MassDEP Field Assessment and Support Team (FAST)

FALL RIVER – Route 24 Off-Ramp Gasoline Tanker Accident

January 27, 2014

Background

At approximately 7:00 AM on Monday, January 27, 2014, a tanker carrying 11,000 gallons of gasoline overturned on the exit 5 off-ramp to Route 24 in Fall River (see Figure 1). The driver was rescued by passing motorists and did not sustain major injuries.

The gasoline subsequently ignited and a decision was made by the Fall River Fire Department to allow it to burn. Thick black smoke emanating from the fire traveled to the north/northeast direction, though no evacuations were reportedly ordered. By about 9:00 AM, the fire had burned itself out, and foam was applied to stabilize the scene.

The tanker had come to rest in a wetland area proximate to Terry Brook, about 2900 feet westerly of North Watuppa Pond, a drinking water supply for the City of Fall River. Despite the complete loss of all

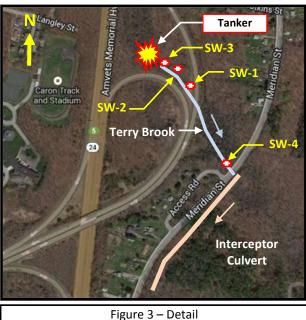
Figure 1 - Locus

11,000 gallons of gasoline, no separate-phase product or sheen was observed on Terry Brook, and it was clear that a large percentage of the gasoline had been combusted in the fire.

Scope of FAST Activities

FAST assets and response personnel arrived at the site at approximately 11 AM, and were briefed by SERO ER staff. By that time, the remnants of the tanker were visible in a wetland area proximate to the off-ramp, covered in foam. There were no odors of gasoline, even directly adjacent to the tanker remains. Moreover, there were no sheens or separate-phase gasoline product noted in the spill area, or in Terry Brook.

While there were initial concerns that Terry Brook discharged into North Watuppa Pond, SERO ER staff were able to contact the Department of Community Utilities for the City of Fall River, who confirmed that Terry Brook is in fact intercepted by a 24 inch diameter culvert approximately 1100 feet downstream of the spill area, just east of Meridian Street. This culvert flows in a southerly direction, west of North Watuppa Pond, where it discharges into a larger engineered channel, which drains additional watershed areas westerly of the drinking water supply. Eventually, water from this interceptor system discharges into South Watuppa Pond, which is not a drinking water supply. This diversion system was constructed in 1915 for the apparent purpose of protecting the purity of the North Watuppa drinking water supply.

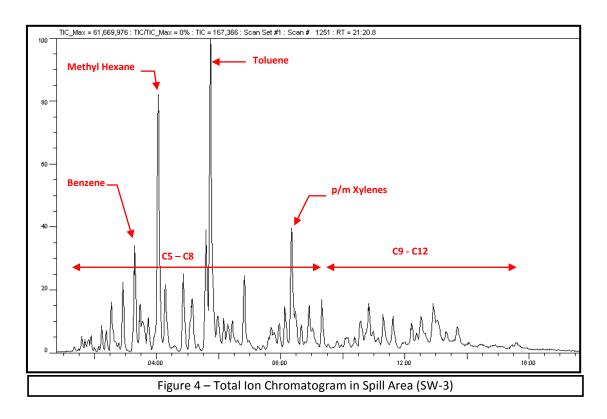

Absent odor, vapor, NAPL, or drinking water concerns, limited efforts were undertaken to investigate the extent to which gasoline constituents were dissolved in Terry Brook and the Interceptor drainage system. Of additional interest were possible chemicals that may have been present in the foam applied at the site.

The foam used on the tanker was reportedly "Universal Gold $1^{\%}/3^{\%}$ ", an Alcohol Resistant Aqueous Film Forming Foam (AR-AFFF). It is marketed as a biodegradable "environmentally responsible" material. According to its MSDS Sheet, this product consists primarily of a proprietary blend of detergents and surfactants, as well as (2-Methoxymethylethoxy) Propanol and Polysaccharide. Reportedly, it does not contain "components subject to the reporting requirements of CERCLA." (http://www.kidde-fire.com/utcfs/ws-465/Assets/NMS420-UniversalGold1-3.pdf)

Surface Water Testing

Water samples were obtained from 5 locations, as depicted in Figures 2 and 3.

Samples were obtained in 40 mL VOA vials, filled half way. Some samples were also collected in 9 oz polyethylene jars, for PID headspace analyses.


