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1.  Introduction  
Extreme precipitation poses a significant risk to infrastructure across the state of Massachusetts, 
and this risk is poised to increase with climate change. There is a vast body of literature showing 
that extreme precipitation is likely to intensify as the climate warms, both globally and in the 
Northeast US (Ali et al., 2018; Howarth et al., 2019). Therefore, it is critical that new design 
standards be determined for Massachusetts infrastructure that account for potential increases in 
extreme precipitation, so that communities are better able to mitigate the impacts of these extreme 
events over the next several decades. The purpose of this report is to identify observed and 
projected changes in extreme precipitation across Massachusetts, and to forward recommendations 
for how to adjust design storms to accommodate these changes.  
 
To help determine how design storms may change in the future, it is instructive to focus on the 
different causal pathways in the climate system that can lead to these changes. The physical causes 
of future climate change can be classified as either thermodynamic or dynamic in nature (Emori 
and Brown, 2005; Seager et al., 2010). Thermodynamic climate changes relate directly to the 
increased surface warming of the Earth under human-induced greenhouse gas emissions. For 
extreme precipitation, thermodynamic change is driven by the increased moisture holding capacity 
of a warmer atmosphere. The Clausius-Clapeyron (C-C) equation determines the relationship 
between saturated water vapor pressure and air temperature and shows that the atmospheric 
moisture-holding capacity increases by ~7% per °C warming (Alduchov & Eskridge, 1996). If all 
other factors controlling precipitation intensity remain unchanged, it is often assumed that extreme 
precipitation will scale with temperature at the same C-C scaling rate (Allen & Ingram 2002; Allan 
& Soden, 2008). The reasoning is that under conditions that lead to extreme precipitation (i.e., near 
saturated atmospheric conditions; intense surface convergence and uplift), changes in atmospheric 
moisture content will translate directly to changes in precipitation amount. This type of 
thermodynamic climate change in extreme precipitation is consistent across theory, observations, 
and model projections (IPCC 2013; Pfahl et al., 2017), leading to high confidence in the future 
direction of change, albeit with residual uncertainty in its magnitude.  
 
Dynamic climate changes in extreme precipitation are related to shifts in atmospheric circulation 
(e.g., jet stream dynamics, storm tracks) and are significantly more uncertain than thermodynamic 
change (Pfahl et al., 2017), leading to large uncertainties in projected precipitation patterns 
(Hawcroft et al., 2016; Shepherd, 2014; Woollings, 2010; Zappa et al., 2013). Dynamic changes 
arise within the non-linear dynamics of the coupled atmosphere-ocean system that can produce 
multi-decadal oscillations in regional precipitation with no well-defined periodicity (Liu, 2012; 
Han et al., 2014; Newman et al., 2016). This makes dynamic changes particularly difficult to 
distinguish from natural atmospheric variability unrelated to anthropogenic climate change 
(Shepherd, 2014; Deser et al., 2012), especially over shorter timeframes (30-50 years) relevant to 
water system planning (Hawkins and Sutton, 2011). Uncertainty in projections not attributable to 
differences in boundary forcing or internal variability are linked to errors in the underlying climate 
models (Knutti & Sedlacek, 2013). These errors are often driven by unresolved processes (Randall 
et al., 2003), which also have a large impact on projections of future large-scale atmospheric 
dynamics (Barnes and Polvani, 2013; van Niekerk et al., 2017). This type of dynamical error 
severely complicates attempts to bias correct GCM output because the bias will likely change over 
time (Maraun, et al. 2017). 
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Very detailed climate model experiments and analysis are required to attribute projected shifts in 
extreme precipitation to true dynamical climate change and separate it from climate model bias or 
internal variability. When such studies are beyond the scope and available resources of a climate 
change analysis, or when there is significant, irreducible uncertainty in the dynamic components 
of climate change, there is strong justification to focus only on the thermodynamic aspects of 
climate change for which there is more confidence (Pfahl et al., 2017). This is the approach taken 
in this report, which focuses on developing a better understanding of thermodynamic scaling of 
observed and projected extreme precipitation with warming over the state of Massachusetts.   
 
There are multiple factors that can modulate extreme precipitation scaling over a specific region, 
yielding greater or lower scaling than the theoretical C-C rate of ~7% per °C (e.g., see Table 1 in 
Pumo et al., 2019). For instance, scaling rates can depend strongly on the resolution of precipitation 
data used in the analysis (daily vs. sub-daily; Visser et al., 2020). There is also strong evidence 
that extreme precipitation scales more closely with dew point temperature rather than air 
temperature, as the former better reflects changes in moisture available to drive changes in 
precipitation (Ali et al., 2018). In addition, scaling rates can vary depending on the modeling 
approach used to determine the scaling rate (see Martinkova & Kysely,   2020). Finally, scaling 
can vary significantly depending on whether precipitation events are separated by storm type (e.g., 
convective vs. stratiform) or weather regime (WR), the latter defined as reoccurring, large-scale 
patterns of atmospheric flow that influence weather over a region (Magan et al., 2020; Martinkova 
& Kysely, 2020).  
 
This report assesses how extreme precipitation scales with dew point temperature, both in the 
observational record across the Northeast US and in a set of downscaled climate projections 
specific to the state of Massachusetts. Scaling rates are examined on a variety of temporal scales, 
including at the annual, seasonal, and daily levels, using a variety of different statistical methods 
to ensure the robustness of results. Scaling rates are also examined under different WRs for the 
Northeast US, to determine if background atmospheric dynamics influence observed 
thermodynamic scaling rates. All inferred scaling rates of extreme precipitation with warming are 
compared against the benchmark, theoretical C-C scaling rate of 7% per °C. The overarching goal 
of these analyses is to determine an appropriate scaling rate that can be used to project 
thermodynamic changes in design storm events across the state of Massachusetts based on an 
ensemble of temperature projections across the state. 
 
2.  Data  
2.1. Observational Data 
Observed daily temperature and precipitation are collected across 93 weather stations in the 
Northeast US from the global summary of day (GSOD) dataset contained in the Integrated Surface 
Data (ISD) (https://www.ncdc.noaa.gov/isd) (Figure 1). We collected stations across the Northeast 
US, rather than only in Massachusetts, to ensure a sufficient dataset to explore thermodynamic 
scaling of extreme precipitation with warming. We selected the 93 ISD-GSOD stations using a 
three step process. First, we identified all the stations located in Connecticut, Delaware, District of 
Columbia, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, 
Pennsylvania, Rhode Island, and Vermont. Next, we flagged any year with more than 10% missing 
days across three variables (precipitation (P), air temperature (Ta), and dew point temperature 
(Td)) between March 1, 1948, and February 29, 2020 and labeled those years as incomplete. 
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Finally, we selected those stations that have at least 10 years of complete yearly records. The 
selected 93 stations have over 21 years of observations per site on average. The screening process 
was made relatively strict to ensure sufficient daily records at each station to manage sampling 
variability in the estimated relationship between extreme precipitation and dew point temperature.  

