Batch Quality Control

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1631900

 Report Date:
 10/13/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 03 Batch: WG941471-3 WG941471-4 Chloromethane 80 78 64-130 20 3 Bromomethane 54 66 39-139 20 20 Vinyl chloride 80 55-140 20 84 5 20 Chloroethane 96 90 55-138 6 1,1-Dichloroethene 91 61-145 3 25 94 trans-1.2-Dichloroethene 70-130 20 100 100 0 Trichloroethene 99 98 70-130 1 25 1.2-Dichlorobenzene 91 93 70-130 2 20 70-130 20 1.3-Dichlorobenzene 95 95 0 1,4-Dichlorobenzene 92 70-130 20 90 2 Methyl tert butyl ether 90 63-130 20 86 5 p/m-Xylene 100 100 70-130 0 20 o-Xylene 100 70-130 20 95 5 cis-1.2-Dichloroethene 70-130 20 99 100 1 Dibromomethane 70-130 20 89 91 2 1.4-Dichlorobutane 98 70-130 20 97 1 lodomethane 80 69 Q 70-130 15 20 1,2,3-Trichloropropane 97 97 64-130 0 20 20 Styrene 95 100 70-130 5 Dichlorodifluoromethane 36-147 20 78 75 4 Acetone 98 96 58-148 2 20

Project Name: HP WALTHAM Project Number: 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 03	Batch: WGS	941471-3	WG941471-4		
Carbon disulfide	96		93		51-130	3	20
2-Butanone	85		94		63-138	10	20
Vinyl acetate	95		95		70-130	0	20
4-Methyl-2-pentanone	72		76		59-130	5	20
2-Hexanone	66		69		57-130	4	20
Ethyl methacrylate	73		76		70-130	4	20
Acrolein	72		71		70-130	1	20
Acrylonitrile	87		90		70-130	3	20
Bromochloromethane	90		92		70-130	2	20
Tetrahydrofuran	84		82		58-130	2	20
2,2-Dichloropropane	90		92		63-133	2	20
1,2-Dibromoethane	89		93		70-130	4	20
1,3-Dichloropropane	90		94		70-130	4	20
1,1,1,2-Tetrachloroethane	86		89		64-130	3	20
Bromobenzene	97		98		70-130	1	20
n-Butylbenzene	94		92		53-136	2	20
sec-Butylbenzene	100		100		70-130	0	20
tert-Butylbenzene	92		89		70-130	3	20
o-Chlorotoluene	110		110		70-130	0	20
p-Chlorotoluene	110		110		70-130	0	20
1,2-Dibromo-3-chloropropane	82		88		41-144	7	20

Project Name: HP WALTHAM Project Number: 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 03	Batch: WG	941471-3	WG941471-4		
Hexachlorobutadiene	100		100		63-130	0	20
Isopropylbenzene	110		110		70-130	0	20
p-Isopropyltoluene	100		100		70-130	0	20
Naphthalene	68	Q	69	Q	70-130	1	20
n-Propylbenzene	110		110		69-130	0	20
1,2,3-Trichlorobenzene	77		78		70-130	1	20
1,2,4-Trichlorobenzene	71		73		70-130	3	20
1,3,5-Trimethylbenzene	110		100		64-130	10	20
1,3,5-Trichlorobenzene	98		97		70-130	1	20
1,2,4-Trimethylbenzene	100		110		70-130	10	20
trans-1,4-Dichloro-2-butene	93		94		70-130	1	20
Halothane	98		98		70-130	0	20
Ethyl ether	86		85		59-134	1	20
Methyl Acetate	95		97		70-130	2	20
Ethyl Acetate	87		87		70-130	0	20
Isopropyl Ether	96		97		70-130	1	20
Cyclohexane	89		85		70-130	5	20
Tert-Butyl Alcohol	50	Q	58	Q	70-130	15	20
Ethyl-Tert-Butyl-Ether	92		94		70-130	2	20
Tertiary-Amyl Methyl Ether	91		94		66-130	3	20
1,4-Dioxane	82		84		56-162	2	20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	03 Batch: WG	941471-3	WG941471-4				
1,1,2-Trichloro-1,2,2-Trifluoroethane	85		80		70-130	6		20	
Methyl cyclohexane	88		84		70-130	5		20	
p-Diethylbenzene	92		91		70-130	1		20	
4-Ethyltoluene	110		110		70-130	0		20	
1,2,4,5-Tetramethylbenzene	93		91		70-130	2		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	78		78		70-130	
Toluene-d8	99		100		70-130	
4-Bromofluorobenzene	107		108		70-130	
Dibromofluoromethane	88		88		70-130	

METALS

Serial_No:10131611:46

10/10/16 09:50 10/11/16 16:26 EPA 3005A

Project Name: Project Number:		ALTHAM 5522.16					Lab Nur Report I		L16319 10/13/1		
				SAMPL		ULTS					
Lab ID:	L16319	900-01					Date Co	llected:	10/06/1	6 00:00	
Client ID:	INF						Date Re	ceived:	10/06/1	6	
Sample Location:	WALTI	HAM, MA					Field Pre	ep:	Not Spe	cified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Manst	field Lab										
Copper, Total	0.0550		mg/l	0.0010		1	10/10/16 09:50	10/11/16 16:26	EPA 3005A	1,6020A	AM
Iron, Total	1.30		mg/l	0.050		1	10/10/16 09:50	10/10/16 15:35	EPA 3005A	19,200.7	PS
Lead, Total	0.0078		mg/l	0.0010		1	10/10/16 09:50	10/11/16 16:26	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.005		1	10/10/16 09:50	10/11/16 16:26	EPA 3005A	1,6020A	AM

0.0100

1

mg/l

1,6020A

AM

0.0573

Zinc, Total

Serial_No:10131611:46

Project Name: Project Number:		ALTHAM 15522.16					Lab Nun Report I		L163190 10/13/16		
				SAMPL	E RES	ULTS					
Lab ID:	L1631	900-03					Date Col	lected:	10/06/16	6 00:00	
Client ID:	EFF						Date Red	ceived:	10/06/16	6	
Sample Location: Matrix:	WALT Water	HAM, MA					Field Pre	ep:	Not Spe	cified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Total Metals - Mans Copper, Total	field Lab		mg/l	0.0010		1	10/10/16 09:50	10/11/16 16:29	EPA 3005A	1,6020A	AM
			mg/l mg/l	0.0010		1		10/11/16 16:29 10/10/16 15:40		1,6020A 19,200.7	-
Copper, Total	0.0032						10/10/16 09:50		EPA 3005A		AM

1

10/10/16 09:50 10/11/16 16:29 EPA 3005A

0.0100

mg/l

1,6020A

AM

Zinc, Total

ND

 Lab Number:
 L1631900

 Report Date:
 10/13/16

Project Name:HP WALTHAMProject Number:01.0015522.16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	field Lab for sample(s):	01,03 B	Batch: Wo	G94044	7-1				
Copper, Total	ND	mg/l	0.0010		1	10/10/16 09:50	10/11/16 09:05	1,6020A	AM
Lead, Total	ND	mg/l	0.0005		1	10/10/16 09:50	10/11/16 09:05	1,6020A	AM
Selenium, Total	ND	mg/l	0.005		1	10/10/16 09:50	10/11/16 09:05	1,6020A	AM
Zinc, Total	ND	mg/l	0.0100		1	10/10/16 09:50	10/11/16 09:05	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfie	Id Lab for sample(s):	01,03 B	atch: WC	G940449	9 -1				
Iron, Total	ND	mg/l	0.050		1	10/10/16 09:50	10/10/16 15:11	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Project Name:	HP WALTHAM
Project Number:	01.0015522.16

Lab Number: L1631900 Report Date: 10/13/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bate	ch: WG940	447-2					
Copper, Total	108		-		80-120	-		
Lead, Total	113		-		80-120	-		
Selenium, Total	92		-		80-120	-		
Zinc, Total	102		-		80-120	-		
Fotal Metals - Mansfield Lab Associated sample	e(s): 01,03 Bate	ch: WG940	449-2					
Iron, Total	89		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name:	HP WALTHAM	Baton Quanty
Project Number:	01.0015522.16	

 Lab Number:
 L1631900

 Report Date:
 10/13/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield La	b Associated sar	nple(s): 01,03	QC Bat	ch ID: WG940	447-4	QC Samp	le: L1631700-02	Client ID: MS S	Sample	
Copper, Total	ND	0.25	0.2461	98		-	-	75-125	-	20
Lead, Total	ND	0.51	0.5449	107		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.047	0	Q	-	-	75-125	-	20
Zinc, Total	0.3394	0.5	0.8721	106		-	-	75-125	-	20
Total Metals - Mansfield La	b Associated sar	nple(s): 01,03	QC Bat	ch ID: WG940	449-4	QC Samp	le: L1631700-02	Client ID: MS	Sample	
Iron, Total	1.50	1	2.44	94		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1631900

 Report Date:
 10/13/16

Parameter	Native Sample D	uplicate Sample	Units	RPD	Qual	RPD Limits
Fotal Metals - Mansfield Lab Associated sample(s): 01,03	B QC Batch ID: WG94044	47-3 QC Sample:	L1631700-02	Client ID:	DUP Sample	9
Copper, Total	ND	ND	mg/l	NC		20
Lead, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.3394	0.3770	mg/l	10		20
otal Metals - Mansfield Lab Associated sample(s): 01,03	B QC Batch ID: WG94044	49-3 QC Sample:	L1631700-02	Client ID:	DUP Sample	9
Iron, Total	1.50	1.50	mg/l	0		20

INORGANICS & MISCELLANEOUS

Project Name:	HP WALTHAM						lumber:	L1631900	
Project Number:	01.0015522.16					Repo	rt Date:	10/13/16	
			SAMPLE	RESUL	TS				
Lab ID:	L1631900-01					Date	Collected:	10/06/16 00:0	00
Client ID:	INF						Received:	10/06/16	
Sample Location:	WALTHAM, MA					Field	Prep:	Not Specified	
Matrix:	Water								
Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
eneral Chemistry - We	stborough Lab								
loride	550	mg/l	10		10	-	10/12/16 17:22	2 1,9251	ML

Matrix:	Water					·		
Lab ID: Client ID: Sample Location:	L1631900-03 EFF WALTHAM, MA					Collected: Received: Prep:	10/06/16 00:0 10/06/16 Not Specified	-
		SAMPLE	RESUL	ſS				
Project Number:	01.0015522.16				Repo	rt Date:	10/13/16	
Project Name:	HP WALTHAM				Lab N	lumber:	L1631900	

 Lab Number:
 L1631900

 Report Date:
 10/13/16

Project Name:HP WALTHAMProject Number:01.0015522.16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab for sam	ple(s): 01	,03 Ba	tch: WC	G941238-1				
Chloride	ND	mg/l	1.0		1	-	10/12/16 17:12	1,9251	ML

Lab Number: L1631900 Report Date: 10/13/16

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

LCS LCSD %Recovery Limits %Recovery %Recovery RPD **RPD** Limits Parameter Qual Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01,03 Batch: WG941238-2 Chloride 100 90-110 --

		Matrix Spike Analysis Batch Quality Control	
Project Name:	HP WALTHAM	Lab Number:	L1631900
Project Number:	01.0015522.16	Report Date:	10/13/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01,03	QC Batch II	D: WG94	1238-4	QC Sample: L'	1632018-01 Clier	t ID: M	IS Sample
Chloride	110	20	120	50	Q	-	-	58-140	-	7

Project Name:	HP WALTHAM	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L1631900
Project Number:	01.0015522.16		Report Date:	10/13/16

Parameter	Native Sam	ple Duplicate Samp	ole Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01,03	QC Batch ID: WG941238-3	QC Sample: I	_1632018-01	Client ID:	DUP Sample
Chloride	110	100	mg/l	10	Q	7

Serial_No:10131611:46

Lab Number: L1631900 Report Date: 10/13/16

Project Name:HP WALTHAMProject Number:01.0015522.16

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1631900-01A	Vial HCI preserved	А	N/A	16.6	Y	Absent	8260(14)
L1631900-01B	Vial HCI preserved	А	N/A	16.6	Y	Absent	8260(14)
L1631900-01C	Vial HCI preserved	А	N/A	16.6	Y	Absent	8260(14)
L1631900-01D	Plastic 250ml HNO3 preserved	A	<2	16.6	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1631900-01E	Plastic 60ml unpreserved	А	7	16.6	Y	Absent	CL-9251(28)
L1631900-02A	Vial HCI preserved	А	N/A	16.6	Y	Absent	8260(14)
L1631900-02B	Vial HCI preserved	А	N/A	16.6	Y	Absent	8260(14)
L1631900-02C	Vial HCI preserved	А	N/A	16.6	Y	Absent	8260(14)
L1631900-03A	Vial HCI preserved	А	N/A	16.6	Y	Absent	8260(14)
L1631900-03B	Vial HCI preserved	А	N/A	16.6	Y	Absent	8260(14)
L1631900-03C	Vial HCI preserved	А	N/A	16.6	Y	Absent	8260(14)
L1631900-03D	Plastic 250ml HNO3 preserved	A	<2	16.6	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1631900-03E	Plastic 60ml unpreserved	А	7	16.6	Y	Absent	CL-9251(28)

L1631900

10/13/16

Lab Number:

Report Date:

Project Name: HP WALTHAM

Project Number: 01.0015522.16

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
OTL D	

- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the rep

Report Format: Data Usability Report

Serial_No:10131611:46

Project Name:HP WALTHAMProject Number:01.0015522.16

Lab Number: L1631900

Report Date: 10/13/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1631900

 Report Date:
 10/13/16

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 300: <u>DW</u>: Bromide EPA 6860: <u>NPW and SCM</u>: Perchlorate EPA 9010: <u>NPW and SCM</u>: Amenable Cyanide Distillation EPA 9012B: <u>NPW</u>: Total Cyanide EPA 9050A: <u>NPW</u>: Specific Conductance SM3500: <u>NPW</u>: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: <u>DW</u>: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS EPA 3005A <u>NPW</u> EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: *EPA 3050B*

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 628: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:10131611:46

Арна	CHAIN O	F CUSTODY		Date Rec'd i	n Lab: 10/0/10)	ALPHA Job #:	L1631900
8 Walkup Drive	320 Forbes Blvd	Project Information		Report Inf	ormation - Data De	liverables	Billing Informa	tion
Westboro, MA 0 Tel: 508-898-92	1581 Mansfield, MA 02048 20 Tel: 508-822-9300	Project Name: - HP W	altham				□ Same as Client i	nfo PO #:
Client Informatio	n	Project Location: Walf	ham Ma		Requirements			
Client: (-2.4)		Project #: 01.001552			MA MCP Analytical M Matrix Spike Required			CT RCP Analytical Methods Inorganics)
Address: 249	Vanderbilt Au	Project Manager: J. (albert	🗆 Yes 🗖 No	GW1 Standards (Info			
No	Vanderbilt An wood Ma. 02062	ALPHA Quote #:			NPDES RGP e /Fed Program		Criteria	
Phone: 781	-987-1357	Turn-Around Time		/\$) */ ~/ >		1.4.1.1	
Email: Wday	roject Information:	Or Standard □ RUSH (only Date Due:	r confirmed if pre-approved!)	4 8260 [624] 524.2 [6 20	WETALS: LIMCP 13 LIMCP 14 LYK METALS: LINCP 13 LIMCP 14 LINCP 15 EPH: LINANGES & Targets LI RANGES ONLY LI Pro-	TPH: Douant Only DFingerprint	in the second se	SAMPLE INFO Filtration Field Lab to do Preservation
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection Date Time	Sample Sampler Matrix Initials	SVOC:	METALS, METALS EPH: CIA		7014	Lab to do L Sample Comments
31900,01	INF	10/6/16	GL BN	$\boldsymbol{\lambda}$				5
.02	MID	1		X				3
.03	EFP		VV	X		XX		5
الرب ³		v	Υ	-				V
			<u> </u>					·
				· · · ·				
in the state								
· · · · · · · · · · · · · · · · · · ·								
Container Type P= Plastic	<i>Preservative</i> A= None		Container Type	V		p p		
A= Amber glass V= Vial G= Glass	B= HCl C= HNO₃ D= H₂SO₄	· · · ·	Preservative	HCL .		AM3/		
B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 45 of 45			Date/Time		Beconved By:	Date/ H. 10/4/1	Alpha's See reve	les submitted are subject to Terms and Conditions. erse side. 01-01 (rev. 12-Mar-2012)

ANALYTICAL REPORT

Lab Number:	L1636726
Client:	GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062
ATTN: Phone:	Bill Davis (781) 278-5769
Project Name: Project Number:	HP WALTHAM 01.0015522.16
Report Date:	11/18/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:11181613:32

Project Name:	HP WALTHAM
Project Number:	01.0015522.16

 Lab Number:
 L1636726

 Report Date:
 11/18/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1636726-01	INF	WATER	WALTHAM, MA	11/10/16 09:40	11/11/16
L1636726-02	MID	WATER	WALTHAM, MA	11/10/16 10:00	11/11/16
L1636726-03	EFF	WATER	WALTHAM, MA	11/10/16 10:20	11/11/16

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1636726

 Report Date:
 11/18/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Auchelle M. Junio Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 11/18/16

ORGANICS

VOLATILES

				Serial_N	o:11181613:32
Project Name:	HP WALTHAM			Lab Number:	L1636726
Project Number:	01.0015522.16			Report Date:	11/18/16
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1636726-01 INF WALTHAM, MA Water 1,8260C 11/14/16 13:51 KD	D		Date Collected: Date Received: Field Prep:	11/10/16 09:40 11/11/16 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	300		100
1,1-Dichloroethane	ND		ug/l	75		100
Chloroform	ND		ug/l	75		100
Carbon tetrachloride	ND		ug/l	50		100
1,2-Dichloropropane	ND		ug/l	180		100
Dibromochloromethane	ND		ug/l	50		100
1,1,2-Trichloroethane	ND		ug/l	75		100
Tetrachloroethene	59		ug/l	50		100
Chlorobenzene	ND		ug/l	50		100
Trichlorofluoromethane	ND		ug/l	250		100
1,2-Dichloroethane	ND		ug/l	50		100
1,1,1-Trichloroethane	ND		ug/l	50		100
Bromodichloromethane	ND		ug/l	50		100
rans-1,3-Dichloropropene	ND		ug/l	50		100
cis-1,3-Dichloropropene	ND		ug/l	50		100
Bromoform	ND		ug/l	200		100
1,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Benzene	ND		ug/l	50		100
Toluene	ND		ug/l	75		100
Ethylbenzene	ND		ug/l	50		100
Chloromethane	ND		ug/l	250		100
Bromomethane	ND		ug/l	100		100
Vinyl chloride	ND		ug/l	100		100
Chloroethane	ND		ug/l	100		100
1,1-Dichloroethene	ND		ug/l	50		100
trans-1,2-Dichloroethene	ND		ug/l	75		100
Trichloroethene	8200		ug/l	50		100
1,2-Dichlorobenzene	ND		ug/l	250		100
1,3-Dichlorobenzene	ND		ug/l	250		100
1,4-Dichlorobenzene	ND		ug/l	250		100

					Ş	Serial_N	0:11181613:32
Project Name:	HP WALTHAM				Lab Nu	mber:	L1636726
Project Number:	01.0015522.16				Report	Date:	11/18/16
		SAMP	LE RESULTS	5			
Lab ID:	L1636726-01	D			Date Col	lected:	11/10/16 09:40
Client ID:	INF				Date Red	ceived:	11/11/16
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboro	ugh Lab					
Methyl tert butyl ether		ND		ug/l	100		100
p/m-Xylene		ND		ug/l	100		100
o-Xylene		ND		ug/l	100		100
cis-1,2-Dichloroethene		ND		ug/l	50		100
Dichlorodifluoromethane		ND		ug/l	500		100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	93		70-130	
Dibromofluoromethane	98		70-130	

			Serial_N	o:11181613:32
Project Name:	HP WALTHAM		Lab Number:	L1636726
Project Number:	01.0015522.16		Report Date:	11/18/16
		SAMPLE RESULTS		
Lab ID:	L1636726-02		Date Collected:	11/10/16 10:00
Client ID:	MID		Date Received:	11/11/16
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	11/14/16 14:25			
Analyst:	KD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	0.88		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					:	Serial_N	o:11181613:32
Project Name:	HP WALTHAM				Lab Nu	mber:	L1636726
Project Number:	01.0015522.16				Report	Date:	11/18/16
		SAMP	LE RESULTS	6			
Lab ID:	L1636726-02				Date Col	llected:	11/10/16 10:00
Client ID:	MID				Date Re	ceived:	11/11/16
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	h Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	92		70-130	
Dibromofluoromethane	102		70-130	

			Serial_N	o:11181613:32
Project Name:	HP WALTHAM		Lab Number:	L1636726
Project Number:	01.0015522.16		Report Date:	11/18/16
		SAMPLE RESULTS		
Lab ID:	L1636726-03		Date Collected:	11/10/16 10:20
Client ID:	EFF		Date Received:	11/11/16
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	11/14/16 15:00			
Analyst:	KD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	brough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					:	Serial_N	o:11181613:32
Project Name:	HP WALTHAM				Lab Nu	mber:	L1636726
Project Number:	01.0015522.16				Report	Date:	11/18/16
		SAMP		6			
Lab ID:	L1636726-03				Date Co	llected:	11/10/16 10:20
Client ID:	EFF				Date Re	ceived:	11/11/16
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	jh Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	100	70-130	

Project Name:	HP WALTHAM	Lab Number:	L1636726
Project Number:	01.0015522.16	Report Date:	11/18/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	11/14/16 11:32
Analyst:	KD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lal	o for sample(s): 01-0	3 Batch:	WG952218-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

Project Name:	HP WALTHAM	Lab Number:	L1636726
Project Number:	01.0015522.16	Report Date:	11/18/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	11/14/16 11:32
Analyst:	KD

arameter	Result 0	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab f	or sample(s): 01-03	Batch:	WG952218-5
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dichlorodifluoromethane	ND	ug/l	2.7	
Naphthalene	ND	ug/l	2.5	

Tentatively Identified Compounds		
No Tentatively Identified Compounds	ND	ug/l

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	109		70-130			
Toluene-d8	98		70-130			
4-Bromofluorobenzene	92		70-130			
Dibromofluoromethane	101		70-130			

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-03 Batch:	WG952218-3	WG952218-4			
Methylene chloride	110		110		70-130	0	20	
1,1-Dichloroethane	110		110		70-130	0	20	
Chloroform	110		110		70-130	0	20	
Carbon tetrachloride	90		86		63-132	5	20	
1,2-Dichloropropane	100		100		70-130	0	20	
Dibromochloromethane	98		96		63-130	2	20	
1,1,2-Trichloroethane	99		96		70-130	3	20	
2-Chloroethylvinyl ether	70		67	Q	70-130	4	20	
Tetrachloroethene	110		100		70-130	10	20	
Chlorobenzene	100		100		75-130	0	25	
Trichlorofluoromethane	120		110		62-150	9	20	
1,2-Dichloroethane	110		110		70-130	0	20	
1,1,1-Trichloroethane	95		93		67-130	2	20	
Bromodichloromethane	100		100		67-130	0	20	
trans-1,3-Dichloropropene	66	Q	67	Q	70-130	2	20	
cis-1,3-Dichloropropene	83		83		70-130	0	20	
1,1-Dichloropropene	110		100		70-130	10	20	
Bromoform	74		75		54-136	1	20	
1,1,2,2-Tetrachloroethane	96		93		67-130	3	20	
Benzene	110		110		70-130	0	25	
Toluene	110		100		70-130	10	25	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Limits
/olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch:	WG952218-3	WG952218-4		
Ethylbenzene	110		110		70-130	0	20
Chloromethane	93		90		64-130	3	20
Bromomethane	140	Q	140	Q	39-139	0	20
Vinyl chloride	120		110		55-140	9	20
Chloroethane	110		110		55-138	0	20
1,1-Dichloroethene	110		110		61-145	0	25
trans-1,2-Dichloroethene	110		110		70-130	0	 20
Trichloroethene	110		110		70-130	0	25
1,2-Dichlorobenzene	100		99		70-130	1	 20
1,3-Dichlorobenzene	100		100		70-130	0	 20
1,4-Dichlorobenzene	100		100		70-130	0	20
Methyl tert butyl ether	80		84		63-130	5	20
p/m-Xylene	115		110		70-130	4	20
o-Xylene	110		110		70-130	0	20
cis-1,2-Dichloroethene	110		110		70-130	0	20
Dibromomethane	110		110		70-130	0	20
1,4-Dichlorobutane	97		93		70-130	4	20
lodomethane	77		76		70-130	1	20
1,2,3-Trichloropropane	92		90		64-130	2	20
Styrene	115		110		70-130	4	20
Dichlorodifluoromethane	140		130		36-147	7	 20

Project Name: HP WALTHAM Project Number: 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-03 Batch:	WG952218-3	WG952218-4			
Acetone	100		100		58-148	0	20	
Carbon disulfide	100		97		51-130	3	20	
2-Butanone	110		100		63-138	10	20	
Vinyl acetate	81		86		70-130	6	20	
4-Methyl-2-pentanone	86		87		59-130	1	20	
2-Hexanone	97		92		57-130	5	20	
Ethyl methacrylate	80		83		70-130	4	20	
Acrolein	100		100		70-130	0	20	
Acrylonitrile	110		110		70-130	0	20	
Bromochloromethane	110		110		70-130	0	20	
Tetrahydrofuran	110		110		58-130	0	20	
2,2-Dichloropropane	53	Q	55	Q	63-133	4	20	
1,2-Dibromoethane	94		95		70-130	1	20	
1,3-Dichloropropane	98		100		70-130	2	20	
1,1,1,2-Tetrachloroethane	90		90		64-130	0	20	
Bromobenzene	99		96		70-130	3	20	
n-Butylbenzene	110		110		53-136	0	20	
sec-Butylbenzene	110		100		70-130	10	20	
tert-Butylbenzene	100		100		70-130	0	20	
o-Chlorotoluene	100		100		70-130	0	20	
p-Chlorotoluene	100		100		70-130	0	20	

Project Name: HP WALTHAM Project Number: 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD mits
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01-03 Batch:	WG952218-3	WG952218-4		
1,2-Dibromo-3-chloropropane	72		71		41-144	1	20
Hexachlorobutadiene	100		96		63-130	4	20
Isopropylbenzene	100		100		70-130	0	20
p-Isopropyltoluene	110		100		70-130	10	20
Naphthalene	100		100		70-130	0	20
n-Propylbenzene	110		100		69-130	10	20
1,2,3-Trichlorobenzene	100		100		70-130	0	20
1,2,4-Trichlorobenzene	93		92		70-130	1	20
1,3,5-Trimethylbenzene	100		100		64-130	0	20
1,3,5-Trichlorobenzene	100		98		70-130	2	20
1,2,4-Trimethylbenzene	110		100		70-130	10	20
trans-1,4-Dichloro-2-butene	85		82		70-130	4	20
Halothane	100		100		70-130	0	20
Ethyl ether	110		110		59-134	0	20
Methyl Acetate	100		110		70-130	10	20
Ethyl Acetate	120		120		70-130	0	20
Isopropyl Ether	120		120		70-130	0	20
Cyclohexane	120		120		70-130	0	20
Tert-Butyl Alcohol	62	Q	72		70-130	15	20
Ethyl-Tert-Butyl-Ether	58	Q	63	Q	70-130	8	20
Tertiary-Amyl Methyl Ether	64	Q	68		66-130	6	20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	/ Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-03 Batch:	WG952218-3	WG952218-4			
1,4-Dioxane	132		128		56-162	3		20
1,1,2-Trichloro-1,2,2-Trifluoroethane	120		120		70-130	0		20
Methyl cyclohexane	120		110		70-130	9		20
p-Diethylbenzene	120		120		70-130	0		20
4-Ethyltoluene	110		110		70-130	0		20
1,2,4,5-Tetramethylbenzene	110		110		70-130	0		20

	LCS	LCS			Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1.2 Disklassethans d4	400		400		70.400	
1,2-Dichloroethane-d4	108		108		70-130	
Toluene-d8	99		99		70-130	
4-Bromofluorobenzene	95		93		70-130	
Dibromofluoromethane	103		102		70-130	

METALS

Serial_No:11181613:32

Project Name: Project Number:		ALTHAM 15522.16					Lab Nun Report D		L16367 11/18/1		
				SAMPL	E RES	ULTS					
Lab ID:		726-01					Date Col	lected:	11/10/1	6 09:40	
Client ID:	INF						Date Rec	ceived:	11/11/1	6	
Sample Location:	WALT	HAM, MA					Field Pre	p:	Not Spe	ecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansi	field Lab										
Total Metals - Mansi Copper, Total	field Lab 0.0375		mg/l	0.0010		1	11/15/16 19:06	11/16/16 10:45	EPA 3005A	1,6020A	AM
			mg/l mg/l	0.0010 0.050		1	11/15/16 19:06 11/15/16 19:06			1,6020A 19,200.7	AM PS

1

1

11/15/16 19:06 11/16/16 10:45 EPA 3005A

11/15/16 19:06 11/16/16 10:45 EPA 3005A

1,6020A

1,6020A

AM

AM

Selenium, Total

Zinc, Total

ND

0.0786

mg/l

mg/l

0.005

0.0100

1,6020A

1,6020A

AM

AM

Project Name:	HP W	ALTHAM					Lab Nur	mber:	L16367	26	
Project Number:	01.00	15522.16					Report I	Date:	11/18/1	6	
				SAMPL	E RES	ULTS					
Lab ID:	L1636	726-03					Date Co	llected:	11/10/1	6 10:20	
Client ID:	EFF						Date Re	ceived:	11/11/1	6	
Sample Location:	WALT	HAM, MA					Field Pre	ep:	Not Spe	ecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.0026		mg/l	0.0010		1	11/15/16 19:06	11/16/16 10:48	EPA 3005A	1,6020A	AM
Iron, Total	ND		mg/l	0.050		1	11/15/16 19:06	11/17/16 13:21	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.0010		1	11/15/16 19:06	11/16/16 10:48	EPA 3005A	1,6020A	AM

1

1

11/15/16 19:06 11/16/16 10:48 EPA 3005A

11/15/16 19:06 11/16/16 10:48 EPA 3005A

Selenium, Total

Zinc, Total

ND

ND

mg/l

mg/l

0.005

0.0100

 Lab Number:
 L1636726

 Report Date:
 11/18/16

Project Name:HP WALTHAMProject Number:01.0015522.16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	01,03 E	Batch: Wo	G95262	3-1				
Copper, Total	ND	mg/l	0.0010		1	11/15/16 19:06	11/16/16 08:54	1,6020A	AM
Lead, Total	ND	mg/l	0.0010		1	11/15/16 19:06	11/16/16 08:54	1,6020A	AM
Selenium, Total	ND	mg/l	0.005		1	11/15/16 19:06	11/16/16 08:54	1,6020A	AM
Zinc, Total	ND	mg/l	0.0100		1	11/15/16 19:06	11/16/16 08:54	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Total Metals - Mansfield Lab for sample(s): 01,03 Batch: WG953145-1 Iron, Total ND mg/l 0.050 1 11/15/16 19:06 11/17/16 12:24 19,200.7 PS	Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Iron, Total ND mg/I 0.050 1 11/15/16 19:06 11/17/16 12:24 19,200.7 PS	Total Metals - Mans	field Lab for sample(s):	01,03	Batch: Wo	G95314	5-1				
	Iron, Total	ND	mg/l	0.050		1	11/15/16 19:06	11/17/16 12:24	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Project Name: HP WALTHAM **Project Number:** 01.0015522.16 Lab Number: L1636726 Report Date: 11/18/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bate	ch: WG95	2623-2					
Copper, Total	110		-		80-120	-		
Lead, Total	108		-		80-120	-		
Selenium, Total	113		-		80-120	-		
Zinc, Total	110		-		80-120	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bate	ch: WG95	3145-2					
Iron, Total	92		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

 Lab Number:
 L1636726

 Report Date:
 11/18/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recover Qual Limits	y RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01,03	QC Bato	h ID: WG952	623-3 \	NG952623-4	QC Sample	e: L1636608-02	Client ID	: MS S	ample
Copper, Total	0.0035	0.25	0.2848	112		0.2682	106	75-125	6		20
Lead, Total	ND	0.51	0.5379	105		0.5508	108	75-125	2		20
Selenium, Total	0.008	0.12	0.121	94		0.157	124	75-125	26	Q	20
Zinc, Total	ND	0.5	0.5440	109		0.5507	110	75-125	1		20
Total Metals - Mansfield Lab	Associated sam	nple(s): 01,03	QC Bato	h ID: WG953	145-3 \	NG953145-4	QC Sample	e: L1600011-87	Client ID	: MS S	ample
Iron, Total	0.286	1	1.18	89		1.18	89	75-125	0		20

INORGANICS & MISCELLANEOUS

eneral Chemistry - We	stborough Lab	mg/l	10		10	_	11/11/16 22:4	3 1,9251	ML
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
Lab ID: Client ID: Sample Location: Matrix:	L1636726-01 INF WALTHAM, MA Water						Received:	11/10/16 09:4 11/11/16 Not Specifiec	
			SAMPLE	RESUL	тs				
Project Number:	01.0015522.16					Repo	rt Date:	11/18/16	
Project Name:	HP WALTHAM					Lab N	lumber:	L1636726	
							Serial_No:11	181613:32	

Serial	No:11181613:32
oona.	110.11101010.02

Project Name:	HP WALTHAM	Lab Number:	L1636726
Project Number:	01.0015522.16	Report Date:	11/18/16
	SAMPLE RESULTS		
Lab ID:	L1636726-03	Date Collected:	11/10/16 10:20
Client ID:	EFF	Date Received:	11/11/16
Sample Location:	WALTHAM, MA	Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stoorougn Lat)								
Chloride	540		mg/l	10		10	-	11/11/16 22:50	1,9251	ML

Matrix:

Water

 Lab Number:
 L1636726

 Report Date:
 11/18/16

Project Name:HP WALTHAMProject Number:01.0015522.16

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab for sam	ple(s): 01	,03 Ba	tch: WO	951626-1				
Chloride	ND	mg/l	1.0		1	-	11/11/16 22:01	1,9251	ML

Project Name: HP WALTHAM **Project Number:** 01.0015522.16 Lab Number: L1636726 Report Date: 11/18/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	sociated sample(s)	: 01,03	Batch: WG95162	26-2				
Chloride	100		-		90-110	-		

		Matrix Spike Analysis Batch Quality Control		
Project Name:	HP WALTHAM	L	ab Number:	L1636726
Project Number:	01.0015522.16	R	eport Date:	11/18/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery al Limits	RPD C	RPD Qual Limits
General Chemistry - Westborou	igh Lab Asso	ciated samp	ole(s): 01,03	QC Batch II	D: WG951626-4	QC Sample: L1636	611-02 Clier	nt ID: MS	Sample
Chloride	3.4	20	24	103	-	-	58-140	-	7

		Lab Duplicate Analysis		
Project Name:	HP WALTHAM	Batch Quality Control	Lab Number:	L1636726
Project Number:	01.0015522.16		Report Date:	11/18/16

Parameter	Native Sam	ple Duplicate Samp	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Ass	sociated sample(s): 01,03	QC Batch ID: WG951626-3	QC Sample: L	1636611-02	Client ID:	DUP Sample
Chloride	3.4	3.6	mg/l	6		7

Lab Number: L1636726 Report Date: 11/18/16

Project Name:HP WALTHAMProject Number:01.0015522.16

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

А

Absent

Container Info	Container Information Temp							
Container ID	Container Type	Cooler	рΗ	deg Ċ	Pres	Seal	Analysis(*)	
L1636726-01A	Vial HCI preserved	А	N/A	2.3	Y	Absent	8260(14)	
L1636726-01B	Vial HCI preserved	А	N/A	2.3	Y	Absent	8260(14)	
L1636726-01C	Vial HCI preserved	А	N/A	2.3	Y	Absent	8260(14)	
L1636726-01D	Plastic 250ml HNO3 preserved	A	<2	2.3	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)	
L1636726-01E	Plastic 60ml unpreserved	А	7	2.3	Y	Absent	CL-9251(28)	
L1636726-02A	Vial HCI preserved	А	N/A	2.3	Y	Absent	8260(14)	
L1636726-02B	Vial HCI preserved	А	N/A	2.3	Y	Absent	8260(14)	
L1636726-02C	Vial HCI preserved	А	N/A	2.3	Y	Absent	8260(14)	
L1636726-03A	Vial HCI preserved	А	N/A	2.3	Y	Absent	8260(14)	
L1636726-03B	Vial HCI preserved	А	N/A	2.3	Y	Absent	8260(14)	
L1636726-03C	Vial HCI preserved	А	N/A	2.3	Y	Absent	8260(14)	
L1636726-03D	Plastic 250ml HNO3 preserved	A	<2	2.3	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)	
L1636726-03E	Plastic 60ml unpreserved	А	7	2.3	Y	Absent	CL-9251(28)	

L1636726

11/18/16

Lab Number:

Report Date:

Project Name: HP WALTHAM

Project Number: 01.0015522.16

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STI D	Sami dynamia Tank Laashing Proceedure per EDA Method 1215

- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the rep

Report Format: Data Usability Report

Project Name:HP WALTHAMProject Number:01.0015522.16

Lab Number: L1636726

Report Date: 11/18/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1636726

 Report Date:
 11/18/16

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 300: <u>DW</u>: Bromide EPA 6860: <u>NPW and SCM</u>: Perchlorate EPA 9010: <u>NPW and SCM</u>: Amenable Cyanide Distillation EPA 9012B: <u>NPW</u>: Total Cyanide EPA 9050A: <u>NPW</u>: Specific Conductance SM3500: <u>NPW</u>: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: <u>DW</u>: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS EPA 3005A <u>NPW</u> EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: *EPA 3050B*

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 628: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	CHAIN C	OF CU	STO	DY,	PAGE [_ OF /	- Date	e Rec'd	in Lab	11	11	116		ALPH	IA Job #	: L10	-3672	6
8 Walkup Driv	e 320 Forbes Blvd	Project	t Informa	tion			Re	port Inf	forma	tion - D	ata Del	iverab	les	-	g Informa			
Westboro, MA Tel: 508-898-	01581 Mansfield, MA 02048	Project I	11	Ph	in lthe	- m		DEx		EMA	AL.			Sam	e as Client	info PC) #:	_
Client Informati	on	Project L	ocation:	Valth	em /	he.	Reg	julator	y Req	uireme	nts &	Pro	ject In	format	ion Requi	irement	3	-
Client: G2A		Project #	# 01.0	015522	.16						ytical Me		SDG2	Q Y	es I No ed for MCP	CT RCP A	Analytical Metho	ods
Address: 249	Vanderh: It Are			TC		-	□ Ye	s 🗆 No	GW1	Standar	ds (Info F	Require	d for M	etals & E	EPH with Ta	argets)	,5)	
Navn	road Mar. 22061	ALPHA	Quote #:							S RGP Progra	m				Criteria			
Phone: 78/-	983-1357	Turn-#	Around Ti	me				0	X	15	5/2	1.1	1	1.1		11	1	
Email: Wola	Project Information:	Date I		RUSH (only	confirmed if pre-a	pproved!)	ANALYSIC	D ABN D 524.2 89	METALS: DMCP 13 DMC	EPH: DRanges & T. CRCR48 DRCP 15	VPH: LPRanges & Targets L Ranges Only L PCB C Argets L Ranges Only	TPH: LQuant Only	Sept. DFingerprint	and yes le d			SAMPLE INFO Filtration Field Lab to do Preservation	L #
ALPHA Lab ID (Lab Use Only)	Sample ID		Coll Date	ection Time	Sample Matrix	Sampler Initials	, io	SVOC:	METALS	EPH: D	D PCB	Het: D	a let	7/			□ Lab to do ple Comments	BOTTLES
36726-01	INF		11/10/16	940an	Gh	BD	X	1	1		11		1V			Jain	pie Comments	5
36726-01	MID		1	1000m	1	Bn	X						12	-				3
03	EFF		t	1920 cm	V	BÓ	j	-			+	2	X	-)
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle	Preservative $A = None$ $B = HCI$ $C = HNO_3$ $D = H_2SO_4$ $E = NaOH$ $F = MeOH$ $G = NaHSO_4$ $H = Na_2S_2O_3$ $I = Ascorbic Acid$ $J = NH_4CI$ $K = Zn Acetate$ $O = Other$	Relinqui	shed By:	F	Pre	iner Type eservative e/Time 6 230 /2 91	u Hel MSV	R	Receive	d By:	protection	P HM 14	P Date/T	ime /019 1209	Alpha's T See reve	erms and	ted are subjec Conditions.	t to

ANALYTICAL REPORT

Lab Number:	L1639882
Client:	GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062
ATTN: Phone:	Bill Davis (781) 278-5769
Project Name:	HP WALTHAM
Project Number:	01.0015522.16
Report Date:	12/15/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:12151615:54

Project Name:	HP WALTHAM
Project Number:	01.0015522.16

 Lab Number:
 L1639882

 Report Date:
 12/15/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1639882-01	INF	WATER	WALTHAM, MA	12/08/16 10:56	12/08/16
L1639882-02	MID	WATER	WALTHAM, MA	12/08/16 10:45	12/08/16
L1639882-03	EFF	WATER	WALTHAM, MA	12/08/16 10:30	12/08/16

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1639882

 Report Date:
 12/15/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Compos Melissa Cripps

Authorized Signature:

Title: Technical Director/Representative

Date: 12/15/16

ORGANICS

VOLATILES

				Serial_N	o:12151615:54
Project Name:	HP WALTHAM			Lab Number:	L1639882
Project Number:	01.0015522.16			Report Date:	12/15/16
			SAMPLE RESULTS		
Lab ID:	L1639882-01	D		Date Collected:	12/08/16 10:56
Client ID:	INF			Date Received:	12/08/16
Sample Location:	WALTHAM, MA			Field Prep:	Not Specified
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	12/13/16 18:17				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	300		100
1,1-Dichloroethane	ND		ug/l	75		100
Chloroform	ND		ug/l	75		100
Carbon tetrachloride	ND		ug/l	50		100
1,2-Dichloropropane	ND		ug/l	180		100
Dibromochloromethane	ND		ug/l	50		100
1,1,2-Trichloroethane	ND		ug/l	75		100
Tetrachloroethene	52		ug/l	50		100
Chlorobenzene	ND		ug/l	50		100
Trichlorofluoromethane	ND		ug/l	250		100
1,2-Dichloroethane	ND		ug/l	50		100
1,1,1-Trichloroethane	ND		ug/l	50		100
Bromodichloromethane	ND		ug/l	50		100
trans-1,3-Dichloropropene	ND		ug/l	50		100
cis-1,3-Dichloropropene	ND		ug/l	50		100
Bromoform	ND		ug/l	200		100
1,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Benzene	ND		ug/l	50		100
Toluene	ND		ug/l	75		100
Ethylbenzene	ND		ug/l	50		100
Chloromethane	ND		ug/l	250		100
Bromomethane	ND		ug/l	100		100
Vinyl chloride	ND		ug/l	100		100
Chloroethane	ND		ug/l	100		100
1,1-Dichloroethene	ND		ug/l	50		100
trans-1,2-Dichloroethene	ND		ug/l	75		100
Trichloroethene	7800		ug/l	50		100
1,2-Dichlorobenzene	ND		ug/l	250		100
1,3-Dichlorobenzene	ND		ug/l	250		100
1,4-Dichlorobenzene	ND		ug/l	250		100

Analyst:

PD

					Ş	Serial_N	o:12151615:54
Project Name:	HP WALTHAM				Lab Nu	mber:	L1639882
Project Number:	01.0015522.16				Report	Date:	12/15/16
		SAMP	LE RESULTS	6			
Lab ID:	L1639882-01	D			Date Col	lected:	12/08/16 10:56
Client ID:	INF				Date Red	ceived:	12/08/16
Sample Location:	WALTHAM, MA				Field Pre	p:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboro	ugh Lab					
Methyl tert butyl ether		ND		ug/l	100		100
p/m-Xylene		ND		ug/l	100		100
o-Xylene		ND		ug/l	100		100
cis-1,2-Dichloroethene		ND		ug/l	50		100
Dichlorodifluoromethane		ND		ug/l	500		100
Naphthalene		ND		ug/l	250		100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	119		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	100		70-130	

			Serial_N	o:12151615:54
Project Name:	HP WALTHAM		Lab Number:	L1639882
Project Number:	01.0015522.16		Report Date:	12/15/16
		SAMPLE RESULTS		
Lab ID:	L1639882-02		Date Collected:	12/08/16 10:45
Client ID:	MID		Date Received:	12/08/16
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	12/13/16 18:52			
Analyst:	PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	6.1		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					:	Serial_N	o:12151615:54
Project Name:	HP WALTHAM				Lab Nu	mber:	L1639882
Project Number:	01.0015522.16				Report	Date:	12/15/16
		SAMP		6			
Lab ID:	L1639882-02				Date Col	lected:	12/08/16 10:45
Client ID:	MID				Date Re	ceived:	12/08/16
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	h Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	118		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	100		70-130	

			Serial_N	o:12151615:54
Project Name:	HP WALTHAM		Lab Number:	L1639882
Project Number:	01.0015522.16		Report Date:	12/15/16
		SAMPLE RESULTS		
Lab ID:	L1639882-03		Date Collected:	12/08/16 10:30
Client ID:	EFF		Date Received:	12/08/16
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	12/14/16 11:41			
Analyst:	PK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	0.85		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					:	Serial_No	o:12151615:54
Project Name:	HP WALTHAM				Lab Nu	mber:	L1639882
Project Number:	01.0015522.16				Report	Date:	12/15/16
		SAMP		6			
Lab ID:	L1639882-03				Date Col	llected:	12/08/16 10:30
Client ID:	EFF				Date Re	ceived:	12/08/16
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	h Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	102		70-130	

Project Name:	HP WALTHAM	Lab Number:	L1639882
Project Number:	01.0015522.16	Report Date:	12/15/16

Analytical Method:	1,8260C
Analytical Date:	12/13/16 11:17
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	o for sample(s): 01-	02 Batch:	WG960976-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

Project Name:	HP WALTHAM	Lab Number:	L1639882
Project Number:	01.0015522.16	Report Date:	12/15/16

Analytical Method:	1,8260C
Analytical Date:	12/13/16 11:17
Analyst:	PD

Parameter	Result	Qualifier Units	RL	MDL
/olatile Organics by GC/MS -	Westborough Lab	for sample(s): 01-02	Batch:	WG960976-5
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	-
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	-
Dichlorodifluoromethane	ND	ug/l	5.0	
Naphthalene	ND	ug/l	2.5	

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	116		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	101		70-130	

Project Name:	HP WALTHAM	Lab Number:	L1639882
Project Number:	01.0015522.16	Report Date:	12/15/16