Samples in 40 mL vials were analyzed on a HAPSITE Gas Chromatograph/Mass Spectrometer (GC/MS), using a headspace technique. Samples SW-1 and SW-5 were analyzed on-site in the FAST mobile laboratory, while samples SW-2, SW-3, and SW-4 were analyzed the following day in the NERO Laboratory.

A summary of data is provided in Table 1. The GC/MS laboratory report sheets for each sample are included as an appendix.

Basically, testing data indicated low to moderate dissolved concentrations of gasoline hydrocarbons, including Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX). Many additional hydrocarbon peaks were also present in the source area, identified by the mass spectrometer as various branched and cyclic aliphatics and mono-aromatic compounds, all constituents in gasoline (Figure 4). A search of peaks in the Total Ion Chromatogram did not indicate the presence of significant levels of volatile compounds that may have been present in the foaming agent, though this is not surprising, since many of these detergents/surfactants and propanols are not readily volatilized in a headspace sampling technique and/or otherwise will not be detected on a mass spectrometer used in environmental applications.

Table 1 – Surface Water Screening Results (GC/MS)											
Analyte		Concentration (µg/L) ¹									
	SW-1	SW-2	SW-3	SW-4	SW-5	Aquatic Toxicity Guidelin					
	244-1	3VV-2				Acute	Chronic				
Benzene	1000	500	700	100	<3	4600	460				
Toluene	1000	800	500	100	<2	1400	1400				
Ethylbenzene	100	100	60	10	<2	1800	180				
Total Xylenes	400	500	190	50	<5	200	200				
1,3,5 Trimethylbenzene	60	60	30	<5	<2	5400	540				
1,2,4-Trimethylbenzene	200	200	80	10	<3	5400	540				

¹Results reported to 1 significant figure commensurate with screening/headspace procedure

As can be seen in Table 1, the concentrations of dissolved BTEX compounds were relatively modest. While concentrations of Xylenes in Terry Brook near the spill site exceeded aquatic toxicity guidelines, levels dropped significantly at SW-4, 1100 feet downstream of the spill area. At SW-5, 7800 feet downstream of the spill area, no gasoline (or any VOC) compounds were detected, which is consistent with the substantial increase in flow at this point, due to inflow from other areas of the watershed.

While the BTEX (and Trimethylbenzenes) compounds dominate the water-soluble fraction of gasoline, there were also detectable levels of numerous other gasoline components, as indicated in the Total Ion Chromatogram for SW-3 (Figure 4), obtained just downstream of the spill area. Ethanol was detected in

this sample, but only at low levels; it is likely present at much higher concentrations but cannot be adequately quantified by the headspace screening technique used.

These other gasoline constituents – which were not present in SW-5, are not likely to be a significant threat to aquatic life.

Conclusion

Despite the loss of 11,000 gallons of gallons at a point less than 3000 feet from a major drinking water supply reservoir, there was remarkably little impacts to the environment. This was attributable to the fire which consumed virtually all of the released product, and the watershed protection system installed by the City of Fall River almost 100 years ago.

While low levels of dissolved gasoline constituents may continue to be present in Terry Brook until such time as residual product is removed from (or biodegraded at) the spill area, such concentrations are not expected to pose more than a localized and temporary concern to any aquatic life that may be present in the brook.