 
Figure 1. Map of observed ISD-GSOD stations (black) and locations of downscaled climate model 

projections (red). 
 
We also obtained daily gridded (2.5° × 2.5°) geopotential heights (GPH) [m] at the 500‐hPa level 
from the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric 
Research (NCAR) reanalysis (NCEP/NCAR Reanalysis 1) dataset (Kalnay et al., 1996) between 
March 1, 1948, and February 29, 2020 (72 years). The gridded data were then extracted for the 
region between 30°N-60°N and 110°W-50°W separately for the seasons of December-January-
February (DJF), March-April-May (MAM), June-July-August (JJA), and September-October-
November (SON). There were 6498, 6624, 6624, and 6552 days in each season, respectively. 
 
2.2. Downscaled Climate Model Projections  
Future, daily climate model projections were obtained from the Multivariate Adaptive Constructed 
Analogs (MACA) statistically downscaled product (Abatzoglou and Brown, 2012). MACA 
downscales global climate model (GCM) output from the CMIP5 ensemble to higher spatial 
resolutions while maintaining covariance patterns in multiple variables across space. These 
downscaled data are designed to ensure physical plausibility across a set of meteorological fields. 
The downscaling method includes bias correction via quantile mapping followed by a constructed 
analogs approach, in which a daily GCM synoptic field, or target pattern, is built by identifying 
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and taking a linear combination of the 30 best predictor patterns from the observational record that 
are most similar to the GCM synoptic field. An epoch adjustment is employed that removes 
differences in the means between future and historical time periods to manage instances with no 
historical analogs under future climate scenarios. The MACA method is performed jointly for 
temperature and dew point temperature to maintain coherence across those fields.   
 
MACA data are gathered for the period between 2006-2099 at 15 locations across the state of 
Massachusetts (see Figure 1). These locations were selected to be near major metropolitan areas 
and to provide good coverage across the state. Five variables were gathered from the MACA 
dataset, including daily precipitation, minimum and maximum temperature, and minimum and 
maximum relative humidity. Daily average temperatures and relative humidity were calculated 
based on the minimum and maximum values and were then used to calculate average daily dew 
point temperature (see Eq. 8 in Lawrence, 2005). Data were collected for the RCP 8.5 emission 
scenario from 11 different climate models (see Table 1). These 11 models were chosen from the 
full set of 20 models in the MACA dataset to 1) ensure they contained relative humidity data 
needed for the dew point temperature calculation, and 2) avoid the inclusion of two related models 
from the same institution that may exhibit significant redundancy in model output (Knutti et al., 
2013; Steinschneider et al., 2015). 
 
Table 1. Climate models used in this study. All projections were gathered for the RCM 8.5 scenario. 

GCMs 
(1) BCC-CSM1-1 (5) CSIRO-Mk3-6-0 (9) IPSL-CM5A-MR 
(2) BNU-ESM (6) GFDL-ESM2M (10) MIROC-ESM 
(3) CAN-ESM2 (7) HADGEM2-ES365 (11) MRI-CGCM3 
(4) CNRM-CM5 (8) INMCM4  

 
We selected the MACA product over other publicly available downscaled products for several 
reasons. First, the MACA product provides projections of relative humidity needed to calculate 
dew point temperature, which is important for a thorough assessment of extreme precipitation 
scaling. Second, the MACA product downscales a relatively large set of GCMs from the CMIP5 
database, providing a better quantification of uncertainty compared to dynamically downscaled 
products based on a smaller set of GCMs (e.g., CORDEX, Jones et al., 2011). Finally, the MACA 
product is based on the daily, ~4-km resolution gridMET observational product (Abatzoglou, 
2013), while a similar downscaled product - Locally Constructed Analogs (LOCA; Pierce et al., 
2014) – is based on a coarser gridded observational product (Livneh et al., 2015). Recent 
comparisons between MACA and LOCA have shown that projected changes in extreme 
precipitation are much less intense in the LOCA product compared to MACA (Cantu et al., 2020), 
and in the Northeast US, this was attributed in large part to the differences in extreme precipitation 
present in the observational training data (Wang et al., 2020). The coarser observational product 
used in LOCA may have dampened extremes, and so we selected MACA to reduce the effect of 
this dampening on our inferred scaling rates. 
 
3. Methods  
Below we detail three separate analyses that focus on how extreme precipitation scales with dew 
point temperature, both in observations and in climate model projections, across annual, seasonal, 
and daily time scales. Multiple statistical methods are used across the different analyses to ensure 



6 
 

robustness of the scaling rates we derive from the data. For the daily time scale analysis, we focus 
on how extreme precipitation scaling varies with weather regimes prevalent across the Northeast 
US.  
 
3.1. Annual Maximum 
We first assess scaling between precipitation extremes and dew point temperature on an annual 
time step and at a regional scale. For each ISD-GSOD station (i) and each year (t), we calculate 
the wet-day mean dew point temperature for that year (𝑇!"#,%,&) and the annual maximum 
precipitation (𝑃'(),%,&). We use mean dew point temperature, but similar results would result using 
the median given the symmetry of the temperature distribution. Hereafter all references to average 
dew point temperature refer to wet-day averages (when precipitation is non-zero), which is a 
preferrable metric because it reflects temperature during days without moisture limitation; 
however, we also conducted all analyses with all-day average dew point temperatures and results 
do not change substantively.  
 
Because the number of years of data at many of the stations is relatively small, we pool the mean 
annual dew point temperature and maximum annual precipitation values across stations into a 
single dataset. Then, following a similar approach to Zhang et al. (2017), we use this pooled dataset 
and fit a generalized extreme value (GEV) distribution with the location (𝜇%,&) and scale (𝜎%,&) 
parameters changing linearly with the dew point temperature at station i and year t: 
 

𝑃'(),%,&	~	𝐺𝐸𝑉(𝜇%,& , 𝜎%,& , 𝜉)     (1) 
𝜇%,& = 𝛽*,+ +	𝛽*,,𝑇!"#,%,&     (2) 
𝜎%,& = 𝛽-,+ +	𝛽-,,𝑇!"#,%,&     (3) 

 
This model is fit with the ismev package in the R statistical software environment (Coles et al., 
2001). Note that the regression parameters 1𝛽*,+	, 𝛽*,,, 𝛽-,+, 𝛽-,,2 and shape parameter (𝜉) are the 
same for each site, reflecting the pooled estimation approach. We also considered three competing 
models where: 1) the location and scale parameters are static (i.e., a benchmark model where none 
of the GEV parameters vary with covariates); 2) only the location parameter varies with dew point 
temperature (i.e., the scale parameter is assumed the same across all sites, similar to the shape 
parameter); and 3) the location and log-scale parameters vary linearly with dew point temperature 
(i.e., we allow for a log-transform in the scale parameter, which is a common approach taken in 
the literature). Likelihood ratio tests (not shown) indicate that the model formulation in Eqs. 1-3 
outperforms these other formulations. In addition, we note that the estimated scale parameters are 
well above zero and so did not require the log transformation to ensure positive values.   
 
