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Executive Summary 
 
Indices of Biotic Integrity (IBI) were calibrated for Massachusetts Department of Environmental 
Protection (MassDEP) benthic macroinvertebrate kick net samples in two naturally distinct regions: 
Western Highlands and Central Hills. A separate report (Jessup and Stamp 2020) describes the 
development of the two IBIs. The IBIs improve MassDEP’s diagnostic ability to identify degradation in 
biological integrity and associated stressors. The Massachusetts Surface Water Quality Standards 
(SWQS) (314 CMR 4.00; MassDEP 2013) currently has narrative biological criteria that define biological 
integrity as “the capability of supporting and maintaining a balanced, integrated, adaptive community of 
organisms having species composition, diversity, and functional organization comparable to that of the 
natural habitat of the region.” In addition, the SWQS designate specific uses for surface water classes. 
For inland waters, Class A must sustain excellent habitat, while Class B waters must sustain habitat for 
aquatic life and wildlife. Waters supporting Aquatic Life Use should be suitable for “sustaining a native, 
naturally diverse, community of aquatic flora and fauna. This use includes reproduction, migration, 
growth and other critical functions” (MassDEP 2013).  
 
In addition to having narrative biocriteria, some state biomonitoring programs have integrated numeric 
biocriteria into their SWQS. With numeric biocriteria, management actions can be triggered or 
prioritized based on assessments relative to a threshold (or thresholds). States like Maine and 
Minnesota use numeric biocriteria to evaluate Aquatic Life Use Attainment decisions and to designate 
different categories of biological condition. MassDEP has begun to explore potential IBI thresholds for 
four biological condition categories (Exceptional Condition, Satisfactory Condition, Moderately 
Degraded, and Severely Degraded). In the future, if MassDEP decides to try and integrate numeric 
biocriteria into their SWQS, it will warrant additional analyses as well as a rule-making process that 
includes a period for public review and comment. Any proposed amendments to use numeric biocriteria 
as the basis for water quality management actions under the Clean Water Act (CWA) would need to be 
approved by the U.S. Environmental Protection Agency (EPA) following promulgation. 
 
In this document, we provide results from several different analyses that were performed to explore 
potential IBI thresholds for the four biological condition categories. In addition to presenting results 
from each analysis, we describe rationale that could potentially be used to justify selection of 
thresholds, as well as implications of selecting the different thresholds. The analyses derive potential 
thresholds based on multiple lines of evidence, including distribution statistics, Type I and II error, 
standard deviation from reference, interpolation with stressor variables, proportional odds logistic 
regression and models that predict taxa loss. Of these, the distribution statistics and balancing Type I 
and II error are the most established approaches. The distribution statistics of the least disturbed 
reference sites focused on potential thresholds in the range of the 10th – 25th percentiles. Thresholds at 
these percentiles would necessarily misidentify some reference sites as biologically degraded, which 
would be a Type I error. Considerations for balancing this error with Type II error (recognizing stressed 
sites as biologically unimpacted) lead to options for appropriate percentiles to suggest as thresholds. 
The other lines of evidence are less established and thus were regarded as secondary, supporting lines 
of evidence. Which thresholds are ultimately deemed most appropriate will vary based on factors such 
as how data are distributed within the datasets and policy decisions. 
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1 Background 
 
The Massachusetts Department of Environmental Protection (MassDEP) is responsible for sampling and 
assessing Massachusetts’s surface water quality pursuant to the Clean Water Act (CWA) Section 305(b). 
One of the purposes of the CWA is the restoration and maintenance of the chemical, physical, and 
biological integrity of the Nation’s waters. The Massachusetts Surface Water Quality Standards (SWQS) 
(314 CMR 4.00; MassDEP 2013) has narrative biological criteria that define biological integrity as “the 
capability of supporting and maintaining a balanced, integrated, adaptive community of organisms 
having species composition, diversity, and functional organization comparable to that of the natural 
habitat of the region.” In addition, the SWQS designate specific uses for surface water classes. For inland 
waters, Class A must sustain excellent habitat, while Class B waters must sustain habitat for aquatic life 
and wildlife. Waters supporting Aquatic Life Use should be suitable for “sustaining a native, naturally 
diverse, community of aquatic flora and fauna. This use includes reproduction, migration, growth and 
other critical functions” (MassDEP 2013).  
 
To determine whether the macroinvertebrate communities in Massachusetts’ freshwater wadeable 
streams exhibit biological integrity, Indices of Biotic Integrity (IBI) were calibrated for freshwater 
wadeable streams in all but the southeastern portion of the state (Narragansett/Bristol Lowlands (NBL), 
Cape Cod (CC), and the Islands)1 (Jessup and Stamp 2020). The IBIs were calibrated for MassDEP benthic 
macroinvertebrate kick net samples in two naturally distinct regions: Western Highlands (WH) and 
Central Hills (CH). The IBIs for each region were comprised of biological metrics that were found to be 
responsive to a general stressor gradient. The new IBIs improve MassDEP’s diagnostic ability to identify 
degradation in biological integrity and water quality.  
 
In addition to having narrative biocriteria, some state biomonitoring programs have integrated numeric 
biocriteria into their SWQS. With numeric biocriteria, management actions can be triggered or 
prioritized based on assessments relative to a threshold (or thresholds). States like Maine and 
Minnesota use numeric biocriteria to evaluate Aquatic Life Use (ALU) Attainment decisions and to 
designate different categories of biological condition2. MassDEP has begun to explore potential IBI 
thresholds for four biological condition categories (Exceptional Condition, Satisfactory Condition, 
Moderately Degraded, and Severely Degraded). In this document, we provide results from several 
different analyses that were performed to explore potential IBI thresholds for the four categories. The 
analyses derive potential thresholds by calculating distribution statistics, examining Type I and II error, 
evaluating standard deviation from reference, interpolating with stressor variables, performing 
proportional odds logistic regression and evaluating models that predict taxa loss. In addition to 
presenting results from each analysis, we describe rationale that could potentially be used to justify the 
selection of the thresholds. We also discuss implications of selecting the different thresholds. If at some 
point MassDEP decides to take the additional step of integrating numeric biocriteria into their SWQS, it 
will warrant additional analyses as well as a rule-making process that includes a period for public review 
and comment, as well as approval by the U.S. Environmental Protection Agency (EPA).  
 