MassDEP Field Assessment and So		and Supp	ort Team	Team (FAST) SURFACE			ACE WATER RTN:			4-24970	
City or Town:	Fall River		Address:	Route 24	Off Ramp				Loca	Location:	
Date Sampled:	1/27/14	Time:	11:29 AM	Field ID:	SW-1	Collector:	Clark		Terry Bro		
Date Analyzed:	1/28/14	Time:	4:10 PM	Lab ID:	008	Analyst:	Fitzgera	ıld	Spill Site	•	
NOTE - ALL RE	PORTED VALUE	S ARE ESTIN	IATES, BASI	ED UPON H	EADSPACE	ANALYSIS	S AND AF	PLICATI	ON OF HENF	RY'S LAW	
Method Analyt	·oc	Est Cor	nc μg/L	Sample	Dilution	Hdspc	K	DW	Aquatic T	oxicty μg/L	
	.63	Result	R.L.	ppb∨	Factor	ppbV	(25°C)	μg/L	Acute	Chronic	
Vinyl Chloride		N.D.	2	N.D.	170	N.D.	1.14	2	400,000	40,000	
Bromomethane		N.D.	20	N.D.	170	N.D.	0.301	10	300	30	
Chloroethane		N.D.	41	N.D.	170	N.D.	0.275	NS	NA	NA	
Trichloromonoflu	ıoromethane	N.D.	29	N.D.	170	N.D.	4.51	NS	NA	NA	
1,1-Dichloroethe		N.D.	2	N.D.	170	N.D.	0.634	7	12,000	1,200	
Methylene Chlo	ride	N.D.	18	N.D.	170	N.D.	0.09	5	NA	6,700	
1,1,2-Trichlorotr	ifluoroethane	N.D.	35	N.D.	170	N.D.	14.34	NS	NA	NA	
1,1-Dichloroetha	ane	N.D.	140	N.D.	170	N.D.	0.012	70	NA	990	
Cis 1,2-Dichloro	ethylene	N.D.	6	N.D.	170	N.D.	0.167	70	140,000	14,000	
Chloroform		N.D.	8	N.D.	170	N.D.	0.151	70	NA	970	
1,2-Dichloroetha	ane	N.D.	37	N.D.	170	N.D.	0.024	5	NA	990	
1,1,1-Trichloroet	thane	N.D.	3	N.D.	170	N.D.	0.705	200	9000	900	
Benzene		1000	7	171	170	29031	0.116	5	4600	460	
Carbon Tetrachl	oride	N.D.	3	N.D.	170	N.D.	1.132	5	2000	200	
1,2-Dichloroprop	oane	N.D.	9	N.D.	170	N.D.	0.116	5	NA	25,000	
Trichloroethylen	е	N.D.	7	N.D.	170	N.D.	0.197	5	1900	190	
cis-1,3-Dichloro	propene	N.D.	8	N.D.	170	N.D.	0.146	NS	90	9	
trans-1,3-Dichlo	ropropene	N.D.	56	N.D.	170	N.D.	0.036	NS	90	9	
1,1,2-Trichloroet	thane	N.D.	35	N.D.	170	N.D.	0.034	5	NA	15,000	
Toluene		1000	4	267	170	45325	0.272	1,000	1400	1,400	
1,2-Dibromoetha	ane	N.D.	53	N.D.	170	N.D.	0.029	NS	NA	9600	
Tetrachloroethy	lene	N.D.	3	N.D.	170	N.D.	0.726	5	NA	1,100	
Chlorobenzene		N.D.	9	N.D.	170	N.D.	0.128	100	NA	38	
Ethylbenzene		100	4	29	170	5012	0.323	700	1800	180	
p/m-Xylene (see	note)	200	4	37	170	6316	0.27	10,000	200	200	
Styrene		N.D.	9	N.D.	170	N.D.	0.113	100	2500	250	
o-Xylene		200	9	26	170	4500	0.114	pai	rt of total X	ylenes	
1,1,2,2-Tetrachl	oroethane	N.D.	99	N.D.	170	N.D.	0.015	5	NA	4,000	
1,3,5-Trimethylb	enzene	60	5	12	170	2060	0.272	NS	5400	540	
1,2,4-Trimethylb	enzene	200	6	29	170	5007	0.212	NS	5400	540	
1,3-Dichloroben	zene (meta)	N.D.	13	N.D.	170	N.D.	0.108	1	NA	1500	
1,2-Dichloroben	zene (ortho)	N.D.	18	N.D.	170	N.D.	0.079	9	780	78	
1,4-Dichloroben	zene (para)	N.D.	14	N.D.	170	N.D.	0.099	0.7	NA	310	
1,2,4-Trichlorob	enzene	N.D.	57	N.D.	170	N.D.	0.058	2	NA	340	
HexachloroButa	diene	N.D.	18	N.D.	170	N.D.	0.334	6	NA	13	
Instrument: HADSI	TE 0		FACT TO 4				1.1-2.70.1	A de desses			

Instrument: HAPSITE Smart Plus GC/MS Method: FAST TO-14 Last Calib: 3/14/13 Reporting Limit (R.L.) is lowest calib standard

Quality Control: 3-6 point calib w/ %RSD<30, Internal Stds, daily blank, daily calib check standard R.L= estimated aqueous conc

Headspace procedure involves half-filling a 40 mL vial and shaking it vigorously 30 seconds twice over a minimum 10 minute time period, at about 25°C. Calculated aqueous concentration assumes 75% of equilbrium conditions using Henry's Law.