The above model allows dew point temperature to act as both a temporal and spatial covariate. 
That is, annual dew point variations across space and time are used to explain year-to-year shifts 
in the distribution of extreme precipitation across different locations. While long-term average 
dew point differences across locations can help explain some spatial variability in extreme 
precipitation distributions, it will not be able to explain spatial variations as well as site-specific 
models. However, the estimation of site-specific models would be severely limited by the paucity 
of data at many of the sites, leading to significant uncertainty. This motivates our use of a regional 
model here; this limitation is more carefully addressed using a hierarchical Bayesian model 
described in Section 3.2 below. 
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A similar approach to that described in Eqs. 1-3 is also taken using pooled data across the 15 
downscaled climate model locations, separately for each of the 11 models. For both the 
observations and each of the 11 climate models, we then calculate the regional scaling rate between 
average annual dew point temperature and annual maximum precipitation. The scaling rate is 
calculated by first estimating the 100-year return period event (𝑃,++./0,%,&) for each year and site 
based on the fitted GEV model above. Then, a linear model is estimated between the log of the100-
year event and the average annual dew point temperature: 
 

log	(𝑃,++./0,%,&) = 𝛼+ +	𝛼,𝑇!"#,%,&     (4) 
 
The scaling rate per degree dew point warming (i.e., Δ𝑇!"# = 1°C) is then calculated as follows: 
 

𝑠𝑐𝑎𝑙𝑖𝑛𝑔(%) = 100% Bexp Flog F1!""#$%|(4&'(564&'()
1!""#$%|4&'(

GG − 1I = 100%[exp(𝛼,) − 1]       (5) 

  
Finally, we use linear regression to assess regional trends at the annual scale in both annual 
maximum precipitation and annual average dew point temperature for the observations and the 11 
different climate models.  
 
3.2. Seasonal Partial Duration Series 
The analysis of annual maxima is useful for exploring extreme precipitation scaling relevant to 
engineering design statistics, and also for providing a uniform assessment of extreme precipitation 
trends across time. However, an annual maxima approach ignores useful information if multiple 
extremes occur in a single year. In addition, extreme precipitation scaling may depend on the storm 
type (large-scale vs. convective precipitation), which can vary significantly by season (Molnar et 
al., 2015; Park and Kim, 2017; Schroeer and Kirchengast, 2018). For these reasons, we utilize 
partial duration series (PDS) calculated by season to further explore extreme precipitation scaling 
in both the observations and the climate models.  
 
We follow DeGaetano and Castellano (2017) and use PDS of the n largest daily precipitation 
events for each station, where n equals the number of days with observations divided by 365.25. 
This value approximates the number of years of observations, and so the PDS will have a similar 
number of observations to the annual maxima approach. However, the extremes in the PDS may 
be larger because they are not constrained to one extreme event per year. To ensure independence 
between events in the PDS, we require a seven-day separation between events. 
 
PDS were calculated separately by season (DJF, MAM, JJA, SON) for each station in the 
observations and site in the downscaled climate model data. In addition, we also calculate the 
average (wet-day) dew point temperature by station (or site for the modeled data) and season. We 
then explore the relationship between the PDS of extreme precipitation and seasonal average dew 
point temperature across the observations and climate models and how these variables vary across 
space. We also fit GEV models to the PDS with static parameters (not a function of dew point 
temperature) by station (or site) and season, in order to assess how these model parameters vary 
with average dew point temperature by season.  
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After an exploratory analysis of the data, we develop a hierarchical Bayesian model to estimate a 
seasonal, regional scaling rate for extreme precipitation with dew point temperature. Similar to the 
model for annual maxima, each value in the PDS for site i is modeled using a GEV distribution 
with location and scale parameters that vary linearly with seasonally averaged dew point 
temperature: 

𝑃𝐷𝑆%,&[9]	~	𝐺𝐸𝑉(𝜇%,& , 𝜎%,& , 𝜉%)     (6) 
𝜇%,& = 𝛽*,+,% +	𝛽*,,𝑇!"#,%,&     (7) 
𝜎%,& = 𝛽-,+,% +	𝛽-,,𝑇!"#,%,&     (8) 

 
Here, t[j] indexes the jth value in the PDS in year t, and 𝑇!"#,%,& is the average dew point temperature 
for a particular season in year t. The model above differs from the model in Eqs. 1-3 in two 
important ways. First, the intercept terms 1𝛽*,+,% 	, 𝛽-,+,%2 are allowed to vary by site to enable more 
flexibility in modeling differences in the extreme precipitation distribution across space. The slope 
parameters 1𝛽*,,	, 𝛽-,,2 are still kept the same across sites, thereby acting as a regional scaling 
factor with dew point temperature. Second, the shape parameter 𝜉% is allowed to vary by site in 
recognition that the fat-tailed nature of extreme precipitation may vary across the domain. 
However, we employ partial pooling via a regional, truncated normal prior distribution for the 
shape parameter to help stabilize estimation and share information across sites:  
 

𝜉%~𝑁O𝜇; , 𝜎;P𝑇(0,∞)     (9) 
 
Here, 𝑇(0,∞) indicates that the prior distribution for 𝜉% is truncated to be positive, a choice 
motivated by uniformly positive shape parameters across the static, at-site models (see above). 
Similarly, the values for 𝜎%,& are constrained to be positive and the values for 𝜇%,& are constrained 
to be less than 𝑚𝑖𝑛(𝑃𝐷𝑆%) +

-),+
;)

. The latter constraint is needed to respect the support of the GEV 
distribution.  
 
All parameters and hyper-parameters of the model 1𝛽*,+,% , 𝛽-,+,% , 𝛽*,,, 𝛽-,,, 𝜇;2 are given 
uninformative uniform priors, except for 𝜎; , which is given a relatively uninformative gamma 
prior with shape equal to 1 and rate equal to 10. The Bayesian model is developed in the STAN 
probabilistic coding language. Posterior distributions are evaluated using the Hamiltonian Monte 
Carlo sampling method (Duane et al., 1987). Three chains are run for all parameters with 
overdispersed initial values using 2,500 burn-in simulations and 2,500 iterations afterwards. 
Convergence is assessed based on chain mixing using the Gelman and Rubin convergence criterion 
(Gelman and Rubin, 1992).   
 
The model above is fit separately to the observations and the climate model data by season. Scaling 
rates are then calculated for each site and season following Eq. 5. However, the scaling rate is 
calculated for a range of design events (5-year, 10-year, 25-year, 50-year, 100-year) to determine 
if scaling varies with the magnitude of the event.   
 
3.3. Daily Scaling by Weather Regime via Hierarchical Bayesian Quantile Regression  
The analysis in Section 3.2 focused on extreme events by season and identified through a PDS 
approach. While the separation by season likely helps to isolate major differences in storm type in 



9 
 

the scaling analysis (e.g., convective events in the warm season, stratiform events in the cold 
season), there may still be a mix of storm types within a given season. Therefore, the analysis in 
this section further separates data within each season into separate weather regimes (WRs), and 
then explores extreme precipitation scaling by WR. Because the separation of data into WR further 
disaggregates a limited dataset, we explore extreme precipitation scaling based on a Bayesian 
quantile regression technique applied directly to daily data, thereby retaining a sufficient sample 
size to estimate scaling rates and partially pooling across WRs to stabilize the estimation. 
 