Analytical Method:	1,8260C
Analytical Date:	12/14/16 09:47
Analyst:	PD

arameter	Result	Qualifier Uni	ts RL	MDL	
olatile Organics by GC/MS	- Westborough Lat	o for sample(s):	03 Batch:	WG961283-5	
Methylene chloride	ND	uį	y/l 3.0		
1,1-Dichloroethane	ND	uç	ı/l 0.75		
Chloroform	ND	uç	y/l 0.75		
Carbon tetrachloride	ND	uç	ı/l 0.50		
1,2-Dichloropropane	ND	uç	ı/l 1.8		
Dibromochloromethane	ND	uç	g/l 0.50		
1,1,2-Trichloroethane	ND	uç	g/l 0.75		
Tetrachloroethene	ND	uç	g/l 0.50		
Chlorobenzene	ND	uç	g/l 0.50		
Trichlorofluoromethane	ND	uç	g/l 2.5		
1,2-Dichloroethane	ND	uç	g/l 0.50		
1,1,1-Trichloroethane	ND	uç	g/l 0.50		
Bromodichloromethane	ND	uç	g/l 0.50		
trans-1,3-Dichloropropene	ND	uç	g/l 0.50		
cis-1,3-Dichloropropene	ND	uç	g/l 0.50		
Bromoform	ND	uç	g/l 2.0		
1,1,2,2-Tetrachloroethane	ND	uç	g/l 0.50		
Benzene	ND	uç	g/l 0.50		
Toluene	ND	uç	g/l 0.75		
Ethylbenzene	ND	uç	g/l 0.50		
Chloromethane	ND	uç	g/l 2.5		
Bromomethane	ND	uç	ı/l 1.0		
Vinyl chloride	ND	uç	ı/l 1.0		
Chloroethane	ND	uç	g/l 1.0		
1,1-Dichloroethene	ND	uç	ı/l 0.50		
trans-1,2-Dichloroethene	ND	uç	ı/l 0.75		
Trichloroethene	ND	uç	ı/l 0.50		
1,2-Dichlorobenzene	ND	uç	g/l 2.5		
1,3-Dichlorobenzene	ND	uç	g/l 2.5		

Project Name:	HP WALTHAM	Lab Number:	L1639882
Project Number:	01.0015522.16	Report Date:	12/15/16

Analytical Method:	1,8260C
Analytical Date:	12/14/16 09:47
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s): 03	Batch:	WG961283-5
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dichlorodifluoromethane	ND	ug/l	5.0	-
Naphthalene	ND	ug/l	2.5	

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	102		70-130	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch: \	WG960976-3	WG960976-4		
Methylene chloride	100		99		70-130	1	20
1,1-Dichloroethane	100		100		70-130	0	20
Chloroform	100		100		70-130	0	20
Carbon tetrachloride	96		96		63-132	0	20
1,2-Dichloropropane	93		95		70-130	2	20
Dibromochloromethane	95		97		63-130	2	20
1,1,2-Trichloroethane	93		96		70-130	3	20
2-Chloroethylvinyl ether	64	Q	64	Q	70-130	0	20
Tetrachloroethene	100		100		70-130	0	20
Chlorobenzene	100		100		75-130	0	25
Trichlorofluoromethane	110		110		62-150	0	20
1,2-Dichloroethane	110		110		70-130	0	20
1,1,1-Trichloroethane	99		100		67-130	1	20
Bromodichloromethane	99		100		67-130	1	20
trans-1,3-Dichloropropene	77		80		70-130	4	20
cis-1,3-Dichloropropene	84		86		70-130	2	20
1,1-Dichloropropene	100		100		70-130	0	20
Bromoform	75		77		54-136	3	20
1,1,2,2-Tetrachloroethane	91		94		67-130	3	20
Benzene	100		100		70-130	0	25
Toluene	100		100		70-130	0	25

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s):	01-02 Batch:	WG960976-3	WG960976-4			
Ethylbenzene	110		110		70-130	0	20	
Chloromethane	96		93		64-130	3	20	
Bromomethane	150	Q	140	Q	39-139	7	20	
Vinyl chloride	110		110		55-140	0	20	
Chloroethane	100		100		55-138	0	20	
1,1-Dichloroethene	100		99		61-145	1	25	
trans-1,2-Dichloroethene	100		100		70-130	0	20	
Trichloroethene	100		100		70-130	0	25	
1,2-Dichlorobenzene	100		99		70-130	1	20	
1,3-Dichlorobenzene	100		100		70-130	0	20	
1,4-Dichlorobenzene	100		100		70-130	0	20	
Methyl tert butyl ether	86		89		63-130	3	20	
p/m-Xylene	110		110		70-130	0	20	
o-Xylene	105		110		70-130	5	20	
cis-1,2-Dichloroethene	100		100		70-130	0	20	
Dibromomethane	99		100		70-130	1	20	
1,4-Dichlorobutane	97		100		70-130	3	20	
lodomethane	66	Q	72		70-130	9	20	
1,2,3-Trichloropropane	92		92		64-130	0	20	
Styrene	110		110		70-130	0	20	
Dichlorodifluoromethane	120		120		36-147	0	20	

Project Name: HP WALTHAM Project Number: 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02 Batch:	WG960976-3	WG960976-4			
Acetone	130		93		58-148	33	Q	20
Carbon disulfide	96		90		51-130	6		20
2-Butanone	100		97		63-138	3		20
Vinyl acetate	91		97		70-130	6		20
4-Methyl-2-pentanone	81		82		59-130	1		20
2-Hexanone	94		95		57-130	1		20
Ethyl methacrylate	81		89		70-130	9		20
Acrolein	83		89		70-130	7		20
Acrylonitrile	100		100		70-130	0		20
Bromochloromethane	100		100		70-130	0		20
Tetrahydrofuran	110		100		58-130	10		20
2,2-Dichloropropane	73		73		63-133	0		20
1,2-Dibromoethane	90		94		70-130	4		20
1,3-Dichloropropane	94		97		70-130	3		20
1,1,1,2-Tetrachloroethane	93		94		64-130	1		20
Bromobenzene	96		98		70-130	2		20
n-Butylbenzene	120		110		53-136	9		20
sec-Butylbenzene	110		110		70-130	0		20
tert-Butylbenzene	110		100		70-130	10		20
o-Chlorotoluene	110		100		70-130	10		20
p-Chlorotoluene	100		100		70-130	0		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery Q	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westboro	ough Lab Associated sam	ple(s): 01-02 Batch:	WG960976-3 WG960976-4		
1,2-Dibromo-3-chloropropane	70	71	41-144	1	20
Hexachlorobutadiene	99	97	63-130	2	20
Isopropylbenzene	110	110	70-130	0	20
p-Isopropyltoluene	110	110	70-130	0	20
Naphthalene	92	92	70-130	0	20
n-Propylbenzene	110	110	69-130	0	20
1,2,3-Trichlorobenzene	85	87	70-130	2	20
1,2,4-Trichlorobenzene	87	87	70-130	0	20
1,3,5-Trimethylbenzene	110	110	64-130	0	20
1,3,5-Trichlorobenzene	98	97	70-130	1	20
1,2,4-Trimethylbenzene	110	110	70-130	0	20
trans-1,4-Dichloro-2-butene	86	90	70-130	5	20
Halothane	96	97	70-130	1	20
Ethyl ether	100	96	59-134	4	20
Methyl Acetate	100	110	70-130	10	20
Ethyl Acetate	120	120	70-130	0	20
Isopropyl Ether	120	120	70-130	0	20
Cyclohexane	110	110	70-130	0	20
Tert-Butyl Alcohol	60	Q 72	70-130	18	20
Ethyl-Tert-Butyl-Ether	85	86	70-130	1	20
Tertiary-Amyl Methyl Ether	82	82	66-130	0	20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated s	sample(s):	01-02 Batc	h: WG960976-3	WG960976-4			
1,4-Dioxane	100		114		56-162	13		20
1,1,2-Trichloro-1,2,2-Trifluoroethane	110		110		70-130	0		20
Methyl cyclohexane	110		110		70-130	0		20
p-Diethylbenzene	120		120		70-130	0		20
4-Ethyltoluene	110		110		70-130	0		20
1,2,4,5-Tetramethylbenzene	110		110		70-130	0		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	114		115		70-130	
Toluene-d8	102		102		70-130	
4-Bromofluorobenzene	99		99		70-130	
Dibromofluoromethane	102		103		70-130	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPI Qual Limi	
/olatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 03	Batch: WG	961283-3	WG961283-4			
Methylene chloride	94		90		70-130	4	20	
1,1-Dichloroethane	94		92		70-130	2	20	
Chloroform	95		91		70-130	4	20	
Carbon tetrachloride	98		95		63-132	3	20	
1,2-Dichloropropane	89		87		70-130	2	20	
Dibromochloromethane	90		87		63-130	3	20	
1,1,2-Trichloroethane	84		84		70-130	0	20	
2-Chloroethylvinyl ether	38	Q	40	Q	70-130	5	20	
Tetrachloroethene	97		93		70-130	4	20	
Chlorobenzene	92		88		75-130	4	25	
Trichlorofluoromethane	94		90		62-150	4	20	
1,2-Dichloroethane	95		92		70-130	3	20	
1,1,1-Trichloroethane	98		96		67-130	2	20	
Bromodichloromethane	92		90		67-130	2	20	
trans-1,3-Dichloropropene	81		79		70-130	3	20	
cis-1,3-Dichloropropene	92		90		70-130	2	20	
1,1-Dichloropropene	97		95		70-130	2	20	
Bromoform	84		81		54-136	4	20	
1,1,2,2-Tetrachloroethane	84		82		67-130	2	20	
Benzene	95		92		70-130	3	25	
Toluene	92		89		70-130	3	25	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 03	Batch: WG	961283-3	WG961283-4			
Ethylbenzene	96		92		70-130	4		20
Chloromethane	84		77		64-130	9		20
Bromomethane	64		69		39-139	8		20
Vinyl chloride	90		85		55-140	6		20
Chloroethane	100		95		55-138	5		20
1,1-Dichloroethene	97		94		61-145	3		25
trans-1,2-Dichloroethene	96		93		70-130	3		20
Trichloroethene	94		91		70-130	3		25
1,2-Dichlorobenzene	91		88		70-130	3		20
1,3-Dichlorobenzene	93		90		70-130	3		20
1,4-Dichlorobenzene	91		87		70-130	4		20
Methyl tert butyl ether	95		93		63-130	2		20
p/m-Xylene	100		95		70-130	5		20
o-Xylene	95		95		70-130	0		20
cis-1,2-Dichloroethene	95		92		70-130	3		20
Dibromomethane	90		88		70-130	2		20
1,4-Dichlorobutane	86		84		70-130	2		20
lodomethane	41	Q	45	Q	70-130	9		20
1,2,3-Trichloropropane	88		85		64-130	3		20
Styrene	95		95		70-130	0		20
Dichlorodifluoromethane	98		96		36-147	2		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated sa	ample(s): 03	3 Batch: WG	961283-3	WG961283-4			
Acetone	100		81		58-148	21	Q	20
Carbon disulfide	98		93		51-130	5		20
2-Butanone	87		80		63-138	8		20
Vinyl acetate	91		89		70-130	2		20
4-Methyl-2-pentanone	70		70		59-130	0		20
2-Hexanone	65		63		57-130	3		20
Ethyl methacrylate	71		73		70-130	3		20
Acrolein	81		80		70-130	1		20
Acrylonitrile	86		86		70-130	0		20
Bromochloromethane	95		93		70-130	2		20
Tetrahydrofuran	84		81		58-130	4		20
2,2-Dichloropropane	110		100		63-133	10		20
1,2-Dibromoethane	89		88		70-130	1		20
1,3-Dichloropropane	89		87		70-130	2		20
1,1,1,2-Tetrachloroethane	93		88		64-130	6		20
Bromobenzene	92		89		70-130	3		20
n-Butylbenzene	99		93		53-136	6		20
sec-Butylbenzene	100		97		70-130	3		20
tert-Butylbenzene	99		94		70-130	5		20
o-Chlorotoluene	98		81		70-130	19		20
p-Chlorotoluene	97		92		70-130	5		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westbor	ough Lab Associated	sample(s): 0	3 Batch: W	G961283-3	WG961283-4			
1,2-Dibromo-3-chloropropane	68		69		41-144	1	20	
Hexachlorobutadiene	96		91		63-130	5	20	
Isopropylbenzene	100		98		70-130	2	20	
p-Isopropyltoluene	91		86		70-130	6	20	
Naphthalene	62	Q	66	Q	70-130	6	20	
n-Propylbenzene	100		98		69-130	2	20	
1,2,3-Trichlorobenzene	74		78		70-130	5	20	
1,2,4-Trichlorobenzene	82		82		70-130	0	20	
1,3,5-Trimethylbenzene	100		95		64-130	5	20	
1,3,5-Trichlorobenzene	96		92		70-130	4	20	
1,2,4-Trimethylbenzene	100		96		70-130	4	20	
trans-1,4-Dichloro-2-butene	68	Q	66	Q	70-130	3	20	
Halothane	92		89		70-130	3	20	
Ethyl ether	89		86		59-134	3	20	
Methyl Acetate	84		85		70-130	1	20	
Ethyl Acetate	87		90		70-130	3	20	
Isopropyl Ether	96		94		70-130	2	20	
Cyclohexane	100		99		70-130	1	20	
Tert-Butyl Alcohol	90		96		70-130	6	20	
Ethyl-Tert-Butyl-Ether	98		97		70-130	1	20	
Tertiary-Amyl Methyl Ether	88		87		66-130	1	20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	3 Batch: WG	961283-3	WG961283-4			
1,4-Dioxane	98		114		56-162	15		20
1,1,2-Trichloro-1,2,2-Trifluoroethane	100		100		70-130	0		20
Methyl cyclohexane	99		96		70-130	3		20
p-Diethylbenzene	99		92		70-130	7		20
4-Ethyltoluene	110		100		70-130	10		20
1,2,4,5-Tetramethylbenzene	95		91		70-130	4		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	104		104		70-130	
Toluene-d8	100		100		70-130	
4-Bromofluorobenzene	100		101		70-130	
Dibromofluoromethane	102		103		70-130	

METALS

Project Name: Project Number:		ALTHAM 15522.16					Lab Nur Report I		L163988 12/15/16		
				SAMPL	E RES	ULTS					
Lab ID:	L1639	882-01					Date Co	llected:	12/08/16	6 10:56	
Client ID:	INF						Date Re	ceived:	12/08/16	6	
Sample Location:	WALT	HAM, MA					Field Pre	ep:	Not Spe	cified	
Matrix:	Water										
						Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Parameter Total Metals - Mansi		Qualifier	Units	RL	MDL						Analyst
		Qualifier	Units mg/l	RL 0.0010	MDL		Prepared		Method		Analyst AM
Total Metals - Mansi	field Lab	Qualifier				Factor	Prepared	Analyzed	Method EPA 3005A	Method	
Total Metals - Mansi Copper, Total	field Lab 0.0325	Qualifier	mg/l	0.0010		Factor 1	Prepared 12/14/16 06:00 12/14/16 06:00	Analyzed	Method EPA 3005A EPA 3005A	Method 1,6020A	AM

1

12/14/16 06:00 12/14/16 11:14 EPA 3005A

0.0100

mg/l

1,6020A

AM

Zinc, Total

0.0562

Project Name: Project Number:		ALTHAM 15522.16					Lab Nur Report I		L16398 12/15/1		
				SAMPL	E RES	ULTS					
Lab ID: Client ID: Sample Location: Matrix:	EFF	882-03 HAM, MA					Date Co Date Re Field Pre	ceived:	12/08/1 12/08/1 Not Spe	6	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansi	field Lab										
Copper, Total	0.0033		mg/l	0.0010		1	12/14/16 06:00	12/14/16 11:17	EPA 3005A	1,6020A	AM
Iron, Total	ND		mg/l	0.050		1	12/14/16 06:00	12/14/16 18:33	EPA 3005A	19,200.7	PS
Lead, Total	0.0012		mg/l	0.0005		1	12/14/16 06:00	12/14/16 11:17	EPA 3005A	1,6020A	AM

1

1

12/14/16 06:00 12/14/16 11:17 EPA 3005A

12/14/16 06:00 12/14/16 11:17 EPA 3005A

1,6020A

1,6020A

AM

AM

Selenium, Total

Zinc, Total

ND

ND

mg/l

mg/l

0.005

0.0100

--

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1639882

 Report Date:
 12/15/16

Method Blank Analysis Batch Quality Control

Total Metals - Mansfield Lab for sample(s): 01,03 Batch: WG960950-1	Dilution Date Date Analytical RL MDL Factor Prepared Analyzed Method Ana	MDL	s RL	Units	Result Qualifier	Parameter
	3atch: WG960950-1	/G96095	Batch: \	01,03	sfield Lab for sample(s)	Total Metals -
iron, iotai ND mg/i 0.050 1 12/14/16 06:00 12/14/16 17:40 19,200.7	0.050 1 12/14/16 06:00 12/14/16 17:40 19,200.7 P		0.050	mg/l	ND	Iron, Total

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Man	sfield Lab for sample(s):	01,03 E	Batch: Wo	G96095	2-1				
Copper, Total	ND	mg/l	0.0010		1	12/14/16 06:00	12/14/16 10:56	6 1,6020A	AM
Lead, Total	ND	mg/l	0.0005		1	12/14/16 06:00	12/14/16 10:56	5 1,6020A	AM
Selenium, Total	ND	mg/l	0.005		1	12/14/16 06:00	12/14/16 10:56	5 1,6020A	AM
Zinc, Total	ND	mg/l	0.0100		1	12/14/16 06:00	12/14/16 10:56	6 1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Batc	ch: WG960950-	-2					
Iron, Total	102		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Batc	ch: WG960952-	-2					
Copper, Total	106		-		80-120	-		
Lead, Total	104		-		80-120	-		
Selenium, Total	95		-		80-120	-		
Zinc, Total	92		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name:	HP WALTHAM
Project Number:	01.0015522.16

 Lab Number:
 L1639882

 Report Date:
 12/15/16

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery(Recovery Qual Limits	RPD Qual	RPD Limits
Fotal Metals - Mansfield Lat	o Associated sam	nple(s): 01,03	QC Bat	ch ID: WG960	950-3	QC Samp	le: L1639882-03	Client ID: EFF		
Iron, Total	ND	1	0.935	94		-	-	75-125	-	20
Fotal Metals - Mansfield Lat	o Associated sam	nple(s): 01,03	QC Bat	ch ID: WG9609	950-7	QC Samp	le: L1640318-01	Client ID: MS	Sample	
Iron, Total	0.495	1	1.42	92		-	-	75-125	-	20
Fotal Metals - Mansfield Lat	o Associated sam	nple(s): 01,03	QC Bat	ch ID: WG9609	952-3	QC Samp	le: L1640318-01	Client ID: MS	Sample	
Copper, Total	0.0027	0.25	0.2762	109		-	-	75-125	-	20
Lead, Total	ND	0.51	0.5223	102		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.134	112		-	-	75-125	-	20
Zinc, Total	ND	0.5	0.4999	100		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1639882

 Report Date:
 12/15/16

Parameter	Native Sample	Duplic	cate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID:	WG960950-4	QC Sample:	L1639882-03	Client ID:	EFF	
Iron, Total	ND		0.066	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID:	WG960950-8	QC Sample:	L1640318-01	Client ID:	DUP Sample	9
Iron, Total	0.495		0.510	mg/l	3		20
Total Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID:	WG960952-4	QC Sample:	L1640318-01	Client ID:	DUP Sample)
Copper, Total	0.0027		0.0030	mg/l	10		20
Lead, Total	ND		ND	mg/l	NC		20
Selenium, Total	ND		ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

							Serial_No:12	151615:54	
Project Name:	HP WALTHAM					Lab N	lumber:	L1639882	
Project Number:	01.0015522.16					Repo	rt Date:	12/15/16	
			SAMPLE	RESUL	rs				
Lab ID:	L1639882-01					Date	Collected:	12/08/16 10:5	56
Client ID:	INF					Date	Received:	12/08/16	
Sample Location:	WALTHAM, MA					Field	Prep:	Not Specified	
Matrix:	Water								
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
eneral Chemistry - We	stborough Lab								
loride	500	mg/l	10		10	-	12/10/16 11:04	1,9251	MR

Desite of News							Serial_No:12		
Project Name:	HP WALTHAM					Lab N	lumber:	L1639882	
Project Number:	01.0015522.16					Repo	rt Date:	12/15/16	
			SAMPLE	RESUL	rs				
Lab ID:	L1639882-03					Date	Collected:	12/08/16 10:3	80
Client ID:	EFF						Received:	12/08/16	
Sample Location:	WALTHAM, MA					Field	Prep:	Not Specified	
Matrix:	Water								
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
neral Chemistry - We	stborough Lab								
oride	500	mg/l	10		10	-	12/10/16 11:06	6 1,9251	MF

Lab Number: Report Date:

Number:L1639882ort Date:12/15/16

Project Name:HP WALTHAMProject Number:01.0015522.16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab for sar	nple(s): 01	1,03 Ba	tch: WO	3959916-1				
Chloride	ND	mg/l	1.0		1	-	12/10/16 09:45	1,9251	MR

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery Q	ual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	sociated sample(s): 07	1,03	Batch: WG95997	16-2				
Chloride	97		-		90-110	-		

		Matrix Spike Analysis Batch Quality Control		
Project Name:	HP WALTHAM	Baton Quanty Connor	Lab Number:	L1639882
Project Number:	01.0015522.16		Report Date:	12/15/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits RI	RPD PD Qual Limits
General Chemistry - Westborou	igh Lab Asso	ciated samp	ole(s): 01,03	QC Batch II	D: WG959916-4	QC Sample: L	.1639879-03 Client IE	D: MS Sample
Chloride	260	20	270	50	Q -	-	58-140	- 7

Project Name:	HP WALTHAM	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L1639882
Project Number:	01.0015522.16		Report Date:	12/15/16

Parameter	Native Sam	ple Duplicate Sar	nple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01,03	QC Batch ID: WG959916-	3 QC Sample:	L1639879-03	Client ID:	DUP Sample
Chloride	260	260	mg/l	0		7

Lab Number: L1639882 Report Date: 12/15/16

Project Name:HP WALTHAMProject Number:01.0015522.16

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1639882-01A	Vial HCI preserved	А	N/A	2.8	Y	Absent	8260(14)
L1639882-01B	Vial HCI preserved	А	N/A	2.8	Y	Absent	8260(14)
L1639882-01C	Vial HCI preserved	А	N/A	2.8	Y	Absent	8260(14)
L1639882-01D	Plastic 60ml unpreserved	А	7	2.8	Y	Absent	CL-9251(28)
L1639882-01E	Plastic 250ml HNO3 preserved	A	<2	2.8	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1639882-02A	Vial HCI preserved	А	N/A	2.8	Y	Absent	8260(14)
L1639882-02B	Vial HCI preserved	А	N/A	2.8	Y	Absent	8260(14)
L1639882-02C	Vial HCI preserved	А	N/A	2.8	Y	Absent	8260(14)
L1639882-03A	Vial HCI preserved	А	N/A	2.8	Y	Absent	8260(14)
L1639882-03B	Vial HCI preserved	А	N/A	2.8	Y	Absent	8260(14)
L1639882-03C	Vial HCI preserved	А	N/A	2.8	Y	Absent	8260(14)
L1639882-03D	Plastic 60ml unpreserved	А	7	2.8	Y	Absent	CL-9251(28)
L1639882-03E	Plastic 250ml HNO3 preserved	A	<2	2.8	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)

Project Name: HP WALTHAM

Project Number: 01.0015522.16

Lab Number: L1639882

Report Date: 12/15/16

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
	1
	reporting unit.
NDPA/DPA	reporting unit. - N-Nitrosodiphenylamine/Diphenylamine.
NDPA/DPA NI	reporting unit. - N-Nitrosodiphenylamine/Diphenylamine. - Not Ignitable.
NDPA/DPA NI NP	 reporting unit. N-Nitrosodiphenylamine/Diphenylamine. Not Ignitable. Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL
NDPA/DPA NI NP RL	 reporting unit. N-Nitrosodiphenylamine/Diphenylamine. Not Ignitable. Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the
NDPA/DPA NI NP RL RPD	 reporting unit. N-Nitrosodiphenylamine/Diphenylamine. Not Ignitable. Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:HP WALTHAMProject Number:01.0015522.16

Lab Number: L1639882

Report Date: 12/15/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1639882

 Report Date:
 12/15/16

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 300: <u>DW</u>: Bromide EPA 6860: <u>NPW and SCM</u>: Perchlorate EPA 9010: <u>NPW and SCM</u>: Amenable Cyanide Distillation EPA 9012B: <u>NPW</u>: Total Cyanide EPA 9050A: <u>NPW</u>: Specific Conductance SM3500: <u>NPW</u>: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: <u>DW</u>: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS EPA 3005A <u>NPW</u> EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: *EPA 3050B*

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 628: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	CHAIN O	F CUSTO	DY ,		OF	- Date	Rec'd in	Lab:	218	IG			ALPH	IA Job #	#: LIG39882	
8 Walkup Driv	e 320 Forbes Blvd	Project Informa	ition			The other Designation of the local division of the local divisione		-	n - Data	-	rabl			g Inform		
Westboro, MA Tel: 508-898-	01581 Mansfield, MA 02048	Project Name: H	p Wa	1fha	(m	DA	DEx	Ċ9	EMAIL				C Sam	e as Clien	t info PO #:	
Client Informati	ion	Project Location:	wa the	.m /	11-							ect In	format	ion Req	uirements	
Client: G24		Project #: Q(, ad	15522	16					Analytic			SDG?	Q Y CI (Require	es I No ed for MC	CT RCP Analytical Met P Inorganics)	thods
Address: 24d	Vandribilt Ave.	Project Manager:	J. C.	Theis	4	Q Yes	No C	GW1 Sta	indards (EPH with		
Nori	Vandrib, 17 Ave, ~ Noch Mon. 02062 983-1357	ALPHA Quote #:					INO I er State	/Fed Pi	ogram					Criteria_		
Phone: 781-	983-1357	Turn-Around T	ime				10x	* /	15	12/	./	1	11	11	111	
	Project Information:	Date Due:	RUSH (only	confirmed II pre-a _l	aproved!)	CAZEO ANALYSIS	: DABN 0524 0524 60- LS. DABN DPAH	METALS: DRCP 13 DMCP 14 C	UPH: DRanges & Targets D P. DP13 VPH: DRanges & Targets D P.	D PCB DPEST Pargets D Ranges Only TPH: D PEST	Quant Only Cr.	CLID Fe Pl. C.	rate the sh		SAMPLE IN Filtration Field Lab to do Preservation	# B
ALPHA Lab ID (Lab Use Only)	Sample ID	Col	lection Time	Sample Matrix	Sampler Initials	, voi	NETALS	METALS	VPH: DR	D PCB	Metel	CGI			Lab to do	E
39882-01	INF	12/8/16	10560	Gu	BO	X					1x	X				5
02	MID	ľ,	104500		1	X					1					3
03	EFF	V	1030an	¥	V	X					X	7				5
Container Type	Preservative		Conta	iner Type	V					Р	p	-		1		
P= Plastic A= Amber glass V= Vial	A= None B= HCI C= HNO ₃		Container Type Preservative			Hel					HM3	1	-			-
G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle	$D = H_2 SO_4$ $E = NaOH$ $F = MeOH$ $G = NaHSO_4$ $H = Na_2S_2O_3$ $I = Ascorbic Acid$ $J = NH_4CI$ $K = Zn Accetate$	Belinguished By:		1	-/Time 12%	49	Re	ceived E	the	10	12/1	Date/T	ime 135- 14(5	Alpha's	ples submitted are subj Terms and Conditions.	ect to

ANALYTICAL REPORT

Lab Number:	L1701299
Client:	GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062
ATTN: Phone:	Bill Davis (781) 278-5769
Project Name:	HP WALTHAM
Project Number:	01.0015522.16
Report Date:	01/20/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:01201713:12

Project Name:	HP WALTHAM
Project Number:	01.0015522.16

 Lab Number:
 L1701299

 Report Date:
 01/20/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time Receive Date
L1701299-01	INF	WATER	WALTHAM, MA	01/13/17 10:15 01/13/17
L1701299-02	MID	WATER	WALTHAM, MA	01/13/17 10:20 01/13/17
L1701299-03	EFF	WATER	WALTHAM, MA	01/13/17 10:25 01/13/17

Project Name: HP WALTHAM Project Number: 01.0015522.16

Lab Number: L1701299 Report Date: 01/20/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1701299

 Report Date:
 01/20/17

Case Narrative (continued)

Report Submission

The project number was provided by the client.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curten Walker Cristin Walker

Title: Technical Director/Representative

Date: 01/20/17

ORGANICS

VOLATILES

				Serial_N	o:01201713:12
Project Name:	HP WALTHAM			Lab Number:	L1701299
Project Number:	01.0015522.16			Report Date:	01/20/17
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1701299-01 INF WALTHAM, MA Water 1,8260C 01/17/17 12:15 NL	D		Date Collected: Date Received: Field Prep:	01/13/17 10:15 01/13/17 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	300		100
1,1-Dichloroethane	ND		ug/l	75		100
Chloroform	ND		ug/l	75		100
Carbon tetrachloride	ND		ug/l	50		100
1,2-Dichloropropane	ND		ug/l	180		100
Dibromochloromethane	ND		ug/l	50		100
1,1,2-Trichloroethane	ND		ug/l	75		100
Tetrachloroethene	65		ug/l	50		100
Chlorobenzene	ND		ug/l	50		100
Trichlorofluoromethane	ND		ug/l	250		100
1,2-Dichloroethane	ND		ug/l	50		100
1,1,1-Trichloroethane	ND		ug/l	50		100
Bromodichloromethane	ND		ug/l	50		100
trans-1,3-Dichloropropene	ND		ug/l	50		100
cis-1,3-Dichloropropene	ND		ug/l	50		100
Bromoform	ND		ug/l	200		100
1,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Benzene	ND		ug/l	50		100
Toluene	ND		ug/l	75		100
Ethylbenzene	ND		ug/l	50		100
Chloromethane	ND		ug/l	250		100
Bromomethane	ND		ug/l	100		100
Vinyl chloride	ND		ug/l	100		100
Chloroethane	ND		ug/l	100		100
1,1-Dichloroethene	ND		ug/l	50		100
trans-1,2-Dichloroethene	ND		ug/l	75		100
Trichloroethene	9300		ug/l	50		100
1,2-Dichlorobenzene	ND		ug/l	250		100
1,3-Dichlorobenzene	ND		ug/l	250		100
1,4-Dichlorobenzene	ND		ug/l	250		100

					:	Serial_N	0:01201713:12
Project Name:	HP WALTHAM				Lab Nu	mber:	L1701299
Project Number:	01.0015522.16				Report	Date:	01/20/17
		SAMP	LE RESULTS	6			
Lab ID:	L1701299-01	D			Date Col	lected:	01/13/17 10:15
Client ID:	INF				Date Ree	ceived:	01/13/17
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westboro	ugh Lab					
Methyl tert butyl ether		ND		ug/l	100		100
p/m-Xylene		ND		ug/l	100		100
o-Xylene		ND		ug/l	100		100
cis-1,2-Dichloroethene		ND		ug/l	50		100
Dichlorodifluoromethane		ND		ug/l	500		100
Naphthalene		ND		ug/l	250		100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	88		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	103		70-130	

			Serial_No:01201713:12	
Project Name:	HP WALTHAM		Lab Number:	L1701299
Project Number:	01.0015522.16		Report Date:	01/20/17
		SAMPLE RESULTS		
Lab ID:	L1701299-02		Date Collected:	01/13/17 10:20
Client ID:	MID		Date Received:	01/13/17
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	01/17/17 12:47			
Analyst:	NL			

Volatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 3.0 1 1.1-Dichloroethane ND ug/l 0.75 1 Chloroform ND ug/l 0.75 1 Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1.1.2-Dichloroethane ND ug/l 0.50 1 1.1.2-Tichloroethane ND ug/l 0.50 1 1.1.2-Tichloroethane ND ug/l 0.50 1 1.1.2-Dichloromethane ND ug/l 0.50 1 1.1.1.2-Tichloroethane ND ug/l 0.50 1 1.1.1.1-Tichloroethane ND ug/l 0.50 1 1.1.1.1-Tichloroethane ND	Factor
1-Dichloroethane ND ug/l 0.75 1 Chloroform ND ug/l 0.75 1 Carbon tetrachloride ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 1.8 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethene ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1_2-Dichloroethane ND ug/l 0.50 1 1_2-Dichloroethane ND ug/l 0.50 1 1_1-Dichloroptopene ND ug/l 0.50 1 Iras-1,3-Dichloropropene ND ug/l 0.50 1	
1-Dichloroethane ND ug/l 0.75 1 Chloroform ND ug/l 0.75 1 Carbon tetrachloride ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 1.8 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethene ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1_2-Dichloroethane ND ug/l 0.50 1 1_2-Dichloroethane ND ug/l 0.50 1 1_1-Dichloroptopene ND ug/l 0.50 1 Iras-1,3-Dichloropropene ND ug/l 0.50 1	1
ND ugi 0.75 1 Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 1.8 1 Dibromochloromethane ND ug/l 0.50 1 1,12-Trichloroethane ND ug/l 0.50 1 1,12-Trichloroethane ND ug/l 0.50 1 Chloroform ND ug/l 0.50 1 Chloroformethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 1,12-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1	
Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 1.8 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.75 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromofichloropropene ND ug/l 0.50	
1.2-Dichloropropane ND ug/l 1.8 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.75 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 1,1,2-Dichloropropene ND ug/l 0.50 1 Itras-1,3-Dichloropropene ND ug/l 0.50 1 I,1,2,2-Tetrachloroethane ND ug/l 0.50 1 I,1,2,2-Tetrachloroethane ND ug/l 0.50 <td< td=""><td>1</td></td<>	1
Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.75 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 1,1,1-Trichloropthane ND ug/l 0.50 1 1,1,1-Trichloropthane ND ug/l 0.50 1 1,1,2-Tetrachloroptopene ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50	
1,1,2-Trichloroethane ND ug/l 0.75 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 2.5 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 I,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Itrans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 I,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1 Toluene ND ug/l 0.50 <t< td=""><td>1</td></t<>	1
Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 2.5 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Itans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Bromodichme ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1	1
ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 2.5 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1.1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 10uene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1	1
Trichlorofluoromethane ND ug/l 2.5 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1.1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 1.0	1
1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1	1
1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0	1
Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Li-Dichloroeth	1
cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Lipchloroethene ND ug/l 1.0 1	1
Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Stromoferma ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 1.0 1	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.75 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Linbichloroethene ND ug/l 1.0 1	1
Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Linotethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Linotethane ND ug/l 1.0 1	1
Toluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloropethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloropethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1	1
Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Linoroethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1	1
ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 0.0 1 1,1-Dichloroethene ND ug/l 0.50 1	1
Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1	1
Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1	1
Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1	1
1,1-Dichloroethene ND ug/l 0.50 1	1
	1
	1
trans-1,2-Dichloroethene ND ug/I 0.75 1	1
Trichloroethene 1.1 ug/l 0.50 1	1
1,2-Dichlorobenzene ND ug/l 2.5 1	1
1,3-Dichlorobenzene ND ug/l 2.5 1	1
1,4-Dichlorobenzene ND ug/l 2.5 1	1

					Serial_No:01201713:12				
Project Name:	HP WALTHAM				Lab Nu	mber:	L1701299		
Project Number:	01.0015522.16				Report	Date:	01/20/17		
		SAMP	LE RESULTS	5					
Lab ID:	L1701299-02				Date Collected:		01/13/17 10:20		
Client ID:	MID				Date Received:		01/13/17		
Sample Location:	WALTHAM, MA	Field Prep:		ep:	Not Specified				
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	oy GC/MS - Westboroug	jh Lab							
Methyl tert butyl ether		ND		ug/l	1.0		1		
p/m-Xylene		ND		ug/l	1.0		1		
o-Xylene		ND		ug/l	1.0		1		
cis-1,2-Dichloroethene		ND		ug/l	0.50		1		
Dichlorodifluoromethane		ND		ug/l	5.0		1		
Naphthalene		ND		ug/l	2.5		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	85		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	99		70-130	

			Serial_No:01201713:12			
Project Name:	HP WALTHAM		Lab Number:	L1701299		
Project Number:	01.0015522.16		Report Date:	01/20/17		
		SAMPLE RESULTS				
Lab ID:	L1701299-03		Date Collected:	01/13/17 10:25		
Client ID:	EFF		Date Received:	01/13/17		
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified		
Matrix:	Water					
Analytical Method:	1,8260C					
Analytical Date:	01/17/17 13:19					
Analyst:	NL					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	3.0		1			
1,1-Dichloroethane	ND		ug/l	0.75		1			
Chloroform	ND		-	0.75		1			
Carbon tetrachloride	ND		ug/l ug/l	0.75		1			
1,2-Dichloropropane	ND		ug/l	1.8		1			
Dibromochloromethane	ND		ug/l	0.50		1			
1,1,2-Trichloroethane	ND		-	0.75		1			
Tetrachloroethene	ND		ug/l	0.75		1			
Chlorobenzene	ND		ug/l	0.50		1			
Trichlorofluoromethane			ug/l			1			
	ND		ug/l	2.5					
1,2-Dichloroethane	ND ND		ug/l	0.50		1			
1,1,1-Trichloroethane			ug/l	0.50		1			
Bromodichloromethane	ND		ug/l	0.50		1			
trans-1,3-Dichloropropene	ND		ug/l	0.50		1			
cis-1,3-Dichloropropene	ND		ug/l	0.50		1			
Bromoform	ND		ug/l	2.0		1			
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1			
Benzene	ND		ug/l	0.50		1			
Toluene	ND		ug/l	0.75		1			
Ethylbenzene	ND		ug/l	0.50		1			
Chloromethane	ND		ug/l	2.5		1			
Bromomethane	ND		ug/l	1.0		1			
Vinyl chloride	ND		ug/l	1.0		1			
Chloroethane	ND		ug/l	1.0		1			
1,1-Dichloroethene	ND		ug/l	0.50		1			
trans-1,2-Dichloroethene	ND		ug/l	0.75		1			
Trichloroethene	ND		ug/l	0.50		1			
1,2-Dichlorobenzene	ND		ug/l	2.5		1			
1,3-Dichlorobenzene	ND		ug/l	2.5		1			
1,4-Dichlorobenzene	ND		ug/l	2.5		1			

					Serial_No:01201713:12				
Project Name:	HP WALTHAM				Lab Nu	mber:	L1701299		
Project Number:	01.0015522.16				Report	Date:	01/20/17		
		SAMP		6					
Lab ID:	L1701299-03				Date Col	llected:	01/13/17 10:25		
Client ID:	EFF				Date Re	ceived:	01/13/17		
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	by GC/MS - Westboroug	ıh Lab							
Methyl tert butyl ether		ND		ug/l	1.0		1		
p/m-Xylene		ND		ug/l	1.0		1		
o-Xylene		ND		ug/l	1.0		1		
cis-1,2-Dichloroethene		ND		ug/l	0.50		1		
Dichlorodifluoromethane		ND		ug/l	5.0		1		
Naphthalene		ND		ug/l	2.5		1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	87	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	101	70-130	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1701299

 Project Number:
 01.0015522.16
 Report Date:
 01/20/17

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	01/17/17 11:43
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s): 01-0	3 Batch:	WG970441-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

Project Name:	HP WALTHAM	Lab Number:	L1701299
Project Number:	01.0015522.16	Report Date:	01/20/17

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	01/17/17 11:43
Analyst:	PD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab f	or sample(s): 01-03	Batch:	WG970441-5
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dichlorodifluoromethane	ND	ug/l	5.0	
Naphthalene	ND	ug/l	2.5	

		A	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	86		70-130
Toluene-d8	99		70-130
4-Bromofluorobenzene	100		70-130
Dibromofluoromethane	99		70-130

Project Name: HP WALTHAM Project Number: 01.0015522.16

Parameter	LCS %Recovery	Qual		SD overy	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-03 E	Batch:	WG970441-3	WG970441-4			
Methylene chloride	100		1	100		70-130	0		20
1,1-Dichloroethane	88			89		70-130	1		20
Chloroform	92			92		70-130	0		20
Carbon tetrachloride	90			92		63-132	2		20
1,2-Dichloropropane	87			87		70-130	0		20
Dibromochloromethane	100		1	100		63-130	0		20
1,1,2-Trichloroethane	98			97		70-130	1		20
2-Chloroethylvinyl ether	23	Q	:	35	Q	70-130	41	Q	20
Tetrachloroethene	100		1	100		70-130	0		20
Chlorobenzene	100		1	100		75-130	0		25
Trichlorofluoromethane	93			96		62-150	3		20
1,2-Dichloroethane	84			84		70-130	0		20
1,1,1-Trichloroethane	87			87		67-130	0		20
Bromodichloromethane	93			93		67-130	0		20
trans-1,3-Dichloropropene	83			83		70-130	0		20
cis-1,3-Dichloropropene	87			89		70-130	2		20
1,1-Dichloropropene	85			86		70-130	1		20
Bromoform	110		1	110		54-136	0		20
1,1,2,2-Tetrachloroethane	95			95		67-130	0		20
Benzene	95			98		70-130	3		25
Toluene	97		1	100		70-130	3		25

Project Name: HP WALTHAM Project Number: 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch:	WG970441-3	WG970441-4			
Ethylbenzene	93		96		70-130	3		20
Chloromethane	89		92		64-130	3		20
Bromomethane	150	Q	140	Q	39-139	7		20
Vinyl chloride	90		92		55-140	2		20
Chloroethane	96		100		55-138	4		20
1,1-Dichloroethene	99		100		61-145	1		25
trans-1,2-Dichloroethene	100		100		70-130	0		20
Trichloroethene	96		96		70-130	0		25
1,2-Dichlorobenzene	100		110		70-130	10		20
1,3-Dichlorobenzene	100		110		70-130	10		20
1,4-Dichlorobenzene	100		110		70-130	10		20
Methyl tert butyl ether	84		84		63-130	0		20
p/m-Xylene	100		105		70-130	5		20
o-Xylene	100		105		70-130	5		20
cis-1,2-Dichloroethene	100		100		70-130	0		20
Dibromomethane	98		98		70-130	0		20
1,4-Dichlorobutane	86		87		70-130	1		20
lodomethane	72		99		70-130	32	Q	20
1,2,3-Trichloropropane	87		88		64-130	1		20
Styrene	105		110		70-130	5		20
Dichlorodifluoromethane	77		77		36-147	0		20

Project Name: HP WALTHAM Project Number: 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch:	WG970441-3	WG970441-4			
Acetone	87		86		58-148	1	20	
Carbon disulfide	87		86		51-130	1	20	
2-Butanone	83		88		63-138	6	20	
Vinyl acetate	69	Q	71		70-130	3	20	
4-Methyl-2-pentanone	79		80		59-130	1	20	
2-Hexanone	70		70		57-130	0	20	
Ethyl methacrylate	80		83		70-130	4	20	
Acrolein	63	Q	69	Q	70-130	9	20	
Acrylonitrile	92		95		70-130	3	20	
Bromochloromethane	120		120		70-130	0	20	
Tetrahydrofuran	81		82		58-130	1	20	
2,2-Dichloropropane	79		80		63-133	1	20	
1,2-Dibromoethane	93		97		70-130	4	20	
1,3-Dichloropropane	89		89		70-130	0	20	
1,1,1,2-Tetrachloroethane	100		100		64-130	0	20	
Bromobenzene	110		110		70-130	0	20	
n-Butylbenzene	94		95		53-136	1	20	
sec-Butylbenzene	97		98		70-130	1	20	
tert-Butylbenzene	99		100		70-130	1	20	
o-Chlorotoluene	98		100		70-130	2	20	
p-Chlorotoluene	97		98		70-130	1	20	

Project Name: HP WALTHAM Project Number: 01.0015522.16

Parameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03	Batch:	WG970441-3	WG970441-4			
1,2-Dibromo-3-chloropropane	86			86		41-144	0		20
Hexachlorobutadiene	85			91		63-130	7		20
Isopropylbenzene	99			100		70-130	1		20
p-Isopropyltoluene	100			100		70-130	0		20
Naphthalene	79			82		70-130	4		20
n-Propylbenzene	97			97		69-130	0		20
1,2,3-Trichlorobenzene	83			85		70-130	2		20
1,2,4-Trichlorobenzene	87			88		70-130	1		20
1,3,5-Trimethylbenzene	100			100		64-130	0		20
1,3,5-Trichlorobenzene	100			100		70-130	0		20
1,2,4-Trimethylbenzene	100			100		70-130	0		20
trans-1,4-Dichloro-2-butene	82			83		70-130	1		20
Halothane	100			100		70-130	0		20
Ethyl ether	120			110		59-134	9		20
Methyl Acetate	100			100		70-130	0		20
Ethyl Acetate	83			87		70-130	5		20
Isopropyl Ether	86			86		70-130	0		20
Cyclohexane	84			87		70-130	4		20
Tert-Butyl Alcohol	90			94		70-130	4		20
Ethyl-Tert-Butyl-Ether	82			82		70-130	0		20
Tertiary-Amyl Methyl Ether	80			83		66-130	4		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batc	h: WG970441-3	WG970441-4			
1,4-Dioxane	104		106		56-162	2		20
1,1,2-Trichloro-1,2,2-Trifluoroethane	100		100		70-130	0		20
Methyl cyclohexane	97		95		70-130	2		20
p-Diethylbenzene	93		97		70-130	4		20
4-Ethyltoluene	100		110		70-130	10		20
1,2,4,5-Tetramethylbenzene	110		110		70-130	0		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
			22		70.400	
1,2-Dichloroethane-d4	84		82		70-130	
Toluene-d8	98		98		70-130	
4-Bromofluorobenzene	95		95		70-130	
Dibromofluoromethane	103		101		70-130	

METALS

Serial_No:01201713:12

Project Name:	HP W	ALTHAM					Lab Nu	mber:	L17012	99	
Project Number:	01.00 ⁻	15522.16					Report	Date:	01/20/1	7	
-				SAMPL	E RES	ULTS	-				
Lab ID:	L1701	299-01					Date Co	ollected:	01/13/1	7 10:15	
Client ID:	INF						Date Re	eceived:	01/13/1	7	
Sample Location: Matrix:	WALT Water	HAM, MA					Field Pr	ep:	Not Spe	ecified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.0514		mg/l	0.0010		1	01/17/17 12:22	2 01/18/17 14:51	EPA 3005A	1,6020A	AM
Iron, Total	3.69		mg/l	0.050		1	01/17/17 12:22	2 01/17/17 22:22	EPA 3005A	19,200.7	AB
Lead, Total	0.0253		mg/l	0.0010		1	01/17/17 12:22	2 01/18/17 14:51	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.005		1	01/17/17 12:23	2 01/18/17 14:51	EPA 3005A	1,6020A	AM

--

1

01/17/17 12:22 01/18/17 14:51 EPA 3005A

0.0100

mg/l

1,6020A

AM

Zinc, Total

0.0255

Serial_No:01201713:12

Project Name: Project Number:		ALTHAM 15522.16					Lab Nu Report		L17012 01/20/1		
				SAMPL	E RES	ULTS					
Lab ID: Client ID:	L1701: EFF	299-03					Date Co Date Re	ollected: eceived:	01/13/1 01/13/1		
Sample Location: Matrix:	WALT Water	HAM, MA					Field Pr	ep:	Not Spe	ecified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.0034		mg/l	0.0010		1	01/17/17 12:22	2 01/18/17 14:57	EPA 3005A	1,6020A	AM
Iron, Total	ND		mg/l	0.050		1	01/17/17 12:22	2 01/17/17 22:59	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.0010		1	01/17/17 12:22	2 01/18/17 14:57	EPA 3005A	1,6020A	AM

