AWE Sales Forecasting and Rate Model

Why a New Rate Model?

Typical water rate models assume that future sales are known with certainty, and do not respond to price, weather, the economy, or supply shortages—that is to say, not the world we live in.

- The AWE Sales Forecasting and Rate Model addresses this deficiency:
 - Customer Consumption Variability weather, drought/shortage, or growth
 - Demand Response—Predicting future block sales (volume and revenue) with empirical price elasticity's
 - Drought Pricing—Contingency planning for revenue neutrality
 - Probability Management—Risk theoretic simulation of revenue risks
 - Fiscal Sustainability—Sales forecasting over a 5 Year Time Horizon
 - Affordability—Can customers afford water service?

Overview

Typical water rate models assume that future sales are known with certainty, and do not respond to price, weather, the econo

The AWE Sales Forecasting and Rate Model addresses this deficiency:

Customer Consumption Variability—weather, drought/shortage, or external shock Demand Response—Predicting future block sales (volume and revenue) with empirical price elasticities Drought Pricing—Contingency planning for revenue neutrality Probability Management—Risk theoretic simulation of revenue risks Fiscal Sustainability—Sales forecasting over a 5 Year Time Horizon

Model Modules

The model is divided into two modules: the **Rate Design Module** and the **Revenue Simulation Module**. With the **Rate Design** volumetric rates or proposed new volumetric rates. This module can help you answer questions such as: What effect would in cause overall water use to increase or decrease? What block rate design could allow us to preserve our current level of revenue management objectives during water shortages? What proportion of customer bills will increase (or decrease) under our propo the development of effective water rates, and the **Rate Design Module** is designed to help you answer them. There are other **Module** is not able to answer. These include questions like: What is the likelihood we will meet our one-year, three-year, five-y turn out more than 15% below our current projections. What level of confidence can we have that our sales will exceed our min world are unknown. For near-term water sales forecasting the key uncertainties are weather, growth of accounts, and possible **Revenue Simulation Module** is designed to help answer sales revenue planning questions and sales revenue so and risk of water use curtailment to simulate your water demands and sales revenues over a five conditions. Using the **Revenue Simulation Module** you can assess how well or poorly your current or proposed rates are likely

What Data is Required to Use the Model

To use the **Rate Design Module** you need to provide bill tabulations for each of your customer classes. A bill tabulation shows You construct bill tabulations from the billing records of your utility. To use the **Revenue Simulation Module**, in addition to the **Model Overview and Instructions** Step 1 Model Setup **Rate Design Module**. Step 2 Enter BI Tabulations Step 3 Custom

WHERE MODEL FITS INTO RATE SETTING PROCESS

Modular Design

- Rate Design Module
- Revenue Simulation Module

Model Setup

Step 1: Model Setup

On this worksheet you specify the test year, the units volumes, precipitation, and temperature, seasons, customer classes, and ratio of The model requires these parameters in order to function properly. Therefore this should be the first thing you do if you are using the on this worksheet. Be sure all sections are completed correctly before moving on to the Rate Design Module.

1. Bill Tabulation Year

The model calculates water sales and sales revenue using the distributions of customer water consumption you enter in Step 2 (Bill Ta consumption data for a recent year. This is called the Bill Tabulation Year. Use the drop-down list below to specify the year for which Note: The Bill Tabulation Year must be within the last 10 years, and should be a year for which you provide weather data in Step 4, the

Bill Tabulation Year:

2. Model Units

The model needs to know what billing units you use with your water rates. In the U.S., municipal and industrial water use is typically (Thou. Gal.). In countries on the metric system, it is typically priced per kilo liter (kL). Use the drop-down list to select the billing units In Step 6 you will enter historical precipitation and temperature data. Use the drop-down lists to specify units these data are in.

Billing Units:

Thou. Gal.

Precipitation Units:

: in

Temperature Units:

F

3. Seasons

The model divides annual water use between Off Peak and Peak seasons. This allows the model to differentiate the change in water the Peak season is more responsive to rate adjustments than demand in the Off Peak season). It also allows you to specify different of Use the drop-down lists to specify the first and last months for the Off Peak season. The model will then determine the months that a Note: you do not need to specify the months for the Peak season. The model determines this from your specification of the Off Peak season.

Season	From	Thru	No. Months	Season	From	Thru	No. Months
Off Peak:	Oct	Apr	7	Peak:	May	Sep	5

Model Setup

3. Seasons

The model divides annual water use between Off Peak and Peak seasons. This allows the model to differentiate the change in water use given a change in rates the Peak season is more responsive to rate adjustments than demand in the Off Peak season). It also allows you to specify different water rates for each season Use the drop-down lists to specify the first and last months for the Off Peak season. The model will then determine the months that are in the Peak season. Note: you do not need to specify the months for the Peak season. The model determines this from your specification of the Off Peak season.

Season	From	Thru	No. Months	Season	From	Thru	No. Months
Off Peak:	Oct	Apr	7	Peak:	May	Sep	5
4. Maximum	n to Minimun	n Month Produc	tion Ratio				
The model u	ses the ratio o	of maximum to th	e minimum monthly syster	m production to	infer the re	lative importa	ance of outdoor water use in your service area. Si
responsive t	han indoor us	e to deviations fr	om normal weather patter	ns, this is import	ant. Enter	the maximum	n to minimum monthly production ratio in the cell
Note: It is be	est to calculat	e this ratio for se	veral recent years and the	n enter the aver	age of your	results.	
Max to Min	Monthly Produ	uction Ratio:	3.25				

Max to Min Monthly Production Ratio:

5. Customer Classes

The model can calculate water use and sales revenue for up to six different customer classes. Use the Number of Customer Classes drop-down list to specify the want to model. Enter names for each class in the Class Names table below the drop-down list.