N.D. = Not Detected K = dimensionless Henry's Law Constant DW = Drinking Water standard NA = Information Not Available

Aquatic Toxicity values from various sources as selected in MassDEP Method 1 Standard calculations for GW-3 (2013 proposal)

MassDEP Field Assessment and Sup		ort Team	(FAST)	ST) SURFACE WATER				4-24970			
City or Town:	Fall River		Address:	Route 24	ute 24 Off Ramp				Location:		
Date Sampled:	1/27/14	Time:	11:34AM	Field ID:	SW-2	Collector:	Clark		Terry Bro		
Date Analyzed:	1/28/14	Time:	1:32 PM	Lab ID:	005	Analyst:	Fitzgera	ald	Spill Site	•	
NOTE - ALL RE	PORTED VALUE	S ARE ESTIN	IATES, BAS	ED UPON H	EADSPACE	ANALYSIS	S AND AF	PLICATI	ON OF HEN	RY'S LAW	
Method Analyt	tor.	Est Con	ıc μg/L	Sample	Dilution	Hdspc	K	DW	Aquatic T	oxicty μg/L	
Method Analyt	ies	Result	R.L.	ppbV	Factor	ppbV	(25°C)	μg/L	Acute	Chronic	
Vinyl Chloride		N.D.	2	N.D.	170	N.D.	1.14	2	400,000	40,000	
Bromomethane		N.D.	20	N.D.	170	N.D.	0.301	10	300	30	
Chloroethane		N.D.	41	N.D.	170	N.D.	0.275	NS	NA	NA	
Trichloromonoflu	uoromethane	N.D.	29	N.D.	170	N.D.	4.51	NS	NA	NA	
1,1-Dichloroethe	ene	N.D.	2	N.D.	170	N.D.	0.634	7	12,000	1,200	
Methylene Chlo	ride	N.D.	18	N.D.	170	N.D.	0.09	5	NA	6,700	
1,1,2-Trichlorotr	ifluoroethane	N.D.	35	N.D.	170	N.D.	14.34	NS	NA	NA	
1,1-Dichloroetha	ane	N.D.	140	N.D.	170	N.D.	0.012	70	NA	990	
Cis 1,2-Dichloro	ethylene	N.D.	6	N.D.	170	N.D.	0.167	70	140,000	14,000	
Chloroform		N.D.	8	N.D.	170	N.D.	0.151	70	NA	970	
1,2-Dichloroetha	ane	N.D.	37	N.D.	170	N.D.	0.024	5	NA	990	
1,1,1-Trichloroe	thane	N.D.	3	N.D.	170	N.D.	0.705	200	9000	900	
Benzene		500	7	81	170	13823	0.116	5	4600	460	
Carbon Tetrachl	oride	N.D.	3	N.D.	170	N.D.	1.132	5	2000	200	
1,2-Dichloroprop	pane	N.D.	9	N.D.	170	N.D.	0.116	5	NA	25,000	
Trichloroethylen	е	N.D.	7	N.D.	170	N.D.	0.197	5	1900	190	
cis-1,3-Dichloro	propene	N.D.	8	N.D.	170	N.D.	0.146	NS	90	9	
trans-1,3-Dichlo	ropropene	N.D.	56	N.D.	170	N.D.	0.036	NS	90	9	
1,1,2-Trichloroe	thane	N.D.	35	N.D.	170	N.D.	0.034	5	NA	15,000	
Toluene		800	4	214	170	36411	0.272	1,000	1400	1,400	
1,2-Dibromoetha	ane	N.D.	53	N.D.	170	N.D.	0.029	NS	NA	9600	
Tetrachloroethy	lene	N.D.	3	N.D.	170	N.D.	0.726	5	NA	1,100	
Chlorobenzene		N.D.	9	N.D.	170	N.D.	0.128	100	NA	38	
Ethylbenzene		100	4	33	170	5579	0.323	700	1800	180	
p/m-Xylene (see	note)	200	4	42	170	7201	0.27	10,000	200	200	
Styrene		10	9	1	170	182	0.113	100	2500	250	
o-Xylene		300	9	30	170	5078	0.114	pa	rt of total)	(ylenes	
1,1,2,2-Tetrachl	oroethane	N.D.	99	N.D.	170	N.D.	0.015	5	NA	4,000	
1,3,5-Trimethylb	enzene	60	5	12	170	1992	0.272	NS	5400	540	
1,2,4-Trimethylk	enzene	200	6	29	170	5003	0.212	NS	5400	540	
1,3-Dichloroben	zene (meta)	N.D.	13	N.D.	170	N.D.	0.108	1	NA	1500	
1,2-Dichloroben	zene (ortho)	N.D.	18	N.D.	170	N.D.	0.079	9	780	78	
1,4-Dichloroben	zene (para)	N.D.	14	N.D.	170	N.D.	0.099	0.7	NA	310	
1,2,4-Trichlorob	enzene	N.D.	57	N.D.	170	N.D.	0.058	2	NA	340	
HexachloroButa	ıdiene	N.D.	18	N.D.	170	N.D.	0.334	6	NA	13	
Instrument: HAPSI	TE Smart Plus GC/	MS Method:	FAST TO-14	4 Last Cal	lib: 3/14/13	Reporting	Limit (R.L) is lowe	st calib stan	dard	
Instrument: HAPSITE Smart Plus GC/MS Method: FAST TO-14 Last Calib: 3/14/13 Reporting Limit (R.L.) is lowest calib standard Ouslib: Control: 3.6 point calib w/ 9/PSD-20 Internal Stde, daily blank, daily calib check standard, R.L., setimated acqueous conc											