 
1NBL/CC/Islands is a third distinct region with insufficient data at this time to develop an IBI. 
2More information on numeric biocriteria in Maine and Minnesota can be found at the following links: Maine - 
https://www.maine.gov/dep/water/monitoring/biomonitoring/retro/pt1ch1pref.pdf; Minnesota - 
https://www.pca.state.mn.us/sites/default/files/wq-bsm4-02.pdf. 
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2 Dataset 
 
The threshold analyses were performed on the MassDEP benthic macroinvertebrate kick net IBI 
calibration and verification dataset. Section 2 of the kick net IBI report (Jessup and Stamp 2020) 
describes the dataset in detail. We used two IBI scoring schemes in the threshold analyses: ‘minimum 
floor’ (Indx_MinFloor)3 and a normalized ‘minimum floor’ scheme (IndxMF_MSD)4. Figure 1 shows the 
locations of the sites that were used in the threshold analyses. Sites were assigned to disturbance 
categories using the process outlined in Figure 2. Seven disturbance variables were considered5: Index of 
Catchment Integrity (ICI), Index of Watershed Integrity (IWI), percent urban land cover, density of roads, 
dam storage volume, percent agricultural land cover, and modeled mean rate of fertilizer application + 
biological nitrogen fixation + manure application (Table 1). Sites were initially assigned to seven 
disturbance categories, ranging from Best Reference to High Stress (Table 2), using the thresholds in 
Table 1, combination rules described in the kick net IBI report and local knowledge of MassDEP staff 
(Section 3; Jessup and Stamp 2020). Sites were then collapsed into three broader disturbance categories 
(reference, stressed, other) for the analyses. 
 
In regard to overall watershed condition (as measured by the ICI and IWI) and percent urban land cover, 
the CH sites have higher levels of disturbance than WH sites (Appendix A, Figures A1-A3). Due to the 
differences in disturbance levels across regions and the need to obtain adequate numbers of reference 
and stressed sites for IBI calibration, we used slightly different thresholds to define reference and 
stressed in the CH and WH regions. Stressed sites in the CH were derived from the High Stress category, 
while in the WH, the High Stress and Stress categories were combined (Table 2). The CH reference sites 
were comprised of sites in the Best Reference, Reference, and Sub Reference categories; in the WH, 
reference sites were from the Best Reference and Reference categories (Table 2).  

 
3 The Indx_MinFloor is based on a 100-point scale; it uses the minimum possible value (zero) and the 95th 
percentile for all decreasing metrics. Metrics that increase with stress use the 5th and 95th percentiles. For more 
information, see the kick IBI report (Jessup and Stamp 2020). 
4The IndxMF_MSD is based on the Indx_MinFloor scheme, normalized to a scale centered around 0 and frames 
scores standardized to the mean and standard deviation of the index calibration reference distribution, such that a 
score of -1 means it is 1 standard deviation from the mean. For more information, see Jessup and Stamp 2020. 
5Variables were selected based on the process described in Section 3 of the kick IBI report (Jessup and Stamp 2020) 
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Figure 1. Locations of sites that were used in the threshold analyses. Sites are color-coded by broad disturbance category. Several sites are 
located just across the Massachusetts border. These samples were included in the analyses because they were sampled by MassDEP field crews 
using MassDEP kick RBP methods. 
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Figure 2. Process that was used to assign sites to disturbance categories. More detailed information on 
development of the disturbance gradient can be found in the kick IBI report (Jessup and Stamp 2020). 
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Table 1. Variables and thresholds that were used to define the disturbance gradient. For more information, see Section 3 in Jessup and Stamp 
(2020). 

Metric 
disturbance 

levels (scores) 

Metric thresholds 
Index of 

Watershed 
Integritya (IWI) 

Index of 
Catchment 

Integrity (ICI)a  

% 
Urbanb 

% Hay + 
Row Cropc 

Ag application 
rates  

(kg N/ha/yr)d 

Road density 
(km/square km)e 

Dam storage 
volume (cubic 

meters/square km)f 
Disturb Level 1  

(least disturbed) 
(score +3) 

≥0.875  ≥0.875 ≤1% ≤1% ≤0.5 ≤1.5 ≤0.1 

Disturb Level 2 
(score +2) ≥0.85 ≥0.85 ≤2% ≤2% ≤1 ≤2 ≤1,000 

Disturb Level 3 
(score +1) ≥0.80  ≥0.80 ≤5% ≤5% ≤2.5 ≤3 ≤10,000 

Disturb Level 4 
(score 0) >0.80 and <0.75 >0.80 and <0.75 >5 and 

<10% 
>5 and 
<10% >2.5 and <5 >3 and <5 >10,000 and 

<50,000 

Disturb Level 5 
(score -1) ≤0.75 ≤0.75 ≥10% ≥10% ≥5 ≥5 ≥50,000 

Disturb Level 6 
(score -2) ≤0.60 ≤0.60 ≥40% ≥15% ≥7.5 ≥7.5 ≥100,000 

Disturb Level 7 
(most disturbed) 

(score -3) 
≤0.50 ≤0.50 ≥60% ≥20% ≥10 ≥10 ≥200,000 

aScoring scale ranges from 0 (worst) to 1 (best); based on version 1 (Thornbrugh et al. 2018) 
bPercent of watershed area classified as developed, high + medium + low-intensity land use (NLCD 2011 class 24+23+22) 
cPercent of local catchment area classified as hay and crop land use (NLCD 2011 class 82+81) 
d[CBNFWs]+[FertWs]+[ManureWs] 

 CBNFWs = Mean rate of biological nitrogen fixation from the cultivation of crops in kg N/ha/yr, within watershed 
 FertWs = Mean rate of synthetic nitrogen fertilizer application to agricultural land in kg N/ha/yr, within watershed 
 ManureWs = Mean rate of manure application to agricultural land from confined animal feeding operations in kg N/ha/yr, within watershed 

eDensity of roads (2010 Census Tiger Lines) within catchment (km/square km) 
fVolume all reservoirs (NID_STORA in NID) per unit area of watershed (cubic meters/square km)
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Table 2. Number of samples in each of the seven disturbance categories (Best Reference to High Stress, 
as described in Section 3 of Jessup and Stamp 2020). Sites were later collapsed into three broader 
categories (reference, stressed, other) for analyses. Due to the differences in disturbance levels across 
regions and the need to obtain adequate numbers of reference and stressed sites for IBI calibration, we 
used slightly different thresholds to define reference and stressed in the CH and WH regions. Stressed 
sites (highlighted in orange) in the CH were derived from the High Stress category, while in the WH, the 
High Stress and Stress categories were combined. Reference sites (highlighted in green) in the CH were 
comprised of sites in the Best Reference, Reference, and Sub Reference categories; in the WH, reference 
sites were from the Best Reference and Reference categories.  