Number of Customer Classes:

	Class Names Table
Class 1	Single Family
Class 2	Multi Family
Class 3	CII
Class 4	Landscape
Class 5	Not in use
Class 6	Not in use

6. Median Household Income

The model calculates the change in affordability between your Current and Proposed rates based on the ratio of water cost to median household income. Enter m your service area and select the Customer Class number you set to your primary residential customer class (e.g. single family customers).

Median household income: \$75,000

4

Class 1 Select the class number you set to your primary residential customer class:

•

Rate Design Module

Example Questions the Rate Design Module Can Address

- What effect would increasing the rate in our top tier by 15% have on water demand?
- Will shifting to seasonal rates cause overall water use to increase or decrease?
- What block rate design could allow us to preserve our current level of revenue while reducing overall demand?
- What proportion of customer bills will increase (or decrease) under our proposed rates when compared to our current rates?
- How should we adjust our rates to support our water demand management objectives during water shortages?

What Rate Designs Can Be Modeled?

- Rate Designs
 - Uniform
 - Seasonal
 - Block
 - Seasonal Block
- Up to 5 blocks
- Can vary rates and blocks by customer class
- Up to six customer classes

What Data are Needed to Use It?

- Bill Tabulations from Billing System Data
 - By Class
 - By Season (Off-Peak, Peak)
- Follows AWWA M1 Bill Tabulation Methodology
- Allocating Bills to Seasons
 - Easy when bills are rendered monthly
 - Bit harder when bills are rendered bi-monthly or quarterly

Bill Tabulation Screenshot

Step 2: Enter Customer Class Bill Tabulations

On this worksheet, you enter bill tabulations for your Bill Tabulation Year for the customer classes you set up in Step 1. A bill tabulation shows the number of bills may not fall neatly into the seasons you defined in Step 1, creating a seasonal bill tabulation is more challenging than creating an annual bill tabulation. It which this read date corresponds). It will always be the case that consumption will span the two seasons for some bills. In these cases, you will need to have are in the first season, then assign it to the first season). The User Guide provides additional guidance and examples for preparing your bill tabulations. In addusing your meter read data.

Go back to Rate Design Module Worksheet

			C	ustomer Class	: Single Famil	y	C	ustomer Clas	s: Multi Famil	y	
			Off Peak	Season	Peak S	eason	Off Peak	Season	Peak S	eason	
			Oct -	Apr	May	- Sep	Oct -	Apr	May - Sep		
				Total		Total		Total		Total	
Usage	e Bin			Use of Bills		Use of Bills		Use of Bills		Use of Bills	
(Thou.	Gal.)		Bills in	in Bin	Bills in	in Bin	Bills in	in Bin	Bills in	in Bin	
From	То		Bin	(Thou. Gal.)	Bin	(Thou. Gal.)	Bin	(Thou. Gal.)	Bin	(Thou. Gal.)	
0	0		1,854	0	700	0	36	0	17	0	
1	1		1,781	1,781	601	601	11	11	4	4	
2	2		2,073	4,146	631	1,262	12	24	3	6	
3	3		3,122	9,366	787	2,361	8	24	5	15	
4	4		4,084	16,336	917	3,668	22	88	4	16	
5	5		4,974	24,870	1,122	5,610	22	110	9	45	
6	6		5,751	34,506	1,150	6,900	20	120	7	42	
7	7		6,548	45,836	1,322	9,254	29	203	10	70	
8	8		7,080	56,640	1,354	10,832	41	328	6	48	
9	9		7,883	70,947	1,385	12,465	49	441	10	90	
10	10		8,173	81,730	1,531	15,310	54	540	9	90	
11	11		8,333	91,663	1,554	17,094	55	605	10	110	
12	12		8,439	101,268	1,588	19,056	45	540	15	180	
13	13	-	8,309	108,017	1,565	20,345	66	858	18	234	
14	14		8,377	117,278	1,552	21,728	80	1,120	21	294	
15	15	-	8,082	121,230	1,611	24,165	81	1,215	17	255	

Rate Design Table

Block #	Block Switch Point	Rate for Block
Block 1	10	\$2.50
Block 2	20	\$3.00
Block 3	Rate for first	\$3.75
Block 4	Rate for next	\$3.75
Block 5	10 units	\$3.75 Copy rate in last block to unused
	Rate for units in excess of 20	blocks

Rate Design Screenshot

Bill Impacts Screenshot

Affordability Indicator

3. Bill impacts of Proposed rates Under your Proposed rates, the volume charge may go up for some customers and down or stay the same for others. The Bill Impacts Table shows the percentage of bills that will go

Avg and median bill impacts

% Change in Average and Median Annual Water Service Cost by Customer Class

down, stay the same, or go up -- and by how much. Charts showing the distribution of bill impacts for each customer class are provided on the Bill Impacts worksheet.

Customer Clas
Single Family
Multi Family
CII
Landscape
Not in use
Not in use

Avelage A	inual water 5	ervice cost	wieulan A		ervice COSt
Current	Proposed	% Change	Current	Proposed	% Change
\$777	\$804	3.4%	\$650	\$672	3.3%
\$4,254	\$4,294	0.9%	\$1,930	\$1,942	0.6%
\$3,323	\$3,382	1.8%	\$1,481	\$1,504	1.5%
\$5,599	\$6,007	7.3%	\$2,503	\$2,720	8.7%

Affordability index equals the median annual water cost for the primary residential customer class divided by median household income.