1

1

01/17/17 12:22 01/18/17 14:57 EPA 3005A

01/17/17 12:22 01/18/17 14:57 EPA 3005A

0.005

0.0100

--

mg/l

mg/l

1,6020A

1,6020A

AM

AM

Selenium, Total

Zinc, Total

ND

ND

 Lab Number:
 L1701299

 Report Date:
 01/20/17

Project Name:HP WALTHAMProject Number:01.0015522.16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	field Lab for sample(s):	01,03 B	atch: Wo	G97024	2-1				
Copper, Total	ND	mg/l	0.0010		1	01/17/17 12:22	01/18/17 12:10	1,6020A	AM
Lead, Total	ND	mg/l	0.0010		1	01/17/17 12:22	01/18/17 12:10	1,6020A	AM
Selenium, Total	ND	mg/l	0.005		1	01/17/17 12:22	01/18/17 12:10	1,6020A	AM
Zinc, Total	ND	mg/l	0.0100		1	01/17/17 12:22	01/18/17 12:10	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01,03 H	Batch: WC	G970247	7-1				
Iron, Total	ND	mg/l	0.050		1	01/17/17 12:22	01/17/17 22:01	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bate	ch: WG97)242-2					
Copper, Total	108		-		80-120	-		
Lead, Total	115		-		80-120	-		
Selenium, Total	110		-		80-120	-		
Zinc, Total	105		-		80-120	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bate	ch: WG970)247-2					
Iron, Total	85		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name:	HP WALTHAM	Batch Quality Control	Lab Number:	L1701299
Project Number:	01.0015522.16		Report Date:	01/20/17

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Fotal Metals - Mansfield Lab	Associated san	nple(s): 01,03	QC Ba	tch ID: WG970	242-3	QC Samp	ole: L1701299-0	1 Client ID: INF			
Copper, Total	0.0514	0.25	0.3320	112		-	-	75-125	-		20
Lead, Total	0.0253	0.51	0.6016	113		-	-	75-125	-		20
Selenium, Total	ND	0.12	0.148	123		-	-	75-125	-		20
Zinc, Total	0.0255	0.5	0.5683	108		-	-	75-125	-		20
Fotal Metals - Mansfield Lab	Associated san	nple(s): 01,03	QC Ba	tch ID: WG970	247-3	QC Samp	ole: L1701299-0	1 Client ID: INF			
Iron, Total	3.69	1	4.49	80		-	-	75-125	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1701299

 Report Date:
 01/20/17

 QC Batch ID: WG970242- 0.0514 	 4 QC Sample: 0.0522 	L1701299-01	Client ID:	INF	
0.0514	0.0522	ma/l	4		
			1		20
0.0253	0.0269	mg/l	6		20
ND	ND	mg/l	NC		20
0.0255	0.0264	mg/l	4		20
QC Batch ID: WG970247-	-4 QC Sample:	L1701299-01	Client ID:	INF	
3.69	3.77	mg/l	2		20
	ND 0.0255 QC Batch ID: WG970247	NDND0.02550.0264QC Batch ID: WG970247-4QC Sample:	ND Mg/l 0.0255 0.0264 mg/l QC Batch ID: WG970247-4 QC Sample: L1701299-01	NDMg/lNC0.02550.0264mg/l4QC Batch ID: WG970247-4QC Sample: L1701299-01Client ID:	NDmg/lNC0.02550.0264mg/l4QC Batch ID: WG970247-4QC Sample: L1701299-01Client ID: INF

INORGANICS & MISCELLANEOUS

eneral Chemistry - We	stborough Lab 540	mg	/1	10		10	-	01/17/17 20:34	4 1,9251	ML
Parameter	Result Qualit	ier Uni	ts	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
Lab ID: Client ID: Sample Location: Matrix:	L1701299-01 INF WALTHAM, MA Water							Received:	01/13/17 10: [,] 01/13/17 Not Specified	-
			SA	AMPLE	RESUL	rs				
Project Number:	01.0015522.16						Repo	rt Date:	01/20/17	
Project Name:	HP WALTHAM						Lab N	lumber:	L1701299	
								Serial_No:012	201713:12	

eneral Chemistry - We	stborough Lab	mg/l	10		10	-	01/17/17 20:3	7 1,9251	ML
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
Lab ID: Client ID: Sample Location: Matrix:	L1701299-03 EFF WALTHAM, MA Water						Received:	01/13/17 10:2 01/13/17 Not Specifiec	
			SAMPLE	RESUL	ГS				
Project Number:	01.0015522.16					Repo	rt Date:	01/20/17	
Project Name:	HP WALTHAM					Lab N	lumber:	L1701299	
							Serial_No:01	201713:12	

L

 Lab Number:
 L1701299

 Report Date:
 01/20/17

Project Name:HP WALTHAMProject Number:01.0015522.16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab for sam	ple(s): 01	,03 Bat	tch: WC	G970402-1				
Chloride	ND	mg/l	1.0		1	-	01/17/17 20:49	1,9251	ML

Project Name: HP WALTHAM **Project Number:** 01.0015522.16

Parameter	LCS %Recovery Qu	al	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	ssociated sample(s): 01	,03 l	Batch: WG97040	02-2				
Chloride	103		-		90-110	-		

		Matrix Spike Analysis Batch Quality Control		
Project Name:	HP WALTHAM	Baton Quarty Control	Lab Number:	L1701299
Project Number:	01.0015522.16		Report Date:	01/20/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
General Chemistry -	Westborough Lab Asso	ciated sam	ple(s): 01,03	QC Batch II	D: WG970	0402-4	QC Sample: L1	701412-01 Clier	nt ID: M	IS Sample
Chloride	2000	20	2000	0	Q	-	-	58-140	-	7

Project Name:	HP WALTHAM	La	b Duplicate Analy Batch Quality Control		La	ıb Number	: L1701299	
Project Number:	01.0015522.16				Re	eport Date:	: 01/20/17	
Parameter		Native Sample	Dunlicate Sample	Units	RPD	Qual	RPD imits	

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated sa	ample(s): 01,03 QC Batch	ID: WG970402-3 QC	Sample: L170	1412-01 (Client ID: DUP Sample
Chloride	2000	2000	mg/l	0	7

Serial_No:01201713:12

Lab Number: L1701299 Report Date: 01/20/17

Project Name:HP WALTHAMProject Number:01.0015522.16

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1701299-01A	Vial HCI preserved	А	N/A	4.0	Y	Absent	8260(14)
L1701299-01B	Vial HCI preserved	А	N/A	4.0	Y	Absent	8260(14)
L1701299-01C	Vial HCI preserved	А	N/A	4.0	Y	Absent	8260(14)
L1701299-01D	Plastic 250ml HNO3 preserved	A	<2	4.0	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1701299-01E	Plastic 60ml unpreserved	А	7	4.0	Y	Absent	CL-9251(28)
L1701299-02A	Vial HCI preserved	А	N/A	4.0	Y	Absent	8260(14)
L1701299-02B	Vial HCI preserved	А	N/A	4.0	Y	Absent	8260(14)
L1701299-02C	Vial HCI preserved	А	N/A	4.0	Y	Absent	8260(14)
L1701299-03A	Vial HCI preserved	А	N/A	4.0	Y	Absent	8260(14)
L1701299-03B	Vial HCI preserved	А	N/A	4.0	Y	Absent	8260(14)
L1701299-03C	Vial HCI preserved	А	N/A	4.0	Y	Absent	8260(14)
L1701299-03D	Plastic 250ml HNO3 preserved	A	<2	4.0	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1701299-03E	Plastic 60ml unpreserved	А	7	4.0	Y	Absent	CL-9251(28)

L1701299

01/20/17

Lab Number:

Report Date:

Project Name: HP WALTHAM

Project Number: 01.0015522.16

GLOSSARY

Acronyms

EDL	 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	 Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the re

Report Format: Data Usability Report

Serial_No:01201713:12

Project Name:HP WALTHAMProject Number:01.0015522.16

Lab Number: L1701299

Report Date: 01/20/17

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:HP WALTHAMProject Number:01.0015522.16

 Lab Number:
 L1701299

 Report Date:
 01/20/17

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 300: DW: Bromide
EPA 6860: NPW and SCM: Perchlorate
EPA 9010: NPW and SCM: Amenable Cyanide Distillation
EPA 9012B: NPW: Total Cyanide
EPA 9050A: NPW: Specific Conductance
SM3500: NPW: Ferrous Iron
SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.
SM5310C: DW: Dissolved Organic Carbon

SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.
EPA 624: Volatile Halocarbons & Aromatics,
EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs
EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.
Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:01201713:12

ALPHA	CHAIN	OF CU	STO	DY P	AGE		Date R	Rec'd in	Lab:	1/1	3/13	7	ALF	PHA Jo	b#: (170129	79
8 Walkup Drive	320 Forbes Blvd		Informa	tion						- Data I	Deliver	able			ormation		
Westboro, MA 015 Tel: 508-898-9220	81 Mansfield, MA 02048 Tel: 508-822-9300	Project N	Name: H	Ph	alth	OM		-		EMAIL		_		-	lient info	PO #:	_
Client Information		Project L	ocation: (Walt	han	MA	and the second se	and the second second	and the second division of the second divisio			-	ct Inform				
Client: 67A		Project #	# 15	5221	16					Analytica ke Requi			DG? (Requ			RCP Analytical Me	thods
Address: 7 Ja	VorderbH Au	Project N	/anager:	Toho	Call	nent	C Yes	No G	W1 Star	ndards (In			for Metals &				
Norin	and Ma	· · · · · · · · · · · · · · · · · · ·	Quote #:	10_1:	Coll	101			IPDES R /Fed Pro					Criter	ia		
Phone: 781-9	83-1267	Turn-A	Around Ti	ime		and the second		02		7 7	1	7	11	19		11	
Email: 1, xillion	n daus Dagas				-	-		53	DRCH	PP13	Vino	./	111	Let			
- Walling	n-aauis Kgzac	Sin Stand	dard	RUSH (only)	confirmed if pre-a	pproved!)	Sis	2007	10	VPH: LRanges & Targets L RCRA8 LPP13	DPCB Decarargets D Ranges Only TPH: DO. DPEST	1	ž / 1	St /	· / ,	/ /	т
Additional Pro	ject Information:	Date I	Due:				ANALYSIS	D 524.2	DMCP 14	RA8	7 Rai	/	le Serprint	7/	/ /		Ö T
	jeetimetrikkietii						AN .	D PAH	NO 1	Tets	lets [DEin	1000	*/	/ /	Filtration	L
								1 1	13	tar	and Tar	Nº C	20			/ D Field	#
								D ABN	RCA	ges a	DPES	nt Or	orio	/ /		/ 🗆 Lab to do	
							C 8260	0 0	13	Ran	20	t due	E a	/ /	/ /	Preservation	
ALPHA Lab ID (Lab Use Only)	Sample ID			lection	Sample		Voc:	METALS: DABN D	METALS: URCP 13 EPH.	BH: D	D PCB D PEST	10	15/ 1	/ /			n O T L E nts S
(Lab Ose Only)	10		Date	Time	Matrix	Initials	1	1	2 4	12/	U/F			_/		Sample Comme	
01019 -01 -	LNF		1/13/17	10:15	EW	Gru	X					X	N	_			5
02	MIP			10:20			X										3
03	FFF		T	10:25	r	¥	X					X	X			291	5
												- 1	$l \rightarrow l$		-		
				-							-			-			
			-						-								_
												-					
			-			-		+ +									
	2. 11. 14.										-	0			_		
Container Type P= Plastic	A= None				Conta	ainer Type	Y					P	P				
A= Amber glass V= Vial G= Glass	B= HCI C= HNO ₃ D= H ₂ SO ₄	2.1	0		Pr	eservative	15					A	2	1100			14
B= Bacteria cup C= Cube O= Other	E= NaOH F= MeOH	Relinqu	ished By:		Date	e/Time	1	Re	ceived B			1	ate/Time	A.I.	omelee		in at the
E= Encore D= BOD Bottle	G= NaHSO4 H = Na ₂ S ₂ O ₂ I= Ascorbic Acid	1-24	T	-	1615	21/13	17	the	in (PA	ALI	3	7 12:3	All S Alp	ha's Term	submitted are sub s and Conditions	
Page 39 of 39	J = NH ₄ Cl K= Zn Acetate O= Other	ytal	400	AALI	13/17	16:20	1 Ca	0	+		lis	3/17	1620		M NO: 01-01	side. (rev. 12-Mar-2012)	

ANALYTICAL REPORT

Lab Number:	L1704019
Client:	GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062
ATTN: Phone:	Bill Davis (781) 278-5769
Project Name:	HP WALTHAM
Project Number:	01.0015522.17
Report Date:	02/15/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NH (2003), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:02151718:49

Project Name:	HP WALTHAM
Project Number:	01.0015522.17

 Lab Number:
 L1704019

 Report Date:
 02/15/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1704019-01	INF	WATER	WALTHAM, MA	02/08/17 12:05	02/08/17
L1704019-02	MID	WATER	WALTHAM, MA	02/08/17 11:55	02/08/17
L1704019-03	EFF	WATER	WALTHAM, MA	02/08/17 11:48	02/08/17

Project Name: HP WALTHAM Project Number: 01.0015522.17
 Lab Number:
 L1704019

 Report Date:
 02/15/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1704019

 Report Date:
 02/15/17

Case Narrative (continued)

Chloride

The Effluent (L1704019-02) result is greater than the Influent (L1704019-01) result. The sample containers were verified as being labeled correctly by the laboratory.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

re: Michelle M. Marris

Title: Technical Director/Representative

Date: 02/15/17

ORGANICS

VOLATILES

				Serial_N	o:02151718:49
Project Name:	HP WALTHAM			Lab Number:	L1704019
Project Number:	01.0015522.17			Report Date:	02/15/17
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1704019-01 INF WALTHAM, MA Water 1,8260C 02/10/17 12:48 NL	D		Date Collected: Date Received: Field Prep:	02/08/17 12:05 02/08/17 Not Specified

1,1-Dichloroethane ND ug/l 75 100 Chloroform ND ug/l 75 100 Carbon tetrachloride ND ug/l 50 100 1,2-Dichloropropane ND ug/l 100 100 1,2-Dichloropethane ND ug/l 50 100 1,1-Dichloropethane ND ug/l 50 100 Tetrachloropethane ND ug/l 50 100 Tetrachloropethane ND ug/l 50 100 Trichloropethane ND ug/l 50 100 1,1-Trichloropethane ND ug/l 50 100 1,2-Dichloropopene ND ug/l 50 100 rears-1,3-Dichloropropene ND ug/l 50 100 rears-1,3-Dichloropropene ND ug/l 50 100 Romodichloropropene ND ug/l 50	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
t,1-Dichloroethane ND ug/l 75 100 Chloroform ND ug/l 75 100 Carbon tetrachloride ND ug/l 50 100 1,2-Dichloropropane ND ug/l 50 100 1,2-Dichloropropane ND ug/l 50 100 1,2-Dichloropropane ND ug/l 50 100 Dicromochloromethane ND ug/l 50 100 Etrachloroethane ND ug/l 50 100 Chloroberzene ND ug/l 50 100 Trichloroethane ND ug/l 50 100 1,1,1-Trichloroethane ND ug/l 50 100 Etrachloroethane ND ug/l 50 100 1,1,2-Trichloroethane ND ug/l 50 100 <th>Volatile Organics by GC/MS -</th> <th>Westborough Lab</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Volatile Organics by GC/MS -	Westborough Lab					
And the second	Methylene chloride	ND		ug/l	300		100
Partial Partial <t< td=""><td>1,1-Dichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>75</td><td></td><td>100</td></t<>	1,1-Dichloroethane	ND		ug/l	75		100
ND ug/l 180 - 100 Dibromechloromethane ND ug/l 50 - 100 1,1,2-Trichloroethane ND ug/l 75 - 100 Tetrachloroethane ND ug/l 50 - 100 Tetrachloroethane ND ug/l 50 - 100 Chlorobersene ND ug/l 50 - 100 Trichloroethane ND ug/l 50 - 100 1,2-Dichloroethane ND ug/l 50 - 100 Ita-Sichloroethane ND ug/l 50 - 100 Ita-Sicholoroethane <td>Chloroform</td> <td>ND</td> <td></td> <td>ug/l</td> <td>75</td> <td></td> <td>100</td>	Chloroform	ND		ug/l	75		100
Diromochioromethane ND ug/l 50 100 1,1,2-Trichloroethane ND ug/l 50 100 Tetrachloroethane ND ug/l 50 100 Chlorobenzene ND ug/l 50 100 Trichlorofluoromethane ND ug/l 50 100 1,1-Trichloroethane ND ug/l 50 100 1,1-Trichloroethane ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 Bromodichloropropene ND ug/l 50 100 Bromodichloropropene ND ug/l 50 100 L1,2-2-Tetrachloroethane ND ug/l 50 100 L1,2-2-Tetrachloroethane ND ug/l 50 100 L1,2-2-Tetrachloroethane ND ug/l 50 -	Carbon tetrachloride	ND		ug/l	50		100
I.1.2-Trichloroethane ND ug/l 75 100 Tetrachloroethane ND ug/l 50 100 Chlorobenzene ND ug/l 50 100 Trichloroethane ND ug/l 50 100 1,2-Dichloroethane ND ug/l 50 100 1,1-Trichloroethane ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 Bromodorm ND ug/l 50 100 Stomoform ND ug/l 50 100 L1,2-2-Tetrachloroethane ND ug/l 50 100 L1,2-2-Tetrachloroethane ND ug/l 50 100 <	1,2-Dichloropropane	ND		ug/l	180		100
Transmission ND ug/l 50 100 Chlorobenzene ND ug/l 50 100 Trichlorofluoromethane ND ug/l 50 100 1,12-Dichloroethane ND ug/l 50 100 1,1,1-Trichloroethane ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 trans-1,3-Dichloropropene ND ug/l 50 100 Bromoform ND ug/l 50 100 Chloromethane ND ug/l 100 100 Bromomethane	Dibromochloromethane	ND		ug/l	50		100
ND ug/l 50 100 Trichlorodituoromethane ND ug/l 250 100 1,12-Dichlorodethane ND ug/l 50 100 1,1,1-Trichlorodethane ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 trans-1,3-Dichloropropene ND ug/l 50 100 Bromoform ND ug/l 50 100 Stomoform ND ug/l 50 100 1,1,2-2-Tetrachlorodethane ND ug/l 50 100 Bromoform ND ug/l 50 100 1,1,2-2-Tetrachlorodethane ND ug/l 50 100 Bromodichane ND ug/l 50 100 Chloromethane ND ug/l 100 100 Stomo	1,1,2-Trichloroethane	ND		ug/l	75		100
Inchiorofluoromethane ND ug/l 250 100 1,2-Dichloroethane ND ug/l 50 100 1,1,1-Trichloroethane ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 trans-1,3-Dichloropropene ND ug/l 50 100 Bromoform ND ug/l 50 100 1,1,2,2-Tetrachloroethane ND ug/l 50 100 1,1,2,2-Tetrachloroethane ND ug/l 50 100 1,1,2,2-Tetrachloroethane ND ug/l 50 100 Ethylbenzene ND ug/l 50 100 Chloromethane ND ug/l 100 100 Uriy I chloride ND ug/l 100	Tetrachloroethene	ND		ug/l	50		100
1.2-Dichloroethane ND ug/l 50 100 1.1,1-Trichloroethane ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 trans-1.3-Dichloropropene ND ug/l 50 100 cis-1.3-Dichloropropene ND ug/l 50 100 Bromodichhane ND ug/l 50 100 Bromodiorom ND ug/l 50 100 Bromodiorom ND ug/l 50 100 Standard ND ug/l 50 100 Bromodiorom ND ug/l 50 100 Chloroethane ND ug/l 50 100 Ethylbenzene ND ug/l 100 100 Chloroethane ND ug/l 100 100 Lyl-chloroethene ND ug/l 50 100 Lyl-chlo	Chlorobenzene	ND		ug/l	50		100
ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 trans-1,3-Dichloropropene ND ug/l 50 100 Bromodichloromethane ND ug/l 50 100 Bromodichloropropene ND ug/l 50 100 Bromodichloropropene ND ug/l 50 100 Bromodicm ND ug/l 50 100 Bromodicm ND ug/l 50 100 Benzene ND ug/l 50 100 Ethylbenzene ND ug/l 50 100 Ethylbenzene ND ug/l 100 100 Chloromethane ND ug/l 100 100 Lin/Dichlorobethane	Trichlorofluoromethane	ND		ug/l	250		100
ND ug/l 50 100 trans-1,3-Dichloropropene ND ug/l 50 100 cis-1,3-Dichloropropene ND ug/l 50 100 Bromodichloropropene ND ug/l 50 100 Bromodirm ND ug/l 50 100 Bromodirm ND ug/l 50 100 Benzene ND ug/l 50 100 Benzene ND ug/l 50 100 Toluene ND ug/l 50 100 Ethylbenzene ND ug/l 50 100 Bromodiethane ND ug/l 100 100 Chloromethane ND ug/l 100 100 Vinyl chloride ND ug/l 100 100 Chloroethane ND ug/l	1,2-Dichloroethane	ND		ug/l	50		100
ND ug/l 50 100 cis-1,3-Dichloropropene ND ug/l 50 100 Bromoform ND ug/l 50 100 Bromoform ND ug/l 50 100 Bromoform ND ug/l 50 100 Benzene ND ug/l 50 100 Toluene ND ug/l 50 100 Ethylbenzene ND ug/l 50 100 Chloromethane ND ug/l 50 100 Stromomethane ND ug/l 50 100 Vinyl chloride ND ug/l 100 100 Vinyl chloroethene ND ug/l 100 100 In1-Dichloroethene ND ug/l 50 100 Irans-1,2-Dichloroethene ND ug/l<	1,1,1-Trichloroethane	ND		ug/l	50		100
ND ug/l 50 100 Bromoform ND ug/l 200 100 Bromoform ND ug/l 50 100 1,1,2,2-Tetrachloroethane ND ug/l 50 100 Benzene ND ug/l 50 100 Toluene ND ug/l 75 100 Ethylbenzene ND ug/l 50 100 Chloromethane ND ug/l 50 100 Bromomethane ND ug/l 100 100 Vinyl chloride ND ug/l 100 100 Vinyl chloride ND ug/l 100 100 1,1-Dichloroethene ND ug/l 50 100 1,1-Dichloroethene ND ug/l 50 100 1,2-Dichloroethene ND ug/	Bromodichloromethane	ND		ug/l	50		100
Brownoform ND ug/l 200 100 Brownoform ND ug/l 50 100 Benzene ND ug/l 50 100 Benzene ND ug/l 50 100 Toluene ND ug/l 50 100 Ethylbenzene ND ug/l 50 100 Chloromethane ND ug/l 50 100 Bromoethane ND ug/l 100 100 Chloromethane ND ug/l 100 100 Stript chloride ND ug/l 100 100 Chloroethane ND ug/l 100 100 1,1-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 50 100 1,2-Dichlorobenzene ND	trans-1,3-Dichloropropene	ND		ug/l	50		100
ND ug/l 50 100 Benzene ND ug/l 50 100 Toluene ND ug/l 50 100 Ethylbenzene ND ug/l 50 100 Chloromethane ND ug/l 50 100 Bromomethane ND ug/l 50 100 Chloromethane ND ug/l 250 100 Bromomethane ND ug/l 100 100 Chloroethane ND ug/l 100 100 Chloroethane ND ug/l 100 100 1,1-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 50 100 1,2-Dichloroethene ND ug/l 50 100 1,2-Dichlorobenzene ND	cis-1,3-Dichloropropene	ND		ug/l	50		100
ND ug/l 50 100 Toluene ND ug/l 75 100 Ethylbenzene ND ug/l 50 100 Chloromethane ND ug/l 50 100 Bromomethane ND ug/l 250 100 Vinyl chloride ND ug/l 100 100 Vinyl chloride ND ug/l 100 100 Chloroethane ND ug/l 100 100 1,1-Dichloroethene ND ug/l 100 100 trans-1,2-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 50 100 1,2-Dichlorobenzene ND ug/l 50 100 1,2-Dichlorobenzene	Bromoform	ND		ug/l	200		100
Toluene ND ug/l 75 100 Ethylbenzene ND ug/l 50 100 Chloromethane ND ug/l 250 100 Bromomethane ND ug/l 100 100 Bromomethane ND ug/l 100 100 Chloromethane ND ug/l 100 100 Vinyl chloride ND ug/l 100 100 Chloroethane ND ug/l 100 100 1,1-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 75 100 Trichloroethene 8100 ug/l 50 100 1,2-Dichlorobenzene ND ug/l 250 100	1,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Ethylbenzene ND ug/l 50 100 Chloromethane ND ug/l 250 100 Bromomethane ND ug/l 100 100 Vinyl chloride ND ug/l 100 100 Chloromethane ND ug/l 100 100 Chloroethane ND ug/l 100 100 1,1-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 50 100 Trichloroethene ND ug/l 50 100 1,2-Dichloroethene ND ug/l 50 100 1,2-Dichlorobenzene ND ug/l 50 100 1,2-Dichlorobenzene ND ug/l 250 100	Benzene	ND		ug/l	50		100
ND ug/l 250 100 Bromomethane ND ug/l 100 100 Vinyl chloride ND ug/l 100 100 Chloromethane ND ug/l 100 100 Vinyl chloride ND ug/l 100 100 Chloroethane ND ug/l 100 100 1,1-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 75 100 Trichloroethene 8100 ug/l 50 100 1,2-Dichlorobenzene ND ug/l 250 100	Toluene	ND		ug/l	75		100
ND ug/l 100 100 Vinyl chloride ND ug/l 100 100 Chloroethane ND ug/l 100 100 1,1-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 75 100 trans-1,2-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 50 100 1,2-Dichloroethene ND ug/l 50 100 1,2-Dichlorobenzene ND ug/l 250 100	Ethylbenzene	ND		ug/l	50		100
ND ug/l 100 100 Chloroethane ND ug/l 100 100 1,1-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 75 100 trans-1,2-Dichloroethene ND ug/l 75 100 Trichloroethene 8100 ug/l 50 100 1,2-Dichlorobenzene ND ug/l 250 100 1,3-Dichlorobenzene ND ug/l 250 100	Chloromethane	ND		ug/l	250		100
ND ug/l 100 100 1,1-Dichloroethene ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 75 100 Trichloroethene ND ug/l 50 100 1,2-Dichloroethene ND ug/l 50 100 1,2-Dichloroethene ND ug/l 50 100 1,2-Dichlorobenzene ND ug/l 250 100 1,3-Dichlorobenzene ND ug/l 250 100	Bromomethane	ND		ug/l	100		100
ND ug/l 50 100 trans-1,2-Dichloroethene ND ug/l 75 100 Trichloroethene 8100 ug/l 50 100 1,2-Dichlorobenzene ND ug/l 50 100 1,2-Dichlorobenzene ND ug/l 250 100	Vinyl chloride	ND		ug/l	100		100
ND ug/l 75 100 Trichloroethene 8100 ug/l 50 100 1,2-Dichlorobenzene ND ug/l 250 100 1,3-Dichlorobenzene ND ug/l 250 100	Chloroethane	ND		ug/l	100		100
Trichloroethene 8100 ug/l 50 100 1,2-Dichlorobenzene ND ug/l 250 100 1,3-Dichlorobenzene ND ug/l 250 100	1,1-Dichloroethene	ND		ug/l	50		100
ND ug/l 250 100 1,3-Dichlorobenzene ND ug/l 250 100	trans-1,2-Dichloroethene	ND		ug/l	75		100
1,3-Dichlorobenzene ND ug/l 250 100	Trichloroethene	8100		ug/l	50		100
	1,2-Dichlorobenzene	ND		ug/l	250		100
1,4-Dichlorobenzene ND ug/l 250 100	1,3-Dichlorobenzene	ND		ug/l	250		100
	1,4-Dichlorobenzene	ND		ug/l	250		100

					Ş	Serial_N	0:02151718:49
Project Name:	HP WALTHAM				Lab Nu	mber:	L1704019
Project Number:	01.0015522.17				Report	Date:	02/15/17
		SAMP	LE RESULTS	6			
Lab ID:	L1704019-01	D			Date Col	lected:	02/08/17 12:05
Client ID:	INF				Date Red	ceived:	02/08/17
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboro	ugh Lab					
Methyl tert butyl ether		ND		ug/l	100		100
p/m-Xylene		ND		ug/l	100		100
o-Xylene		ND		ug/l	100		100
cis-1,2-Dichloroethene		ND		ug/l	50		100
Dichlorodifluoromethane		ND		ug/l	500		100
Naphthalene		ND		ug/l	250		100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	101		70-130	

			Serial_N	o:02151718:49
Project Name:	HP WALTHAM		Lab Number:	L1704019
Project Number:	01.0015522.17		Report Date:	02/15/17
		SAMPLE RESULTS		
Lab ID:	L1704019-02		Date Collected:	02/08/17 11:55
Client ID:	MID		Date Received:	02/08/17
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	02/10/17 13:22			
Analyst:	NL			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	borough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
rans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
rans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	9.8		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					Serial_No:02151718:49			
Project Name:	HP WALTHAM				Lab Nu	mber:	L1704019	
Project Number:	01.0015522.17				Report	Date:	02/15/17	
		SAMP		6				
Lab ID:	L1704019-02				Date Col	lected:	02/08/17 11:55	
Client ID:	MID				Date Ree	ceived:	02/08/17	
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westboroug	ıh Lab						
Methyl tert butyl ether		ND		ug/l	1.0		1	
p/m-Xylene		ND		ug/l	1.0		1	
o-Xylene		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	0.50		1	
Dichlorodifluoromethane		ND		ug/l	5.0		1	
Naphthalene		ND		ug/l	2.5		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	91		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	102		70-130	

			Serial_N	o:02151718:49
Project Name:	HP WALTHAM		Lab Number:	L1704019
Project Number:	01.0015522.17		Report Date:	02/15/17
		SAMPLE RESULTS		
Lab ID:	L1704019-03		Date Collected:	02/08/17 11:48
Client ID:	EFF		Date Received:	02/08/17
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	02/10/17 13:57			
Analyst:	NL			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	1.5		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					Serial_No:02151718:49			
Project Name:	HP WALTHAM				Lab Nu	mber:	L1704019	
Project Number:	01.0015522.17				Report	Date:	02/15/17	
		SAMP		6				
Lab ID:	L1704019-03				Date Col	lected:	02/08/17 11:48	
Client ID:	EFF				Date Red	ceived:	02/08/17	
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westboroug	h Lab						
Methyl tert butyl ether		ND		ug/l	1.0		1	
p/m-Xylene		ND		ug/l	1.0		1	
o-Xylene		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	0.50		1	
Dichlorodifluoromethane		ND		ug/l	5.0		1	
Naphthalene		ND		ug/l	2.5		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	102		70-130	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1704019

 Project Number:
 01.0015522.17
 Report Date:
 02/15/17

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	02/10/17 12:13
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS ·	- Westborough Lal	o for sample(s): 01-03	B Batch:	WG977246-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

Project Name:	HP WALTHAM	Lab Number:	L1704019
Project Number:	01.0015522.17	Report Date:	02/15/17

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	02/10/17 12:13
Analyst:	PD

arameter	Result Qu	ualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab for	r sample(s): 01-03	B Batch:	WG977246-5
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dichlorodifluoromethane	ND	ug/l	5.0	
Naphthalene	ND	ug/l	2.5	

		A	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	107		70-130
Toluene-d8	92		70-130
4-Bromofluorobenzene	96		70-130
Dibromofluoromethane	102		70-130

Project Name: HP WALTHAM Project Number: 01.0015522.17 Lab Number: L1704019 Report Date: 02/15/17

Parameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03	Batch:	WG977246-3	WG977246-4			
Methylene chloride	94			95		70-130	1		20
1,1-Dichloroethane	100			100		70-130	0		20
Chloroform	100			110		70-130	10		20
Carbon tetrachloride	78			82		63-132	5		20
1,2-Dichloropropane	100			100		70-130	0		20
Dibromochloromethane	80			80		63-130	0		20
1,1,2-Trichloroethane	90			92		70-130	2		20
Tetrachloroethene	85			88		70-130	3		20
Chlorobenzene	94			95		75-130	1		25
Trichlorofluoromethane	84			91		62-150	8		20
1,2-Dichloroethane	110			110		70-130	0		20
1,1,1-Trichloroethane	94			98		67-130	4		20
Bromodichloromethane	99			100		67-130	1		20
trans-1,3-Dichloropropene	72			74		70-130	3		20
cis-1,3-Dichloropropene	89			91		70-130	2		20
Bromoform	70			71		54-136	1		20
1,1,2,2-Tetrachloroethane	87			88		67-130	1		20
Benzene	100			110		70-130	10		25
Toluene	90			92		70-130	2		25
Ethylbenzene	93			95		70-130	2		20
Chloromethane	80			83		64-130	4		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.17 Lab Number: L1704019 Report Date: 02/15/17

arameter	LCS %Recovery	Qual	LCSD %Recovery	/ Qual	%Recovery Limits	RPD	RPD Qual Limit	
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch:	WG977246-3	WG977246-4			
Bromomethane	77		75		39-139	3	20	
Vinyl chloride	88		95		55-140	8	20	
Chloroethane	93		97		55-138	4	20	
1,1-Dichloroethene	86		91		61-145	6	25	
trans-1,2-Dichloroethene	90		94		70-130	4	20	
Trichloroethene	100		100		70-130	0	25	
1,2-Dichlorobenzene	89		90		70-130	1	20	
1,3-Dichlorobenzene	89		91		70-130	2	20	
1,4-Dichlorobenzene	89		90		70-130	1	20	
Methyl tert butyl ether	100		110		63-130	10	20	
p/m-Xylene	95		100		70-130	5	20	
o-Xylene	95		100		70-130	5	20	
cis-1,2-Dichloroethene	98		100		70-130	2	20	
Dichlorodifluoromethane	70		75		36-147	7	20	
Naphthalene	90		86		70-130	5	20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.17 Lab Number: L1704019

Report Date: 02/15/17

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s).	01-03 Batch: W	/G977246-:	3 WG977246-4				

	LCS		LCSD		Acceptance	
Surrogate	%Recovery Qual		%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	107		107		70-130	
Toluene-d8	92		92		70-130	
4-Bromofluorobenzene	98		98		70-130	
Dibromofluoromethane	104		106		70-130	

METALS

Serial_No:02151718:49

Project Name: Project Number:		ALTHAM 15522.17					Lab Nu Report		L17040 02/15/1		
i reject Number.	01.00	10022.17		SAMPL	E RES	ULTS	Report	Duto.	02/10/1	ı	
Lab ID: Client ID: Sample Location: Matrix:	INF	019-01 HAM, MA			•		Date Co Date Re Field Pr	eceived:	02/08/1 02/08/1 Not Spe	7	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.00777		mg/l	0.00100		1	02/10/17 14:55	5 02/14/17 14:01	EPA 3005A	1,6020A	AM
Iron, Total	0.058		mg/l	0.050		1	02/10/17 14:55	5 02/14/17 16:36	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.00100		1	02/10/17 14:55	5 02/14/17 14:01	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.00500			00/40/47 44 55	5 02/14/17 14:01		1,6020A	AM

1

02/10/17 14:55 02/14/17 14:01 EPA 3005A

0.01000

mg/l

1,6020A

AM

Zinc, Total

ND

Serial_No:02151718:49

02/10/17 14:55 02/14/17 14:04 EPA 3005A

Project Name: Project Number:		ALTHAM 15522.17					Lab Nu Report		L17040 02/15/1		
				SAMPL	E RES	ULTS					
Lab ID:	L1704	019-03					Date Co	ollected:	02/08/1	7 11:48	
Client ID:	EFF						Date Re	ceived:	02/08/1	7	
Sample Location:	WALT	HAM, MA					Field Pr	ep:	Not Spe	ecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansf	field Lab										
Copper, Total	0.00209		mg/l	0.00100		1	02/10/17 14:55	5 02/14/17 14:04	EPA 3005A	1,6020A	AM
Iron, Total	ND		mg/l	0.050		1		5 02/15/17 18:01		19,200.7	MC
Lead, Total	ND		mg/l	0.00100		1	02/10/17 14:55	5 02/14/17 14:04	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.00500		1	02/10/17 14:55	5 02/14/17 14:04	EPA 3005A	1,6020A	AM

0.01000

1

mg/l

1,6020A

AM

ND

Zinc, Total

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1704019

 Report Date:
 02/15/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL		Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01,03 B	atch: WG	G976917	-1				
Iron, Total	ND	mg/l	0.050		1	02/10/17 14:55	02/14/17 16:27	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01,03 E	Batch: WO	G97692	25-1				
Copper, Total	ND	mg/l	0.00100		1	02/10/17 14:55	02/14/17 13:43	3 1,6020A	AM
Lead, Total	ND	mg/l	0.00100		1	02/10/17 14:55	02/14/17 13:43	3 1,6020A	AM
Selenium, Total	ND	mg/l	0.00500		1	02/10/17 14:55	02/14/17 13:43	3 1,6020A	AM
Zinc, Total	ND	mg/l	0.01000		1	02/10/17 14:55	02/14/17 13:43	3 1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1704019 Report Date: 02/15/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bate	ch: WG976	6917-2					
Iron, Total	92		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bate	ch: WG976	6925-2					
Copper, Total	115		-		80-120	-		
Lead, Total	111		-		80-120	-		
Selenium, Total	118		-		80-120	-		
Zinc, Total	114		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name:	HP WALTHAM
Project Number:	01.0015522.17

 Lab Number:
 L1704019

 Report Date:
 02/15/17

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery C	Recovery Qual Limits	RPD Qual	RPD Limits
Total Metals - Mans	sfield Lab Associated sam	ple(s): 01,03	QC Bat	ch ID: WG976	917-3	QC Samp	le: L1704019-01	Client ID: INF		
Iron, Total	0.058	1	0.916	86		-	-	75-125	-	20
Total Metals - Mans	sfield Lab Associated sam	ple(s): 01,03	QC Bat	ch ID: WG976	917-7	QC Samp	le: L1704066-01	Client ID: MS	Sample	
Iron, Total	0.897	1	1.80	90		-	-	75-125	-	20
Total Metals - Mans	sfield Lab Associated sam	ple(s): 01,03	QC Bat	ch ID: WG976	925-3	QC Samp	le: L1704019-01	Client ID: INF		
Copper, Total	0.00777	0.25	0.2859	111		-	-	75-125	-	20
Lead, Total	ND	0.51	0.5543	109		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.131	109		-	-	75-125	-	20
Zinc, Total	ND	0.5	0.5576	112		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:HP WALTHAMProject Number:01.0015522.17

Lab Number:

 Lab Number:
 L1704019

 Report Date:
 02/15/17

Parameter		Native Sample	ple Duplicate Sample		Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab	Associated sample(s): 01,0	3 QC Batch ID:	WG976917-4	QC Sample:	L1704019-01	Client ID:	INF	
Iron, Total		0.058		ND	mg/l	NC		20
otal Metals - Mansfield Lab	Associated sample(s): 01,0	3 QC Batch ID:	WG976925-4	QC Sample:	L1704019-01	Client ID:	INF	
Copper, Total		0.00777		0.00834	mg/l	7		20
Lead, Total		ND		ND	mg/l	NC		20
Selenium, Total		ND		ND	mg/l	NC		20
Zinc, Total		ND		ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

							Serial_No:02	151718:49	
Project Name:	HP WALTHAM					Lab N	lumber:	L1704019	
Project Number:	01.0015522.17	01.0015522.17 Report Date:				rt Date:	02/15/17		
			SAMPLE	RESUL	TS				
Lab ID: Client ID: Sample Location: Matrix:	L1704019-01 INF WALTHAM, MA Water						Received:	02/08/17 12:0 02/08/17 Not Specified	
Parameter	Result Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	stborough Lab								
lloride	510	mg/l	10		10	-	02/11/17 16:23	3 1,9251	MR

							Serial_No:02	151718:49	
Project Name:	HP WALTHAM					Lab N	lumber:	L1704019	
Project Number:	01.0015522.17					Repo	rt Date:	02/15/17	
			SAMPLE	RESUL	TS				
Lab ID:	L1704019-03					Date	Collected:	02/08/17 11:4	48
Client ID:	EFF					Date		02/08/17	
Sample Location:	WALTHAM, MA					Field	Prep:	Not Specified	
Matrix:	Water								
Parameter	Result Quali	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
eneral Chemistry - We	stborough Lab								
lloride	540	mg/l	10		10	-	02/11/17 16:25	5 1,9251	MF

 Lab Number:
 L1704019

 Report Date:
 02/15/17

Project Name:HP WALTHAMProject Number:01.0015522.17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab for san	nple(s): 01	,03 Bat	ch: W	G977146-1				
Chloride	ND	mg/l	1.0		1	-	02/11/17 15:54	1,9251	MR

Lab Number: L1704019 Report Date: 02/15/17

Project Name: HP WALTHAM Project Number: 01.0015522.17

LCS LCSD %Recovery Limits %Recovery %Recovery RPD **RPD Limits** Parameter Qual Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01,03 Batch: WG977146-2 Chloride 97 90-110 --

		Matrix Spike Analysis Batch Quality Control	
Project Name:	HP WALTHAM	Lab Number:	L1704019
Project Number:	01.0015522.17	Report Date:	02/15/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD C	RPD Qual Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01,03	QC Batch II	D: WG97	77146-4	QC Sample: L1	704276-02 Clier	nt ID: MS	Sample
Chloride	1200	20	1200	0	Q	-	-	58-140	-	7

Project Name: HP	WALTHAM	b Duplicate Analysis Batch Quality Control	Lab Number:	L1704019
Project Number: 01.	0015522.17		Report Date:	02/15/17

Parameter	Native Sam	ple Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	ssociated sample(s): 01,03	QC Batch ID: WG977146-3	QC Sample:	L1704276-02	Client ID:	DUP Sample
Chloride	1200	1200	mg/l	0		7

Serial_No:02151718:49

Lab Number: L1704019 Report Date: 02/15/17

Project Name:HP WALTHAMProject Number:01.0015522.17

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Information Temp										
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)			
L1704019-01A	Vial HCI preserved	А	N/A	3.8	Y	Absent	8260(14)			
L1704019-01B	Vial HCI preserved	А	N/A	3.8	Y	Absent	8260(14)			
L1704019-01C	Vial HCI preserved	А	N/A	3.8	Y	Absent	8260(14)			
L1704019-01D	Plastic 250ml HNO3 preserved	A	<2	3.8	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)			
L1704019-01E	Plastic 60ml unpreserved	А	7	3.8	Y	Absent	CL-9251(28)			
L1704019-02A	Vial HCI preserved	А	N/A	3.8	Y	Absent	8260(14)			
L1704019-02B	Vial HCI preserved	А	N/A	3.8	Y	Absent	8260(14)			
L1704019-02C	Vial HCI preserved	А	N/A	3.8	Y	Absent	8260(14)			
L1704019-03A	Vial HCI preserved	А	N/A	3.8	Y	Absent	8260(14)			
L1704019-03B	Vial HCI preserved	А	N/A	3.8	Y	Absent	8260(14)			
L1704019-03C	Vial HCI preserved	А	N/A	3.8	Y	Absent	8260(14)			
L1704019-03D	Plastic 250ml HNO3 preserved	A	<2	3.8	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)			
L1704019-03E	Plastic 60ml unpreserved	А	7	3.8	Y	Absent	CL-9251(28)			

L1704019

02/15/17

Lab Number:

Report Date:

Project Name: HP WALTHAM

Project Number: 01.0015522.17

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
CTI D	Sensi demonia Tank Lagaking Duaga demonstra EDA Mathad 1215

- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the rep

Report Format: Data Usability Report

Serial_No:02151718:49

Project Name: HP WALTHAM Project Number: 01.0015522.17

Lab Number: L1704019

Report Date: 02/15/17

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1704019

 Report Date:
 02/15/17

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 300: DW: Bromide EPA 6860: NPW and SCM: Perchlorate EPA 9010: NPW and SCM: Amenable Cyanide Distillation EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Total Cyanide EPA 9050A: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon

SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.
EPA 624: Volatile Halocarbons & Aromatics,
EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs
EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.
Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

<i>I</i>	CHAINIC											Sei	rial_No:02	2151718:49	
		OF CUSTO	_	PAGE	OF		Rec'd in	_	218			ALPHA	Job #:	61704015	
8 Walkup Driv Westboro, MA	A 01581 Mansfield MA 02048	Project Inform			-	Rep	ort Info	rmatior	- Data	Delivera	bles	Billing	Informatio	on	
Client Informati	101 000 022-0000	Project Name:	HP L	ralfhai	m	DA	-		EMAIL				as Client info		
Children and State and State		Project Location:	Walt	ham ,	Ma.	Reg	ulatory I	Require	ements	& Pr	oject In	formatio	n Require	ments	
- GEA		Project #: () j, ()	01552	2,17		U Yes	S 🗆 No N	IA MCP	Analytical	Methode		D Ve-			hods
Address. 249	Vanderbilt Ave. Mor, 02062	Project Manager:	J. Co	albert	617	Lifes		vvi Star	idards (In	fo Requir	ed for M	etals & EPI	for MCP Inc H with Targe	organics) ets)	
Phone: 781-	Ma, 02062					Lies	er State /	PDE2 K	GP				iteria		
- 10ne. 78/-	-983-1352	Turn-Around T	ïme					1 1	1 7	. /	11	11		11	-
	Vis @ g 2 9 . (om Project Information:	Date Due:	C RUSH (only	y confirmed if pre-appn	oved!)	AVALYSIS	METALS: DAGN DEAL DEALS 80	METALS: URCRAS DMCP 14 URCD	VPH: L/Ranges & Targets L Ranges C	TPH: LQuant Oni	CLON ALE DI DEMOGRAMINE	de + 10, 50, 24		SAMPLE INF Filtration Field Lab to do	#
ALPHA Lab ID (Lab Use Only)	Sample ID	Col Date	ection Time	Sample s Matrix	Sampler Initials	NOC:	METALS:	PH: CT	PH: DRa	H: Dou	5/01/2			Preservation Lab to do	BOTTLES
04019 -01	INF	2/8/17		Gu	BD	V		2/4		F 3			+ -	Sample Comments	s S
-02	MID	1	1155 am	1	1		+-+-			1					5
[0-	EFF				V	$\overline{\mathbf{X}}$		-					1.0.11.1.0		3
			1148an	¥/	V	X		-		X	X				5
															T
									-422						1
											11			*	-
															+
											++-				-
													+		-
						-	-	+ +							
ontainer Type = Plastic	Preservative			0-11	-	./									
= Amber glass = Vial = Glass	A= None B= HCI C= HNO ₃			Container		V				p	P				
= Bacteria cup = Cube	$D = H_2 SO_4$ E = NaOH F = MeOH	Relinquished By:		Presen		+CL				HMO3	/				
e Other Encore BOD Bottle	G= NaHSO4 H = Na ₂ S ₂ O ₃ I= Ascorbic Àcid J = NH ₄ CI K= Zn Acetate O= Other	Blix	2/	Date/Tin 2/8/17 8/17 - 18	145 _{Am} 870	the	Received	ved By:	HAL Z		Date/Tim		oha's Terms e reverse si	bmitted are subject and Conditions de. rev. 12-Mar-2012)	to

ANALYTICAL REPORT

Lab Number:	L1707342
Client:	GZA GeoEnvironmental, Inc.
	249 Vanderbilt Ave
	Norwood, MA 02062
ATTN:	Bill Davis
Phone:	(781) 278-5769
Project Name:	HP WALTHAM
Project Number:	01.0015522.17
Report Date:	03/15/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:03151715:24