Disturbance category 
Number of samples 

Western 
Highlands Central Hills 

Best Reference 7 4 
Reference 34 13 
Sub Reference 25 28 
Other 15 26 
Some Stress 48 89 
Stress 58 135 
High Stress 12 63 

  
Reference 41 45 
Other 88 250 
Stress 70 63 
Total 199 358 

 

3 Thresholds 
 
We explored potential threshold options for four biological categories (Figure 3): 

 Exceptional Condition 
o Denotes samples that demonstrate an exceptional condition as determined by 

measurement of the biology, and that support biological assemblages with community 
structure and ecosystem functions that represent the best observable biological 
conditions. 

 Satisfactory Condition 
 Moderately Degraded Condition  
 Severely Degraded Condition 

o Denotes samples that are in the worst biological condition, where severe changes have 
occurred in the structure and function of the biological assemblage as compared to the 
reference condition. 

 
Having multiple thresholds provides an opportunity to document incremental change. For example, if 
restoration activities are performed at a site with IBI scores in the Severely Degraded range, and after 
restoration the IBI score improves to Moderately Degraded, this shows that the site is on the desired 
trajectory. On the other end of the disturbance spectrum, if a high quality reference site that has 
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consistently scored at or above the Exceptional Condition threshold starts to slip below that threshold, 
but still meets the Satisfactory Condition threshold, it is important to detect this change early and 
address the issues causing the degradation.  
 
If, in the future, MassDEP takes the additional step of integrating numeric biocriteria into their SWQS, 
management actions would be triggered or prioritized based on assessments relative to a threshold (or 
thresholds). For example, there would be a threshold that denotes whether samples were supporting vs. 
not supporting ALU Goals and Clean Water Act (CWA) objectives. If the sample did not meet the 
threshold for attaining ALU, it would potentially be listed on the 303(d) list of impaired waters following 
further evaluation. Whether or not a segment supports ALU is based on a variety of weights of evidence 
(beyond just macroinvertebrate biological integrity). Integration of numeric biocriteria into SWQS 
requires a rule-making process that includes a period for public review and comment and would need to 
be approved by the EPA following promulgation. 
 

 
Figure 3. We performed several different analyses to explore potential thresholds for four biological 
condition categories (Exceptional Condition, Satisfactory Condition, Moderately Degraded Condition, and 
Severely Degraded Condition). 

 

4 Individual lines of evidence 
 
To help inform potential thresholds, we used several different, independent exploratory approaches, 
referred to as ‘lines of evidence’. They included: 

 Distribution statistics and balancing error 
 Standard deviation from reference 
 Interpolation with stressors 
 Proportional odds logistic regression 
 Taxa loss 

 

4.1 Distribution statistics & balancing error 
 
The distribution statistics, or percentile-based, approach (in particular, the reference condition (RC) 
approach) is commonly used by states for setting numeric biocriteria thresholds (Hughes et al. 1986, 
Gibson et al. 1996). With the RC approach, IBI scores are calculated from a least-disturbed reference site 
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dataset, and then a percentile of the IBI scores is chosen to represent the RC. Typically, the 25th or 10th 
percentile is used for the satisfactory condition threshold (e.g., Yoder and Rankin 1995, DeShon 1995, 
Barbour et al. 1996, Roth et al. 1997), but this varies across datasets. Having a sound, well-documented, 
reference dataset is critical to this approach. 
 
When selecting percentiles, it is important to consider: 

 Level of disturbance. Using a higher percentile in situations where the reference dataset has 
higher levels of disturbance (and likely includes some sites that are not truly of reference 
quality) provides a degree of safety. The 10th percentile of RC is generally used where there is 
greater confidence that the reference sites are of high quality (for example, with datasets that 
have many “minimally disturbed” sites). In reference datasets with only “least disturbed” sites, 
the 25th percentile is typically used (Stoddard et al. 2006). The 5th percentile of reference 
datasets is not commonly used since it is prone to the effect of outliers as well as variability and 
potential error in reference designations. Even when reference sites are carefully selected from 
a robust pool of minimally disturbed locations, natural variability and sampling error precludes 
the assumption that every reference sample is representative of biological integrity goals, so 
using percentiles less than 10% would likely underestimate impairment (or the departure from 
the desired reference condition). In heavily disturbed areas or regions where a stream class has 
overall poor condition (i.e., poorer than least disturbed), thresholds based on the 25th or 10th 
percentile are likely to be under-protective so an alternative or modified approach (such as the 
75th or 90th percentile of all sites) is sometimes used. For example, in the Huron/Erie Lake Plains 
(HELP) ecoregion, Ohio based their threshold on the 90th percentile of all sites (Ohio EPA 1987, 
1989).  

 Ratios of Type I and Type II error. Type I error is known as a "false positive" finding (in this case, 
falsely calling a site disturbed when it is not). Type II error captures "false negative" findings (or 
falsely calling a disturbed site undisturbed). When you decrease the probability of one error, it 
increases the probability of the other. A consequence of having a high Type I error rate is a 
higher likelihood of mistakenly subjecting undisturbed sites to potentially costly management 
actions, whereas having a high Type II error rate increases the likelihood of not detecting 
degradation. Most biomonitoring programs try to simultaneously minimize Type I and Type II 
errors (Breine et al. 2007), but approaches vary across entities and depend on acceptable error 
rates. 

 
For this exercise, we calculated distribution statistics for two datasets: 1) reference sites only; and 2) all 
samples. Results varied across the two regions, with the reference-based percentiles being 
approximately 5 points higher on average in the CH dataset (Table 3). The values in the ‘all’ dataset 
showed the opposite pattern for the 5th through 50th percentiles, with higher values in the WH dataset; 
values for the 75th through 95th percentiles were comparable (Table 3). Attachment A contains the Excel 
worksheets that were used to calculate the distribution statistics. Additional statistics are included in 
Appendix B (e.g., the mean and standard deviation of IBI scores in each of the seven disturbance 
categories, from Best Reference to High Stress).  
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Table 3. Comparison of IBI (Indx_MinFloor) scores for multiple percentiles in the Western Highlands vs 
Central Hills based on two datasets: reference only (highlighted in green); and all samples. 