A	ffordabi	lity Ind	ex
Cur	rent	Prop	osed
5.0%		5.0%	
4.0%		4.0%	
3.0%		3.0%	
2.0%		2.0%	
1.0%	++	1.0%	+ +
0.0%		0.0%	

Customer Class
Single Family
Multi Family
CII
Landscape
Not in use
Not in use

% of bills decreasing by No More Than % of bills increasing by more than 20% 15 to 20% 10 to 15% 5 to 10% +/- 5% 5 to 10% 10 to 15% 15 to 20% more than 20% 0% 0% 21% 38% 9% 4% 17% 11% 0% 0% 1% 38% 25% 4% 4% 18% 12% 0% 0% 0% 25% 20% 10% 0% 28% 7% 9% 0% 0% 26% 12% 2% 6% 20% 0% 33%

Bill Impacts Table

Bill Impact Histograms

Drought Rates

- Evaluate rate performance under water use curtailment
- Up to 4 drought stages can be specified
- Curtailment levels can vary by customer class
- User can design rates "by hand", OR
- Use built-in calculator to find revenue-neutral rates by drought stage

Specifying Curtailment Levels

Requested curtailment level by stage

1. Specify Curtailment Levels for Drought/Shortage Stages

- 1. Enter the Customer Class curtailment levels for each stage. If you have fewer than 4 stage Shortage condition. Do not modify the settings for this stage.
- 2. For each stage, enter the expected compliance rate. The compliance rate can vary by sta stages where curtailment is mandatory and enforced. The expected curtailment level for rate.

e last curtailment level in the unused stages. Stage 0 is the default No

xample, stages with voluntary curtailment may have lower compliance than e is the product of the stage's curtailment level and the expected compliance

	Drought/Sl	hortage Stage	Customer Class	s Curtailment L	ls Table		Ехр	ected Curtailn	nent	
Customer Class	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4
Single Family	0%	10%	15%	20%	25%	0%	8%	12%	17%	21%
Multi Family	0%	10%	15%	20%	25%	0%	8%	12%	17%	21%
CII	0%	0%	10%	20%	25%	0%	0%	8%	17%	21%
Landscape	0%	0%	10%	20%	25%	0%	0%	8%	17%	21%
Not in use	0%					0%	0%	0%	0%	0%
Not in use	0%					0%	0%	0%	0%	0%
	-									

Enter Expected Compliance % 100%

85%

85%

Expected curtailment

Expected compliance rate

Designing Drought Rates

Drought Rate Calculator

3. Calculate Revenue Neutral Rates by Drought Stage

The revenue neutral rates calculator will quickly find a set of rates for a given drought/shortage stage that will generate the same revenue as your Proposed rates under a no shortage condition. There are four steps to using the calculator:

- 1. Choose the drought/shortage stage you want to calculate rates for.
- 2. Choose the method for calculating the rates. There are two choices. The first choice is to adjust your Proposed rates so that each customer class generates the same revenue it would have generated under your Proposed rates assuming no use curtailment. This may result in significant differences across classes in the amount by which rates are adjusted. The second choice is to adjust your Proposed rates so that all classes when grouped together are revenue neutral. Rates across classes will be adjusted by the same proportionate amount. Revenue neutrality may not hold for individual classes, but overall revenue will be neutral to the Proposed rates assuming no use curtailment.
- 3. Complete the Leave or Adjust Rate in Block table below. Choose Leave if you want the rate in the block to be the same as it is for your Proposed rates. Choose Adjust if you want the calculator to adjust this rate. For example, if you only want to adjust the upper block rates, choose Leave for lower blocks and Adjust for upper blocks. If you have fewer than 5 blocks, set the unused blocks to the same setting used for your last block.

▼

- 4. Make desired adjustments to the block widths for the Stage Rates in the Stage Rates tables above.
- 5. Click the Find Revenue Neutral Rates button.

Note: The calculator will overwrite the rates that are in the Stage Rates tables above. If you want to preserve these rates, save them as a rate scenario by clicking the Save/Load Rates button before using the calculator.

Choose Drought Stage to Evaluate:

Stage 2 🔻

Choose Method for Calculating Revenue Neutral Rates: 1. Scale rates so that each customer class is revenue neutral

Leave or Adjust Rate in Block?

Class	Block 1	Block 2	Block 3	Block 4	Block 5
Single Family	Leave	Adjust	Adjust	Adjust	Adjust
Multi Family	Leave	Adjust	Adjust	Adjust	Adjust
CII	Leave	Adjust	Adjust	Adjust	Adjust
Landscape	Leave	Adjust	Adjust	Adjust	Adjust
Not in use	Leave	Leave	Leave	Leave	Leave
Not in use	Leave	Leave	Leave	Leave	Leave

Find Revenue Neutral Rates Reset Drought Stage Rates to

Proposed Rates

Save/Load Rates

Limitations of the Rate Design Module

Plans based on average assumptions are wrong on average ---Sam Savage, The Flaw of Averages

- Results only as good as the bill tabulation data
- Can only evaluate how rates will perform ON AVERAGE
- Does not provide insight into VARIABILITY of performance
- That's where the Revenue Simulation Module steps in

Revenue Simulation Module

Example Questions the Simulation Module Can Address

- What is the likelihood we will meet our oneyear, three-year, five-year revenue targets under our current or proposed rates?
- What is the chance our revenues will turn out more than 15% below our current projections?
- What level of confidence can we have that our sales will exceed our minimum planning estimates?