We followed a two-step strategy to identify WRs embedded in the seasonal large-scale 
atmospheric circulation over the Eastern United States. First, GPH anomalies in each season are 
projected onto their first J empirical orthogonal functions (EOFs). Here, J is determined to ensure 
that the selected EOFs explain the majority (90%) of the variance in the data. Next, Hidden Markov 
Models (HMMs) are fit using the first J principal components (PCs) of the GPH anomalies in each 
season to partition each day in the record into one of K separate WRs (or states) in that season. We 
select K such that the difference between the Bayesian information criterion (BIC) for consecutive 
HMMs fit using K=2 to K=9 states begins to approach a constant, i.e., the rate of model 
improvement with additional states begins to slow. This two-step strategy leads to the 
identification of four WRs within each season (DJF, MAM, JJA, and SON).  
 
We then develop a hierarchical Bayesian quantile regression approach to quantify the scaling rates 
of extreme precipitation with temperature for a specific precipitation quantile and conditioned on 
the WRs for each season over the Northeast. The proposed hierarchical Bayesian quantile 
regression is formulated for site i and day t as follows: 
 
Layer 1: Precipitation-Temperature Scaling 

𝑙𝑛O𝑃%,&P~𝑁𝑜𝑟𝑚𝑎𝑙O𝜇<),+
=, 𝜎><),+

=P 

𝜇<),+
= =

1 − 2𝑞
𝑞(1 − 𝑞)𝑤%,& + 𝜇<),+ 

𝜇<),+ = 𝛼%,?(&) + 𝛽%,?(&)𝑇!"#%,& 

𝜎><),+
= =

2𝑤%,&
𝑣%𝑞(1 − 𝑞)

 

𝑣%~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,100); 𝑤%,&~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝑣%) 
 
Layer 2: Scaling Rate by Weather Regime  

𝛼%,?(&)~𝑁𝑜𝑟𝑚𝑎𝑙(0, 100) 
𝛽%,?(&)~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇? , 𝜎?>) 

𝜇?~𝑁𝑜𝑟𝑚𝑎𝑙(0,1);	𝜎?~𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(1,10) 
 
Two layers are embedded within the structure of this hierarchical model. In the first layer, log-
precipitation is regressed on dew point temperature, with regression coefficient 𝛽%,?(&). However, 
the mean response, as well as the variance, are also dependent on a uniform deviate 𝑣%, a weighting 
factor 𝑤%,&, and the quantile of interest, q. This formulation results in an asymmetric Laplace 
distribution for log-precipitation that emphasizes predictions for a specific quantile of the daily 
precipitation distribution (Koenker & Machado, 1999; Yu and Moyeed, 2001; Yu and Zhang, 
2005).  
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In the second layer, the regression coefficient 𝛽%,?(&) is conditioned on the WR present during day 
t. That is, the regression coefficient at site i that links dew point temperature to the quantile of 
precipitation will vary by WR, and regression coefficients across all sites will be partially pooled 
through the use of a parent prior distribution for 𝛽%,?(&) with time-invariant mean and variance that 
are WR-specific.   
 
Inferred values of 𝛽%,?(&) can be translated into scaling rates for extreme precipitation using Eq. 5. 
Model parameters are estimated using JAGS (Plummer et al., 2003) in the R programming 
language. JAGS employs the Gibbs sampler and Markov Chain Monte Carlo (MCMC) method for 
simulating the posterior probability distribution of parameters. We fit the hierarchical Bayesian 
quantile regression model separately for each season (DJF, MAM, JJA, SON) and for three 
quantiles of interest (q = 0.5 (median), 0.9, and 0.99). The models are fit with 2000 iterations for 
burn-in and 2000 iterations for posterior simulation across four chains. 
 
4. Results  
4.1. Annual Maxima  
Figure 2 shows the relationship between precipitation annual maxima and annually averaged (wet-
day) dew point temperature across all sites and years. Results are shown separately for each climate 
model and the observations. Also shown are the 100-year storm estimates as a function of dew 
point temperature and the estimated scaling rate of the 100-year storm with dew point temperature 
(expressed as % change per °C).  
 
At the annual scale, extreme precipitation increases with average annual dew point temperature in 
the observations. The regional scaling rate is estimated to be approximately 5.3% per °C, which is 
modestly below the theoretical C-C scaling rate of 7% per °C. Across the different climate models, 
extreme precipitation scaling with annual dew point varies considerably. In some models (CAN-
ESM2, MIROC-ESM) the scaling rate approaches the theoretical rate of 7% per °C, while in other 
models (BCC-CSM1, BNU-ESM, GFDL) the scaling is negative. Across the 11 climate models, 
the mean regional scaling rate is 1.8% per °C.  
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Figure 2. Annual maximum precipitation against annual average dew point temperatures for 11 GCMs 

and the observations, along with dynamic 100-year storm estimates over the calendar year. The estimated 
scaling rate of the 100-year storm with dew point temperature (% change per °C) is shown as text. 

 
The variability in scaling rates across the 11 climate models can partially be explained by their 
differences in dew point temperature and extreme precipitation trends. In all climate models, 
annual averaged dew point temperature is projected to increase significantly (Figure 3), with linear 
trends ranging from +0.39°C to +0.67°C per decade. Similarly, in the historical observations, 
average annual dew point temperatures have increased modestly by approximately +0.14°C per 
decade between 1948 and 2020. All temperature trends are significant at the 0.001 level. Trends 
in (log-transformed) annual maximum precipitation are somewhat less consistent across the 
models and observations. In the observations, annual maximum precipitation has increased 
significantly across the Northeast region (p < 0.05) at a rate of approximately +0.9% per decade. 
Over ~7 decades (1948-2020), this translates to an approximate 6.7% increase in annual maximum 
precipitation over the period of record. This increase is only slightly larger than the estimated 
scaling of the 100-year storm over this same timeframe (a 5% increase), which can be derived 
based on the estimated scaling rate (5.33% per °C, see Figure 2) and the observed degree of 
warming over the period of record (0.95°C).  
 
In the climate models, trends in annual maximum precipitation range from -0.5% to +3.0% per 
decade, with an average change of 1.4% per decade (similar to the observations). We note that the 
negative trends in annual maxima are not statistically significant (BCC-CSM1, BNU-ESM), while 
all positive trends are statistically significant at the 0.01 level for the remaining climate models, 
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with the exception of GFDL (which exhibits a near-zero trend in annual maxima). The 
precipitation annual maxima generally trend upward in those models that exhibit positive scaling 
rates and trend downward or are flat in those models that exhibit negative or near-zero scaling 
rates (see Figure 2). This suggests that the scaling rates in Figure 2 are influenced by whether 
extreme precipitation trends coincide with dew point temperature trends. That is, for most models 
with significant positive trends in both temperature and precipitation, scaling rates are higher, and 
for most models with positive trends in temperature but near-zero or negative trends in 
precipitation, scaling rates are lower. There are some exceptions to this pattern (e.g., the 
HADGEM2 model exhibits a positive trend in annual maximum precipitation but has a near-zero 
scaling rate), but it generally holds across most models.   
 