Dataset Percentiles 
IBI score (Indx_MinFloor) 

Western 
Highlands Central Hills 

Reference 
sites 

5th 45.9 51.9 
10th 47 55.2 
15th 55 58.5 
20th 57.8 61 
25th 59.6 64.5 
50th 62.7 69.4 
75th 73.9 77.9 
90th 81.5 85.3 
95th 87.7 86.8 

All sites 

5th 27.4 23.4 
10th 32 27.1 
25th 42.1 36.6 
50th 53.1 48.8 
75th 64.7 64.5 
90th 75.8 74.5 
95th 79.9 79.3 

 
 
We measured Type I error as the percentage of reference sites that fell below the various 
percentiles/potential thresholds and Type II error as the percentage of stressed sites that had scores 
greater than or equal to the thresholds. Type I and II error rates and the number and percentages of 
samples that fell above or below the various thresholds are summarized in Figures 4 (CH) and 5 (WH). In 
the CH dataset, the 10th percentile of reference sites (which corresponds with an IBI score of 55.2) had 
the smallest difference between Type I and II errors (Type I = 11.1%; Type II = 14.3%; difference 3.2%). If 
55.2 was used as the Satisfactory Biological Condition threshold in the CH, 147 samples (41.1%) would 
score greater than or equal to the threshold, and 211 samples (58.9%) would score below the threshold. 
In the WH dataset, the 15th percentile of reference sites (which corresponds with an IBI score of 55.0) 
had the smallest difference (Type I = 14.6%; Type II = 17.1%; difference 2.5%). If 55.0 was used as the 
Satisfactory Biological Condition threshold in the Western Highlands, 90 samples (45.2%) would score 
greater than or equal to the threshold, and 109 samples (54.8%) would score below the threshold.  
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Figure 4. Distribution of IBI scores (Indx_MinFloor) across the three broad disturbance categories (reference (Ref), stressed (Strs) and other (not 
reference or stressed) in the Central Hills dataset. The table summarizes Type I and II error rates and the number and percentages of samples in 
each disturbance category that fell above or below the various thresholds. Cells highlighted in yellow show Type I error rates; light orange cells 
show Type II error rates.
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Figure 5. Distribution of IBI scores (Indx_MinFloor) across the three broad disturbance categories (reference (Ref), stressed (Strs) and other (not 
reference or stressed) in the Western Highlands dataset. The table summarizes Type I and II error rates and the number and percentages of 
samples in each disturbance category that fell above or below the various thresholds. Cells highlighted in yellow show Type I error rates; light 
orange cells show Type II error rates.
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4.2 Standard deviation from reference 
 
Another threshold derivation approach involved using the IndxMF_MSD IBI scoring scheme to frame 
results in terms of divergence from the mean reference. IBI (IndxMF_MSD) scores were standardized to 
the mean and standard deviation of the index calibration reference distribution, such that a score of -1 
equals 1 standard deviation below the mean. Figure 6 shows the relationship between the IBI 
(IndxMF_MSD) scores versus IBI (Indx_MinFloor) scores, which are based on the more traditional 100-
point scoring scale.  
 
In the MassDEP dataset, differences in IBI (IndxMF_MSD) scores were evident across the two regions. An 
IBI (IndxMF_MSD) score of 0 equals 71.3 in the CH versus 64.5 in the WH dataset, and a value of 1 
standard deviation in the WH dataset equals 14.4, compared to 11.7 in the CH dataset. If, as a 
hypothetical example, -1 standard deviation was used as a threshold for an acceptable divergence from 
mean reference, that would correspond with an IBI (Indx_MinFloor) score of 50.1 in the WH dataset and 
a score of 59.6 in the CH dataset. The tables in Figure 6 show how standard deviations ranging from -5 
to +1 correspond with IBI (Indx_MinFloor) scores in both regions. 
 
Unlike the RC approach where the 10th or 25th percentile of reference sites are typically used, there is 
not a universal, well-accepted rule-of-thumb for how many standard deviations from the mean 
reference to use when setting thresholds. Results will vary based on factors such as how data are 
distributed within the dataset and policy decisions (e.g., how much deviation from reference 
management feels is acceptable). Nevertheless, we felt this was a useful line of evidence to consider in 
combination with the other approaches. 
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Figure 6. Relationships between the IBI (IndxMF_MSD) scores, which are framed in terms of divergence from the mean reference, versus IBI 
(Indx_MinFloor) scores, which are based on the more traditional 100-point scoring scale, in the Western Highlands and Central Hills datasets. The 
dotted lines show a hypothetical example in which an IBI threshold based on a standard deviation of -1 corresponds with IBI (Indx_MinFloor) 
scores of 50.1 in the Western Highlands and 59.6 in the Central Hills. There is not a universal, well-accepted rule-of-thumb for how many 
standard deviations from the mean reference to use when setting thresholds. 
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4.3 Interpolation with stressors 
 
Interpolation with disturbance variables is another approach that can help inform potential thresholds. 
IBI values can be regressed on disturbance variables and regression equations can then be used to 
determine IBI values associated with disturbance thresholds. We do not recommend this approach as a 
primary line of evidence (more of a post hoc illustration than a criterion) so the analyses we performed 
were ‘quick and dirty.’ However, results could potentially be used as a line of evidence in selecting index 
impairment thresholds and may be useful in describing the stressors associated with impairment 
thresholds established by other methods. 
 
For this exercise, we examined relationships between IBI (Indx_MinFloor) scores and the seven 
disturbance variables that were used to develop the disturbance gradient (ICI, IWI, percent urban land 
cover, density of roads, dam storage volume, percent agricultural land cover, and modeled mean rate of 
fertilizer application + biological nitrogen fixation + manure application) (Table 1). Development of the 
disturbance gradient is described in detail in the kick net IBI report (Section 3; Jessup and Stamp 2020). 
Each of the seven variables were scored (+3 to -3) based on the thresholds shown in Table 1, which 
distinguish between seven disturbance levels. Before running the regression analyses for each variable, 
we ran a Spearman Rank Order correlation analysis to evaluate how strongly the IBI scores were 
associated with the different disturbance variables. As shown in Table 4, some variables were weakly 
correlated to the IBI scores. To simplify the analysis, we made an arbitrary decision to only include 
variables that had |rs| values ≥ 0.30. This limited the CH analysis to four variables: ICI, IWI, percent 
urban land cover, and road density. In the WH dataset, the same four variables plus percent Agricultural 
land cover6 were included (Table 4).  
 
After the IBI scores were regressed on the selected variables, the regression equations were used to 
determine the IBI scores associated with each of the disturbance level thresholds. We evaluated each 
variable/threshold combination individually. In addition, we calculated the average IBI scores associated 
with each criterion level (based on the selected variables only) to give a synthesis of the possible IBI 
values associated with the disturbance level thresholds (Table 5). As an example of how this information 
could be used, one could potentially examine the mean IBI scores that correspond with the reference 
threshold levels used in each region. In the CH, which has higher disturbance levels than the WH (see 
Section 2 and Appendix A), reference sites had to meet the criteria for disturbance levels #3/4 (which 
corresponds with a mean IBI score of 56.8), whereas in the WH, the reference site threshold 
corresponded with disturbance levels #2/3 (which corresponds with mean IBI score of 56) (Table 5). 
Scatterplots that allow for better visualization of the relationships between the IBI scores and the 
disturbance variables can be found in Figure 7 (IWI/CH example) and Appendix C (all seven 
variables/both regions). Attachment B contains the Excel worksheets that were used to calculate the 
regression equations and IBI scores associated with each disturbance level threshold.  
 