Quality Control: 3-6 point calib w/ %RSD<30, Internal Stds, daily blank, daily calib check standard R.L= estimated aqueous conc

Headspace procedure involves half-filling a 40 mL vial and shaking it vigorously 30 seconds twice over a minimum 10 minute time period, at about 25°C. Calculated aqueous concentration assumes 75% of equilibrium conditions using Henry's Law.

N.D. = Not Detected K = dimensionless Henry's Law Constant DW = Drinking Water standard NA = Information Not Available

Aquatic Toxicity values from various sources as selected in MassDEP Method 1 Standard calculations for GW-3 (2013 proposal)

MassDEP Field Assessment	and Supp	port Team (FAST) SURFACE WATER RTN:					RTN:	4-24970	
City or Town: Fall River		Address:	Route 24	Off Ramp				Loca	ation:
Date Sampled: 1/27/14	Time:	11:43 AM	Field ID:	SW-3	Collector:	Clark		Terry Bro	
Date Analyzed: 1/28/14	Time:	3:14 PM	Lab ID:	007	Analyst:	Fitzgera	ıld	Spill Site)
NOTE - ALL REPORTED VALUE	S ARE ESTIN	IATES, BAS	ED UPON H	EADSPACE	ANALYSIS	S AND AF	PLICATI	ON OF HENF	RY'S LAW
Mark and American	Est Cor	ıc μg/L	Sample	Dilution	Hdspc	K	DW	Aquatic Toxicty μg	
Method Analytes	Result	R.L.	ppb∨	Factor	ppb∨	(25°C)	μg/L	Acute	Chronic
Vinyl Chloride	N.D.	2	N.D.	170	N.D.	1.14	2	400,000	40,000
Bromomethane	N.D.	20	N.D.	170	N.D.	0.301	10	300	30
Chloroethane	N.D.	41	N.D.	170	N.D.	0.275	NS	NA	NA
Trichloromonofluoromethane	N.D.	29	N.D.	170	N.D.	4.51	NS	NA	NA
1,1-Dichloroethene	N.D.	2	N.D.	170	N.D.	0.634	7	12,000	1,200
Methylene Chloride	N.D.	18	N.D.	170	N.D.	0.09	5	NA	6,700
1,1,2-Trichlorotrifluoroethane	N.D.	35	3	170	N.D.	14.34	NS	NA	NA
1,1-Dichloroethane	N.D.	140	N.D.	170	N.D.	0.012	70	NA	990
Cis 1,2-Dichloroethylene	N.D.	6	N.D.	170	N.D.	0.167	70	140,000	14,000
Chloroform	N.D.	8	N.D.	170	N.D.	0.151	70	NA	970
1,2-Dichloroethane	N.D.	37	N.D.	170	N.D.	0.024	5	NA	990
1,1,1-Trichloroethane	N.D.	3	N.D.	170	N.D.	0.705	200	9000	900
Benzene	700	7	101	170	17128	0.116	5	4600	460
Carbon Tetrachloride	N.D.	3	N.D.	170	N.D.	1.132	5	2000	200
1,2-Dichloropropane	N.D.	9	N.D.	170	N.D.	0.116	5	NA	25,000
Trichloroethylene	N.D.	7	N.D.	170	N.D.	0.197	5	1900	190
cis-1,3-Dichloropropene	N.D.	8	N.D.	170	N.D.	0.146	NS	90	9
trans-1,3-Dichloropropene	N.D.	56	N.D.	170	N.D.	0.036	NS	90	9
1,1,2-Trichloroethane	N.D.	35	N.D.	170	N.D.	0.034	5	NA	15,000
Toluene	500	4	128	170	21823	0.272	1,000	1400	1,400
1,2-Dibromoethane	N.D.	53	N.D.	170	N.D.	0.029	NS	NA	9600
Tetrachloroethylene	N.D.	3	N.D.	170	N.D.	0.726	5	NA	1,100
Chlorobenzene	N.D.	9	N.D.	170	N.D.	0.128	100	NA	38
Ethylbenzene	60	4	16	170	2637	0.323	700	1800	180
p/m-Xylene (see note)	90	4	22	170	3675	0.27	10,000	200	200
Styrene	N.D.	9	N.D.	170	N.D.	0.113	100	2500	250
o-Xylene	100	9	14	170	2373	0.114	pai	part of total Xylenes	
1,1,2,2-Tetrachloroethane	N.D.	99	N.D.	170	N.D.	0.015	5	NA	4,000
1,3,5-Trimethylbenzene	30	5	6	170	965	0.272	NS	5400	540
1,2,4-Trimethylbenzene	80	6	13	170	2144	0.212	NS	5400	540
1,3-Dichlorobenzene (meta)	N.D.	13	N.D.	170	N.D.	0.108	1	NA	1500
1,2-Dichlorobenzene (ortho)	N.D.	18	N.D.	170	N.D.	0.079	9	780	78
1,4-Dichlorobenzene (para)	N.D.	14	N.D.	170	N.D.	0.099	0.7	NA	310
1,2,4-Trichlorobenzene	N.D.	57	N.D.	170	N.D.	0.058	2	NA	340
HexachloroButadiene	N.D.	18	N.D.	170	N.D.	0.334	6	NA	13
Instrument: HAPSITE Smart Plus GC/	MS Method:	FAST TO-14	4 Last Cal	lib: 3/14/13	Reporting	Limit (R.L	.) is lowe	st calib stan	dard