 
Figure 3. Linear time trend in annual mean dew point temperature and annual maximum precipitation 

pooled across locations, shown separately for 11 GCMs and the observations. Statistical significance (p 
< 0.05) in the trends for log-precipitation is indicated by *. All temperature trends are statistically 

significant at the 0.001 level. 
 
4.2. Seasonal Partial Duration Series 
PDS are calculated for all sites in both the observational and downscaled climate model output, 
separately by season. Figure 4 shows how extremes within these PDS vary with average seasonal 
(wet-day) dew point temperature, after pooling all data together across sites. In the observations, 
precipitation extremes exhibit a clear increase with dew point temperature, and much of this 
variation occurs across the seasons. In winter, when dew point temperatures are lowest, 
precipitation extremes also tend to be relatively small (daily maximum value of 128 mm across all 
sites). In the spring, fall, and especially summer, dew point temperatures increase significantly, 
and the largest precipitation values across stations grow to over 300 mm. A similar pattern for 
winter, spring, and fall is observed in the climate models. However, across almost all of the models 
(with the exception of inmcm4), summer extreme precipitation events deviate from the pattern in 
the observations and are relatively muted compared to those in the spring and fall seasons. This 
downward shift in summer extremes compared to the other seasons is especially pronounced in 
the CNRM-CM5, GFLD, MIROC-ESM, and MRI-CGCM3 models. While a diagnosis of these 
differences in seasonal extremes is beyond the scope of this work, it may be related to the difficulty 
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of climate models to simulate localized convective events or challenges that such localized events 
present to climate-analog approaches for statistical downscaling. Regardless, the deviation of 
summer extremes in the downscaled climate model output from that of the observations suggests 
that caution is needed when using the downscaled climate model data. 
 

 
Figure 4. Partial duration series of precipitation events against seasonal averaged dew point 

temperature, shown separately by season and for 11 GCMs and the observations. 
 
Figure 4 shows that variations in dew point temperature across seasons is correlated with the 
magnitude of precipitation extremes across those seasons. It is unclear, a priori, whether this 
relationship suggests that dew point temperature increases cause larger precipitation extremes, or 
just that the mechanisms of precipitation that lead to larger precipitation extremes happen to occur 
in seasons with larger dew point temperatures. To explore this issue further, Figure 5 shows the 
seasonally averaged dew point temperature and PDS values across the 93 observational stations in 
the Northeast region, while Figure 6 shows the relationship between these two variables. Figure 5 
shows that from winter to summer, average dew point temperatures increase across the region, and 
within each season, there is a clear dew point temperature gradient from southern and coastal 
locations towards inland and northern locations. Those same gradients are present in the average 
extreme precipitation data. This is seen more clearly in Figure 6. In all seasons, but especially in 
summer and fall, there are clear positive relationships between seasonal average dew point 
temperature and extreme precipitation across sites. These relationships are all significant at the 
0.01 level and suggest that the relationship between dew point temperature and extreme 
precipitation in Figure 4 are not driven (exclusively) by seasonally varying storm types, as within 
a season these relationships are still present.   
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Figure 5. Observed average dew point temperature and average extreme precipitation magnitude by 

season. 
 

 
Figure 6. Observed average extreme precipitation vs. average dew point temperature by season. Each 

point represents the long-term average of both variables for a particular station. All linear relationships 
are significant at the 0.01 level.  
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Still, it may be possible that the spatial gradients in extreme precipitation and dew point 
temperature are not causally related. For instance, near the coastline where atmospheric moisture 
content (and dew point temperatures) are higher, storm tracks may also be more common, leading 
to a spurious spatial correlation between the two variables. To explore this, Figure 7 shows 
spatially averaged log-transformed extreme precipitation versus dew point temperatures by season. 
That is, in each year, we average the seasonal, log-transformed values of the PDS series across all 
sites and compare these to the seasonal dew point temperatures averaged across sites. In this way, 
all spatial variability has been averaged out, leaving only a regionally-averaged signal of extreme 
precipitation and dew point temperature through time. Results show that regionally-averaged 
extreme precipitation and dew point temperature are significantly related (p<0.05) in the spring, 
summer, and fall but not for winter. In addition, the relationship in the spring is driven by a few 
outliers, which when removed leads to an insignificant relationship. The estimated regressions 
suggest that in summer and fall (where the relationships are strongest and most robust), extreme 
precipitation increases by 2.9% and 1.8% per °C, respectively. Given the large spatial domain over 
which the data are averaged, these scaling relationships are notable. Overall, these results coupled 
with those in Figure 6 suggest a causal relationship between dew point temperature and extreme 
precipitation, especially in the warm season.   
 

 
Figure 7. Observed station-averaged, log-transformed extreme precipitation vs. average dew point 

temperature by season across all sites. Each point represents the annual value of both variables averaged 
across stations. All linear relationships are significant at the 0.01 level. 

 
To understand better how properties of extreme value distributions for precipitation vary with dew 
point temperature, Figure 8 shows static GEV parameter estimates at each of the 93 observational 
stations versus the average dew point temperature, separately by season. Results show that the 
location parameter of the GEV increases with average dew point temperature, and this relationship 
becomes stronger in warmer seasons. A similar but stronger relationship is seen for the scale 
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parameter, especially in the summer and fall seasons. All linear relationships between the location 
and shape parameters and dew point temperature are significant at the 0.01 level, with the 
exception of the scale parameter in winter (p=0.11). For both location and shape parameters, there 
is little evidence that these relationships to dew point temperature are non-linear. In particular, 
Figure 8 supports the use of a linear relationship (rather than exponential relationship) between the 
scale parameter and dew point temperature, despite the fact that the exponential relationship is 
more common in non-stationary GEV models. The results also suggest that the shape parameter 
does not vary significantly with dew point temperature (p>0.05 for all seasons). Finally, many of 
the relationships in Figure 8 are noisy; some of this noise is likely related to limitations of dew 
point temperature as an explanatory variable for the GEV parameters. However, some of the noise 
in Figure 8 is likely related to the high degree of sampling uncertainty around GEV parameter 
estimates, especially for the shape parameter and for those stations with relatively limited data (< 
20 years). This suggests that more robust estimates of GEV parameters and their variations with 
dew point temperature will support a better assessment of how design storms scale with dew point 
temperature. We employ the Bayesian model described in Eqs. 6-9 for this purpose. 
 