Average Outcome vs. Likely Outcomes

Flaw of Averages

- ► Fact 1 Planning for the future is rife with uncertainties.
- Fact 2 Most people are not happy with Fact 1 and prefer to think of the future in terms of average outcomes.
- ► Fact 3 The "flaw of averages" states that plans based on average assumptions are, on average, wrong.

-adapted from Savage (2012) Flaw of Averages <u>www.probabilitymanagment.org</u>

The cyclist is safe on the average path

Boston Average Maximum Temperature 2000 – 2017 Mean vs. Actual

Boston Monthly Precipitation 2000 - 2017 Mean vs. Actual

Planning for the Future

"Many futures are possible, but only one future occurs." - Howard Marks

Boston July Average Max Temp 1980 – 2017 (Mean = 82)

Boston July Precipitation 1980 – 2017 (Mean = 3.32)

How Does It Work?

- The model focuses on three variables that are key to short-run revenue performance:
 - Weather (historical or synthetic)
 - Growth (projected)
 - Supply disruption/use curtailment (correlated to weather)
- Two rate designs are simultaneously evaluated:
 - Current rate (reference condition)
 - Proposed rate
- Monte Carlo Simulation

Simulation Process

A cycle constitutes 1 trial. In the Revenue Simulation Module, User can simulate 10, 100, 500, or 1000 trials.

Why Simulate?

Alternatives to simulation are:

- Ignore uncertainty (a common strategy)
- Construct scenarios (also common)
- Both are problematic
- Simulation offers:
 - More complete enumeration of possible outcomes
 - Likelihood of particular outcomes

RESOURCE SEARCH

HOME WATER EFFICIENCY BUILDING RATES IMPLEMENTATION FISCAL SUSTAINABILITY TOOLS

Home Blog Evaluating Sales Revenue Volatility to Inform Cash Reserve Policies

Blog Topics

- Efficiency and Conservation
- Financial Planning
- Financing Efficiency
- Fiscal Sustainability
- Governance
- Implementation and Communications
- Rate Structures
- Revenue Management
- Sales/Demand Forecasting

Blog Archives

- <u>07/2018</u> (1)
- <u>02/2018</u> (1)
- <u>06/2017</u> (1)
- <u>05/2017</u> (1)
- <u>02/2017</u> (1)
- <u>01/2017</u> (1)
- <u>11/2016</u>(1)
- <u>09/2016</u> (1)
- <u>05/2016</u>(1)
- <u>04/2016</u> (1)
- <u>02/2016</u> (1)
- <u>01/2016</u> (1)
- <u>11/2015</u>(1)

Evaluating Sales Revenue Volatility to Inform Cash Reserve Policies

Connecting the AWE Sales Forecasting and Rate Model and the AWWA Cash Reserve Policy Guidelines Paper

Submitted on Friday, July 27, 2018 - 3:00pm

By Bill Christiansen, Director of Programs, Alliance for Water Efficiency

The AWWA Rates and Charges Committee recently <u>released a white</u> <u>paper</u> containing cash reserve policy guidelines. In summary, it's really cool. The paper is intended to assist utilities in developing reserve policies, and it features seven water utility case studies. The case studies include key considerations and policies for various types of reserves, and details like the utility's rate structure and the percent of revenue derived from fixed charges. The types of reserves discussed in the white paper are:

- Operating Reserves
- Capital Reserves
 - Rehabilitation and Replacement Reserves
 - Equipment Replacement Reserves
 - Emergency Capital Reserves
 - Special Purpose Capital Reserves
- Debt Service Reserves
- Rate Stabilization Reserves

Simulation of Sales Revenue Distribution

Additional Data Needed for Module

Weather

- Monthly Precipitation and Temperature data for Service Area
 - Historical (up to 90 years), OR
 - Synthetic (for example, to simulate impact of climate change)
- Easy to get historical weather data for service areas Guidebook recommends several sources for weather data
- Customer Class Account Growth
 - User specifies Low, Medium, High Account Growth Rates, by Class