Project Name:	HP WALTHAM
Project Number:	01.0015522.17

 Lab Number:
 L1707342

 Report Date:
 03/15/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1707342-01	INF	WATER	WALTHAM, MA	03/09/17 10:10	03/09/17
L1707342-02	MID	WATER	WALTHAM, MA	03/09/17 09:55	03/09/17
L1707342-03	EFF	WATER	WALTHAM, MA	03/09/17 09:45	03/09/17

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1707342

 Report Date:
 03/15/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Maria Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 03/15/17

ORGANICS

VOLATILES

				Serial_N	0:03151715:24
Project Name:	HP WALTHAM			Lab Number:	L1707342
Project Number:	01.0015522.17			Report Date:	03/15/17
			SAMPLE RESULTS		
Lab ID:	L1707342-01	D		Date Collected:	03/09/17 10:10
Client ID:	INF			Date Received:	03/09/17
Sample Location:	WALTHAM, MA			Field Prep:	Not Specified
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	03/14/17 11:05				
Analyst:	PD				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	300		100
1,1-Dichloroethane	ND		ug/l	75		100
Chloroform	ND		ug/l	75		100
Carbon tetrachloride	ND		ug/l	50		100
1,2-Dichloropropane	ND		ug/l	180		100
Dibromochloromethane	ND		ug/l	50		100
1,1,2-Trichloroethane	ND		ug/l	75		100
Tetrachloroethene	ND		ug/l	50		100
Chlorobenzene	ND		ug/l	50		100
Trichlorofluoromethane	ND		ug/l	250		100
1,2-Dichloroethane	ND		ug/l	50		100
1,1,1-Trichloroethane	ND		ug/l	50		100
Bromodichloromethane	ND		ug/l	50		100
rans-1,3-Dichloropropene	ND		ug/l	50		100
cis-1,3-Dichloropropene	ND		ug/l	50		100
Bromoform	ND		ug/l	200		100
1,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Benzene	ND		ug/l	50		100
Toluene	ND		ug/l	75		100
Ethylbenzene	ND		ug/l	50		100
Chloromethane	ND		ug/l	250		100
Bromomethane	ND		ug/l	100		100
Vinyl chloride	ND		ug/l	100		100
Chloroethane	ND		ug/l	100		100
1,1-Dichloroethene	ND		ug/l	50		100
rans-1,2-Dichloroethene	ND		ug/l	75		100
Trichloroethene	6400		ug/l	50		100
1,2-Dichlorobenzene	ND		ug/l	250		100
1,3-Dichlorobenzene	ND		ug/l	250		100
1,4-Dichlorobenzene	ND		ug/l	250		100

					Ś	Serial_N	0:03151715:24
Project Name:	HP WALTHAM				Lab Nu	mber:	L1707342
Project Number:	01.0015522.17				Report	Date:	03/15/17
		SAMP	LE RESULTS	6			
Lab ID:	L1707342-01	D			Date Col	lected:	03/09/17 10:10
Client ID:	INF				Date Red	ceived:	03/09/17
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboro	ugh Lab					
Methyl tert butyl ether		ND		ug/l	100		100
p/m-Xylene		ND		ug/l	100		100
o-Xylene		ND		ug/l	100		100
cis-1,2-Dichloroethene		ND		ug/l	50		100
Dichlorodifluoromethane		ND		ug/l	500		100
Naphthalene		ND		ug/l	250		100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	104		70-130	

			Serial_N	0:03151715:24
Project Name:	HP WALTHAM		Lab Number:	L1707342
Project Number:	01.0015522.17		Report Date:	03/15/17
		SAMPLE RESULTS		
Lab ID:	L1707342-02		Date Collected:	03/09/17 09:55
Client ID:	MID		Date Received:	03/09/17
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	03/14/17 11:33			
Analyst:	PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
rans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	1.9		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					Serial_No:03151715:24		
Project Name:	HP WALTHAM				Lab Nu	mber:	L1707342
Project Number:	01.0015522.17				Report	Date:	03/15/17
		SAMP	LE RESULTS	5			
Lab ID:	L1707342-02				Date Co	llected:	03/09/17 09:55
Client ID:	MID				Date Re	ceived:	03/09/17
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	jh Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	104		70-130	

			Serial_N	o:03151715:24
Project Name:	HP WALTHAM		Lab Number:	L1707342
Project Number:	01.0015522.17		Report Date:	03/15/17
		SAMPLE RESULTS		
Lab ID:	L1707342-03		Date Collected:	03/09/17 09:45
Client ID:	EFF		Date Received:	03/09/17
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	03/14/17 12:00			
Analyst:	PD			

Volatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 3.0 1 1,1-Dichloroethane ND ug/l 0.75 1 Chloroform ND ug/l 0.75 1 Carbon terschloride ND ug/l 0.50 1 Carbon terschloride ND ug/l 0.50 1 Dioronochloromesthane ND ug/l 0.50 1 Tortachloroethane ND ug/l 0.50 1 Chiorobehane ND ug/l 0.50 1 Trichoroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 1,2-Dichloropropane ND u	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
IDicklorosthane ND ug1 0.75 - 1 Chloroform ND ug1 0.75 - 1 Carbon tetrachloride ND ug1 0.50 1 1.2-Dichloropropane ND ug1 0.50 1 Dibromochloromethane ND ug1 0.50 1 Li,2-Trichlorosethane ND ug1 0.50 1 Chlorosethane ND ug1 0.50 1 1.2-Dichlorosethane ND ug1 0.50 1 1.2-Dichlorosethane ND ug1 0.50 1 Bromodichloromethane ND ug1 0.50 1 I.1.2.2-Tertachlorosethane ND ug1 0.50 1	Volatile Organics by GC/MS - Westh	oorough Lab					
ND Ug/l 0.75 1 Carbon tetrachloride ND Ug/l 0.50 1 Carbon tetrachloride ND Ug/l 1.8 1 Dibromochloromethane ND Ug/l 0.50 1 1,1,2-Trichloroethane ND Ug/l 0.50 1 Tetrachloroethane ND Ug/l 0.50 1 Chorobernane ND Ug/l 0.50 1 Trichloroethane ND Ug/l 0.50 1 1/1,1-Trichloroethane ND Ug/l 0.50 1 1/1,1-Trichloroethane ND Ug/l 0.50 1 1/1,1-Trichloroethane ND Ug/l 0.50 1 1/1,2-Tetrachloroethane ND Ug/l 0.50 1 1/1,2-Tetrachloroethane ND Ug/l 0.50 1	Methylene chloride	ND		ug/l	3.0		1
Carbon tetrachloride ND ug/l 0.50 1 1.2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1.1.2-Trichloroethane ND ug/l 0.50 1 Tetrachlorethene ND ug/l 0.50 1 Chloroberzene ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1.2-Dichloroethane ND ug/l 0.50 1 1.1-Dichloropropene ND ug/l 0.50 1 1.1.2-Dichloroptopene ND ug/l 0.50 1 <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.75</td> <td></td> <td>1</td>	1,1-Dichloroethane	ND		ug/l	0.75		1
1.2-Dichloropropane ND ug/l 1.8 1 Dibromochloromethane ND ug/l 0.50 1 1.1.2-Trichloroethane ND ug/l 0.75 1 Tetrachloroethane ND ug/l 0.50 1 Totichloroethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1.2-Dichloroethane ND ug/l 0.50 1 1.1.1-Trichloroethane ND ug/l 0.50 1 1.2-Dichloroethane ND ug/l 0.50 1 1.1.1-Trichloroethane ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 1.1.2.2-Tetrachloroethane ND ug/l 0.50 1 Bromofichloropropene ND ug/l 0.50 1 1.1.2.2-Tetrachloroethane ND ug/l 0.50	Chloroform	ND		ug/l	0.75		1
ND ug/l 0.50 - 1 1.1,2-Trichloroethane ND ug/l 0.50 - 1 Tetrachloroethane ND ug/l 0.50 - 1 Tetrachloroethane ND ug/l 0.50 - 1 Chlorobenzene ND ug/l 0.50 - 1 Trichloroethane ND ug/l 0.50 - 1 1,1-Trichloroethane ND ug/l 0.50 - 1 1,1-Trichloroethane ND ug/l 0.50 - 1 Bromodichloromethane ND ug/l 0.50 - 1 Isotichloropropene ND ug/l 0.50 - 1 Bromodirm ND ug/l 0.50 - 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 - 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 - 1 1,1,2,2-Tetrachl	Carbon tetrachloride	ND		ug/l	0.50		1
I.1.2.Trichloroethane ND ug/l 0.75 - 1 Tetrachloroethane ND ug/l 0.50 - 1 Chlorobenzene ND ug/l 0.50 - 1 Trichlorofluoromethane ND ug/l 0.50 - 1 1,2-Dichloroethane ND ug/l 0.50 - 1 1,1.1-Trichloroethane ND ug/l 0.50 - 1 Bromodichloromethane ND ug/l 0.50 - 1 Strichloroethane ND ug/l 0.50 - 1 Bromodichloromethane ND ug/l 0.50 - 1 Bromodichloropropene ND ug/l 0.50 - 1 Strichloroethane ND ug/l 0.50 - 1 1,1,2-2-Tetrachloroethane ND ug/l 0.50 - 1 1,1,2-2-Tetrachloroethane ND ug/l 0.50 -	1,2-Dichloropropane	ND		ug/l	1.8		1
Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1.2-Dichloroethane ND ug/l 0.50 1 1.1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 Bromodicm ND ug/l 0.50 1 1.1,2-Zetrachloroethane ND ug/l 0.50 1 Bromodicm ND ug/l 0.50 1 1 1.1,2-Zetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Chloromethane ND ug/l 1.0 1	Dibromochloromethane	ND		ug/l	0.50		1
ND ug/l 0.50 - 1 Trichlorofluoromethane ND ug/l 2.5 - 1 1.2-Dichloroethane ND ug/l 0.50 - 1 1.1.1-Trichloroethane ND ug/l 0.50 - 1 Bromodichloromethane ND ug/l 0.50 - 1 Bromodichloropropene ND ug/l 0.50 - 1 Bromoform ND ug/l 0.50 - 1 1.1.2-Tetrachloroethane ND ug/l 0.50 - 1 Bromoform ND ug/l 0.50 - 1 1 1.1.2-Tetrachloroethane ND ug/l 0.50 - 1 1 Benzene ND ug/l 0.50 - 1 1 Chloroethane ND ug/l 0.50 - 1 1 Bromomethane ND ug/l 0.50 - 1	1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tichlorofluoromethane ND ug/l 2.5 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1 1,1,2,2-Tetrachloroptopene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 1 Toluene ND ug/l 0.50 1 1 1 Chlor	Tetrachloroethene	ND		ug/l	0.50		1
L2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodicm ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 1 Toluene ND ug/l 0.50 1 1 Ethylbenzene ND ug/l 0.50 1 1 Chloromethane ND ug/l 1.0 </td <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td></td> <td>1</td>	Chlorobenzene	ND		ug/l	0.50		1
Instruction ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 1.0 1 Vinyl choide ND ug/l 0.50 1	Trichlorofluoromethane	ND		ug/l	2.5		1
Bromodichloromethane ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloroethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 0.50 1	1,2-Dichloroethane	ND		ug/l	0.50		1
ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 1.0 1 Chloroethene ND ug/l 1.0 1 Lipchloroethene ND ug/l 0.50 1 Lipchloroethene ND ug/l	1,1,1-Trichloroethane	ND		ug/l	0.50		1
ND ug/l 0.50 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromofethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloroethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene 0.62 ug/l </td <td>Bromodichloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td></td> <td>1</td>	Bromodichloromethane	ND		ug/l	0.50		1
Brownorm ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromoethane ND ug/l 0.50 1 Chloromethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethene ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene 0.62	trans-1,3-Dichloropropene	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 2.5 1 Vinyl chloride ND ug/l 1.0 1 Chloromethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene 0.62 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1	cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 2.5 1 Vinyl chloride ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.75 1 1,2-Dichloroethene 0.62 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1	Bromoform	ND		ug/l	2.0		1
Toluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloromethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.75 1 Trichloroethene 0.62 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloromethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.75 1 1,2-Dichloroethene 0.62 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1	Benzene	ND		ug/l	0.50		1
ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.75 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene 0.62 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1	Toluene	ND		ug/l	0.75		1
Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.75 1 Trichloroethene 0.62 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1	Ethylbenzene	ND		ug/l	0.50		1
Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.75 1 Trichloroethene 0.62 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1	Chloromethane	ND		ug/l	2.5		1
ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.75 1 Trichloroethene 0.62 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1	Bromomethane	ND		ug/l	1.0		1
1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.75 1 Trichloroethene 0.62 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1	Vinyl chloride	ND		ug/l	1.0		1
Image: Normal state ND ug/l 0.75 1 Trichloroethene 0.62 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1	Chloroethane	ND		ug/l	1.0		1
Trichloroethene 0.62 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1	1,1-Dichloroethene	ND		ug/l	0.50		1
ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1	trans-1,2-Dichloroethene	ND		ug/l	0.75		1
1,3-Dichlorobenzene ND ug/l 2.5 1	Trichloroethene	0.62		ug/l	0.50		1
	1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene ND ug/l 2.5 1	1,3-Dichlorobenzene	ND		ug/l	2.5		1
	1,4-Dichlorobenzene	ND		ug/l	2.5		1

					Serial_No:03151715:24		
Project Name:	HP WALTHAM				Lab Nu	mber:	L1707342
Project Number:	01.0015522.17				Report	Date:	03/15/17
		SAMP		6			
Lab ID:	L1707342-03				Date Col	llected:	03/09/17 09:45
Client ID:	EFF				Date Re	ceived:	03/09/17
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	h Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Acceptan Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-13	30
Toluene-d8	97	70-13	30
4-Bromofluorobenzene	105	70-13	30
Dibromofluoromethane	106	70-13	30

 Project Name:
 HP WALTHAM
 Lab Number:
 L1707342

 Project Number:
 01.0015522.17
 Report Date:
 03/15/17

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	03/14/17 08:18
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lat	o for sample(s): 01-0	3 Batch:	WG985397-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	-
Chloroform	ND	ug/l	0.75	-
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1707342

 Project Number:
 01.0015522.17
 Report Date:
 03/15/17

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	03/14/17 08:18
Analyst:	PD

Parameter	Result	Qualifier Units	RL	MDL
/olatile Organics by GC/MS - West	oorough Lab	o for sample(s): 01-03	Batch:	WG985397-5
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dichlorodifluoromethane	ND	ug/l	5.0	
Naphthalene	ND	ug/l	2.5	

		, A	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	97		70-130
Toluene-d8	96		70-130
4-Bromofluorobenzene	105		70-130
Dibromofluoromethane	101		70-130

Project Name: HP WALTHAM Project Number: 01.0015522.17 Lab Number: L1707342 Report Date: 03/15/17

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborou	gh Lab Associated sample(s	s): 01-03 Batch:	WG985397-3 WG985397-4	1	
Methylene chloride	110	100	70-130	10	20
1,1-Dichloroethane	100	100	70-130	0	20
Chloroform	100	100	70-130	0	20
Carbon tetrachloride	98	98	63-132	0	20
1,2-Dichloropropane	100	100	70-130	0	20
Dibromochloromethane	91	94	63-130	3	20
1,1,2-Trichloroethane	96	96	70-130	0	20
Tetrachloroethene	95	96	70-130	1	20
Chlorobenzene	98	98	75-130	0	25
Trichlorofluoromethane	97	96	62-150	1	20
1,2-Dichloroethane	98	100	70-130	2	20
1,1,1-Trichloroethane	100	100	67-130	0	20
Bromodichloromethane	100	100	67-130	0	20
trans-1,3-Dichloropropene	92	93	70-130	1	20
cis-1,3-Dichloropropene	100	100	70-130	0	20
Bromoform	85	90	54-136	6	20
1,1,2,2-Tetrachloroethane	91	95	67-130	4	20
Benzene	110	110	70-130	0	25
Toluene	99	99	70-130	0	25
Ethylbenzene	100	100	70-130	0	20
Chloromethane	110	110	64-130	0	20

Project Name: HP WALTHAM **Project Number:** 01.0015522.17 Lab Number: L1707342 Report Date: 03/15/17

Parameter	LCS %Recovery	Qual		-CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03	Batch:	WG985397-3	WG985397-4			
Bromomethane	110			110		39-139	0		20
Vinyl chloride	100			100		55-140	0		20
Chloroethane	100			100		55-138	0		20
1,1-Dichloroethene	100			100		61-145	0		25
trans-1,2-Dichloroethene	110			110		70-130	0		20
Trichloroethene	100			110		70-130	10		25
1,2-Dichlorobenzene	93			98		70-130	5		20
1,3-Dichlorobenzene	96			100		70-130	4		20
1,4-Dichlorobenzene	94			98		70-130	4		20
Methyl tert butyl ether	97			100		63-130	3		20
p/m-Xylene	105			105		70-130	0		20
o-Xylene	105			105		70-130	0		20
cis-1,2-Dichloroethene	110			100		70-130	10		20
Dichlorodifluoromethane	96			95		36-147	1		20
Naphthalene	91			96		70-130	5		20

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1707342

 Report Date:
 03/15/17

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG985397-3 WG985397-4

	LCS		LCSD	Acceptance		
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	94		93		70-130	
Toluene-d8	98		96		70-130	
4-Bromofluorobenzene	98		100		70-130	
Dibromofluoromethane	101		98		70-130	

METALS

Serial_No:03151715:24

Project Name:	HP W	ALTHAM					Lab Nu	mber:	L17073	42	
Project Number:	01.00	15522.17					Report	Date:	03/15/1	7	
-				SAMPL	E RES	ULTS	-				
Lab ID:	L1707	/342-01			•		Date Co	llected:	03/09/1	7 10:10	
Client ID:	INF						Date Re	ceived:	03/09/1	7	
Sample Location:	WALT	HAM, MA					Field Pr	ep:	Not Spe	ecified	
Matrix:	Water							•			
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.01674		mg/l	0.00100		1	03/13/17 11:10) 03/14/17 08:32	EPA 3005A	1,6020A	AM
Iron, Total	0.538		mg/l	0.050		1	03/13/17 11:10	03/13/17 21:27	EPA 3005A	19,200.7	AB
Lead, Total	0.00160		mg/l	0.00100		1	03/13/17 11:10	03/14/17 08:32	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.00500		1	03/13/17 11:10	03/14/17 08:32	EPA 3005A	1,6020A	AM

1

03/13/17 11:10 03/14/17 08:32 EPA 3005A

1,6020A

AM

Zinc, Total

0.04314

mg/l

0.01000

Serial_No:03151715:24

03/13/17 11:10 03/14/17 08:42 EPA 3005A

Project Name: Project Number:		ALTHAM 15522.17					Lab Nu Report	_	L17073		
-				SAMPL	E RES	ULTS	•				
Lab ID:	L1707	342-03					Date Co	ollected:	03/09/1	7 09:45	
Client ID:	EFF						Date Re	eceived:	03/09/1	7	
Sample Location: Matrix:	WALT Water	HAM, MA					Field Pr	ep:	Not Spe	ecified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Manst	field Lab										
Copper, Total	ND		mg/l	0.00100		1	03/13/17 11:10	0 03/14/17 08:42	EPA 3005A	1,6020A	AM
Iron, Total	ND		mg/l	0.050		1	03/13/17 11:10	0 03/13/17 22:28	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.00100		1	03/13/17 11:10	0 03/14/17 08:42	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.00500				0 03/14/17 08:42		1,6020A	AM

1

0.01000

mg/l

1,6020A

AM

Zinc, Total

0.02189

 Lab Number:
 L1707342

 Report Date:
 03/15/17

Project Name:HP WALTHAMProject Number:01.0015522.17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	01,03 E	Batch: WO	G98505	9-1				
Copper, Total	ND	mg/l	0.00100		1	03/13/17 11:10	03/14/17 08:11	1,6020A	AM
Lead, Total	ND	mg/l	0.00100		1	03/13/17 11:10	03/14/17 08:11	1,6020A	AM
Selenium, Total	ND	mg/l	0.00500		1	03/13/17 11:10	03/14/17 08:11	1,6020A	AM
Zinc, Total	ND	mg/l	0.01000		1	03/13/17 11:10	03/14/17 08:11	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mans	field Lab for sample(s):	01,03 E	Batch: Wo	G98506	3-1				
Iron, Total	ND	mg/l	0.050		1	03/13/17 11:10	03/13/17 20:57	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1707342 Report Date: 03/15/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample	(s): 01,03 Batc	:h: WG98	5059-2					
Copper, Total	103		-		80-120	-		
Lead, Total	100		-		80-120	-		
Selenium, Total	108		-		80-120	-		
Zinc, Total	101		-		80-120	-		
otal Metals - Mansfield Lab Associated sample	(s): 01,03 Batc	:h: WG98	5063-2					
Iron, Total	104		-		85-115	-		

Matrix Spike Analysis

Project Name:	HP WALTHAM	Batch Quality Control	Lab Number:	L1707342
Project Number:	01.0015522.17		Report Date:	03/15/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Total Metals - Mansfield	Lab Associated sam	ple(s): 01,03	QC Bat	ch ID: WG985	059-3	QC Samp	ole: L1707342-01	Client ID: INF		
Copper, Total	0.01674	0.25	0.2748	103		-	-	75-125	-	20
Lead, Total	0.00160	0.51	0.5289	103		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.130	108		-	-	75-125	-	20
Zinc, Total	0.04314	0.5	0.5478	101		-	-	75-125	-	20
Total Metals - Mansfield	Lab Associated sam	ple(s): 01,03	QC Bat	ch ID: WG985	063-3	QC Samp	ole: L1707342-01	Client ID: INF		
Iron, Total	0.538	1	1.53	99		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1707342

 Report Date:
 03/15/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01,03	3 QC Batch ID: WG	985059-4 QC Sample: I	L1707342-01	Client ID:	INF	
Copper, Total	0.01674	0.01686	mg/l	1		20
Lead, Total	0.00160	0.00157	mg/l	2		20
Selenium, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.04314	0.04026	mg/l	7		20
otal Metals - Mansfield Lab Associated sample(s): 01,03	3 QC Batch ID: WG	985063-4 QC Sample: I	L1707342-01	Client ID:	INF	
Iron, Total	0.538	0.525	mg/l	2		20

INORGANICS & MISCELLANEOUS

							Serial_No:03	151715:24	
Project Name:	HP WALTHAM					Lab N	lumber:	L1707342	
Project Number:	01.0015522.17					Repo	rt Date:	03/15/17	
			SAMPLE	RESUL	rs				
Lab ID: Client ID: Sample Location: Matrix:	L1707342-01 INF WALTHAM, MA Water						Received:	03/09/17 10:1 03/09/17 Not Specified	-
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	stborough Lab								
loride	540	mg/l	10		10	-	03/10/17 18:48	3 1,9251	MR

							Serial_No:03	151715:24	
Project Name:	HP WALTHAM					Lab N	lumber:	L1707342	
Project Number:	01.0015522.17					Repo	rt Date:	03/15/17	
			SAMPLE	RESUL	TS				
Lab ID: Client ID: Sample Location: Matrix:	L1707342-03 EFF WALTHAM, MA Water						Received:	03/09/17 09:/ 03/09/17 Not Specified	
Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	stborough Lab								
loride	540	mg/l	10		10	-	03/10/17 18:50	0 1,9251	MR

 Lab Number:
 L1707342

 Report Date:
 03/15/17

Project Name:HP WALTHAMProject Number:01.0015522.17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab for sam	ple(s): 01	,03 Ba	tch: WC	G984654-1				
Chloride	ND	mg/l	1.0		1	-	03/10/17 17:58	1,9251	MR

Lab Number: L1707342 Report Date: 03/15/17

Project Name: HP WALTHAM Project Number: 01.0015522.17

LCS LCSD %Recovery Limits %Recovery %Recovery RPD **RPD Limits** Parameter Qual Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01,03 Batch: WG984654-2 Chloride 97 90-110 --

		Matrix Spike Analysis Batch Quality Control	
Project Name:	HP WALTHAM	Lab Number:	L1707342
Project Number:	01.0015522.17	Report Date:	03/15/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery(Recovery Qual Limits	RPD	RPD Qual Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01,03	QC Batch II	D: WG98	34654-4	QC Sample: L17	707241-01 Clier	nt ID: M	IS Sample
Chloride	380	20	390	50	Q	-	-	58-140	-	7

Project Name:	HP WALTHAM	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L1707342
Project Number:	01.0015522.17		Report Date:	03/15/17

- -

Parameter	Native Sam	ple Duplicate Samp	ole Units	RPD	Qual RPD) Limits
General Chemistry - Westborough Lab A	ssociated sample(s): 01,03	QC Batch ID: WG984654-3	QC Sample: L1	707241-01	Client ID: DUP S	ample
Chloride	380	380	mg/l	0		7

Serial_No:03151715:24

Lab Number: L1707342 Report Date: 03/15/17

Project Name:HP WALTHAMProject Number:01.0015522.17

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1707342-01A	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1707342-01B	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1707342-01C	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1707342-01D	Plastic 250ml HNO3 preserved	A	<2	3.7	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1707342-01E	Plastic 60ml unpreserved	А	7	3.7	Y	Absent	CL-9251(28)
L1707342-02A	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1707342-02B	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1707342-02C	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1707342-03A	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1707342-03B	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1707342-03C	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1707342-03D	Plastic 250ml HNO3 preserved	A	<2	3.7	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1707342-03E	Plastic 60ml unpreserved	А	7	3.7	Y	Absent	CL-9251(28)

L1707342

03/15/17

Lab Number:

Report Date:

Project Name: HP WALTHAM

Project Number: 01.0015522.17

GLOSSARY

Acronyms

EDL	 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	 Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	A - N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	 Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315

- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the rep

Report Format: Data Usability Report

Serial_No:03151715:24

Project Name: HP WALTHAM Project Number: 01.0015522.17

Lab Number: L1707342

Report Date: 03/15/17

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1707342

 Report Date:
 03/15/17

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 300: DW: Bromide
EPA 6860: NPW and SCM: Perchlorate
EPA 9010: NPW and SCM: Amenable Cyanide Distillation
EPA 9012B: NPW: Total Cyanide
EPA 9050A: NPW: Specific Conductance
SM3500: NPW: Ferrous Iron
SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.
SM5310C: DW: Dissolved Organic Carbon

SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.
EPA 624: Volatile Halocarbons & Aromatics,
EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs
EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.
Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:03151715:24

APHA	CHAIN OI	F CUST	ODY P	AGE	OF	Date	e Rec'd i	in Lab:	3/0	1/17			ALPI	IA Job	#: /	170 734	3
8 Walkup Drive	320 Forbes Blvd	Project Info	mation			Re	port Inf	ormati	on - Da	ta Deliv	verab	les	1	ng Infor			
Westboro, MA 0 Tel: 508-898-92	1581 Mansfield, MA 02048	Project Name:	HP W.	althe	m		ADEx			-			□ Sam	ie as Clie	ent info	PO #:	
Client Information	n	Project Location	" Walt	ham	Ma		and the second se	And a state of the				ject Ir	_		quireme		
Client: GZA		Project #: (1,001552	2,17					CP Analy Spike Re			SDG?			OCT RC CP Inorga	P Analytical Metho inics)	ods
Address: 249	Vanderbilt Ave,	Project Manage	r: J. Ce	alber	t		es 🗆 No es 🗆 No			s (Info R	equire	d for N	letals &	EPH with	Targets)		
Norm	and Mr. 02062	ALPHA Quote							Program					Criteria			
Phone: 781-9		Turn-Aroun	d Time				01.	F.	15	2/2/	1	/	1	11		/ /	
	roject Information:	DStandard Date Due:	RUSH (only	confirmed if pre-ap	proved!)	ANALYC.	D ABN D 524.2 8	METALS: DMCP 13 DMCD	EPH: LRanges & Tarris LRCR48 LRCR48 LPD2	D PCB Darie a Targets D Ranges Only	Quant Only	CL / CL PL Servint	Verile Sterses			SAMPLE INFO Filtration Field Lab to do Preservation Lab to do	L #
ALPHA Lab ID (Lab Use Only)	Sample ID	Da	Collection e Time	Sample Matrix	Sampler Initials	, KOC	SVOC.	METAL	EPH: D	D PCB	I Hai	CLA	7/	//	s	ample Comments	
07342-01	INF	3/9/	17 [0:10mm	Gu	BD	X					4	X					5
02	MID		9:55	Gu	BD	X									-		
G	EFP	V	1 9:45au	-	130	X					X	X					5
				8													
																	-
Container Type P≕ Plastic A= Amber glass V= Vial G= Glass	Preservative A= None B= HCI C= HNO ₃ D= H SO				iner Type servative	V Hec					P	1					
B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle age 36 of 36	$ \begin{array}{c} D = H_2 SO_4 \\ E = NaOH \\ F = MeOH \\ G = NaHSO_4 \\ H = Na_2 S_2 O_3 \\ I = Ascorbic \ \dot{Acid} \\ J = NH_4 CI \\ K = Z n \ Acetate \\ O = Other \end{array} $		3y:	3/9/	/Time (7 ((?) 1900		A F		Ins	tant t	-3/	Date/ 9//7	Time /146 1710	Alpha Usee r	's Terms everse sid	bmitted are subject and Conditions de. ev. 12-Mar-2012)	ct to

ANALYTICAL REPORT

Lab Number:	L1710935
Client:	GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062
ATTN: Phone:	Bill Davis (781) 278-5769
Project Name:	HP WALTHAM
Project Number:	01.0015522.17
Report Date:	04/14/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:04141711:40

Project Name:	HP WALTHAM
Project Number:	01.0015522.17

 Lab Number:
 L1710935

 Report Date:
 04/14/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1710935-01	INF	WATER	WALTHAM, MA	04/07/17 10:15	04/07/17
L1710935-02	MID	WATER	WALTHAM, MA	04/07/17 10:05	04/07/17
L1710935-03	EFF	WATER	WALTHAM, MA	04/07/17 09:50	04/07/17

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1710935

 Report Date:
 04/14/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Compos Melissa Cripps

Authorized Signature:

Title: Technical Director/Representative

Date: 04/14/17

ORGANICS

VOLATILES

				Serial_N	o:04141711:40
Project Name:	HP WALTHAM			Lab Number:	L1710935
Project Number:	01.0015522.17			Report Date:	04/14/17
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1710935-01 INF WALTHAM, MA Water 1,8260C 04/13/17 21:09 PD	D		Date Collected: Date Received: Field Prep:	04/07/17 10:15 04/07/17 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	300		100
1,1-Dichloroethane	ND		ug/l	75		100
Chloroform	ND		ug/l	75		100
Carbon tetrachloride	ND		ug/l	50		100
1,2-Dichloropropane	ND		ug/l	180		100
Dibromochloromethane	ND		ug/l	50		100
1,1,2-Trichloroethane	ND		ug/l	75		100
Tetrachloroethene	55		ug/l	50		100
Chlorobenzene	ND		ug/l	50		100
Trichlorofluoromethane	ND		ug/l	250		100
1,2-Dichloroethane	ND		ug/l	50		100
1,1,1-Trichloroethane	ND		ug/l	50		100
Bromodichloromethane	ND		ug/l	50		100
trans-1,3-Dichloropropene	ND		ug/l	50		100
cis-1,3-Dichloropropene	ND		ug/l	50		100
Bromoform	ND		ug/l	200		100
1,1,2,2-Tetrachloroethane	ND		ug/l	50		100
Benzene	ND		ug/l	50		100
Toluene	ND		ug/l	75		100
Ethylbenzene	ND		ug/l	50		100
Chloromethane	ND		ug/l	250		100
Bromomethane	ND		ug/l	100		100
Vinyl chloride	ND		ug/l	100		100
Chloroethane	ND		ug/l	100		100
1,1-Dichloroethene	ND		ug/l	50		100
trans-1,2-Dichloroethene	ND		ug/l	75		100
Trichloroethene	7300		ug/l	50		100
1,2-Dichlorobenzene	ND		ug/l	250		100
1,3-Dichlorobenzene	ND		ug/l	250		100
1,4-Dichlorobenzene	ND		ug/l	250		100

					;	Serial_N	0:04141711:40
Project Name:	HP WALTHAM				Lab Nu	mber:	L1710935
Project Number:	01.0015522.17				Report	Date:	04/14/17
		SAMP	LE RESULTS	6			
Lab ID:	L1710935-01	D			Date Col	lected:	04/07/17 10:15
Client ID:	INF				Date Red	ceived:	04/07/17
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboro	ugh Lab					
Methyl tert butyl ether		ND		ug/l	100		100
p/m-Xylene		ND		ug/l	100		100
o-Xylene		ND		ug/l	100		100
cis-1,2-Dichloroethene		ND		ug/l	50		100
Dichlorodifluoromethane		ND		ug/l	500		100
Naphthalene		ND		ug/l	250		100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	97		70-130	

			Serial_N	o:04141711:40
Project Name:	HP WALTHAM		Lab Number:	L1710935
Project Number:	01.0015522.17		Report Date:	04/14/17
		SAMPLE RESULTS		
Lab ID:	L1710935-02		Date Collected:	04/07/17 10:05
Client ID:	MID		Date Received:	04/07/17
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	04/13/17 21:45			
Analyst:	PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
rans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
rans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	3.6		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					Serial_No:04141711:40		
Project Name:	HP WALTHAM				Lab Nu	mber:	L1710935
Project Number:	01.0015522.17				Report	Date:	04/14/17
		SAMP		6			
Lab ID:	L1710935-02				Date Co	llected:	04/07/17 10:05
Client ID:	MID				Date Re	ceived:	04/07/17
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westboroug	jh Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	99		70-130	

			Serial_N	o:04141711:40
Project Name:	HP WALTHAM		Lab Number:	L1710935
Project Number:	01.0015522.17		Report Date:	04/14/17
		SAMPLE RESULTS		
Lab ID:	L1710935-03		Date Collected:	04/07/17 09:50
Client ID:	EFF		Date Received:	04/07/17
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	04/13/17 22:20			
Analyst:	PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	1.2		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					Serial_No:04141711:40		
Project Name:	HP WALTHAM				Lab Nu	mber:	L1710935
Project Number:	01.0015522.17				Report	Date:	04/14/17
		SAMP	LE RESULTS	6			
Lab ID:	L1710935-03				Date Co	llected:	04/07/17 09:50
Client ID:	EFF				Date Re	ceived:	04/07/17
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westboroug	jh Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	99		70-130	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1710935

 Project Number:
 01.0015522.17
 Report Date:
 04/14/17

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	04/13/17 20:34
Analyst:	NL

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lal	o for sample(s): 01-03	Batch:	WG994299-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1710935

 Project Number:
 01.0015522.17
 Report Date:
 04/14/17

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	04/13/17 20:34
Analyst:	NL

arameter	Result Qu	ualifier Units	RL	MDL	
olatile Organics by GC/MS -	Westborough Lab for	r sample(s): 01-03	3 Batch:	WG994299-5	
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dichlorodifluoromethane	ND	ug/l	5.0		
Naphthalene	ND	ug/l	2.5		

		A	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	106		70-130
Toluene-d8	100		70-130
4-Bromofluorobenzene	100		70-130
Dibromofluoromethane	99		70-130

Project Name: HP WALTHAM Project Number: 01.0015522.17 Lab Number: L1710935 Report Date: 04/14/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-03 Batch:	WG994299-3	WG994299-4			
Methylene chloride	100		100		70-130	0		20
1,1-Dichloroethane	110		110		70-130	0		20
Chloroform	110		100		70-130	10		20
Carbon tetrachloride	86		88		63-132	2		20
1,2-Dichloropropane	100		100		70-130	0		20
Dibromochloromethane	85		90		63-130	6		20
1,1,2-Trichloroethane	100		100		70-130	0		20
Tetrachloroethene	110		110		70-130	0		20
Chlorobenzene	110		110		75-130	0		25
Trichlorofluoromethane	100		100		62-150	0		20
1,2-Dichloroethane	110		110		70-130	0		20
1,1,1-Trichloroethane	97		100		67-130	3		20
Bromodichloromethane	100		100		67-130	0		20
trans-1,3-Dichloropropene	79		83		70-130	5		20
cis-1,3-Dichloropropene	90		94		70-130	4		20
Bromoform	75		78		54-136	4		20
1,1,2,2-Tetrachloroethane	100		100		67-130	0		20
Benzene	110		110		70-130	0		25
Toluene	110		110		70-130	0		25
Ethylbenzene	110		110		70-130	0		20
Chloromethane	93		88		64-130	6		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.17 Lab Number: L1710935 Report Date: 04/14/17

Parameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	ab Associated	sample(s):	01-03	Batch:	WG994299-3	WG994299-4			
Bromomethane	61			61		39-139	0		20
Vinyl chloride	110			110		55-140	0		20
Chloroethane	110			110		55-138	0		20
1,1-Dichloroethene	100			99		61-145	1		25
trans-1,2-Dichloroethene	100			100		70-130	0		20
Trichloroethene	110			110		70-130	0		25
1,2-Dichlorobenzene	100			110		70-130	10		20
1,3-Dichlorobenzene	100			110		70-130	10		20
1,4-Dichlorobenzene	100			110		70-130	10		20
Methyl tert butyl ether	100			110		63-130	10		20
p/m-Xylene	115			115		70-130	0		20
o-Xylene	115			115		70-130	0		20
cis-1,2-Dichloroethene	110			110		70-130	0		20
Dichlorodifluoromethane	100			100		36-147	0		20
Naphthalene	99			100		70-130	1		20

Project Name: HP WALTHAM **Project Number:** 01.0015522.17 Lab Number: L1710935

Report Date: 04/14/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch:	WG994299-3	WG994299-4				

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	102		102		70-130	
Toluene-d8	101		100		70-130	
4-Bromofluorobenzene	98		101		70-130	
Dibromofluoromethane	99		99		70-130	

METALS

Serial_No:04141711:40

Project Name: Project Number:		ALTHAM 15522.17					Lab Nu Report		L171093 04/14/17		
Lab ID: Client ID: Sample Location: Matrix:	INF	935-01 HAM, MA		SAMPL	E RES	ULTS	Date Co Date Re Field Pr	ceived:	04/07/1 04/07/1 Not Spe	7	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.00939		mg/l	0.00100		1	04/11/17 11:04	04/13/17 13:28	EPA 3005A	1,6020A	BV
Iron, Total	0.494		mg/l	0.050		1	04/11/17 11:04	04/13/17 02:21	EPA 3005A	19,200.7	AM
Lead, Total	ND		mg/l	0.00100		1	04/11/17 11:04	04/13/17 13:28	EPA 3005A	1,6020A	BV
Selenium, Total	ND		mg/l	0.00500		1	04/11/17 11:04	04/13/17 13:28	EPA 3005A	1,6020A	BV

Serial_No:04141711:40

04/11/17 11:04 04/13/17 13:31 EPA 3005A

Project Name: Project Number:		ALTHAM 15522.17					Lab Nu Report		L17109 04/14/1		
				SAMPL	E RES	ULTS					
Lab ID:	L1710	935-03					Date Co	ollected:	04/07/1	7 09:50	
Client ID:	EFF						Date Re	eceived:	04/07/1	7	
Sample Location: Matrix:	WALT Water	HAM, MA					Field Pr	ep:	Not Spe	cified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.00227		mg/l	0.00100		1	04/11/17 11:04	4 04/13/17 13:31	EPA 3005A	1,6020A	BV
Iron, Total	ND		mg/l	0.050		1	04/11/17 11:04	4 04/13/17 02:25	EPA 3005A	19,200.7	AM
Lead, Total	ND		mg/l	0.00100		1	04/11/17 11:04	4 04/13/17 13:31	EPA 3005A	1,6020A	BV
Selenium, Total	ND		mg/l	0.00500		1	04/11/17 11:0	4 04/13/17 13:31	EPA 3005A	1,6020A	BV

1

0.01000

--

mg/l

1,6020A

ΒV

Zinc, Total

ND

 Lab Number:
 L1710935

 Report Date:
 04/14/17

Project Name:HP WALTHAMProject Number:01.0015522.17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	ield Lab for sample(s):	01,03 E	Batch: WO	G99302	5-1				
Copper, Total	ND	mg/l	0.00100		1	04/11/17 11:04	04/13/17 11:22	2 1,6020A	BV
Lead, Total	ND	mg/l	0.00050		1	04/11/17 11:04	04/13/17 11:22	2 1,6020A	BV
Selenium, Total	ND	mg/l	0.00500		1	04/11/17 11:04	04/13/17 11:22	2 1,6020A	BV
Zinc, Total	ND	mg/l	0.01000		1	04/11/17 11:04	04/13/17 11:22	2 1,6020A	BV

Prep Information

Digestion Method: EPA 3005A

Total Metals - Mansfield Lab for sample(s): 01,03 Batch: WG993028-1		
Iron, Total ND mg/l 0.050 1 04/11/17 11:04 04/	/13/17 01:11 19,200.7	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: HP WALTHAM **Project Number:** 01.0015522.17 Lab Number: L1710935 Report Date: 04/14/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sampl	e(s): 01,03 Bate	ch: WG993	3025-2					
Copper, Total	96		-		80-120	-		
Lead, Total	94		-		80-120	-		
Selenium, Total	103		-		80-120	-		
Zinc, Total	98		-		80-120	-		
Total Metals - Mansfield Lab Associated sampl	e(s): 01,03 Bate	ch: WG993	3028-2					
Iron, Total	104		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name:	HP WALTHAM	Dation Quality of
Project Number:	01.0015522.17	

 Lab Number:
 L1710935

 Report Date:
 04/14/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield La	b Associated san	nple(s): 01,03	QC Bat	ch ID: WG993	025-3	QC Samp	le: L1710924-0'	Client ID: MS	Sample	
Copper, Total	ND	0.25	0.2334	93		-	-	75-125	-	20
Lead, Total	0.00098	0.51	0.4276	84		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.118	98		-	-	75-125	-	20
Zinc, Total	ND	0.5	0.4939	99		-	-	75-125	-	20
Total Metals - Mansfield La	b Associated san	nple(s): 01,03	QC Bat	ch ID: WG993	028-3	QC Samp	le: L1710924-0 ²	Client ID: MS	Sample	
Iron, Total	18.0	1	18.8	80		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1710935

 Report Date:
 04/14/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Fotal Metals - Mansfield Lab Associated sample(s): 01,03	3 QC Batch ID: W	G993025-4 QC Sample:	L1710924-01	Client ID:	DUP Sample	9
Copper, Total	ND	ND	mg/l	NC		20
Lead, Total	0.00098	0.00098	mg/l	0		20
Selenium, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01,03	B QC Batch ID: Wo	G993028-4 QC Sample:	L1710924-01	Client ID:	DUP Sample	9
Iron, Total	18.0	18.4	mg/l	2		20

INORGANICS & MISCELLANEOUS

							Serial_No:04	141711:40	
Project Name:	HP WALTHAM					Lab N	lumber:	L1710935	
Project Number:	01.0015522.17				Repo	Report Date:		04/14/17	
			SAMPLE	RESUL	ГS				
Lab ID: Client ID: Sample Location: Matrix:	L1710935-01 INF WALTHAM, MA Water						Received:	04/07/17 10: 04/07/17 Not Specified	
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	stborough Lab								
loride	550	mg/l	10		10	-	04/12/17 18:27	7 1,9251	ML

							Serial_No:04	141711:40	
Project Name:	HP WALTHAM					Lab N	lumber:	L1710935	
Project Number:	01.0015522.17					Repo	rt Date:	04/14/17	
			SAMPLE	RESUL	rs				
Lab ID:	L1710935-03					Date	Collected:	04/07/17 09:5	50
Client ID:	EFF					Date		04/07/17	
Sample Location:	WALTHAM, MA					Field	Prep:	Not Specified	
Matrix:	Water								
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
neral Chemistry - We	stborough Lab								
loride	540	mg/l	10		10	-	04/12/17 18:29	9 1,9251	ML

 Lab Number:
 L1710935

 Report Date:
 04/14/17

Project Name:HP WALTHAMProject Number:01.0015522.17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab for sam	ple(s): 01	,03 Bat	ch: W	G993629-1				
Chloride	ND	mg/l	1.0		1	-	04/12/17 18:23	1,9251	ML

Lab Number: L1710935 Report Date: 04/14/17

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

LCS LCSD %Recovery Limits %Recovery %Recovery RPD **RPD** Limits Parameter Qual Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01,03 Batch: WG993629-2 Chloride 93 90-110 --

		Matrix Spike Analysis Batch Quality Control	
Project Name:	HP WALTHAM	Lab Number:	L1710935
Project Number:	01.0015522.17	Report Date:	04/14/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD <u>Qual</u> Limits
General Chemistry - Westborou	ugh Lab Asso	ciated samp	ole(s): 01,03	QC Batch II	D: WG99	93629-4	QC Sample: L1	1711136-01 Clier	nt ID: M	S Sample
Chloride	820	20	810	0	Q	-	-	58-140	-	7

Project Name:	HP WALTHAM	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L1710935
Project Number:		Batch Quality Control	Report Date:	04/14/17

Parameter	Native Sam	ple Duplicate Samp	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01,03	QC Batch ID: WG993629-3	QC Sample: L1	711136-01	Client ID:	DUP Sample
Chloride	820	810	mg/l	1		7

Serial_No:04141711:40

Lab Number: L1710935 Report Date: 04/14/17

Project Name:HP WALTHAMProject Number:01.0015522.17

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Info	rmation		Temp				
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1710935-01A	Vial HCI preserved	А	N/A	5.4	Y	Absent	8260(14)
L1710935-01B	Vial HCI preserved	А	N/A	5.4	Y	Absent	8260(14)
L1710935-01C	Vial HCI preserved	А	N/A	5.4	Y	Absent	8260(14)
L1710935-01D	Plastic 250ml HNO3 preserved	A	<2	5.4	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1710935-01E	Plastic 60ml unpreserved	А	7	5.4	Y	Absent	CL-9251(28)
L1710935-02A	Vial HCI preserved	А	N/A	5.4	Y	Absent	8260(14)
L1710935-02B	Vial HCI preserved	А	N/A	5.4	Y	Absent	8260(14)
L1710935-02C	Vial HCI preserved	А	N/A	5.4	Y	Absent	8260(14)
L1710935-03A	Vial HCI preserved	А	N/A	5.4	Y	Absent	8260(14)
L1710935-03B	Vial HCI preserved	А	N/A	5.4	Y	Absent	8260(14)
L1710935-03C	Vial HCI preserved	А	N/A	5.4	Y	Absent	8260(14)
L1710935-03D	Plastic 250ml HNO3 preserved	A	<2	5.4	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1710935-03E	Plastic 60ml unpreserved	А	7	5.4	Y	Absent	CL-9251(28)

L1710935

04/14/17

Lab Number:

Report Date:

Project Name: HP WALTHAM

Project Number: 01.0015522.17

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315

- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the rep

Report Format: Data Usability Report

Serial_No:04141711:40

Project Name:HP WALTHAMProject Number:01.0015522.17

Lab Number: L1710935

Report Date: 04/14/17

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1710935

 Report Date:
 04/14/17

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 300: DW: Bromide
EPA 6860: NPW and SCM: Perchlorate
EPA 9010: NPW and SCM: Amenable Cyanide Distillation
EPA 9012B: NPW: Total Cyanide
EPA 9050A: NPW: Specific Conductance
SM3500: NPW: Ferrous Iron
SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.
SM5310C: DW: Dissolved Organic Carbon

SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.
EPA 624: Volatile Halocarbons & Aromatics,
EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs
EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.
Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:04141711:40

Арна	CHAIN O	F CU	STO	DY P	age(_OF_(– Da	te Rec	'd in La	ab: (117	117			ALP	IA Job	#: [1710935	
8 Walkup Drive	a 320 Forbes Blvd	Project	Informa	tion			Re	eport	Inform	ation	- Data	a Deliv	erab	les		g Infor			
Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02048	Project Na	ame: H	PWS	Ith	alm		ADEx		M E	MAIL				🗆 Sam	e as Clie	nt info	PO #:	
Client Informati	on	Project Lo	ocation:	walt	Ham	Ma	Re							ject lı	nformat	ion Rec	uirem	ents	
Client: Gr	ZA	Project #:		15527					No MA	MCP A	Analytic	al Meth	ods this	SDG2		es 🗆 No	CT R	CP Analytical Meth	nods
Address: 249	Vandribilt Ac	Project Ma		t. Co		L	0	les 🗆	No GW	1 Stan	dards					EPH with			
Norm	Vandribilt Ac and Mar. 92062 1-983-1357	ALPHA C	0		1001				No NP State /Fe							Criteria			
Phone: 78	1-983-1357	Turn-A	round Ti	me				1		-	T	1.1	1	1	11	11	1	11	1
and the second	Project Information:	Date Da] RUSH (anly a	confirmed if pre-a _l	oproved!)	ANAL	0 8260 0 624 0 534 C	METALS: DIACP D PAH	EPH: DRCRAS D. DRCP 14 DRCP 12	VPH: CIP. CIP. CIP. 15	L PCB L PEST Ranges Only	Quant Only C	Mr. F. J. J. C. Bingerprint	C.F. P. L. Z.	W		SAMPLE INF Filtration Field Lab to do Preservation	L #
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle Date	ection Time	Sample Matrix	Sampler Initials	, ioo	SVOC:	METALS	EPH: C	Hen Han	D PCB		1 2 m	7/	//	4	Lab to do Comment	BOTTLES
10935-01	INF		4/7/17	1915 an	GL	BD	X			1			X	IV.		\mathbf{f}	1	ample comment	5
02	MID		1	1005-	1	BD	X												3
03	EFF		J	950	V	BD	X					-	X	Y	-		-		5
	-11		V ²	(Cora		pu	~					-	/	n			-		2
Container Type	Preservative				Conta	iner Type	V						ρ	P					
P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle	A= None B= HCl C= HNO ₃ D= H_2SO_4 E= NaOH F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ Cl K= Zn Acetate	Relinquis			Pre	ATTIME	Hel	et al	Recei	ved By		TAL.	1/	UMI3 Date/	Time /3 25	Alpha'		bmitted are subje and Conditions. de.	ect to

ANALYTICAL REPORT

Lab Number:	L1714341					
Client:	GZA GeoEnvironmental, Inc.					
	249 Vanderbilt Ave					
	Norwood, MA 02062					
ATTN:	Bill Davis					
Phone:	(781) 278-5769					
Project Name:	HP WALTHAM					
Project Number:	01.0015522.17					
Report Date:	05/12/17					

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:05121720:07

Project Name:	HP WALTHAM
Project Number:	01.0015522.17

 Lab Number:
 L1714341

 Report Date:
 05/12/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1714341-01	INF	WATER	WALTHAM, MA	05/04/17 11:55	05/04/17
L1714341-02	MID	WATER	WALTHAM, MA	05/04/17 11:40	05/04/17
L1714341-03	EFF	WATER	WALTHAM, MA	05/04/17 11:10	05/04/17

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1714341

 Report Date:
 05/12/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

609 Stendow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 05/12/17

ORGANICS

VOLATILES

				Serial_No	0:05121720:07
Project Name:	HP WALTHAM			Lab Number:	L1714341
Project Number:	01.0015522.17			Report Date:	05/12/17
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1714341-01 INF WALTHAM, MA	D	C	Date Collected: Date Received: Field Prep:	05/04/17 11:55 05/04/17 Not Specified
Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 05/12/17 06:31 PK				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	150		50			
1,1-Dichloroethane	ND		ug/l	38		50			
Chloroform	ND		ug/l	38		50			
Carbon tetrachloride	ND		ug/l	25		50			
1,2-Dichloropropane	ND		ug/l	88		50			
Dibromochloromethane	ND		ug/l	25		50			
1,1,2-Trichloroethane	ND		ug/l	38		50			
Tetrachloroethene	59		ug/l	25		50			
Chlorobenzene	ND		ug/l	25		50			
Trichlorofluoromethane	ND		ug/l	120		50			
1,2-Dichloroethane	ND		ug/l	25		50			
1,1,1-Trichloroethane	ND		ug/l	25		50			
Bromodichloromethane	ND		ug/l	25		50			
rans-1,3-Dichloropropene	ND		ug/l	25		50			
cis-1,3-Dichloropropene	ND		ug/l	25		50			
Bromoform	ND		ug/l	100		50			
1,1,2,2-Tetrachloroethane	ND		ug/l	25		50			
Benzene	ND		ug/l	25		50			
Toluene	ND		ug/l	38		50			
Ethylbenzene	ND		ug/l	25		50			
Chloromethane	ND		ug/l	120		50			
Bromomethane	ND		ug/l	50		50			
Vinyl chloride	ND		ug/l	50		50			
Chloroethane	ND		ug/l	50		50			
1,1-Dichloroethene	ND		ug/l	25		50			
trans-1,2-Dichloroethene	ND		ug/l	38		50			
Trichloroethene	7400		ug/l	25		50			
1,2-Dichlorobenzene	ND		ug/l	120		50			
1,3-Dichlorobenzene	ND		ug/l	120		50			
1,4-Dichlorobenzene	ND		ug/l	120		50			

					:	Serial_N	0:05121720:07
Project Name:	HP WALTHAM				Lab Nu	mber:	L1714341
Project Number:	01.0015522.17				Report	Date:	05/12/17
		SAMP	LE RESULTS	6			
Lab ID:	L1714341-01	D			Date Col	llected:	05/04/17 11:55
Client ID:	INF				Date Re	ceived:	05/04/17
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westboro	ugh Lab					
Methyl tert butyl ether		ND		ug/l	50		50
p/m-Xylene		ND		ug/l	50		50
o-Xylene		ND		ug/l	50		50
cis-1,2-Dichloroethene		ND		ug/l	25		50
Dichlorodifluoromethane		ND		ug/l	250		50
Naphthalene		ND		ug/l	120		50

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	103	70-130
Dibromofluoromethane	98	70-130

			Serial_N	0:05121720:07
Project Name:	HP WALTHAM		Lab Number:	L1714341
Project Number:	01.0015522.17		Report Date:	05/12/17
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1714341-02 MID WALTHAM, MA		Date Collected: Date Received: Field Prep:	05/04/17 11:40 05/04/17 Not Specified
Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 05/12/17 04:47 PK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
rans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	5.6		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					Ş	Serial_N	0:05121720:07
Project Name:	HP WALTHAM				Lab Nu	mber:	L1714341
Project Number:	01.0015522.17				Report	Date:	05/12/17
		SAMP	LE RESULTS	6			
Lab ID:	L1714341-02				Date Col	lected:	05/04/17 11:40
Client ID:	MID				Date Red	ceived:	05/04/17
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	h Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	99	70-130

			Serial_N	0:05121720:07
Project Name:	HP WALTHAM		Lab Number:	L1714341
Project Number:	01.0015522.17		Report Date:	05/12/17
		SAMPLE RESULTS		
Lab ID:	L1714341-03		Date Collected:	05/04/17 11:10
Client ID:	EFF		Date Received:	05/04/17
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	05/12/17 05:22			
Analyst:	PK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	1.0		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					:	Serial_N	0:05121720:07
Project Name:	HP WALTHAM				Lab Nu	mber:	L1714341
Project Number:	01.0015522.17				Report	Date:	05/12/17
		SAMP	LE RESULTS	6			
Lab ID:	L1714341-03				Date Col	lected:	05/04/17 11:10
Client ID:	EFF				Date Ree	ceived:	05/04/17
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	h Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	97	70-130

 Project Name:
 HP WALTHAM
 Lab Number:
 L1714341

 Project Number:
 01.0015522.17
 Report Date:
 05/12/17

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	05/11/17 21:51
Analyst:	PK

irameter	Result	Qualifier Units	RL	MDL
latile Organics by GC/MS -	- Westborough Lat	o for sample(s): 01-03	Batch:	WG1002907-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

Project Name:	HP WALTHAM	Lab Number:	L1714341
Project Number:	01.0015522.17	Report Date:	05/12/17

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	05/11/17 21:51
Analyst:	PK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lab	for sample(s): 01-03	Batch:	WG1002907-5
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dichlorodifluoromethane	ND	ug/l	5.0	
Naphthalene	ND	ug/l	2.5	

Surrogate	%Recovery Qualifi	Acceptance er Criteria
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	102	70-130
Dibromofluoromethane	98	70-130

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1714341 Report Date: 05/12/17

Parameter	LCS %Recovery	Qual	LCSE %Recov		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Bate	h: WG1002907-3	3 WG1002907-4			
Methylene chloride	97		97		70-130	0		20
1,1-Dichloroethane	99		98		70-130	1		20
Chloroform	99		100		70-130	1		20
Carbon tetrachloride	92		90		63-132	2		20
1,2-Dichloropropane	100		100		70-130	0		20
Dibromochloromethane	94		94		63-130	0		20
1,1,2-Trichloroethane	100		100		70-130	0		20
Tetrachloroethene	96		97		70-130	1		20
Chlorobenzene	100		100		75-130	0		25
Trichlorofluoromethane	80		79		62-150	1		20
1,2-Dichloroethane	98		100		70-130	2		20
1,1,1-Trichloroethane	93		94		67-130	1		20
Bromodichloromethane	98		98		67-130	0		20
trans-1,3-Dichloropropene	75		78		70-130	4		20
cis-1,3-Dichloropropene	98		100		70-130	2		20
Bromoform	86		91		54-136	6		20
1,1,2,2-Tetrachloroethane	100		100		67-130	0		20
Benzene	100		100		70-130	0		25
Toluene	100		100		70-130	0		25
Ethylbenzene	110		110		70-130	0		20
Chloromethane	74		64		64-130	14		20
Bromomethane	67		50		39-139	29	Q	20
Vinyl chloride	67		68		55-140	1		20

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17 Lab Number: L1714341 Report Date: 05/12/17

Parameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03	Batch:	WG1002907-3	WG1002907-4				
Chloroethane	90			60		55-138	40	Q	20	
1,1-Dichloroethene	86			84		61-145	2		25	
trans-1,2-Dichloroethene	99			96		70-130	3		20	
Trichloroethene	99			98		70-130	1		25	
1,2-Dichlorobenzene	100			100		70-130	0		20	
1,3-Dichlorobenzene	100			100		70-130	0		20	
1,4-Dichlorobenzene	100			100		70-130	0		20	
Methyl tert butyl ether	96			100		63-130	4		20	
p/m-Xylene	110			110		70-130	0		20	
o-Xylene	110			110		70-130	0		20	
cis-1,2-Dichloroethene	100			99		70-130	1		20	
Dichlorodifluoromethane	40			39		36-147	3		20	
Naphthalene	99			110		70-130	11		20	

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	98	70-130
Toluene-d8	98	99	70-130
4-Bromofluorobenzene	101	101	70-130
Dibromofluoromethane	97	97	70-130

METALS

Serial_No:05121720:07

Project Name: Project Number:		ALTHAM 15522.17					Lab Nu Report		L17143 05/12/1		
,	01.00	10022.17		SAMPL	E RES	ULTS			00,12,1		
Lab ID: Client ID: Sample Location: Matrix:	INF	341-01 HAM, MA					Date Co Date Re Field Pr	eceived:	05/04/1 05/04/1 Not Spe	7	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.00656		mg/l	0.00100		1	05/05/17 11:18	3 05/06/17 17:58	EPA 3005A	1,6020A	BV
Iron, Total	0.095		mg/l	0.050		1	05/05/17 11:18	3 05/05/17 18:37	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.00050		1	05/05/17 11:18	3 05/06/17 17:58	EPA 3005A	1,6020A	BV
Selenium, Total	ND		mg/l	0.00500		1	05/05/17 11:18	3 05/06/17 17:58	EPA 3005A	1,6020A	BV

1

05/05/17 11:18 05/06/17 17:58 EPA 3005A

0.01000

--

mg/l

1,6020A

ΒV

Zinc, Total

0.01127

Serial_No:05121720:07

Project Name: Project Number:		ALTHAM 15522.17					Lab Nu Report		L17143 05/12/1		
				SAMPL	E RES	ULTS					
Lab ID:	L1714	341-03					Date Co	ollected:	05/04/1	7 11:10	
Client ID:	EFF						Date Re	eceived:	05/04/1	7	
Sample Location: Matrix:	WALT Water	HAM, MA					Field Pr	ep:	Not Spe	ecified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.00108		mg/l	0.00100		1	05/05/17 11:18	3 05/06/17 17:21	EPA 3005A	1,6020A	BV
Iron, Total	ND		mg/l	0.050		1	05/05/17 11:18	3 05/05/17 20:11	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.00050		1	05/05/17 11:18	3 05/06/17 17:21	EPA 3005A	1,6020A	BV

1

05/05/17 11:18 05/06/17 17:21 EPA 3005A

0.01000

--

mg/l

1,6020A

ΒV

Zinc, Total

ND

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1714341

 Report Date:
 05/12/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01,03 B	atch: W	G100065	54-1				
Iron, Total	ND	mg/l	0.050		1	05/05/17 11:18	05/05/17 18:29	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mar	sfield Lab for sample(s):	01,03 E	Batch: WO	G10006	65-1				
Copper, Total	ND	mg/l	0.00100		1	05/05/17 11:18	05/06/17 17:17	1,6020A	BV
Lead, Total	ND	mg/l	0.00050		1	05/05/17 11:18	05/06/17 17:17	1,6020A	BV
Selenium, Total	ND	mg/l	0.00500		1	05/05/17 11:18	05/06/17 17:17	1,6020A	BV
Zinc, Total	ND	mg/l	0.01000		1	05/05/17 11:18	05/06/17 17:17	1,6020A	BV

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714341 Report Date: 05/12/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Batc	ch: WG10006	654-2					
Iron, Total	97		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Batc	ch: WG10006	65-2					
Copper, Total	100		-		80-120	-		
Lead, Total	102		-		80-120	-		
Selenium, Total	102		-		80-120	-		
Zinc, Total	99		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name:	HP WALTHAM
Project Number:	01.0015522.17

 Lab Number:
 L1714341

 Report Date:
 05/12/17

Total Metals - Mansfield Lab Associated sample(s): 01,03 QC Batch ID: WG1000654-7 QC Sample: L1714341-01 Client ID: INF Iron, Total 0.095 1 1.01 92 - - 75-125 - 2 Total Metals - Mansfield Lab Associated sample(s): 01,03 QC Batch ID: WG1000665-3 QC Sample: L1714341-01 Client ID: INF Copper, Total 0.00656 0.25 0.2584 101 - - 75-125 - 2 Lead, Total ND 0.51 0.5298 104 - - 75-125 - 2 Selenium, Total ND 0.12 0.116 97 - - 75-125 - 2	arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery Ial Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01,03 QC Batch ID: WG1000654-7 QC Sample: L1714341-01 Client ID: INF Iron, Total 0.095 1 1.01 92 - - 75-125 - 2 Total Metals - Mansfield Lab Associated sample(s): 01,03 QC Batch ID: WG1000665-3 QC Sample: L1714341-01 Client ID: INF Copper, Total 0.00656 0.25 0.2584 101 - - 75-125 - 2 Lead, Total ND 0.51 0.5298 104 - - 75-125 - 2 Selenium, Total ND 0.12 0.116 97 - - 75-125 - 2	Fotal Metals - Mansfield	Lab Associated sam	ple(s): 01,03	QC Bat	tch ID: WG100	0654-3	QC Sam	ple: L1714327-01	Client ID: MS	Sample	
Iron, Total 0.095 1 1.01 92 - - 75-125 - 2 Total Metals - Mansfield Lab Associated sample(s): 01,03 QC Batch ID: WG1000665-3 QC Sample: L1714341-01 Client ID: INF Copper, Total 0.00656 0.25 0.2584 101 - - 75-125 - 2 Lead, Total ND 0.51 0.5298 104 - - 75-125 - 2 Selenium, Total ND 0.12 0.116 97 - - 75-125 - 2	Iron, Total	3.73	1	4.31	58	Q	-	-	75-125	-	20
Copper, Total ND 0.51 0.5298 104 - - 75-125 - 22 Selenium, Total ND 0.12 0.116 97 - - 75-125 - 22	Fotal Metals - Mansfield	Lab Associated sam	nple(s): 01,03	QC Bat	tch ID: WG100	0654-7	QC Sam	ple: L1714341-01	Client ID: INF	=	
Copper, Total 0.00656 0.25 0.2584 101 - - 75-125 - 2 Lead, Total ND 0.51 0.5298 104 - - 75-125 - 2 Selenium, Total ND 0.12 0.116 97 - - 75-125 - 2	Iron, Total	0.095	1	1.01	92		-	-	75-125	-	20
Lead, Total ND 0.51 0.5298 104 - - 75-125 - 2 Selenium, Total ND 0.12 0.116 97 - - 75-125 - 2	otal Metals - Mansfield	Lab Associated sam	nple(s): 01,03	QC Bat	tch ID: WG100	0665-3	QC Sam	nple: L1714341-01	Client ID: INF	=	
Selenium, Total ND 0.12 0.116 97 - - 75-125 - 2	Copper, Total	0.00656	0.25	0.2584	101		-	-	75-125	-	20
	Lead, Total	ND	0.51	0.5298	104	_	-	-	75-125	-	20
Zinc. Total 0.01127 0.5 0.4932 96 75-125 - 22	Selenium, Total	ND	0.12	0.116	97	_	-	-	75-125	-	20
	Zinc, Total	0.01127	0.5	0.4932	96		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1714341

 Report Date:
 05/12/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID:	WG1000654-4 QC Sample:	L1714327-01	Client ID:	DUP Sam	ple
Iron, Total	3.73	3.39	mg/l	10		20
Total Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID:	WG1000654-8 QC Sample:	L1714341-01	Client ID:	INF	
Iron, Total	0.095	0.090	mg/l	5		20
Total Metals - Mansfield Lab Associated sample(s): 01,0	3 QC Batch ID:	WG1000665-4 QC Sample:	L1714341-01	Client ID:	INF	
Copper, Total	0.00656	0.00697	mg/l	6		20
Lead, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.01127	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

neral Chemistry - We	stborough Lab									
Parameter	Result Qua	alifier Ur	nits	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
Lab ID: Client ID: Sample Location: Matrix:	L1714341-01 INF WALTHAM, MA Water							Received:	05/04/17 11: 05/04/17 Not Specified	
				SAMPLE	RESUL	ſS				
Project Number:	01.0015522.17						Repo	rt Date:	05/12/17	
Project Name:	HP WALTHAM						Lab N	lumber:	L1714341	
								Serial_No:05	121/20:07	

Field Prep:

Not Specified

Project Name:	HP WALTHAM		Lab Number:	L1714341
Project Number:	01.0015522.17		Report Date:	05/12/17
		SAMPLE RESULTS		
Lab ID: Client ID:	L1714341-03 EFF		Date Collected: Date Received:	05/04/17 11:10 05/04/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry	- Westborough Lab									
hloride	560		mg/l	10		10	-	05/09/17 19:07	1,9251	ML

Sample Location: WALTHAM, MA

Water

Matrix:

 Lab Number:
 L1714341

 Report Date:
 05/12/17

Project Name:HP WALTHAMProject Number:01.0015522.17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab for sar	nple(s): 01	1,03 Ba	tch: W	G1001751-1				
Chloride	ND	mg/l	1.0		1	-	05/09/17 18:59	1,9251	ML

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1714341 Report Date: 05/12/17

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

LCS LCSD %Recovery Limits %Recovery %Recovery RPD **RPD Limits** Parameter Qual Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01,03 Batch: WG1001751-2 Chloride 97 90-110 --

		Matrix Spike Analysis Batch Quality Control	
Project Name:	HP WALTHAM	Lab Number:	L1714341
Project Number:	01.0015522.17	Report Date:	05/12/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery ual Limits RP	RPD <u>D Qual</u> Limits
General Chemistry - Westborou	igh Lab Asso	ciated samp	ole(s): 01,03	QC Batch II	D: WG1001751-4	QC Sample: L17	14463-06 Client IE): MS Sample
Chloride	1.4	20	21	98	-	-	58-140 -	7

Project Name:	HP WALTHAM	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L1714341
Project Number:	01.0015522.17		Report Date:	05/12/17

Parameter	Native Sam	ple Duplic	cate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01,03	QC Batch ID: WG	1001751-3 Q	C Sample: I	_1714463-05	Client ID:	DUP Sample
Chloride	21		21	mg/l	0		7

Serial_No:05121720:07

Lab Number: L1714341 Report Date: 05/12/17

Project Name:HP WALTHAMProject Number:01.0015522.17

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

A

Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1714341-01A	Plastic 250ml HNO3 preserved	A	<2	3.7	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1714341-01B	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1714341-01C	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1714341-01D	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1714341-01E	Plastic 60ml unpreserved	А	7	3.7	Y	Absent	CL-9251(28)
L1714341-02B	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1714341-02C	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1714341-02D	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1714341-03A	Plastic 250ml HNO3 preserved	A	<2	3.7	Y	Absent	SE-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180)
L1714341-03B	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1714341-03C	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1714341-03D	Vial HCI preserved	А	N/A	3.7	Y	Absent	8260(14)
L1714341-03E	Plastic 60ml unpreserved	А	7	3.7	Y	Absent	CL-9251(28)

L1714341

05/12/17

Lab Number:

Report Date:

Project Name: HP WALTHAM

Project Number: 01.0015522.17

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315

- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte able to explore the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Serial_No:05121720:07

Project Name: HP WALTHAM Project Number: 01.0015522.17

Lab Number: L1714341

Report Date: 05/12/17

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1714341

 Report Date:
 05/12/17

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene
EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 300: <u>DW</u>: Bromide
EPA 6860: <u>NPW</u> and SCM: Perchlorate
EPA 9010: <u>NPW and SCM</u>: Amenable Cyanide Distillation
EPA 9012B: <u>NPW</u>: Total Cyanide
EPA 9050A: <u>NPW</u>: Specific Conductance
SM3500: <u>NPW</u>: Ferrous Iron
SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.
SM5310C: <u>DW</u>: Dissolved Organic Carbon

SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.
EPA 624: Volatile Halocarbons & Aromatics,
EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs
EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.
Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:05121720:07

	CHAIN	OF CUSTOD		- Date Rec'd in	Lab: 5/4/17	ALPHA Job #: 217-14341
A TALY TICAL	220 Forther Divid	Project Information		Report Info	rmation - Data Deliverab	
8 Walkup Drive Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02048	Project Name: HP	Waltham	ADEx	EMAIL	Same as Client info PO #:
Client Informati	on	Project Location:	althour Mor.	Regulatory	Requirements & Pro	ject Information Requirements
Client: G2A		Project #: 01. Qa/5	522.17		A MCP Analytical Methods	□ Yes □ No CT RCP Analytical Methods SDG? (Required for MCP Inorganics)
Address: 249	Vanderb. It A	Le Project Manager: J		Yes I No G	W1 Standards (Info Require	d for Metals & EPH with Targets)
Narwan	Vanderb. lt A d Mar. 0206 283-1357	Z ALPHA Quote #:		 Yes I No N Other State 	/Fed Program	Criteria
Phone: 781-4	283-1357	Turn-Around Time		(ax	2 2 3 4	
Email: wda	vis C 929. Cal Project Information:	~ /	JSH (only confirmed if pre-approved!)	ANALYSIS Paseo Deza Deza So LS. D PAH	METALS, DMCP 13 DMCP 14 DRCP 15 EPH: DRanges & Targets D RCRA8 DP13 VPH: DRanges & Targets D Ranges Only TPH: DQuant Only D	Juliu Sample INFO Sample Info Filtration Field Lab to do Preservation Lab to do Data box Sample Comments
ALPHA Lab ID (Lab Use Only)	Sample ID	Collectic	n Sample Sampler Time Matrix Initials	VOC: SVOC: METALS	METALS EPH: DH VPH: DR D PCB TPH: D(Preservation Lab to do Sample Comments
14341-01	INF	5/4/17 W		X		X 5
03	MID		40m 1 1	X		3
03	EFF		10 y V	X	Х	X 5
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle	Preservative $A = None$ $B = HCI$ $C = HNO_3$ $D = H_2SO_4$ $E = NaOH$ $F = MeOH$ $G = NaHSO_4$ $H = Na_2S_2O_3$ $I = Ascorbic Acid$ $J = NH_4CI$	Relinquished By:	Container Type Preservative Date/Time	V ACL MSM	ceived By:	P HM2 Date/Time H/17 / 3/2 All samples submitted are subject to Alpha's Terms and Conditions. M 17 177 Bee reverse side.

ANALYTICAL REPORT

Lab Number:	L1714337
Client:	GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062
ATTN:	Bill Davis
Phone:	(781) 278-5769
Project Name:	HP WALTHAM
Project Number:	01.0015522.17
Report Date:	06/14/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:06141712:06

 Lab Number:
 L1714337

 Report Date:
 06/14/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1714337-01	INF	WATER	WALTHAM, MA	05/04/17 12:15	05/04/17

Page 2 of 76

Project Name:

Project Number: 01.0015522.17

HP WALTHAM

Project Name: HP WALTHAM Project Number: 01.0015522.17

 Lab Number:
 L1714337

 Report Date:
 06/14/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1714337

 Report Date:
 06/14/17

Case Narrative (continued)

Report Submission

This report replaces the report May 17, 2017, and includes the results of the Hardness analysis.

A previously-issued final report replaced the partial report issued May 15, 2017, and included the results of all requested analyses.

The analysis of ethanol was subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1714337-01: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

Volatile Organics by SIM

L1714337-01: The sample has an elevated detection limit due to the dilution required by the elevated concentrations of non-target compounds in the sample.

Semivolatile Organics

The WG1001142-2 LCS recovery, associated with L1714337-01, is below the acceptance criteria for benzidine (8%); however, it has been identified as a "difficult" analyte. The results of the associated sample are reported.

Metals

The WG1000583-3 MS recovery for hardness (36%), performed on L1714337-01, does not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Mellissa Cripps Melissa Cripps

Authorized Signature:

Title: Technical Director/Representative

Date: 06/14/17

ORGANICS

VOLATILES

			Serial_No:06141712:06		
Project Name:	HP WALTHAM		Lab Number:	L1714337	
Project Number:	01.0015522.17		Report Date:	06/14/17	
		SAMPLE RESULTS			
Lab ID:	L1714337-01		Date Collected:	05/04/17 12:15	
Client ID:	INF		Date Received:	05/04/17	
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified	
			Extraction Method:EPA 504.1		
Matrix:	Water		Extraction Date:	05/09/17 15:14	
Analytical Method:	14,504.1				
Analytical Date:	05/09/17 21:03				
Analyst:	SL				
-					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010	0.004	1	A

				Serial_N	o:06141712:06
Project Name:	HP WALTHAM			Lab Number:	L1714337
Project Number:	01.0015522.17			Report Date:	06/14/17
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1714337-01 INF WALTHAM, MA	D		Date Collected: Date Received: Field Prep:	05/04/17 12:15 05/04/17 Not Specified
Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 05/12/17 07:35 MM				

1,1-Dichloroethane ND ug/l 75 21. 100 Chloroform ND ug/l 75 16. 100 Carbon tetrachloride ND ug/l 50 13. 100 1,2-Dichloropropane ND ug/l 50 13. 100 1,2-Dichloropropane ND ug/l 75 14. 100 Dicromochloromethane ND ug/l 75 14. 100 Tetrachloroethane ND ug/l 50 18. 100 Chlorobenzene ND ug/l 50 18. 100 Trichloroethane ND ug/l 50 18. 100 1,2-Dichloroethane ND ug/l 50 18. 100 1,2-Dichloroethane ND ug/l 50 16. 100 1,2-Dichloropropene ND ug/l 50 16. 100 Itama-1,3-Dichloropropene ND ug/l 50 17. 100 Bromodicm ND ug/l 50 17. 100 <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RL</th> <th>MDL</th> <th>Dilution Factor</th>	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
ND ug/l 75 21. 100 Chloroform ND ug/l 75 16. 100 Chloroform ND ug/l 50 13. 100 Carbon tetrachloropropane ND ug/l 50 13. 100 1.2-Dichloropropane ND ug/l 50 15. 100 Ditromochloromethane ND ug/l 75 14. 100 Ditromochloromethane ND ug/l 50 18. 100 Chlorobethane ND ug/l 50 18. 100 Chlorobethane ND ug/l 50 18. 100 1.2-Dichloromethane ND ug/l 50 18. 100 1.2-Dichloropropene ND ug/l 50 18. 100 trans-1.3-Dichloropropene ND ug/l 50 16. 100 trans-1.3-Dichloropropene ND ug/l 50 17. 100	Volatile Organics by GC/MS - West	borough Lab					
1,1-Dichloroethane ND ug/l 75 21. 100 Chloroform ND ug/l 75 16. 100 Carbon tetrachloride ND ug/l 50 13. 100 1.2-Dichloropropane ND ug/l 50 15. 100 1.2-Dichloropropane ND ug/l 50 15. 100 1.1-Dichloropropane ND ug/l 50 18. 100 Tetrachloroethane ND ug/l 50 18. 100 Chlorobezene ND ug/l 50 18. 100 1.2-Dichloroethane ND ug/l 50 18. 100 1.2-Dichloroethane ND ug/l 50 18. 100 1.2-Dichloropropene ND ug/l 50 16. 100 1.2-Dichloropropene ND ug/l 50 17. 100 Stomolarm ND ug/l 50 17. 100	Methylene chloride	ND		ug/l	300	68.	100
Chloroform ND ug/l 75 16. 100 Carbon tetrachloride ND ug/l 50 13. 100 1.2-Dichloropropane ND ug/l 180 14. 100 1.2-Dichloropropane ND ug/l 50 15. 100 1.1.2-Trichloroethane ND ug/l 50 18. 100 Chlorobenzene ND ug/l 50 18. 100 Trichloroethane ND ug/l 50 18. 100 1.2-Dichloroethane ND ug/l 50 18. 100 1.2-Dichloroethane ND ug/l 50 18. 100 1.2-Dichloroptopene ND ug/l 50 18. 100 1.1.1-Trichloroethane ND ug/l 50 16. 100 1.2-Dichloropropene ND ug/l 50 16. 100 1.1.2-Tetrachloroethane ND ug/l 50 17.	1,1-Dichloroethane	ND		-	75	21.	100
J.2-Dichloropropane ND ug/l 180 14. 100 Dibromechloromethane ND ug/l 50 15. 100 1.1.2-Trichloroethane ND ug/l 50 18. 100 Tertrachloroethane ND ug/l 50 18. 100 Chiorobenzene ND ug/l 50 18. 100 Trichloroethane ND ug/l 50 18. 100 1.2-Dichloroethane ND ug/l 50 18. 100 1.2-Dichloroethane ND ug/l 50 16. 100 I.1.1-Trichloroethane ND ug/l 50 16. 100 Bromodichloromethane ND ug/l 50 16. 100 trans-1.3-Dichloropropene ND ug/l 50 16. 100 trans-1.3-Dichloropropene ND ug/l 50 16. 100 Bromoform ND ug/l 50 16.	Chloroform	ND			75	16.	100
ND ug/l 180 14. 100 Dibromochloromethane ND ug/l 50 15. 100 1,1,2-Trichloroethane ND ug/l 75 14. 100 Tetrachloroethane S7 ug/l 50 18. 100 Chlorobenzene ND ug/l 50 18. 100 Trichloroethane ND ug/l 50 18. 100 Trichloroethane ND ug/l 50 13. 100 1,1.1-Trichloroethane ND ug/l 50 13. 100 L2.Dichloropropene ND ug/l 50 16. 100 trans-1.3-Dichloropropene ND ug/l 50 16. 100 trans-1.3-Dichloropropene ND ug/l 50 16. 100 trans-1.3-Dichloropropene ND ug/l 50 16. 100 Bromoform ND ug/l 50 17. 100	Carbon tetrachloride	ND		ug/l	50	13.	100
ND ug/l 75 14. 100 Tetrachloroethane 57 ug/l 50 18. 100 Chlorobenzene ND ug/l 50 18. 100 Trichloroftuoromethane ND ug/l 50 18. 100 1,2-Dichloroethane ND ug/l 50 13. 100 1,2-Dichloroethane ND ug/l 50 16. 100 1,1-Trichloroethane ND ug/l 50 16. 100 Bromodichloromethane ND ug/l 50 14. 100 Itars-1,3-Dichloropropene ND ug/l 50 14. 100 Itars-1,3-Dichloropropene ND ug/l 50 14. 100 Itars-1,3-Dichloropropene ND ug/l 50 17. 100 Bromodorm ND ug/l 50 17. 100 Ital-Site/propene ND ug/l 50 16. 100	1,2-Dichloropropane	ND			180	14.	100
Transmission result result <thr> Line fored rean ND</thr>	Dibromochloromethane	ND		ug/l	50	15.	100
ND ug/l 50 18. 100 Trichlorodiluoromethane ND ug/l 250 16. 100 1.2-Dichlorodethane ND ug/l 50 13. 100 1.1.1-Trichlorodethane ND ug/l 50 16. 100 Bromodichloromethane ND ug/l 50 16. 100 trans-1.3-Dichloropropene ND ug/l 50 16. 100 trans-1.3-Dichloropropene ND ug/l 50 14. 100 trans-1.3-Dichloropropene ND ug/l 250 17. 100 Bromoform ND ug/l 260 17. 100 Bromoform ND ug/l 50 16. 100 Bromoform ND ug/l 50 17. 100 Ethylbenzene ND ug/l 50 17. 100 Bromomethane ND ug/l 100 25. 100	1,1,2-Trichloroethane	ND		ug/l	75	14.	100
Inchiorofluoromethane ND ug/l 250 16. 100 1,2-Dichloroethane ND ug/l 50 13. 100 1,1,1-Trichloroethane ND ug/l 50 16. 100 Bromodichloromethane ND ug/l 50 16. 100 trans-1,3-Dichloropropene ND ug/l 50 14. 100 trans-1,3-Dichloropropene ND ug/l 260 17. 100 trans-1,2-Dichloropropene ND ug/l 50 16. 100 trans-1,2-Dichloropropene ND ug/l 260 17. 100 trans-1,2-Dichloroptropene ND ug/l 50 16. 100 trans-1,2-Dichloroethane ND ug/l 50 16. 100 trans-1/2-Dichloroethane ND ug/l 50 17. 100 Chloromethane ND ug/l 50 17. 100 Chloroethane ND ug/l	Tetrachloroethene	57		ug/l	50	18.	100
J.2-Dichloroethane ND ug/l 50 13. 100 1,1,1-Trichloroethane ND ug/l 50 16. 100 Bromodichloromethane ND ug/l 50 19. 100 trans-1,3-Dichloropropene ND ug/l 50 14. 100 cis-1,3-Dichloropropene ND ug/l 50 14. 100 trans-1,3-Dichloropropene ND ug/l 50 14. 100 trans-1,2-Dichloropropene ND ug/l 50 17. 100 Bromoform ND ug/l 50 17. 100 It,1,2,2-Tetrachloroethane ND ug/l 50 16. 100 Toluene ND ug/l 50 17. 100 Chloromethane ND ug/l 50 17. 100 Chloroethane ND ug/l 100 7.1 100 Chloroethane ND ug/l 100 13.	Chlorobenzene	ND		ug/l	50	18.	100
ND ug/l 50 16. 100 Bromodichloromethane ND ug/l 50 19. 100 trans-1,3-Dichloropropene ND ug/l 50 16. 100 cis-1,3-Dichloropropene ND ug/l 50 14. 100 1,1-Dichloropropene ND ug/l 250 17. 100 Bromodichloropropene ND ug/l 200 25. 100 Bromodrom ND ug/l 50 17. 100 Bromodrom ND ug/l 50 17. 100 Bromodrom ND ug/l 50 16. 100 1,1,2,2-Tetrachloroethane ND ug/l 50 16. 100 Ethylbenzene ND ug/l 50 17. 100 Ethylbenzene ND ug/l 100 26. 100 Vinyl chloride ND ug/l 100 13. 100 Lioroet	Trichlorofluoromethane	ND		ug/l	250	16.	100
ND ug/l 50 19. 100 trans-1,3-Dichloropropene ND ug/l 50 16. 100 cis-1,3-Dichloropropene ND ug/l 50 14. 100 cis-1,3-Dichloropropene ND ug/l 250 17. 100 Bromodichloropropene ND ug/l 200 25. 100 Bromodichloropropene ND ug/l 50 17. 100 Bromodichloropropene ND ug/l 50 17. 100 Bromodichloropropene ND ug/l 50 17. 100 Bromodichloropropene ND ug/l 50 16. 100 Bromodichloropropene ND ug/l 50 17. 100 Bromodichloropropene ND ug/l 50 17. 100 Ethylbenzene ND ug/l 100 26. 100 Ethylbenzene ND ug/l 100 17. 100	1,2-Dichloroethane	ND		ug/l	50	13.	100
ND ug/l 50 16. 100 irans-1,3-Dichloropropene ND ug/l 50 14. 100 1,1-Dichloropropene ND ug/l 250 17. 100 Bromoform ND ug/l 200 25. 100 1,1,2,2-Tetrachloroethane ND ug/l 50 17. 100 Benzene ND ug/l 50 16. 100 Toluene ND ug/l 50 16. 100 Ethylbenzene ND ug/l 50 16. 100 Chloromethane ND ug/l 50 17. 100 Ethylbenzene ND ug/l 50 17. 100 Chloromethane ND ug/l 100 26. 100 Vinyl chloride ND ug/l 100 13. 100 Vinyl chloride ND ug/l 50 17. 100 I,1-Dichloroethene <t< td=""><td>1,1,1-Trichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>50</td><td>16.</td><td>100</td></t<>	1,1,1-Trichloroethane	ND		ug/l	50	16.	100
ND ug/l 50 14. 100 1,1-Dichloropropene ND ug/l 250 17. 100 Bromoform ND ug/l 200 25. 100 1,1.2,2-Tetrachloroethane ND ug/l 50 17. 100 Benzene ND ug/l 50 17. 100 Benzene ND ug/l 50 16. 100 Toluene ND ug/l 50 17. 100 Ethylbenzene ND ug/l 50 16. 100 Chloromethane ND ug/l 50 17. 100 Ethylbenzene ND ug/l 50 17. 100 Chloromethane ND ug/l 100 26. 100 Vinyl chloride ND ug/l 100 7.1 100 Chloroethane ND ug/l 100 13. 100 trans-1,2-Dichloroethene ND	Bromodichloromethane	ND		ug/l	50	19.	100
ND ug/l 250 17. 100 Bromoform ND ug/l 200 25. 100 1,1,2,2-Tetrachloroethane ND ug/l 50 17. 100 Benzene ND ug/l 50 17. 100 Benzene ND ug/l 50 16. 100 Toluene ND ug/l 75 16. 100 Ethylbenzene ND ug/l 50 17. 100 Chloromethane ND ug/l 50 17. 100 Bromomethane ND ug/l 50 17. 100 Vinyl chloride ND ug/l 100 26. 100 Vinyl chloride ND ug/l 100 7.1 100 Chloroethene ND ug/l 100 13. 100 1,1-Dichloroethene ND ug/l 50 17. 100 trans-1,2-Dichloroethene ND	trans-1,3-Dichloropropene	ND		ug/l	50	16.	100
Bromoform ND ug/l 200 25. 100 1,1,2,2-Tetrachloroethane ND ug/l 50 17. 100 Benzene ND ug/l 50 16. 100 Toluene ND ug/l 50 16. 100 Ethylbenzene ND ug/l 50 17. 100 Chloromethane ND ug/l 50 17. 100 Bromoform ND ug/l 50 17. 100 Chloromethane ND ug/l 100 26. 100 Stormomethane ND ug/l 100 7.1 100 Vinyl chloride ND ug/l 100 7.1 100 Chloroethane ND ug/l 50 17. 100 1,1-Dichloroethene ND ug/l 50 17. 100 trans-1,2-Dichloroethene ND ug/l 50 18. 100 1,2-Dichlo	cis-1,3-Dichloropropene	ND		ug/l	50	14.	100
1,1,2,2-Tetrachloroethane ND ug/l 50 17. 100 Benzene ND ug/l 50 16. 100 Toluene ND ug/l 75 16. 100 Ethylbenzene ND ug/l 50 17. 100 Chloromethane ND ug/l 50 17. 100 Bromomethane ND ug/l 250 18. 100 Vinyl chloride ND ug/l 100 26. 100 Vinyl chloride ND ug/l 100 7.1 100 Chloroethane ND ug/l 100 7.1 100 Liptoride ND ug/l 100 13. 100 Liptoride ND ug/l 50 17. 100 Liptoriorethene ND ug/l 50 17. 100 Liptoriorethene ND ug/l 50 18. 100 Trichloroethene 7200 ug/l 50 18. 100 Upichlorobenzene	1,1-Dichloropropene	ND		ug/l	250	17.	100
Benzene ND ug/l 50 16. 100 Toluene ND ug/l 75 16. 100 Ethylbenzene ND ug/l 50 17. 100 Chloromethane ND ug/l 250 18. 100 Bromomethane ND ug/l 100 26. 100 Vinyl chloride ND ug/l 100 7.1 100 Chloroethane ND ug/l 100 7.1 100 Chloroethane ND ug/l 100 13. 100 Chloroethane ND ug/l 50 17. 100 trans-1,2-Dichloroethene ND ug/l 50 17. 100 trans-1,2-Dichloroethene ND ug/l 50 18. 100 Trichloroethene 7200 ug/l 50 18. 100 Understende ND ug/l 250 18. 100	Bromoform	ND		ug/l	200	25.	100
Toluene ND ug/l 75 16. 100 Ethylbenzene ND ug/l 50 17. 100 Chloromethane ND ug/l 250 18. 100 Bromomethane ND ug/l 100 26. 100 Vinyl chloride ND ug/l 100 7.1 100 Chloroethane ND ug/l 100 7.1 100 Chloroethane ND ug/l 100 13. 100 Chloroethane ND ug/l 50 17. 100 trans-1,2-Dichloroethene ND ug/l 50 16. 100 Trichloroethene 7200 ug/l 50 18. 100 Trichloroethene ND ug/l 50 18. 100	1,1,2,2-Tetrachloroethane	ND		ug/l	50	17.	100
Ethylbenzene ND ug/l 50 17. 100 Chloromethane ND ug/l 250 18. 100 Bromomethane ND ug/l 100 26. 100 Vinyl chloride ND ug/l 100 7.1 100 Chloroethane ND ug/l 100 7.1 100 Chloroethane ND ug/l 50 17. 100 1,1-Dichloroethene ND ug/l 50 17. 100 trans-1,2-Dichloroethene ND ug/l 50 17. 100 Trichloroethene ND ug/l 50 18. 100 Trichloroethene 7200 ug/l 50 18. 100 1,2-Dichlorobenzene ND ug/l 250 18. 100	Benzene	ND		ug/l	50	16.	100
ND ug/l 250 18. 100 Bromomethane ND ug/l 100 26. 100 Vinyl chloride ND ug/l 100 7.1 100 Chloroethane ND ug/l 100 7.1 100 Chloroethane ND ug/l 100 13. 100 1,1-Dichloroethene ND ug/l 50 17. 100 trans-1,2-Dichloroethene ND ug/l 75 16. 100 Trichloroethene 7200 ug/l 50 18. 100 1,2-Dichlorobenzene ND ug/l 250 18. 100	Toluene	ND		ug/l	75	16.	100
ND ug/l 100 26. 100 Vinyl chloride ND ug/l 100 7.1 100 Chloroethane ND ug/l 100 13. 100 1,1-Dichloroethene ND ug/l 50 17. 100 trans-1,2-Dichloroethene ND ug/l 75 16. 100 Trichloroethene 7200 ug/l 50 18. 100 1,2-Dichlorobenzene ND ug/l 250 18. 100	Ethylbenzene	ND		ug/l	50	17.	100
Vinyl chloride ND ug/l 100 7.1 100 Chloroethane ND ug/l 100 13. 100 1,1-Dichloroethene ND ug/l 50 17. 100 trans-1,2-Dichloroethene ND ug/l 75 16. 100 Trichloroethene 7200 ug/l 50 18. 100 1,2-Dichlorobenzene ND ug/l 250 18. 100	Chloromethane	ND		ug/l	250	18.	100
ND ug/l 100 13. 100 1,1-Dichloroethene ND ug/l 50 17. 100 trans-1,2-Dichloroethene ND ug/l 75 16. 100 Trichloroethene 7200 ug/l 50 18. 100 1,2-Dichlorobenzene ND ug/l 250 18. 100	Bromomethane	ND		ug/l	100	26.	100
ND ug/l 50 17. 100 trans-1,2-Dichloroethene ND ug/l 75 16. 100 Trichloroethene 7200 ug/l 50 18. 100 1,2-Dichlorobenzene ND ug/l 250 18. 100	Vinyl chloride	ND		ug/l	100	7.1	100
ND ug/l 75 16. 100 Trichloroethene 7200 ug/l 50 18. 100 1,2-Dichlorobenzene ND ug/l 250 18. 100	Chloroethane	ND		ug/l	100	13.	100
Trichloroethene 7200 ug/l 50 18. 100 1,2-Dichlorobenzene ND ug/l 250 18. 100	1,1-Dichloroethene	ND		ug/l	50	17.	100
1,2-Dichlorobenzene ND ug/l 250 18. 100	trans-1,2-Dichloroethene	ND		ug/l	75	16.	100
	Trichloroethene	7200		ug/l	50	18.	100
1,3-Dichlorobenzene ND ug/l 250 19. 100	1,2-Dichlorobenzene	ND		ug/l	250	18.	100
	1,3-Dichlorobenzene	ND		ug/l	250	19.	100