 
Figure 8. Static GEV parameters against average seasonal dew point temperature across observational 

stations, with linear model fit also shown. 
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Figure 9a shows the posterior mean estimates of scaling rates (Eq. 5) for the 100-year storm with 
dew point temperature across all sites. The distributions of scaling rates across sites are shown 
separately by climate model and for the observations. Figure 9b shows the median scaling rate 
across sites for each of the 11 climate models and for the observations. Several insights emerge 
from Figure 9. First, in the observations there are significant variations in the distribution of scaling 
rates across seasons. Scaling is largest in the summer, when scaling rates across sites range from 
+4% to +22% per °C. The median scaling rate across sites is +11.4% per °C. In the fall, scaling 
rates are somewhat lower, with a median rate around +2.6% per °C and a range across sites 
between -2.5% and +7% per °C. In spring, scaling rates are near zero across sites. The winter 
shows slightly lower scaling rates than zero, but when considering the entire posterior distribution 
(rather than just the posterior mean), zero lies well within the credible intervals for scaling rates 
across sites.  
 
There is significant variability in the scaling rates estimated for the 11 climate models. In summer, 
the distribution of scaling rates across sites ranges from below -6% to over 11.5% per °C. Much 
of this variability is linked to inter-model differences, similar to the annual scaling rates in Figure 
2. For instance, the BCC-CSM1, CAN-ESM2, and CNRM-SM5 models exhibit summer scaling 
rates comparable to those in the observations, while the BNU-ESM, CSIRO, and INMCM4 models 
all exhibit negative scaling rates. Interestingly, some models that show high summer scaling rates 
in Figure 9 (BCC-CSM1) showed negative scaling rates when examining annual maxima (see 
Figure 2). This may be linked to the apparent downward bias in summer extremes in the model 
(see Figure 4), which would lead to less summer extremes being included in the annual maxima 
series. We also note that scaling rates in some climate models are significantly higher in the winter 
and spring than suggested by the observations. In winter, the median scaling rate across sites and 
models is +2.6% per °C, with some models showing scaling rates as high as +6.4% per °C when 
aggregated across locations. We note that dew point temperatures in the climate models reach 
significantly higher levels in the climate models towards the end of the 21st century compared to 
the range of temperatures seen in the observed record. This may lead to a larger scaling rate if 
extreme precipitation scaling with dew point temperature is dependent on the absolute magnitude 
of dew point temperature exceeding some minimum threshold.   
 
To this point, scaling rates have been presented for one return period (the 100-year event) and only 
using posterior mean parameter estimates. However, the rate of scaling may vary across the 
magnitude of events, and uncertainty should be propagated to better understand the range of 
plausible scaling rates supported by the data. In Figure 10, the full posterior distribution of scaling 
rates is shown for a particular site (Boston MA) and different return periods, separately by season. 
The theoretical scaling rate of +7% per °C is shown for comparison. Two major insights emerge 
from Figure 10. First, the posterior median scaling rate increases slightly as return periods increase. 
That is, 50- and 100-year events grown somewhat faster with warming dew point temperatures 
compared to 5- and 10-year events. This is consistent with the theory that as the intensity of a 
storm grows, the increase in precipitation should begin to mirror the increase in available 
atmospheric moisture (Allan & Soden, 2008). However, we note that the differences in scaling 
rate across return periods is small. Second, there is significant uncertainty around the scaling rates 
of extreme precipitation that grows with return period, particularly in the warmer seasons. For 
example, in the summer the 95% credible interval for the 100-year event scaling rate ranges from 
+7.46 to +18.6% per °C. This range is as large as the median scaling rate itself (10.6% per °C). 
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Notably, after accounting for uncertainty, the theoretical scaling rate of +7% per °C is within or 
nearly within the 95% bounds of the estimated scaling rates for all return levels across summer 
and fall.  
 

 
Figure 9. a) Distribution of posterior mean scaling rate with dew point temperature across sites, shown 
by season. Scaling rates are shown separately for the observations and each GCM. Median scaling rate 

across sites is shown by vertical line and text. b) Distribution of median scaling rate across sites by 
model. 
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Figure 10. Posterior median and 95% credible interval of the scaling rate for different extreme 

precipitation return levels with dew point temperature for one site (Boston MA), shown by season. The 
theoretical C-C scaling rate of +7% per °C is shown in red for comparison. 

 
4.3. Daily Scaling by Weather Regime 
 
Figure 11 shows composites of 500-hPa GPH anomalies for each of the WRs identified by season. 
In DJF (Figure 11a), WR1 exhibits a ridge centered over the Hudson Bay, which is located between 
two troughs anchored over the Gulf of Alaska and off the eastern US coastline. This pattern is 
reversed in WR3. WR2 exhibits a ridge directly over the Northeast US as part of a broader wave 
train spanning North America. WR4 shows a similar pattern with opposite polarity. The WRs in 
MAM (Figure 11b) and SON (Figure 11d) are similar to those in DJF, but the GPH anomalies are 
slightly weaker and some of the patterns (particularly WR4) do not have an analogue in DJF. In 
JJA (Figure 11c), the WRs are much weaker and more localized around the Northeast US. 
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Figure 11. Composites of 500-hPa GPH anomalies [m] for days categorized under each WR in a) DJF, 

b) MAM, c) JJA, and d) SON. The number of days (t) classified under each WR and season over the entire 
period (1948-2020) is also shown. 

 
To illustrate the connection between local weather and WRs, Figure 12a,b shows the average 
precipitation and dry-bulb temperature anomalies by site and WR in DJF. WR1 exhibits relatively 
wet conditions over the Northeast, particularly along the coast, with near average temperatures 
across the entire domain. Conversely, WR3 is slightly dry along the coast, but exhibits the same 
near-average temperature conditions as WR1. WR2 tends to be warmer than average, especially 
in the south, with slightly above average precipitation in the northwest of the domain. WR4 is dry 
and cold throughout much of the western and central Northeast US. 
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Figure 12. Characteristics of the regional climate including anomalies of (a) precipitation (P) and (b) 
dry-bulb temperature (Ta), and C-C scaling rates (in % per °C) conditioned on four WRs for (c) dew 

point temperature (Td) and (d) Ta inputs at the 99th precipitation percentile in the DJF season. 
 
A key question being addressed in this work is how P-T scaling rates vary across the Northeast 
based on these background atmospheric circulation patterns and climate conditions across seasons. 
We first examine at-site (posterior mean) estimates of P-T scaling rates for the highest intensity 
class (q=0.99), shown for both Td and Ta in DJF in Figure 12c,d. In winter, most sites feature 
positive scaling rates under all WRs, with only a handful of sites exhibiting either near-zero or 
negative scaling rates. However, in WR2, which exhibits the warmest conditions, scaling rates 
tend to be lower than the other WRs and more are slightly negative. We did not detect any 
significant spatial correlation amongst posterior mean scaling rates across sites, based on Moran’s 
I spatial autocorrelation test (Moran, 1950; Gittleman & Kot, 1990). This result is consistent across 
seasons. Also consistent across seasons, scaling rates using Td are mostly positive and tend to be 
moderately larger than rates based on Ta, which can often be negative. 
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Figure 13. Comparison of the regional C-C scaling rates (μ; posterior distribution of scaling rates) 

across the Northeastern United States (in % per °C Td) based on the dew point temperature (Td) for 50, 
90, and 99th percentiles in each weather regime (WR) and seasons of a) DJF, b) MAM, c) JJA, and d) 

SON. 
 