Weather Data Screenshot

On this we fou can end t is not re Consult the	nter Weath orksheet you nter up to a equired that he user guide Revenue S	ner Data to u enter hist maximum o you provide e for inform	b be Used forical mo of 90 years e data for nation on	d by Rever nthly precip s of historic all 90 years weather da	pita pita cal d s. Fe ita s	Can e 1	ente .5. ľ	r up More	to 9(e is b	0 yrs ette	. Ne r tha	eed a an le	at leas ss.	st lema Iso n	ands may va nust be con he tables. 1	ary in resp nplete acro To get relia	onse to de oss months ble result:	(Can r futur	nodi re cli	fy hi mat	istor e cha	ical v ange	wea e if d	ther f esire
I. Set mos	st recent yea	ar in your w	eather da	ita are providir	ig weathei	r data.																<u>, io step 7.</u>			
Most rece	nt year:	2012	,																						
2. Enter N	lonthly Prec	ipitation To	otals (in)										3. Enter N	lonthly Ave	rage Maxin	num Air Te	mperature	degrees	F)						
Enter tota	l monthly p	recipitation	in inches	s for each ye	ear of wea	ther data y	ou have f	or your ser	vice area.				Enter the	monthly av	erage daily	maximum	air tempe	rature in d	egrees Fah	renheit fo	r each yea	r of weathe	e a you	have for	your
													service ar	ea. Be sure	you are en	tering ave	rage daily i	maximum	air tempera	ature and r	not average	e daily air t	Inperatu	re.	
										Ť															
Veer	Inn	Fab	Max	A	Mari	lum	Lul.	A	Com	0.4	Neu	Dee	Veet	lan	Fab	Max	A	Mari	lum	tul.	A	Can	0.4	Neu	Dee
2012	Jan 2 01	1 10	117	Apr 2 56		Jun	Jui	Aug	sep	000	1 00	Dec E 92	2012	Jan 61.0	Feb 62.0	IVIdI 62.0	Apr 70.6	IVIAY	nut		Aug	22 A	75 7		Dec
2012	1 18	4.06	6.26	0.28	0.00	1 93	0.00	0.00	0.00	0.07	4.05	0.08	2012	56.2	60.5	62.7	69.0	70.0	79.2	84.3	84.5	86.4	76.5	62.8	60.0
2011	5.71	2.80	1.93	3.82	1.06	0.00	0.00	0.00	0.00	0.83	1.85	5.71	2011	55.1	60.8	65.3	66.1	72.5	82.6	84.1	83.3	85.2	74.9	64.7	57.2
2009	1.02	6.34	2.36	1.22	0.71	0.00	0.00	0.00	0.16	3.74	0.59	2.40	2010	60.4	59.1	65.4	70.6	78.6	80.4	86.6	87.1	88.0	73.3	65.7	54.6
2008	7.13	1.85	0.12	0.08	0.00	0.00	0.00	0.00	0.00	0.04	2.36	1.81	2008	53.7	60.8	66.5	71.6	77.7	85.3	86.7	88.5	85.1	78.1	66.9	54.7
2007	0.43	3.70	0.24	0.59	0.28	0.00	0.00	0.00	0.12	1.22	0.75	2.40	2007	58.2	60.8	70.5	72.2	77.7	83.9	86.1	87.0	80.8	72.9	67.4	55.9
2006	2.24	1.97	6.26	4.25	1.02	0.00	0.00	0.00	0.00	0.12	1.42	2.95	2006	58.5	63.2	59.3	66.0	77.8	84.9	91.8	83.9	83.0	74.0	64.2	57.9
2005	4.33	3.31	2.60	1.46	1.26	0.28	0.00	0.00	0.00	0.12	0.94	10.04	2005	52.7	61.3	67.0	68.8	74.9	78.7	89.7	87.2	80.1	75.6	67.8	58.8
2004	2.48	5.04	0.91	0.08	0.08	0.00	0.00	0.00	0.08	2.64	2.17	3.90	2004	55.1	59.7	74.0	75.0	77.9	83.2	85.9	87.0	86.7	73.1	62.2	56.8
	1.14	0.98	1.46	3.58	0.51	0.00	0.00	0.00	0.00	0.00	1.65	5.94	2003	59.2	61.5	67.6	64.9	76.6	83.3	91.1	86.3	86.6	81.5	61.7	56.6
2003			1 89	0.16	1.18	0.00	0.00	0.00	0.00	0.00	2.40	8.66	2002	55.0	63.0	64.6	69.5	76.1	84.0	87.5	86.1	86.1	76.2	66.9	58.1
2003 2002	0.75	1.54	1.05					0.00	0.12	0.28	2 50	7.01	2001	57.0	59.2	69.1	67.9	85.9	87.2	84.0	86.4	82.1	78.7	65.9	55.7
2003 2002 2001	0.75 1.89	1.54 5.51	1.10	1.14	0.00	0.12	0.00	0.00	0.12	0.20	5.50	7.01	2001	57.0										64.0	50.0
2003 2002 2001 2000	0.75 1.89 5.79	1.54 5.51 8.11	1.10	1.14 0.79	0.00 1.14	0.12	0.00	0.00	0.12	1.34	0.75	0.39	2001	58.8	60.0	66.5	72.9	76.9	84.5	82.5	86.1	84.3	73.1	61.0	59.3
2003 2002 2001 2000 1999	0.75 1.89 5.79 2.76	1.54 5.51 8.11 5.12	1.00 1.10 2.01 2.48	1.14 0.79 1.69	0.00 1.14 0.08	0.12 0.08 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.12	1.34 0.31	0.75	0.39	2001 2000 1999	57.0 58.8 55.3	60.0 58.5	66.5 60.8	72.9 69.1	76.9 73.0	84.5 80.7	82.5 83.2	86.1 83.3	84.3 82.8	73.1 79.3	66.4	<u>59.3</u> 61.2
2003 2002 2001 2000 1999 1998	0.75 1.89 5.79 2.76 8.03	1.54 5.51 8.11 5.12 12.20	1.00 1.10 2.01 2.48 2.09	1.14 0.79 1.69 1.26	0.00 1.14 0.08 2.64	0.12 0.08 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.12 0.04 0.00 0.16	0.23 1.34 0.31 0.79	0.75 2.05 3.07	0.39 0.51 0.67	2000 2000 1999 1998	58.8 55.3 56.3	60.0 58.5 57.6	66.5 60.8 64.9	72.9 69.1 67.5	76.9 73.0 67.3	84.5 80.7 76.5	82.5 83.2 85.4	86.1 83.3 88.9	84.3 82.8 82.6	73.1 79.3 73.8	61.0 66.4 62.3	<u> </u>