 
6In addition to having a weak correlation in the Central Hills, the two agricultural metrics were also inconsistent 
with expectations: they showed a positive relationship with IBI scores, such that higher IBI scores corresponded 
with higher agricultural land cover and fertilizer, etc. application rates (note: the agricultural metrics do not 
distinguish between different management practices (e.g., organic farms versus conventional); for more 
information on the StreamCat dataset, see Hill et al. 2016. The dam storage volume variable was not used because 
it was weakly correlated and also because the regression fit could have been either linear or logarithmic, and 
neither fit gave credible results. 
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One caution about this approach is that the disturbance criteria were established through professional 
judgment to identify a reasonable number of sites for the kick net IBI calibration, and they were not 
scrutinized for effects or responses. Yet, they were based on stressor variables that were approved by 
the technical workgroup and were documented in the kick net IBI report (Jessup and Stamp 2020). 
Therefore, this line of evidence has merit for associating disturbances with the indices, but the 
relationship is relative to the observed distribution of disturbance values, not to explicit harmful effects. 
 
Table 4. Spearman correlation coefficients (rs) and p-values showing the strength of associations 
between IBI (Indx_MinFloor) scores and the seven disturbance variables. To simplify the analysis, we 
made an arbitrary decision to only include variables that had |rs| values ≥ 0.30, which are shown in bold 
text. For more detailed information on the disturbance variables, see Table 1. 

Disturbance variables 

Spearman correlation coefficients  
(rs)  

Western Highlands 
IBI scores 

Central Hills IBI 
scores 

Index of catchment integrity (ICI) 0.51; p < .001 0.50; p < .001 
Index of watershed integrity (IWI) 0.45; p < .001 0.69; p < .001 
% Urban -0.45; p < .001 -0.71; p < .001 
% Hay + row crop -0.37; p < .001 0.27; p < .001 
Ag application rates -0.16; p = .03 0.20; p < .001 
Road density -0.49; p < .001 -0.49; p < .001 
Dam storage volume -0.29; p < .001 -0.11; p = .04 

 
 
Table 5. IBI scores were regressed on the disturbance variables, and the regression equations were used 
to calculate the IBI scores associated with each of the disturbance level thresholds shown in Table 1. 
Variables with entries in gray text had |rs| values < 0.30 and were not included in the mean IBI 
calculations.  

Central Hills 

Metric 
disturbance 

levels 

  IBI score (Indx_MinFloor) 

Mean ICI IWI Urban Road 
density 

Hay + 
row crop 

Ag 
application 

rates 

Dam storage 
volume 

Level #1/#2 
threshold 61.9 61.3 66.5 60.1 59.8 48.1 48.3 51.1 

Level #2/#3 
threshold 60.3 59.5 63.5 59.5 58.6 48.7 48.6 51.1 

Level #3/#4 
threshold 56.8 56.1 57.4 57.7 56.0 50.2 49.7 51.0 

Level #4/#5 
threshold 52.4 52.7 51.4 54.7 50.9 52.8 51.4 50.4 

Level #5/#6 
threshold 39.2 42.4 33.2 36.6 44.5 55.3 53.2 49.6 

Level #6/#7 
threshold 29.8 35.5 21.1 24.6 38.1 57.9 54.9 48.2 
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Table 5 continued… 
Western Highlands 

Metric 
disturbance 

levels 

  IBI score (Indx_MinFloor) 

Mean ICI IWI Urban Road 
density 

Hay + 
row crop 

Ag 
application 

rates 

Dam storage 
volume 

Level #1/#2 
threshold 58.5 61.5 60.7 55.2 56.6 58.5 53.9 53.8 

Level #2/#3 
threshold 56.0 59.1 57.1 51.3 54.5 57.8 53.8 53.8 

Level #3/#4 
threshold 50.0 54.3 50.0 39.4 50.4 55.8 53.5 53.6 

Level #4/#5 
threshold 41.3 49.5 42.8 19.7 42.1 52.4 53.0 52.6 

Level #5/#6 
threshold 27.5 35.1 21.4 0.0 31.8 49.0 52.5 51.4 

Level #6/#7 
threshold 20.0 25.5 7.1 0.0 21.5 45.6 52.0 49.1 

 

 
Figure 7. Scatterplot of Index of Watershed Integrity (IWI) scores (Thornbrugh et al. 2018) vs. IBI scores 
(Indx_MinFloor) in the Central Hills dataset. The plot is color-coded based on the disturbance thresholds 
shown in Table 1. The IWI is scaled from 1 (best condition) to 0 (worst condition). The dotted lines show a 
hypothetical example in which an IBI threshold based on an IWI score of 0.75 corresponds with an IBI 
score of 51.4. 
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4.4 Proportional odds logistic regression 
 
Another approach that we considered for threshold derivation was proportional odds logistic regression 
(POLR). POLR is useful to show points along the IBI scale at which there are equal probabilities of being 
in comparable disturbance categories (reference, other, stressed), thus suggesting points at which the 
IBI flips between categories. This can also be derived from the percentiles of the distributions (as 
discussed in Section 4.1), but the POLR can consider multiple categories simultaneously and can smooth 
the curves instead of depending on a relatively smooth and unskewed set of data in each disturbance 
category. 
 
For this exercise, we used POLR to derive three points at which equal probabilities between points could 
be identified:  

 Reference and Other 
 Reference and Stressed  
 Other and Stressed 

 
Results are shown in Figure 8. This method is intended as a secondary line of evidence. More established 
methods, like the distribution statistics/RC approach, should be given more weight.
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Figure 8. Proportional odds logistic regression (POLR) shows points along the IBI scale at which there are equal probabilities of being in 
comparable disturbance categories (reference, other, stressed).
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4.5 Taxa loss 
 
A fifth line of evidence that we considered was taxa loss, as quantified by observed over expected (O/E) 
ratios. This method is intended as a secondary line of evidence. More established methods, like the 
distribution statistics/RC approach, should be given more weight. There is not a universal, well-accepted 
rule-of-thumb for how much taxa loss is acceptable when setting thresholds. Results will vary based on 
factors such as how data are distributed within the dataset, as well as policy decisions (e.g., how much 
taxa loss management feels is acceptable). The O/E analyses that we performed were ‘quick and dirty.’ 
However, results could potentially be used to help inform selection of IBI thresholds and to make the 
thresholds more ecologically meaningful, which could make communication easier.   
 
O/E ratios are derived from empirical models that compare the taxa expected (E) at a site without 
anthropogenic degradation to the taxa that are actually observed (O) (Hawkins et al. 2000). The basis for 
the comparison is that any differences between O and E communities reflect biological responses to the 
range of environmental pollutants or alterations that are intended to be evaluated (Wright 2000). O/E is 
easily interpreted because it simply represents the extent to which expected taxa are missing. The mean 
O/E ratio at reference sites is 1. An O/E ratio of 0.40 implies that, on average, 60% of the taxa are 
missing as a result of environmental stresses to the system. A number of states utilize O/E models for 
bioassessments (e.g., Utah (UT DWQ 2016), Colorado (Paul et al., 2005), Montana (Feldman, 2006; 
Jessup et al., 2006), and Wyoming (Hargett et al., 2007, 2012)). 
 
For this exercise, we developed ‘null’ O/E models7 for the WH and CH regions. Attachments C and D 
contain the O/E worksheets for the CH and WH datasets, respectively. The list of E taxa is derived based 
on reference datasets, which are assumed to encompass the range of ecological variability observed 
among streams in each region. Lists of E taxa are derived by calculating the proportion of reference 
samples that each taxon occurs in, and then selecting a probability of capture (Pc) limit for determining 
which taxa are included on the E list. The user can select whatever Pc limit they feel is most appropriate 
for their dataset. Selecting the Pc is a balance between being too inclusive (e.g., Pc ≥ 0 has the greatest 
number of E taxa, which can add variability and reduce model precision) versus being too restrictive 
(e.g., Pc ≥ 0.90 will result in a very small, limited list of E taxa). Several studies have found PC ≥ 0.50 to be 
a good compromise that results in a more precise index than Pc ≥ 0 (Hawkins et al. 2006 and 2000, 
Ostermiller and Hawkins 2004, Van Sickle et al. 2005). Pc ≥ 0.50 means that E taxa have to occur in at 
least 50% of the reference samples to be included on the E list.  
 
We initially tried models based on three Pc limits (≥ 0.1, 0.25, 0.50) before deciding to focus on Pc 0.25 
and 0.50. Those models were more precise (as measured by reference site O/E standard deviations) and 
also had better correspondence between their E taxa lists vs. the lists of tolerant/intolerant taxa that 
were used for kick net IBI development. The lists of E taxa are included in Attachments C & D, as are 
comparisons with the taxa tolerance designations used for the kick IBI calibration. Based on reference 
site O/E standard deviations, the WH models performed better than the CH models. The standard 
deviations of the two WH models were 0.19 (Pc ≥ 0.50) and 0.20 (Pc ≥ 0.25) versus the CH models, which 
had standard deviations of 0.38 (Pc ≥ 0.50) and 0.33 (Pc ≥ 0.25). Hawkins (2006), Hawkins et al. (2000) 
and Van Sickle et al. (2005) found that the best performing O/E models generally have reference site 
O/E standard deviations <0.20. 
 

 
7‘null’ means that the models were calibrated without a classification component; instead we used the two existing 
IBI regions (WH and CH). 
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After calculating O/E ratios for each sample, we calculated percent taxa loss based on the following 
formula: (1 - O/E)*100. Positive numbers mean that there is taxa loss (fewer than expected taxa are 
present) and negative numbers mean the number of E taxa in the sample exceed expectations. For each 
region, we regressed percent taxa loss against IBI scores and used the regression equations to calculate 
percent taxa loss associated with various IBI thresholds. As an illustration, Figure 9 shows the 
relationship between IBI scores and percent taxa loss in the WH based on the Pc ≥ 0.25 model. Table 6 
quantifies the relationships for both IBI scoring schemes (Indx_MinFloor and IndxMF_MSD) and 
describes implications of decreasing IBI scores in terms of taxa loss (e.g., in the CH for the Pc ≥ 0.50 
model, for each decrease of 10 IBI (Indx_MinFloor) points, 11.9% of expected taxa are lost). Table 7 
shows the correspondence between IBI scores (Indx_MinFloor) ranging from 85 to 15 (in increments of 
10) to percent taxa loss. To simplify results, we averaged results across the two models (Pc ≥ 0.25 and Pc 
≥ 0.50). In both regions, IBI scores of 75 were roughly equal to 0% taxa loss (where Observed taxa 
roughly equaled Expected taxa). Full results for each individual model are provided in Attachments C 
and D. 
 

 
Figure 9. Example of a scatterplot of IBI (Indx_MinFloor) scores vs. % expected taxa loss. This is based on 
the Pc ≥ 0.25 model in the Western Highlands. Positive percentages indicate taxa loss (fewer than the 
expected number of taxa), while negative numbers indicate gains (more than the expected number of 
taxa). The dotted lines show a hypothetical example in which an IBI score of 55 corresponds with 18% 
taxa loss. Plots for each model and region are provided in Attachments C & D. 
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Table 6. Regression equations used to calculate % taxa loss for various IBI scores. Implications were 
characterized based on 10-point reductions in IBI scores (Indx_MinFloor), or standard deviations below 
mean reference value (IndxMF_MSD).  

Central Hills 
IBI scoring scheme Taxa loss vs. IBI equation Implication 

Indx_MinFloor 

% taxa loss (Pc 050) = 
89.6482-1.1928*x 

For each 10 lower index points, 11.9% of 
expected taxa are lost (which equates to 1.1 
taxa) 

% taxa loss (Pc 025) = 
80.3846-1.0723*x 

For each 10 lower index points, 10.7% of 
expected taxa are lost (which equates to 1.6 
taxa) 

IndxMF_MSD 

% taxa loss (Pc 050) = 4.6457-
13.9477*x 

For each SD away from the mean reference 
index value, 13.9% of expected taxa are lost 
(which equates to 1.3 taxa) 

% taxa loss (Pc 025) = 3.9589-
12.5455*x 

For each SD away from the mean reference 
index value, 12.5% of expected taxa are lost 
(which equates to 1.8 taxa) 

      
Western Highlands 

IBI scoring scheme Taxa loss vs. IBI equation Implication 

Indx_MinFloor 

% Taxa loss (Pc 050) = 
69.0452-0.9316*IBI score 

For each 10 lower index points, 9.3% of 
expected taxa are lost (which equates to 1.1 
taxa) 

% Taxa loss (Pc 025) = 
61.8627-0.8044*IBI score 

For each 10 lower index points, 8.0% of 
expected taxa are lost (which equates to 1.6 
taxa) 

IndxMF_MSD 

% Taxa loss (Pc 050) =  
9.018-13.3345*IBI score 

For each SD away from the mean reference 
index value, 13.3% of expected taxa are lost 
(which equates to 1.5 taxa) 

% Taxa loss (Pc 025) = 
10.0283-11.5134*IBI score 

For each SD away from the mean reference 
index value, 11.5% of expected taxa are lost 
(which equates to 2.3 taxa) 

 
 



19 
 

Table 7. Mean % taxa loss ± standard deviation (st dev) associated with IBI scores (Indx_MinFloor) 
ranging from 85 to 15 (decreasing in 10). Positive numbers indicate loss (fewer than the expected 
number of taxa), while negative numbers indicate gains (more than the expected number of taxa). 
Calculations are based on the mean loss from the Pc 0.25 and 0.50 models. Results for each individual 
model are provided in Attachments C & D. 

IBI score 
(Indx_MinFloor) 

Mean % taxa loss ± st dev 
Western Highlands Central Hills 

85 -8.3 ± 2.6 -11.3 ± 0.7 
75 0.4 ± 1.7 0.1 ± 0.2 
65 9.0 ± 0.8 11.4 ± 1.0 
55 17.7 ± 0.1 22.7 ± 1.9 
45 26.4 ± 1.0 34.1 ± 2.7 
35 35.1 ± 1.9 45.4 ± 3.6 
25 43.8 ± 2.8 56.7 ± 4.4 
15 52.4 ± 3.7 68 ± 5.3 

 

5 Combining multiple lines of evidence 
 
In Section 4, we laid out multiple lines of evidence that can be used to help inform derivation of 
thresholds. Here we explore different ways of combining the various lines of evidence to see if they 
converge on particular IBI scores for the four biological condition categories (Exceptional Condition, 
Satisfactory Condition, Moderately Degraded Condition, and Severely Degraded Condition). As a starting 
point, we created Cumulative Distribution Plots (CDFs) to see how the various thresholds (derived from 
the methods described in Section 4) are apportioned across the IBI (Indx_MinFloor) scale in the CH and 
WH datasets. Results, which are shown in Figure 10, show a convergence of potential Satisfactory 
Condition thresholds in the 50-60 scoring range and a potential breakpoint for Exceptional Condition 
around a score of 75 in both classes. For the Severely Degraded Condition threshold, an IBI score in the 
30-40 range appears to capture a potential breakpoint in both classes. Figure 11 shows an example plot 
in which thresholds of 75/55/35 were applied to the CH and WH datasets. The figure contains summary 
tables showing Type I and II error rates and the number and percentages of samples that fall above or 
below a threshold of 55. 
 
Table 8 summarizes potential ways to use the various lines of evidence to rationalize and frame 
decisions on setting thresholds. For example, of the different lines of evidence described in Section 4, 
the distribution statistics/balancing error approach is most commonly used to set biocriteria thresholds, 
so one may decide to weight that method more heavily than the other approaches, which tend to be 
more exploratory (but which nevertheless still provide valuable supplemental/secondary information). 
The best threshold derivation method will depend on the goals and priorities of the organization, as well 
as ecosystem considerations, such as acceptable deviations from reference conditions and non-
actionable taxa loss rates from stream assemblages.  
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Figure 10. Cumulative distribution function (CDF) plots showing how the various thresholds that were 
generated are apportioned across the IBI (Indx_MinFloor) scale in the Central Hills and Western 
Highlands. To illustrate how to interpret the plot, in the CH, 50% of the thresholds are at or below an IBI 
score of 55; in the WH, 61% of the thresholds are at or below an IBI score of 55.
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Table 8. Potential ways to use the various lines of evidence to rationalize and frame decisions on where to set thresholds. CH = Central Hills; WH = 
Western Highlands; CDF = Cumulative Distribution Function. 

Method 
Possible Thresholds 

Severely Degraded Moderately Degraded/Satisfactory  Exceptional 

Distribution 
statistics  
(Section 4.1) 

10th percentile of all sites in 
combination with interpolation with 
stressors 

10th or 25th of reference are most commonly used (see Section 4.1).  

The 75th percentile of 
reference appears to 
capture the CDF breakpoint 
fairly well in both classes 
(Fig 10). 

Balancing Type I 
and II error 
(Section 4.1) 

Not relevant  

Choose the threshold that provides the best balance (has the 
smallest difference between Type I and II errors).  How confident 
are you in your reference and stressed datasets? Are you willing to 
accept more of one type of error than the other (e.g., you could 
choose to accept higher Type II error in the WH if you are less 
confidence in the stressed dataset)? 

Not relevant  

Standard 
deviation from 
reference 
(Section 4.2) 

CH – use a threshold that is ~ -3 
standard deviations below reference 

CH – use a threshold that falls between -1 and -1.5 standard 
deviations from reference Use a threshold that is 

greater than 0 (the mean of 
reference) WH – use a threshold that ~ -2 

standard deviations below reference 
WH – use a threshold that falls between -0.5 and -1 standard 
deviations from reference 

Interpolation with 
stressors  
(Section 4.3) 

CH – use a threshold that roughly 
corresponds to the mean of 
disturbance thresholds #5 & 6 

CH – use a threshold that roughly corresponds to the mean of 
disturbance thresholds #3 & 4 

> the mean disturbance 
threshold #1 WH – use a threshold that roughly 

corresponds to the mean of 
disturbance thresholds #4 & 5 

WH – use a threshold that roughly corresponds to the mean of 
disturbance thresholds #2 & 3 (stricter to account for the lower 
levels of disturbance in the WH dataset). 

Proportional odds 
logistic regression 
(Section 4.4) 

Strs/Other intersection  Ref/Strs intersection   Ref/Other intersection 

Taxa loss  
(Section 4.5) 

CH – 45% loss or greater How many taxa are you willing to lose from a stream assemblage? 
Could consider the variability in taxa loss in the reference dataset 
(as measured by the standard deviation) to help inform this 
decision. 

≥ 0% taxa loss (number of 
taxa exceed expectations) WH - 35% or greater (stricter to 

account for the lower levels of 
disturbance in the WH dataset). 
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Figure 11. An example scenario in which thresholds of 75 (Exceptional Condition), 55 (Satisfactory/Moderately Degraded Condition) and 35 
(Severely Degraded Condition) were selected. 
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Appendix A. Comparison of disturbance levels in reference and 
stressed sites in the Central Hills vs Western Highlands 
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Figure A1.  Box plots showing distributions of ICI and IWI scores in the reference and stressed datasets in 
the Central Hills and Western Highlands.
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Figure A2.  Box plots showing distributions of % urban (watershed scale; NLCD 2011) and % agricultural 
lands use (catchment scale; NLCD 2011) in the reference and stressed datasets in the Central Hills and 
Western Highlands.
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Figure A3.  Box plots showing distributions of ICI and IWI scores, percent urban and percent agricultural 
land cover in all samples in the Central Hills and Western Highlands datasets.
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Appendix B. Additional distribution statistics 
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Figure B1. Summary statistics (mean and standard deviation) of IBI (Indx_MinFloor) scores and IBI (IndxMF_MSD) scores in each disturbance 
category in the Central Hills. Stressed sites (highlighted in orange) were derived from the High Stress category. Reference sites (highlighted in 
green) were comprised of sites in the Best Reference, Reference, and Sub Reference categories. For more information on disturbance categories, 
see Section 3 of Jessup and Stamp (2020). 
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Figure B2. Summary statistics (mean and standard deviation) of IBI (Indx_MinFloor) scores (left) and IBI (IndxMF_MSD) scores (right) in each 
disturbance category in the Western Highlands. Stressed sites (highlighted in orange) were derived from the High Stress and Stress categories. 
Reference sites (highlighted in green) were comprised of sites in the Best Reference and Reference categories. For more information on 
disturbance categories, see Section 3 of Jessup and Stamp (2020).
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Appendix C. Interpolation with stressors 
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Figure C1. Scatterplot of ICI scores (Thornbrugh et al. 2018) vs. IBI scores (Indx_MinFloor) in the Central 
Hills dataset. The ICI is scaled from 1 (best condition) to 0 (worst condition). All samples had ICI scores > 0. 
Also included (above the plot) is the linear regression equation, Spearman correlation coefficient (rs) and 
sample size.
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Figure C2. Scatterplot of IWI scores (Thornbrugh et al. 2018) vs. IBI scores (Indx_MinFloor) in the Central 
Hills dataset. The ICI is scaled from 1 (best condition) to 0 (worst condition). All samples had IWI scores > 
0 (no zeros). Also included (above the plot) is the linear regression equation, Spearman correlation 
coefficient (rs) and sample size.
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Figure C3. Scatterplot of % urban land cover (2011 NLCD, watershed-scale) vs. IBI scores (Indx_MinFloor) in the Central Hills dataset. The plot on 
the left includes all samples (including the 3 samples with % urban values of 0). The plots on the right are limited to samples that have % urban 
values > 0. The x-axis in the bottom plot is transformed to logarithmic scale. Also included (above the plots) is the linear regression equation, 
Spearman correlation coefficient (rs) and sample size. 



38 
 

 
Figure C4. Scatterplot of % hay + row crop land cover (2011 NLCD, local catchment-scale) vs. IBI scores (Indx_MinFloor) in the Central Hills dataset. 
The plot on the left includes all samples (including the 72 samples with % hay + crop values of 0). The plots on the right are limited to samples that 
have % hay + crop values > 0. The x-axis in the bottom plot is transformed to logarithmic scale. Also included (above the plots) is the linear regression 
equation, Spearman correlation coefficient (rs) and sample size. 
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Figure C5. Scatterplot of agricultural (ag) application rates vs. IBI scores (Indx_MinFloor) in the Central Hills dataset. The plot on the left includes 
all samples (including the 4 samples with ag application rate values of 0). The plots on the right are limited to samples that have % ag application 
rate values > 0. The x-axis in the bottom plot is transformed to logarithmic scale. Also included (above the plots) is the linear regression equation, 
Spearman correlation coefficient (rs) and sample size. 
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Figure C6. Scatterplot of road density vs. IBI scores (Indx_MinFloor) in the Central Hills dataset. All samples 
had road density values > 0 (no zeros). Also included (above the plot) is the linear regression equation, 
Spearman correlation coefficient (rs) and sample size.
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Figure C7. Scatterplot of dam storage volume vs. IBI scores (Indx_MinFloor) in the Central Hills dataset. The plot on the left includes all samples 
(including the 88 samples with dam storage volume values of 0). The plots on the right are limited to samples that have dam storage volume values 
> 0. The x-axis in the bottom plot is transformed to logarithmic scale. Also included (above the plots) is the linear regression equation, Spearman 
correlation coefficient (rs) and sample size. 
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Figure C8. Scatterplot of ICI scores (Thornbrugh et al. 2018) vs. IBI scores (Indx_MinFloor) in the Western 
Highlands dataset. The ICI is scaled from 1 (best condition) to 0 (worst condition). All samples had ICI 
scores > 0. Also included (above the plot) is the linear regression equation, Spearman correlation 
coefficient (rs) and sample size. 
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Figure C9. Scatterplot of IWI scores (Thornbrugh et al. 2018) vs. IBI scores (Indx_MinFloor) in the Western 
Highlands dataset. The ICI is scaled from 1 (best condition) to 0 (worst condition). All samples had IWI 
scores > 0 (no zeros). Also included (above the plot) is the linear regression equation, Spearman 
correlation coefficient (rs) and sample size. 
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Figure C10. Scatterplot of % urban land cover (2011 NLCD, watershed-scale) vs. IBI scores (Indx_MinFloor) in the Western Highlands dataset. The 
plot on the left includes all samples (including the 9 samples with % urban values of 0). The plots on the right are limited to samples that have % 
urban values > 0. The x-axis in the bottom plot is transformed to logarithmic scale. Also included (above the plots) is the linear regression 
equation, Spearman correlation coefficient (rs) and sample size. 



46 
 

 
Figure C11. Scatterplot of % hay + row crop land cover (2011 NLCD, local catchment-scale) vs. IBI scores (Indx_MinFloor) in the Western Highlands 
dataset. The plot on the left includes all samples (including the 13 samples with % hay + crop values of 0). The plots on the right are limited to 
samples that have % hay + crop values > 0. The x-axis in the bottom plot is transformed to logarithmic scale. Also included (above the plots) is the 
linear regression equation, Spearman correlation coefficient (rs) and sample size. 
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Figure C12. Scatterplot of agricultural (ag) application rates vs. IBI scores (Indx_MinFloor) in the Western Highlands dataset. The plot on the left 
includes all samples (including the 2 samples with ag application rate values of 0). The plots on the right are limited to samples that have % ag 
application rate values > 0. The x-axis in the bottom plot is transformed to logarithmic scale. Also included (above the plots) is the linear regression 
equation, Spearman correlation coefficient (rs) and sample size. 
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Figure C13. Scatterplot of road density vs. IBI scores (Indx_MinFloor) in the Western Highlands dataset. 
All samples had road density values > 0 (no zeros). Also included (above the plot) is the linear regression 
equation, Spearman correlation coefficient (rs) and sample size. 
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Figure C14. Scatterplot of dam storage volume vs. IBI scores (Indx_MinFloor) in the Western Highlands dataset. The plot on the left includes all 
samples (including the 69 samples with dam storage volume values of 0). The plots on the right are limited to samples that have dam storage 
volume values > 0. The x-axis in the bottom plot is transformed to logarithmic scale. Also included (above the plots) is the linear regression equation, 
Spearman correlation coefficient (rs) and sample size. 