The results above suggest that regional estimates of P-T scaling rates may be better suited to 
understand major patterns in P-T scaling with WR. These regional estimates are shown in Figure 
13, which presents the posterior distribution of the Northeast-wide P-T scaling rate (i.e., μk) for 
each WR, season, and precipitation percentile. 
 
Three main results arise from Figure 13. First, the results suggest that P-T scaling rates do not vary 
significantly across WRs in most cases. There are a few exceptions, including lower scaling rates 
estimated for WR2 in DJF and higher scaling rates estimated for WR1 in MAM. However, besides 
those cases, the posterior distribution of regional P-T scaling across WRs for each unique season 
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and precipitation percentile exhibit significant overlap. This indicates that differences in scaling 
rates between WRs are generally inconsequential.  
 
Second, there are significant variations in P-T scaling rates by season. When WRs are excluded 
from the analysis, winter and summer have the largest scaling rates, which range approximately 
between 7-8%, 4-5%, and 3-4% per °C Td for q= 0.5, 0.9, and 0.99, respectively. These rates are 
significantly larger than those for spring (~ 4\%, 3\%, 2\%) and fall (~ 4\%, 3\%, 4\%), particularly 
for the lower quantiles. Note that all regional, posterior median scaling rates are positive when 
using Td (the minimum rate is 0.9% per °C for WR2 in MAM and q=0.99). 
 
Finally, across almost all WRs and seasons, the regional P-T scaling rates decrease when 
reevaluated on larger precipitation percentiles. This effect is most prominent in the winter, but is 
also present (albeit weaker) in the spring, summer, and for two WRs in the fall. There are a few 
exceptions when this pattern is absent, including WR2 in JJA and WR2 and WR4 in SON. 
However, the general decline of scaling rate with precipitation percentile explains more variability 
(30%) in the total posterior dataset for μk compared to either season (20%) or WR (1%), as 
estimated using an ANOVA evaluated on all posterior samples across these three factors. An 
analysis of outliers suggests this effect is due to a small number of storms with heavy precipitation 
occurring at low temperatures (not shown). 
 
These results exhibit notable differences from the scaling experiments conducted on the seasonal 
PDS data, e.g., significantly higher scaling rates in non-summer seasons. This suggests that the 
inferred scaling rate can vary significantly depending on the statistical approach taken, although 
all methods do suggest positive scaling with higher temperatures. Finally, there is some variability 
in scaling rate across WRs, but this variability tends to be less than that seen across percentiles. 
 
5. Synthesis of Results and Recommendations 
The analysis of the observations suggests that extreme precipitation scales significantly with dew 
point temperatures across the Northeast region, but this scaling is dependent on season and the 
type of analysis employed to infer the scaling rate. While the annual scaling rate (5.33% per °C, 
see Figure 2) estimated for the region approaches the theoretical C-C scaling rate of 7% per °C, 
the seasonal PDS analysis suggests that much of this annual scaling is driven by scaling in the 
warm season (summer and fall). While all seasons showed a clear spatial correlation between dew 
point temperatures and extreme precipitation (Figures 5 and 6), these relationships were strongest 
in summer and fall, and only those latter seasons exhibited a robust relationship between regional 
dew point temperatures and extreme precipitation through time (Figure 7). The hierarchical 
Bayesian model confirmed that extreme precipitation scaling was only present in the observations 
in the summer and fall when examining PDS data, with the largest signal during peak summer 
(Figure 9).  
 
However, when examining scaling rates at the daily scale using a quantile regression approach and 
conditional on weather regime, precipitation scaling with warming was more consistent across 
seasons (Figure 13). In particular, scaling rates in winter and spring were much higher than those 
seen for the PDS analysis, never fell below 3% per °C, and on average were around 5% per °C 
regardless of season. In addition, scaling did not vary that significantly by weather regime.  
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The downscaled climate model data showed very different scaling rates compared to the 
observations. On an annual scale, there was significant variability in scaling rates across models 
(Figure 2), much of which appeared driven by whether models exhibited converging or diverging 
trends in extreme precipitation and dew point temperatures. However, it is difficult to interpret 
whether the trends in extreme precipitation relate to how extreme precipitation scales with dew 
point temperature in the models, or if those trends are dominated by changes in circulation within 
the models that counteract any effect caused by increasing atmospheric moisture content. Thibeault 
and Seth (2015) showed that CMIP5 projected trends in total summer precipitation in the Northeast 
were significantly influenced by how models represented key features of atmospheric circulation, 
such as the North Atlantic Subtropical High (NASH). While most models projected the NASH to 
shift westward in the future, 20th century biases in the longitudinal location of the NASH largely 
determined whether summer precipitation was projected to increase or decrease in the Northeast. 
This suggests that model-based scaling rates needs to be interpreted with care.  
 
Arguably, model-based estimates of scaling may be most interpretable when inter-model spread is 
relatively low and during cold-season months when larger-scale circulation rather than convective 
processes drive precipitation. Indeed, the downscaled data from many of the climate models show 
clear downward biases in summer precipitation extremes as compared to the observations (see 
Figure 4). While it is unclear if these biases are related to challenges in simulating convective 
events or the specific downscaling methodology used, these biases do raise concerns regarding 
interpretation of model-based scaling rates in the summer. However, model-based extreme 
precipitation in the cold season appears to behave similarly to the observations, at least with respect 
to how they scale across seasons with dew point temperature (Figure 4), and projected scaling rates 
are more consistent across models in cooler season months compared to the summer (see Figure 
9). In these cool season months, particularly winter, the models estimate positive scaling rates 
(median rate of 2.6% per °C across models), even though the observations show near-zero scaling 
rates for the winter. Since dew point temperatures are projected to increase well above their 
historical ranges in the climate model projections, this suggests that scaling rates may be linked to 
the absolute magnitude of dew point temperature (i.e., a nonlinear relationship between dew point 
temperature and precipitation), although more work is needed to confirm this hypothesis.  
 
Overall, results suggest that extreme precipitation does indeed scale with dew point temperatures 
in the Northeast United States. The results of this work suggest the following conclusions about 
extreme precipitation scaling with warming in the Northeast US and within the state of 
Massachusetts:  
 

• Observations show that scaling of extreme precipitation with increasing temperature is 
positive across the Northeast US, with scaling rates that vary between 0% and 11% per °C, 
depending on the season and type of statistical analysis used.  

• While PDS-based observed scaling is mostly limited to the warm season, model-based 
results and those based on daily observations suggest extreme precipitation scaling with 
dew point temperature is also plausible in the cold season as temperatures warm.  

• Climate model based scaling rates should be used with care due to biases in precipitation 
extremes, especially in the warm season.  
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• When averaged across analyses (annual maxima; seasonal PDS-based analysis; daily 
quantile regression) and seasons, scaling rates across the Northeast US average somewhere 
between 3% - 5% per °C. 

 
Based on these results, we recommend that design storms across the state of Massachusetts be 
scaled at the theoretical C-C rate of 7% per °C.  
 