2003 2002 2001 2000 1999 1998 1997	0.75 1.89 5.79 2.76 8.03 8.19	1.54 5.51 8.11 5.12 12.20 0.20	1.03 1.10 2.01 2.48 2.09 0.24	1.14 0.79 1.69 1.26 0.24	0.00 1.14 0.08 2.64 0.28	0.12 0.08 0.00 0.00 0.20	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.47	0.12 0.04 0.00 0.16 0.00	0.28 1.34 0.31 0.79 0.79	0.75 2.05 3.07 5.47	0.39 0.51 0.67 2.56	2000 2000 1999 1998 1997	58.8 55.3 56.3 56.0	60.0 58.5 57.6 63.4	66.5 60.8 64.9 69.9	72.9 69.1 67.5 73.1	76.9 73.0 67.3 82.6	84.5 80.7 76.5 83.0	82.5 83.2 85.4 86.5	86.1 83.3 88.9 84.6	84.3 82.8 82.6 86.1	73.1 79.3 73.8 75.2	61.0 66.4 62.3 65.5	59.3 61.2 55.3 56.5
2003 2002 2001 2000 1999 1998 1997 1996	0.75 1.89 5.79 2.76 8.03 8.19 5.28	1.54 5.51 8.11 5.12 12.20 0.20 5.94	1.03 1.10 2.01 2.48 2.09 0.24 2.44	1.14 0.79 1.69 1.26 0.24 1.81	0.00 1.14 0.08 2.64 0.28 1.77	0.12 0.08 0.00 0.00 0.20 0.20	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.47 0.00	0.12 0.04 0.00 0.16 0.00 0.00	0.28 1.34 0.31 0.79 0.79 0.91	3.36 0.75 2.05 3.07 5.47 2.72	0.39 0.51 0.67 2.56 6.89	2001 2000 1999 1998 1997 1996	58.8 55.3 56.3 56.0 57.9	60.0 58.5 57.6 63.4 62.1	66.5 60.8 64.9 69.9 67.1	72.9 69.1 67.5 73.1 72.9	76.9 73.0 67.3 82.6 77.5	84.5 80.7 76.5 83.0 84.3	82.5 83.2 85.4 86.5 89.5	86.1 83.3 88.9 84.6 88.9	84.3 82.8 82.6 86.1 82.1	73.1 79.3 73.8 75.2 75.5	61.0 66.4 62.3 65.5 65.1	59.3 61.2 55.3 56.5 59.0
2003 2002 2001 2000 1999 1998 1997 1996 1995	0.75 1.89 5.79 2.76 8.03 8.19 5.28 9.84	1.54 5.51 8.11 5.12 12.20 0.20 5.94 0.20	1.10 2.01 2.48 2.09 0.24 2.44 8.62	1.14 0.79 1.69 1.26 0.24 1.81 1.06	0.00 1.14 0.08 2.64 0.28 1.77 1.22	0.12 0.08 0.00 0.00 0.20 0.00 1.18	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.47 0.00 0.00	0.12 0.04 0.00 0.16 0.00 0.00 0.00	0.28 1.34 0.31 0.79 0.79 0.91 0.00	0.75 2.05 3.07 5.47 2.72 0.00	0.39 0.51 0.67 2.56 6.89 6.77	2001 2000 1999 1998 1997 1996 1995	57.8 58.8 55.3 56.3 56.0 57.9 57.1	60.0 58.5 57.6 63.4 62.1 61.3	66.5 60.8 64.9 69.9 67.1 62.2	72.9 69.1 67.5 73.1 72.9 68.3	76.9 73.0 67.3 82.6 77.5 71.7	84.5 80.7 76.5 83.0 84.3 79.9	82.5 83.2 85.4 86.5 89.5 86.2	86.1 83.3 88.9 84.6 88.9 87.7	84.3 82.8 82.6 86.1 82.1 83.8	73.1 79.3 73.8 75.2 75.5 79.2	61.0 66.4 62.3 65.5 65.1 71.2	59.3 61.2 55.3 56.5 59.0 59.9
2003 2002 2001 2000 1999 1998 1997 1996 1995 1994	0.75 1.89 5.79 2.76 8.03 8.19 5.28 9.84 1.77	1.54 5.51 8.11 5.12 12.20 0.20 5.94 0.20 3.94	1.10 2.01 2.48 2.09 0.24 2.44 8.62 0.20	1.14 0.79 1.69 1.26 0.24 1.81 1.06 0.87	0.00 1.14 0.08 2.64 0.28 1.77 1.22 1.61	0.12 0.08 0.00 0.20 0.00 1.18 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.47 0.00 0.00 0.00	0.12 0.04 0.00 0.16 0.00 0.00 0.00 0.00	0.28 1.34 0.31 0.79 0.79 0.91 0.00 0.67	0.75 2.05 3.07 5.47 2.72 0.00 5.91	0.39 0.51 0.67 2.56 6.89 6.77 2.48	2000 1999 1998 1997 1996 1995 1994	57.8 58.8 55.3 56.3 56.0 57.9 57.1 58.2	60.0 58.5 57.6 63.4 62.1 61.3 58.4	66.5 60.8 64.9 69.9 67.1 62.2 68.4	72.9 69.1 67.5 73.1 72.9 68.3 70.9	76.9 73.0 67.3 82.6 77.5 71.7 74.1	84.5 80.7 76.5 83.0 84.3 79.9 83.4	82.5 83.2 85.4 86.5 89.5 86.2 84.4	86.1 83.3 88.9 84.6 88.9 87.7 87.0	84.3 82.8 82.6 86.1 82.1 83.8 83.8	73.1 79.3 73.8 75.2 75.5 79.2 75.3	61.0 66.4 62.3 65.5 65.1 71.2 58.0	59.3 61.2 55.3 56.5 59.0 59.9 53.0
2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993	0.75 1.89 5.79 2.76 8.03 8.19 5.28 9.84 1.77 8.46	1.54 5.51 8.11 5.12 12.20 0.20 5.94 0.20 3.94 4.25	1.13 1.10 2.01 2.48 2.09 0.24 2.44 8.62 0.20 2.13	1.14 0.79 1.69 1.26 0.24 1.81 1.06 0.87 0.59	0.00 1.14 0.08 2.64 0.28 1.77 1.22 1.61 0.55	0.12 0.08 0.00 0.20 0.00 1.18 0.00 0.39	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.47 0.00 0.00 0.00 0.00	0.12 0.04 0.00 0.16 0.00 0.00 0.00 0.00 0.00	0.28 1.34 0.31 0.79 0.79 0.91 0.00 0.67 0.31	0.75 2.05 3.07 5.47 2.72 0.00 5.91 2.52	0.39 0.51 0.67 2.56 6.89 6.77 2.48 2.36	2000 1999 1998 1997 1996 1995 1994 1993	57.8 58.8 55.3 56.3 56.0 57.9 57.1 58.2 54.8	60.0 58.5 57.6 63.4 62.1 61.3 58.4 58.7	66.5 60.8 64.9 69.9 67.1 62.2 68.4 67.2	72.9 69.1 67.5 73.1 72.9 68.3 70.9 69.9	76.9 73.0 67.3 82.6 77.5 71.7 74.1 75.8	84.5 80.7 76.5 83.0 84.3 79.9 83.4 83.4	82.5 83.2 85.4 86.5 89.5 86.2 84.4 85.7	86.1 83.3 88.9 84.6 88.9 87.7 87.0 86.6	84.3 82.8 82.6 86.1 82.1 83.8 82.4 84.1	73.1 79.3 73.8 75.2 75.5 79.2 75.3 76.8	61.0 66.4 62.3 65.5 65.1 71.2 58.0 65.3	59.3 61.2 55.3 56.5 59.0 59.9 53.0 55.0