Quality Control: 3-6 point calib w/ %RSD<30, Internal Stds, daily blank, daily calib check standard R.L= estimated aqueous conc

Headspace procedure involves half-filling a 40 mL vial and shaking it vigorously 30 seconds twice over a minimum 10 minute time period, at about 25°C. Calculated aqueous concentration assumes 75% of equilbrium conditions using Henry's Law.

N.D. = Not Detected K = dimensionless Henry's Law Constant DW = Drinking Water standard NA = Information Not Available

Aquatic Toxicity values from various sources as selected in MassDEP Method 1 Standard calculations for GW-3 (2013 proposal)

MassDEP Fiel	assDEP Field Assessment and Support Team (FAST) SURI		SURF	ACE WATER RT			RTN: 4-24970			
City or Town:	Fall River		Address:	Route 24	Off Ramp				Loca	ation:
Date Sampled:	1/27/14	Time:	1:25 PM	Field ID:	SW-4	Collector:	Clark		Terry Bro	ook @
Date Analyzed:	1/28/14	Time:	2:42 PM	Lab ID:	006	Analyst:	Fitzgera	ıld	Meridian	St
NOTE - ALL RE	PORTED VALUES	S ARE ESTIN	IATES, BASI	ED UPON H	EADSPACE	ANALYSIS	S AND AF	PLICATI	ON OF HENF	RY'S LAW
		Est Cor	ıc μg/L	Sample	Dilution	Hdspc	к	DW	Aquatic Toxicty μg/	
Method Analyt	es	Result	R.L.	ppbV	Factor	ppbV	(25°C)	μg/L	Acute	Chronic
Vinyl Chloride		N.D.	2	N.D.	170	N.D.	1.14	2	400,000	40,000
Bromomethane		N.D.	20	N.D.	170	N.D.	0.301	10	300	30
Chloroethane		N.D.	41	N.D.	170	N.D.	0.275	NS	NA	NA
Trichloromonoflu	ioromethane	N.D.	29	N.D.	170	N.D.	4.51	NS	NA	NA
1,1-Dichloroethe	ene	N.D.	2	N.D.	170	N.D.	0.634	7	12,000	1,200
Methylene Chlor	ride	N.D.	18	N.D.	170	N.D.	0.09	5	NA	6,700
1,1,2-Trichlorotri	ifluoroethane	N.D.	35	3	170	N.D.	14.34	NS	NA	NA
1,1-Dichloroetha	ine	N.D.	140	N.D.	170	N.D.	0.012	70	NA	990
Cis 1,2-Dichloro	ethylene	N.D.	6	N.D.	170	N.D.	0.167	70	140,000	14,000
Chloroform		N.D.	8	N.D.	170	N.D.	0.151	70	NA	970
1,2-Dichloroetha	ine	N.D.	37	N.D.	170	N.D.	0.024	5	NA	990
1,1,1-Trichloroet	hane	N.D.	3	N.D.	170	N.D.	0.705	200	9000	900
Benzene		100	7	18	170	3035	0.116	5	4600	460
Carbon Tetrachl	oride	N.D.	3	N.D.	170	N.D.	1.132	5	2000	200