We forward this recommendation for two primary reasons. First, our results show that empirical 
scaling rates vary around this theoretical scaling rate, deviating above or below it depending on 
the season and analysis used. Second, when averaged across our different analyses and seasons, 
empirical scaling rates are slightly below 7% per °C, ranging between 3% - 5% per °C. However, 
all scaling rates derived in this work are based on daily data, yet the state seeks updates to design 
storms at both daily and sub-daily levels. At sub-daily timescales, there is significant debate about 
whether scaling rates are larger than the theoretical C-C rate, with some forwarding physical 
arguments to support a super C-C scaling rate at sub-daily timescales upwards of 14% per °C 
(Lenderink et al. 2017). Therefore, the adoption of a 7% per °C scaling would provide a margin of 
safety for sub-daily events, rather than using a lower scaling between 3% - 5% per °C, and this 
choice is consistent with the recommendations forwarded in Zhang et al. (2017).   
 
6. Implementation of Recommendations for Massachusetts – Updated IDF Curves 
To implement the above recommendations, we have retrieved gridded (30 arc-second resolution) 
design storm estimates from the NOAA Atlas 14 database (Perica et al., 2019) for a range of 
durations and return periods (see Table 2). We have updated these intensity-duration-frequency 
(IDF) curves by scaling all values by 7% per °C for a range of temperature changes (0°C to 8°C 
warming at 1°C increments), which is the range of warming projected by the CMIP5 ensemble 
across the state of Massachusetts. Figure 14 shows an example of one design storm (5-year, 24-
hour event) under baseline conditions (no warming, 0°C) and scaled based on 3°C warming. Figure 
14 suggests that storm rainfall depth related to the 5-year, 24-hour event will increase from 4.16 
in to 5.10 in when averaged over the state of Massachusetts for a 3°C warming scenario.  
 
Table 2. List of return periods and durations for design storms updated via C-C scaling across the state of 
Massachusetts. 

Return Period (year) Duration 
1 5 minute 
2 10 minute 
5 15 minute 
10 1 hour 
25 2 hour 
50 3 hour 
100 6 hour 
200 12 hour 
500 24 hour 
1000 48 hour 
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Figure 14. The 5-year, 24-hour precipitation event under baseline conditions (no warming, 0°C) and 

scaled based on 3°C warming across the state of Massachusetts. 
 

To select an updated IDF curve for use, decision-makers should consult projections of warming 
for a given location within the state and for a particular target decade, as provided on the 
ResilientMA website (https://resilientma.org/). Once the warming scenario has been selected, 
gridded, scaled IDF curve values associated with that degree of warming and location can be 
downloaded and used directly for design purposes. For example, Figure 15 shows projected 
warming scenarios for the Nashua River Basin based on downscaled CMIP5 projections. If a 
decision-maker is interested in planning for the target decade of 2050 and under the RCP 8.5 
scenario, then they would select the annual temperature change of 5.44°F, or 3°C. The updated 
IDF curves associated with a 3°C warming scenario can then be selected for use. In Figure 16, we 
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provide warming scenarios for the 2030s, 2050s, 2070s, and 2090s based on the MACA 
downscaled data for RCP 4.5 and RCP 8.5 for 20 basins across the state of Massachusetts. 
 
The above approach has the benefit of integrating well with standard practices for design and 
planning used across the state of Massachusetts. Engineers and planners across the state are 
familiar with the Atlas 14 product and use it regularly to inform infrastructure design and hazard 
assessments. By providing updated Atlas 14 values via thermodynamic scaling, the product of this 
work leverages the significant resources and vetted analyses that went into the original 
development of Atlas 14, and produces a product that will be readily understood by practitioners 
across the state. The key advance provided here is an updated set of IDF curves that account for 
thermodynamic climate change, is based in theory, and is supported by empirical evidence. This 
will allow engineers and planners to integrate the effects of climate change directly into their 
current protocols for design and planning.  

 
Figure 15. Projected warming for the Nashua River Basin by target decade, as available on ResilientMA.  
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RCP 4.5 

 
RCP 8.5 

 
 

Figure 16. Projected warming in 2030s, 2050s, 2070s, and 2090s for 20 basins across the state of 
Massachusetts based on MACA downscaled data for RCP 4.5 and RCP 8.5. The minimum and maximum 

projected average annual temperature change [°C] are also provided. 
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7. Conclusion 
This report presents an analysis of extreme precipitation scaling with dew point temperature, both 
in observations across the Northeast United States and for a subset of downscaled CMIP5 
projections within the state of Massachusetts. Our scaling analysis is novel in comparison with 
past work based on a comparative analysis of scaling at annual, seasonal, and daily scales; 
diagnostics to better understand the spatial and temporal linkages between dew point temperatures 
and extreme precipitation; the use of hierarchical Bayesian models to more accurately estimate 
scaling rates through partial pooling of data across sites; and the examination of scaling rates across 
different weather regimes that influence the Northeast US.  
 
The primary conclusions of this report are that empirical scaling rates of extreme precipitation with 
warming range between 0% and 11% per °C, with average scaling rates across seasons and 
methods ranging between 3% and 5% per °C. To implement these scaling rates for stakeholder 
use, this report recommends scaling design storms at sub-daily to daily time scales from the NOAA 
Atlas 14 product at the theoretical rate of 7% per °C. A database of updated IDF curves has been 
developed across the state of Massachusetts for different temperature changes based on this scaling 
rate. Based on the target decade of interest and the associated warming for that decade from an 
ensemble of GCM projections, new climate-change informed IDF curves can be retrieved for any 
location in the state. 
 
The conclusions of this report should be interpreted in the context of the limitations of this study. 
First, many of the gauges used in the observational analysis were limited in their record length due 
to the paucity of long-term gauges with measurements of dew point temperature. This limited 
record significantly increases the uncertainty in model parameter estimates (and thus the scaling 
rates). While hierarchical Bayesian models were forwarded to partially pool information across 
sites and reduce some of this uncertainty, it cannot be eliminated. Furthermore, all inferences were 
based on empirical scaling rates for daily data, but recommendations were extended to sub-daily 
scales to support complete IDF curve updates. While a margin of safety was included in the 
recommended scaling, further analysis should be conducted to confirm appropriate scaling rates 
for sub-daily timescales.  
 
The analysis of scaling rates within the climate models is accompanied by all of the caveats that 
come with using downscaled climate model data. It is not clear whether the mechanisms that drive 
extreme precipitation across seasons are well reproduced in the climate models, nor is it clear 
whether the downscaling and bias correction techniques used to process climate model output 
imposed statistical artifacts in the data that would influence estimated scaling rates.  Finally, the 
changes to extreme precipitation suggested by scaling rates with dew point temperature only reflect 
thermodynamic shifts to daily extreme precipitation, and ignore possible changes to extreme 
precipitation rates to changes in the frequency or trajectories of storm tracks. These latter changes, 
though highly uncertain, could have significant impacts on the actual extreme precipitation events 
experienced in the future under climate change. 
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