Calculation of Weather Effects

- Based on CUWCC GPCD Weather
 Normalization Methodology and Empirical Model
- Accounts for impact of
 - Temperature
 - Precipitation
- Weather effect coefficients can be modified by user

Uncertain Account Growth

- Can simulate with or without growth uncertainty
 - No Growth
 - Certain Growth
 - Uncertain Growth
- If Uncertain Growth, then Low, Medium, High Growth Rates are specified

Water Use Curtailments

Three Choices

- Exclude from simulation
- Associate with historical weather (preferred method)
- Specify likelihood

Associate Drought Stage with Historical Weather

Preferred Method

3. Enter Monthly Average Maximum Air Temperature (degrees F)

Enter the monthly average daily maximum air temperature in degrees Fahrenheit for each year of weather data you have for your service area. Be sure you are entering average daily maximum air temperature and not average daily air temperature.

4. Enter Drought Shortage Stage

(Optional) For each hydrologic year you can select what drought/shortage stage would have applied given your current system supplies and customer demands. You can then have the model use this information when it simulates water sales. This is explained further in Step 5 Setup Simulation.

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Stage
2012	61.0	63.0	63.0	70.6	78.6	82.9	85.9	87.3	83.4	75.7	65.8	56.9	Stage 0
2011	56.2	60.5	62.7	69.0	72.4	79.2	84.3	84.5	86.4	76.5	62.8	60.0	Stage 0
2010	55.1	60.8	65.3	66.1	72.5	82.6	84.1	83.3	85.2	74.9	64.7	57.2	Stage 0
2009	60.4	59.1	65.4	70.6	78.6	80.4	86.6	87.1	88.0	73.3	65.7	54.6	Stage 2
2008	53.7	60.8	66.5	71.6	77.7	85.3	86.7	88.5	85.1	78.1	66.9	54.7	Stage 0
2007	58.2	60.8	70.5	72.2	77.7	83.9	86.1	87.0	80.8	72.9	67.4	55.9	Stage 0
2006	58.5	63.2	59.3	66.0	77.8	84.9	91.8	83.9	83.0	74.0	64.2	57.9	Stage 0
2005	52.7	61.3	67.0	68.8	74.9	78.7	89.7	87.2	80.1	75.6	67.8	58.8	Stage 0
2004	55.1	59.7	74.0	75.0	77.9	83.2	85.9	87.0	86.7	73.1	62.2	56.8	Stage 0
2003	59.2	61.5	67.6	64.9	76.6	83.3	91.1	86.3	86.6	81.5	61.7	56.6	Stage 0
2002	55.0	63.0	64.6	69.5	76.1	84.0	87.5	86.1	86.1	76.2	66.9	58.1	Stage 0
2001	57.0	59.2	69.1	67.9	85.9	87.2	84.0	86.4	82.1	78.7	65.9	55.7	Stage 1
2000	58.8	60.0	66.5	72.9	76.9	84.5	82.5	86.1	84.3	73.1	61.0	59.3	Stage 0
1999	55.3	58.5	60.8	69.1	73.0	80.7	83.2	83.3	82.8	79.3	66.4	61.2	Stage 0
1998	56.3	57.6	64.9	67.5	67.3	76.5	85.4	88.9	82.6	73.8	62.3	55.3	Stage 0
1997	56.0	63.4	69.9	73.1	82.6	83.0	86.5	84.6	86.1	75.2	65.5	56.5	Stage 0
1996	57.9	62.1	67.1	72.9	77.5	84.3	89.5	88.9	82.1	75.5	65.1	59.0	Stage 0
1995	57.1	61.3	62.2	68.3	71.7	79.9	86.2	87.7	83.8	79.2	71.2	59.9	Stage 0
1994	58.2	58.4	68.4	70.9	74.1	83.4	84.4	87.0	82.4	75.3	58.0	53.0	Stage 0
1993	54.8	58.7	67.2	69.9	75.8	84.6	85.7	86.6	84.1	76.8	65.3	55.0	Stage 0
1992	52.8	63.7	65.7	74.8	81.9	80.8	85.7	88.8	84.9	79.1	66.6	54.2	Stage 0
1991	57.8	65.3	59.6	68.5	72.7	77.9	85.1	82.0	84.4	80.6	67.6	57.1	Stage 4
1990	57.0	57.8	65.4	73.3	74.6	81.8	85.8	84.7	83.3	79.2	65.9	53.9	Stage 3
1989	55.6	56.8	63.4	73.5	75.6	80.5	86.4	83.1	79.0	74.5	67.2	57.0	Stage 2
1988	56.2	66.0	70.1	70.9	74.6	81.3	89.2	84.5	83.1	75.7	62.6	57.1	Stage 1
1987	55.2	62.1	64.8	76.2	78.8	81.5	80.9	83.9	82.6	77.7	63.6	55.2	Stage 0