1,2-Dichloroprop	oane	N.D.	9	N.D.	170	N.D.	0.116	5	NA	25,000
Trichloroethylen	e	N.D.	7	N.D.	170	N.D.	0.197	5	1900	190
cis-1,3-Dichloro	propene	N.D.	8	N.D.	170	N.D.	0.146	NS	90	9
trans-1,3-Dichlo	ropropene	N.D.	56	N.D.	170	N.D.	0.036	NS	90	9
1,1,2-Trichloroet	hane	N.D.	35	N.D.	170	N.D.	0.034	5	NA	15,000
Toluene		100	4	35	170	6027	0.272	1,000	1400	1,400
1,2-Dibromoetha	ane	N.D.	53	N.D.	170	N.D.	0.029	NS	NA	9600
Tetrachloroethyl	ene	N.D.	3	N.D.	170	N.D.	0.726	5	NA	1,100
Chlorobenzene		N.D.	9	N.D.	170	N.D.	0.128	100	NA	38
Ethylbenzene		10	4	3	170	586	0.323	700	1800	180
p/m-Xylene (see	note)	20	4	6	170	962	0.27	10,000	200	200
Styrene		N.D.	9	N.D.	170	N.D.	0.113	100	2500	250
o-Xylene		30	9	3	170	553	0.114	part of total Xyle		ylenes
1,1,2,2-Tetrachle	oroethane	N.D.	99	N.D.	170	N.D.	0.015	5	NA	4,000
1,3,5-Trimethylb	enzene	N.D.	5	N.D.	170	N.D.	0.272	NS	5400	540
1,2,4-Trimethylb	enzene	10	6	2	170	405	0.212	NS	5400	540
1,3-Dichloroben:	zene (meta)	N.D.	13	N.D.	170	N.D.	0.108	1	NA	1500
1,2-Dichloroben:	zene (ortho)	N.D.	18	N.D.	170	N.D.	0.079	9	780	78
1,4-Dichloroben:	zene (para)	N.D.	14	N.D.	170	N.D.	0.099	0.7	NA	310
1,2,4-Trichlorobe	enzene	N.D.	57	N.D.	170	N.D.	0.058	2	NA	340
HexachloroButa	diene	N.D.	18	N.D.	170	N.D.	0.334	6	NA	13
Instrument: HAPSI	Instrument: HAPSITE Smart Plus GC/MS Method: FAST TO-14 Last Calib: 3/14/13 Reporting Limit (R.L.) is lowest calib standard									

Quality Control: 3-6 point calib w/ %RSD<30, Internal Stds, daily blank, daily calib check standard R.L= estimated aqueous conc

Headspace procedure involves half-filling a 40 mL vial and shaking it vigorously 30 seconds twice over a minimum 10 minute time period, at about 25°C. Calculated aqueous concentration assumes 75% of equilbrium conditions using Henry's Law.

N.D. = Not Detected K = dimensionless Henry's Law Constant DW = Drinking Water standard NA = Information Not Available Aquatic Toxicity values from various sources as selected in MassDEP Method 1 Standard calculations for GW-3 (2013 proposal)