					:	Serial N	0:06141712:06
Project Name:	HP WALTHAM				Lab Nu		L1714337
Project Number:	01.0015522.17				Report	Date [.]	06/14/17
	01.0010022.17	SAMP	LE RESULT	S	Toport	Dato	00/14/17
Lab ID:	L1714337-01	D			Date Col	lected:	05/04/17 12:15
Client ID:	INF				Date Re		05/04/17
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboro	ugh Lab					
1,4-Dichlorobenzene		ND		ug/l	250	19.	100
Methyl tert butyl ether		ND		ug/l	100	17.	100
p/m-Xylene		ND		ug/l	100	33.	100
o-Xylene		ND		ug/l	100	33.	100
Xylenes, Total		ND		ug/l	100	33.	100
cis-1,2-Dichloroethene		25	J	ug/l	50	19.	100
Dibromomethane		ND		ug/l	500	36.	100
1,4-Dichlorobutane		ND		ug/l	500	46.	100
1,2,3-Trichloropropane		ND		ug/l	500	18.	100
Styrene		ND		ug/l	100	36.	100
Dichlorodifluoromethane		ND		ug/l	500	24.	100
Acetone		ND		ug/l	500	150	100
Carbon disulfide		ND		ug/l	500	30.	100
2-Butanone		ND		ug/l	500	190	100
Vinyl acetate		ND		ug/l	500	31.	100
4-Methyl-2-pentanone		ND		ug/l	500	42.	100
2-Hexanone		ND		ug/l	500	52.	100
Ethyl methacrylate		ND		ug/l	500	61.	100
Acrylonitrile		ND		ug/l	500	43.	100
Bromochloromethane		ND		ug/l	250	15.	100
Tetrahydrofuran		ND		ug/l	500	83.	100
2,2-Dichloropropane		ND		ug/l	250	20.	100
1,2-Dibromoethane		ND		ug/l	200	19.	100
1,3-Dichloropropane		ND		ug/l	250	21.	100
1,1,1,2-Tetrachloroethan	e	ND		ug/l	50	16.	100
Bromobenzene		ND		ug/l	250	15.	100
n-Butylbenzene		ND		ug/l	50	19.	100
sec-Butylbenzene		ND		ug/l	50	18.	100
tert-Butylbenzene		ND		ug/l	250	18.	100
o-Chlorotoluene		ND		ug/l	250	17.	100
p-Chlorotoluene		ND		ug/l	250	18.	100
1,2-Dibromo-3-chloropro	pane	ND		ug/l	250	35.	100
Hexachlorobutadiene		ND		ug/l	50	22.	100
Isopropylbenzene		ND		ug/l	50	19.	100
p-lsopropyltoluene		ND		ug/l	50	19.	100
Naphthalene		ND		ug/l	250	22.	100
n-Propylbenzene		ND		ug/l	50	17.	100
1,2,3-Trichlorobenzene		ND		ug/l	250	23.	100
1,2,4-Trichlorobenzene		ND		ug/l	250	22.	100
		-		- ' ''''			

					Ş	Serial_N	o:06141712:06
Project Name:	HP WALTHAM				Lab Nu	mber:	L1714337
Project Number:	01.0015522.17				Report	Date:	06/14/17
		SAMP		6			
Lab ID:	L1714337-01	D			Date Col	lected:	05/04/17 12:15
Client ID:	INF				Date Red	ceived:	05/04/17
Sample Location:	WALTHAM, MA				Field Pre	p:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboro	ugh Lab					
1,3,5-Trimethylbenzene		ND		ug/l	250	17.	100
1,2,4-Trimethylbenzene		ND		ug/l	250	19.	100
trans-1,4-Dichloro-2-bute	ne	ND		ug/l	250	18.	100
Ethyl ether		ND		ug/l	250	16.	100
Tert-Butyl Alcohol		ND		ug/l	1000	140	100
Tertiary-Amyl Methyl Ethe	er	ND		ug/l	200	28.	100

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	111	70-130	
4-Bromofluorobenzene	123	70-130	
Dibromofluoromethane	91	70-130	

				Serial_N	0:06141712:06
Project Name:	HP WALTHAM			Lab Number:	L1714337
Project Number:	01.0015522.17			Report Date:	06/14/17
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1714337-01 INF WALTHAM, MA	D		Date Collected: Date Received: Field Prep:	05/04/17 12:15 05/04/17 Not Specified
Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 05/12/17 16:24 MAB				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Ethanol	ND		ug/l	25000	1400	100
Surrogate			% Recovery	Qualifier		eptance riteria
1,2-Dichloroethane-d4			89		-	70-130
Toluene-d8			100		-	70-130
4-Bromofluorobenzene			101		-	70-130
Dibromofluoromethane			98		-	70-130

				Serial_N	lo:06141712:06
Project Name:	HP WALTHAM			Lab Number:	L1714337
Project Number:	01.0015522.17			Report Date:	06/14/17
			SAMPLE RESULTS		
Lab ID:	L1714337-01	D		Date Collected:	05/04/17 12:15
Client ID:	INF			Date Received:	05/04/17
Sample Location:	WALTHAM, MA			Field Prep:	Not Specified
Matrix:	Water				
Analytical Method:	1,8260C-SIM(M)				
Analytical Date:	05/12/17 07:35				
Analyst:	MM				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - V	Vestborough Lab					
1,4-Dioxane	ND		ug/l	300	76.	100

Project Name: Project Number:	HP WALTHAM 01.0015522.17		Lab Number: Report Date:	L1714337 06/14/17
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	14,504.1 05/09/17 19:47 SL		Extraction Method Extraction Date:	EPA 504.1 05/09/17 15:14

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbord	ough Lab for	r sample(s)	: 01	Batch: WG100	1729-1	
1,2-Dibromoethane	ND		ug/l	0.010	0.004	A

Project Name:	HP WALTHAM	Lab Number:	L1714337
Project Number:	01.0015522.17	Report Date:	06/14/17

Analytical Method:1,8260C-SIM(M)Analytical Date:05/12/17 06:28Analyst:MM

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for sa	ample(s):	01	Batch:	WG1002892-5	
1,4-Dioxane	ND		ug/l		3.0	0.76	

06/14/17

 Project Name:
 HP WALTHAM
 Lab Number:

 Project Number:
 01.0015522.17
 Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	05/12/17 06:28
Analyst:	MM

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample(s): 01	Batch:	WG1002896-5
Methylene chloride	ND	ug/l	3.0	0.68
1,1-Dichloroethane	ND	ug/l	0.75	0.21
Chloroform	ND	ug/l	0.75	0.16
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.8	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	0.75	0.14
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	0.50	0.18
Trichlorofluoromethane	ND	ug/l	2.5	0.16
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	0.50	0.16
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.17
Bromoform	ND	ug/l	2.0	0.25
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	0.75	0.16
Ethylbenzene	ND	ug/l	0.50	0.17
Chloromethane	ND	ug/l	2.5	0.18
Bromomethane	ND	ug/l	1.0	0.26
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	1.0	0.13
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	0.75	0.16
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.18

06/14/17

 Project Name:
 HP WALTHAM
 Lab Number:

 Project Number:
 01.0015522.17
 Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:05/12/17 06:28Analyst:MM

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s):	01 Batch:	WG1002896-5
1,3-Dichlorobenzene	ND	ug/l	2.5	0.19
1,4-Dichlorobenzene	ND	ug/l	2.5	0.19
Methyl tert butyl ether	ND	ug/l	1.0	0.17
p/m-Xylene	ND	ug/l	1.0	0.33
o-Xylene	ND	ug/l	1.0	0.33
Xylenes, Total	ND	ug/l	1.0	0.33
cis-1,2-Dichloroethene	ND	ug/l	0.50	0.19
Dibromomethane	ND	ug/l	5.0	0.36
1,4-Dichlorobutane	ND	ug/l	5.0	0.46
1,2,3-Trichloropropane	ND	ug/l	5.0	0.18
Styrene	ND	ug/l	1.0	0.36
Dichlorodifluoromethane	ND	ug/l	5.0	0.24
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	0.30
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	0.31
4-Methyl-2-pentanone	ND	ug/l	5.0	0.42
2-Hexanone	ND	ug/l	5.0	0.52
Ethyl methacrylate	ND	ug/l	5.0	0.61
Acrylonitrile	ND	ug/l	5.0	0.43
Bromochloromethane	ND	ug/l	2.5	0.15
Tetrahydrofuran	ND	ug/l	5.0	0.83
2,2-Dichloropropane	ND	ug/l	2.5	0.20
1,2-Dibromoethane	ND	ug/l	2.0	0.19
1,3-Dichloropropane	ND	ug/l	2.5	0.21
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	0.16
Bromobenzene	ND	ug/l	2.5	0.15
n-Butylbenzene	ND	ug/l	0.50	0.19
sec-Butylbenzene	ND	ug/l	0.50	0.18

06/14/17

 Project Name:
 HP WALTHAM
 Lab Number:

 Project Number:
 01.0015522.17
 Report Date:

ank Analysis

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

1,8260C 05/12/17 06:28 MM

arameter	Result	Qualifier Units	s RL	MDL	
olatile Organics by GC/MS - V	/estborough La	b for sample(s):	01 Batch:	WG1002896-5	
tert-Butylbenzene	ND	ug/l	2.5	0.18	
o-Chlorotoluene	ND	ug/l	2.5	0.17	
p-Chlorotoluene	ND	ug/l	2.5	0.18	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.35	
Hexachlorobutadiene	ND	ug/l	0.50	0.22	
Isopropylbenzene	ND	ug/l	0.50	0.19	
p-Isopropyltoluene	ND	ug/l	0.50	0.19	
Naphthalene	ND	ug/l	2.5	0.22	
n-Propylbenzene	ND	ug/l	0.50	0.17	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.23	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.22	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.17	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.19	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.18	
Ethyl ether	ND	ug/l	2.5	0.16	
Tert-Butyl Alcohol	ND	ug/l	10	1.4	
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	0.28	

		Acceptance
Surrogate	%Recovery Qualifie	er Criteria
1,2-Dichloroethane-d4	87	70-130
Toluene-d8	112	70-130
4-Bromofluorobenzene	115	70-130
Dibromofluoromethane	85	70-130

Project Name:	HP WALTHAM	Lab Number:	L1714337
Project Number:	01.0015522.17	Report Date:	06/14/17

Analytical Method:	1,8260C
Analytical Date:	05/12/17 13:36
Analyst:	PK

Parameter	Result	Qualifier Unit	s	RL	MDL	
Volatile Organics by GC/MS - V	Nestborough La	b for sample(s):	01	Batch:	WG1003068-5	
Ethyl Alcohol	ND	ug	/I	250	14.	

		Acceptance
Surrogate	%Recovery Qualifi	er Criteria
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	100	70-130
Dibromofluoromethane	100	70-130

Lab Control Sample Analysis

Project Name:	HP WALTHAM	Batch Quality Control	Lab Number:	L1714337
Project Number:	01.0015522.17		Report Date:	06/14/17

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	nple(s): 01	Batch: WG1001	1729-2					
1,2-Dibromoethane	104		-		70-130	-			A

06/14/17

Lab Control Sample Analysis

Project Name:	HP WALTHAM	Batch Quality Control	Lab Number:
Project Number:	01.0015522.17		Report Date:

	LCS		LCSD %Recovery					RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Volatile Organics by GC/MS-SIM - Westbord	ough Lab Associat	ed sample(s):	01 Batch:	WG1002892-3	WG1002892-4			
1,4-Dioxane	110		100		70-130	10		25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough I	Lab Associated	sample(s): 01	Batch: WG1	002896-3	WG1002896-4			
Methylene chloride	100		110		70-130	10		20
1,1-Dichloroethane	110		100		70-130	10		20
Chloroform	94		95		70-130	1		20
Carbon tetrachloride	73		74		63-132	1		20
1,2-Dichloropropane	100		100		70-130	0		20
Dibromochloromethane	84		88		63-130	5		20
1,1,2-Trichloroethane	110		110		70-130	0		20
Tetrachloroethene	96		100		70-130	4		20
Chlorobenzene	98		98		75-130	0		25
Trichlorofluoromethane	87		84		62-150	4		20
1,2-Dichloroethane	84		85		70-130	1		20
1,1,1-Trichloroethane	82		82		67-130	0		20
Bromodichloromethane	90		87		67-130	3		20
trans-1,3-Dichloropropene	100		110		70-130	10		20
cis-1,3-Dichloropropene	98		99		70-130	1		20
1,1-Dichloropropene	100		100		70-130	0		20
Bromoform	92		88		54-136	4		20
1,1,2,2-Tetrachloroethane	110		110		67-130	0		20
Benzene	100		110		70-130	10		25
Toluene	110		110		70-130	0		25
Ethylbenzene	110		110		70-130	0		20
Chloromethane	96		97		64-130	1		20
Bromomethane	87		85		39-139	2		20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
platile Organics by GC/MS - Westb	oorough Lab Associated s	ample(s): 01	Batch: WG1	002896-3	WG1002896-4			
Vinyl chloride	110		110		55-140	0	20	
Chloroethane	110		110		55-138	0	20	
1,1-Dichloroethene	100		100		61-145	0	25	
trans-1,2-Dichloroethene	100		100		70-130	0	20	
Trichloroethene	88		91		70-130	3	25	
1,2-Dichlorobenzene	94		97		70-130	3	20	
1,3-Dichlorobenzene	95		94		70-130	1	20	
1,4-Dichlorobenzene	94		95		70-130	1	20	
Methyl tert butyl ether	97		100		63-130	3	20	
p/m-Xylene	105		100		70-130	5	20	
o-Xylene	105		105		70-130	0	20	
cis-1,2-Dichloroethene	98		94		70-130	4	20	
Dibromomethane	90		92		70-130	2	20	
1,4-Dichlorobutane	100		110		70-130	10	20	
1,2,3-Trichloropropane	100		110		64-130	10	20	
Styrene	105		105		70-130	0	20	
Dichlorodifluoromethane	97		97		36-147	0	20	
Acetone	84		76		58-148	10	20	
Carbon disulfide	110		110		51-130	0	20	
2-Butanone	87		75		63-138	15	20	
Vinyl acetate	81		87		70-130	7	20	
4-Methyl-2-pentanone	100		110		59-130	10	20	
2-Hexanone	83		83		57-130	0	20	

Lab Number: L1714337

Report Date: 06/14/17

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s): 01	I Batch: WG	1002896-3	WG1002896-4			
Ethyl methacrylate	120		120		70-130	0	20	
Acrylonitrile	94		94		70-130	0	20	
Bromochloromethane	85		89		70-130	5	20	
Tetrahydrofuran	76		82		58-130	8	20	
2,2-Dichloropropane	87		87		63-133	0	20	
1,2-Dibromoethane	100		100		70-130	0	20	
1,3-Dichloropropane	120		120		70-130	0	20	
1,1,1,2-Tetrachloroethane	87		90		64-130	3	20	
Bromobenzene	93		92		70-130	1	20	
n-Butylbenzene	120		120		53-136	0	20	
sec-Butylbenzene	95		94		70-130	1	20	
tert-Butylbenzene	90		92		70-130	2	20	
o-Chlorotoluene	100		100		70-130	0	20	
p-Chlorotoluene	100		110		70-130	10	20	
1,2-Dibromo-3-chloropropane	94		98		41-144	4	20	
Hexachlorobutadiene	110		110		63-130	0	20	
Isopropylbenzene	94		96		70-130	2	20	
p-Isopropyltoluene	94		90		70-130	4	20	
Naphthalene	88		86		70-130	2	20	
n-Propylbenzene	100		100		69-130	0	20	
1,2,3-Trichlorobenzene	95		97		70-130	2	20	
1,2,4-Trichlorobenzene	90		94		70-130	4	20	
1,3,5-Trimethylbenzene	95		96		64-130	1	20	

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01 Batch: WG	1002896-3	WG1002896-4				
1,2,4-Trimethylbenzene	98		95		70-130	3		20	
trans-1,4-Dichloro-2-butene	140	Q	100		70-130	33	Q	20	
Ethyl ether	120		130		59-134	8		20	
Tert-Butyl Alcohol	90		96		70-130	6		20	
Tertiary-Amyl Methyl Ether	97		99		66-130	2		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	al %Recovery Qua	l Criteria
1,2-Dichloroethane-d4	86	89	70-130
Toluene-d8	110	112	70-130
4-Bromofluorobenzene	110	107	70-130
Dibromofluoromethane	88	89	70-130

Project Name:	HP WALTHAM
Project Number:	01.0015522.17

 Lab Number:
 L1714337

 Report Date:
 06/14/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): (01 Batch: WG	1003068-3	WG1003068-4			
Ethyl Alcohol	82		90		70-130	9		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	al %Recovery Q	ual Criteria
1,2-Dichloroethane-d4	91	94	70-130
Toluene-d8	102	100	70-130
4-Bromofluorobenzene	101	101	70-130
Dibromofluoromethane	97	97	70-130

		Matrix Spike Analysis Batch Quality Control		
Project Name:	HP WALTHAM	Batch Quanty Control	Lab Number:	L1714337
Project Number:	01.0015522.17		Report Date:	06/14/17

	Native	MS	MS	MS		MSD	MSD		Recovery		RPD	
Parameter	Sample	Added	Found %	Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual Limits	<u>Column</u>
Microextractables by GC	- Westborough Lab	Associate	d sample(s): 01	QC Batch	ID: WG10	01729-3	QC Sample:	L17141	30-01 Clie	ent ID: 1	MS Sample	
1,2-Dibromoethane	ND	0.252	0.268	106		-	-		65-135	-	20	А
1,2-Dibromo-3-chloropropane	ND	0.252	0.232	92		-	-		65-135	-	20	А

SEMIVOLATILES

			Serial_No:06141712:06			
Project Name:	HP WALTHAM		Lab Number:	L1714337		
Project Number:	01.0015522.17		Report Date:	06/14/17		
		SAMPLE RESULTS				
Lab ID:	L1714337-01		Date Collected:	05/04/17 12:15		
Client ID:	INF		Date Received:	05/04/17		
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified		
			Extraction Metho	d:EPA 3510C		
Matrix:	Water		Extraction Date:	05/07/17 23:02		
Analytical Method:	1,8270D					
Analytical Date:	05/09/17 06:36					
Analyst:	СВ					
-						

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Benzidine	ND		ug/l	20	8.1	1		
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1		
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1		
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1		
1,3-Dichlorobenzene	ND		ug/l	2.0	0.69	1		
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1		
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1		
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1		
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1		
Azobenzene	ND		ug/l	2.0	0.75	1		
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1		
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1		
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1		
Isophorone	ND		ug/l	5.0	0.60	1		
Nitrobenzene	ND		ug/l	2.0	0.75	1		
NDPA/DPA	ND		ug/l	2.0	0.64	1		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1		
Bis(2-ethylhexyl)phthalate	1.3	J	ug/l	3.0	0.91	1		
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1		
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1		
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1		
Diethyl phthalate	ND		ug/l	5.0	0.63	1		
Dimethyl phthalate	ND		ug/l	5.0	0.65	1		
Biphenyl	ND		ug/l	2.0	0.76	1		
Aniline	ND		ug/l	2.0	0.65	1		
4-Chloroaniline	ND		ug/l	5.0	0.63	1		
2-Nitroaniline	ND		ug/l	5.0	1.1	1		
3-Nitroaniline	ND		ug/l	5.0	1.2	1		

		Serial_No:06141712:06					
Project Name:	HP WALTHAM				Lab Nu	mber:	L1714337
Project Number:	01.0015522.17				Report	Date:	06/14/17
-		SAMP		5	-		
Lab ID: Client ID: Sample Location:	L1714337-01 INF WALTHAM, MA				Date Col Date Ree Field Pre	ceived:	05/04/17 12:15 05/04/17 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organ	ics by GC/MS - Westb	orough Lab					
4-Nitroaniline		ND		ug/l	5.0	1.3	1
Dibenzofuran		ND		ug/l	2.0	0.66	1
n-Nitrosodimethylamine		ND		ug/l	2.0	0.67	1
2,4,6-Trichlorophenol		ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol		ND		ug/l	2.0	0.62	1
2-Chlorophenol		ND		ug/l	2.0	0.63	1
2,4-Dichlorophenol		ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol		ND		ug/l	5.0	1.6	1
2-Nitrophenol		ND		ug/l	10	1.5	1
4-Nitrophenol		ND		ug/l	10	1.8	1
2,4-Dinitrophenol		ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol		ND		ug/l	10	2.1	1
Phenol		ND		ug/l	5.0	1.9	1
2-Methylphenol		ND		ug/l	5.0	1.0	1
3-Methylphenol/4-Methylp	bhenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol		ND		ug/l	5.0	0.72	1
Benzoic Acid		ND		ug/l	50	13.	1
Benzyl Alcohol		ND		ug/l	2.0	0.72	1
Carbazole		ND		ug/l	2.0	0.63	1
Pyridine		ND		ug/l	3.5	1.9	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	50	21-120
Phenol-d6	36	10-120
Nitrobenzene-d5	77	23-120
2-Fluorobiphenyl	73	15-120
2,4,6-Tribromophenol	46	10-120
4-Terphenyl-d14	69	41-149

			Serial_No:06141712:06			
Project Name:	HP WALTHAM		Lab Number:	L1714337		
Project Number:	01.0015522.17		Report Date:	06/14/17		
		SAMPLE RESULTS				
Lab ID:	L1714337-01		Date Collected:	05/04/17 12:15		
Client ID:	INF		Date Received:	05/04/17		
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified		
			Extraction Metho	d:EPA 3510C		
Matrix:	Water		Extraction Date:	05/07/17 23:07		
Analytical Method:	1,8270D-SIM					
Analytical Date:	05/10/17 17:32					
Analyst:	KL					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND		ug/l	0.10	0.04	1		
2-Chloronaphthalene	ND		ug/l	0.10	0.04	1		
Fluoranthene	ND		ug/l	0.20	0.04	1		
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1		
Naphthalene	ND		ug/l	0.20	0.04	1		
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1		
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1		
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1		
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1		
Chrysene	ND		ug/l	0.20	0.04	1		
Acenaphthylene	ND		ug/l	0.20	0.04	1		
Anthracene	ND		ug/l	0.20	0.04	1		
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1		
Fluorene	ND		ug/l	0.20	0.04	1		
Phenanthrene	ND		ug/l	0.20	0.02	1		
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1		
Pyrene	ND		ug/l	0.20	0.04	1		
1-Methylnaphthalene	ND		ug/l	0.20	0.04	1		
2-Methylnaphthalene	ND		ug/l	0.20	0.05	1		
Pentachlorophenol	ND		ug/l	0.80	0.22	1		
Hexachlorobenzene	ND		ug/l	0.80	0.03	1		
Hexachloroethane	ND		ug/l	0.80	0.03	1		

Parameter		Result	Qualifier	Units	RL MD	Dilution Factor	
Sample Location:	WALTHAM, MA				Field Prep:	Not Specified	
Client ID:	INF				Date Received:	05/04/17	
Lab ID:	L1714337-01				Date Collected:	05/04/17 12:15	
		SAMP	LE RESULTS	5			
Project Number:	01.0015522.17				Report Date:	06/14/17	
Project Name:	HP WALTHAM				Lab Number:	L1714337	
					Serial_No:06141712:06		

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	41	21-120
Phenol-d6	30	10-120
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	70	15-120
2,4,6-Tribromophenol	75	10-120
4-Terphenyl-d14	65	41-149

Project Name:	HP WALTHAM			Lab Number:	L1714337
Project Number:	01.0015522.17			Report Date:	06/14/17
		 	 -		

Analytical Method:
Analytical Date:
Analyst:

1,8270D 05/09/17 20:52 CB Extraction Method: EPA 3510C Extraction Date: 05/07/17 23:02

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/M	IS - Westboroug	h Lab for s	ample(s):	01	Batch:	WG1001142-1
Acenaphthene	ND		ug/l		2.0	0.59
Benzidine	ND		ug/l		20	8.1
1,2,4-Trichlorobenzene	ND		ug/l		5.0	0.66
Hexachlorobenzene	ND		ug/l		2.0	0.58
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.67
2-Chloronaphthalene	ND		ug/l		2.0	0.64
1,2-Dichlorobenzene	ND		ug/l		2.0	0.73
1,3-Dichlorobenzene	ND		ug/l		2.0	0.69
1,4-Dichlorobenzene	ND		ug/l		2.0	0.71
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.4
2,4-Dinitrotoluene	ND		ug/l		5.0	0.84
2,6-Dinitrotoluene	ND		ug/l		5.0	1.1
Azobenzene	ND		ug/l		2.0	0.75
Fluoranthene	ND		ug/l		2.0	0.57
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.62
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.73
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.70
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.63
Hexachlorobutadiene	ND		ug/l		2.0	0.72
Hexachlorocyclopentadiene	ND		ug/l		20	7.8
Hexachloroethane	ND		ug/l		2.0	0.68
Isophorone	ND		ug/l		5.0	0.60
Naphthalene	ND		ug/l		2.0	0.68
Nitrobenzene	ND		ug/l		2.0	0.75
NDPA/DPA	ND		ug/l		2.0	0.64
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.70
Bis(2-ethylhexyl)phthalate	1.5	J	ug/l		3.0	0.91
Butyl benzyl phthalate	ND		ug/l		5.0	1.3
Di-n-butylphthalate	ND		ug/l		5.0	0.69

Project Name:	HP WALTHAM	Lab Number:	L1714337
Project Number:	01.0015522.17	Report Date:	06/14/17

Analytical Method:
Analytical Date:
Analyst:

1,8270D 05/09/17 20:52 CB Extraction Method: EPA 3510C Extraction Date: 05/07/17 23:02

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	- Westborough	n Lab for s	ample(s):	01	Batch:	WG1001142-1
Di-n-octylphthalate	ND		ug/l		5.0	1.1
Diethyl phthalate	ND		ug/l		5.0	0.63
Dimethyl phthalate	ND		ug/l		5.0	0.65
Benzo(a)anthracene	ND		ug/l		2.0	0.61
Benzo(a)pyrene	ND		ug/l		2.0	0.54
Benzo(b)fluoranthene	ND		ug/l		2.0	0.64
Benzo(k)fluoranthene	ND		ug/l		2.0	0.60
Chrysene	ND		ug/l		2.0	0.54
Acenaphthylene	ND		ug/l		2.0	0.66
Anthracene	ND		ug/l		2.0	0.64
Benzo(ghi)perylene	ND		ug/l		2.0	0.61
Fluorene	ND		ug/l		2.0	0.62
Phenanthrene	ND		ug/l		2.0	0.61
Dibenzo(a,h)anthracene	ND		ug/l		2.0	0.55
Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	0.71
Pyrene	ND		ug/l		2.0	0.57
Biphenyl	ND		ug/l		2.0	0.76
Aniline	ND		ug/l		2.0	0.65
4-Chloroaniline	ND		ug/l		5.0	0.63
1-Methylnaphthalene	ND		ug/l		2.0	0.67
2-Nitroaniline	ND		ug/l		5.0	1.1
3-Nitroaniline	ND		ug/l		5.0	1.2
4-Nitroaniline	ND		ug/l		5.0	1.3
Dibenzofuran	ND		ug/l		2.0	0.66
2-Methylnaphthalene	ND		ug/l		2.0	0.72
n-Nitrosodimethylamine	ND		ug/l		2.0	0.67
2,4,6-Trichlorophenol	ND		ug/l		5.0	0.68
p-Chloro-m-cresol	ND		ug/l		2.0	0.62
2-Chlorophenol	ND		ug/l		2.0	0.63

Project Name:	HP WALTHAM	Lab Number:	L1714337
Project Number:	01.0015522.17	Report Date:	06/14/17

Analytical Method: Analytical Date: Analyst:

1,8270D 05/09/17 20:52 CB Extraction Method: EPA 3510C Extraction Date: 05/07/17 23:02

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/M	S - Westboroug	h Lab for s	ample(s):	01	Batch:	WG1001142-1
2,4-Dichlorophenol	ND		ug/l		5.0	0.77
2,4-Dimethylphenol	ND		ug/l		5.0	1.6
2-Nitrophenol	ND		ug/l		10	1.5
4-Nitrophenol	ND		ug/l		10	1.8
2,4-Dinitrophenol	ND		ug/l		20	5.5
4,6-Dinitro-o-cresol	ND		ug/l		10	2.1
Pentachlorophenol	ND		ug/l		10	3.4
Phenol	ND		ug/l		5.0	1.9
2-Methylphenol	ND		ug/l		5.0	1.0
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	1.1
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.72
Benzoic Acid	ND		ug/l		50	13.
Benzyl Alcohol	ND		ug/l		2.0	0.72
Carbazole	ND		ug/l		2.0	0.63
Pyridine	ND		ug/l		3.5	1.9

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

Project Name: Project Number:	HP WALTHAM 01.0015522.17		Lab Number: Report Date:	L1714337 06/14/17
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270D 05/09/17 20:52 CB		Extraction Method: Extraction Date:	EPA 3510C 05/07/17 23:02

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	n Lab for s	ample(s):	01	Batch:	WG1001142-1	

%Recovery Qu	Acceptance alifier Criteria
44	21-120
31	10-120
72	23-120
66	15-120
69	10-120
64	41-149
	44 31 72 66 69

Project Name:	HP WALTHAM		Lab Number:	L1714337
Project Number:	01.0015522.17		Report Date:	06/14/17
		Mathad Dlauk Analysia		

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	05/10/17 16:13	Extraction Date:	05/07/17 23:07
Analyst:	KL		

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC	MS-SIM - Westb	orough Lab for sample	e(s): 01	Batch: WG1001143-1
Acenaphthene	ND	ug/l	0.10	0.04
2-Chloronaphthalene	ND	ug/l	0.20	0.04
Fluoranthene	ND	ug/l	0.20	0.04
Hexachlorobutadiene	ND	ug/l	0.50	0.04
Naphthalene	ND	ug/l	0.20	0.04
Benzo(a)anthracene	ND	ug/l	0.20	0.02
Benzo(a)pyrene	ND	ug/l	0.20	0.04
Benzo(b)fluoranthene	ND	ug/l	0.20	0.02
Benzo(k)fluoranthene	ND	ug/l	0.20	0.04
Chrysene	ND	ug/l	0.20	0.04
Acenaphthylene	ND	ug/l	0.20	0.04
Anthracene	ND	ug/l	0.20	0.04
Benzo(ghi)perylene	ND	ug/l	0.20	0.04
Fluorene	ND	ug/l	0.20	0.04
Phenanthrene	ND	ug/l	0.20	0.02
Dibenzo(a,h)anthracene	ND	ug/l	0.20	0.04
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.20	0.04
Pyrene	ND	ug/l	0.20	0.04
1-Methylnaphthalene	ND	ug/l	0.20	0.04
2-Methylnaphthalene	ND	ug/l	0.20	0.05
Pentachlorophenol	ND	ug/l	0.80	0.22
Hexachlorobenzene	ND	ug/l	0.80	0.03
Hexachloroethane	ND	ug/l	0.80	0.03

Project Name: Project Number:	HP WALTHAM 01.0015522.17		Lab Number: Report Date:	L1714337 06/14/17
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270D-SIM 05/10/17 16:13 KL		Extraction Method: Extraction Date:	EPA 3510C 05/07/17 23:07

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	IM - Westb	orough Lab	for sample	e(s): 01	Batch: WG1001143-1

Surrogate	%Recovery Qua	Acceptance lifier Criteria
2-Fluorophenol	44	21-120
Phenol-d6	31	10-120
Nitrobenzene-d5	72	23-120
2-Fluorobiphenyl	69	15-120
2,4,6-Tribromophenol	75	10-120
4-Terphenyl-d14	70	41-149

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits	
emivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1001142-2 WG1001142-3								
Acenaphthene	64		60	37-111	6		30	
Benzidine	8	Q	15	10-75	59	Q	30	
1,2,4-Trichlorobenzene	68		60	39-98	13		30	
Hexachlorobenzene	70		66	40-140	6		30	
Bis(2-chloroethyl)ether	66		63	40-140	5		30	
2-Chloronaphthalene	69		65	40-140	6		30	
1,2-Dichlorobenzene	62		59	40-140	5		30	
1,3-Dichlorobenzene	60		57	40-140	5		30	
1,4-Dichlorobenzene	60		57	36-97	5		30	
3,3'-Dichlorobenzidine	52		50	40-140	4		30	
2,4-Dinitrotoluene	71		67	48-143	6		30	
2,6-Dinitrotoluene	76		72	40-140	5		30	
Azobenzene	66		62	40-140	6		30	
Fluoranthene	66		62	40-140	6		30	
4-Chlorophenyl phenyl ether	67		64	40-140	5		30	
4-Bromophenyl phenyl ether	70		66	40-140	6		30	
Bis(2-chloroisopropyl)ether	70		71	40-140	1		30	
Bis(2-chloroethoxy)methane	72		66	40-140	9		30	
Hexachlorobutadiene	64		61	40-140	5		30	
Hexachlorocyclopentadiene	64		59	40-140	8		30	
Hexachloroethane	60		57	40-140	5		30	
Isophorone	73		67	40-140	9		30	
Naphthalene	62		59	40-140	5		30	

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Rec Qual Lin		RPD Qual Limits	;
Semivolatile Organics by GC/MS - We	estborough Lab Associ	ated sample(s):	01 Batch:	WG1001142-2 WG	31001142-3		
Nitrobenzene	70		67	40-1	40 4	30	
NDPA/DPA	67		63	40-1	40 6	30	
n-Nitrosodi-n-propylamine	70		70	29-1	32 0	30	
Bis(2-ethylhexyl)phthalate	72		67	40-1	40 7	30	
Butyl benzyl phthalate	68		64	40-1	40 6	30	
Di-n-butylphthalate	67		64	40-1	40 5	30	
Di-n-octylphthalate	71		67	40-1	40 6	30	
Diethyl phthalate	68		64	40-1	40 6	30	
Dimethyl phthalate	74		71	40-1	40 4	30	
Benzo(a)anthracene	66		62	40-1	40 6	30	
Benzo(a)pyrene	68		65	40-1	40 5	30	
Benzo(b)fluoranthene	68		66	40-1	40 3	30	
Benzo(k)fluoranthene	69		64	40-1	40 8	30	
Chrysene	66		62	40-1	40 6	30	
Acenaphthylene	71		68	45-1	23 4	30	
Anthracene	66		61	40-1	40 8	30	
Benzo(ghi)perylene	67		63	40-1	40 6	30	
Fluorene	65		62	40-1	40 5	30	
Phenanthrene	64		60	40-1	40 6	30	
Dibenzo(a,h)anthracene	68		63	40-1	40 8	30	
Indeno(1,2,3-cd)pyrene	68		64	40-1	40 6	30	
Pyrene	66		62	26-1	27 6	30	
Biphenyl	72		69	40-1	40 4	30	

arameter	LCS %Recovery	Qual	LCSD %Recovery		covery mits RP	D	Qual	RPD Limits	
emivolatile Organics by GC/MS - West	mivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1001142-2 WG1001142-3								
Aniline	44		45	40	-140 2	2		30	
4-Chloroaniline	54		56	40	-140 4	1		30	
1-Methylnaphthalene	70		66	41	-103 6	6		30	
2-Nitroaniline	74		70	52	-143 6	6		30	
3-Nitroaniline	50		50	25	-145 0)		30	
4-Nitroaniline	65		61	51	-143 6	6		30	
Dibenzofuran	66		63	40	-140 5	5		30	
2-Methylnaphthalene	66		62	40	-140 6	6		30	
n-Nitrosodimethylamine	40		37	22	2-74 8	3		30	
2,4,6-Trichlorophenol	77		73	30	-130 5	5		30	
p-Chloro-m-cresol	72		69	23	-97 4	4		30	
2-Chlorophenol	66		64	27	-123 3	3		30	
2,4-Dichlorophenol	76		68	30	-130 1	1		30	
2,4-Dimethylphenol	68		64	30	-130 6	3		30	
2-Nitrophenol	71		65	30	-130 9	Э		30	
4-Nitrophenol	56		48	10	-80 1	5		30	
2,4-Dinitrophenol	67		65	20	-130 3	3		30	
4,6-Dinitro-o-cresol	66		63	20	-164 5	5		30	
Pentachlorophenol	58		56	9-	103 4	1		30	
Phenol	32		32	12	-110 0)		30	
2-Methylphenol	61		59	30	-130 3	3		30	
3-Methylphenol/4-Methylphenol	60		58	30	-130 3	3		30	
2,4,5-Trichlorophenol	76		72	30	-130 5	5		30	

Lab Number: L1714337 Report Date: 06/14/17

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS -	Westborough Lab Assoc	iated sample(s):	01 Batch:	WG1001142-2	2 WG1001142-3				
Benzoic Acid	25		27		10-164	8		30	
Benzyl Alcohol	63		62		26-116	2		30	
Carbazole	65		62		55-144	5		30	
Pyridine	33		31		10-66	6		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	48	44	21-120
Phenol-d6	34	33	10-120
Nitrobenzene-d5	69	68	23-120
2-Fluorobiphenyl	68	66	15-120
2,4,6-Tribromophenol	72	69	10-120
4-Terphenyl-d14	66	62	41-149

Project Name:

HP WALTHAM

Project Number: 01.0015522.17

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits			
mivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1001143-2 WG1001143-3								
Acenaphthene	49	69	37-111	34	40			
2-Chloronaphthalene	53	74	40-140	33	40			
Fluoranthene	55	77	40-140	33	40			
Hexachlorobutadiene	47	67	40-140	35	40			
Naphthalene	48	69	40-140	36	40			
Benzo(a)anthracene	54	74	40-140	31	40			
Benzo(a)pyrene	59	81	40-140	31	40			
Benzo(b)fluoranthene	58	79	40-140	31	40			
Benzo(k)fluoranthene	57	76	40-140	29	40			
Chrysene	48	65	40-140	30	40			
Acenaphthylene	56	79	40-140	34	40			
Anthracene	53	74	40-140	33	40			
Benzo(ghi)perylene	59	81	40-140	31	40			
Fluorene	52	73	40-140	34	40			
Phenanthrene	48	68	40-140	34	40			
Dibenzo(a,h)anthracene	61	84	40-140	32	40			
Indeno(1,2,3-cd)pyrene	58	82	40-140	34	40			
Pyrene	54	76	26-127	34	40			
1-Methylnaphthalene	52	73	40-140	34	40			
2-Methylnaphthalene	53	75	40-140	34	40			
Pentachlorophenol	56	79	9-103	34	40			
Hexachlorobenzene	50	69	40-140	32	40			
Hexachloroethane	45	66	40-140	38	40			

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1714337

 Report Date:
 06/14/17

 LCS
 LCSD
 %Recovery
 RPD

 Parameter
 %Recovery
 Qual
 Value
 Limits
 RPD
 Qual
 Limits

 Semivolatile Organics by GC/MS-SIM - Westborough Lab
 Associated sample(s):
 01
 Batch:
 WG1001143-2
 WG1001143-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	34	48	21-120
Phenol-d6	25	35	10-120
Nitrobenzene-d5	56	79	23-120
2-Fluorobiphenyl	52	73	15-120
2,4,6-Tribromophenol	56	76	10-120
4-Terphenyl-d14	56	76	41-149

PCBS

			Serial_No	0:06141712:06
Project Name:	HP WALTHAM		Lab Number:	L1714337
Project Number:	01.0015522.17		Report Date:	06/14/17
		SAMPLE RESULTS		
Lab ID:	L1714337-01		Date Collected:	05/04/17 12:15
Client ID:	INF		Date Received:	05/04/17
Sample Location:	WALTHAM, MA		Field Prep:	Not Specified
			Extraction Method	d:EPA 608
Matrix:	Water		Extraction Date:	05/08/17 05:17
Analytical Method:	5,608		Cleanup Method:	EPA 3665A
Analytical Date:	05/09/17 00:04		Cleanup Date:	05/08/17
Analyst:	HT		Cleanup Method:	EPA 3660B
			Cleanup Date:	05/08/17
			-	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250	0.042	1	А
Aroclor 1221	ND		ug/l	0.250	0.056	1	A
Aroclor 1232	ND		ug/l	0.250	0.024	1	А
Aroclor 1242	ND		ug/l	0.250	0.028	1	А
Aroclor 1248	ND		ug/l	0.250	0.028	1	А
Aroclor 1254	0.101	J	ug/l	0.250	0.043	1	А
Aroclor 1260	ND		ug/l	0.200	0.045	1	А
Surrogate			% Recovery	Qualifier		ptance iteria Co	lumn

Surrogate	% Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	77		30-150	A	
Decachlorobiphenyl	86		30-150	А	

Project Name:	HP WALTHAM	Lab Number:	L1714337
Project Number:	01.0015522.17	Report Date:	06/14/17

Method Blank Analysis Batch Quality Control

Analytical Method:
Analytical Date:
Analyst:

5,608 05/09/17 00:29 JW Extraction Method:EPA 608Extraction Date:05/08/17 05:17Cleanup Method:EPA 3665ACleanup Date:05/08/17Cleanup Method:EPA 3660BCleanup Date:05/08/17

Parameter	Result Qualifier Units		RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	Lab for sample	(s): 01 Batch:	WG100115	i 3 -1
Aroclor 1016	ND	ug/l	0.250	0.042	А
Aroclor 1221	ND	ug/l	0.250	0.056	А
Aroclor 1232	ND	ug/l	0.250	0.024	А
Aroclor 1242	ND	ug/l	0.250	0.028	А
Aroclor 1248	ND	ug/l	0.250	0.028	А
Aroclor 1254	ND	ug/l	0.250	0.043	А
Aroclor 1260	ND	ug/l	0.200	0.045	А

			Acceptance	Column e
Surrogate	%Recovery	Qualifier	Criteria	
2,4,5,6-Tetrachloro-m-xylene	68		30-150	А
Decachlorobiphenyl	89		30-150	А

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1714337 **Report Date:** 06/14/17

Project Name:	HP WALTHAM
Project Number:	01.0015522.17

	LCS		LCSD		%Recovery			RPD		
Parameter	%Recovery	Qual %	Recovery	Qual	Limits	RPD	Qual	Limits	Column	
Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 01 Batch: WG1001153-2										
			Daton.		, 2					
Aroclor 1016	85		-		30-150	-		30	А	
Aroclor 1260	96		-		30-150	-		30	А	

Surrogate	LCS %Recovery Qu	LCSD Ial %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	64 84			30-150 30-150	A A

Matrix Spike Analysis

Project Name:	HP WALTHAM	Batch Quality Control	Lab Number:	L1714337
Project Number:	01.0015522.17		Report Date:	06/14/17

	Native	MS	MS	MS		MSD	MSD		Recovery	-	RPD	
Parameter	Sample	Added	Found	%Recovery	' Qual	Found	%Recovery	Qual	Limits	RPD Q	ual Limits	<u>Column</u>
Polychlorinated Biphenyls by G	C - Westbord	ough Lab	Associated sam	nple(s): 01 (QC Batch	ID: WG100 ⁻	1153-3 QC	Sample	: L1714670-0	2 Client I	ID: MS Samp	ble
Aroclor 1016	ND	3.12	3.05	98		-	-		40-126	-	30	А
Aroclor 1260	ND	3.12	2.88	92		-	-		40-127	-	30	А

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	79		30-150	A
Decachlorobiphenyl	63		30-150	А

Lab Duplicate Analysis Batch Quality Control

Project Name:HP WALTHAMProject Number:01.0015522.17

Li

Parameter	Native Sample	Duplicate Sampl	e Units	RPD	Qual	RPD Limits	
Polychlorinated Biphenyls by GC - Westborough Lab	Associated sample(s): 0	1 QC Batch ID:	WG1001153-4	QC Sample:	L1714670-03	Client ID:	DUP
Aroclor 1016	ND	ND	ug/l	NC		30	А
Aroclor 1221	ND	ND	ug/l	NC		30	А
Aroclor 1232	ND	ND	ug/l	NC		30	А
Aroclor 1242	0.033J	0.055J	ug/l	NC		30	Α
Aroclor 1248	ND	ND	ug/l	NC		30	А
Aroclor 1254	0.052J	0.099J	ug/l	NC		30	А
Aroclor 1260	ND	ND	ug/l	NC		30	А

			Acceptance	
Surrogate	%Recovery Qual	ifier %Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74	73	30-150	А
Decachlorobiphenyl	59	56	30-150	А

METALS

Serial_No:06141712:06

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Matrix:	Water										
Sample Location:	: WALT	THAM, MA					Field Pr	ep:	Not Sp	pecified	
Client ID:	INF						Date Re	eceived:	05/04/	17	
Lab ID:	L1714	1337-01					Date Co	ollected:	05/04/	17 12:15	
				SAMP	LE RES	ULTS					
Project Number:	01.00	15522.17					Report	Date:	06/14/	17	
Project Name:	HP W	ALTHAM					Lab Nu	mber:	L1714	337	

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Ma	insfield Lab										
Antimony, Total	ND		mg/l	0.00400	0.00042	1	05/05/17 07:5	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00022	J	mg/l	0.00100	0.00016	1	05/05/17 07:5	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00033	J	mg/l	0.00100	0.00005	1	05/05/17 07:5	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Chromium, Total	0.00164		mg/l	0.00100	0.00017	1	05/05/17 07:5	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Copper, Total	0.00516		mg/l	0.00100	0.00038	1	05/05/17 07:5	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Iron, Total	0.107		mg/l	0.050	0.009	1	05/05/17 07:5	5 05/08/17 10:44	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.00050	0.00034	1	05/05/17 07:5	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020	0.00006	1	05/05/17 14:0	9 05/05/17 19:10	EPA 245.1	3,245.1	EA
Nickel, Total	0.00488		mg/l	0.00200	0.00055	1	05/05/17 07:5	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	05/05/17 07:5	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00100	0.00026	1	05/05/17 07:5	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Zinc, Total	0.00673	J	mg/l	0.0100	0.00341	1	05/05/17 07:5	5 05/05/17 11:59	EPA 3005A	3,200.8	AM
Total Hardness b	y SM 2340E	8 - Mansfie	ld Lab								
Hardness	447		mg/l	0.660	NA	1	05/05/17 07:5	5 05/08/17 10:44	EPA 3005A	19,200.7	PS
			J.								-

General Chemistry - Mansfield Lab					
Chromium, Trivalent ND	mg/l	0.010	0.010	1	05/05/17 11:59 NA 107,-

 Lab Number:
 L1714337

 Report Date:
 06/14/17

Project Name:HP WALTHAMProject Number:01.0015522.17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s)	: 01 Batc	h: WG10	00580-	1				
Antimony, Total	ND	mg/l	0.00400	0.00042	! 1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Arsenic, Total	ND	mg/l	0.0010	0.0002	1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00100	0.00005	5 1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100	0.00017	' 1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Copper, Total	ND	mg/l	0.00100	0.00038	3 1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Lead, Total	ND	mg/l	0.0005	0.0003	1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200	0.00055	5 1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Selenium, Total	ND	mg/l	0.0050	0.0017	1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Silver, Total	ND	mg/l	0.00100	0.00026	5 1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000	0.00341	1	05/05/17 07:55	05/05/17 11:41	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01 Batch	n: WG10	000583-1	1				
Iron, Total	ND	mg/l	0.050	0.009	1	05/05/17 07:55	05/08/17 10:36	19,200.7	PS

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Hardness by SM 2	340B - Mansfield Lat	o for sam	ple(s): 0	1 Bate	h: WG100	0583-1			
Hardness	ND	mg/l	0.660	NA	1	05/05/17 07:55	05/08/17 10:36	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1714337

 Report Date:
 06/14/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Man	sfield Lab for sample(s):	01 Batc	h: WG10	00753-	1				
Mercury, Total	ND	mg/l	0.0002	0.0001	1	05/05/17 14:09	05/05/17 18:44	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis

Batch Quality Control

Project Name:HP WALTHAMProject Number:01.0015522.17

Lab Number: L1714337 Report Date: 06/14/17

LCSD %Recovery LCS **RPD** Limits %Recovery Qual %Recovery Limits RPD Parameter Qual Qual Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1000580-2 Antimony, Total 102 85-115 -Arsenic, Total 110 85-115 --Cadmium, Total 113 85-115 --Chromium, Total 85-115 100 --Copper, Total 99 85-115 --Lead. Total 104 85-115 --Nickel, Total 100 85-115 --Selenium, Total 85-115 106 --Silver, Total 102 85-115 --Zinc, Total 107 85-115 --Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1000583-2 109 85-115 Iron. Total --Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01 Batch: WG1000583-2 Hardness 85-115 105 -Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1000753-2 85-115 Mercury, Total 114

Matrix Spike Analysis **Batch Quality Control**

Project Name: HP WALTHAM Project Number: 01.0015522.17 Lab Number: L1714337 **Report Date:** 06/14/17

RPD Native MS MS MS MSD MSD Recovery Sample Qual Found Added Found %Recovery Limits Limits %Recovery Qual **RPD** Qual Parameter Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1000580-3 QC Sample: L1714337-01 Client ID: INF ND 0.5 0.5456 109 70-130 20 Antimony, Total -0.00022J 0.12 0.1316 110 70-130 Arsenic. Total -20 --0.00033J 0.051 0.05451 107 70-130 20 Cadmium. Total _ _ -Chromium, Total 0.00164 0.2 0.2007 100 70-130 -20 -Copper, Total 0.00516 0.25 0.2448 96 -70-130 20 _ -Lead, Total ND 0.51 0.5364 105 70-130 20 ---Nickel, Total 0.00488 0.5 0.4896 97 70-130 20 _ _ -Selenium, Total ND 0.12 0.1356 113 70-130 20 _ -Silver, Total ND 0.05 0.04842 97 70-130 20 --_ Zinc, Total 0.00673J 0.5 0.5224 104 70-130 20 _ -_ Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1000583-3 QC Sample: L1714337-01 Client ID: INF Iron, Total 0.107 1 1.12 101 75-125 20 _ Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1000583-3 QC Sample: L1714337-01 Client ID: INF Hardness 447. 66.2 471 36 Q 75-125 20 _ Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1000753-3 QC Sample: L1714406-01 Client ID: MS Sample Mercury, Total ND 0.005 0.0055 110 70-130 20 Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1000753-5 QC Sample: L1714413-01 Client ID: MS Sample Mercury, Total ND 0.005 0.0052 104 70-130 20

Lab Duplicate Analysis Batch Quality Control

Project Name:HP WALTHAMProject Number:01.0015522.17

l

Lab Number: L1714337 Report Date: 06/14/17

arameter	Native Sample Du	olicate Sample	Units	RPD	Qual RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1000580-4	QC Sample:	L1714337-01	Client ID: II	NF
Antimony, Total	ND	0.00062J	mg/l	NC	20
Arsenic, Total	0.00022J	0.0003J	mg/l	NC	20
Cadmium, Total	0.00033J	0.00032J	mg/l	NC	20
Chromium, Total	0.00164	0.00167	mg/l	2	20
Copper, Total	0.00516	0.00535	mg/l	4	20
Lead, Total	ND	ND	mg/l	NC	20
Nickel, Total	0.00488	0.00486	mg/l	0	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Zinc, Total	0.00673J	0.00465J	mg/l	NC	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1000583-4	QC Sample:	L1714337-01	Client ID: II	NF
Iron, Total	0.107	0.110	mg/l	3	20
otal Hardness by SM 2340B - Mansfield Lab Associate	ed sample(s): 01 QC Batch IE): WG1000583	-4 QC Sampl	e: L171433	7-01 Client ID: INF
Hardness	447.	439	mg/l	2	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1000753-4	QC Sample:	L1714406-01	Client ID: D	OUP Sample
Mercury, Total	ND	ND	mg/l	NC	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1000753-6	QC Sample:	L1714413-01	Client ID: D	OUP Sample
Mercury, Total	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Serial_No:06141712:06

Lab Number: L1714337 Report Date: 06/14/17

Project Name:HP WALTHAMProject Number:01.0015522.17

SAMPLE RESULTS

Lab ID:L1714337-01Client ID:INFSample Location:WALTHAM, MAMatrix:Water

Date Collected:	05/04/17 12:15
Date Received:	05/04/17
Field Prep:	Not Specified

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab									
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	05/06/17 01:33	121,2540D	VB
Cyanide, Total	ND		mg/l	0.005	0.001	1	05/08/17 10:30	05/08/17 14:46	121,4500CN-CE	LK
Chlorine, Total Residual	ND		mg/l	0.02	0.01	1	-	05/04/17 22:30	121,4500CL-D	AS
Nitrogen, Ammonia	0.303		mg/l	0.075	0.022	1	05/09/17 13:39	05/09/17 21:21	121,4500NH3-BH	AT
TPH, SGT-HEM	ND		mg/l	4.00	1.24	1	05/08/17 16:30	05/08/17 21:30	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030	0.010	1	05/09/17 15:21	05/10/17 14:59	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	05/05/17 01:30	05/05/17 02:23	1,7196A	JT
Anions by Ion Chromato	graphy - Westb	orough	Lab							
Chloride	608.		mg/l	25.0	4.20	50	-	05/07/17 01:47	44,300.0	JC

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1714337

 Report Date:
 06/14/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG10	00488-1				
Chlorine, Total Residual	ND		mg/l	0.02	0.01	1	-	05/04/17 22:30	121,4500CL-D	AS
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG10	00505-1				
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	05/05/17 01:30	05/05/17 02:16	1,7196A	JT
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG10	00902-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	05/06/17 01:33	121,2540D	VB
Anions by Ion Chron	natography - Westbo	orough	Lab for sar	mple(s):	01 Ba	atch: WG1	001110-1			
Chloride	ND		mg/l	0.500	0.083	1	-	05/06/17 19:46	44,300.0	JC
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG10	01236-1				
Cyanide, Total	ND		mg/l	0.005	0.001	1	05/08/17 10:30	05/08/17 14:38	121,4500CN-CI	E LK
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG10	01399-1				
TPH, SGT-HEM	ND		mg/l	4.00	1.24	1	05/08/17 16:30	05/08/17 21:30	74,1664A	ML
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG10	01579-1				
Nitrogen, Ammonia	0.032	J	mg/l	0.075	0.022	1	05/09/17 13:39	05/09/17 21:08	121,4500NH3-B	H AT
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG10	01732-1				
Phenolics, Total	ND		mg/l	0.030	0.010	1	05/09/17 15:21	05/10/17 14:56	4,420.1	AW

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM Project Number: 01.0015522.17 Lab Number: L1714337 Report Date: 06/14/17

Parameter	LCS %Recovery		CSD covery Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Assoc	iated sample(s):	01 Batch: WG	61000488-2					
Chlorine, Total Residual	105		-	90-110	-			
General Chemistry - Westborough Lab Assoc	iated sample(s):	01 Batch: WG	61000505-2					
Chromium, Hexavalent	96			85-115	-		20	
Anions by Ion Chromatography - Westborough	Lab Associated	sample(s): 01	Batch: WG100 ²	110-2				
Chloride	105			90-110	-			
General Chemistry - Westborough Lab Assoc	iated sample(s):	01 Batch: WG	61001236-2					
Cyanide, Total	92		-	90-110	-			
General Chemistry - Westborough Lab Assoc	iated sample(s):	01 Batch: WG	61001399-2					
ТРН	94			64-132	-		34	
General Chemistry - Westborough Lab Assoc	iated sample(s):	01 Batch: WG	61001579-2					
Nitrogen, Ammonia	94		-	80-120			20	
General Chemistry - Westborough Lab Assoc	iated sample(s):	01 Batch: WG	61001732-2					
Phenolics, Total	92		-	70-130	-			

Matrix Spike Analysis Batch Quality Control

Project Name:	HP WALTHAM
Project Number:	01.0015522.17

 Lab Number:
 L1714337

 Report Date:
 06/14/17

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits R	RPD PD Qual Limit
General Chemistry - Westbor	ough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	VG1000488-4	QC Sample: L1714337	-01 Client ID:	INF
Chlorine, Total Residual	ND	0.248	0.25	101	-	-	80-120	- 20
General Chemistry - Westbor	ough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	VG1000505-4	QC Sample: L1714337	-01 Client ID:	INF
Chromium, Hexavalent	ND	0.1	0.103	103	-	-	85-115	- 20
Anions by Ion Chromatograph Sample	ny - Westboroug	h Lab Asso	ciated san	nple(s): 01 QC	C Batch ID: WG	001110-3 QC Sampl	e: L1714286-01	Client ID: MS
Chloride	18.1	4	21.6	89	Q -	-	90-110	- 18
General Chemistry - Westbor	ough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	VG1001236-4	QC Sample: L1714448	-02 Client ID:	MS Sample
Cyanide, Total	0.003J	0.2	0.196	98	-	-	90-110	- 30
General Chemistry - Westbor	ough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	VG1001399-4	QC Sample: L1714569	-01 Client ID:	MS Sample
TPH	ND	25	21.2	85	-	-	64-132	- 34
General Chemistry - Westbor	ough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	VG1001579-4	QC Sample: L1713948	-01 Client ID:	MS Sample
Nitrogen, Ammonia	0.027J	4	3.84	96	-	-	80-120	- 20
General Chemistry - Westbor	ough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	VG1001732-4	QC Sample: L1714337	-01 Client ID:	INF
Phenolics, Total	ND	0.4	0.40	101	-	-	70-130	- 20

Lab Duplicate Analysis Batch Quality Control

Project Name:HP WALTHAMProject Number:01.0015522.17

Lab Number: L1714337 Report Date: 06/14/17

Parameter	Nat	Native Sample		Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1000488-3	QC Sample: L1	714337-01	Client ID:	INF
Chlorine, Total Residual		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1000505-3	QC Sample: L1	714337-01	Client ID:	INF
Chromium, Hexavalent		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1000902-2	QC Sample: L1	714322-01	Client ID:	DUP Sample
Solids, Total Suspended		520)	470	mg/l	10		29
Sample		18.1		18.1	mg/l	0		18
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1001236-3	QC Sample: L1	714432-08	Client ID:	DUP Sample
Cyanide, Total		ND		0.001J	mg/l	NC		30
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1001399-3	QC Sample: L1	714569-02	Client ID:	DUP Sample
ТРН		ND		ND	mg/l	NC		34
General Chemistry - Westborough Lab		01	OC Batch ID:		00.000000000000000000000000000000000000	712040 01	Client ID:	
	Associated sample(s):	01	QC Baltin ID.	WG1001579-3	QC Sample: L1	/13940-01	Olicin ID.	DUP Sample
Nitrogen, Ammonia	Associated sample(s):	0.027		WG1001579-3 ND	QC Sample: L1	NC		DUP Sample 20
, ,	,	0.027	7J			NC		20

Project Name:HP WALTHAMProject Number:01.0015522.17

Serial_No:06141712:06 *Lab Number:* L1714337 *Report Date:* 06/14/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1714337-01A	Plastic 250ml HNO3 preserved	A	<2	<2	3.7	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE-UI(180),AG- 2008T(180),AS-2008T(180),HG-U(28),SE- 2008T(180),CR-2008T(180),PB-2008T(180),SB- 2008T(180)
L1714337-01B	Amber 1000ml Na2S2O3	А	7	7	3.7	Y	Absent		PCB-608(7)
L1714337-01C	Amber 1000ml Na2S2O3	А	7	7	3.7	Y	Absent		PCB-608(7)
L1714337-01D	Amber 1000ml unpreserved	А	7	7	3.7	Y	Absent		8270TCL(7),8270TCL-SIM(7)
L1714337-01E	Amber 1000ml unpreserved	А	7	7	3.7	Y	Absent		8270TCL(7),8270TCL-SIM(7),504(14)
L1714337-01F	Vial unpreserved	А	N/A	N/A	3.7	Y	Absent		SUB-ETHANOL(14)
L1714337-01G	Vial unpreserved	А	N/A	N/A	3.7	Y	Absent		SUB-ETHANOL(14)
L1714337-01H	Vial Na2S2O3 preserved split	А	N/A	N/A	3.7	Y	Absent		504(14)
L1714337-01I	Vial Na2S2O3 preserved split	А	N/A	N/A	3.7	Y	Absent		504(14)
L1714337-01J	Vial HCl preserved	А	N/A	N/A	3.7	Y	Absent		8260-SIM(14),8260(14)
L1714337-01K	Vial HCl preserved	А	N/A	N/A	3.7	Y	Absent		8260-SIM(14),8260(14)
L1714337-01L	Vial HCl preserved	А	N/A	N/A	3.7	Y	Absent		8260-SIM(14),8260(14)
L1714337-01M	Plastic 950ml unpreserved	А	7	7	3.7	Y	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1)
L1714337-01N	Plastic 950ml unpreserved	А	7	7	3.7	Y	Absent		TSS-2540(7)
L1714337-01O	Plastic 250ml NaOH preserved	А	>12	>12	3.7	Y	Absent		TCN-4500(14)
L1714337-01P	Amber 1000ml HCI preserved	А	N/A	N/A	3.7	Υ	Absent		TPH-1664(28)
L1714337-01Q	Amber 1000ml HCl preserved	А	N/A	N/A	3.7	Y	Absent		TPH-1664(28)
L1714337-01R	Amber 950ml H2SO4 preserved	А	<2	<2	3.7	Y	Absent		TPHENOL-420(28)
L1714337-01T	Plastic 500ml H2SO4 preserved	А	<2	<2	3.7	Y	Absent		NH3-4500(28)

L1714337

06/14/17

Lab Number:

Report Date:

Project Name: HP WALTHAM

Project Number: 01.0015522.17

GLOSSARY

Acronyms

EDL	 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after

adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH. Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

Serial_No:06141712:06

Project Name: HP WALTHAM

Project Number: 01.0015522.17

Lab Number:	L1714337
Report Date:	06/14/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte which was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

 Lab Number:
 L1714337

 Report Date:
 06/14/17

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 5 Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 14 Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 74 Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 300: DW: Bromide
EPA 6860: NPW and SCM: Perchlorate
EPA 9010: NPW and SCM: Amenable Cyanide Distillation
EPA 9012B: NPW: Total Cyanide
EPA 9050A: NPW: Specific Conductance
SM3500: NPW: Ferrous Iron
SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.
SM5310C: DW: Dissolved Organic Carbon

SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.
EPA 624: Volatile Halocarbons & Aromatics,
EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs
EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.
Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

NH 5/8/17

Serial_No:06141712:06

ALPHA	CHAI	N OF CL	JSTO	DY F	AGE L	_OF	- Da	ate Re	c'd in L	ab:		51	4/1	7	A	LPH	A Jo	b #:	: 217/4337	
AVIAS VITICAL World Class Chamistry	200 Feature Divid	Projec	t Informati	on			R	eport	Inforn	natio	n - Da	ta Del	ivera	ables	-	_	g Info	-		
8 Walkup Drive Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 0204	³ Project	Name: H	Ph	alth	en	C	ADE	ĸ	br	EMAIL					Same	e as Cl	lient	info PO #:	
Client Information	on		Location: b				R	egula	tory R	equir	emen	ts &	P	roject	Info	rmati	ion R	equi	irements	
Client: G2	A	Project	#: 01.00	21552	2.17				No MA						32 (R				CT RCP Analytical Method Inorganics)	Is
Address: 24a	Vandarbill	A Project	Manager: J	. 60	16art	e	0	Yes 🗆	No GV	V1 Sta	indards				10 million				argets)	
Narn	rapol Ma C	2462 ALPH	A Quote #:				1000		No NF State /F								Criteri	a		
Phone: 781-	783 -1357		Around Tim	ne					11	A	15	the ra	1.	1	1	1	1	1	111	
Additional F	vis @ gza Project Information repart mi nce with ents.	Date	Due: Hex	chro	confirmed it pre- is hold is to be to be to be to to be to b	-5		K\$260 [624 []	E DW	ERCEAL DINCP 14 D	No. CHERT	R PCB & Targets Changes Only	UPEST EPA Conges On	A C IFingerprint	- SM. Smyran	- 1660 40 00	of -Earl	1.02/ 1.0.1	SAMPLE INFO Filtration Field Lab to do Preservation	TOTAL BOT
ALPHA Lab ID (Lab Use Only)	Sample	ID	Collee	ction Time	Sample Matrix	Sampler Initials	Kor.	Svor.	METALS	METALS: BE	The second	A PCB	TPH: D	R	Sit	PIN	NHI	EH	Lab to do	T L E S
14337-01	INF		5/4/17	121504	GW	BD	X	X	5	$\langle \rangle$	C	X		X	14	F	X	X	VOC'5-826K	F
				1						-									1,4-Diaxane 820	
																			82700/8270051M	
							-				-	tt			1				Ammania } 5M 4	
							1				1			-	+	-			Chloride SM450	140
			1	-	-							+ +	-	-	1			-	T55- 5M 2540	0
							-				+		-	-	-	-		_	TRC-SM4500	-
	1					-	-			-	-		-	-	+	-			Hex Chrom - 719	7.6
										-	-		+	+	+			1	EJANIJE - SM 450	1
											-				-			_	Total Phenol- 42	0.1
Container Type = Plastic	Preservative A= None				Conta	iner Type	V	A	F	D f	>	4	-	P	A	A	P	V	PCB-608 PPi3 Mifg(s=60 FH: 1501	20 4
A= Amber glass /= Vial G= Glass	$B = HCI$ $C = HNO_3$ $D = H_2SO_4$				Pr	eservative	ifec	1	H	Vag Nay	Ø	Na 2 (20)		1	Ha	#2	125	1	Ethanal 504	-
B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle		Reline		2	Date 5/4/0 5/4/0	e/Time 7 0,m 7 //4	Ľ	font	Rece	eived I	By:	-			15 1 15 1 117		Alph	ja's reve	bles submitted are subject Terms and Conditions. erse side. : 01-01 (rev. 12-Mar-2012)	to

SUB-UPS: Eurofins- Lancaster PA

	F CUSTC	CUSTODY PAGE 1 OF 1				e Reci	d in Lal	b;					AL	ALPHA Job #: L1714337				
	LYTICAL	Project Info	rmation	·	*.	Re	port	Infor	mation	Data	Del	ivera	bles	-		nform		
Westborough, MA	Mansfield, MA	Project Name:		· ·			FAX			E	MAIL				Same as Client info PO #:			
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Floject Name:					ADEx Add'l Deliverables											
Client Informa	tion	Project Locatio	on: MA				Regulatory Requirements/Report Limits.						s.	in a	9 - 1 1 - 1 - 1 1 - 1 - 1			
Client: Alpha Ana		Project #:				and the second se	DES RO		m		•			Crit	eria			
Address: 8 Walku	p Drive	Project Manag	er: Nichole H	unt					MPTIN	E CER	RTA	NTY-	CTR	EAS	ONAE	BLE C	ONFI	DENCE PROTOCOLS
Westborough, Ma	01581	ALPHA Quote		unt			Yes	-	□ No		Are	MCP A	nalytic	al Met	hods R	equired	?	
Phone: 508-898-9	0220	Turn-Around	• •	+	•		-		□ No	-	Are	CT RC	P (Rea	asonab	le Con	fidence	Protoco	ls) Required?
Fax:		Standard		ush (ONLY IF P	RE APPROVED	AN	ALYS	515	1		-	1	1	1	-	1-	1	SAMPLE HANDLING
Email: subreports	@alphalab.com		ц.	CONLET IF P	RE-APPROVED)													Filtration
	e been Previously analyzed by Alpha	Due Date:	Time:															Done
Other Project Specific Requirements/Comments/Detection Limits:						112												
	Alpha Job #L1714337 on this re					167												Preservation .0
Report data to MDL						hoo			1								1	Lab to do Preservation .0 Lab to do (Please specify below)
						ETHANOL-Method												S
ALPHA Lab ID	Sample ID	Coll	ection	Sample	Sampler's												10	
(Lab Use Only)		Date	Time	Matrix	Initials	HAN												
	1		r			Ē		-										Sample Specific Comments
*	INF	5/4/17	12:15	GW		x									T		1	2
															1			o ·
						2						-		-	1	1		
														-	-	-	·	
							-	-	-	-		-		-		-		
					-							-		-		-		
			1		-		-		-		-	-	-	-	-			
						-					-							
										-			-					in the second se
	1.000.000.000.000												•			1		
LEASE ANSWER	S YOUR PROJECT Relinquish A MCP or CT RCP? Page 69 of 76			Cor	Container Type		•	•	1	•		•	-	÷	-	-	2	
S VOUD					Preservative	N/A	*	1	1	-		1	•	÷.,	-	2 AL	10 C	Please print clearly, legibly and completely Samples can
				quished By:		Da	te/Time	e		R	eceive	ed By:			I	Date/Tim	ie	not be logged in and lurnaround time clock will not
FORM NO: 01-01(I)						-	-	-	-		_	_						start until any ambiguities are resolved All samples submitted are subject to
Page 69 of 76								-	-	-	-				0 =			Alpha's Payment Terms

Serial_No:06141712:06

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601

Report Date: May 17, 2017

Project: L1714337

Submittal Date: 05/06/2017 Group Number: 1798347 PO Number: L1714337 State of Sample Origin: MA

<u>Client Sample Description</u> INF Groundwater Sample

🔅 eurofins

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our current scopes of accreditation can be viewed at <u>http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/</u>. To request copies of prior scopes of accreditation, contact your project manager.

Electronic Copy To Electronic Copy To Alpha Analytical, Inc. Alpha Analytical, Inc. Attn: Nichole Hunt Attn: Sublab Contact

Respectfully Submitted,

Bonnie Stadelmann

Bonnie Stadelmann Senior Project Manager

(312) 590-3133

Prepared for:

Analysis Report

Alpha Analytical, Inc. 145 Flanders Road Westborough MA 01581

Lancaster Labs

(LL) #

8980336

🔅 eurofins

Lancaster Laboratories Environmental **Analysis Report**

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: INF Groundwater Sample L1714337	LL Sample # WW 8980336 LL Group # 1798347 Account # 09847
Project Name: L1714337	
Collected: 05/04/2017 12:15	Alpha Analytical, Inc. 145 Flanders Road
Submitted: 05/06/2017 09:00 Reported: 05/17/2017 16:25	Westborough MA 01581

14337

CAT No. Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC Miscellaneous	EPA 1671 Rev A	ug/l	ug/l	1
02366 ethanol	64-17-5	N.D.	670	

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record									
CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution			
No. 02366	EPA 1671 VOCs	EPA 1671 Rev A	1	171300041A	Date and Time 05/11/2017 00:04	Tyler O Griffin	Factor 1			

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Alpha Analytical, Inc. Reported: 05/17/2017 16:25

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL
	ug/l	ug/l
Batch number: 171300041A ethanol	Sample number N.D.	(s): 8980336 670

LCS/LCSD

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 171300041A ethanol	Sample number 4000	(s): 89803 3979.35	4000 4000	3876.82	99	97	70-132	3	30

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: 171300041A ethanol	Sample numb N.D.	er(s): 8980 4000	336 UNSPF 4005.41	K: 8980336 4000	4119.95	100	103	70-132	3	30

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report. Analysis Name: EPA 1671 VOCs Batch number: 171300041A Amyl Alcohol 8980336 104

_		
I	LCS	111
E	Blank	108
8	3980336	104

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

P###### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

Group Number: 1798347

Lancaster Laboratories Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Alpha Analytical, Inc. Reported: 05/17/2017 16:25 Group Number: 1798347

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report. Analysis Name: EPA 1671 VOCs Batch number: 171300041A Amyl Akcohol

LCSD	113
MS	114
MSD	115
Limits:	52-144

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

P###### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

1 .													Serial_N	No:06	6141712:06
SUB-UPS: Eurofins- Lancaster PA	9847/	1798	347 /	8980	33	6		****					·		
	DF <u>CUSTO</u>	DY	<i>(</i> PAGE 1 OF	1	Dat	e Rec'd ir	Lab:					ALPH	IA Job #	: L17′	14337
ALPHA	Project Infor	mation	• • •		Re	port In	forma	tion	Data De	livera	bles	Billin	g Inform	ation	
Westborough, MA Mansfield, MA		•	•			FAX				L			me as Clier		PO #:
TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3288	Project Name:					ADEx			🗌 Add'l	Delivera	bles				neer neer
	Project Locatio	n: MA				gʻulator		quiren	nents/R	eport	Limits		1		•
, Client: Alpha Analytical Lab	Project #:					<i>te/Fed Pro</i> DES RGP						Criteria			
Address: 8 Walkup Drive		ar: Nichola I	lunt					PTIVE	CERTA	INTY-	CT REA	SON	ABLE CO	ONFIL	DENCE PROTOCO
Westborough, Ma 01581		Project Manager: Nichole Hunt ALPHA Quote #:] No	Ar	e MCP A	nalytical N	Methods	s Required?	>	
Phone: 508-898-9220	Turn-Around] No	Ar	e CT RC	P (Reaso	nable C	onfidence I	Protoco	ls) Required?
Fax:	Standard		Rush (ONLY IF F			ALYSIS	5							1	SAMPLE HANDLING
Email: subreports@alphalab.com			NUSH (UNLY IF F	'RE-APPROVED)											Filtration
These samples have been Previously analyzed by Alpha	Due Date:	Time;													☐ Done ☐ Not Needed
Other Project Specific Requirements/Com	ments/Detection Limi				11										Lab to do Preservation
Please reference Alpha Job #L1714337 on this					d 167										🔲 Lab to do
Report data to MDL	,				tho										(Please specify below)
					N P										
ALPHA Lab ID Sample ID	Colle	ection	Sample	Sampler's											
(Lab Use Only)	Date	Time	Matrix	Initials	ETHANOL-Method										Sample Specific
			T		ш — Ш										Comments
. INF	5/4/17	12:15	GW		x										
												1			

•															
LEASE ANSWER QUESTIONS ABOVE!			Co	ntainer Type	V			· -	-	-		-	-	-	
				Preservative	N/A		-	-	-	-		-		-	Please print clearly, legibly and completely. Samples of
S YOUR PROJECT		Relin	iquished By:			ate/Time			Rece	ived By:			Date/Tim	e	not be logged in and turnaround time clock will n
MAMCP or CT RCP?		in	05	••••	5/5	117				~	and interesting the second				start until any ambiguities a resolved. All samples submitted are subject to
^{MM No.01-01()} ^M Page 74 of 76				Rage 5	of 7			n:	dmit	<u>ــــــ</u>			Ch 7 10		Alpha's Payment Terms.
			and the second s	~~~~~	<u> </u>	*		IW.	amo	5		5/6	(17 9	:00	

.

🔅 eurofins

Client:

Lancaster Laboratories Environmental

Alpha Analytical

Sample Administration Receipt Documentation Log

Serial_No:06141712:06

Doc Log ID: 182997

Group Number(s): 1798347

Delivery and Receipt Information Delivery Method: <u>UPS</u> Arrival Timestamp: 05/06/2017 9:00 Number of Packages: Number of Projects: 1 1 **Arrival Condition Summary** Shipping Container Sealed: Yes Sample IDs on COC match Containers: Yes Custody Seal Present: No Sample Date/Times match COC: Yes N/A Samples Chilled: Yes VOA Vial Headspace ≥ 6mm: Paperwork Enclosed: Total Trip Blank Qty: 0 Yes Samples Intact: Air Quality Samples Present: No Yes Missing Samples: No Extra Samples: No Discrepancy in Container Qty on COC: No Unpacked by Nia Smith (12375) at 12:52 on 05/06/2017

	Samples Chilled Details							
	Thermometer 1	Types: DT =	Digital (Temp. Bottle)) <i>IR</i> =	Infrared (Surfac	ce Temp)	All Temperatures in °C.	
Cooler #	Thermometer ID	Corrected Temp	Therm. Type	Ice Type	Ice Present?	Ice Container	Elevated Temp?	
1	DT146	5.0	DT	Wet	Y	Loose/Bag	Ν	

🔅 eurofins

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

BMQL C CFUnits F g IU kg L lb. m3 meg	Below Minimum Quantitation Level degrees Celsius colony forming units cobalt-chloroplatinate units degrees Fahrenheit gram(s) International Units kilogram(s) liter(s) pound(s) cubic meter(s) milliequivalents	mg mL MPN N.D. ng NTU pg/L RL TNTC µg µL umhos/cm	milligram(s) milliliter(s) Most Probable Number none detected nanogram(s) nephelometric turbidity units picogram/liter Reporting Limit Too Numerous To Count microgram(s) microliter(s) micromhos/cm						
<	less than								
>	greater than								
ppm	parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.								
ppb	parts per billion								

Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Laboratory Data Qualifiers:

- C Result confirmed by reanalysis
- E Concentration exceeds the calibration range
- J (or G, I, X) estimated value \geq the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
- P Concentration difference between the primary and confirmation column >40%. The lower result is reported.
- U Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

W - The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

ANALYTICAL REPORT

Lab Number:	L1719082
Client:	GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062
ATTN: Phone:	Bill Davis (781) 278-5769
Project Name:	HP WALTHAM
Project Number:	01.0015522.17
Report Date:	06/15/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:06151713:40

Project Name:	HP WALTHAM
Project Number:	01.0015522.17

 Lab Number:
 L1719082

 Report Date:
 06/15/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time Receive Date
L1719082-01	INF	WATER	WALTHAM, MA	06/08/17 10:40 06/08/17
L1719082-02	MID	WATER	WALTHAM, MA	06/08/17 10:27 06/08/17
L1719082-03	EFF	WATER	WALTHAM, MA	06/08/17 10:20 06/08/17

Project Name: HP WALTHAM Project Number: 01.0015522.17 Lab Number: L1719082 Report Date: 06/15/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1719082

 Report Date:
 06/15/17

Case Narrative (continued)

Metals

The WG1012633-4 Laboratory Duplicate RPD, performed on L1719082-01, is above the acceptance criteria for iron (23%); however, the sample and duplicate results are less than five times the reporting limit. Therefore, the RPD is valid.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Custen Walker Cristin Walker

Title: Technical Director/Representative

Date: 06/15/17

ORGANICS

VOLATILES

				Serial_N	0:06151713:40
Project Name:	HP WALTHAM			Lab Number:	L1719082
Project Number:	01.0015522.17			Report Date:	06/15/17
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1719082-01 INF WALTHAM, MA	D		Date Collected: Date Received: Field Prep:	06/08/17 10:40 06/08/17 Not Specified
Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 06/13/17 13:31 KD				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	150		50
1,1-Dichloroethane	ND		ug/l	38		50
Chloroform	ND		ug/l	38		50
Carbon tetrachloride	ND		ug/l	25		50
1,2-Dichloropropane	ND		ug/l	88		50
Dibromochloromethane	ND		ug/l	25		50
1,1,2-Trichloroethane	ND		ug/l	38		50
Tetrachloroethene	47		ug/l	25		50
Chlorobenzene	ND		ug/l	25		50
Trichlorofluoromethane	ND		ug/l	120		50
1,2-Dichloroethane	ND		ug/l	25		50
1,1,1-Trichloroethane	ND		ug/l	25		50
Bromodichloromethane	ND		ug/l	25		50
trans-1,3-Dichloropropene	ND		ug/l	25		50
cis-1,3-Dichloropropene	ND		ug/l	25		50
Bromoform	ND		ug/l	100		50
1,1,2,2-Tetrachloroethane	ND		ug/l	25		50
Benzene	ND		ug/l	25		50
Toluene	ND		ug/l	38		50
Ethylbenzene	ND		ug/l	25		50
Chloromethane	ND		ug/l	120		50
Bromomethane	ND		ug/l	50		50
Vinyl chloride	ND		ug/l	50		50
Chloroethane	ND		ug/l	50		50
1,1-Dichloroethene	ND		ug/l	25		50
trans-1,2-Dichloroethene	ND		ug/l	38		50
Trichloroethene	7400		ug/l	25		50
1,2-Dichlorobenzene	ND		ug/l	120		50
1,3-Dichlorobenzene	ND		ug/l	120		50
1,4-Dichlorobenzene	ND		ug/l	120		50

					Ś	Serial_N	0:06151713:40
Project Name:	HP WALTHAM				Lab Nu	mber:	L1719082
Project Number:	01.0015522.17				Report	Date:	06/15/17
		SAMP	LE RESULTS	5			
Lab ID:	L1719082-01	D			Date Col	lected:	06/08/17 10:40
Client ID:	INF				Date Red	ceived:	06/08/17
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westboro	ugh Lab					
Methyl tert butyl ether		ND		ug/l	50		50
p/m-Xylene		ND		ug/l	50		50
o-Xylene		ND		ug/l	50		50
cis-1,2-Dichloroethene		ND		ug/l	25		50
Dichlorodifluoromethane		ND		ug/l	250		50
Naphthalene		ND		ug/l	120		50

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	98	70-130	

			Serial_N	0:06151713:40
Project Name:	HP WALTHAM		Lab Number:	L1719082
Project Number:	01.0015522.17		Report Date:	06/15/17
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1719082-02 MID WALTHAM, MA		Date Collected: Date Received: Field Prep:	06/08/17 10:27 06/08/17 Not Specified
Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 06/13/17 14:07 KD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	14		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					\$	Serial_N	0:06151713:40
Project Name:	HP WALTHAM				Lab Nu	mber:	L1719082
Project Number:	01.0015522.17				Report	Date:	06/15/17
		SAMP	LE RESULTS	6			
Lab ID:	L1719082-02				Date Col	lected:	06/08/17 10:27
Client ID:	MID				Date Red	ceived:	06/08/17
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	h Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	111	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	98	70-130
Dibromofluoromethane	100	70-130

			Serial_N	0:06151713:40
Project Name:	HP WALTHAM		Lab Number:	L1719082
Project Number:	01.0015522.17		Report Date:	06/15/17
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1719082-03 EFF WALTHAM, MA		Date Collected: Date Received: Field Prep:	06/08/17 10:20 06/08/17 Not Specified
Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 06/13/17 14:43 KD			

ND ug1 0.50 1 Trichlorofluoromethane ND ug1 2.5 1 1,2-Dichloroethane ND ug1 0.50 1 1,1-Trichloroethane ND ug1 0.50 1 3romodichloromethane ND ug1 0.50 1 3romodichloropropene ND ug1 0.50 1 3romoform ND ug1 0.50 1 3romoform ND ug1 0.50 1 1,2,2-Tetrachloroethane ND ug1 0.50 1 3romoform ND ug1 0.50 1 1,1,2,2-Tetrachloroethane ND ug1 0.50 1 Sromoform ND ug1 0.50 1 Statibulance ND ug1 1.0 1 1 -	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
I,1-DichloroethaneNDug/l0.751ChloroformNDug/l0.751Carbon tetrachiorideNDug/l0.501Carbon tetrachioropropaneNDug/l0.5011,2-DichloropropaneNDug/l0.501DicromochtormethaneNDug/l0.501TetrachioroethaneNDug/l0.501EtrachioroethaneNDug/l0.501ChlorobethaneNDug/l0.501ChloroethaneNDug/l0.501ChloroethaneNDug/l0.5012.DichloroethaneNDug/l0.5011.1.1-TrichloroethaneNDug/l0.5012.DichloroptopeneNDug/l0.5012.DichloroptopeneNDug/l0.5013.DichloroptopeneNDug/l0.5013.DichloroptopeneNDug/l0.5013.DichloroptopeneNDug/l0.5013.DichloroptopeneNDug/l0.5013.DichloroptopeneNDug/l0.5013.DichloroptopeneNDug/l0.5013.DichloroptopeneNDug/l0.501	Volatile Organics by GC/MS - West	tborough Lab					
I,1-DichloroethaneNDug/l0.751ChloroformNDug/l0.751Carbon tetrachiorideNDug/l0.501Carbon tetrachioropropaneNDug/l0.5011,2-DichloropropaneNDug/l0.501DicromochtormethaneNDug/l0.501TetrachioroethaneNDug/l0.501EtrachioroethaneNDug/l0.501ChlorobethaneNDug/l0.501ChloroethaneNDug/l0.501ChloroethaneNDug/l0.5012.DichloroethaneNDug/l0.5011.1.1-TrichloroethaneNDug/l0.5012.DichloroptopeneNDug/l0.5012.DichloroptopeneNDug/l0.5013.DichloroptopeneNDug/l0.5013.DichloroptopeneNDug/l0.5013.DichloroptopeneNDug/l0.5013.DichloroptopeneNDug/l0.5013.DichloroptopeneNDug/l0.5013.DichloroptopeneNDug/l0.5013.DichloroptopeneNDug/l0.501	Methylene chloride	ND		ua/l	3.0		1
ND Ugr 0.75 1 Carbon tetrachloride ND ugr 0.50 1 1,2-Dichloropropane ND ugr 0.50 1 2bicromothromethane ND ugr 0.50 1 2bicromothromethane ND ugr 0.75 1 Carbon tetrachloroethane ND ugr 0.75 1 Fetrachloroethane ND ugr 0.50 1 Chrobopenzene ND ugr 0.50 1 1,2-Dichloroethane ND ugr 0.50 1 1,2-Dichlorop							
ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 1.8 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 2.Dichloroethane ND ug/l 0.50 1 1.1.1-Trichloroethane ND ug/l 0.50 1 1.1.2-Z-Tetrachloroethane ND ug/l 0.50 1							
1,2-Dichloropropane ND ug/l 1.8 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Terrachloroethane ND ug/l 0.50 1 Chlorobethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 2,5-Dichloropropene ND ug/l 0.50 1 3,1-Dichloropropene ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.75 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 3romodichloromethane ND ug/l 0.50 1 3romodichloropropene ND ug/l 0.50 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
I,1,2-Trichloroethane ND ug/l 0.75 - 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 2romodichloromethane ND ug/l 0.50 1 3romodicromethane ND ug/l 0.50 1 1,2-2-Tetrachloroethane ND ug/l 0.50 1 1,1-2-2-Tetrachloroethane ND ug/l 0.50 1<		ND					1
TetrachloroetheneNDug/l0.501ChlorobenzeneNDug/l0.501TrichloroftuoromethaneNDug/l0.5011,2-DichloroethaneNDug/l0.5011,1-TrichloroethaneNDug/l0.5013romodichloromethaneNDug/l0.501aromodichloromethaneNDug/l0.501aromodichloromethaneNDug/l0.501aromodichloromethaneNDug/l0.501aromodichloromethaneNDug/l0.501aromodichloromethaneNDug/l0.501aromodichloromethaneNDug/l0.501aromodichloromethaneNDug/l0.501aromodichloromethaneNDug/l0.501aromodichloromethaneNDug/l0.501aromodichloromethaneNDug/l0.501aromodichloromethaneNDug/l0.501aromodichloromethaneNDug/l1.01aromodichloroethaneNDug/l0.501aromodichloroethaneNDug/l0.501aromodichloroethaneNDug/l0.501aromodichloroethaneN							
ChlorobenzeneNDug/l0.501TrichlorofluoromethaneNDug/l2.511,2-DichloroethaneNDug/l0.5011,1-TrichloroethaneNDug/l0.5013romodichloromethaneNDug/l0.5013romodichloropropeneNDug/l0.5013romoformNDug/l0.5013romoformNDug/l0.5013romoformNDug/l0.5013romoformNDug/l0.5013romoformNDug/l0.5013romoformNDug/l0.5013romoformNDug/l0.5013romoformNDug/l0.5013romoformNDug/l0.5013romoformNDug/l0.5011(1,2,2-TetrachloroethaneNDug/l0.5013romoformug/l0.50111(u)ug/l0.50111(u)noug/l1.0111(u)noug/l1.0111(u)noug/l0.50111(u)noug/l0.5011 <td>Tetrachloroethene</td> <td>ND</td> <td></td> <td></td> <td>0.50</td> <td></td> <td>1</td>	Tetrachloroethene	ND			0.50		1
TrichlorofluoromethaneNDug/l2.5-1t,2-DichloroethaneNDug/l0.50-1t,1-TrichloroethaneNDug/l0.50-1BromodichloromethaneNDug/l0.50-1arans-1,3-DichloropropeneNDug/l0.50-1StromoformNDug/l0.50-11Arans-1,3-DichloropropeneNDug/l0.50-1BromoformNDug/l0.50-111,1,2,2-TetrachloroethaneNDug/l0.50-1BanzeneNDug/l0.50-11TolueneNDug/l0.50-11ChloromethaneNDug/l0.50-11ChloromethaneNDug/l0.50-11ChloromethaneNDug/l0.50-11ChloromethaneNDug/l1.0-11ChloromethaneNDug/l1.0-111ChloroethaneNDug/l0.50-1111ChloroethaneNDug/l0.50-111111111111111111111111111111	Chlorobenzene			-			
t,2-DichloroethaneNDug/l0.5011,1-TrichloroethaneNDug/l0.501BromodichloromethaneNDug/l0.501rans-1,3-DichloropropeneNDug/l0.501StromodichloromethaneNDug/l0.501StromodichloropropeneNDug/l0.501StromoformNDug/l0.5011,2,2-TetrachloroethaneNDug/l0.501StromoformNDug/l0.501TolueneNDug/l0.501ChloromethaneNDug/l0.501StromofethaneNDug/l0.501ChloromethaneNDug/l0.501ChloromethaneNDug/l0.501ChloromethaneNDug/l0.501ChloromethaneNDug/l1.01ChloromethaneNDug/l1.01ChloroethaneNDug/l0.501ChloroethaneNDug/l0.501ChloroethaneNDug/l0.501ChloroethaneNDug/l0.501Lip-Lip-Lip-Lip-Lip-Lip-Lip-Lip-Lip-Lip-	Trichlorofluoromethane	ND			2.5		1
t,1,1-TrichloroethaneNDug/l0.501BromodichloromethaneNDug/l0.501arans-1,3-DichloropropeneNDug/l0.501bis-1,3-DichloropropeneNDug/l0.501BromodirNDug/l0.501BromodormNDug/l0.5011,1,2,2-TetrachloroethaneNDug/l0.501BenzeneNDug/l0.501TolueneNDug/l0.501ChloroethaneNDug/l0.501BromodirNDug/l0.501ChloroethaneNDug/l0.501ChloroethaneNDug/l0.501ChloroethaneNDug/l1.01ChloroethaneNDug/l1.01ChloroethaneNDug/l0.501TrichloroetheneNDug/l0.501TrichloroetheneNDug/l0.501Trichloroethene3.2ug/l0.501Tyl-DichloroetheneNDug/l0.501Tyl-DichloroetheneNDug/l0.501Tyl-DichloroetheneNDug/l0.501Tyl-DichloroetheneND<	1,2-Dichloroethane				0.50		1
Bromodichloromethane ND ug/l 0.50 1 rans-1,3-Dichloropropene ND ug/l 0.50 1 sis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1, 1, 2, 2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Foluene ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 Stripterene ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 Stripterene ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 trichloroethene </td <td>1,1,1-Trichloroethane</td> <td>ND</td> <td></td> <td></td> <td>0.50</td> <td></td> <td>1</td>	1,1,1-Trichloroethane	ND			0.50		1
rans-1,3-DichloropropeneNDug/l0.501cis-1,3-DichloropropeneNDug/l0.501BromoformNDug/l0.5011,1,2,2-TetrachloroethaneNDug/l0.501BenzeneNDug/l0.501TolueneNDug/l0.501EthylbenzeneNDug/l0.501ChloromethaneNDug/l0.501StromomethaneNDug/l0.501ChloromethaneNDug/l0.501ChloromethaneNDug/l1.01ChloromethaneNDug/l1.01ChloromethaneNDug/l1.01ChloroethaneNDug/l0.501ChloroethaneNDug/l0.501ChloroethaneNDug/l0.501ChloroethaneNDug/l0.501Trichloroethene3.2ug/l0.5011,2-Dichloroethene3.2ug/l0.5011,2-DichloroetheneNDug/l2.511,2-DichloroetheneNDug/l2.511,2-DichloroetheneNDug/l2.51	Bromodichloromethane	ND		-	0.50		1
xis 1,3-DichloropropeneNDug/l0.5013romoformNDug/l2.013romoformNDug/l0.5013reaneneNDug/l0.501FolueneNDug/l0.751StryblenzeneNDug/l0.501ChloromethaneNDug/l0.501StryblenzeneNDug/l2.51ChloromethaneNDug/l1.01StroborothaneNDug/l1.01ChlorothaneNDug/l0.501ChlorothaneNDug/l0.501ChlorothaneNDug/l0.501I,1-DichlorotheneNDug/l0.501I,2-DichlorotheneNDug/l0.501I,2-DichlorotheneNDug/l0.501I,2-Dichlorothene3.2ug/l0.501I,2-DichlorotheneNDug/l2.51I,2-DichlorobenzeneNDug/l2.51I,3-DichlorobenzeneNDug/l2.51	rans-1,3-Dichloropropene	ND			0.50		1
ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Genzene ND ug/l 0.50 1 Foluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Stromothane ND ug/l 0.50 1 Chloromethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 I,1-Dichloroethene ND ug/l 0.50 1 I,1-Dichloroethene 3.2 ug/l 0.50 1 I,2-Dichlorobenzene ND ug/l	cis-1,3-Dichloropropene	ND			0.50		1
ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Stronomethane ND ug/l 0.50 1 Othoromethane ND ug/l 1.0 1 Stronomethane ND ug/l 1.0 1 Chloromethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 I,1-Dichloroethene ND ug/l 0.50 1 rans-1,2-Dichloroethene ND ug/l 0.50 1 I,2-Dichlorobenzene ND ug/l 0.50 1 I,2-Dichlorobenzene ND ug/l	Bromoform	ND		ug/l	2.0		1
Toluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Stromomethane ND ug/l 1.0 1 Stromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 rrans-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene 3.2 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1	1,1,2,2-Tetrachloroethane	ND			0.50		1
Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Stromomethane ND ug/l 1.0 1 Othoromethane ND ug/l 1.0 1 Chloromethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.75 1 1,1-Dichloroethene 3.2 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1	Benzene	ND		ug/l	0.50		1
Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 rrans-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene 3.2 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1	Toluene	ND		ug/l	0.75		1
ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 rrans-1,2-Dichloroethene ND ug/l 0.75 1 Trichloroethene 3.2 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1	Ethylbenzene	ND			0.50		1
Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 rans-1,2-Dichloroethene ND ug/l 0.75 1 rans-1,2-Dichloroethene ND ug/l 0.75 1 Trichloroethene 3.2 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1	Chloromethane	ND		ug/l	2.5		1
ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.75 1 Trichloroethene 3.2 ug/l 0.50 1 1,2-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene 3.2 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1	Bromomethane	ND		ug/l	1.0		1
1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.75 1 Trichloroethene 3.2 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,2-Dichlorobenzene ND ug/l 2.5 1	Vinyl chloride	ND		ug/l	1.0		1
ND ug/l 0.75 1 Trichloroethene 3.2 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1	Chloroethane	ND		ug/l	1.0		1
Trichloroethene 3.2 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1	1,1-Dichloroethene	ND		ug/l	0.50		1
ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1	rans-1,2-Dichloroethene	ND		ug/l	0.75		1
1,3-Dichlorobenzene ND ug/l 2.5 1	Trichloroethene	3.2		ug/l	0.50		1
	1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene ND ug/l 2.5 1	1,3-Dichlorobenzene	ND		ug/l	2.5		1
	1,4-Dichlorobenzene	ND		ug/l	2.5		1

					S	Serial_N	0:06151713:40
Project Name:	HP WALTHAM				Lab Nu	mber:	L1719082
Project Number:	01.0015522.17				Report	Date:	06/15/17
		SAMP		6			
Lab ID:	L1719082-03				Date Col	lected:	06/08/17 10:20
Client ID:	EFF				Date Red	ceived:	06/08/17
Sample Location:	WALTHAM, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	h Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Naphthalene		ND		ug/l	2.5		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	111	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	97	70-130
Dibromofluoromethane	98	70-130

 Project Name:
 HP WALTHAM
 Lab Number:
 L1719082

 Project Number:
 01.0015522.17
 Report Date:
 06/15/17

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	06/13/17 09:56
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
platile Organics by GC/MS -	Westborough Lal	o for sample(s): 01-03	Batch:	WG1012763-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	

 Project Name:
 HP WALTHAM
 Lab Number:
 L1719082

 Project Number:
 01.0015522.17
 Report Date:
 06/15/17

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	06/13/17 09:56
Analyst:	PD

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - We	stborough Lab	for sample(s): 01-03	Batch:	WG1012763-5
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dichlorodifluoromethane	ND	ug/l	5.0	
Naphthalene	ND	ug/l	2.5	

		Acceptance		
Surrogate	%Recovery Qualifie	r Criteria		
1,2-Dichloroethane-d4	105	70-130		
Toluene-d8	95	70-130		
4-Bromofluorobenzene	99	70-130		
Dibromofluoromethane	98	70-130		

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1719082 Report Date: 06/15/17

Parameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch	n: WG1012763-3	3 WG1012763-4			
Methylene chloride	98		100		70-130	2		20
1,1-Dichloroethane	100		110		70-130	10		20
Chloroform	110		120		70-130	9		20
Carbon tetrachloride	120		120		63-132	0		20
1,2-Dichloropropane	120		120		70-130	0		20
Dibromochloromethane	110		120		63-130	9		20
1,1,2-Trichloroethane	120		120		70-130	0		20
Tetrachloroethene	110		110		70-130	0		20
Chlorobenzene	110		120		75-130	9		25
Trichlorofluoromethane	92		96		62-150	4		20
1,2-Dichloroethane	120		120		70-130	0		20
1,1,1-Trichloroethane	110		120		67-130	9		20
Bromodichloromethane	120		120		67-130	0		20
trans-1,3-Dichloropropene	98		100		70-130	2		20
cis-1,3-Dichloropropene	120		130		70-130	8		20
Bromoform	110		120		54-136	9		20
1,1,2,2-Tetrachloroethane	120		120		67-130	0		20
Benzene	110		120		70-130	9		25
Toluene	110		110		70-130	0		25
Ethylbenzene	120		120		70-130	0		20
Chloromethane	150	Q	160	Q	64-130	6		20
Bromomethane	84		92		39-139	9		20
Vinyl chloride	120		120		55-140	0		20

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1719082 Report Date: 06/15/17

arameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough I	ab Associated	sample(s):	01-03	Batch:	WG1012763-3	WG1012763-4				
Chloroethane	98			100		55-138	2		20	
1,1-Dichloroethene	92			98		61-145	6		25	
trans-1,2-Dichloroethene	100			110		70-130	10		20	
Trichloroethene	110			120		70-130	9		25	
1,2-Dichlorobenzene	110			120		70-130	9		20	
1,3-Dichlorobenzene	110			120		70-130	9		20	
1,4-Dichlorobenzene	110			120		70-130	9		20	
Methyl tert butyl ether	120			130		63-130	8		20	
p/m-Xylene	120			125		70-130	4		20	
o-Xylene	120			130		70-130	8		20	
cis-1,2-Dichloroethene	110			110		70-130	0		20	
Dichlorodifluoromethane	100			110		36-147	10		20	
Naphthalene	130			140	Q	70-130	7		20	

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	103	105	70-130
Toluene-d8	97	97	70-130
4-Bromofluorobenzene	99	99	70-130
Dibromofluoromethane	100	100	70-130

METALS

Serial_No:06151713:40

Project Name: Project Number:		ALTHAM 15522.17					Lab Nur Report I		L171908 06/15/1		
				SAMPL	E RES	ULTS					
Lab ID:	L1719	082-01				Date Collected:		06/08/1	06/08/17 10:40		
Client ID:	INF					Date Re	Date Received:		7		
Sample Location:	WALT	HAM, MA					Field Pre	əp:	Not Spe	cified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Copper, Total	0.00795		mg/l	0.00100		1	06/13/17 14:35	06/14/17 11:46	EPA 3005A	1,6020A	AM
Iron, Total	0.116		mg/l	0.050		1	06/13/17 14:35	06/15/17 00:45	EPA 3005A	19,200.7	PS
	0.116 ND		mg/l mg/l	0.050 0.00100		1 1		06/15/17 00:45 06/14/17 11:46		19,200.7 1,6020A	PS AM

1

06/13/17 14:35 06/14/17 11:46 EPA 3005A

0.01000

--

mg/l

1,6020A

AM

0.01627

Zinc, Total

Serial_No:06151713:40

Project Name: Project Number:		ALTHAM 15522.17					Lab Nun Report [L171908 06/15/1		
				SAMPL	E RES	ULTS					
Lab ID:	L1719	082-03			Date Collected:			lected:	06/08/17 10:20		
Client ID:	EFF					Date Red	Date Received:		7		
Sample Location: Matrix:	WALTI Water	HAM, MA					Field Pre	ep:	Not Spe	cified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
										4 00004	
Copper, Total	0.00202		mg/l	0.00100		1	06/13/17 14:35	06/14/17 12:34	EPA 3005A	1,6020A	AM
Copper, Total Iron, Total	0.00202 ND		mg/l mg/l	0.00100		1	06/13/17 14:35 06/13/17 14:35			1,6020A 19,200.7	AM PS
								06/15/17 01:34	EPA 3005A	,	

--

1

06/13/17 14:35 06/14/17 12:34 EPA 3005A

0.01000

mg/l

1,6020A

AM

Zinc, Total

ND

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1719082

 Report Date:
 06/15/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s): (01,03 Ba	tch: WG	G101263	3-1				
Iron, Total	ND	mg/l	0.050		1	06/13/17 14:35	06/14/17 23:32	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab for sample(s):	01,03 E	Batch: WO	G10126	36-1				
Copper, Total	ND	mg/l	0.00100		1	06/13/17 14:35	06/14/17 11:30	0 1,6020A	AM
Lead, Total	ND	mg/l	0.00100		1	06/13/17 14:35	06/14/17 11:30	1,6020A	AM
Selenium, Total	ND	mg/l	0.00500		1	06/13/17 14:35	06/14/17 11:30	1,6020A	AM
Zinc, Total	ND	mg/l	0.01000		1	06/13/17 14:35	06/14/17 11:30	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1719082 Report Date: 06/15/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bate	ch: WG10′	12633-2					
Iron, Total	102		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01,03 Bate	ch: WG10 ²	12636-2					
Copper, Total	103		-		80-120	-		
Lead, Total	107		-		80-120	-		
Selenium, Total	100		-		80-120	-		
Zinc, Total	105		-		80-120	-		

Matrix Spike Analysis

Project Name:	HP WALTHAM	Batch Quality Control
Project Number:	01.0015522.17	

 Lab Number:
 L1719082

 Report Date:
 06/15/17

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery G	Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield	Lab Associated san	nple(s): 01,03	QC Bat	ch ID: WG101	2633-3	QC Sam	ple: L1719082-0 ⁴	1 Client ID: INF	-		
Iron, Total	0.116	1	1.10	98		-	-	75-125	-		20
Total Metals - Mansfield	Lab Associated sam	nple(s): 01,03	QC Bat	ch ID: WG101	2636-3	QC Sam	ple: L1719082-0 ⁴	1 Client ID: INF	-		
Copper, Total	0.00795	0.25	0.2634	102		-	-	75-125	-		20
Lead, Total	ND	0.51	0.5329	104		-	-	75-125	-		20
Selenium, Total	ND	0.12	0.130	108		-	-	75-125	-		20
Zinc, Total	0.01627	0.5	0.5388	104		-	-	75-125	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: HP WALTHAM Project Number: 01.0015522.17

Lab Number: L1719082 06/15/17 Report Date:

Parameter	Native Sample	Duplicate Sample Units	RPD Qual	RPD Limits
Total Metals - Mansfield Lab Associated	sample(s): 01,03 QC Batch ID: WG	012633-4 QC Sample: L1719082-0	1 Client ID: INF	
Iron, Total	0.116	0.092 mg/l	23 Q	20
Total Metals - Mansfield Lab Associated	sample(s): 01,03 QC Batch ID: WG ²	012636-4 QC Sample: L1719082-0	1 Client ID: INF	
Copper, Total	0.00795	0.00782 mg/l	2	20
Lead, Total	ND	ND mg/l	NC	20
Selenium, Total	ND	ND mg/l	NC	20
Zinc, Total	0.01627	0.01631 mg/l	0	20

INORGANICS & MISCELLANEOUS

							Serial_No:06	151713:40	
Project Name:	HP WALTHAM					Lab N	lumber:	L1719082	
Project Number:	01.0015522.17					Repo	rt Date:	06/15/17	
			SAMPLE	RESUL	rs				
Lab ID:	L1719082-01					Date (Collected:	06/08/17 10:4	40
Client ID:	INF							06/08/17	
Sample Location:	WALTHAM, MA					Field I	Prep:	Not Specified	I
Matrix:	Water								
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	stborough Lab								
lloride	580	mg/l	10		10	-	06/10/17 18:25	5 1,9251	MR

							Serial_No:06	151713:40	
Project Name:	HP WALTHAM					Lab N	lumber:	L1719082	
Project Number:	01.0015522.17					Repo	rt Date:	06/15/17	
			SAMPLE	RESUL	rs				
Lab ID: Client ID: Sample Location: Matrix:	L1719082-03 EFF WALTHAM, MA Water						Received:	06/08/17 10:2 06/08/17 Not Specified	
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
neral Chemistry - We	stborough Lab								
loride	580	mg/l	10		10	-	06/10/17 18:27	7 1,9251	MR

 Lab Number:
 L1719082

 Report Date:
 06/15/17

Project Name:HP WALTHAMProject Number:01.0015522.17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	porough Lab for sam	ple(s): 01	,03 Bat	ch: WC	G1011944-1				
Chloride	ND	mg/l	1.0		1	-	06/10/17 17:37	1,9251	MR

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1719082 Report Date: 06/15/17

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

LCS LCSD %Recovery Limits %Recovery %Recovery RPD **RPD Limits** Parameter Qual Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01,03 Batch: WG1011944-2 Chloride 97 90-110 --

		Matrix Spike Analysis Batch Quality Control	
Project Name:	HP WALTHAM	Lab Number:	L1719082
Project Number:	01.0015522.17	Report Date:	06/15/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Q	Recovery ual Limits	RP RPD Qual Lim	
General Chemistry - Westborou	igh Lab Asso	ciated samp	ole(s): 01,03	QC Batch II	D: WG1011944-4	QC Sample: L17	19238-02 Clier	nt ID: MS Sample	е
Chloride	190	20	210	100	-	-	58-140	-	7

Project Name:	HP WALTHAM	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L1719082
Project Number:	01.0015522.17		Report Date:	06/15/17

• •

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01,03	QC Batch ID:	WG1011944-3	QC Sample:	L1719238-02	Client ID:	DUP Sample
Chloride	190		190	mg/l	0		7

Project Name:HP WALTHAMProject Number:01.0015522.17

Serial_No:06151713:40 *Lab Number:* L1719082 *Report Date:* 06/15/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal				
A	Absent				

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C Pres		Seal	Date/Time	Analysis(*)
L1719082-01A	Vial HCl preserved	А	NA		5.6	Y	Absent		8260(14)
L1719082-01B	Vial HCl preserved	А	NA		5.6	Y	Absent		8260(14)
L1719082-01C	Vial HCl preserved	А	NA		5.6	Y	Absent		8260(14)
L1719082-01D	Plastic 250ml HNO3 preserved	А	<2	<2	5.6	Y	Absent		SE-6020T(180),CU-6020T(180),ZN- 6020T(180),FE-UI(180),PB-6020T(180)
L1719082-01E	Plastic 60ml unpreserved	А	7	7	5.6	Y	Absent		CL-9251(28)
L1719082-02A	Vial HCl preserved	А	NA		5.6	Y	Absent		8260(14)
L1719082-02B	Vial HCl preserved	А	NA		5.6	Y	Absent		8260(14)
L1719082-02C	Vial HCl preserved	А	NA		5.6	Y	Absent		8260(14)
L1719082-03A	Vial HCI preserved	А	NA		5.6	Y	Absent		8260(14)
L1719082-03B	Vial HCI preserved	А	NA		5.6	Y	Absent		8260(14)
L1719082-03C	Vial HCI preserved	А	NA		5.6	Y	Absent		8260(14)
L1719082-03D	Plastic 250ml HNO3 preserved	A	<2	<2	5.6	Y	Absent		SE-6020T(180),CU-6020T(180),ZN- 6020T(180),FE-UI(180),PB-6020T(180)
L1719082-03E	Plastic 60ml unpreserved	А	7	7	5.6	Y	Absent		CL-9251(28)

L1719082

06/15/17

Lab Number:

Report Date:

Project Name: HP WALTHAM

Project Number: 01.0015522.17

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TIC	

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after

adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH. Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Serial_No:06151713:40

Project Name: HP WALTHAM

Project Number: 01.0015522.17

Lab Number:	L1719082
Report Date:	06/15/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1719082

 Report Date:
 06/15/17

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 300: DW: Bromide EPA 6860: NPW and SCM: Perchlorate EPA 9010: NPW and SCM: Amenable Cyanide Distillation EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Total Cyanide EPA 9050A: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon

SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.
EPA 624: Volatile Halocarbons & Aromatics,
EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs
EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.
Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:06151713:40

ALPHA	CHAIN OF	CUST	ODY PA		L	Date R	ec'd in La	ab: G	181	17		ALPHA	Job #:	L1719082	
ANAL STICAL		Project Info	rmation			Repo	rt Inform	ation -	Data D	elivera	bles	Billing	Informat	tion	
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92	320 Forbes Blvd 01581 Mansfield, MA 02048 220 Tel: 508-822-9300	Project Name:	HP Los	a ltham			Ξx	0 EN	AIL			□ Same	as Client i	nfo PO #:	
Client Informatio	n	Project Locatio	HP La m: Walfl	ham N	10.	Regul	atory R	equirem	ents	& Pr	oject	Informatio	on Requi	rements	
Client: G24			1.001552					MCP An rix Spike	alytical I Require	Methods ed on thi	s SDG	□ Ye Required? ?		CT RCP Analytical Met Inorganics)	nods
	Vanderbilt Are		er: J. Cal			Q Yes	No GW	/1 Standa	ards (Infe			Metals & EF			
Norma	Vanderbilt Are ad Ma 02062	ALPHA Quote					□ No NP r State /F	ed Progr	am	_	_	0	Criteria		
Phone: 781-	987-1357	Turn-Aroun	nd Time				(2x)	0 15	13	2/2	11		11	1 1 1	
Email: wdar	roject Information:	Standard Date Due:	C RUSH (only o	onfirmed if pre-approve	d()	ANALYSIS	METALS: DMCC DPAH	METALS: L.R.C.AS LINCP 14 LIRCP 15 EPH: L.R.A.S. LIRCP.15	VPH: DRanges & Targets D Ranges Oni	TPH: DQuant ST	Laring DFingerprint	1 V		SAMPLE IN Filtration Field Lab to do Preservation Lab to do	н н в
ALPHA Lab ID (Lab Use Only)	Sample ID	Da	Collection ate Time		ampler nitials	Voc.	METALS.	METAL	NPH:D	TPH: D	C	The last		Sample Commer	O T L E nts S
19082-01	TNF	64	3/17 1040mm	Gw	BD	X	11			1	د لا			-	5
02	MID	-/-	1 1027an	1	1	X									3
03	EFF	0	1020cm	V	1	V					X	(5
					r							X			
Container Type P= Plastic A= Amber glass V= Vial G= Glass	Preservative $A \approx$ None $B =$ HCI $C =$ HNO ₃ $D =$ H ₂ SO ₄			Container Type Preservative		V HQL					Р / / нл	10,			
B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 36 of 36	$E = NaOH$ $F = MeOH$ $G = NaHSO_4$ $H = Na_2S_{2}O_3$ $I = Ascorbic Acid$ $J = NH_4CI$ $K = Zn Acetate$ $Q = Other$	Relinquished	BY: AAL 4/8/	Date/Til 6/8/17 17 13 5	100 pm	John (Rec Sh Jul	eived By:	DAL	clefr	7 1	te/Time 1:15 17 1355	Alpha's See reve	oles submitted are sub Terms and Conditions erse side. : 01-01 (rev. 12-Mar-2012)	

APPENDIX D

RECEIVING WATER LABORATORY ANALYTICAL REPORT

ANALYTICAL REPORT

Lab Number:	L1714338
Client:	GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062
ATTN: Phone:	Bill Davis (781) 278-5769
Project Name:	HP WALTHAM
Project Number:	01.0015522.17
Report Date:	05/10/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:05101714:00

 Lab Number:
 L1714338

 Report Date:
 05/10/17

Alpha Sample ID	Client ID Matrix		Sample Location	Collection Date/Time	Receive Date
L1714338-01	SW	WATER	WALTHAM, MA	05/04/17 12:40	05/04/17

Project Name:

Project Number: 01.0015522.17

HP WALTHAM

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1714338

 Report Date:
 05/10/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Maria Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 05/10/17

METALS

Serial_No:05101714:00

Total Hardness by S	SM 2340E	8 - Mansfiel	d Lab								
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analy
Matrix:	Water										
Sample Location:	WALT	HAM, MA					Field Pr	ep:	Not Spe	cified	
Client ID:	SW						Date Re	eceived:	05/04/17	7	
Lab ID:	L1714	338-01					Date Co	ollected:	05/04/17	7 12:40	
				SAMPL	E RES	ULTS					
Project Number:	01.00	15522.17					Report	Date:	05/10/17	7	
Project Name:	HP W	ALTHAM					Lab Nu	mber:	L17143	38	
								_			

Serial_No:05101714:00

 Lab Number:
 L1714338

 Report Date:
 05/10/17

Project Name:HP WALTHAMProject Number:01.0015522.17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL I	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 23	40B - Mansfield Lab	for samp	le(s): 01	Batc	h: WG1000	654-1			
Hardness	ND	mg/l	0.660	NA	1	05/05/17 11:18	05/05/17 18:29	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: HP WALTHAM **Project Number:** 01.0015522.17

Lab Number: L1714338 Report Date: 05/10/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Hardness by SM 2340B - Mansfield Lab	Associated sampl	e(s): 01	Batch: WG100065	4-2				
Hardness	98		-		85-115	-		

		Matrix Spike Analysis Batch Quality Control	
Project Name:	HP WALTHAM	Lab Number:	L1714338
Project Number:	01.0015522.17	Report Date:	05/10/17

Parameter	Native Sample	MS Added	MS Found %	MS 6Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD Qu	RPD al Limits
Total Hardness by SM 2340B	- Mansfield Lat	o Associate	d sample(s): (01 QC Batc	h ID: W	/G1000654-3	QC Sample:	L1714327-01	Client ID:	MS Sample
Hardness	86.0	66.2	144	88		-	-	75-125	-	20
Total Hardness by SM 2340B	- Mansfield Lat	o Associate	d sample(s): ()1 QC Batc	h ID: W	/G1000654-7	QC Sample:	L1714341-01	Client ID:	MS Sample
Hardness	423	66.2	452	44	Q	-	-	75-125	-	20

INORGANICS & MISCELLANEOUS

						S	Serial_No:05	5101714:00	
Project Name:	HP WALTHAM					Lab Nu	umber:	L1714338	
Project Number:	01.0015522.17					Report	t Date:	05/10/17	
			SAMPLE	RESULI	S				
Lab ID:	L1714338-01					Date C	collected:	05/04/17 12:4	10
Client ID:	SW					Date R	eceived:	05/04/17	
Sample Location:	WALTHAM, MA					Field P	rep:	Not Specified	
Matrix:	Water								
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
eneral Chemistry - We	stborough Lab								
trogen, Ammonia	ND	mg/l	0.075		1	05/05/17 15:01	05/08/17 21:1	8 121,4500NH3-E	зн ат

Project Name:HP WALTHAMProject Number:01.0015522.17

 Lab Number:
 L1714338

 Report Date:
 05/10/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for s	ample(s): 01	Batch:	WG10	00607-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	05/05/17 15:01	05/08/17 21:11	121,4500NH3-B	H AT

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1714338 Report Date: 05/10/17

Project Name: HP WALTHAM Project Number: 01.0015522.17

LCS LCSD %Recovery Limits %Recovery %Recovery RPD **RPD** Limits Parameter Qual Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1000607-2 20 Nitrogen, Ammonia 95 80-120 --

		Matrix Spike Analysis Batch Quality Control	
Project Name:	HP WALTHAM	Lab Number:	L1714338
Project Number:	01.0015522.17	Report Date:	05/10/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery 0	Recovery Qual Limits	RPD Qua	RPD I Limits
General Chemistry - Westborou	igh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1000607-4	QC Sample: L171	3722-01 Client II	D: MS San	nple
Nitrogen, Ammonia	ND	4	3.88	97	-	-	80-120	-	20

Project Name:	HP WALTHAM	Li	ab Duplicate Analy Batch Quality Control		La	ab Numbe	r: L1714338
Project Number:	01.0015522.17				R	eport Date	: 05/10/17
Parameter		Native Sample	Dunlicate Sample	Units	RPD	Qual	RPD Limits

Parameter	Native Sample	Duplicate San	ipie Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01 QC Batch ID:	WG100607-3	OC Sample: 117137	22-01 Clie	ont ID: DI IP Sample
Scherar Orientistry Westbolough Lab	Associated sample(s). Or GO Daterrib.	. WOTOOOOT 3			
Nitrogen, Ammonia	ND	ND	mg/l	NC	20

Serial	_No:05101714:00

Lab Number: L1714338 Report Date: 05/10/17

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Absent

HP WALTHAM

Cooler Information Custody Seal

Project Number: 01.0015522.17

Cooler

Project Name:

A

Container Info	Temp						
Container ID	Container Type	Cooler	рΗ	deg Ċ	Pres	Seal	Analysis(*)
L1714338-01A	Plastic 250ml HNO3 preserved	А	<2	3.7	Y	Absent	HARDU(180)
L1714338-01B	Plastic 500ml H2SO4 preserved	А	<2	3.7	Y	Absent	NH3-4500(28)

L1714338

05/10/17

Lab Number:

Report Date:

Project Name: HP WALTHAM

Project Number: 01.0015522.17

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
OTT D	

- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte able was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Serial_No:05101714:00

Project Name: HP WALTHAM Project Number: 01.0015522.17

Lab Number: L1714338

Report Date: 05/10/17

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: HP WALTHAM Project Number: 01.0015522.17

 Lab Number:
 L1714338

 Report Date:
 05/10/17

REFERENCES

- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 300: DW: Bromide
EPA 6860: NPW and SCM: Perchlorate
EPA 9010: NPW and SCM: Amenable Cyanide Distillation
EPA 9012B: NPW: Total Cyanide
EPA 9050A: NPW: Specific Conductance
SM3500: NPW: Ferrous Iron
SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.
SM5310C: DW: Dissolved Organic Carbon

SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.
EPA 624: Volatile Halocarbons & Aromatics,
EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs
EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.
Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:05101714:00

ALPHA	CHAIN	OF CL	ISTO	DY P	AGE	_ OF	Date R	ec'd in L	_ab:	5	5/41	17		ALPH	A Jol	o#:2	17143	38
N LS TICAL		Projec	t Informat	ion	-	-	Repo	rt Infor	mation	Data D	Deliver	rable	_	-	-	rmation		U
8 Walkup Drive Westboro, MA Tel: 508-898-9		Project	Name: H	P Wa	, tha	m	D AD	Ex	YE	MAIL] Same	e as Cli	ent info	PO #:	
Client Information	on	Project	Name: H Location: L	~~ (HS	am .	Ma	Regu	latory F	Requirer	nents	& F	Proje	ct Info	ormat	ion Re	quiren	nents	
Client: GZA		Project	#: 01.00	115527	2.17				A MCP A atrix Spik				DG? (Q Y Require	es D N		RCP Analytica	I Methods
Address: 249	Venderb, 11	Are Project	Manager:	J. Co	ther	F	□ Yes	No G	W1 Stand	lards (In								
Norw	Venderb, 17 and Mar 020	GZ ALPHA	Quote #:				and a second sec		PDES RO Fed Prog			-		_	Criteria	a		
Phone: 78(~	987-1157	the second se	Around Tir					11	14	2/00/		1	1	11	10	11	11	
Email: Wolar,	1@929.com	Stan						/ /	JRCP	dan	uno s	/	/ /	14	4500	- /-		
				RUSH (only	confirmed if pre-a	pproved!)	ANALYSIS	14.2	14	18 Range	Range.	/	Drint	50	1		/ /	т
	Project Information:						NAL)	D 5	MCp	20	20 2	- u	Les.	W. Linges	• /	/ /		E INFO A
l'ease r	eport with	detect	on l	im.ts	1h			10	13 L 5 D	Targe	arge	10	Her de	A	/ /	/ /	<i>Filtratio</i>	
accordance	e vita .	the 21	017 RC	<i>sp</i>			8	BN	RCRA	es es	PEST	it Only	M.	51	/ /			
requirement	nts.						D 82	S: DA	100	Rang	14/0	Muar	I'm H			//	Preserv	
ALPHA Lab ID (Lab Use Only)	Sample I	D	Colle	ection Time	Sample Matrix	Sampler Initials	Voc.	METALS: DAGN	METALS: DRCP 13 DNCP 14 DRCP 15 EPH: DD	VPH: DRanges & Targets D Ranges C	TPH: L	12	Are		/ /	/	Sample Cor	L
14338-01	SW		5/4/17	1240pm	Sir	BD						X	K					2
										_						-		
											_			_		_		_
											_			_		_		
																	_	
Container Type P= Plastic	Preservative				Conta	ainer Type						ρ	р					
A= Amber glass V= Vial G= Glass	$B = HCI$ $C = HNO_3$ $D = H_2SO_4$				Pre	eservative						HAGE	125					
B= Bacteria cup C= Cube O= Other	E= NaOH F= MeOH	Reling	ished By:		Date	e/Time		Rec	eived By				ate/Tin	ne				
E= Encore D= BOD Bottle	$G = NaHSO_4$ $H = Na_2S_2O_3$ $I = Ascorbic Åcid$ $J = NH_4CI$ $K = Zn Accetate$ $O = Other$	Kell J	46		5/4/	7 1:10	m UC	in	lut	tr T		5/1	17 V17	13/0	Alphi	a's Term reverse	submitted are s and Condit side (rev. 12-Mar-201	ions.

APPENDIX E CALCULATION SHEETS FOR EFFLUENT LIMITATIONS

Enter number values in green boxes below

Enter values in the units specified

J, Q_R = Enter upstream flow in **MGD** 0 0.1008 Q_P = Enter discharge flow in **MGD** 0 Downstream 7Q10

Enter a dilution factor, if other than zero

447

Enter values in the units specified

 C_d = Enter influent hardness in mg/L CaCO₃ 99.4 $C_s = Enter$ receiving water hardness in mg/L CaCO₃

Enter receiving water concentrations in the units specified

\checkmark	_
7.1	pH in Standard Units
25	Temperature in °C
0	Ammonia in mg/L
99.4	Hardness in mg/L CaCO3
0	Salinity in ppt
0	Antimony in µg/L
0	Arsenic in µg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
0	Iron in µg/L
0	Lead in µg/L
0	Mercury in µg/L
0	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
0	Zinc in µg/L

Enter influent concentrations in the units specified

\checkmark	
0	TRC in µg/L
0.303	Ammonia in mg/L
0	Antimony in µg/L
0	Arsenic in µg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
54.2	Copper in µg/L
2295	Iron in µg/L
15.4	Lead in µg/L
0	Mercury in µg/L
4.88	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
68.7	Zinc in µg/L
0	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
69	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in µg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in µg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0	Indeno(1,2,3-cd)pyrene in µg/L
0	Methyl-tert butyl ether in $\mu g/L$

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater Salinity required for saltwater (estuarine and marine) Metals required for all discharges if present and if dilution factor is > 1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

Dilution Factor	1.0					
A T	TBEL applies if	bolded	WQBEL applies i	f bolded	Compliance Level	
A. Inorganics		1			applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	11	μg/L	50	μg/L
Total Suspended Solids	30	mg/L				
Antimony	206	μg/L	640	μg/L		
Arsenic	104	μg/L	10	μg/L		
Cadmium	10.2	μg/L	0.8207	μg/L		
Chromium III	323	μg/L	293.8	μg/L		
Chromium VI	323	μg/L	11.4	μg/L		
Copper	242	μg/L	33.5	μg/L		
Iron	5000		1000			
		μg/L		μg/L		
Lead	160	μg/L	21.40	μg/L		
Mercury	0.739	μg/L	0.91	μg/L		
Nickel	1450	μg/L	185.1	μg/L		
Selenium	235.8	μg/L	5.0	μg/L		
Silver	35.1	μg/L	49.7	μg/L		
Zinc	420	μg/L	426.1	μg/L		
Cyanide	178	mg/L	5.2	μg/L		μg/L
B. Non-Halogenated VOCs		C C		10		
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7970	μg/L		_		
Phenol	1,080	μg/L	300	μg/L		
C. Halogenated VOCs Carbon Tetrachloride	4.4		1.6			
1,2 Dichlorobenzene	4.4 600	μg/L μg/L	1.0	μg/L		
1,3 Dichlorobenzene	320	μg/L μg/L				
1,4 Dichlorobenzene	5.0	μg/L μg/L				
Total dichlorobenzene		μg/L				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L				
Tetrachloroethylene cis-1,2 Dichloroethylene	5.0 70	μg/L ug/I	3.3	μg/L		
Vinyl Chloride	2.0	μg/L μg/L				
-	2.0	μ <u></u> β/L				
D. Non-Halogenated SVOCs						
Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	2.2	μg/L		

Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	0.0038	μg/L		μg/L
Benzo(a)pyrene	1.0	μg/L	0.0038	μg/L		μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0038	μg/L		μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L		μg/L
Chrysene	1.0	μg/L	0.0038	μg/L		μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	μg/L		μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	μg/L		μg/L
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L μg/L			0.5	μg/L
F. Fuels Parameters	1.0	μg/L				
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	-	20	u a/I		
5		μg/L α/I		μg/L		
tert-Butyl Alcohol	120	μg/L 				
tert-Amyl Methyl Ether	90	μg/L				

APPENDIX F

ACEC AND FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS EVALUATION

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 20, 2017

To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:

http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm (accessed January 2017)

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact Maria Tur of this office at 603-223-2541 if we can be of further assistance.

Sincerely yours,

Thomas R. Chapman Supervisor New England Field Office

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN November 2010

Total Approximate Acreage: 268,000 acres Approximate acreage and designation date follow ACEC names below.

Bourne Back River (1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp (1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley (12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed (1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor (600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog (8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills (500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed (4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed (14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp (16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay (2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin (1,350 acres, 1995) Lee and Stockbridge Karner Brook Watershed (7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds (8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary (1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag (25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay (9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River (160 acres, 1980) Bourne

Rumney Marshes (2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System (9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin (13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

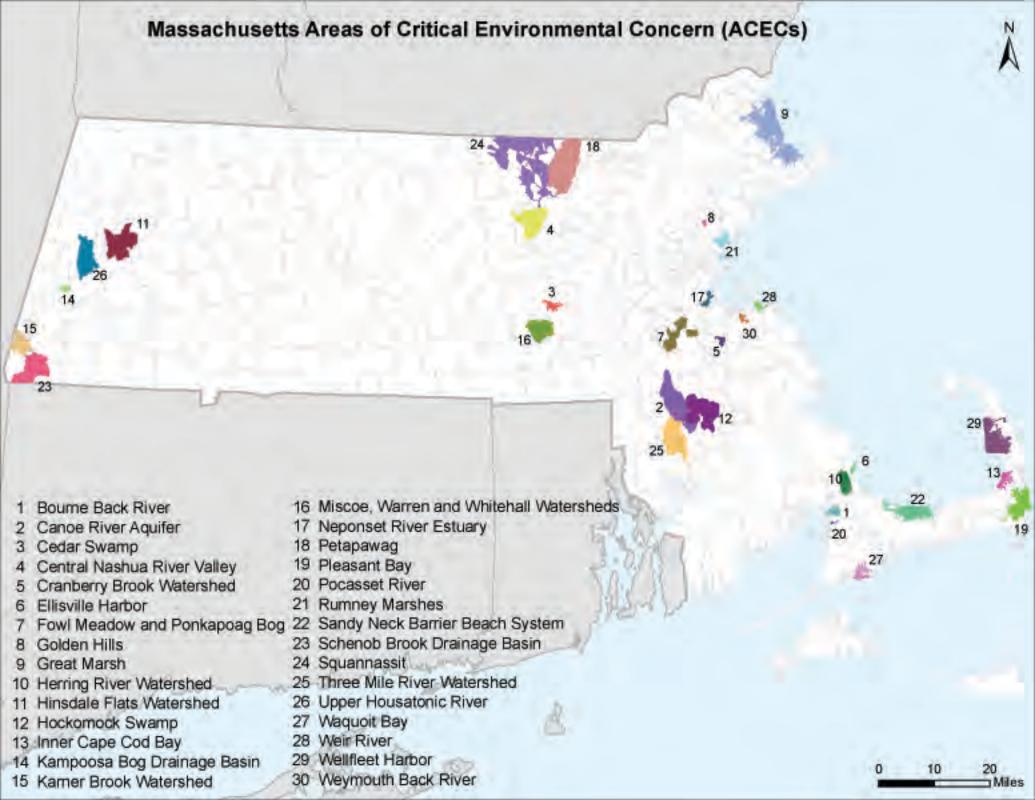
Upper Housatonic River (12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay (2,580 acres, 1979) Falmouth and Mashpee

Weir River (950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor (12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River (800 acres, 1982) Hingham and Weymouth


ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

Towns with ACECs within their Boundaries

•

November 2010

TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag	0	Schenob Brook
j -	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
Dooton	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River	Oneans	Pleasant Bay
Doume	Bourne Back River	Pepperell	Petapawag
		i eppereir	Squannassit
Braintree	Herring River Watershed	Peru	Hinsdale Flats Watershed
	Cranberry Brook Watershed	Pittsfield	
Brewster	Pleasant Bay		Upper Housatonic River
D · 1 · 1	Inner Cape Cod Bay	Plymouth	Herring River Watershed
Bridgewater	Hockomock Swamp		Ellisville Harbor
Canton	Fowl Meadow and Ponkapoag Bog	Quincy	Neponset River Estuary
Chatham	Pleasant Bay	Randolph	Fowl Meadow and Ponkapoag Bog
Cohasset	Weir River	Raynham	Hockomock Swamp
Dalton	Hinsdale Flats Watershed	Revere	Rumney Marshes
Dedham	Fowl Meadow and Ponkapoag Bog	Rowley	Great Marsh
Dighton	Three Mile River Watershed	Sandwich	Sandy Neck Barrier Beach System
Dunstable	Petapawag	Saugus	Rumney Marshes
Eastham	Inner Cape Cod Bay		Golden Hills
	Wellfleet Harbor	Sharon	Canoe River Aquifer
Easton	Canoe River Aquifer		Fowl Meadow and Ponkapoag Bog
	Hockomock Swamp	Sheffield	Schenob Brook
Egremont	Karner Brook Watershed	Shirley	Squannassit
Essex	Great Marsh	Stockbridge	Kampoosa Bog Drainage Basin
Falmouth	Waquoit Bay	Taunton	Hockomock Swamp
Foxborough	Canoe River Aquifer		Canoe River Aquifer
Gloucester	Great Marsh		Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
	Watersheds	Townsend	Squannassit
Groton	Petapawag	Tyngsborough	Petapawag
aroton	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley	opton	Watersheds
	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
Hingham	Weir River	vasnington	Upper Housatonic River
ппупап	Weymouth Back River	Wellfleet	Wellfleet Harbor
Hinsdale	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp
	Cranberry Brook Watershed	•	•
Holbrook	,	Westborough Westwood	Cedar Swamp Fowl Meadow and Ponkapoag Bog
Hopkinton	Miscoe-Warren-Whitehall		
	Watersheds	Weymouth	Weymouth Back River
1.1	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River		
Ipswich	Great Marsh		
Lancaster	Central Nashua River Valley		
	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
Mashpee	Waquoit Bay		
Melrose	Golden Hills		
Milton	Fowl Meadow and Ponkapoag Bog		
	Neponset River Estuary		
	Nopoliset inver Loluary		

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
Barnstable	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
Dukes	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Plymouth	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
Worcester	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

-Eastern cougar and gray wolf are considered extirpated in Massachusetts.

-Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

-Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

ATTACHMENT

Evaluation of Long-Eared Bat Habitat

175 Wyman Street

Waltham, Massachusetts

The northern long-eared bat (*Myotis septentrionalis*) has a federal status of Threatened and a state status of Endangered within Massachusetts.

The northern long-eared bat is a migratory species which utilizes a variety of habitats during the year depending on the season. Between early November and April, this species hibernates in crevices in portions of caves and abandoned mine shafts which have high humidity, constant temperatures, and little air flow. Individuals tend to return to the same hibernaculum from year to year although they are also known to sometimes use other hibernacula. Hibernacula are generally located within approximately 35 miles of summer foraging habitat. Between April and October, northern long-eared bats roost and forage in forested areas. Preferred roost sites include clusters of large, live or dead, hardwood trees with cavities or peeling bark. Preferred foraging sites include wooded areas around vernal pools or small ponds or along streams. Thus, transitional zones between forested uplands and wetlands represent prime summer roosting and foraging habitat.

The 175 Wyman Street property and the properties associated with the discharge system is located within developed areas, including a major highway system. There are some trees and a wetland area on 175 Wyman Street property that might provide habitat, but the discharge system has no impact on those potential habitat areas. The constant noise disturbances from traffic along the highway and adjoining roads make this area marginal habitat for northern long-eared bats, therefore it is unlikely that this species utilizes this area.

APPENDIX G MACRIS SEARCH RESULTS

Massachusetts Cultural Resource Information System

MACRIS Search Results

Search Criteria: Town(s): Waltham; Street No: 175; Street Name: Wyman St; Resource Type(s): Area;

	Property Name	Street	Town	Year
--	---------------	--------	------	------

Proactive by Design

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 781.278.3700 www.gza.com July 16, 2018 File No. 15522.18

Ms. Jennifer Wood Massachusetts Department of Environmental Protection Surface Water Discharge Permit Program 1 Winter Street Boston, Massachusetts 02108

Re: Response to MassDEP Questions Authorization for Discharge to Cambridge Reservoir 175 Wyman Street Waltham, Massachusetts RTN: 3-13311

Dear Ms. Wood:

On behalf to HP Inc. (HP), GZA GeoEnvironmental, Inc. (GZA) has prepared this response to your letter received on June 26, 2018 requesting additional information regarding the Remediation General Permit (RGP) Notice of Intent (NOI) submitted by GZA on June 27, 2017. The NOI is for the discharge of treated water from a groundwater remediation system located at 175 Wyman Street, Waltham, Massachusetts (the "Site") to the Cambridge Reservoir, a Class A, public water supply, which is an Outstanding Resource Water (ORW). Per Section 1.3 of the RGP, discharge to an ORW requires Massachusetts Department of Environmental Protection (MassDEP) approval.

BACKGROUND

The groundwater remediation system was installed at the Site in 1997 to contain and treat predominantly trichloroethene (TCE)-affected groundwater. One of the main objectives of this remedial program was to limit the potential impacts of Site groundwater on the nearby Cambridge Reservoir. Since 1997, discharge of treated groundwater has been to an on-property storm drain, which flows westerly into an off-property water retention basin east of Route 128 that discharges into the Cambridge Reservoir. Originally, this discharge was authorized under the National Pollutant Discharge Elimination System (NPDES) Exclusion program along with authorization from the City of Cambridge. In 2005, the Environmental Protection Agency (EPA) issued the RGP and the discharge was transitioned on September 22, 2005 into this new program (authorization #MAG910002). In 2010 the EPA re-issued the RGP and required a submission of an NOI for on-going discharges. Our NOI was submitted on December 7, 2010 and authorization was received on May 25, 2011. This May 2011 authorization remains active pending the response to our June 2017 NOI.

RESPONSE TO QUESTIONS

Section 1.3 of the RGP states that discharges to ORWs are ineligible for coverage unless authorization is granted by MassDEP. MassDEP is required to perform their review in accordance with the Antidegradation Provisions of the Massachusetts Surface Water Quality Standards (314

Proactive by Design

CMR 4.04) and MassDEP policy, "Implementation Procedures for the Antidegradation Provisions of the Massachusetts Surface Water Quality Standards, 314 CMR 4.00" (the "Policy"). Once MassDEP has issued their authorization, the EPA can proceed with their discharge authorization.

In order to proceed with MassDEP authorization, 314 CMR 4.04(5)(b) requires the applicant to demonstrate compliance with MassDEP regulations 314 CMR 4.04(5)(a)(2 through 4) and the Policy. To facilitate this process, MassDEP has requested a response to each of the following questions:

1. Are there less environmentally damaging alternative sites for the discharge, sources for disposal, or methods to eliminate the discharge that are reasonably available or feasible? This demonstration must include an analysis of the reuse and conservation of discharge water, relocation of activity, land application of discharge water or use of closed systems, alternative methods of production or operation, improved process controls, improved discharge water treatment facility operation, alternative methods of treatment and treatment beyond applicable technology requirements of the Federal Clean Water Act. Technologically feasible alternatives must be compared with the potential environmental degradation.

The discharge is associated with a groundwater remediation system, which is subject to the Massachusetts Contingency Plan (MCP; 310 CMR 40.0000). As such, some of the elements of this question (relocation of activity, alternative methods of production or operation, etc.) are not applicable. The MCP, 310 CMR 40.0040 (specifically sections 40.0041 through 40.0045), outlines options for the management of discharges from remedial systems (referred to as "Remedial Wastewater"). The three categories for the discharge of Remedial Wastewater are as follows:

Ground Surface and Subsurface Discharge (310 CMR 40.0045):

310 CMR 40.0045(1)(a) states that the discharge "does not erode or otherwise impair the functioning of the surficial and subsurface soils, infiltrate underground utilities, building interiors or subsurface structures, result in groundwater mounding within two feet of the ground surface, or result in flooding of, or breakout to the ground surface." This option was considered during system design; however, with shallow bedrock throughout the Site, low permeable (typically less than 0.6 feet/day based on previous hydraulic conductivity testing) overburden soil, and the presence of an underground tank (currently utilized for rain water collection and irrigation) on-site discharge on this developed property (which has numerous subsurface structures, including building foundations and utilities) is not a feasible option. Based on our evaluation of system flows and the capacity of the subsurface at the Site to accept groundwater discharge, excessive mounding and breakouts to the ground surface would be likely with a subsurface infiltration system. This would violate the MCP restrictions on subsurface discharge and render this option infeasible. Additionally, mounding of groundwater from subsurface discharges would impair the hydraulic control of Site groundwater that the existing system provides.


```
Proactive by Design
```

POTW Discharge (310 CMR 40.0043 and 40.0044):

310 CMR 40.0043 and 40.0044 list the requirements of remedial discharges to publicly owned and non-publicly owned treatment works, respectively. There are no non-publicly owned treatment works located near the Site and the publicly owned treatment works located near the Site is owned and operated by the Massachusetts Water Resources Authority (MWRA). In accordance with MWRA's sewer use regulation (specifically 360 CMR 10.023(1)), the discharge of groundwater into their sewerage system is prohibited. Based on previous inquiries for similar projects, it is GZA's understanding that the MWRA does not make exceptions to this prohibition.

Surface Water Discharge (310 CMR 40.0042):

310 CMR 40.0042 lists the requirements of Remedial Wastewater discharges to surface water. Specifically, 310 CMR 40.0042(3)(b and c) allows for surface water discharge provided that a permit application has been submitted to the EPA or the remediation system is operated in accordance with an existing NPDES permit. Additionally, 310 CMR 40.0041(10) and 40.0042(4) allow for the discharge of remedial wastewater to ORW under certain specific conditions. The system at the Site meets those conditions.

* *

Accordingly, the feasible option for the discharge generated from the groundwater remediation system on the Site is to surface water as the discharge cannot meet the requirements of 310 CMR 40.0043 through 40.0045.

With respect to treatment technologies, process controls and system operation, it is GZA's opinion that the current system meets the requirements of the RGP and the MCP.

2. To the maximum extent feasible, are the discharge and activity designed and conducted to minimize adverse impacts on water quality, including implementation of source reduction practices? All reasonable efforts to minimize the environmental impacts of the proposed discharge must be made. Emphasis is placed on source reduction. This includes investigation of changes in plant production processes or raw materials that reduce, avoid, or eliminate the use of pollutants, including, but not limited to, nutrients, toxics and hazardous substances, or generation of pollution by-product per unit product, so as to reduce overall risks to the environment. Compliance with M.G.L. Ch. 211 (the Toxics Use Reduction Act) is required.

The existing groundwater remediation system utilizes six recovery wells to mitigate the off-Site migration of Site-related groundwater contaminants. The treatment of recovered groundwater utilizes applicable treatment components to remove Site-related contaminants (predominately TCE, cis-1,2-dichloroethene, and tetrachloroethene) plus metals (predominantly copper, iron, lead, selenium, and zinc) also present in the groundwater. The groundwater treatment system was reviewed by EPA and discharge of the treated water is authorized by EPA under the NPDES RGP. EPA imposed conditions are conservative and ensure that the discharge of treated groundwater does not result in exceedances of water quality standards for drinking water or for aquatic life.

Proactive by Design

Nutrients, toxics, and hazardous substances are not utilized in the treatment process. As noted above, the discharge is associated with a groundwater remediation system, rather than an industrial process. The references to production processes, source reduction (in the sense implied), and raw materials do not apply.

3. Will the continued discharge impair existing uses of the receiving water or result in a level of water quality less than that specified for the Class?

The existing discharge is subject to discharge limits set by EPA as to not impair the existing uses of the receiving water. As stipulated by the EPA, the discharge water is sampled and analyzed monthly to ensure compliance. Beginning in 1999, semiannual sampling for Site-related contaminants of surface water from the reservoir near the point of discharge has been performed. Since that time there was one occasion (June 2007) when a contaminant (TCE) was detected in the surface water; however, the reported concentrations (<1 ug/L) were below drinking water standards (5 ug/L).

4. Since expiration of the previous RGP on September 9, 2015, did discharge from the facility meet the requirements of the RGP issued on September 9, 2010 "2010 RGP"? Note that cumulative degradation resulting from discharger's noncompliance may warrant further investigation. If the facility has been in noncompliance, explain how the facility plans to return to compliance.

Since September 9, 2015, the effluent from the groundwater remediation system exceeded the discharge limits once. The exceedance was for TCE during the March 2016 monthly sampling event. The system was deactivated and the exceedance (13 ug/L vs. discharge limit of 5 ug/L) was reported to EPA. Corrective actions were performed and on March 30, 2016, the system was reactivated, and an effluent sample was collected confirming compliance with the discharge limits. These results were also communicated to the EPA. With this one exception the discharge from the remediation system has been in compliance since September 2015.

CONCLUSION

We trust that the above information and responses addresses your questions regarding the discharge of Remedial Wastewaters to the Cambridge Reservoir and satisfies the requirements of 314 CMR 4.00 and the Policy.

Proactive by Design

If you have any additional questions or require any additional information, please contact any of the undersigned at (781) 278-3700.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

John A. Colbert Associate Principal

Charles A. Lundberg

Charles Lindberg, LSP Senior Principal

cc: Ms. Susannah King – MassDEP
 Ms. Shauna Little – EPA Region 1
 Mr. Stephen Casazza, City Engineer – Waltham Water and Sewer Division
 Mr. Samuel Corda, Cambridge Water Department
 Mr. Jeff Miller – HP Inc.
 Mr. Roger Anderson - TRC

William R. Norman Consultant/Reviewer

 $\label{eq:lister} $$ $ 15,000-16,999\15522\15522-18.jc\p permit\esponse\ to\ massdep\walthamma_180713_massdep\ response_gza.docx and the lister of the lis$