Drought Stage association table

Specify Drought Stage Likelihood

Secondary Method

Choose Method for Simulating Impact of Droughts/Shortages on Sales Volumes and Revenues: Use Stage Probabilities Table 🔻

Drought Stage Probabilities Table							
	Likelihood of	Cumulative					
Drought Stage	Occurrence	Probability					
Stage 0	90.00%	90.00%					
Stage 1	5.00%	95.00%					
Stage 2	2.50%	97.50%					
Stage 3	1.50%	99.00%					
Stage 4	1.00%	100.00%					
	100.00%						

Table Instructions: For each stage, enter the likelihood of occurrence. For example, if historically your system has had no water use curtailments in 90% of years, you would enter 90% for Stage 0. The remaining 10% would then be distributed across the other stages according to the likelihood of each stage's occurrence. The sum of the occurrence likelihoods must sum to 100%.

User specifies probability of occurrence

Simulation Outputs

Summary Statistics

1. Simulation Summary Statistics

Summary statistics for the simulation are provided in the following tables. The average value shows the central tendency while the standard deviation indicates the degree of variability. The minimum and maximum values define the range of outcomes.

----- Results based on 1000 simulation trials -----

Under Current Rates

	Sales Volume (CCF)							
	Year 1	Year 2	Year 3	Year 4	Year 5			
Avg	15,391,247	15,496,019	15,635,586	15,697,702	15,861,245			
St Dev	841,193	894,240	880,139	935,512	900,860			
Min	12,254,361	12,309,867	12,375,362	12,440,635	12,474,137			
Max	16,200,382	16,344,414	16,520,316	16,657,595	16,843,932			

	Sales Revenue (Inou. S)							
	Year 1	Year 2	Year 3	Year 4	Year 5			
Avg	\$69,966	\$70,430	\$70,999	\$71,338	\$71,981			
St Dev	\$2,524	\$2,682	\$2,645	\$2,809	\$2,706			
Min	\$60,555	\$60,814	\$61,121	\$61,426	\$61,581			
Max	\$72,393	\$73,011	\$73,767	\$74,356	\$75,157			

Under Proposed Rates

	Sales Volume (CCF)							
	Year 1	Year 2	Year 3	Year 4	Year 5			
Avg	15,155,448	15,259,211	15,397,276	15,457,801	15,619,683			
St Dev	829,223	880,884	867,799	922,020	888,074			
Min	12,070,660	12,125,441	12,190,075	12,254,491	12,287,565			
Max	15,964,343	16,106,516	16,280,144	16,415,657	16,599,589			

	Sales Revenue (Thou. \$)							
	Year 1	Year 2	Year 3	Year 4	Year 5			
Avg	\$70,634	\$71,096	\$71,664	\$72,016	\$72,657			
St Dev	\$2,551	\$2,719	\$2,670	\$2,842	\$2,735			
Min	\$61,031	\$61,292	\$61,600	\$61,908	\$62,063			
Max	\$72,994	\$73,573	\$74,308	\$75,010	\$75,705			

Simulation Distributions

2. Sales Volume and Revenue Distributions

Confidence Intervals

3. Sales Volume and Revenue Confidence Intervals

CCF

(Thou.

U

\$ 14,000

14.500

13,500 13.000

× 12,500 12,000

> \$68,000 \$66,000

s \$64,000 b \$62,000

\$60,000

Year 1

A 95% confidence interval indicates the range of values such that 95% of all simulation outcomes fall within this interval. Similarly, for a 90% confidence interval, 90% of all simulation outcomes would fall within the interval. This means the probability that the outcome variable will take on a value in the indicated range is x%. The charts below show confidence intervals (by year) for sales volume and revenue under your Current and Proposed rates. You can use the drop-down list to select the desired confidence level for the intervals. As you select higher levels of confidence you will note the intervals widen to accommodate the broader range of potential outcomes.

Use drop-down to select confidence level for sales volume and revenue confidence intervals: 90%

Current Rates Water Sales Volume: 90% Confidence Interval

Proposed Rates

User selects level of confidence for interval (50-95%)

Year 3

Year 2

Year 4

Year 5

Exceedence Probabilities

Dynamic Step-Through Charts

Demo

Model includes built-in demonstration data and user guide exercises:

- Model setup
- Bill tabulation
- Setting service charges
- Designing volume rates
- Drought rate adjustments
- Simulation

What if the likelihood of drought restrictions increases?

Examples of Different Locations

What if there was...

- No weather variability
- No chance of drought
- No growth uncertainty

Financing Sustainable Water