MassDEP Fiel	d Assessment	and Supp	ort Team	(FAST)	ST) SURFACE WATER RTN:			4-24970			
City or Town:	Fall River		Address:	Route 24 Off Ramp					Location:		
Date Sampled:	1/27/14	Time:	2:55 PM	Field ID:	SW-5	Collector	Clark		Interceptor Drain		
Date Analyzed:	1/27/14	Time:	3:37 PM	Lab ID:	003	Analyst:	Fitzgera	ıld	7000 ft fr	om spill	
NOTE - ALL RE	PORTED VALUE	S ARE ESTIN	IATES, BASI	ED UPON H	EADSPACE	ANALYSI	S AND AF	PLICATI	ON OF HENF	RY'S LAW	
		Est Cor	ıc μg/L	Sample	Dilution	Hdspc	К	DW	Aquatic T	oxicty μg/L	
Method Analyt	tes	Result	R.L.	ppbV	Factor	ppbV	(25°C)	μg/L	Acute	Chronic	
Vinyl Chloride		N.D.	1	N.D.	85	N.D.	1.14	2	400,000	40,000	
Bromomethane		N.D.	10	N.D.	85	N.D.	0.301	10	300	30	
Chloroethane		N.D.	20	N.D.	85	N.D.	0.275	NS	NA	NA	
Trichloromonoflu	uoromethane	N.D.	15	N.D.	85	N.D.	4.51	NS	NA	NA	
1,1-Dichloroethe	ene	N.D.	1	N.D.	85	N.D.	0.634	7	12,000	1,200	
Methylene Chlo	ride	N.D.	1	N.D.	85	N.D.	0.09	5	NA	6,700	
1,1,2-Trichlorotr	ifluoroethane	N.D.	17	N.D.	85	N.D.	14.34	NS	NA	NA	
1,1-Dichloroetha	ane	N.D.	70	N.D.	85	N.D.	0.012	70	NA	990	
Cis 1,2-Dichloro	ethylene	N.D.	3	N.D.	85	N.D.	0.167	70	140,000	14,000	
Chloroform		N.D.	4	N.D.	85	N.D.	0.151	70	NA	970	
1,2-Dichloroetha	ane	N.D.	19	N.D.	85	N.D.	0.024	5	NA	990	
1,1,1-Trichloroe	thane	N.D.	1	N.D.	85	N.D.	0.705	200	9000	900	
Benzene		N.D.	3	N.D.	85	N.D.	0.116	5	4600	460	
Carbon Tetrachl	oride	N.D.	1	N.D.	85	N.D.	1.132	5	2000	200	
1,2-Dichloroprop	pane	N.D.	5	N.D.	85	N.D.	0.116	5	NA	25,000	
Trichloroethylen	е	N.D.	4	N.D.	85	N.D.	0.197	5	1900	190	
cis-1,3-Dichloro	propene	N.D.	4	N.D.	85	N.D.	0.146	NS	90	9	
trans-1,3-Dichlo	ropropene	N.D.	28	N.D.	85	N.D.	0.036	NS	90	9	
1,1,2-Trichloroe	thane	N.D.	18	N.D.	85	N.D.	0.034	5	NA	15,000	
Toluene		N.D.	2	N.D.	85	N.D.	0.272	1,000	1400	1,400	
1,2-Dibromoeth	ane	N.D.	26	N.D.	85	N.D.	0.029	NS	NA	9600	
Tetrachloroethy	lene	N.D.	2	N.D.	85	N.D.	0.726	5	NA	1,100	
Chlorobenzene		N.D.	4	N.D.	85	N.D.	0.128	100	NA	38	
Ethylbenzene		N.D.	2	N.D.	85	N.D.	0.323	700	1800	180	
p/m-Xylene (see	note)	N.D.	2	N.D.	85	N.D.	0.27	10,000	200	200	
Styrene		N.D.	5	N.D.	85	N.D.	0.113	100	2500	250	
o-Xylene		N.D.	5	N.D.	85	N.D.	0.114	pa	rt of total X	ylenes	
1,1,2,2-Tetrachl	oroethane	N.D.	49	N.D.	85	N.D.	0.015	5	NA	4,000	
1,3,5-Trimethylb	enzene	N.D.	2	N.D.	85	N.D.	0.272	NS	5400	540	
1,2,4-Trimethylk	enzene	N.D.	3	N.D.	85	N.D.	0.212	NS	5400	540	
1,3-Dichloroben	zene (meta)	N.D.	7	N.D.	85	N.D.	0.108	1	NA	1500	
1,2-Dichloroben	zene (ortho)	N.D.	9	N.D.	85	N.D.	0.079	9	780	78	
1,4-Dichloroben	zene (para)	N.D.	7	N.D.	85	N.D.	0.099	0.7	NA	310	
1,2,4-Trichlorob	enzene	N.D.	29	N.D.	85	N.D.	0.058	2	NA	340	
HexachloroButa	diene	N.D.	9	N.D.	85	N.D.	0.334	6	NA	13	
Instrument: HAPSI	strument: HAPSITE Smart Plus GC/MS Method: FAST TO-14 Last Calib: 3/14/13 Reporting Limit (R.L.) is lowest calib standard									dard	

Instrument: HAPSITE Smart Plus GC/MS Method: FAST TO-14 Last Calib: 3/14/13 Reporting Limit (R.L.) is lowest calib standard

Quality Control: 3-6 point calib w/ %RSD<30, Internal Stds, daily blank, daily calib check standard R.L= estimated aqueous conc

Headspace procedure involves half-filling a 40 mL vial and shaking it vigorously 30 seconds twice over a minimum 10 minute time period, at about 25°C. Calculated aqueous concentration assumes 75% of equilbrium conditions using Henry's Law.

N.D. = Not Detected K = dimensionless Henry's Law Constant DW = Drinking Water standard NA = Information Not Available

Aquatic Toxicity values from various sources as selected in MassDEP Method 1 Standard calculations for GW-3 (2013 proposal)

COMMENTS: