ACKNOWLEDGEMENTS

Many people contributed time, energy, and good ideas to help create this update of the Massachusetts Nonpoint Source Management Program Plan. The following individuals are owed special thanks for their dedication and thoughtfulness:

Acknowledgements
Stephanie Cooper, Deputy Commissioner for Policy and Planning, Massachusetts Department of Environmental Protection
Kathleen Baskin, Assistant Commissioner for the Bureau of Water Resources, Massachusetts Department of Environmental Protection
Steven J. McCurdy, Massachusetts Department of Environmental Protection
Lealdon Langley, Massachusetts Department of Environmental Protection
Jane Peirce, Massachusetts Department of Environmental Protection
Laura Blake, Massachusetts Department of Environmental Protection
Matthew Reardon, Massachusetts Department of Environmental Protection
MaryJo Feuerbach, USEPA Region 1
Alicia Grimaldi, USEPA Region 1

Special Thanks
Gary Gonyea, Massachusetts Department of Environmental Protection
Jane Obbagy, Massachusetts Association of Conservation Districts
Kathy Romero, Massachusetts Department of Environmental Protection
Duane Levangie, Massachusetts Department of Environmental Protection
Karen Pelto, Massachusetts Department of Environmental Protection
Adrienne Pappal, Massachusetts Coastal Zone Management
Laura Maul, Massachusetts Division of Agricultural Resources
Gerard Kennedy, Massachusetts Division of Agricultural Resources
Taryn LaScola, Massachusetts Division of Agricultural Resources
Vandana Rao, Executive Office of Energy and Environmental Affairs
Kim Tilas, Executive Office of Energy and Environmental Affairs, Massachusetts Environmental Trust
Bill Hinkley, Executive Office of Energy and Environmental Affairs, Dams and Seawalls Program
Cindy DelPapa, Massachusetts Department of Fish and Game, Division of Ecological Restoration
Todd Richards, Massachusetts Department of Fish and Game, Division of Fish and Wildlife
Kathryn Ford, Massachusetts Department of Fish and Game, Division of Marine Fisheries
Anne Carroll, Massachusetts Department of Conservation and Recreation
Tom Akin, U.S. Department of Agriculture, Natural Resources Conservation Service
Pam DiBona, MassBays National Estuary Program
Joe Costa, Buzzard’s Bay National Estuary Program
Mike Gerel, Narragansett Bay National Estuary Program
Braden Rosenberg, Eastern Research Group (ERG)
Jennifer Ferrando, PG Environmental
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>iv</td>
</tr>
<tr>
<td>Foreword</td>
<td>vi</td>
</tr>
<tr>
<td>Section 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Section 2: The Massachusetts NPS Program</td>
<td>4</td>
</tr>
<tr>
<td>2.1 NPS Pollution and Massachusetts Waters</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1 Definition of Nonpoint Source Pollution</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2 Where Does NPS Pollution Occur?</td>
<td>5</td>
</tr>
<tr>
<td>2.1.4 NPS Pollution and Water Quality Impairments</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Primary Elements of the Massachusetts NPS Program</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1 Section 319 Nonpoint Source Competitive Grants Program</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2 604(b) Grant Program—Water Quality Management Planning</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3 NPS Education and Outreach</td>
<td>12</td>
</tr>
<tr>
<td>2.2.4 Interagency Activities</td>
<td>12</td>
</tr>
<tr>
<td>2.2.5 Watershed-Based Planning</td>
<td>13</td>
</tr>
<tr>
<td>2.3 MassDEP NPS Program Administration</td>
<td>13</td>
</tr>
<tr>
<td>2.3.1 Staffing and Support</td>
<td>13</td>
</tr>
<tr>
<td>2.3.2 Grant Proposal Evaluation Criteria</td>
<td>14</td>
</tr>
<tr>
<td>2.3.3 Grant and Project Management</td>
<td>15</td>
</tr>
<tr>
<td>2.3.4 NPS Program Reporting</td>
<td>17</td>
</tr>
<tr>
<td>2.3.5 Records and Documentation</td>
<td>17</td>
</tr>
<tr>
<td>2.4 NPS Program Review and Adaptive Management</td>
<td>18</td>
</tr>
<tr>
<td>2.4.1 Adaptive Management</td>
<td>18</td>
</tr>
<tr>
<td>2.4.2 MassDEP Program Evaluation Objectives</td>
<td>19</td>
</tr>
<tr>
<td>2.4.3 Program Evaluation Elements</td>
<td>19</td>
</tr>
<tr>
<td>Section 3: Partnerships and Collaboration</td>
<td>22</td>
</tr>
<tr>
<td>3.1 Summary of Primary Partner Programs</td>
<td>22</td>
</tr>
<tr>
<td>3.1.1 Massachusetts Department of Environmental Protection</td>
<td>24</td>
</tr>
<tr>
<td>3.1.2 Massachusetts Office of Coastal Zone Management (CZM)</td>
<td>30</td>
</tr>
<tr>
<td>3.1.3 Massachusetts Department of Agricultural Resources (MDAR)</td>
<td>33</td>
</tr>
<tr>
<td>3.1.4 Massachusetts Executive Office of Energy and Environmental Affairs (EEA)</td>
<td>35</td>
</tr>
<tr>
<td>3.1.5 Massachusetts Department of Fish and Game (DFG)</td>
<td>39</td>
</tr>
<tr>
<td>3.1.6 Massachusetts Department of Conservation and Recreation (DCR)</td>
<td>42</td>
</tr>
<tr>
<td>3.1.7 Massachusetts Association of Conservation Districts (MACD)</td>
<td>43</td>
</tr>
<tr>
<td>3.1.8 U.S. Environmental Protection Agency (USEPA), Region 1</td>
<td>44</td>
</tr>
<tr>
<td>3.1.9 United States Department of Agriculture (USDA)</td>
<td>51</td>
</tr>
<tr>
<td>3.2 Other Partner Organizations</td>
<td>54</td>
</tr>
<tr>
<td>3.3 Primary Sources of Funding to Address NPS Pollution</td>
<td>55</td>
</tr>
</tbody>
</table>
SECTION 4: GOALS, OBJECTIVES, AND MILESTONES

4.1 SECTION OVERVIEW

4.2 OVERVIEW OF THE PLAN’S VISION AND GOALS

4.3 MASSACHUSETTS NPS PROGRAM GOALS

4.4 OVERVIEW OF MATRIX OF NPS PLAN GOALS, OBJECTIVES, AND MILESTONES

SECTION 5: PRIORITIES

5.1 DEFINING PRIORITIES

5.1.1 Statewide Issues

5.2 NPS PRIORITIZATION FRAMEWORK

5.2.1 Framework

5.2.2 Priorities and Watershed Planning

5.2.3 Setting Priorities—Tools

5.2.4 Balancing Priorities—Restoration and Protection

5.2.5 Implementing Priorities

5.2.6 Priorities and the MassDEP NPS Program

5.3 SOURCES OF NONPOINT POLLUTION AND TOOLS TO MANAGE NPS

5.3.1 Categories of NPS Pollution Sources in Massachusetts

5.3.2 BMPs to Address NPS Sources

5.3.3 Laws and Regulations to Address NPS Sources

SECTION 6: MONITORING AND ASSESSMENT

6.1 OVERVIEW

6.2 KEY MONITORING PROGRAMS

6.2.1 MassDEP Division of Watershed Management (DWM)

6.2.2 National Estuary Programs (NEPs)

6.2.3 Massachusetts Department of Fish and Game—Division of Fisheries and Wildlife (DFW)

6.2.4 Massachusetts Department of Fish and Game—Division of Marine Fisheries (DMF)

6.2.5 Department of Conservation and Recreation (DCR)

6.2.6 Massachusetts Department of Public Health (DPH)

6.2.7 Office of Coastal Zone Management (CZM)

6.2.8 Massachusetts Water Resources Authority (MWRA)

6.2.9 Other Sources of Data

6.2.10 Data Management

6.3 NPS MONITORING CHALLENGES AND GOALS

6.3.1 NPS Monitoring Challenges

6.3.2 Goals, Objectives, and Milestones to Address Monitoring Challenges

SECTION 7: MASSACHUSETTS NPS RESOURCE LIBRARY

APPENDICES

A: 2014 List of Priority NPS Impaired Waterbodies

B: Massachusetts Office of Coastal Zone Management—Coastal Nonpoint Pollution Control Program

C: Attorney General’s Certification (from original 1989 Massachusetts Nonpoint Source Management Plan)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEP</td>
<td>Agricultural Conservation Easement Program</td>
</tr>
<tr>
<td>AEEP</td>
<td>Agricultural Environmental Enhancement Program</td>
</tr>
<tr>
<td>AIP</td>
<td>Agricultural Preservation Restriction Improvement Program</td>
</tr>
<tr>
<td>AU</td>
<td>assessment unit</td>
</tr>
<tr>
<td>BMP</td>
<td>best management practice</td>
</tr>
<tr>
<td>CAPS</td>
<td>Conservation Assessment and Prioritization System</td>
</tr>
<tr>
<td>CCC</td>
<td>Cape Cod Commission</td>
</tr>
<tr>
<td>CCMMP</td>
<td>Comprehensive Conservation and Management Plan</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CMR</td>
<td>Code of Massachusetts Regulations</td>
</tr>
<tr>
<td>CNPCP</td>
<td>Massachusetts Coastal Nonpoint Pollution Control Program</td>
</tr>
<tr>
<td>CPR</td>
<td>Coastal Pollution Remediation</td>
</tr>
<tr>
<td>CRP</td>
<td>Conservation Reserve Program</td>
</tr>
<tr>
<td>CSO</td>
<td>combined sewer overflow</td>
</tr>
<tr>
<td>CSP</td>
<td>Conservation Stewardship Program</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>CWSRF</td>
<td>Massachusetts Clean Water State Revolving Fund Program</td>
</tr>
<tr>
<td>CZM</td>
<td>Massachusetts Office of Coastal Zone Management</td>
</tr>
<tr>
<td>DCR</td>
<td>Massachusetts Department of Conservation and Recreation</td>
</tr>
<tr>
<td>DER</td>
<td>Massachusetts Division of Ecological Restoration</td>
</tr>
<tr>
<td>DFG</td>
<td>Massachusetts Department of Fish and Game</td>
</tr>
<tr>
<td>DFW</td>
<td>Massachusetts Division of Fisheries and Wildlife</td>
</tr>
<tr>
<td>DM/WBE</td>
<td>disadvantaged minority and women-owned business enterprises</td>
</tr>
<tr>
<td>DMF</td>
<td>Massachusetts Division of Marine Fisheries</td>
</tr>
<tr>
<td>DOT</td>
<td>Massachusetts Department of Transportation</td>
</tr>
<tr>
<td>DPH</td>
<td>Massachusetts Department of Public Health</td>
</tr>
<tr>
<td>DQO</td>
<td>data quality objective</td>
</tr>
<tr>
<td>DWM</td>
<td>Massachusetts Division of Watershed Management</td>
</tr>
<tr>
<td>DWSP</td>
<td>Massachusetts Division of Water Supply Protection</td>
</tr>
<tr>
<td>DWSRF</td>
<td>Drinking Water State Revolving Fund</td>
</tr>
<tr>
<td>EEA</td>
<td>Massachusetts Executive Office of Energy and Environmental Affairs</td>
</tr>
<tr>
<td>EQIP</td>
<td>Environmental Quality Incentives Program</td>
</tr>
<tr>
<td>EQuIS</td>
<td>Environmental Quality Information System</td>
</tr>
<tr>
<td>FSA</td>
<td>USDA Farm Service Agency</td>
</tr>
<tr>
<td>FVEP</td>
<td>Farm Viability Enhancement Program</td>
</tr>
<tr>
<td>GRTS</td>
<td>Grant Reporting and Tracking System</td>
</tr>
<tr>
<td>LISS</td>
<td>Long Island Sound Study</td>
</tr>
<tr>
<td>MACD</td>
<td>Massachusetts Association of Conservation Districts</td>
</tr>
<tr>
<td>MAP2</td>
<td>Massachusetts Monitoring and Assessment Program</td>
</tr>
<tr>
<td>MassDEP</td>
<td>Massachusetts Department of Environmental Protection</td>
</tr>
<tr>
<td>MassGIS</td>
<td>Massachusetts Office of Geographic and Environmental Information</td>
</tr>
<tr>
<td>MASTTC</td>
<td>Massachusetts Alternative Septic System Test Center</td>
</tr>
<tr>
<td>MDAR</td>
<td>Massachusetts Department of Agricultural Resources</td>
</tr>
<tr>
<td>MEMP</td>
<td>Massachusetts Effectiveness Monitoring Program</td>
</tr>
<tr>
<td>MET</td>
<td>Massachusetts Environmental Trust</td>
</tr>
<tr>
<td>MGL</td>
<td>Massachusetts General Laws</td>
</tr>
<tr>
<td>MOU</td>
<td>memorandum of understanding</td>
</tr>
<tr>
<td>MS4</td>
<td>municipal separate storm sewer system</td>
</tr>
<tr>
<td>MWRA</td>
<td>Massachusetts Water Resources Authority</td>
</tr>
<tr>
<td>NBEP</td>
<td>Narragansett Bay Estuary Program</td>
</tr>
<tr>
<td>NEP</td>
<td>National Estuary Program</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NOX</td>
<td>nitrogen oxides</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NPS</td>
<td>nonpoint source</td>
</tr>
<tr>
<td>NRCS</td>
<td>USDA Natural Resources Conservation Service</td>
</tr>
<tr>
<td>NRD</td>
<td>Natural Resources Damages</td>
</tr>
<tr>
<td>NTP</td>
<td>Notice to Proceed</td>
</tr>
<tr>
<td>NWQI</td>
<td>National Water Quality Initiative</td>
</tr>
<tr>
<td>OWR</td>
<td>Massachusetts Office of Water Resources</td>
</tr>
<tr>
<td>PCBs</td>
<td>polychlorinated biphenyls</td>
</tr>
<tr>
<td>PFAS</td>
<td>perfluoralkyl substances</td>
</tr>
<tr>
<td>PPA</td>
<td>Performance Partnership Agreement</td>
</tr>
<tr>
<td>PPG</td>
<td>Performance Partnership Grant</td>
</tr>
<tr>
<td>QAPP</td>
<td>Quality Assurance Project Plan</td>
</tr>
<tr>
<td>RCPP</td>
<td>Regional Conservation Partnership Program</td>
</tr>
<tr>
<td>RFR</td>
<td>Request for Responses</td>
</tr>
<tr>
<td>RPST</td>
<td>Recovery Potential Screening Tool</td>
</tr>
<tr>
<td>RSN</td>
<td>Reference Site Network</td>
</tr>
<tr>
<td>SNEP</td>
<td>Southeast New England Program</td>
</tr>
<tr>
<td>SLAM</td>
<td>site-level assessment methodology</td>
</tr>
<tr>
<td>SO2</td>
<td>sulfur dioxide</td>
</tr>
<tr>
<td>SSA</td>
<td>sole source aquifer</td>
</tr>
<tr>
<td>SWMI</td>
<td>Sustainable Water Management Initiative</td>
</tr>
<tr>
<td>TMDL</td>
<td>total maximum daily load</td>
</tr>
<tr>
<td>TNC</td>
<td>The Nature Conservancy</td>
</tr>
<tr>
<td>UIC</td>
<td>Underground Injection Control</td>
</tr>
<tr>
<td>UMass</td>
<td>University of Massachusetts</td>
</tr>
<tr>
<td>USACE</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>USDA</td>
<td>U.S. Department of Agriculture</td>
</tr>
<tr>
<td>USEPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>WBP</td>
<td>Watershed-Based Plan</td>
</tr>
<tr>
<td>WMA</td>
<td>Water Management Act</td>
</tr>
<tr>
<td>WPP</td>
<td>Watershed Planning Program</td>
</tr>
<tr>
<td>WQP</td>
<td>Water Quality Portal</td>
</tr>
<tr>
<td>WQS</td>
<td>water quality standards</td>
</tr>
<tr>
<td>WQX</td>
<td>Water Quality Exchange</td>
</tr>
<tr>
<td>WRC</td>
<td>Water Resources Commission</td>
</tr>
</tbody>
</table>
FOREWORD

Since the passage of the Clean Water Act in 1972, states have, with direction from U.S. Environmental Protection Agency (USEPA), dramatically improved the health of the waterbodies of the United States. The greatest gains have been achieved by developing and implementing technologies to address pollution flowing into waterbodies from fixed or "point" sources, such as industrial discharge outfalls. This is because collection and treatment from point sources, while expensive, is simpler from a technical perspective, more direct, and more measurable than addressing pollution from diffuse or "nonpoint" sources. Consequently, progress to address nonpoint source (NPS) pollution has, in Massachusetts and many other states, lagged behind the progress made to improve discharges from point sources.

NPS pollution can occur anywhere and is typically most prevalent in areas where land development—ranging from cities to suburban backyards to farm fields—has altered local hydrology and increased the amount of pollutants that can be carried into waterbodies by stormwater runoff. For this reason, the management of NPS pollution in Massachusetts is a statewide challenge requiring a cooperative effort between government agencies, private organizations, and the public.

Congress has tasked USEPA to oversee a planning framework that must be implemented by each state to address NPS pollution. This document updates the previous Massachusetts Nonpoint Source Management Program Plan, last updated in 2014. The updated Plan follows the NPS Plan guidance provided by USEPA and includes all of the required elements.

This NPS Program Plan identifies both an overarching strategy and specific, measurable actions to reduce the impacts of NPS pollution and improve water quality in Massachusetts. This will be achieved through building and strengthening partnerships among governmental agencies, local watershed stewards, and the private sector, to:

- Assess the extent and severity of NPS pollution in Massachusetts’ waterbodies;
- Develop and implement actions (best management practices) to address NPS pollution in a cost-effective manner that mimics natural processes to the extent possible; and
- Develop educational programs and materials that inform citizens about the causes and effects of NPS, and alert them to land use decisions that residents can make to protect and enhance water quality in marine waters, rivers, stream, lakes, and ponds within the Commonwealth.

For additional guidance regarding NPS pollution in Massachusetts or any aspect of the Massachusetts NPS Program described within this Plan, contact MassDEP at:

Massachusetts Department of Environmental Protection
Nonpoint Source Program
Contact: Matthew Reardon, Program Manager
Phone: (508) 849-4002
Email: matthew.reardon@state.ma.us
SECTION 1: INTRODUCTION

The Massachusetts Nonpoint Source Management Program Plan (NPS Plan) presents the Massachusetts Department of Environmental Protection’s (MassDEP’s) strategy for preventing, controlling, and reducing pollution from nonpoint sources (NPS) to protect and improve the quality of the Commonwealth’s waters. The NPS Plan was originally developed in 1989 and approved by the U.S. Environmental Protection Agency (USEPA), pursuant to Section 319 of the Clean Water Act (CWA). The Plan was previously revised in 1994, 1999, and 2014. The 2020 NPS Plan has been updated to reflect the current priorities of the Massachusetts NPS Program, the current USEPA program guidelines, funding levels, and staff resources for the five-year period of 2020–2024.

MassDEP, as the agency designated to administer CWA programs for the Commonwealth, has established an overall vision for the Massachusetts NPS Program that focuses on protecting and restoring water quality:

Massachusetts NPS Program Vision: The vision of the Massachusetts NPS Program is to bring the citizens of the state together to restore surface and groundwater impaired by NPS pollution, to protect water quality in healthy watersheds, and to plan for and address human-induced and naturally occurring changes in the environment.

The Massachusetts NPS Program will continue to focus on the following goals over the next five years:

1. Identify and expand opportunities to accomplish and leverage work by private, state, local, and federal partners;
2. Restore impaired waters, reduce NPS pollutants, and mitigate the effects of climate change;
3. Protect healthy and threatened waters through planning, education, program coordination, and implementation of climate-ready BMPs;
4. Monitor waters for NPS impairments and improvements to prioritize actions, measure success, and increase program efficacy; and
5. Instill, encourage, and nurture a passion for restoring water quality through education, capacity building, and building new partnerships.

The 2020 Plan builds on the progress of the 2014 Plan by continuing many of the existing objectives and milestones as well as reflecting new activities and priorities of the NPS Program and MassDEP’s NPS partners.
NPS PLAN STRUCTURE AND REQUIRED ELEMENTS

The NPS Plan is organized into the seven sections described below.

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Introduction</td>
<td>Provides an overview of the NPS Plan, including a description of each section and a key to where each EPA-required element by can be found within the plan.</td>
</tr>
<tr>
<td>2: The Massachusetts NPS Program</td>
<td>Provides an overview of the state of water quality in Massachusetts and describes the primary elements of the Massachusetts NPS Program.</td>
</tr>
<tr>
<td>3: Partnerships and Collaboration</td>
<td>Summarizes NPS partner programs and how their efforts coordinate to address NPS pollution statewide. Includes specific actions to continue and increase collaboration among NPS partners.</td>
</tr>
<tr>
<td>4: Goals, Objectives, and Milestones</td>
<td>Describes the state’s vision for controlling NPS pollution and long-term goals of its NPS Program. Each long-term goal is further defined by objectives to be achieved between 2020 and 2024 and actions that MassDEP and NPS partners will undertake to help achieve each objective.</td>
</tr>
<tr>
<td>5: Priorities</td>
<td>Describes how the state identifies waters impaired by NPS pollution and its priorities for addressing impairments and identifying unimpaired waters for protection. This section describes the primary categories of NPS pollution in Massachusetts and the major statewide issues will drive the Massachusetts NPS Program over the next five years. Finally, this section briefly describes the tools, including best management practices (BMPs) and legal framework, available to address NPS pollution.</td>
</tr>
<tr>
<td>6: Monitoring and Assessment</td>
<td>Describes how the state gathers data on NPS pollution and uses those data to set priorities, develop plans to address sources, and assess the efficacy of actions taken.</td>
</tr>
<tr>
<td>7: Massachusetts NPS Resource Library</td>
<td>A compilation of links to supporting documents, laws, and other references within the NPS Plan.</td>
</tr>
</tbody>
</table>

On April 12, 2013, USEPA issued an updated *Nonpoint Source Program and Grants Guidelines for States and Territories*, which identifies eight key components of an effective state NPS Management Program. Those eight components are listed below, with references to where each element is located within the 2020 NPS Plan.
USEPA NPS Program Components

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 (58–62)</td>
</tr>
<tr>
<td>2</td>
<td>2 (12), 3 (22–55), 4 (56–64)</td>
</tr>
<tr>
<td>3</td>
<td>2 (4–15), 3 (22–55), 6 (89–110)</td>
</tr>
<tr>
<td>4</td>
<td>5 (65–75)</td>
</tr>
<tr>
<td>5</td>
<td>5 (65–75), 6 (89–110)</td>
</tr>
<tr>
<td>6</td>
<td>2-6 (All)</td>
</tr>
<tr>
<td>7</td>
<td>2 (8–17)</td>
</tr>
<tr>
<td>8</td>
<td>2 (17–21)</td>
</tr>
</tbody>
</table>

1. The state program contains explicit short- and long-term goals, objectives and strategies to restore and protect surface water and groundwater, as appropriate.

2. The state strengthens its working partnerships and linkages to appropriate state, interstate, tribal, regional, and local entities (including conservation districts), private sector groups, citizens groups, and federal agencies.

3. The state uses a combination of statewide programs and on-the-ground projects to achieve water quality benefits; efforts are well-integrated with other relevant state and federal programs.

4. The state program describes how resources will be allocated between (1) abating known water quality impairments from NPS pollution and (2) protecting threatened and high-quality waters from significant threats caused by present and future NPS impacts.

5. The state program identifies waters and watersheds impaired by NPS pollution as well as priority unimpaired waters for protection. The state establishes a process to assign priority and to progressively address identified watersheds by conducting more detailed watershed assessments, developing Watershed-Based Plans (WBPs), and implementing the plans.

6. The state implements all program components required by Section 319(b) of the CWA and establishes strategic approaches and adaptive management to achieve and maintain water quality standards (WQS) as expeditiously as practicable. The state reviews and upgrades program components as appropriate. The state program includes a mix of regulatory, non-regulatory, financial, and technical assistance, as needed.

7. The state manages and implements its NPS management program efficiently and effectively, including necessary financial management.

8. The state reviews and evaluates its NPS management program using environmental and functional measures of success and revises its NPS management program at least every five years.
SECTION 2: THE MASSACHUSETTS NPS PROGRAM

This chapter provides an overview of the current state of water quality in Massachusetts and describes the primary elements of the Massachusetts NPS Program.

2.1 NPS POLLUTION AND MASSACHUSETTS WATERS

2.1.1 Definition of Nonpoint Source Pollution

USEPA provides the following definition of NPS pollution:

Nonpoint source pollution generally results from land runoff, precipitation, atmospheric deposition, drainage, seepage or hydrologic modification. The term "nonpoint source" is defined to mean any source of water pollution that does not meet the legal definition of "point source" in Section 502(14) of the Clean Water Act. That definition states:

The term "point source" means any discernible, confined and discrete conveyance, including but not limited to any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, or vessel or other floating craft, from which pollutants are or may be discharged. This term does not include agricultural stormwater discharges and return flows from irrigated agriculture.

Unlike pollution from industrial and sewage treatment plants, NPS pollution comes from many diffuse sources. NPS pollution is caused by rainfall or snowmelt moving over and through the ground. As the runoff moves, it picks up and carries away natural and human-made pollutants, finally depositing them into lakes, rivers, wetlands, coastal waters and groundwater.

https://www.epa.gov/nps/basic-information-about-nonpoint-source-nps-pollution

As the definition states, the movement of water "over and through the ground" is a primary means by which water can become polluted by diverse sources that are found across the Massachusetts landscape. Examples of common NPS pollutants and associated land uses include:

- Excess fertilizers, herbicides, and insecticides from residential areas and agricultural lands;
- Oil, grease, and toxic chemicals from urban runoff, waste disposal, and energy production;
- Sediment from improperly managed construction sites, crop and forest lands, and eroding streambanks;
- Salt from irrigation practices and acid drainage from abandoned mines;
- Bacteria and nutrients from livestock, pet wastes, and faulty septic systems; and
- Atmospheric deposition and hydromodification.

The major categories of NPS pollution sources in Massachusetts, as described in Section 5.3.1, include:

- Developed areas
- Transportation
- Agriculture
- Forestry
- Hydromodification
- Atmospheric deposition
Massachusetts Nonpoint Source Management Program Plan 2020–2024

- Landfills, contaminated areas, and waste management sites
- Natural resource extraction

In Massachusetts and throughout the United States, tremendous advances have been made over the past 25 years to clean up the aquatic environment by controlling point source pollution from industries and sewage treatment plants. According to the USEPA, states report that NPS pollution is the leading remaining cause of water quality problems (http://water.epa.gov/polwaste/nps/whatis.cfm). The effects of NPS pollutants on specific waters vary and may not always be fully assessed. However, these pollutants are known to have harmful effects on drinking water supplies, recreation, fisheries, and wildlife.

2.1.2 Where Does NPS Pollution Occur?

NPS pollution can occur anywhere. It can be found in polluted stormwater runoff entering lakes in Berkshire County, flowing off the streets of Worcester, and contributing to shellfish bed closures on Cape Cod. However, the prevalence of certain NPS pollutant sources and their degree of impact on receiving waters is often strongly correlated with specific land uses (see discussion in Section 5.3.1) and the density of land development. For example, NPS pollutants associated with pet waste (i.e., bacteria, nutrients) will generally be more prevalent in more densely populated areas that have more pets. In addition to often having a higher prevalence of NPS pollutant sources, more densely developed areas typically have less forest and other naturally vegetated lands that can act as a buffer between NPS pollutants and waterbodies.

The CWA authorizes USEPA to regulate point sources that discharge into waters of the United States through the National Pollutant Discharge Elimination System (NPDES) permit program. Construction activities and industrial activities have been regulated since the early 1990s. Subsequent USEPA studies identified urban stormwater as a source of runoff that required regulation to protect water quality. In Massachusetts, NPS pollution is commonly carried by stormwater into municipal separate storm sewer systems (MS4s), from which it is often discharged untreated into local waterbodies. USEPA regulates discharges from MS4s in urbanized areas. MS4 operators must obtain a NPDES permit from USEPA and develop a stormwater management program to develop, implement, and enforce a stormwater management plan to control pollutants discharged from its system to the maximum extent practicable.

As shown in the map below, 37% of Massachusetts land has been classified as urbanized area based on the 2010 census, a number likely to increase in the upcoming 2020 census. As a result, these areas are regulated as MS4s under the NPDES Phase II Stormwater Program. In regulated MS4 areas, there are significant restrictions on the use of grant funding through USEPA’s Section 319 Program (see Section 2.2.1), which is a main funding source for the Massachusetts NPS Program. While acknowledging that the NPDES Program regulates urban runoff as a point source, the Massachusetts Nonpoint Program promotes a statewide, holistic approach to addressing stormwater pollution problems. Although activities to control and prevent pollution from stormwater in urbanized areas may not be eligible for funding from the Section 319 NPS Competitive Grants Program described in Section 2.2, several other partner NPS programs are not subject to this restriction and are available to support stormwater mitigation in these areas.
2.1.3 Water Resources of Massachusetts

Massachusetts ranks 45th out of the 50 states in surface area (approximately 8,300 square miles of dry land and inland water combined), yet its estimated 6.7 million inhabitants place it 14th in population (U.S. Census Bureau, 2015). More than 75% of the population resides in the eastern one-third of the state. As discussed above, areas of higher population density typically have a higher prevalence of NPS pollutant sources and less naturally vegetated land that can act as a buffer between NPS pollutants and waterbodies.

Massachusetts is located within two geological provinces: the Coastal Plain and the New England Upland. Cape Cod and the Islands form the Coastal Plain, which consists of low hills and plains covering unconsolidated sediments that form the most productive aquifers in the State. The New England Upland province consists of till and stratified drift above metamorphic and igneous rocks, and provides small productive aquifers. Groundwater is a significant source of water in small communities and is used almost exclusively on Cape Cod and the Islands. Surface water is the primary source of water for all of the major urban areas in the state. Two thirds of Massachusetts’ residents depend upon surface water for their needs. The Massachusetts Water Resources Authority (MWRA) supplies communities in the greater Boston area (about half the state usage of surface water) from the Quabbin and Wachusett reservoirs in the central uplands.

Annual precipitation averages about 48 inches and is fairly evenly distributed throughout the state. Average annual evaporation of surface water ranges from about 26 inches in western Massachusetts to about 28 inches in the eastern half of the state. Yearly runoff ranges from about 20 inches in Cape Cod to about 32 inches in the northwestern corner of the state. The lowest runoff generally occurs during July, August, and September. Runoff is highest in March in the eastern sections of the state and April in the western sections and at higher elevations.1 While the general pattern described here is likely similar, the 1985 values for evaporation and runoff have likely changed due to climate change and increased development.

Massachusetts incorporates all or a portion of nine major drainage systems—Hudson, Housatonic, Connecticut, Thames, Narragansett Bay, Mount Hope Bay, Boston Harbor, Merrimack, and Coastal—that, in turn, comprise 33 smaller river basins (i.e., watersheds) and coastal drainage areas that generally serve as the fundamental planning units of Massachusetts’ surface water monitoring, assessment, and management programs. Table 2.1 summarizes some general surface water resource statistics for Massachusetts.

Table 2.1. Summary of Massachusetts Water Resources Statistics

<table>
<thead>
<tr>
<th>Rivers¹</th>
<th>Perennial river/streams (miles)</th>
<th>10,033</th>
<th>Information Sources (see Integrated List)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intermittent streams (miles)</td>
<td>3,684</td>
<td>¹ Rees et al. 2010</td>
</tr>
<tr>
<td></td>
<td>Ditches and canals (miles)</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>Lakes²</td>
<td>Number of lakes and ponds ≥ 5 acres</td>
<td>2,622</td>
<td>² MassGIS 2010</td>
</tr>
<tr>
<td></td>
<td>Area of lakes and ponds ≥ 5 acres (acres)</td>
<td>153,514</td>
<td>³ MassGIS 2015</td>
</tr>
<tr>
<td></td>
<td>Number of lakes and ponds < 5 acres</td>
<td>24,479</td>
<td>⁴ NOAA 1975, Maietta 1984, Gil 1985</td>
</tr>
<tr>
<td></td>
<td>Area of lakes and ponds < 5 acres (acres)</td>
<td>15,506</td>
<td>⁵ 2005 wetlands map layer (in preparation)</td>
</tr>
<tr>
<td>Coastal Waters</td>
<td>Coastal waters³ (square miles)</td>
<td>2,726</td>
<td>⁶ Does not include 34,777 acres of eelgrass pasture</td>
</tr>
<tr>
<td></td>
<td>Total tidal shoreline⁴</td>
<td>1,519</td>
<td>⁷ Open water and agricultural cranberry bogs excluded</td>
</tr>
<tr>
<td>Wetlands</td>
<td>Marine and estuarine wetlands⁵,⁶ (acres)</td>
<td>107,525</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freshwater vegetated wetlands⁵,⁷ (acres)</td>
<td>467,331</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total area of wetlands (acres)</td>
<td>574,856</td>
<td></td>
</tr>
</tbody>
</table>

2.1.4 NPS Pollution and Water Quality Impairments

In Massachusetts, water quality impairments associated with NPS pollution and other sources are assessed by MassDEP and reported to USEPA in fulfillment of reporting requirements of Sections 305(b), 303(d), and 314 of the CWA, which are summarized as follows:

- **Section 305(b)** of the CWA codifies the process for evaluating waters’ capacity to support designated uses as defined in each of the states’ surface water quality standards. These uses include aquatic life support, fish and shellfish consumption, drinking water supply, and primary (e.g., swimming) and secondary (e.g., boating) contact recreation. The 305(b) process entails assessing each of these uses for rivers, lakes, and coastal waters. Where possible, causes and sources of use impairment are also identified.

- **Section 303(d)** of the CWA and the implementing regulations at Title 40 of the Code of Federal Regulations (CFR) Part 130.7 require states to identify waterbodies that are not expected to meet surface water quality standards after the implementation of technology-based controls and to prioritize and schedule them for the development of total maximum daily load (TMDL) analyses. A TMDL establishes the maximum amount of a pollutant that may be introduced into a waterbody and still ensure attainment and maintenance of WQS. A TMDL must also allocate that acceptable pollutant load among all potential sources. The formulation of the 303(d) list includes a more rigorous public review and comment process than does reporting under Section 305(b), and the final version of the list must be formally approved by USEPA.

- **Section 314** refers to the Clean Lakes Program, established in 1972 to provide financial and technical assistance to states in restoring publicly owned lakes. This program has not received funding since fiscal year 1995. Instead, USEPA has encouraged states to use s.319 funds to fund eligible activities that might have been funded in previous years under Section 314.
Reporting on the water quality assessments described above is provided by MassDEP every two years through preparation of an Integrated List of Waters. The following overview of water quality in Massachusetts is based on information from the Massachusetts Year 2016 Integrated List of Waters, which can be viewed at https://www.mass.gov/files/documents/2017/08/zu/16ilwpplist.pdf.

The 2016 Integrated List assigns each of 2,471 assessment units (AUs) to one of the five categories presented in Table 2.2, based on their status with respect to designated use support.

Table 2.2. Description of Integrated List Impairment Categories

<table>
<thead>
<tr>
<th>Integrated List Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unimpaired and not threatened for all designated uses</td>
</tr>
<tr>
<td>2</td>
<td>Unimpaired for some uses and not assessed for others</td>
</tr>
<tr>
<td>3</td>
<td>Insufficient information to make assessments for any uses</td>
</tr>
<tr>
<td>4</td>
<td>Impaired or threatened for one or more uses, but not requiring the calculation of a TMDL, including:</td>
</tr>
<tr>
<td></td>
<td>4a: TMDL is completed</td>
</tr>
<tr>
<td></td>
<td>4b: Impairment controlled by alternative pollution control requirements</td>
</tr>
<tr>
<td></td>
<td>4c: Impairment not caused by a pollutant—TMDL not required</td>
</tr>
<tr>
<td>5</td>
<td>Impaired or threatened for one or more uses and requiring a TMDL</td>
</tr>
</tbody>
</table>

The Massachusetts Year 2016 Integrated List of Waters includes detailed information on known impairments within each of 33 major watersheds in Massachusetts. Impairments to specific waterbodies within these watersheds are presented according to the categories in Table 2.2, with information also presented on the size of the impaired area (e.g., number of river miles, acres). Where relevant, specific impairment causes are listed for Category 5 waters (waters requiring a TMDL), including impairment causes typically associated with NPS pollution such as phosphorus (total), sedimentation/siltation, bacteria (*Escherichia coli*), and others. Details on waterbodies and waterbody segments (i.e., AUs) that were removed from the list can be found in Appendix 3 of the List of Waters.

A more detailed description of programs related to monitoring and assessment of NPS pollution in Massachusetts is provided in Section 6 (“Monitoring and Assessment”) of this plan. Section 5 (“Priorities”) discusses the process used by MassDEP to assign priority and progressively address identified impairments by conducting more detailed watershed assessments, developing WBPs, and implementing the plans. Section 5 also describes the process used by MassDEP to assign priority for the protection of unimpaired waters.

2.2 PRIMARY ELEMENTS OF THE MASSACHUSETTS NPS PROGRAM

The 1987 Amendments to the CWA established the Section 319 NPS Management Program. Under Section 319, states, territories, and tribes receive federal grant money to establish NPS programs that will achieve and maintain beneficial uses of waters. State programs may use federal s.319 funds to support a wide variety of activities, including technical assistance, financial assistance, education, training, technology transfer, demonstration projects, and NPS monitoring to assess the success of specific NPS watershed projects. This section of the NPS Plan describes the primary programs and activities that are directly managed by the staff of the MassDEP NPS Program. Section 3 describes partner agencies and programs that the NPS Program collaborates with to fulfill the broader mission of this Plan.

The MassDEP NPS Program currently receives approximately $2 million annually in federal s.319 funds, split evenly between NPS watershed projects that implement WBPs and NPS Program funding. NPS
Program funding is currently budgeted to support $700,000 in payroll for four full-time employees (FTEs). The remaining $300,000 in Program funds as well as $1 million in Project funds is available to support and build NPS staff capacity and for sub-award projects that support the goals of this NPS Plan. Sub-award projects using Program funds are anticipated to include regional and statewide public outreach and education on NPS pollution, development of WBPs, studies to advance knowledge of the scope and extent of unimpaired waters, support of interagency watershed protection projects, and projects to advance science that will help protect water quality (see further discussion in Section 5). Watershed project funds are entirely used for implementation projects that address mitigation and remediation of NPS-impaired waters. Although specific funding levels may vary from year to year, the overall distribution of s.319 funds is expected to remain evenly split between NPS watershed projects and NPS Program funding. MassDEP also anticipates that the NPS Program will continue to employ a minimum of four FTEs and that the distribution of program funds between payroll and sub-award projects will be maintained approximately as described above. In addition, in 2020, MassDEP will solicit proposals from regional planning agencies in Berkshire, Franklin, and Pioneer Valley, to sponsor and support three to five contractors to serve as regional NPS coordinators within their agencies. Following a similar model used by MassBays, a solicitation will be developed and issued requesting part-or full-time staff within regional agencies who will serve as adjunct NPS staff. Duties will include outreach and education on NPS issues, development of WBPs, and development and management of high-quality watershed projects to be funded through s.319. The Regional Coordinators will advance the NPS Program goals and activities in the western part of the state.

2.2.1 Section 319 Nonpoint Source Competitive Grants Program

The U.S. Congress annually appropriates funds under s.319 of the CWA of 1987 (33 U.S.C.A., Sc. 1251 et seq.) to assist states in implementing their approved NPS programs. USEPA administers s.319, overseeing the awards to individual states and providing program oversight. The MassDEP Bureau of Resource Protection administers this award as part of the Massachusetts NPS Program.

The s.319 program focuses on the implementation of activities and projects for the control of NPS pollution. The awards are intended to provide financial support for the state's programs for controlling the major statewide categories of NPS pollution and for protecting or improving NPS-impaired or threatened water resources.

Each year, states must use at least 50% of their annual s.319 allocation (referred to as 319 Watershed Project Funds) to support NPS watershed projects that will implement WBPs or EPA-approved alternative watershed plans. In Massachusetts, a portion of the s.319 funds awarded to the state will be used for specific NPS watershed projects that improve or protect threatened or impaired priority freshwater and coastal waters. Projects funded under this program must implement WBPs, including measures that address the prevention, control, and abatement of NPS pollution, and must result in restoration of beneficial uses or achieving or maintaining state WQS. MassDEP issues a Request for Responses (RFR) for competitive projects each spring. Any interested Massachusetts public or private organization may submit a proposal. The Department encourages all types of eligible, competitive proposals from all watersheds. Since 2001, MassDEP has particularly encouraged proposals that will begin implementation of Massachusetts’ TMDL analyses, or that implement recommendations made in diagnostic/feasibility or other studies for waters that do not meet WQS. MassDEP also continues to encourage applicants to propose projects that support its ongoing basin-wide water quality activities. The state NPS Program guidelines and priorities for s.319 grant funding may...
MassDEP provides updated information in advance of the grant round for each fiscal year. MassDEP typically announces several pre-RFR informational meetings for potential grant applicants, and provides information on priority project types for the upcoming round of grants. The following project categories are expected to be solicited over the next five years:

- **NPS watershed projects in impaired waters**: The most competitive applicants will implement a WBP using a combination of structural and non-structural BMPs addressing all impairments and leading to restoration of impaired waters. BMPs should be selected for optimal pollutant load removal, emphasizing source reduction. Proposed BMPs must be developed at least to the conceptual design stage and submitted with the proposal. Proposals must contain site-specific information to demonstrate that the project is feasible and ready to be constructed within the project timeline.

- **Healthy watersheds and protection of high-quality waters**: Implementation projects for climate change adaptation and resiliency and projects that protect high-quality waters from the effects of NPS pollution are eligible for s.319 funds. These proposals must also be supported with documentation of the problem, conceptual or better plans to explain the strategy and approach, and all other information necessary to demonstrate the feasibility and effectiveness of the proposed project. More information addressing the nine elements of the WBP supporting a project may be needed for recommended projects.

- **Outreach and education**: Outreach and education is often recommended as an effective nonstructural BMP. Program-funded projects in this category will propose specific outreach and education activities and products, and will develop and implement an evaluation method to gauge the effectiveness of these activities. Such stand-alone outreach and education projects will support the goals and objectives identified in this Plan. These projects should have regional or statewide relevance and should include a deliverable that can be made available in both print and electronic form.

- **Other projects consistent with the NPS Management Plan**: Depending on the goals and milestones for the year (Table 4.1), the annual solicitation may specify work to help meet program goals. Examples of projects that may be solicited include development of TMDLs, projects with land conservation components, and projects that leverage work and funding from partner organizations. Projects proposing to develop TMDLs must comply with USEPA requirements for the use of s.319 funds for such work, found in page 39 of the Guidelines available on the USEPA website (http://water.epa.gov/polwaste/nps/upload/319-guidelines-fy14.pdf).

All four types of projects are eligible for funding in MS4 areas, but only if the proposed work is not currently required under the existing NPDES stormwater permit.

In general, the most competitive implementation proposals will:

- Provide thorough but concise information that demonstrates the project’s feasibility and focuses on addressing program priorities;

- Build on previous s.319-funded work and/or work that has been initiated by 604(b), the Office of Coastal Zone Management (CZM), the Massachusetts Environmental Trust (MET), the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS), the Massachusetts Bays National Estuary Program (MassBays), or other programs; and

- Have a realistic schedule for completion within two building seasons. Although total project timelines are typically three years, funds are generally available in the January–March time frame, allowing two full building seasons for the work to be completed.

Good projects from all watersheds are eligible for funding. However, projects that are consistent with specified priority areas or project types may receive additional points. These priorities may include:
- Projects addressing one or more segments on the MassDEP list of priority segments and watersheds developed using the Recovery Potential Screening Tool (RPST) and in coordination with NPS Partner programs and priorities.
- Projects in specific basins or watersheds that represent agency priorities.
- Projects that follow work begun with funding from 604(b), CZM, MET, NRCS, MassBays, or other NPS partner programs.

An intra- and interagency screening committee reviews all eligible s.319 proposals. MassDEP approves recommended proposals to be included in its yearly work plan, which is submitted to USEPA before the start of the federal fiscal year. Once the work plan has been approved, the Department enters into a contractual agreement with the applicant to conduct the project. A 40% non-federal match is required from the grantee. This match may be in cash or from in-kind services performed as part of the approved project activities. Project funds can only be used to implement WBPs, and activities such as research, program development, and general assessment and planning are generally not eligible for these funds. Project funds can be used to carry out monitoring to track the improvement gained by project work, thus tracking the achievement of the WBP’s milestones and restoration of water quality. The typical project timeline is for three years.

Since 2006, MassDEP has been working under a USEPA-approved Program Quality Assurance Project Plan (QAPP) that covers all projects, unless they include a sampling component or some types of modeling. As such, most s.319-funded projects no longer require project-specific QAPPs. The Program QAPP ensures that projects are solicited, selected, carried out, and reported using properly documented procedures and quality assured processes. An Operation and Maintenance Plan is required for each implementation project.

USEPA Guidelines specify that s.319 funds may not be used to implement the requirements of NPDES permits. The Massachusetts Small MS4 General Permit was signed on April 4, 2016, and became effective on July 1, 2018. Unregulated work in NPDES regulated areas remains eligible, and MS4 communities are encouraged to implement high-priority BMPs using s.319 funds before requiring the work in the NPDES Stormwater Program Plan timetable. Further coordination between MassDEP and USEPA Region 1 on this issue is a goal of this NPS Plan, to clarify policy on the use of s.319 funds in NPDES-regulated areas.

2.2.2 604(b) Grant Program—Water Quality Management Planning

MassDEP uses CWA Section 604(b) funds from USEPA for water quality assessment and management planning.

The Department uses these funds to support watershed or subwatershed based NPS assessment and planning projects and statewide water quality monitoring and assessment activities. Section 604(b) projects are carried out to: (1) determine the nature, extent, and causes of water quality problems and determine pollutant load reductions necessary to meet WQS; (2) develop municipal and regional approaches to stormwater issues, including technical information sharing and the creation of stormwater utilities; (3) conduct monitoring and assessment to support the development of WBPs; (4) develop green infrastructure projects that manage wet weather runoff to maintain or restore natural hydrology; or (5) develop preliminary designs and implementation plans that will address water quality impairments in impaired watersheds. Annual priorities are determined by departmental or partner activities and programmatic targets.

Each year MassDEP releases an RFR for local competitive projects. Pursuant to CWA Section 604(b), eligible grant applicants must be either Regional Public Comprehensive Planning Organizations or Interstate Organizations. MassDEP has defined these to include regional planning agencies, councils of government, counties, conservation districts, cities and towns, and other sub-state public planning agencies and interstate agencies. MassDEP encourages eligible respondents to propose water quality assessment/planning projects that will lead to direct actions by municipalities and others to implement water quality improvements. The solicitation routinely includes a request for WBPs and preliminary development of potential s.319 NPS watershed projects that implement WBPs. No local match is required.
2.2.3 NPS Education and Outreach

Key elements of the NPS Program’s recent and ongoing activities related to education and outreach are described below.

- **The Clean Water Toolkit**: USEPA guidance for NPS programs requires that state NPS Plans must “identify best management practices and measures to control each category and subcategory of nonpoint sources.” As a primary education tool to address this need, MassDEP has developed the Massachusetts Clean Water Toolkit. The Toolkit was created for use by municipal officials, residents, and land managers to promote understanding and implementation of the many different options for prevention and control of NPS pollution. The Toolkit is an interactive, web-based document that includes a wide range of BMP fact sheets and an "Interactive Scenarios" tool that helps users choose the best BMPs for specific NPS pollution problems.

- **Massachusetts Alternative Septic System Test Center (MASSTC)**: MASSTC began in 1999, testing advanced onsite septic treatment technologies under the USEPA Environmental Technology Initiative. Today, MASSTC is operated by the Barnstable County Department of Health and Environment with joint funding from USEPA and MassDEP. MASSTC continues to conduct testing and allow for the research and development of products that remove the myriad of contaminants found in domestic wastewater, with a particular focus on advanced nitrogen removal technologies in support of coastal ecosystem health. Its facility can accommodate over 20 concurrent tests, allowing companies to conduct research and development on their products or complete any number of standardized test protocols. For more information, visit http://www.masstc.org/.

- **Horsekeeping information sources**: MassDEP has developed a collection of fact sheets on horsekeeping and related NPS pollution prevention. These fact sheets and other helpful links related to horsekeeping and water quality can be found at https://www.mass.gov/guides/education-in-nonpoint-source-pollution-prevention.

2.2.4 Interagency Activities

NPS Program staff regularly participate in a variety of interagency activities, including the policy initiatives, committees, and grant proposal review/selection teams listed below.

- NRCS State Technical Committee;
- MassBays Program Management Committee;
- MET committee to review grant program Letters of Interest and proposals;
- CZM committee to review Coastal Pollution Remediation (CPR) grant applications;
- Quarterly meetings of the Massachusetts Association of Conservation Districts (MACD);
- U.S. Geological Survey (USGS) quarterly meetings to review projects jointly funded by MassDEP and other topics requiring coordination between USGS and MassDEP;
- The ongoing Palmer River Watershed agricultural partnership pilot project in support of the NRCS National Water Quality Initiative (NWQI), which NPS Program staff actively take part in and which also involves the Massachusetts Department of Agricultural Resources (MDAR) MDAR partners with USDA-NRCS and MACD and NRCS.

Collaboration between the NPS Program and its many partner programs is described in detail in Section 3.
2.2.5 Watershed-Based Planning

The Massachusetts WBP template was first developed in 2006 in response to USEPA guidelines requiring a nine-element WBP to support the award of 319 implementation project funds. The purpose of the WBP template is to organize information about Massachusetts' watersheds and present it in a format that supports development of WBPs that can be used as the basis for NPS watershed projects to restore water quality in the Commonwealth.

The completed WBP tool (http://prj.geosyntec.com/MassDEPWBP) allows the user to select watersheds for lakes, rivers and streams, and estuaries. Following the nine-element format, the WBP tool provides existing information about the selected watershed, estimates pollutant loads, guides the user to BMP selection and remediation strategies, and assembles the WBP into an editable Word document. This approach offers

- Offers flexibility to direct s.319 funds in response to local capacity or emerging issues;
- Presents more opportunities to partner with other agencies and programs; and,
- Affords more ability to develop timely and accurate proposals at the time of shovel readiness.

2.3 MASSDEP NPS PROGRAM ADMINISTRATION

The state of Massachusetts has well-developed and effective programmatic and financial systems that ensure s.319 dollars are used efficiently to maximize water quality benefits. An effectively administered MassDEP NPS Program is expected to achieve the milestones and objectives established in this Plan given current staff and financial resources. This involves managing the program with limited staff resources, ensuring that a water quality benefit will be received for expended funds, integrating NPS programs statewide as practicable, and building partnerships to reduce redundancy and promote information sharing. The following section provides an overview of the management systems MassDEP uses to implement the state NPS Program.

The MassDEP NPS Program is administered in accordance with CWA requirements and national USEPA guidance for state NPS management programs. USEPA is the granting authority for activities funded under the CWA and USEPA Region 1 provides federal oversight for the MassDEP NPS Program. To work effectively with its federal oversight agency, the MassDEP NPS Program will meet grant conditions, work to achieve goals established in the annual Performance Partnership Agreement (PPA), attend regional and national NPS meetings, and provide comments on regional and national USEPA policies, guidance, and regulations concerning NPS pollution management.

2.3.1 Staffing and Support

MassDEP has historically used a portion of annual s.319 grant funding to support staff within the NPS Program and staff in administrative departments that assist the NPS Program. Funds from s.319 are incorporated into the MassDEP Performance Partnership Grant (PPG). Within the PPG, s.319 administrative funds will be used to support staff that conduct the following types of MassDEP NPS Program–related activities:

- **Program Manager:** Conducts program planning, develops objectives and priorities, provides fiscal oversight and contract development, coordinates with other programs, carries out s.319 project solicitation and program coordination, and prepares the NPS work plan and annual report.

- **Section 319 Program Coordinator:** Provides s.319 project scope and contract preparation, review and approval of quarterly progress reports and invoices, site visits, approval of contract deliverables, and Grant Reporting and Tracking System (GRTS) reporting.

- **Section 604(b) Program Coordinator:** Responsible for developing projects that meet CWA 604(b) program goals and management of 604(b) contracts and projects, including quarterly progress reviews and deliverables approval, fiscal management, and reviewing Watershed Based Plans.
- **Contracts Manager**: Oversees fiscal operations, including invoice processing, support of procurement and contracting, acquisition of supplies, financial reporting, and coordination with MassDEP fiscal staff.

CWA grant programs are organized under the Division of Watershed Permitting and Planning’s Watershed Planning Program (WPP), thus strengthening the organizational support for meeting CWA goals.

In addition to duties already described, the Program Coordinators meet with grantees at the beginning of each project to review reporting and invoicing procedures, the project site and project plans. Quarterly reports are reviewed to ensure that work is progressing in accordance with timelines. Changes in scope or budget can be made, provided the Program Coordinator reviews and approves the changes, which must be based on legitimate site challenges, opportunities to use funds better, or other amendments that will improve the project. Amendments must ensure that project outcomes will equal or better the original scope. Changes are not made to accommodate price increases, poor planning, or loss of match. MassDEP has several resources that are available to help grantees with invoicing and reporting procedures at https://www.mass.gov/info-details/grants-financial-assistance-watersheds-water-quality.

A portion of s.319 Program funds are used for staff salaries, staff travel for NPS purposes, office supplies, and field and laboratory equipment and supplies to support NPS monitoring staff. Program funds also pay an annual fee for a state single audit. The remainder of the program funds is competitively awarded to projects that are consistent with the Massachusetts NPS Management Plan. Grantees receiving competitive sub-awards are required to provide a 40% non-federal match as part of the grant-funded project. The 40% match for the balance of the s.319 allocation comprises contractual work undertaken by the Department, consistent with the PPG.

Each employee’s activities are guided by an annual plan (the Employee Performance Review System) that is reviewed mid-year and negotiated annually. All personnel complete weekly time and activity reports (timesheets) through the Massachusetts Human Resource Division’s online reporting system. Timesheets are approved by supervisors.

Finances are managed by the MassDEP Bureau of Resource Protection and MassDEP fiscal staff. Section 319 funds are fully incorporated into the MassDEP PPG from USEPA. Fiscal tracking for s.319 is the responsibility of Bureau staff, who provide monthly and quarterly spreadsheets that are used by program staff to track expenditures and compliance with match and federal disadvantaged minority/women-owned business enterprise (DM/WBE) requirements.

2.3.2 Grant Proposal Evaluation Criteria

In order to implement high-quality projects that help fulfill the objectives of this NPS Management Plan, the MassDEP NPS Program and the grant review committee evaluate submitted proposals following a formal review process:

1. **MassDEP follows strict procurement guidelines for issuing, receiving, and evaluating proposals as specified in [Massachusetts Administrative Code 801 CMR 21.00](https://www.mass.gov/info-details/massachusetts-administrative-code-801-cmr-21.00).**

2. **Proposals are received and logged in with a date stamp. Multiple copies of each proposal must be submitted. One copy of each proposal is distributed to each member of a pre-selected inter- and intra-agency review committee comprising approximately six people. Reviewers are provided with a standard evaluation sheet and asked to review and rank each project.**
3. After allowing time for reviewers to evaluate the proposals, the review committee meets to discuss the proposals and synthesize the information into ranking and recommendation. Eligible projects that satisfy program goals and requirements are recommended for funding. In addition to ensuring that funds will be directed toward projects in NPS-impaired waters, reviewers evaluate if:
 - The project is comprehensive and watershed-based;
 - The project has demonstration, outreach, and education value;
 - The project is likely to be completed on time and within budget;
 - Feasibility issues such as permits and easements have been addressed; and
 - The applicant has a track record with this or any other program, and is known for either good or poor performance.

4. A procurement summary is written to describe the review process, summarize the committee evaluations, and make funding recommendations. Only projects that are eligible and meet or exceed the program requirements are recommended for funding. If not enough proposals are submitted to use the full s.319 allocation, the excess funds are held and redirected into future projects.

5. The procurement summary is reviewed and approved by the Commissioner of MassDEP and the office of the Secretary of the Executive Office of Energy and Environmental Affairs (EEA).

6. Projects recommended for funding are given final review and approval by USEPA Region 1 staff via the annual s.319 workplan.

2.3.3 Grant and Project Management

Project Initiation

Once projects are approved, NPS Program staff develop a contract scope of work that is consistent with the project proposal. Where the review committee has recommended changes or amendments to the scope, the changes are drafted by program staff and accepted/negotiated with the grantee. Each contract scope of work includes a QAPP element, requiring either compliance with the programmatic QAPP, or development of or compliance with a QAPP that is unique to the project. Final contracts are packaged with required documents and attachments, signed by the grantee, and forwarded by the MassDEP Contracts Manager to Boston, where the contract is finalized and signed by the Commissioner of MassDEP or an authorized designee.

Once a contract has become final, the grantee is notified with a Notice to Proceed (NTP). A letter stating the NTP date is prepared and forwarded along with a package of reporting materials. An essential element of this package is a grantee guide that spells out reporting and administrative requirements that the Grantee is expected to fulfill. Contracts for s.319 grants are generally for a three-year period and end on June 30.

Project Oversight

Once a project has been awarded, the contract scope of work describes the tasks and deliverables to be realized from the project. Through review of quarterly progress reports and close communication with grantees, the s.319 Program Coordinator ensures that the work is progressing in accordance with the proposal and contract scope of work. In addition to filing quarterly progress reports, all grantees must maintain contact with program staff by telephone, by email, and/or in person. Depending on the nature and location of the project, a MassDEP Project Officer may be assigned from the appropriate regional office. This helps to maintain contact and ensure project results consistent with the proposal and contract scope of work. Where no MassDEP Project Officer has been assigned, the s.319 Program Coordinator fulfills this function.

BMP Design and Implementation

Specific BMPs are developed by the applicants and presented in the project proposals. At the proposal stage,
conceptual designs or better are required. Conceptual designs—typically drawn by Professional Engineers (PEs)—are at 30% or more design stage, and must be fully enough developed to allow reviewers to determine project feasibility and to assess whether the proposed BMPs represent an efficient, cost-effective strategy to meet program goals. Plans and maps must be detailed enough to show property lines, resource areas, and watershed location. Where applicable, proposals should also address whether soils will support the proposed BMPs; whether wetlands permits will be required; and if the applicant controls, or can be assured of control of, the property where work will be done.

Once a project is underway, s.319 funds are typically used to develop final BMP designs. Standard contract requirements for the BMP design and implementation task include these deliverables:

- Final design and construction plans for the BMPs as described, submitted for review and comment to the MassDEP project officer prior to construction. A final plan must be reviewed and stamped by a PE prior to review and approval by the s.319 Program Coordinator.
- Copies of construction permits and approvals.
- Final “as-built” drawings of the installed BMPs.

The s.319 Program Coordinator reviews and approves these deliverables to ensure consistency with the project proposal and scope of work. MassDEP does not review and approve the engineering work, which is stipulated to be adequate as evidenced by the required PE stamp.

Following MassDEP approval of BMP designs, the grantee follows through with BMP installation. As part of the BMP design and implementation task of any grant, the grantee must supply a certificate/letter from the project engineer, designer, and/or supplier stating that the BMPs were installed according to approved plans and design specifications.

The grantee’s project manager is held responsible for specifying, procuring, inspecting, and accepting goods and services related to the project. By requiring PE-stamped construction plans and a certificate/letter from the designer or supplier stating that the BMPs were installed according to design specifications, MassDEP is assured that appropriate quality control and project oversight was exercised. Monitoring of quarterly progress reports and occasional site visits by MassDEP program staff support this assurance.

Development and implementation of an Operation and Maintenance Plan is a required task in each BMP implementation project. A final draft submittal must be reviewed and approved by MassDEP NPS Program staff.

Project Scope Changes

Problems and changes in scope of work are dealt with on a case-by-case basis, through a process also spelled out in the Grantee Guide. While most projects are able to proceed as planned, occasional difficulties may make it necessary to alter a scope of work, timetable, or deliverable. In negotiating changes, the goal is to stay as close as possible to the original proposal, and to achieve the same pollutant load removal and resource improvement as was originally anticipated.

Project Close-Out

Each Grantee completes a Project Final Report that is submitted to USEPA and kept on file at MassDEP. A draft Final Report is submitted to MassDEP by April 30 of the closing year, to be reviewed, commented on, and revised in time for June 30 submittal. Project Final Reports summarize the work that was done, detail the modeled pollutant load removals achieved by each BMP, make recommendations for follow-up, and discuss lessons learned from the project. Final Reports contain photographs and narrative about project results that are used to enhance public and agency understanding of the work that was done, and to promote technology transfer by encouraging others to learn from completed projects. Final Reports also summarize work completed in a format that translates easily into USEPA’s GRTS categories, to expedite reporting to USEPA.

Release of project retainage (10% of the contract amount) is contingent on satisfying all grant conditions, including submittal of a satisfactory Final Report and attaining or addressing Federal Fair Share goals for
DM/WBE. The purpose of a Final Report is to summarize how the public funds were used to meet the goals of the project, and to serve as a technology transfer tool for others who may be contemplating similar work. Final Reports also serve as the basis for GRTS reporting to USEPA. Final Reports are submitted on CD as well as hard copy, and kept available for review at the Watershed Planning Program (WPP) offices. A summary of projects (Project Summaries) is available to facilitate public review of available information. Indicative Summary Reports are updated annually to report on projects from the previous five years, and include an index by year and by watershed of all projects dating back to 1990.

2.3.4 NPS Program Reporting
As outlined in USEPA grant requirements and as committed to in the PPA, the MassDEP NPS Program will submit accurate and timely reports to USEPA to inform them of program status and accomplishments. The MassDEP NPS Program will adjust reporting as necessary to comply with grant conditions, should revisions to national program guidance change reporting requirements.

Annual MassDEP NPS Program Reporting Requirements

<table>
<thead>
<tr>
<th>Report</th>
<th>Description</th>
<th>Submitted By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual MassDEP NPS Program Workplan</td>
<td>Describes s.319-related work, including how the state is organized to implement and achieve the goals of this NPS Plan. Describes proposed projects and activities for the year consistent with NPS Plan objectives and milestones.</td>
<td>October 1</td>
</tr>
<tr>
<td>Annual MassDEP NPS Program Report</td>
<td>Describes progress made in implementing the MassDEP NPS Program, including a summary of major accomplishments and completed milestones, a description of s.319-funded statewide programs and completed s.319-funded watershed projects, a list of active s.319 projects with expected completion dates, and references to information summarizing water quality improvements and NPS pollutant load reductions for the state.</td>
<td>November 1</td>
</tr>
<tr>
<td>Annual 604(b) Workplan</td>
<td>Describes 604(b)-related work to assess water quality pollution in targeted basins pursuant to MassDEP priorities and the Massachusetts NPS Plan. Provides schedule for pass-through grant implementation and anticipated budgets for MassDEP staff and grants.</td>
<td>April 1</td>
</tr>
<tr>
<td>Annual 604(b) Program Report</td>
<td>Provides annual summary of 604(b) activities, including staff activities for positions funded by 604(b) and pass-through grant-funded activities. Includes comparison of staff accomplishments with outputs/outcomes specified in the Annual 604(b) Workplan and discussion of grant project expenditures.</td>
<td>December 31</td>
</tr>
<tr>
<td>GRTS Reporting</td>
<td>Includes GRTS Load Reduction Estimates, GRTS Annual Project Reports, and GRTS Mandated Elements</td>
<td>February 15</td>
</tr>
</tbody>
</table>

2.3.5 Records and Documentation
MassDEP maintains a complete file on each active project in the s.319 Program offices, located in the Worcester MassDEP office. At this location, the s.319 Program Coordinator maintains project-specific paper and electronic files containing, at minimum, original proposals, contract documents, plans, correspondence, progress reports, and draft Final Reports. Information related to GRTS tracking and pollutant load calculations is kept in separate files, organized by year, at the same location. The s.319 Contracts Manager also maintains financial tracking and reporting information files, and maintains the electronic financial records in the Massachusetts Management Accounting & Reporting System. Final Reports for closed projects are kept in CD format at the Worcester office, with hard copies of the reports distributed to regional offices. All records are available for public review during normal MassDEP office hours, subject to applicable rules and regulations.
2.4 NPS PROGRAM REVIEW AND ADAPTIVE MANAGEMENT

The periodic, structured evaluation of any plan is a necessary activity, both to assess progress toward the achievement of goals and outcomes and to adjust strategies to account for changes in policy, science, or available information. MassDEP recognizes that successful implementation of the Massachusetts NPS Plan will require evaluation of goals and activities, and following through with appropriate steps to respond to new information.

This section addresses Element 8 of the “Key Components of an Effective State Nonpoint Source Management Program” guidance issued by USEPA. Topics covered include an overview of the principles used to develop the program review strategy, the actions MassDEP will take to evaluate the NPS Plan, and how information gathered will advise future updates of the Plan.

2.4.1 Adaptive Management

The core of the program review framework is based on the concept of adaptive management. While there are numerous definitions, this Plan relies on the definition and management actions outlined in the 2009 publication *Adaptive Management: The U.S. Department of the Interior Technical Guide*. The Guide defines adaptive management as “a decision process that promotes flexible decision making that can be adjusted in the face of uncertainties as outcomes from management actions and other events become better understood.”

Adaptive management is an iterative process that occurs throughout the implementation of a plan. It relies on information gathering and assessment to advise corrective actions. Use of the process ultimately helps improve decision-making, creates a fact-based assessment of progress, and shapes future actions by building on lessons learned. As depicted in the diagram, the process is continuous and builds upon itself.

An adaptive approach to program evaluation involves developing alternative ways to meet plan objectives, predicting the outcomes of alternatives based on current information, implementing one or more of these alternatives, monitoring and assessing actions to determine progress, and using the results to update actions to achieve plan goals. The steps to this approach include:

- **Assess the problem**: Using environmental data, input from stakeholders and partners, and self-evaluation, determine the NPS pollution issues to be addressed. This includes policy, science, funding, programmatic, and implementation challenges.
- **Design**: Develop a plan or solution to address the identified issues. This can include adaptations to existing policy; development of new programs, initiatives, or research; and study of environmental conditions. Critical to this step is the development of measurable goals, milestones, and tangible objectives to address the issue.
- **Implement**: Carry out the actions, tasks, or initiatives to address the identified issue. Execute the plan using the best available resources and clearly denote any limitations, barriers, or possible issues with achieving the plan outcomes.
- **Monitor**: Collect information (qualitative and quantitative) during the implementation of the plan that captures progress toward plan outcomes. This effort must be objective and be carried out in a manner that allows for measuring progress made as well as determination of barriers to success. Information gathering should be done on a set schedule using consistent methods and allow for aggregation of data to draw conclusions.

• **Evaluate:** Assess information gathered through the monitoring phase and compare to established metrics, interim benchmarks, or anticipated outcomes. Evaluation outputs should allow characterization of the rate or amount of progress toward a given outcome. In addition, data assessment should be able to highlight or identify barriers to success.

• **Adjust:** Makes changes to approaches, strategies, projects, or initiatives that are targeted to achieve a given outcome, but are not likely to be achieved based on data collected and analyzed. Focus resources and efforts on areas of a plan that need improvement and acknowledge actions that are leading to achievement of a goal or outcome.

Ideally, as the process is executed over many cycles, actions taken to achieve the outcomes of a plan are modified to respond to challenges. Efforts are put into large-scale evaluation of plan goals and outcomes only after responding to identified challenges and measuring whether progress is being made. Adaptive management assumes that goals and outcomes of a given plan are reasonable and reachable. However, it also acknowledges that these goals and outcomes may have been developed with incomplete or inaccurate information, and that program goals and priorities, subject to USEPA approval, may shift over time in response to new information. Adaptive management also accounts for and helps identify new barriers, limitations, or changes that could inhibit achievement of goals.

2.4.2 MassDEP Program Evaluation Objectives

To evaluate progress of the goals set forth in the Plan and the efficacy of the MassDEP NPS Program, and to meet USEPA requirements, the following objectives have been set for the program evaluation strategy:

- The strategy will set timeframes for key evaluation activities.
- Evaluation efforts will be reported and shared with NPS partners and stakeholders.
- MassDEP will supplement the formal processes in the Plan with more informal, ad hoc evaluations to adjust, reevaluate, or develop policy that would improve the NPS Program.
- The greatest effort will be placed on addressing identified challenges to, or opportunities for, NPS Program improvement and achievement of the Plan’s goals.
- The strategy will recognize processes, policies, or practices that support the achievement of goals.
- The strategy will encompass all MassDEP elements of the NPS Program, including policy, science, funding, partnerships, and outreach/education.

2.4.3 Program Evaluation Elements

- **Program review:** MassDEP will use the "Goals" tables from Section 4 of this Plan (Table 4.1) as the foundation for its evaluation framework. Each year, the milestones for each objective under each goal will be reviewed and compared to implemented activities that supported their completion. Evaluations may range from simple narrative assessments of annual activities to more formal analyses of data collected to support the development of an NPS success story. If progress toward a given milestone does not occur, information will be collected and reported to explain the reason for lack of progress. If obstacles or issues are identified, possible solutions or remedies will be developed and reported. It may be necessary to reprioritize or revise some milestones for future revisions to the Plan; the rationale for these decisions will also be noted. All information will be used as a part of a comprehensive reevaluation of the NPS Plan and will be used to develop an outline of needed revisions to the Plan as a part of the update process, which is detailed at the end of Section 2.4.3. The adaptive management approach will be followed, as appropriate, for this formal program evaluation.

MassDEP will also continue to look for opportunities to improve current processes through its work with stakeholders; project partners; and its federal, state, and local NPS partners. This will include, at a minimum, gathering feedback from stakeholder forums, partner meetings, and customer interactions. Any smaller, incremental changes made to improve or clarify policy, enhance program efficacy, or incorporate new ideas will be reported as described below.
• **Timeframes:** Program evaluation will be completed annually, to coincide with the submittal of required CWA reports and annual reviews with USEPA as a part of tracking commitments established in the annual PPG Priorities and Commitments. This will apply to the evaluation of goals, objectives, and milestones set in the Plan, as well as any requirements established as a part of the PPG.

• **Reporting:** MassDEP will use the required NPS Program annual report to USEPA to report on the findings from annual program evaluations. An enhanced report, including evaluation and adaptive measures, will demonstrate commitment to achieving the goals of the Plan, highlight the work of partners in supporting the Plan, and identify needed actions to achieve Plan goals. Information on the impacts of NPS pollution and efforts to improve and protect water quality in the state will also be reported in the 305b/303d assessments.

• **Monitoring/assessment:** MassDEP will primarily use data collected from its water quality monitoring programs, as well as data from third party sources (see Section 6 for more information) to conduct assessments of impaired and unimpaired waters as required by Section 303d of the CWA. The results of these assessments will be used to demonstrate incremental improvements in water quality that can be attributed to NPS pollution mitigation activities conducted on a watershed scale. The results of any studies focused on NPS pollution, including TMDLs, will also be used to develop a broader picture of the state of water quality in Massachusetts.

The goals for the next five years will be to:

- Enhance and improve current monitoring programs to focus on NPS pollution analysis; and
- Collect data in a manner that helps to assess the efficacy of MassDEP and NPS partner program efforts to improve and protect water quality.

MassDEP envisions that, as monitoring program improvements are implemented, future goals, objectives, and milestones of the Plan will rely more heavily on water quality monitoring data to demonstrate program successes. In the next five years, MassDEP is committed to implementing monitoring program improvements as outlined in Section 4 of this Plan to help answer critical questions about the scope and extent of NPS pollution in Massachusetts. As appropriate, the results of any analyses conducted by MassDEP or NPS partner monitoring programs will be included with reports submitted to USEPA.

• **Coordination:**

 Federal/state. MassDEP will continue to work closely with USEPA on the coordination of all state and federal water quality programs in Massachusetts. Annual joint program reviews with USEPA, as well as more informal meetings, will be critical to determining how well Plan activities are progressing toward meeting goals, identifying barriers or resource gaps that could affect achievement of goals, and what priorities will shape future iterations and updates of the Plan. MassDEP will use the annual program review meeting on PPG goals and objectives, as well as the results of USEPA's annual review of the state’s s.319 Program required under Section(h)(8), to gather input from USEPA on program performance as well as report on program successes/challenges. The NPS Program annual report will also give USEPA an opportunity to gauge progress toward meeting NPS Plan goals. MassDEP and USEPA, over the next five-year period, will work together to share information, assess the NPS state/federal partnership, explore ways to improve communication and data-gathering, and coordinate on federal activities that may affect NPS pollution in Massachusetts.

 NPS partners. MassDEP will continue to work with the NPS partners, grantees, and other interested stakeholders to gather information on program efficacy, areas of possible improvement, and ways to enhance the efforts of others to achieve the goals set forth in this Plan. Section 4 of this Plan describes a number of objectives to increase stakeholder participation in the state NPS Program, which will help gather needed feedback on program successes and challenges. MassDEP is also committed to participating in both national and regional forums to share successes, learn from others, and advance policy on NPS pollution on both the state and federal level.

• **NPS Plan updates:** MassDEP envisions that in year four of the NPS Plan, an evaluation of the Plan will be conducted. Sections of the Plan that are outdated will be identified. An analysis of the Goals
section (Section 4) will be conducted and information will be compiled on the status of each goal and the associated objectives and milestones. Any objective or milestone that cannot reasonably be completed by the end of the five-year period will be identified. In some cases, it will be necessary to reexamine or redefine these based on available information or identified barriers. In other cases, new milestones will be developed that will support the achievement of the Plan goals. Goals set in this Plan are envisioned as being carried forward from this Plan to future Plans. However, MassDEP will assess whether new goals are needed based on changes in policy at the state or federal level. Information gathered and reported in previous submissions to USEPA will form the core of the NPS Plan update. Any updates to the NPS Plan will involve the NPS Partners. The state plans to have an updated, USEPA-approved NPS Management Program Plan in place by October 1, 2024.
SECTION 3: PARTNERSHIPS AND COLLABORATION

3.1 SUMMARY OF PRIMARY PARTNER PROGRAMS

The Massachusetts NPS Program involves collaboration between the MassDEP NPS Program and a broad network of partner programs. This NPS Plan update continues to focus on improving coordination with partner programs and identifying opportunities to leverage funding for NPS pollution projects through improved interagency collaboration and program structure. In particular, strengthening partnerships with agricultural agencies is a high priority to leverage NPS project funds from the USDA-NRCS Food, Conservation, and Energy Act (Farm Bill) conservation programs and other sources.

Opportunities for continued and improved interagency collaboration that are identified in this section are based discussions with NPS partner organizations conducted as part of the NPS Plan update. As such, these collaboration activities represent actions that have been agreed on by the relevant agencies as priorities and as achievable over the next five years.

Primary partner agencies that have specific and ongoing roles in the state NPS Plan are listed below in Table 3.1 and described in the sections that follow. Other partner organizations that play an important but less formalized role in managing NPS pollution in Massachusetts are discussed in Section 3.2. Partner program activities specifically focused on monitoring, evaluation, and assessment of waterbodies are discussed in greater detail in Section 6.

It is important to note that the MassDEP NPS Program must take the lead role in coordinating interagency efforts related to this NPS Plan. It is the responsibility of the NPS Program to reach out to its partner programs, support them in their efforts related to NPS pollution, and coordinate with them to ensure that mutual goals are met.
Table 3.1. Summary of Primary Massachusetts NPS Partner Entities

<table>
<thead>
<tr>
<th>Organization</th>
<th>Programs/Activities Related to NPS Pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Entities</td>
<td></td>
</tr>
</tbody>
</table>
| Massachusetts Department of Environmental Protection (MassDEP) | • Lead agency for state NPS Program, responsible for program implementation, s.319 grant program, 604(b) program and NPS Program reporting to USEPA
 • Other primary MassDEP Bureau of Water Resources (BWR) supporting programs include:
 − Division of Watershed Management’s (DWM’s) Watershed Planning Program (WPP), Wetlands Program, Drinking Water Program, Water Management Program, Wetlands Program, and Wastewater Management Program
 − Massachusetts Clean Water State Revolving Fund Program (CWSRF)
 − Natural Resources Damages (NRD) Program |
| Massachusetts Office of Coastal Zone Management (CZM) | • CZM manages the Massachusetts Coastal Nonpoint Pollution Control Program (CNPCP), implemented in coordination with MassDEP as part of the state NPS Plan
 • CPR Grant Program
 • Massachusetts Bays National Estuary Program (MassBays) |
| Massachusetts Department of Agricultural Resources (MDAR) | • Agricultural Environmental Enhancement Program (AEEP)
 • Agricultural Preservation Restriction Improvement Program (AIP)
 • Farm Viability Enhancement Program (FVEP)
 • Agricultural Energy Grant Program (Ag-Energy)
 • Agricultural Climate Resiliency and Efficiencies (ACRE) Program
 • Massachusetts Plant Nutrient Regulations |
| Massachusetts Executive Office of Energy and Environmental Affairs (EEA) | • EEA Climate Change Initiatives
 • Massachusetts Environmental Trust (MET)
 • Dam and Seawall Repair and Removal Fund
 • Water Resources Commission (WRC) |
| Massachusetts Department of Fish and Game (DFG) | • Division of Ecological Restoration (DER)
 • Division of Fisheries and Wildlife (DFW)
 • Division of Marine Fisheries (DMF) |
| Massachusetts Department of Conservation and Recreation (DCR) | • Office of Water Resources (OWR) Lakes and Ponds Program: includes monitoring and public education/outreach activities
 • Division of Water Supply Protection (DWSP): includes water quality sampling, monitoring, and reporting for Wachusett Reservoir and Quabbin Reservoir |
| Massachusetts Association of Conservation Districts (MACD) | • Coordination with MassDEP, MDAR, and NRCS to facilitate agricultural operator adoption of conservation practices |
| **Federal Agencies** | |
| U.S. Environmental Protection Agency (USEPA), Region 1 | • USEPA provides funding under s.319, 604(b), and other CWA programs
 • USEPA Region 1 provides programmatic oversight of state NPS Programs within the region
 • USEPA also has regulatory jurisdiction over certain aspects of urban stormwater pursuant to NPDES stormwater permits |
| U.S. Department of Agriculture (USDA) | • USDA Natural Resources Conservation Service (NRCS) activities focused on Farm Bill programs, including:
 − Environmental Quality Incentives Program (EQIP)
 − National Water Quality Initiative (NWQI)
 − Conservation Stewardship Program (CSP)
 − Regional Conservation Partnership Program (RCPP)
 − Agricultural Conservation Easement Program (ACEP)
 • USDA Farm Service Agency (FSA) programs, including farm loans, the Conservation Reserve Program (CRP), and the Source Water Protection Program |
3.1.1 Massachusetts Department of Environmental Protection

a. Bureau of Water Resources (BWR), Division of Watershed Management (DWM)

Program Description

BWR includes several departments and programs that are charged with monitoring and regulatory activities affecting water quality and quantity within the state's major river basins. These programs focus on building local and regional partnerships to bring about water quality improvement, including the following which involve aspects of NPS management:

- **Watershed planning:** The WPP relies on the collection and assessment of quality-assured monitoring data to support a variety of mandated programs under the federal CWA. The WPP reports on the health of the state's waters and watersheds. This is largely accomplished through the development and implementation of various types of watershed assessments, some of which focus on a particular aspect of watershed health (i.e., water quality). The WPP's efforts related to TMDLs, 303d listings, and monitoring/assessment of waterbodies are described in Section 6.

- **Drinking water:** The Drinking Water Program ensures that safe drinking water is delivered by public water systems according to national and state standards. In 1995 Massachusetts was the first state in the country to have a comprehensive Source Water Protection Program, including both surface water and groundwater, approved by USEPA. MassDEP's Drinking Water Program has a well-rounded Source Water Protection Program in place that reaches all 1,712 public water systems in Massachusetts. The program includes:
 - Compliance and technical assistance and training;
 - Help with developing wellhead and surface water supply protection plans and local land use controls;
 - Incentives for developing and implementing local protection strategies;
 - Participating in EEA's Drinking Water Supply Protection Grant Program, which awards funds to public water suppliers for purchases of land and conservation restrictions for water supply protection;
 - Encouraging public water suppliers to partner with land trusts and other community groups;
 - Coordination with other state agencies on regulatory protection; and
 - Selecting public water suppliers to receive annual source water protection awards.

The Program coordinates with MassDEP's WPP, EEA's Water Resources Commission, and DCR in regulating the quantity of water used for drinking water supplies and in promoting water conservation. Other activities include approval of new water supply technologies, regulating water vendors, source approval for bottled water, and public education on drinking water issues.

- **Water management:** The Water Management Act (WMA) authorizes the regulation of water withdrawals from both surface and groundwater sources in Massachusetts. The regulations establish enforceable standards, criteria, and procedures that will assist the Department in the comprehensive management of the Commonwealth's water resources in a manner that ensures an appropriate balance among competing water withdrawals and uses, and preservation of the water resource itself. The WMA consists of a few key components, including a registration program and a permit program.
Withdrawers typically requiring a permit include public water suppliers, 18-hole golf courses, cranberry growers, ski areas, sand and gravel facilities, fish hatcheries, agricultural users, and industrial users. Permit conditions may include but are not limited to installation of meters, limitations on daily withdrawal volume, conservation measures based on the State Water Conservation Standards, Zone II delineation for public water supply wells or firm yield determination for public surface water supplies, implementation of source water protection measures for public water supply sources, wetlands delineation and annual monitoring, and withdrawal reductions during times of low streamflow.

In 2010, EEA formed the Sustainable Water Management Initiative (SWMI) Advisory Committee. The Committee comprised a wide range of stakeholders and supported by staff, including those from EEA, the Water Management Program, DFG, and DCR. In 2012, EEA released the SWMI Framework, a precursor to the revision of regulations under the WMA. This framework, which represented over two years of dedicated research, stakeholder input and public outreach, was subsequently implemented in 2014 in revised Water Management regulations that incorporated the Framework’s methodology for defining Safe Yield and incorporating stream flow criteria into WMA permits. Successful implementation of this initiative will enable clear, predictable, and science-based permitting; ensure prudent and sustainable water use; maintain healthy watersheds; and gradually improve degraded ones. Key priorities and components of the initiative include:

- SWMI is focused on helping communities meet mitigation requirements related to water consumption (surface/groundwater withdrawals), with a strong focus on groundwater.

- Some stormwater improvements (e.g., those with a groundwater recharge and filtration component) could be eligible for SWMI grant funding. Projects involving recharge improvements (stormwater capture/harvesting) have potential for crossover with NPS pollution reduction. Since SWMI is state-capital-funded and mitigation work required under SWMI is not related to NPDES requirements, most SWMI work can be used as match for s.319 projects. Projects in wellhead protection areas would need to meet the Zone II requirements. Furthermore, SWMI projects often help to address NPS pollution in regulated stormwater areas where work is not eligible for s.319 funds.

- SWMI classifies subbasins by biological category and groundwater withdrawal category. The Massachusetts RPST includes a SWMI layer in its ranking system, as described in greater detail in Section 5.

- SWMI permits are issued and reviewed on a watershed basis. Permits are good for 20 years at the most and are frequently reviewed. The NPS Program should be aware of the watersheds to be reviewed to allow for greater project coordination. NPS Program staff should be included in the interagency consultation on these permits.

- **Wetlands:** The Wetlands Program ensures the protection of inland and coastal wetlands, tidelands, great ponds, rivers, and floodplains by administering and enforcing the Massachusetts Wetlands Protection Act, the Inland and Coastal Wetlands Restrictions Acts, and the 401 Water Quality Certification Program. By regulating activities that may alter wetlands, including administering stormwater standards, the Program ensures that the state’s wetlands continue to provide valuable benefits such as flood control, prevention of pollution and storm damage, and protection of water supplies, fisheries, and wildlife habitat. Similar to the WPP, the Wetlands Program collects and assesses quality-assured monitoring data under the federal CWA to report on the health of the state’s wetlands in the 305(b) report.

- **Wastewater management:** MassDEP’s wastewater programs protect public health and the environment through regulation of discharges from treatment plants, industrial facilities, sewers, and other sources. These programs also ensure the safety of septic systems and alternative septic treatment technologies. The state Title 5 Regulations (310 CMR 15.00) ensure proper and effective disposal of NPS discharges from onsite wastewater systems.
NPS Program and BWR Collaboration

- **Watershed planning**: The NPS Program Coordinator participates in weekly senior staff meetings with watershed planning staff. Additional discussions related to program and priority integration are held on a frequent (often daily) basis, including policy topics such as the MassDEP vision for the 303(d) list and integration of watershed planning efforts with the state NPS Plan.

- **Drinking water**: Coordination between the Drinking Water Program and NPS Program typically occurs when there are wellhead protection, surface water supply, or drinking water reservoir and intake issues related to NPS pollution. For example, NPS Program staff provide technical guidance on which BMPs may be most appropriate to protect these areas from a specific NPS pollutant or source. In addition, the 604(b) Program has funded assessment projects that are directly related to drinking water and source water protection.

- **Water management**: NPS Program staff has historically participated in the SWMI mini-grant review/selection process. Many SWMI projects involve infiltration practices that are consistent with the goals of the NPS Program and could help leverage s.319 projects as matching funds.

- **Wetlands program**: Coordination between the Wetlands Program and NPS Program typically occurs when there is a wetlands regulatory issue that includes an NPS pollution component, including permitting for s.319-funded projects. NPS Program staff provide similar statewide technical support to municipal Conservation Commissions. The NPS Program also coordinates with the Wetlands Program on development and program integration of the Conservation Assessment and Prioritization System (CAPS), described in Section 5.

- **Wastewater management**: Coordination between the Wastewater Management Program and NPS Program occurs through joint participation in activities related to MASSTC. As further described in Section 2, MASSTC receives joint funding from USEPA and MassDEP.

NPS Plan activities that involve collaboration between the NPS Program and other MassDEP divisions and programs are listed below in Table 3.2. The activities listed represent new activities that were not part of the previous (2014) version of the NPS Plan, as well as collaborations that are ongoing from the previous Plan. Table 3.2 provides the location of each listed activity in Table 4.1, which is a comprehensive list of all goals and milestones proposed for the next five years as part of this NPS Plan update.

Table 3.2. NPS Plan—BWR Collaboration Activities

<table>
<thead>
<tr>
<th>Collaboration Activity</th>
<th>Location in Table 4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Improved coordination between BWR monitoring programs and MassDEP and USEPA CWA programs (e.g., s.319, TMDL, 303d) is a critical need to make progress on the multiple objectives for state water quality monitoring. The NPS Plan includes planning efforts involving USEPA and MassDEP program leads as an important first step in this process of reaching agreement on the prioritization of resources and program goals.</td>
<td>Goal 4, Milestone 4.a</td>
</tr>
<tr>
<td>2. NPS Program needs related to monitoring/assessment could be addressed through better coordination with BWR watershed monitoring/assessment work. Setting priorities in advance of the development of annual work plans could allow for targeted or baseline monitoring of high priority NPS watersheds. The NPS Plan includes milestone activities focused on program coordination to select targeted and baseline monitoring watersheds and development of a pilot targeted monitoring program to assess BMP effectiveness.</td>
<td>Goal 4, Milestones 2.a–c, Goal 4, Milestone 3.e</td>
</tr>
</tbody>
</table>
3. Enhance groundwater recharge and protection of critical surface and subsurface water supplies encourage ongoing coordination and identification of shared objectives between the NPS Program and SWMI.

| 3. Enhance groundwater recharge and protection of critical surface and subsurface water supplies encourage ongoing coordination and identification of shared objectives between the NPS Program and SWMI. | Goal 2, Milestone 6.a |

4. Assessment of water quality data by WPP to determine if improvements in water quality have occurred in watersheds with NPS-focused water quality improvement activities.

| 4. Assessment of water quality data by WPP to determine if improvements in water quality have occurred in watersheds with NPS-focused water quality improvement activities. | Goal 4, Milestone 3.d |

5. Support improved data sharing among BWR programs to better support water quality characterization, NPS identification, and prioritization of funding for multiple programs.

| 5. Support improved data sharing among BWR programs to better support water quality characterization, NPS identification, and prioritization of funding for multiple programs. | Goal 4, Milestone 7.a |

b. Massachusetts Clean Water State Revolving Fund Program (CWSRF)

Program Description

The CWSRF provides low-interest subsidized loans to assist municipalities in complying with federal and state water quality requirements. Sections 212, 319, and 320 of the federal CWA provide the statutory authority for CWSRF-funded programs. Initial federal funding for the CWSRF is provided through USEPA. The CWSRF is authorized to provide financial assistance for construction of publicly owned treatment works (s.212), projects that implement NPS management programs (s.319), and development and execution of an estuary conservation and management plan (s.320). Massachusetts also has a separate Drinking Water State Revolving Fund (DWSRF), which is a joint federal-state financing program providing subsidized interest loans to protect public health by improving water supply and infrastructure systems and protecting drinking water.

The CWSRF is jointly administered by the MassDEP Division of Municipal Services and the Massachusetts Water Pollution Abatement Trust. Each year, MassDEP solicits projects from municipalities and wastewater districts to be considered for subsidized loans. The current subsidy is provided via a 2% interest loan. In recent years, the program has operated with $300 to $350 million per year and has financed 50 to 70 projects annually. A CWSRF goal is to provide incentives to communities for projects that have meaningful water quality and public health benefits and address the needs of the communities and the watersheds.

Financial assistance is available for planning and project construction, including combined sewer overflow (CSO) mitigation, new and upgraded wastewater treatment facilities, infiltration/inflow correction, wastewater collection systems, and NPS pollution abatement projects, including green infrastructure projects. These projects can include landfill capping, community programs for upgrading septic systems, brownfield remediation, pollution prevention, and stormwater remediation. Non-structural projects are also eligible for CWSRF funding (e.g., planning projects for NPS problems that are consistent with the NPS Plan, identify pollution sources, and suggest potential remediation strategies).

MassDEP ranks projects using the Commonwealth’s priority ranking system, which is reviewed annually to reflect changing priorities. The current criteria emphasize the following:

- The nature of the public health problem that the project will address;
- The criticality of the resources affected;
• The environmental benefits of the project;
• The effectiveness of the project solution;
• The extent to which the project is consistent with region- or watershed-wide plans; and
• The extent to which projects qualify as green projects.

NPS Program and CWSRF Collaboration

Section 5 of this NPS Plan details the activities and categories of NPS pollution sources that are the focus of funding priorities for both the NPS Program and the CWSRF. Projects that address these priorities are eligible for funding under either program. The state portion of CWSRF project funding may be counted as match for Section 319 grants.

Throughout the history of its CWSRF, Massachusetts has leveraged the federal SRF grant to expand the available loan capacity and underwrite many more projects than would have been possible had the Commonwealth used the direct loan approach taken by most states. One consequence of the leveraged approach is that Massachusetts has been able to finance a number and variety of NPS planning and management projects over the years, despite the fact that NPS projects, due to scope and scale, are generally not as competitive as traditional wastewater projects. Traditional wastewater projects, the so-called CWA Section 212 projects, naturally tend to have more impact on public health and environmental resources, and thus score more highly in the rankings. Nonetheless, NPS projects are proposed and financed by Massachusetts’ communities. Over the 30-year period from 1989 to 2019, the CWSRF funded $206 million in NPS category work, including landfill closures, septic upgrades to sewer, and green infrastructure (all projects that fell within the NPS category of the SRF reporting system). Project types that the Commonwealth has financed and will continue to finance include Stormwater Management Plans, landfill capping and closure, onsite wastewater systems, package treatment plants, and water and energy efficiency projects. Specific to septic issues, CWSRF loans are available at 0% interest in nutrient-impaired areas, to incentivize projects that mitigate nitrogen NPS pollution from septic systems.

Limited development of stormwater utilities in the Commonwealth seems to have limited the number of non-CSO stormwater projects that have been proposed by municipalities to compete for CWSRF loans. While water and wastewater systems can count upon their rate structures to underwrite financing costs, Massachusetts communities typically do not have similar revenue streams associated with stormwater management upgrades unless a stormwater utility program has been adopted. Consequently, loans for stormwater improvements compete with other municipal expenses, such as schools, police, and public works. Anticipating that additional federal requirements and/or expanded development of stormwater utilities will occur in the near future, the CWSRF program anticipates a resulting additional demand for SRF financing. Given the maturity and capacity of the Massachusetts’ CWSRF program, it is not anticipated that any kind of set-aside will be needed to ensure that NPS projects can be sufficiently competitive to earn a listing on the state’s Intended Use Plans (IUPs).

NPS Plan activities that involve collaboration between the NPS Program and CWSRF are listed below in Table 3.3. The activities listed represent collaborations that are ongoing from the previous (2014) version of the NPS Plan. Table 3.3 provides the location of each listed activity in Table 4.1, which is a comprehensive list of all goals and milestones proposed for the next five years as part of this NPS Plan update.
Table 3.3. NPS Plan—CWSRF Collaboration Activities

<table>
<thead>
<tr>
<th>Collaboration Activity</th>
<th>Location in Table 4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>The NPS Program and CWSRF will coordinate on a new program partnership focused on stormwater remediation and mitigation.</td>
<td>Goal 3, Milestone 2.b</td>
</tr>
<tr>
<td>Incorporate groundwater protection/recharge into watershed planning and implementation activities through partnership agreements with CWSRF, groundwater programs.</td>
<td>Goal 5, Milestone 4.b</td>
</tr>
</tbody>
</table>

c. **Natural Resources Damages (NRD) Program**

Program Description

On behalf of the Secretary of Energy and Environmental Affairs, who serves as the Commonwealth’s Natural Resource Trustee, the MassDEP Bureau of Waste Site Cleanup implements the NRD Program to (1) assess injuries to natural resources resulting from releases of oil or hazardous materials and substances; (2) bring claims against responsible parties for monetary damages to compensate the public for these injuries; and (3) plan and implement projects to restore, replace, or acquire the equivalent of natural resources and the services that they provide to the environment and the public. The Commonwealth of Massachusetts manages natural resources such as fish, shellfish, wildlife, rare species, groundwater, rivers, lakes, ponds, and wetlands, and holds them in trust for the public. The Trustees’ duty is to exercise general care and oversight of the natural resources of the Commonwealth; to propose and carry out measures for the protection, conservation, control, and use thereof; and to remedy any damage or destruction to the environment.

When a release of oil or hazardous materials or substances occurs, Trustees take action to:

- Conduct a pre-assessment screen to review available information and determine if an NRD assessment can and should be performed;
- Identify natural resources that have been lost, destroyed, or injured by toxic pollutants;
- Determine and quantify the spatial and temporal extent of injuries;
- Identify and evaluate feasible and cost-effective alternatives to restore resources to a baseline condition; and
- Seek appropriate compensation from polluters in the form of monetary damages or restoration actions.

Once these steps are completed, actions are taken to develop and implement restoration plans to restore the same or similar natural resources and services that have been injured. Program and related project funding comes from legal settlements. Funded activities depend on the nature of the natural resources and services that have been injured and the geographic area of consideration for use of funds depends on the specifics of each settlement. The scope of restoration can be very focused (e.g., in a particular sub-watershed) or extensive (e.g., throughout a major watershed). Restoration of some natural resources (e.g., migratory fish and birds) may take place in another watershed.
NPS Program and NRD Program Collaboration

Complex NRD settlements can take years to negotiate and the assessments are confidential, limiting possible partner coordination. However, the NRD Program often uses information, data, and expertise from partners to help assess natural resource injuries. Once a settlement is finalized, the NRD Program conducts interagency consultation as part of the process to identify potential restoration projects. NRD funds can be used flexibly (no strict funding schedule) and can be leveraged by s.319 grant projects and other programs (e.g., used as non-federal match requirement). NPS Program staff support NRD’s review of restoration proposals and NRD strives to make applicants aware of multiple funding opportunities, including s.319 grants and 604(b) grants. Even so, opportunities exist to improve collaboration between NRD and the NPS Program to better leverage funds available through both programs.

NPS Plan activities that involve collaboration between the NPS Program and NRD Program are listed below in Table 3.4. The activities listed represent new activities that were not part of the previous (2014) version of the NPS Plan as well as collaborations that are ongoing from the previous plan. Table 3.4 provides the location of each listed activity in Table 4.1, which is a comprehensive list of all goals and milestones proposed for the next five years as part of this NPS Plan update.

Table 3.4. NPS Plan—NRD Collaboration Activities

<table>
<thead>
<tr>
<th>Collaboration Activity</th>
<th>Location in Table 4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where appropriate and consistent with other program goals, the NPS Program will</td>
<td>Goal 1, Milestone 2.f</td>
</tr>
<tr>
<td>coordinate with the NRD Program to address mutual restoration goals and leverage</td>
<td></td>
</tr>
<tr>
<td>s.319 grant projects (e.g., help provide match requirement).</td>
<td></td>
</tr>
<tr>
<td>Convene and participate in roundtable discussions between NRD, MET, DER, DFG, and</td>
<td>Goal 1, Milestone 2.a</td>
</tr>
<tr>
<td>MassDEP to improve collaboration, data sharing, and coordination among</td>
<td>Goal 4, Milestone 7.a</td>
</tr>
<tr>
<td>recovery-focused efforts including monitoring.</td>
<td></td>
</tr>
</tbody>
</table>

3.1.2 Massachusetts Office of Coastal Zone Management (CZM)

a. Massachusetts Coastal Nonpoint Pollution Control Program (CNPCP)

Program Description

Under Section 6217 of the federal 1990 Coastal Zone Act Reauthorization Amendments (CZARA), states and territories with approved Coastal Zone Management Programs are required to develop the CNPCP. In its program, a state or territory describes how it will implement NPS pollution controls, known as management measures, that conform to those described in Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters. This program is administered jointly by the National Oceanic and Atmospheric Administration (NOAA) and USEPA. The management measures cover the range of potential NPS pollution sources that can be found within the coastal zone and include urban sources (developed areas, septic systems, erosion and construction sites, watershed protection, and roads and highways), marinas and recreational boating, agriculture, forestry, hydromodification, and also wetlands restoration and protection efforts. In Massachusetts, CZM manages the CNPCP, which is implemented in coordination with MassDEP as part of the state NPS Plan that is specific to the Massachusetts Coastal Zone. CZM submitted a draft CNPCP Plan in 1996 and received full program approval from NOAA and USEPA in 1997. A long-term (15-year) strategy and short-term (five-
year) goals were developed in 1999 with proposed goals and actions. The CNPCP Plan was revised in 2014 with updates to the long-term strategy and short-term goals.

This NPS Plan update did not include any changes to the CNPCP. Current CNPCP goals and action items are incorporated into this NPS Plan and included as Appendix B. CZM activities related to monitoring are described in Section 6.

b. Coastal Pollutant Remediation Grant Program (CPR)

Program Description

The CPR Grant Program funds roughly $500,000 per year in projects throughout the designated Massachusetts coastal watershed. More than 11 million dollars has been dispersed in program funding since 1996. The CPR Program has the following priorities:

- Remediate pollution to waterbodies listed on the state’s Integrated List of (Impaired) Waters;
- Improve or protect estuarine and freshwater habitat for diadromous fish within the coastal watershed;
- Protect or improve condition of coastal habitats such as salt marshes and eelgrass beds;
- Improve water quality in waterbodies subject to eutrophication from nutrient inputs in stormwater runoff and boat waste discharges;
- Reduce or eliminate instances of beach closures due to elevated bacteria levels;
- Preserve or expand opportunities for shellfish harvesting;
- Site and design stormwater BMPs to increase treatment effectiveness and long-term resiliency to climate change impacts;
- Expand the use of appropriate green infrastructure and low-impact development techniques where to manage and treat stormwater effectively; and
- Install commercial boat waste pumpout facilities to support compliance with the statewide No Discharge Zone.

The CPR grant program emphasizes projects that benefit coastal ecosystems and recreational and economic activities, especially those that include BMPs to reduce bacteria, nutrients, and other pollutants affecting coastal resources. The CPR funds three categories of coastal zone projects:

- Assessment, identification, and characterization of NPS pollution from impervious (hard) surfaces, which can include determining sources of roadway-related pollution, identifying appropriate stormwater control methods (also known as BMPs), and siting these BMPs;
- Design/construction of BMPs to treat runoff from roads, highways, and municipal parking lots; and
- Design and construction of commercial boat-waste pumpout facilities to reduce pollution related to discharges from vessel holding tanks.

CZM also provides technical assistance for marinas and other entities that might pollute coastal zones, through the release and use of the Clean Marina Guide. CZM Regional Coordinators also provide direct technical assistance to communities that are implementing coastal projects.

c. Massachusetts Bays National Estuary Program (MassBays)

Program Description

MassBays is one of 28 National Estuary Programs established by Congress in the CWA, Section 320 (reauthorized in 2016). While its official boundaries reach up into the watersheds that drain to Ipswich Bay, Massachusetts Bay, and Cape Cod Bay—and offshore to the Stellwagen Bank National Marine Sanctuary—MassBays focuses its efforts on the near-coast and estuarine reaches of the Bays’ coastal streams. MassBays funds a small-grant program called the Healthy Estuaries Grant to support local
investigations of habitat and water quality conditions, and proof-of-concept research efforts. In December 2018, the Management Committee endorsed a draft Comprehensive Conservation and Management Plan (CCMP) for submission to USEPA, titled “Blueprint for the Bays,” that will guide MassBays’ activities for the next 10 years.

Key collaboration between the NPS Program and MassBays include:

- MassDEP has served on MassBays’ Management Committee since before its designation as an NEP. Since 2013, MassDEP has provided a representative who attends quarterly meetings and participates in the Science and Technical Advisory Subcommittee.
- MassBays serves as a reviewer for the s.319 grant program.

NPS Program and CZM Collaboration

As stated above, the CNPCP was developed and implemented in coordination with MassDEP as part of the state NPS Plan. Many of the NPS Program milestones in Section 4 support the CNPCP, and their completion will document progress in addressing NPS pollution in the coastal zone.

In addition, the MassDEP 604(b) Program Coordinator serves on the CZM committee to annually review CPR grant applications. A NPS Program representative also sits on the CPR grant review committee. Through the 604(b) Program, MassDEP has collaborated with the CPR program to conduct assessments and advance preliminary BMP designs in select watersheds. There are several examples of 604(b) funds being used for assessment, with subsequent construction/implementation funded through CPR grants. Similarly, projects assessed and designed using CPR funds have been constructed and implemented using s.319 funds. MassDEP and CZM also partnered on a study to better understand the impact of climate change on stormwater management BMPs and provide recommendations on design and siting of BMPs in coastal communities, culminating in the release of a guidance document in 2015. In RFRs, CZM recommends that applicants review the BMP guidebook.

NPS Plan activities that involve collaboration between the NPS Program and CZM are listed below in Table 3.5. The activities listed represent new activities that were not part of the previous (2014) version of the Massachusetts NPS Plan, as well as collaborations that are ongoing from the previous Plan. Table 3.5 provides the location of each listed activity in Table 4.1, which is a comprehensive list of all goals and milestones proposed for the next five years as part of this NPS Plan update, or in the 2014–2029 CNPCP Program Strategy.

Table 3.5. NPS Plan—CZM Collaboration Activities

<table>
<thead>
<tr>
<th>Collaboration Activity</th>
<th>Location in CNPCP or Table 4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>By 2024, working with MassDEP, the Municipal Vulnerability Program, and other partner agencies, CZM will (1) continue to develop and implement strategies to mitigate adverse effects of climate change on waters and wetlands within the coastal zone, and (2) work with coastal zone stakeholders to plan for and implement adaptations to existing infrastructure to increase resilience and protect critical habitats from adverse effects of climate change.</td>
<td>1.D. Urban Areas: Watershed Protection (CNPCP)—see Appendix B</td>
</tr>
</tbody>
</table>
By 2024, working with MassDEP and other partner agencies, CZM will (1) continue to support the improvement and protection of coastal habitat and water quality through technical assistance and the CPR grant program and work with MassDEP and other partners to identify high-priority areas to target, and (2) establish programs to educate stakeholders on the importance of protection of these resources, target resources to protect these areas from future environmental impacts, and help align partner program resources to enhance efforts to protect water quality in these watersheds.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>By 2024, working with MassDEP and other partner agencies, CZM will (1) continue to support the improvement and protection of coastal habitat and water quality through technical assistance and the CPR grant program and work with MassDEP and other partners to identify high-priority areas to target, and (2) establish programs to educate stakeholders on the importance of protection of these resources, target resources to protect these areas from future environmental impacts, and help align partner program resources to enhance efforts to protect water quality in these watersheds.</td>
<td>Goal 1, Milestone 3.c</td>
</tr>
<tr>
<td>MassDEP will continue to encourage the use of s.319 funds on projects that were designed or assessed using CPR funds, and the use of 604(b) funds for assessment work that could lead to design/implementation with CPR funds.</td>
<td>Goal 3; Milestone 2.a–b</td>
</tr>
<tr>
<td>MassDEP will continue to support healthy watersheds and alignment with CZM coastal priorities, such as an increased emphasis on long-term salt marsh health.</td>
<td>Goal 1; Milestone 2.g</td>
</tr>
</tbody>
</table>

3.1.3 Massachusetts Department of Agricultural Resources (MDAR)

MDAR’s mission is to ensure the long-term viability of agriculture in Massachusetts. MDAR strives to support, regulate, and enhance the rich diversity of the Commonwealth’s agricultural community to promote economically and environmentally sound food safety and animal health measures, and fulfill agriculture’s role in energy conservation and production.

A brief summary of MDAR programs that are applicable to NPS pollution is provided below, followed by a discussion of opportunities for improved collaboration between MDAR and the NPS Program.

- **Agricultural Environmental Enhancement Program (AEEP):** The AEEP is MDAR’s primary program related to NPS pollution. AEEP supports agricultural operations with installation of conservation practices to improve water quality, air quality, and efficient water use. Farmers are reimbursed for 85% of project costs up to $25,000 to install approved practices. In 2018, about $350,000 was awarded to 23 projects, ranging from $1,700 to $25,000 per project. Examples of eligible practices include manure storage, irrigation efficiency, water control structures, pesticide storage facilities, and fencing to keep livestock out of a water resource.

- **Agricultural Preservation Restriction Improvement Program (AIP):** The purpose of the AIP is to help sustain active commercial farming on land that has already been protected through the MDAR Agricultural Preservation Restriction Program. AIP provides technical assistance and business planning to improve farm productivity and profitability. The AIP provides assistance to enhance the long-term use of the agricultural resource, which may include economic viability, environmental sustainability, resource conservation, family succession planning, infrastructure improvement, or other issues. Participants may be eligible to receive funds of $25,000–$100,000 as reimbursement for on-farm projects, including resource management or new or improved buildings.

- **Farm Viability Enhancement Program (FVEP):** FVEP seeks to improve the economic viability and environmental integrity of participating farms through development and implementation of farm viability plans. FVEP offers farmers environmental, technical, and business planning assistance to expand, upgrade, and modernize their operations. The program offers grants of $25,000–$125,000. Capital for the implementation of the improvements recommended in the viability plan is available in exchange for an agricultural covenant on the farm property for a fixed term of five or 10 years.
- **Agricultural Energy Grant Program (Ag-Energy):** This program funds projects to improve energy efficiency, promote farm use of alternative clean energy technologies, and help farmers switch from oil heating to natural gas. It is associated with NPS pollution control through funding of projects resulting in air quality improvements. Up to $25,000 is available in two categories: renewable energy and energy efficiency. Priority is given to proposals that focus on technologies listed in the application. Priority projects for renewable energy have included geothermal, photovoltaics, wind, and solar thermal. Priority projects for energy efficiency have included precoolers, variable-speed vacuum pumps, thermal blankets, reverse osmosis, and high-efficiency refrigeration.

- **Agricultural Climate Resiliency & Efficiencies (ACRE) Program:** The ACRE program provides funding for projects that address agricultural vulnerability to climate change. The program also looks to fund projects that meet the goals in the Massachusetts Local Action Food Plan. Eligible projects areas include soil health (e.g., no-till equipment), protection of water resources, energy efficiency and renewables, and food safety.

- **Massachusetts Plant Nutrient Regulations:** In 2012, the Massachusetts Legislature passed An Act Relative to the Regulation of Plant Nutrients, which directed MDAR to develop regulations to ensure that plant nutrients are applied effectively to provide sufficient nutrients for maintaining healthy agricultural and non-agricultural land, including turf and lawns, while minimizing the impacts of the nutrients on surface water and groundwater resources to protect human health and the environment. Regulations were promulgated in late 2015 and revised in early 2018. In addition to ensuring the proper use and application of plant nutrients, the regulations also enhance the ability of municipalities to maximize the credits relative to stormwater discharge or similar permits issued by USEPA.

NPS Program and MDAR Collaboration

- MDAR partners with USDA-NRCS and MACD. For example, the entities have worked collaboratively through the Palmer River NWQI to encourage and support implementation of conservation practices that address agricultural NPS discharges. This type of collaboration is being repeated in Worcester County through an NRCS RCPP grant to MACD, who provides on-the-ground support to direct farmers to available assistance and facilitates management of contracts to implement conservation practices. MDAR funding can be used as a non-federal match for NRCS EQIP grants or on project components that NRCS cannot fund. As of 2019, MassDEP is not involved in the Worcester County RCPP project, but this Plan includes objectives and milestones related to coordination with relevant partners.

- MassDEP coordinates with MDAR as needed when MassDEP identifies a water quality concern related to agricultural activities. MDAR is responsible for following up on issues and coordinating with MassDEP on any necessary action.

- MassDEP’s Drinking Water program participates in quarterly meetings of MDAR’s Pesticide Board. The Board also includes representatives of the Division of Food and Drugs, DFG, DCR, and Department of Public Health (DPH), as well as farming, commercial pesticide applicators, pesticide toxicology, the environmental community, the medical community, and citizens at large. The Pesticide Board was created with the passage of the 2006 Massachusetts Pesticide Control Act (MGL 132B) to advise the Commissioner of Agricultural Resources and to approve MDAR actions proposed to implement and administer the Pesticide Control Act.

- The AEEP focuses on priority practices, not geographic regions. Grant prioritization does award extra points based on local conditions (e.g., proximity to a Zone 2 or other sensitive environmental receptor based on GIS review). This is an opportunity for improved coordination with MassDEP and MDAR working together with a shared focus on priority watersheds, including project timing, grant prioritization, etc.

- A challenge exists with regard to addressing NPS discharges from the large number of smaller “hobby” farms, horse owners, and individuals that conduct agriculture-type activities but do not participate in traditional agricultural conservation programs.
Disbursement of MDAR grant funds after project completion represents a potential challenge for producers as well as an opportunity for coordination between MDAR and the NPS Program. MDAR must have proof that activities have occurred, not just an invoice, before grant funds can be released. This impedes completion of larger projects where producers are not able to pay for them upfront and must wait for later reimbursement. The s.319 grant program only requires an invoice for reimbursement and can therefore potentially offer quicker reimbursement to grantees; improved coordination between MDAR and the NPS Program can facilitate identification of agricultural projects that may be eligible for s.319 funding.

MDAR could facilitate program coordination by applying for s.319 grant funds in target watersheds for specific project types (e.g., BMPs to reduce nutrients from hobby farms).

It would be beneficial to MassDEP and MDAR to set mutually-agreed-on priorities for grants and explore other coordination avenues to mesh like-focused programs.

Opportunities for collaboration on these and related policy issues are summarized below.

NPS Plan activities that involve collaboration between the NPS Program and MDAR are listed below in Table 3.6. The activities listed represent new activities that were not part of the previous (2014) version of the NPS Plan as well as collaborations that are ongoing from the previous Plan. Table 3.6 provides the location of each listed activity in Table 4.1, which is a comprehensive list of all goals and milestones proposed for the next five years as part of this NPS Plan update.

Table 3.6. NPS Plan—MDAR Collaboration Activities

<table>
<thead>
<tr>
<th>Collaboration Activity</th>
<th>Location in Table 4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expand membership of Section 319 grant review committee to include MDAR staff.</td>
<td>Goal 1, Milestone 2.c</td>
</tr>
<tr>
<td>Continue coordination among NRCS, MDAR, MACD, and MassDEP to support agricultural projects in the Palmer River watershed to continue progress achieved through the NWQI.</td>
<td>Goal 1, Milestone 5.a</td>
</tr>
<tr>
<td>Continue informal coordination and data sharing with NRCS and MDAR that is consistent with Section 1619 of the Farm Bill.</td>
<td>Goal 1, Milestone 6.a</td>
</tr>
<tr>
<td>Collaborate with MDAR in establishing geographic focus areas for addressing agricultural NPS and targeting s.319 funds.</td>
<td>Goal 1, Milestone 5.c</td>
</tr>
<tr>
<td>Coordinate with MDAR on a partnership agreement (MOU) on collaboratively addressing NPS pollution from agricultural sources through program coordination, increased communication, and technical support to producers.</td>
<td>Goal 1, Milestone 6.b</td>
</tr>
<tr>
<td>Address NPS issues from agricultural sources through interagency policy/grant coordination and implementation of nutrient regulations.</td>
<td>Goal 1, Milestone 6.c</td>
</tr>
<tr>
<td>Support efforts to establish a Regulatory Certainty Program between MassDEP, MDAR, and USDA-NRCS.</td>
<td>Goal 1, Milestone 6.d</td>
</tr>
<tr>
<td>Support MassDEP’s ongoing participation on the State Pesticide Board.</td>
<td>Goal 5, Milestone 4.e</td>
</tr>
</tbody>
</table>

3.1.4 Massachusetts Executive Office of Energy and Environmental Affairs (EEA)

EEA oversees the following departments: MDAR, DCR, Department of Energy Resources, MassDEP, DFG, Department of Public Utilities, and Massachusetts Environmental Policy Act Office.
a. **EEA Climate Change Initiatives**

In September of 2016, Governor Baker signed a nation-leading Executive Order, “Establishing an Integrated Climate Change Strategy for the Commonwealth.” Executive Order 569 directed agencies to develop and implement an integrated strategy that leverages the state’s resources to combat threats from climate change. The Order detailed coordinated action to further reduce greenhouse gas emissions, safeguard our citizens from the ongoing impacts of climate change through climate adaptation, protect the environment, and build a more resilient Commonwealth.

Building on this Order was legislation signed by Governor Baker in August of 2018, authorizing over $2.4 billion in capital allocations for investments in safeguarding residents, municipalities and businesses from the impacts of climate change, protecting environmental resources, and improving recreational opportunities. The Bond Bill codified the Governor’s Executive Order, putting a number of programs into law and ensuring that all environmental spending will consider climate change. The approach includes:

- **Massachusetts State Hazard Mitigation and Climate Change Adaptation Plan:** Working across state government and engaging over 500 stakeholders, Massachusetts developed the first-in-the-nation State Hazard Mitigation and Climate Adaptation Plan, a blueprint for the state’s efforts to prepare for natural hazards and adapt to the impacts of climate change over the next five years. The Baker-Polito Administration’s Plan is the first in the nation to take an integrated approach to climate change and natural hazard planning. Completed in September 2018, the plan uses the best science to assess risk from natural hazards and climate change and to operationalize adaptation strategies.

- **Municipal Vulnerability Preparedness (MVP) Program:** Launched in 2017, this partnership program between state government and cities and towns helps municipalities plan for and implement priority climate change adaptation projects that build resiliency and reduce risk. In its first year, the MVP program enrolled over 20% of the Commonwealth’s cities and towns, and in 2019 EEA celebrated enrolling half of Massachusetts municipalities in the program. The MVP program is being used as a national model by the Nature Conservancy (TNC) and the U.S. Climate Alliance.

b. **Massachusetts Environmental Trust (MET)**

Funded primarily through the sale of three environmental license plates, MET provides approximately $450,000 annually to fund projects with a typical maximum award of $50,000. Over the next five years, MET hopes to increase the available funds by encouraging residents to purchase MET license plates. MET is releasing a 30-year report to educate the public on the program, issuing a new striped bass license plate to collect funds for coastal watershed projects, and participating in marketing efforts associated with whale advocacy in 2020 (the 25th anniversary of the whale license plate). The scope of eligible activities is intentionally broad, although there is an increased focus on directing MET funds toward endangered species and river restoration. MET tries generally to support statewide interests, but does have several historical program priorities, including marine mammal protection and fish passage. The key project areas listed in MET RFRs include:

- Marine mammal and sea turtle conservation
- Aquatic ecosystem restoration and enhancement

Within these key project areas, a successful application is likely to incorporate some combination of the following components related to water quality and pollution issues (note that other components are also considered—this list represents those that relate to NPS Program goals):
• Addressing factors affecting areas that support nurseries, feeding, migration, and spawning for at-risk fish;
• Advancement of the revival of urban rivers and rural rivers that go through mill towns;
• Documentation and dissemination of results of monitoring and modifying marine, estuarine, and freshwater systems;
• Mitigation of impacts to nesting, foraging, and staging habitat for endangered shorebirds; and
• River and estuary continuity and restoration efforts to restore natural biodiversity and habitat.

MET funds are often used early in a project for feasibility studies and other activities that serve as a stepping stone toward larger projects. Coordination with the NPS Program can help leverage s.319 funds in areas where MET funds were used for project assessment or design.

c. **Dam and Seawall Repair and Removal Fund**

This program is funded by a $20.1 million trust and is intended to operate as a revolving fund. In FY 2019, just over $10.2 million was awarded to municipalities and organizations in the form of grants and loans to fund 22 projects.

While projects that enhance public safety are the priority, evaluation criteria also include improvements to public health, climate change resiliency, and the project’s potential to improve or expand functions of naturally occurring systems. Water quality improvement and NPS management can be co-benefits of funded projects, particularly dam removals, but those benefits are not independently evaluated or quantified.

The Fund accepts applications annually through a RFR from municipalities, nonprofit organizations, and, in the case of dams only, private owners. Financing is offered through grants, loans, or a combination of the two.

Improved coordination with the NPS Program, including s.319 projects, would require that linkages be made to the water quality benefits of dam removal; however, those benefits are coincidental to the fund’s mandate, which is hazard mitigation. There is opportunity to co-locate NPS-related projects with dam removals if grantees are encouraged to look into multiple funding sources, particularly because these funds can be used as a match for 319 grants.

d. **Water Resources Commission (WRC)**

The Water Resources Commission (WRC) was established in 1956 by the Massachusetts Legislature and is responsible for developing, coordinating, and overseeing the Commonwealth’s water policy and planning activities to ensure that Massachusetts will have plentiful water to support health, safety, economic development, and ecological vitality for generations to come. The WRC creates policies that protect the Commonwealth’s bodies of water for practical and recreational uses through:

• Development of new water resource policies for the state, including technical documents supporting such policies;
• Establish statewide Water Conservation Standards to encourage efficient use of water;
• Review and approve water regulations as related to the Massachusetts Clean Waters Act; and
• Implementation of the Interbasin Transfer Act (ITA), including the review and approval of transfers of water or wastewater between any of the Commonwealth’s 28 river basins (including the Massachusetts Coastal Basin) under the ITA.

The WRC staff, housed at the Office of Water Resources at the DCR promotes water quality through the following programs and technical resources:
Develop water resources policy and watershed planning efforts, coordinate review of proposed interbasin transfers, develop water needs forecasts for municipalities across the state in support of MassDEP’s WMA permit renewal effort.

Cooperative Program with USGS: Administer cooperative programs with USGS and manage the Rainfall Program (a network of approximately 150 precipitation observation stations, operated by volunteers throughout Massachusetts, and a precipitation database for research and analysis).

The Flood Hazard Management Program (designated to the WRC through Executive Order 149) is the state coordinating office for the National Flood Insurance Program (NFIP). This program provides floodplain management technical information and assistance to community officials and others concerning the NFIP as well as coordinating statewide floodplain management policies to accomplish comprehensive flood loss reduction. The program also jointly administers, in conjunction with the Massachusetts Emergency Management Agency, the state’s hazard mitigation programs through planning and project grants and technical assistance to community officials.

NPS Program and EEA Collaboration

- EEA staff participate on the review/selection committees for s.319 and 604(b) grants.
- As listed below, a goal of this NPS Plan is to expand collaboration between MassDEP and EEA with regard to public education on climate change and its connection to NPS pollution.
- In general, the relationship between MET and the s.319 Program is working well. NPS Program staff participate in the MET grant review/selection process. MET staff participate in the s.319 grant review process.
- Substantial coordination among NPS partners occurs during the funding application process. Applicants for Dam and Seawall Repair and Removal Funds work with MassDEP, EEA, and other partners to evaluate project alternatives, including potential co-benefits and undesirable consequences, and develop the preferred alternative that is proposed for funding.
- There is currently no formalized collaboration between the NPS Program and the Dam and Seawall Repair and Removal Fund. This is an opportunity for improvement, as listed below.

NPS Plan activities that involve collaboration between the NPS Program and EEA are listed below in Table 3.7. The activities listed represent new activities that were not part of the previous (2014) version of the NPS Plan as well as collaborations that are ongoing from the previous Plan. Table 3.7 provides the location of each listed activity in Table 4.1, which is a comprehensive list of all goals and milestones proposed for the next five years as part of this NPS Plan update.

Table 3.7. NPS Plan—EEA Collaboration Activities

<table>
<thead>
<tr>
<th>Collaboration Activity</th>
<th>Location in Table 4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continue and expand EEA and MassDEP efforts to educate the public on climate change and the connection to NPS pollution. This will include publication of reports and development of agency action groups.</td>
<td>Goal 5, Milestone 3.c</td>
</tr>
<tr>
<td>MassDEP staff will continue coordination with EEA and the Commonwealth’s environmental, natural resource and energy regulatory agencies via ongoing participation in the EEA climate change group.</td>
<td>Goal 5, Milestone 4.a</td>
</tr>
<tr>
<td>Incorporate EEA climate change plans into the NPS Program, TMDL guidance, and other programs.</td>
<td>Goal 1, Milestone 2.c</td>
</tr>
<tr>
<td>Expand membership of Section 319 grant review committee to include EEA staff.</td>
<td>Goal 1, Milestone 4.b</td>
</tr>
<tr>
<td>Revise funding criteria as appropriate to include potential benefit to other programs such as the NPS Program.</td>
<td>Goal 1, Milestone 4.b</td>
</tr>
</tbody>
</table>
Work with the Dam and Seawall Repair and Removal Fund review committee to coordinate grant funding for dam removal projects with NPS benefits.

Communicate NPS monitoring needs and MassDEP monitoring activities to EEA for coordination among agencies and identification of opportunities to leverage multiple monitoring efforts to meet NPS data needs. Encourage and support development of a pathway for coordination among agencies.

<table>
<thead>
<tr>
<th>3.1.5 Massachusetts Department of Fish and Game (DFG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Division of Ecological Restoration (DER)</td>
</tr>
</tbody>
</table>

DER’s mission is to restore and protect the Commonwealth’s rivers, wetlands, and watersheds. DER accomplishes its mission by providing technical assistance and funding to priority projects chosen through a competitive selection process. Solicitation for priority projects generally occurs biennially with DER supporting approximately 50 active projects at a time. Physical restoration projects include dam removals, road-stream crossing upgrades, elimination of tidal restrictions, wetland and floodplain restoration, retired cranberry bog restoration, and urban river revitalization. Flow restoration projects focus on restoring natural streamflow affected by water withdrawals and flow manipulation. DER selects projects with the following characteristics: committed local project sponsors; identified or potential local, state, and federal project partners; the potential to leverage in-kind and monetary resources; ability to improve climate readiness; and the ability to maximize ecological gains.

DER is in the process of developing and piloting a Water Quality Restoration Program. The program will approach the challenge of restoring degraded or damaged aquatic systems through the implementation of targeted activities designed to improve or protect water quality at a grassroots level. It is anticipated that addressing NPS pollution impacts will be a significant part of this program.

NPS Program and DER Collaboration

- DER provided input on the RPST (see Section 5) and created its own Restoration Potential model that is one of many tools used during the identification and selection of priority projects.
- DER participates in the review of s.319, 604(b), and CPR grants and the Dam and Seawall Repair Fund. An example of a recent restoration project is the Cold River Restoration in Harwich, which involved a collaborative effort between DER, the U.S. Fish and Wildlife Service, and the Harwich Conservation Trust.
- Developing unified or coordinated outreach materials on grant and assistance programs could help the public better understand various program priorities and help applicants seek the right assistance grant(s) for a given project.
- DER works to maximize ecological gains at a large scale. Increasingly, DER is identifying and cultivating proactive potential restoration opportunities that could become priority projects. The targeted restoration opportunities are selected due to their significant potential for restoration gains.
- There is the potential to favorably recognize DER priority projects during the s.319 application and review process as restoration projects that could benefit aquatic life, water quality, and ecological service improvements.
- DER and MassDEP share interest in a watershed-based approach to restoration. Aligning project priorities can help leverage funds provided by both agencies to achieve watershed-scale improvements. MassDEP helps teach watershed groups and municipalities how to develop WBPs through webinars and workshops. Coordination with DER on helping grant applicants understand
b. Division of Fisheries and Wildlife (DFW)

The DFW is responsible for the conservation—including restoration, protection, and management—of fish and wildlife resources for the benefit and enjoyment of the public. DFW’s charge is the stewardship of all wild amphibians, reptiles, birds, mammals, and freshwater and diadromous fishes in the state, as well as endangered, threatened, and special concern species, including native wild plants and invertebrates.

As presented in greater detail in Section 6, DFW’s statewide fisheries monitoring program generates the largest source of data related to Massachusetts fisheries. These data are very useful to MassDEP, which uses them to establish baselines for biological community assessments. For example, MassDEP uses fish population data as a metric to establish what fish use is for a waterbody (i.e., cold water fishery vs. warm water fishery). DFW monitoring is often conducted as a “spot check” rather than a full community assessment.

Biodiversity Initiative: The MassWildlife Biodiversity Initiative is focused on active management of habitats to directly benefit rare and declining wildlife species and plant communities. The program covers both uplands and wetlands and is primarily focused on habitats that have suffered from the impacts of human development and/or from alteration of natural disturbance processes like flooding and fires. In 2013, the state’s Natural Heritage & Endangered Species Program initiated the Biodiversity Initiative Key Sites project to delineate high-priority biodiversity areas (key sites) across the state. The Biodiversity Initiative is currently conducting habitat management in several of the key sites, and activities may include reduction of pollution to improve habitat quality.

NPS Program and DFW Collaboration

- An ongoing activity for this updated NPS Plan is to provide additional prioritization for s.319 grant projects that protect or improve high-quality waters as recommended by DFW. Efforts to manage NPS pollution also support overall health of aquatic resources, and therefore strongly support DFW’s mandate.
- If DFW were to define the features that characterize “high quality” for various categories of waters (e.g., cold water fisheries, warm water fisheries), this would enable the NPS Program to support efforts to protect and improve these waters. DFW is currently undertaking an initiative to better characterize the condition of individual coldwater resources with a goal to develop a gradation describing coldwater status.
- DFW collects abundant water quality data that are applicable in both impaired and unimpaired waterbodies that could help with NPS Program prioritization. DFW is committed to providing datasets as requested by MassDEP.
c. Division of Marine Fisheries (DMF)

DMF is responsible for the development and promulgation of the Commonwealth’s laws governing commercial and recreational fishing activity conducted in the marine environment. The DMF conducts a variety of monitoring programs related to marine resources, and those which overlap with the goals of the NPS Program are described in Section 6. An important DMF monitoring program is shellfish growing areas, which includes a bacteria assessment and some water quality monitoring. This information is used to guide both closure and management activities in shellfish areas. MassDEP uses the data from these studies for shellfish use assessments.

NPS Program and DMF Collaboration

- As stated above, MassDEP uses DMF data for shellfish use assessments. This information is incorporated into the NPS prioritization framework as described in detail in Section 5.
- It would be helpful to the NPS Program if DMF were to designate “high priority” shellfish growing areas (and other important areas such as smelt and river herring spawning habitat). As discussed above under the DFW summary, this information would enable the NPS Program to support efforts to protect and improve these areas. Additional follow-up with DMF staff is needed to explore this further.
- Improved sharing of DMF’s pollutant source data and water quality monitoring data would be useful to the NPS Program. These data would help to identify pollution sources and can be used to track water quality improvements after installation of BMPs.

NPS Plan activities that involve increased collaboration between the NPS Program and DFG are listed below in Table 3.8. The activities listed represent new activities that were not part of the previous (2014) version of the NPS Plan as well as collaborations that are ongoing from the previous Plan. Table 3.8 provides the location of each listed activity in Table 4.1, which is a comprehensive list of all goals and milestones proposed for the next five years as part of this NPS Plan update.

Table 3.8. NPS Plan—DFG Collaboration Activities

<table>
<thead>
<tr>
<th>Collaboration Activity</th>
<th>Location in Table 4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support and participate in Recovery Roundtable or similar concept to bring together</td>
<td>Goal 1, Milestone 2.a</td>
</tr>
<tr>
<td>various agencies working on NPS issues.</td>
<td></td>
</tr>
<tr>
<td>NPS Program involvement on DER project review/selection, development of target areas</td>
<td>Goal 1, Milestone 2.c</td>
</tr>
<tr>
<td>for future projects, and development of review criteria to place more strategic focus</td>
<td></td>
</tr>
<tr>
<td>on s.319 Program priorities.</td>
<td></td>
</tr>
<tr>
<td>Coordinate the DER and s.319 funding cycles.</td>
<td>Goal 1, Milestone 4.a</td>
</tr>
<tr>
<td>Use a nine-element WBP to develop grant funding priorities that are consistent for</td>
<td>Goal 1, Milestone 1.a</td>
</tr>
<tr>
<td>MassDEP, DER, and other NPS grant agencies; develop a publicly available guide detailing</td>
<td></td>
</tr>
<tr>
<td>the types of projects that will receive priority from NPS partner grant programs</td>
<td></td>
</tr>
</tbody>
</table>
Use consistent methodologies for identifying unimpaired/high-quality waters and refine process as needed; NPS partner program programs help assess and identify unimpaired/high-quality waters.

Goal 4, Milestones 1.a–b

3.1.6 Massachusetts Department of Conservation and Recreation (DCR)

The DCR Office of Water Resources (OWR) promotes water quality and conservation through several programs and sources of technical resources. Additionally, WRC staff are housed at DCR OWR and promote water quality through programs and technical resources as described in Section 3.1.4d. OWR also promotes water quality in the following ways:

- The Lakes & Ponds Program conducts NPS projects primarily on DCR waterbodies within the State Forests and Parks systems. Projects include stormwater improvements, BMPs for bacteria management and control of invasive species. This program also provides technical assistance to communities and citizen groups, water quality monitoring at public beaches, and public education materials on lake issues. More recently, the program embarked on a study in Lake Cochituate to understand and better manage pollution. DCR used the WBP tool and other tools to identify where to implement distributed BMPs within the watershed. DCR is currently conducting baseline monitoring to determine the accuracy of screening-level land use-based estimates of pollutant loading.

- DCR also maintains a large network of roads and trails. This work and related stormwater management approaches could potentially be enhanced through information exchange/education and development of newer standards to help address multiple NPS goals.

NPS Program and DCR Collaboration

- In recent years, direct collaboration between DCR and the NPS Program has generally been associated with s.319-funded projects for protection/improvements at waterbodies on DCR property (e.g., swimming beaches, lakes within the State Forests and Parks system). These projects typically involve implementation of BMPs to reduce sources of nutrients and/or bacteria.

- As stated above, DCR’s role in maintaining its network of roads and trails represents an opportunity for increased collaboration with the NPS Program through information exchange/education and development of new maintenance and BMP standards.

NPS Plan activities that involve collaboration between the NPS Program and DCR are listed below in Table 3.9. The activities listed represent new activities that were not part of the previous (2014) version of the Massachusetts NPS Plan, as well as collaborations that are ongoing from the previous Plan. Table 3.9 provides the location of each listed activity in Table 4.1, which is a comprehensive list of all goals and milestones proposed for the next five years as part of this NPS Plan update.

Table 3.9. NPS Plan—DCR Collaboration Activities

<table>
<thead>
<tr>
<th>Collaboration Activity</th>
<th>Location in Table 4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support DCR in using the WBP tool where applicable to further leverage s.319 funds in areas where NPS pollution may contribute to bacteria and nutrient issues at DCR beaches.</td>
<td>Goal 2, Milestone 7.a</td>
</tr>
</tbody>
</table>
DEP and DCR will work together, along with other entities, to identify waterbodies with frequently occurring cyanobacteria issues and prioritize projects in those watersheds.

Goal 2, Milestone 13.a

DCR is responsible for implementation of the Massachusetts Forest Cutting Practices Act and its coordination with Wetlands Protection Program performance standards. DCR will coordinate with the NPS Program as needed to advance the development and use of effective BMPs that ensure that erosion and sedimentation and other NPS impacts are minimized.

Goal 2, Milestone 11.a

3.1.7 Massachusetts Association of Conservation Districts (MACD)

MACD is a nonprofit organization that provides representation for the 13 conservation districts in Massachusetts. MACD works with partners including MassDEP, MDAR, and NRCS to provide technical assistance to farmers for implementation of BMPs that protect water quality. MACD also helps farmers locate and apply for funding, largely through EQIP and the s.319 grant program. MACD has played a key role in facilitating conservation practice implementation through collaboration with MassDEP and NRCS for the Palmer River NWQI and is working with NRCS to duplicate that success through the “Ground Based Water Quality Implementation” RCPP Project in Worcester County.

NPS Program and MACD Collaboration

- MACD’s collaboration with the NPS Program takes place mostly through s.319-funded projects. MACD helps farmers find available funding sources, including s.319 grants and EQIP. In addition, member conservation districts receive state funding that can be used to meet non-federal match requirements for s.319 projects.

- In the Palmer River NWQI project, MACD provided staff to conduct outreach, develop conservation plans, and connect farmers with financial and technical assistance available from various project partners. Opportunities exist for increased collaboration between MassDEP and MACD on similar projects, such as the Worcester County RCPP project, that leverage each agency’s role and funding sources to deliver coordinated regional conservation planning for agricultural lands.

- MACD is collaborating with MassDEP and NRCS on a project in the Westport River watershed that, similar to the Palmer River NWQI, leverages each agency’s role and funding sources to deliver coordinated regional conservation planning for agricultural lands. MACD is conducting outreach to farmers in the watershed to educate them on water quality and conservation needs and generate interest in the available assistance programs. MACD will then provide planning and technical assistance to connect landowners with funding and other assistance available through NRCS and MassDEP programs.

NPS Plan activities that involve collaboration between the NPS Program and MACD are listed below in Table 3.10. The activities listed represent new activities that were not part of the previous (2014) version of the Massachusetts NPS Plan, but that support milestones and related activities that are ongoing from the previous Plan. Table 3.10 provides the location of each listed activity in Table 4.1, which is a comprehensive list of all goals and milestones proposed for the next five years as part of this NPS Plan update.

Table 3.10. NPS Plan—Increased MACD Collaboration Activities

<table>
<thead>
<tr>
<th>Collaboration Activity</th>
<th>Location in Table 4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continue coordination among NRCS, MDAR, MACD, and MassDEP to support agricultural projects in the Palmer River watershed to continue progress achieved through the NWQI.</td>
<td>Goal 1, Milestone 5.a</td>
</tr>
</tbody>
</table>
Work to collaboratively address NPS pollution from agricultural sources through program coordination, increased communication, and technical support to producers.

Support NRCS efforts to identify another agriculture-impaired watershed for participation in the NWQI. Proceed with project implementation when resources become available.

Coordinate with MACD and NRCS to prioritize funding for proposals that support the goals of the Worcester County RCPP.

| Goal 1, Milestone 6.b | Goal 1, Milestone 5.d | Goal 3, Milestone 5.e |

3.1.8 U.S. Environmental Protection Agency (USEPA), Region 1

USEPA provides s.319 funding under the CWA to the Massachusetts NPS Program, and USEPA Region 1 provides programmatic oversight of state s.319 NPS Programs within the Region. A summary of USEPA programs and priority activities that support NPS pollution control is provided below.

- **Watersheds and NPS Pollution Programs**
 - **CWA Section 319:** The 1987 amendments to the CWA established the Section 319 Nonpoint Source Management Program. USEPA also provides s.319 Program oversight and guidance to states, territories, and tribes. Under s.319, USEPA provides states, territories, and tribes with federal grant money to establish NPS programs that will achieve and maintain beneficial uses of waters. State programs may use federal s.319 funds to support a wide variety of activities including technical assistance, financial assistance, education, training, technology transfer, watershed implementation projects, and monitoring to assess the success of specific NPS watershed projects that implement WBPs.

 For more information on USEPA's role in overseeing the s.319 Program, visit https://www.epa.gov/nps/319-grant-program-states-and-territories. Detailed information on MassDEP’s administration of the s.319 Program in Massachusetts is provided in Section 2.

 - **CWA Section 604(b):** Section 604(b) of the CWA provides that each state receive 1% of its CWSRF allotment (or $100,000, if that is greater) to carry out planning under Sections 205(j) and 303(e) of the CWA. At least 40% of that amount must be allocated to regional planning organizations and appropriate interstate organizations. These funds have been used to support a wide variety of NPS planning activities in Massachusetts. USEPA Region 1 provides grant funding each year to MassDEP and oversees the state’s use of these funds. The USEPA grant project officer also participates in the annual regional project review committee. Detailed information on MassDEP’s administration of the 604(b) Program in Massachusetts is provided in Section 2.

 - **Wetland Program Development Grants:** The Wetland Program Development Grants program provides funding under Section 104(b)(3) of the CWA to states, tribes, local governments, and interstate agencies for projects to develop and refine comprehensive state/tribal/local government wetland programs. Grants to Massachusetts organizations have supported the development of a wetland CAPS and a climate change adaptation strategy for the Massachusetts wetlands program.

Examples of grant project activities include, but are not limited to:

- Development of a state/tribal Wetland Program Plan;
- Development of training materials and tools to help local decision-makers integrate wetland protection into watershed planning;
- Development of protocols and assessment criteria that can be used to identify wetland restoration and protection priorities;
Development of a wetland restoration/protection prioritization process that considers whether climate change may impact project success;

Development of monitoring protocols and assessment criteria that can be used to report the ambient condition of wetland resources;

Development of methods or strategies to incorporate wetland WQS into EPA-approved state/tribal WQS;

Development of a sub-award program to help fund research, studies, experiments, trainings, surveys and demonstration projects by local, university, or nonprofit organizations; and

Development of habitat and watershed-based assessments that enable landscape level analysis for use in state and federal wetland regulatory and planning programs.

Long Island Sound Study (LISS): The LISS is a USEPA-led partnership of federal, state, interstate, and local agencies, universities, environmental groups, industry and the public working to protect and improve the health of the Sound. The Connecticut River, Housatonic River, and Thames River watersheds are partially in Massachusetts and drain to the Sound. MassDEP is a member of the LISS Program’s Management Committee. To address ongoing water quality degradation, USEPA approved a TMDL in 2001 calling for nitrogen reductions across the Sound’s watershed, including the entire Connecticut River basin. Due to improvements under the TMDL, water quality is improving with the area of hypoxia on a downward trend. However, the Sound remains impaired due to nitrogen loads and additional point and NPS action is needed to meet WQS for dissolved oxygen and address other eutrophication-related impairments in embayments and harbors. As a result, USEPA is implementing a collaborative strategy to continue progress on nitrogen reductions, in parallel with the states’ continued implementation of the 2000 TMDL, to achieve WQS throughout Long Island Sound and its embayments and nearshore coastal waters.

Cape Cod Section 208 Plan: Section 208 of the CWA was designed to propose solutions for water quality problems from point and NPSs within state-specified geographic regions, such as Cape Cod in Massachusetts. Among other planning activities, CWA Section 208 is intended to facilitate development and implementation of area-wide waste treatment management plans. It requires state governors to identify areas with water quality problems and designate an entity to develop these area-wide waste treatment management plans. In January 2013, the Cape Cod Commission (CCC) was designated and directed to update the 1978 Cape Cod Section 208 Plan to address nutrient pollution. USEPA Region 1 approved the Cape Cod Area Wide Water Quality Management Plan Update on September 15, 2015. USEPA serves in several roles to implement the updated Cape Cod Section 208 Plan, including participating in regional workgroups, taking part in the Technologies Matrix review panel, supporting the development and evaluation of innovative nutrient reduction technologies and approaches, participating in regional events, and meeting regularly with MassDEP and CCC staff to identify and address implementation needs. Plan implementation is ongoing, as documented in the 2017 Implementation Plan, submitted to USEPA Region 1 by CCC on February 23, 2018. For more information, visit http://www.capecodcommission.org/.

Healthy Watersheds Program: The objective of the federal CWA is to "restore and maintain the chemical, physical, and biological integrity of the nation's waters." While other USEPA programs focus on restoring impaired waters, the Healthy Watersheds Program augments the watershed approach with proactive, holistic aquatic ecosystem conservation and protection. The Program includes assessment and management approaches that encourage states, local
governments, watershed organizations, and others to take a strategic, systems approach to conserve healthy components of watersheds and, thus, avoid additional future water quality impairments. USEPA has partnered with TNC and stakeholders to work on the Taunton River Healthy Watershed project. For more information, visit the EPA website at http://water.epa.gov/polwaste/nps/watershed/index.cfm.

- **Southeast New England Program (SNEP):** In 2014, USEPA kicked off the SNEP to build a resilient ecosystem of clean water, healthy diverse habitats, and sustainable communities in southeast New England’s coastal watersheds. The program region includes the south-facing coastal watersheds from Westerly, Rhode Island, to Chatham, Massachusetts; the watersheds of the Narragansett and Buzzards Bay NEPs; and islands of Martha’s Vineyard, Nantucket, Elizabeth Islands, and Block Island. In 2017, USEPA Region 1 began partnering with Restore America’s Estuaries, a nonprofit organization, to manage a local watershed project grant program. From 2014 through 2018, the program issued $22 million in funding to support local research, demonstrate new technologies, and implement restoration activities. In 2019, the grant priorities include projects that address nutrient reduction and impacts, coastal resiliency, new innovative technologies, environmental plan implementation, and assessment of environmental programs, among others.

- **TMDL Program:** Under Section 303(d) of the CWA, states, territories, and authorized tribes are required to develop lists of impaired waters. Impaired waters are too polluted or otherwise degraded to meet the WQS set by states, territories, or authorized tribes. The law requires that these jurisdictions establish priority rankings for impaired waters and develop TMDLs for these waters. A TMDL determines the maximum pollutant load that a waterbody can receive and still meet WQS. Section 319 funding is provided to states to restore waters that are impaired by nonpoint sources of pollution and TMDLs can provide much of the information required in WBPs.

USEPA’s 2013 "A Long-Term Vision for Assessment, Restoration, and Protection Under the Clean Water Act Section 303(d) Program" represented a new framework for collaborating with states on 303(d) program implementation. While the Vision did not alter state and USEPA responsibilities or authorities under the CWA 303(d) regulations, it established six goals aimed at more efficient program management and improved water quality protection. Among those goals the use of TMDL alternatives. The Vision states, "By 2018, States use alternative approaches, in addition to TMDLs, that incorporate adaptive management and are tailored to specific circumstances where such approaches are better suited to implement priority watershed or water actions that achieve the water quality goals of each state, including identifying and reducing nonpoint sources of pollution." As of the adoption of this revised Plan, no TMDL alternatives have been developed in New England; however, the use of TMDL alternatives represents an additional opportunity for USEPA to collaborate with MassDEP to address NPS pollution issues. MassDEP’s activities related to TMDLs, 303(d) listings, and monitoring/assessment of waterbodies are described in Section 6.

- **Drinking Water Program**

 - **Source water protection:** Source water assessments are mandated in the Safe Drinking Water Act and source protection is encouraged as part of USEPA’s Drinking Water program. Many federal, tribal, regional, and local programs have tools and resources that can be used to protect drinking water. Source water protection can benefit, and benefit from, other USEPA programs, other federal programs, and non-governmental programs. For more information, visit USEPA’s Office of Ground Water and Drinking Water.

 - **Sole Source Aquifer (SSA) Protection Program:** USEPA defines a sole or principal source aquifer as one that supplies at least 50% of the drinking water consumed in the area overlying the aquifer. These areas may have no alternative drinking water source(s) that could physically, legally, and economically supply all those who depend on the aquifer for drinking water. For convenience, all designated sole or principal source aquifers are referred to as SSAs.
USEPA Region 1 has designated 7 SSAs in Massachusetts:

- Broad Brook Basin of the Barnes Aquifer
- Canoe River
- Cape Cod
- Head of the Neponset
- Martha's Vineyard
- Nantucket
- Plymouth/Carver

The SSA Protection Program is authorized by section 1424(e) of the Safe Drinking Water Act of 1974 (Public Law 93-523, 42 U.S.C. 300 et seq.). SSA designation is one tool to protect drinking water supplies in areas where there are few or no alternative sources to the groundwater resource and where, if contamination occurred, using an alternative source would be extremely expensive. The designation protects an area's groundwater resource by requiring USEPA to review certain proposed projects within the designated area. All proposed projects receiving federal funds are subject to review to ensure that they do not endanger the water source. For more information, visit http://www.epa.gov/dwssa.

- Ocean and Coastal Protection

 - **National Estuary Program (NEP):** The NEP was established under Section 320 of the 1987 CWA Amendments as a USEPA place-based program to protect and restore the water quality and ecological integrity of estuaries of national significance. USEPA has designated four NEPs whose watersheds extend into Massachusetts: the Buzzards Bay NEP, MassBays, the Narragansett Bay Estuary Program, and the Long Island Sound Study. Section 320 of the CWA calls for each NEP to develop and implement a CCMP. The CCMP is a long-term plan that contains specific targeted actions designed to address water quality, habitat, and living resources challenges in its estuarine watershed. New guidance that requests 10-year updates or revisions to the CCMP for each NEP was established in 2018. All four NEPs provide USEPA funding and/or expertise to Massachusetts communities to support water quality monitoring and water restoration and protection efforts. This work may include activities in regulated stormwater communities, helping support NPS Program goals in those areas. For example, Buzzards Bay NEP collaborates with organizations and towns to apply for s.319 grants and provides technical assistance to groups seeking 604(b) grants for water quality assessments. For more information, visit http://water.epa.gov/type/oceb/nep/index.cfm#tabs-2.

- **Climate Resilience:** Adapting to more extreme precipitation events, sea level rise, and other coastal issues is of particular importance in the Northeast climate region. USEPA's Resilience and Adaptation in New England (RAINE) database is a resource for municipalities, states, and other organizations to share their experiences regarding climate change adaptation projects, including lessons learned, project highlights, implementation costs, and plans, as well as to identify potential project sites and partners for collaboration. Users can search the database by various categories, including state, population, topic, impacts, program, partners, tools, funding, and plans. Climate resilience is incorporated into the NEP and many of USEPA's programs. The 2014 EPA New England Regional Climate Adaptation Plan describes the vulnerability of various regional programs, including the Nonpoint Source Management Plan Program, to chronic and episodic impacts of climate change and identifies priority actions to address the vulnerabilities. For more information about the overall impacts of climate change in the Northeast, in addition to water impacts, visit: https://www.epa.gov/raine.
Pollution Prevention

- **Soak Up the Rain**: *Soak Up the Rain* is a collaboration between USEPA Region 1 and state agencies, universities, watershed groups, and other organizations. This program is a public outreach campaign to raise awareness about polluted stormwater runoff and to encourage actions to prevent impacts from polluted stormwater. The website includes outreach tools; educational materials; guidance documents; a series of regular webinars on a variety of topics; and other resources for citizens, municipalities, and others. For more information, visit https://www.epa.gov/soakuptherain.

- **Green infrastructure**: Green infrastructure is an approach that communities can choose to maintain healthy waters, provide multiple environmental benefits, and support sustainable communities. Unlike single-purpose gray stormwater infrastructure, which uses pipes to dispose of rainwater, green infrastructure uses vegetation and soil to manage rainwater where it falls. By weaving natural processes into the built environment, green infrastructure provides not only stormwater management, but also flood mitigation, air quality management, and much more.

 Since 2007, USEPA has actively supported the use of green infrastructure to manage wet weather. USEPA has released a series of policy memos encouraging the use of green infrastructure to meet regulatory requirements, as well as a series of strategic agendas describing its actions to promote green infrastructure. A central theme of recent Agendas is engaging with local communities through community partnerships and technical assistance programs. Since 2011, USEPA has established partnerships with 10 communities and provided technical assistance to more than 20. In 2014, USEPA provided $860,000 to 14 communities throughout the United States for implementation of green infrastructure–related projects. USEPA Regions are key players in all of these efforts, and many offer a wealth of targeted information on their websites. For more information, visit https://www.epa.gov/green-infrastructure.

- **Water Quality Trading Policy**: In February 2019, USEPA released a new water quality trading policy memorandum to help states, tribes, and stakeholders use market-, incentive-, and community-based programs to reduce excess nutrients and improve water quality. The memorandum reinforces USEPA’s support for water quality trading and identifies six principles designed to encourage the development and implementation of trading programs. The sixth principle is “Financing opportunities exist to assist with deployment of nonpoint land use practices.” The memorandum encourages the use of bonds, s.319 grants, CWSRF, and Water Infrastructure and Innovation funds to promote integrated point and NPS pollutant reduction strategies. In addition, the memorandum describes financial and technical support available through USEPA’s Water Finance Center. For more information, visit https://www.epa.gov/nutrient-policy-data/water-quality-trading-memos.

USEPA also has regulatory jurisdiction over certain aspects of urban stormwater pursuant to NPDES stormwater permits. Key activities related to urban stormwater that USEPA Region 1 plans to undertake in Massachusetts over the next five years are summarized below. Although the information below focuses on NPDES permitting activities for point source discharges, it is included for reference in identifying and implementing activities for NPS stormwater runoff from similar areas and facilities.
• **Urban Areas: Stormwater Management**
 - Region 1 issued a new small MS4 NPDES general stormwater permit for regulated communities in Massachusetts, which became effective on July 1, 2018. The Region expects to issue a new individual NPDES stormwater permit for the City of Boston in late 2019.
 - Region 1 offers a stormwater management optimization tool, called Opti-Tool, which allows communities to assist with estimating the phosphorus, nitrogen, total suspended solids, and zinc pollutant load reduction that can be expected from the implementation of stormwater BMPs.
 - USEPA provides a wide range of information about stormwater and available control practices and compliance tools on the agency website.
 - Region 1 will continue to offer its Soak Up the Rain materials to educate homeowners, businesses, and communities about practices they can use to reduce stormwater impacts on water resources.

• **Urban Areas: Erosion, Sedimentation, and Construction Site Control**
 - USEPA issued a new national Construction General Permit in February 2017. Information necessary to comply with the permit is available at https://www.epa.gov/npdes/stormwater-discharges-construction-activities.

• **Urban Areas: Roads and Highways**
 - Region 1 will issue a new individual stormwater permit to the Massachusetts Department of Transportation (DOT) in late 2019.

NPS Program and USEPA Collaboration

USEPA provides funding to MassDEP and its partners to carry out a range of programs that control NPS pollution. The agency regularly meets with MassDEP managers and staff to identify partnership opportunities and to seek input on its program activities. Additional opportunities for collaboration between USEPA and MassDEP include implementing TMDL alternatives to address NPS and coordinating the SNEP Watershed Grants with s.319 funding.

NPS Plan activities that involve collaboration between the NPS Program and USEPA are listed below in Table 3.11. The activities listed represent new activities that were not part of the previous (2014) version of the NPS Plan as well as collaborations that are ongoing from the previous Plan. Table 3.11 provides the location of each listed activity in Table 4.1, which is a comprehensive list of all goals and milestones proposed for the next five years as part of this NPS Plan update.

Table 3.11. NPS Plan—USEPA Collaboration Activities

<table>
<thead>
<tr>
<th>Collaboration Activity</th>
<th>Location in Table 4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support USEPA Healthy Watersheds Program by funding projects and providing agency (USEPA and MassDEP) resources in selected watersheds.</td>
<td>Goal 1, Milestone 5.b</td>
</tr>
<tr>
<td>Activity</td>
<td>Goal/Milestone</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Coordination on CWA monitoring requirements, resource allocations, and monitoring priorities, resulting in additional monitoring resources and an enhanced NPS monitoring program.</td>
<td>Goal 4, Milestone 4.a</td>
</tr>
<tr>
<td>MassDEP will develop and submit at least one success story annually to highlight successful use of s.319 and 604(b) funds.</td>
<td>Goal 4, Milestone 3.d</td>
</tr>
<tr>
<td>MassDEP will develop and disseminate an NPS annual report for the public and other stakeholders, which will include project descriptions and photos of ongoing and recently completed projects.</td>
<td>Goal 5, Milestone 1.b</td>
</tr>
<tr>
<td>MassDEP will reevaluate the current Massachusetts WBP template and update/revise as needed to address USEPA priorities.</td>
<td>Goal 2, Milestone 7.a</td>
</tr>
<tr>
<td>MassDEP will support NPS coordinator positions in regional planning agencies to facilitate development of WBPs with an initial focus in western Massachusetts.</td>
<td>Goal 2, Milestone 7.b</td>
</tr>
<tr>
<td>MassDEP and USEPA will collaborate on criteria for Section 319 projects that support the Healthy Watersheds Program and protection of unimpaired/high-quality and threatened waters.</td>
<td>Goal 3, Milestone 2.a</td>
</tr>
<tr>
<td>Promote the development of alternative WBPs to support the Healthy Watersheds Program and protection of unimpaired/high-quality waters.</td>
<td>Goal 3, Milestone 3.a</td>
</tr>
<tr>
<td>MassDEP participation in SNEP grant planning and review.</td>
<td>Goal 1, Milestone 2.c</td>
</tr>
<tr>
<td>MassDEP will work with USEPA to determine the types of work that are eligible for s.319 funding in MS4 areas.</td>
<td>Goal 2, Milestone 1.e</td>
</tr>
<tr>
<td>MassDEP will engage with the National Estuary Program as it undertakes activities in fulfillment of Section 320 of the Clean Water Act.</td>
<td>Goal 1, Milestone 2.h</td>
</tr>
</tbody>
</table>
3.1.9 United States Department of Agriculture (USDA)

A brief summary of USDA NRCS and USDA FSA programs that are applicable to NPS pollution is provided below, followed by a discussion of opportunities for improved collaboration between USDA and the NPS Program.

a. USDA Natural Resources Conservation Service (NRCS)

NRCS (http://www.nrcs.usda.gov/wps/portal/nrcs/site/ma) provides farmers and forestland owners with financial and technical assistance to voluntarily put conservation on the ground, helping not only the environment but agricultural and forest operations as well.

- **Environmental Quality Incentives Program (EQIP):** EQIP provides financial assistance to agricultural producers and private forest landowners to implement conservation practices (recommended in an NRCS-approved conservation plan) that address natural resource concerns and that improve soil, water, plant, animal, wildlife habitat, air, and related resources on agricultural land and non-industrial private forestland. EQIP is a competitive program, and applications are funded based on the greatest environmental benefits (ranking) of each application. EQIP is also used to fund Conservation Innovation Grants (CIGs), which support development and adoption of innovative conservation approaches and technologies to provide agricultural producers with more options for environmental enhancement and regulatory compliance.

- **National Water Quality Initiative (NWQI):** Through NWQI, NRCS works with farmers and ranchers to improve water quality in watersheds where on-farm conservation investments and focused water quality monitoring and assessment can deliver the greatest benefits for clean water. In 2018, NRCS provided approximately $30 million in financial assistance to help farmers and ranchers implement conservation systems to reduce nitrogen, phosphorus, sediment, and pathogen contributions from agricultural land across the United States. NRCS works closely with partners, including federal and state agencies and Soil and Water Conservation Districts, to select priority watersheds where watershed assessments and outreach will be performed. Updates to the NWQI in the 2018 Farm Bill include a focus on watershed assessment and planning and use of multi-year budgets to demonstrate long-term commitment in assisting water quality efforts. In FY2019, NWQI funding will support conservation practice implementation in 201 watersheds and watershed assessments and outreach strategies in 62 priority watersheds. In Massachusetts, the Palmer River Watershed was selected as a priority watershed in 2014. NRCS coordinates with local and state agencies including MassDEP and MDAR, conservation districts, MACD, non-governmental organizations, and others to implement the Palmer River NWQI. This strategic approach leverages multiple funding sources and provides streamlined assistance to help individual agricultural producers take needed actions to reduce the runoff of sediment, nutrients, and pathogens into waterways where water quality is a critical concern.

- **Conservation Stewardship Program (CSP):** CSP participants receive annual land use payments for operation-level environmental benefits they produce. Under CSP, participants are paid for conservation performance—the higher the operational performance, the higher their payment. The CSP encourages producers to address resource concerns comprehensively by undertaking additional conservation activities and improving, maintaining, and managing existing conservation activities.

- **Regional Conservation Partnership Program (RCPP):** RCPP promotes coordination between NRCS and its partners to deliver conservation assistance to producers and landowners. NRCS provides assistance to producers through partnership agreements and program contracts or easement agreements. Through RCPP, NRCS and its partners help producers install and maintain conservation activities in selected project areas. Partners leverage RCPP funding in project areas and report on the benefits achieved. In 2017, NRCS funded an RCPP project, led by MACD, to duplicate the successful collaboration through the Palmer River NWQI project. The project, titled “Ground Based Water Quality Implementation,” is focused in Worcester County, where MACD...
provides personnel to work directly with farmers to identify opportunities to encourage and facilitate implementation of conservation practices by helping farmers apply for conservation funds and managing the contracts after funds are awarded.

- **Agricultural Conservation Easement Program (ACEP):** ACEP provides financial and technical assistance to help conserve agricultural lands and wetlands and their related benefits. Under the agricultural land easements component, NRCS helps Indian tribes, state and local governments, and non-governmental organizations protect working agricultural lands and limit non-agricultural uses of the land. Under the wetlands reserve easements component, NRCS helps to restore, protect, and enhance enrolled wetlands.

 b. **Farm Service Agency (FSA)**

FSA offers a number of loan programs that farmers can use for soil and water conservation and protection. More information is available at https://www.fsa.usda.gov/programs-and-services/farm-loan-programs/index. In addition, FSA coordinates several conservation-focused programs that are relevant to NPS management. These include:

- **Conservation Reserve Program (CRP):** The CRP is a land conservation program. In exchange for yearly CRP rental payments, farmers agree to remove environmentally sensitive land from agricultural production and plant species that will improve environmental health and quality. CRP contracts are 10–15 years in length. The long-term program goal is to re-establish valuable land cover to help improve water quality, prevent soil erosion, and reduce loss of wildlife.

- **Source Water Protection Program:** FSA partners with the National Rural Water Association to provide water technicians for each state to coordinate local teams that work with USDA staff to create plans that identify pollution prevent needs. These Rural Source Water Protection plans identify potential pollution sources, voluntary measures that agricultural producers may install to prevent water pollution, and entities and resources that can help implement the plan.

NPS Program and USDA Collaboration

- NPS Program staff have participated in the NRCS State Technical Committee meetings that determine distribution of EQIP funds and related Farm Bill program priorities in Massachusetts; however, there is an opportunity for improved collaboration by resuming NPS Program participation in those meetings.

- NRCS collaborates with the NPS Program, MDAR, and MACD in implementation of the NWQI for the Palmer River. Through that initiative, slated for completion in 2019, NRCS funding and s.319 funds are leveraged with non-federal contributions to provide conservation planning and practice implementation on agricultural lands in the Palmer River subwatershed. NRCS funding is available to identify additional NWQI watersheds in Massachusetts to provide similar, targeted support to farmers for controlling NPS from agricultural practices. This is an opportunity for additional collaboration between the NPS Program and NRCS to identify priority watersheds.

- NRCS also collaborates with MassDEP and MACD on a s.319-funded project in the Westport River watershed. Like the Worcester County RCPP, this project seeks to duplicate the success of the Palmer River NWQI collaboration, with MassDEP supporting MACD staff to work directly with farmers to encourage and facilitate engagement with NRCS conservation programs. The goal is for MACD staff outreach and technical assistance to result in EQIP-funded projects that help to meet NRCS and s.319 goals. Opportunities exist for increased collaboration between MassDEP and NRCS on similar projects that leverage each agency’s role and funding sources to deliver coordinated regional conservation planning for agricultural lands.

- Collaboration between the NPS Program and USDA-NRCS on projects is currently complicated by the confidentiality requirements of Farm Bill Section 1619. NRCS can share summary data on practice implementation with the NPS Program but may not identify the exact locations of practices. Those confidentiality requirements make it difficult for MassDEP to understand where NRCS-supported conservation work is being done within a given watershed, if NRCS programs are having
measurable impacts on water quality, and where funds from other programs should be targeted. Data sharing between MassDEP and USDA-NRCS is an important goal of this the NPS Plan.

NPS Plan activities that involve collaboration between the NPS Program and USDA are listed below in Table 3.12. The activities listed represent new activities that were not part of the previous (2014) version of the NPS Plan as well as collaborations that are ongoing from the previous Plan. Table 3.12 provides the location of each listed activity in Table 4.1, which is a comprehensive list of all goals and milestones proposed for the next five years as part of this NPS Plan update.

Table 3.12. NPS Plan—USDA Collaboration Activities

<table>
<thead>
<tr>
<th>Collaboration Activity</th>
<th>Location in Table 4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>The NPS Program will resume participation in the NRCS State Technical Committee</td>
<td>Goal 1, Milestone 2.e</td>
</tr>
<tr>
<td>meetings that determine distribution of EQIP funds and related Farm Bill program</td>
<td></td>
</tr>
<tr>
<td>priorities in Massachusetts.</td>
<td></td>
</tr>
<tr>
<td>Continue coordination among NRCS, MDAR, MACD, and MassDEP to support agricultural</td>
<td>Goal 1, Milestone 5.a</td>
</tr>
<tr>
<td>projects in the Palmer River watershed to continue progress achieved through the NWQI.</td>
<td></td>
</tr>
<tr>
<td>Continue informal coordination and data sharing with NRCS and MDAR that is</td>
<td>Goal 1, Milestone 6.a</td>
</tr>
<tr>
<td>consistent with Section 1619 of the Farm Bill.</td>
<td></td>
</tr>
<tr>
<td>Coordinate with USDA on a partnership agreement (MOU) on collaboratively addressing</td>
<td>Goal 1, Milestone 6.b</td>
</tr>
<tr>
<td>NPS pollution from agricultural sources through program coordination, increased</td>
<td></td>
</tr>
<tr>
<td>communication, and technical support to producers.</td>
<td></td>
</tr>
<tr>
<td>Support efforts to establish a Regulatory Certainty Program between MassDEP, MDAR,</td>
<td>Goal 1, Milestone 6.d</td>
</tr>
<tr>
<td>and USDA-NRCS.</td>
<td></td>
</tr>
<tr>
<td>Work with NRCS, MDAR, and MACD to identify another agriculture-impaired watershed</td>
<td>Goal 1, Milestone 5.d</td>
</tr>
<tr>
<td>for participation in the NWQI. Proceed with project implementation when resources</td>
<td></td>
</tr>
<tr>
<td>become available.</td>
<td></td>
</tr>
<tr>
<td>Improve communication between NRCS, MDAR, and MassDEP regarding the composting and</td>
<td>Goal 1, Milestone 6.e</td>
</tr>
<tr>
<td>land application of food waste and its impacts on water quality.</td>
<td></td>
</tr>
<tr>
<td>Participate in RCPP committees or workgroups to coordinate activities that support</td>
<td>Goal 3, Milestone 5.e</td>
</tr>
<tr>
<td>the goals of RCPP.</td>
<td></td>
</tr>
</tbody>
</table>
3.2 OTHER PARTNER ORGANIZATIONS

In addition to the primary partners described in Section 3.1, the NPS Program relies on collaboration with numerous other partner organizations that play an important but less formalized role in managing NPS pollution in Massachusetts. These partners are described below according to NPS partner activity type. It is important to note that this section presents examples of the diverse NPS partners in Massachusetts and is not intended as a comprehensive listing of the many partners and potential partners that could be included.

<table>
<thead>
<tr>
<th>1. NPS Watershed Planning and Project Implementation: Organizations that take a lead role in the planning and/or implementation of s.319 projects and other projects to reduce NPS pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Partners</td>
</tr>
<tr>
<td>Public: Municipalities, regional planning agencies, state agencies, U.S. Army Corps of Engineers (USACE)</td>
</tr>
<tr>
<td>Private: Nonprofit environmental organizations (e.g., lake associations, river/watershed associations), land trusts, private landowners</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Monitoring, Data Collection and Research: Organizations that conduct programs or specific projects which collect data and conduct research that is relevant to NPS pollution and protection of healthy watersheds, and which furthers the goals of the NPS Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Partners</td>
</tr>
<tr>
<td>Private: Nonprofit environmental organizations (e.g., volunteer monitoring programs), private universities/colleges</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Land and Facility Management: Organizations that manage lands and/or facilities that influence NPS pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Partners</td>
</tr>
<tr>
<td>Public: U.S. Forest Service, Massachusetts DOT, Federal Highway Administration, U.S. Department of Defense, U.S. National Park Service, Massachusetts Division of Forests and Parks, municipal highway departments and public works departments</td>
</tr>
<tr>
<td>Private: Private land owners, Trustees of Reservations, Mass Audubon, New England Forestry Foundation, land trusts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Public Policy, Advocacy, and Outreach: Organizations that engage in activities which further the goals of the NPS Plan through public policy initiatives, environmental advocacy, and public education/outreach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Partners</td>
</tr>
<tr>
<td>Public: State agencies, federal agencies, municipal boards (e.g., Conservation Commissions), NEP</td>
</tr>
<tr>
<td>Private: nonprofit environmental organizations (e.g., Massachusetts Rivers Alliance, Conservation Law Foundation, Mass Audubon, TNC, Massachusetts Association of Conservation Commissions, Massachusetts Congress of Lake and Pond Associations, The Trust for Public Land)</td>
</tr>
</tbody>
</table>
3.3 PRIMARY SOURCES OF FUNDING TO ADDRESS NPS POLLUTION

A wide variety of grants and loans are available to address sources of NPS pollution, including those summarized under the partner program descriptions in Section 3.1. Many of these programs are not focused on addressing NPS pollution directly; assistance programs may fund conservation, planning, or pollution reduction activities that would, in turn, reduce NPS pollution.

To help Massachusetts citizens and organizations navigate available grant and loan funding programs, EEA maintains a web-based catalog of grant and loan programs and other funding sources: https://www.mass.gov/orgs/eea-office-of-grants-and-technical-assistance.

The funding programs described in Section 3.1 and in the EEA web pages are intended to provide an overview of the primary sources of grant and loan funding to restore or protect water quality within the state. Anyone planning a project is encouraged to consult with any of the various NPS partner agencies for more information on possible available financial resources. The availability of funds and grant/loan application windows changes; refer to the listed websites for each program for the most up-to-date information.
SECTION 4: GOALS, OBJECTIVES, AND MILESTONES

4.1 SECTION OVERVIEW

This section addresses Element No. 1 of the “Key Components of an Effective State Nonpoint Source Management Program” guidance issued by USEPA in April 2013. It contains a detailed set of goals, objectives, and strategies to restore and protect surface water and groundwater in Massachusetts. This chapter describes the state’s vision to address NPS pollution for the next five years, and details MassDEP’s strategy to meet its NPS goals.

4.2 OVERVIEW OF THE PLAN’S VISION AND GOALS

MassDEP is the lead agency for NPS control in Massachusetts. Although MassDEP is the principal author of this statewide NPS Plan, the vision for Massachusetts and the goals of the Plan are shared by a myriad of citizens, groups, municipalities, businesses, and public agencies. In addition, many other state and federal agencies, operating under their own enabling legislation, pursue goals and objectives that are harmonious with those of the MassDEP NPS Program. The Plan’s goals and vision cannot be realized in a short amount of time, nor can they be realized by MassDEP alone. Achieving the vision relies on the cooperation of many different programs, actions, and initiatives working toward a common goal. This Plan recognizes that MassDEP must continue to work with its many partners on a watershed-by-watershed basis to improve and protect the water resources of the Commonwealth.

While the Plan focuses on MassDEP’s actions for the next five years, it also highlights and relies on the important work others will accomplish during this time. Achieving the vision of the Plan relies on the collective support, cooperation, and resources of MassDEP and its partners and stakeholders. This Plan builds on their efforts and describes how MassDEP will support its partners as they also strive to realize their goals. Some NPS goals will be easier to achieve than others, but all efforts will move the state toward achieving the vision.

The vision statement is a critical component of goal setting, as it defines the ultimate endpoint for the goals and activities that will direct and prioritize work over the next five years. Progress toward meeting this vision will be important, not only for building the programs and making needed changes but also for showcasing and celebrating successes. Incremental progress toward of the Plan’s vision will demonstrate the commitment of MassDEP and its partners to addressing the many challenges created by NPS pollution.

The vision for the Plan focuses on protecting and restoring water quality:

Statewide Nonpoint Source Pollution Vision: The vision of the Massachusetts NPS Program is to bring the citizens of the state together to restore surface and groundwater impaired by nonpoint source pollution, to protect water quality in healthy watersheds, and to plan for and address human-induced and naturally occurring changes in the environment.

The vision of the Plan links strongly to the mission statement of MassDEP, who will work together with the NPS partners to implement the Plan and achieve measurable results over time:

MassDEP Mission Statement: The Department of Environmental Protection is the state agency responsible for ensuring clean air and water, the safe management of toxics and hazards, the recycling of solid and hazardous wastes, the timely cleanup of hazardous waste sites and spills, and the preservation of wetlands and coastal resources.
This Plan is built to realize the NPS vision through the achievement of specific goals. Those goals are designed to build on existing programs, coordinate with the focus or mission of others' and organize a variety of federal, state, and local programs to increase efficacy and ensure that limited resources are managed to deliver maximum results. These goals reflect a strategically focused state NPS management program designed to achieve and maintain state WQS and to maximize water quality benefits and the beneficial uses of the resources of the Commonwealth.

4.3 MASSACHUSETTS NPS PROGRAM GOALS

1. **Identify and expand opportunities to accomplish and leverage work by private, state, local, and federal partners.**

 Partnerships are key to comprehensive watershed management, and strong, effective partnerships form the foundation of this NPS Plan. Such partnerships can accomplish great things—pooling resources, setting mutual priorities, and building on the actions of partner programs help to overcome resource, policy, or geographic limitations of any partner program. This Plan recognizes that building successful partnerships takes skill, time, and patience. To achieve its long-term NPS goals, MassDEP is committed to building and maintaining partnerships to address NPS pollution in Massachusetts and achieve greater successes for all partnerships and programs.

2. **Restore impaired waters, reduce NPS pollutants, and mitigate the effects of climate change.**

 Restoring and protecting the Commonwealth’s natural resources continues to be a primary focus for the NPS Plan. Many actions taken at the local, state, and federal levels have improved water quality in the state, but more work remains. Implementing on-the-ground efforts, such as the installation of water-quality-focused BMPs in critical areas of impaired watersheds, is a priority of the NPS Program and Plan. In addition to addressing traditional sources of NPS pollution, this Plan is forward-thinking, looking to also address new water quality challenges associated with climate change and emerging pollutants. Coordinated efforts among the NPS partners, better collection and use of water quality data, and the interest of well-educated and motivated stakeholders will help restoration programs become more effective.

3. **Protect unimpaired/high-quality and threatened waters through planning, education, program coordination, and implementation of climate-ready BMPs.**

 In support of USEPA’s Healthy Watersheds Program, and supported by federal NPS program guidelines, protection of existing priority resources and high-quality water is also a goal of this Plan. To achieve this component of the Plan vision, new approaches and programs will be created and new partnership opportunities will arise. Efforts will be made to understand and mitigate the effects of climate change on restored or protected waters. Work accomplished in the next five years will be crucial to laying the foundations for future programs, allocating resources, and conducting research needed to better target protection activities for maximum results. As with all goals in the Plan, this work must be undertaken with an understanding of how human activities impact the natural environment, and where policy and law must be reexamined to balance the needs of water quality protection and land use.

4. **Monitor waters for NPS impairments and improvements to prioritize actions, measure success, and increase program efficacy.**

 MassDEP will lead the implementation of strategies and activities to monitor water quality and assess NPS pollution in Massachusetts waters. MassDEP recognizes that water quality data and systematic assessments of water quality are needed to not only determine the scope and extent of NPS pollution, but also to evaluate the effectiveness of efforts to restore and protect water quality. Understanding what works and what does not work allows for refinement of approaches and the use of proven methods of addressing NPS pollution. With limited resources and great demands to monitor waters in the state, MassDEP will continue to work with others to address gaps in knowledge, share and pool data, and align programs to answer important questions. The need for
coordinated efforts between MassDEP and its NPS Program partners is heightened by the limitations placed on the use of s.319 funds for NPS monitoring, as described in the USEPA NPS Program Guidelines.

5. Instill, encourage, and nurture a passion for restoring water quality through education, capacity building, and building new partnerships.

Capacity building means effectively and efficiently raising the level of awareness and the abilities of stakeholders to address issues related to NPS pollution. MassDEP recognizes that additional tools are needed to educate citizens, implement programs, and achieve the vision of this Plan. Sustainable watershed partnerships that include citizens, private industries, and government agencies, each with their own strengths and resources, can provide the long-term interest and focus needed for effective, local watershed management. Building these partnerships requires a solid foundation of knowledge, communication, and access to resources. Capacity building, education, and training play critical roles in addressing NPS pollution in the state.

4.4 OVERVIEW OF MATRIX OF NPS PLAN GOALS, OBJECTIVES, AND MILESTONES

The Plan identifies an effective statewide NPS pollution program for Massachusetts that is consistent with USEPA program requirements (April 2013, Nonpoint Source Program and Grants Guidelines for States and Territories). This Plan also incorporates the Massachusetts Coastal Zone Management Program NPS Plan and provides a statewide framework for addressing NPS pollution and improving water quality.

The Massachusetts NPS Program operates with a small, highly efficient staff in order to conserve program dollars for priority projects and program initiatives. Additional capacity is provided by partners, consultants, grantees, etc. In addition to better coordination with partnership efforts, additional capacity will come through the judicious use of s.319 funds to engage consultants and grantees for program work, while meeting the USEPA requirement that at least 50% be used for watershed project implementation.

Following the USEPA guidance, the Plan presents goals, objectives, activities, and milestones. Goals and objectives in the Plan address nonpoint sources of surface water and groundwater pollution, which is a key precept of the CWA. Each of the five long-term goals presented in Section 4.3 is defined by a set of objectives to be achieved within the next five years. Each objective has a set of specific milestone activities that will be undertaken by MassDEP and/or the NPS partners to help achieve the objective. The Plan outlines how success will be measured and a target deadline for completion. Table 4.1 presents a matrix of goals, objectives, milestone activities, responsible parties, and a schedule.

Activities in this Plan are designed to demonstrate reasonable progress toward accomplishing the long-term goals as expeditiously as possible. However, the Plan recognizes that it will be necessary to periodically re-evaluate progress and make adjustments during the next five-year period, both within the Plan and to programs that support the implementation of the Plan. Adaptive management strategies, detailed in Section 2.4 of this Plan, will be critical to responding to challenges, identifying obstacles, and using successes to lead to new actions.

The annual milestones are specific outcomes, designed to be measurable and to allow for USEPA to determine satisfactory progress in accordance with Section 319(h)(8). The milestones describe outcomes
and key actions expected during the implementation period of the Plan, which will run from 2020 through 2024.

To the greatest extent practicable, the Plan includes long-term goals and shorter-term objectives that are integrated with other key environmental and natural resource programs. Since there is no comprehensive program or single agency with the resources needed to accomplish all goals of this Plan, collaboration and teamwork among the NPS partners is essential to reach these goals.
Table 4.1. Matrix of NPS Plan Goals, Objectives, and Milestones

<table>
<thead>
<tr>
<th>Goal 1: Identify and expand opportunities to accomplish and leverage work by private, state, local, and federal partners</th>
<th>5-Year Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>Milestones</td>
</tr>
<tr>
<td>1. Align partner grant priorities to maximize environmental benefits</td>
<td>1.a. Identify NPS goals activities consistent with partner program activities</td>
</tr>
<tr>
<td></td>
<td>2.a. Create a statewide NPS Recovery Roundtable to coordinate efforts among key partners and set watershed priorities</td>
</tr>
<tr>
<td></td>
<td>2.c. Maintain NPS Program website to consolidate and advertise NPS-focused grants and assistance</td>
</tr>
<tr>
<td></td>
<td>2.d. Increase communication between partners</td>
</tr>
<tr>
<td></td>
<td>2.e. Expand geographic focus areas</td>
</tr>
<tr>
<td></td>
<td>2.f. Where appropriate and consistent with other program goals, the NPS Program will coordinate with the NRD Program to address mutual restoration goals and leverage s.319 grant projects (e.g., help provide match requirements)</td>
</tr>
<tr>
<td></td>
<td>2.g. MassDEP will continue to serve on the MassBays Management Committee and attend the Science and Technical Advisory Subcommittee as staffing allows.</td>
</tr>
<tr>
<td></td>
<td>2.h. MassDEP will engage with the National Estuary Program as it undertakes activities in fulfillment of Section 320 of the Clean Water Act.</td>
</tr>
<tr>
<td>2. Increase communication between partners</td>
<td>3.a. Identify local capacity in impaired and unimpaired high-quality watersheds, solicit grant proposals and work with previous applicants to develop more robust proposals</td>
</tr>
<tr>
<td></td>
<td>3.b. Develop priorities and processes for funding large-scale NPS projects that require partnerships because they exceed the funding capacity of any single program</td>
</tr>
<tr>
<td></td>
<td>3.c. Encourage the use of s.319 funds on projects that were designed or assessed using partner grant program funds and 604(b) funds for assessment work that supports partner-funded projects</td>
</tr>
<tr>
<td>3. Fund locally led projects and increase program efficacy</td>
<td>4.a. Report NPS benefits from partner grant projects</td>
</tr>
<tr>
<td></td>
<td>5.a. Support projects that continue the progress achieved through the Palmer River Watershed NWOI agricultural partnership pilot project</td>
</tr>
<tr>
<td></td>
<td>5.b. Support the USEPA Healthy Watershed Program</td>
</tr>
<tr>
<td></td>
<td>5.c. Continuously evaluate MassDEP and partner priorities, making adjustments as needed</td>
</tr>
<tr>
<td></td>
<td>5.d. Support NRCS efforts to identify additional watershed(s) for participation in NWOI</td>
</tr>
<tr>
<td></td>
<td>5.e. Prioritize s.319 funding for proposals that support the goals of the Worcester County RCPP</td>
</tr>
<tr>
<td>4. Where feasible, seek to coordinate grant funding cycles</td>
<td>6.a. Continue informal coordination and data sharing with NRCS that is consistent with federal Farm Bill requirements</td>
</tr>
<tr>
<td></td>
<td>6.b. Work to collaboratively address NPS pollution from agricultural sources through program coordination, increased communication, and technical support to producers</td>
</tr>
<tr>
<td></td>
<td>6.c. Address NPS issues from agricultural sources through policy/grant coordination and implementation of nutrient regulations</td>
</tr>
<tr>
<td></td>
<td>6.d. Improve communication between MassDEP, NRCS, and MDAR regarding composting and land application of food waste and its impacts on water quality</td>
</tr>
<tr>
<td>5. Establish geographic focus areas</td>
<td>7.a. NPS Program review of TMDLs to improve reasonable assurances</td>
</tr>
</tbody>
</table>

Measure of Success:
- **= ongoing activity**
- **= completed activity**
<table>
<thead>
<tr>
<th>Goal 2: Restore impaired waters, reduce NPS pollutants, and mitigate the effects of climate change</th>
<th>Objectives</th>
<th>Agency Lead</th>
<th>Partners</th>
<th>Measure of Success</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Address urban/rural sources of NPS pollution</td>
<td>1.a. Clearinghouse of grants/assistance for urban and rural communities</td>
<td>MassDEP</td>
<td>NPS partners</td>
<td>Web-based listing of grants/resources available</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>1.b. Coordination with Massachusetts Stormwater Program</td>
<td>MassDEP</td>
<td></td>
<td>Enhanced outreach/education and coordination on NPS issues related to new MS4 permit requirements</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>1.c. Support land protection and preservation activities that improve water quality</td>
<td>MassDEP</td>
<td>NPS partners</td>
<td>Funding and support for projects with a substantial land conservation component as NPS prevention and remediation</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>1.d. NPS watershed restoration projects that target water quality impairments by implementing WBPs</td>
<td>MassDEP</td>
<td>NPS partners</td>
<td>A target of 6-10 NPS watershed restoration projects funded and closed each year</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>1.e. Identify opportunities for NPS reduction projects in urbanized and urbanizing areas</td>
<td>MassDEP</td>
<td>USEPA</td>
<td>Annual collaboration with USEPA on use of s.319 funds for projects in MS4 areas</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>2. Restore aquatic habitats</td>
<td>2.a. Restoration of fresh and salt water habitats (e.g., dam removals, tidal flow improvement)</td>
<td>DER</td>
<td>MassDEP</td>
<td>Annual report describing any restoration project designed/completed</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>3. Encourage increased localized actions to address NPS pollution</td>
<td>3.a. Promote and support the development of stormwater utilities</td>
<td>MassDEP</td>
<td>CWSRF</td>
<td>Solicitation of s.319 and CWSRF projects that promote and support the development of stormwater utilities (e.g., development of feasibility studies, rate structure studies)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>4.a. Continuous evaluation of MassDEP and partner NPS priorities</td>
<td>MassDEP</td>
<td>NPS partners</td>
<td>Evaluation of priorities in Annual Report to USEPA and workplan</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>4.b. State-wide/program-wide key NPS priority development</td>
<td>USEPA</td>
<td></td>
<td>List of key partner priorities that are common to all state NPS partner grant programs</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>4. Target resources to critical watersheds</td>
<td>5.a. Encourage the use of alternative and innovative energy practices</td>
<td>NPS partners</td>
<td></td>
<td>Inclusion of alternative and innovative energy practices in at least one SRF-funded project per year</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>5. Mitigate the effects of airborne NPS pollution</td>
<td>6.a. Enhance groundwater recharge and protection of critical surface and subsurface water supplies</td>
<td>MassDEP</td>
<td>SWMM, NPS Partners</td>
<td>SWMM projects funded as match for s.319</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>6.b. Promote model ordinances, innovative community approaches</td>
<td>MassDEP</td>
<td>EEA</td>
<td>Continue to promote webpages devoted to successful local rules, regulations, ordinances, utilities, or other methods to address or correct activities that contribute to NPS pollution</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>6. Promote new regulations and existing programs to increase infiltration, improve stormwater management, and protect groundwater</td>
<td>7.a. Reevaluate the current Massachusetts WBP template and improve as needed to address USEPA priorities</td>
<td>MassDEP</td>
<td>USEPA</td>
<td>Update WBP template as needed to continue supporting development of (nine-element) WBPs, a completed WBP will be required for each s.319 NPS watershed restoration project (estimated 6–10 per year)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>7.b. Support NPS coordinator positions in Regional Planning Agencies to facilitate development of WBPs</td>
<td>MassDEP</td>
<td>Regional Planning Agencies</td>
<td>Completed and approved WBPs to support s.319 watershed restoration projects awarded annually</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>7. Promote/assist development of complete WBPs to guide NPS watershed projects</td>
<td>8.a. Work with state and federal partners to support the LiSS to reduce nitrogen loadings</td>
<td>MassDEP</td>
<td></td>
<td>Continued participation by MassDEP as a member of the LiSS Program Management Committee</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>8. Support and promote watershed planning by NPS partner agencies</td>
<td>9.a. Advance the work of MAFSCC</td>
<td>MassDEP</td>
<td>MASSTC</td>
<td>Publication of septic system advances and technology designed to reduce NPS pollution and improve effectiveness of treatment</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>9. Work to address NPS pollution from forestry operations</td>
<td>10.a. Continued implementation of the Massachusetts Forest Cutting Practices Act and its coordination with Wetlands Protection Program performance standards</td>
<td>DCR</td>
<td>Massachusetts Forest Cutting Practices Act permits issued, including filing of a Forest Cutting Plan with DCR</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.a. Continued implementation of the Massachusetts Superfund Law (MGL Chapter 21E), the Massachusetts Solid Waste Facility Regulations (310 CMR 19.00), and Regulations for Land Application of Sludge and Septage (310 CMR 32.00)</td>
<td>MassDEP</td>
<td>USEPA</td>
<td>Permits issued and site remediation activities implemented (for 21E sites) pursuant to the regulations listed under Milestone 12.a</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>12.a. Continued implementation of the federal CWA, Sections 401, 402, and 404.</td>
<td>MassDEP</td>
<td>USEPA, USACE</td>
<td>Permits issued for natural resource extraction sites pursuant to federal CWA, Sections 401, 402, and 404</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>13.a. Prioritize projects in waterbodies with routine cyanobacteria issues</td>
<td>MassDEP</td>
<td>NPS Partners</td>
<td>List of waters with routine cyanobacteria issues; funded projects to address nutrients/harmful algal blooms</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Table 4.1 Matrix of NPS Plan Goals, Objectives, and Milestones (Continued)

<table>
<thead>
<tr>
<th>Goal 3: Protect healthy and threatened waters through planning, education, program coordination, and implementation of climate-ready BMPs</th>
<th>5-Year Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>Milestones</td>
</tr>
<tr>
<td>1. Identify unimpaired/high-quality and threatened waters</td>
<td>1.a. Align NPS Program and partner priorities for unimpaired waters</td>
</tr>
<tr>
<td>2. Incentivize work in unimpaired/high-quality watersheds</td>
<td>2.a. Continue support for s.319 projects that support the Healthy Watersheds Program and protection of unimpaired/high-quality and threatened waters</td>
</tr>
<tr>
<td>2.b. Solicit projects focused on protection of unimpaired/high-quality waters</td>
<td>MassDEP</td>
</tr>
<tr>
<td>3. Incorporate protection into watershed planning</td>
<td>3.a. Promote the development of alternative WBPs to support the Healthy Watershed Program and protection of unimpaired/high-quality waters</td>
</tr>
<tr>
<td>4. Develop criteria, methods, and program approaches to protecting water quality</td>
<td>4.a. Pilot test new initiatives to protect unimpaired/high-quality waters</td>
</tr>
<tr>
<td>4.b. Determine the success of the pilot initiatives</td>
<td>MassDEP</td>
</tr>
<tr>
<td>5. Engage local partners on climate change adaptation, resiliency planning, and protection of healthy waters</td>
<td>5.a. Educate partners and stakeholders through on-the-ground projects showcasing climate change adaptation principles in healthy watersheds</td>
</tr>
<tr>
<td>6. Promote and support land conservation efforts</td>
<td>6.a. Engage conservation organizations involved with land protection efforts with NPS-focused education/outreach</td>
</tr>
<tr>
<td>6.b. Support land protection and preservation in watersheds with unimpaired/high-quality waters, including drinking water sources and groundwater zones</td>
<td>MassDEP</td>
</tr>
<tr>
<td>7. Work to assess and protect watershed stream stability</td>
<td>7.a. Support projects that protect and enhance watershed stability, restore streams, and use geomorphic data to create long-term viable solutions to stream stability</td>
</tr>
<tr>
<td>8. Promote and support NPS pollution prevention on forest lands</td>
<td>8.a. Provide technical assistance and outreach efforts to the forest cutting community</td>
</tr>
</tbody>
</table>
Table 4.1. Matrix of NPS Goals, Objectives, and Milestones (Continued)

Goal 4: Monitor waters for NPS impairments and improvements to prioritize actions, measure success, and increase program efficacy

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Milestones</th>
<th>Agency Lead</th>
<th>Partners</th>
<th>Measure of Success</th>
<th>5-Year Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Establish methods to categorize and assess unimpaired/high-quality waters</td>
<td>1.a. Use consistent methodologies for identifying unimpaired/high-quality waters</td>
<td>MassDEP</td>
<td>NPS partners</td>
<td>Methodology for NPS project prioritization for unimpaired/high-quality waters refined as needed</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td></td>
<td>1.b. NPS partner monitoring programs help assess and identify unimpaired/high-quality waters</td>
<td>MassDEP</td>
<td>NPS partners</td>
<td>Maintain WPP data portal for uploading third party sampling information</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>2. Integrate NPS monitoring needs into MassDEP monitoring programs</td>
<td>2.a. Advance selection of watersheds for baseline monitoring</td>
<td>MassDEP</td>
<td></td>
<td>Selection factors developed to identify watersheds, set priorities, and evaluate needed resources for baseline and follow-up monitoring</td>
<td>☒ ☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td></td>
<td>2.b. Post-implementation monitoring to assess water quality improvements</td>
<td>MassDEP</td>
<td>USEPA</td>
<td>Evaluation of program needs/available resources</td>
<td>☒ ☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td></td>
<td>2.c. Monitoring in the Palmer River Watershed in support of the NWQI project</td>
<td>MassDEP</td>
<td>USEPA</td>
<td>Continue bacteria source tracking in the Palmer River watershed</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>3. Assess existing data and report on water quality improvements</td>
<td>3.a. Clarification of delisting requirements</td>
<td>MassDEP</td>
<td>USEPA</td>
<td>Mutually accepted process for the research and development of USEPA Success Stories; develop one or more Success Stories annually</td>
<td>☒ ☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td></td>
<td>3.b. Identification of watersheds that are likely to show water quality improvements as a result of watershed-focused improvement activities</td>
<td>MassDEP</td>
<td>USEPA</td>
<td>List of waterbodies likely to show measurable improvements due to watershed-based improvement activities</td>
<td>☒ ☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td></td>
<td>3.c. Annually assess selected watersheds for possible follow-up success story monitoring (e.g., review existing data and information to determine if additional monitoring is recommended)</td>
<td>MassDEP</td>
<td>USEPA</td>
<td>Develop and implement monitoring plan to assess changes in water quality attributable to NPS implementation activities</td>
<td>☒ ☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td></td>
<td>3.d. Assessment of water quality data by DWIM/WPP to determine if improvements in water quality have occurred in watersheds with NPS-focused water quality improvement activities</td>
<td>MassDEP</td>
<td>USEPA</td>
<td>At least one USEPA success story submitted to and accepted by USEPA annually, if possible</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td></td>
<td>3.e. Continue the Massachusetts Effectiveness Monitoring Program (MEMP)</td>
<td>MassDEP</td>
<td>USEPA</td>
<td>At least one success story documenting a NPS-impaired waterbody that has been partially or fully restored over the next five years, if possible</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>4. Improve resource allocation to meet mandates</td>
<td>4.a. Coordination on CWA monitoring requirements, resource allocations, and NPS monitoring priorities</td>
<td>MassDEP</td>
<td>USEPA</td>
<td>Number of impaired waterbodies monitored for effectiveness of NPS projects</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>5. Determine impacts of NPS pollution sources</td>
<td>5.a. Conduct water quality monitoring programs in selected watersheds to identify impacts of NPS pollution sources</td>
<td>MassDEP</td>
<td>604(b) and s.319 grantees</td>
<td>Water quality monitoring programs conducted in selected watersheds to identify impacts of NPS pollution sources</td>
<td>☒ ☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td></td>
<td>5.b. Monitoring and assessment activities in 604(b) and s.319 projects to support identification of NPS pollution sources</td>
<td>MassDEP</td>
<td>604(b) and s.319 grantees</td>
<td>Develop and implement monitoring plans to identify and assess NPS pollution sources in watersheds with WQPs</td>
<td>☒ ☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>6. Increase use of volunteer data in the assessment of the scope and extent of NPS pollution</td>
<td>6.a. Organize current volunteer monitoring efforts and expand through guidance, technical support, and leveraging of resources</td>
<td>MassDEP</td>
<td></td>
<td>Increased availability of GAPP or GAPP-equivalent data that can be used by MassDEP in the assessment of the scope and extent of NPS pollution</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>7. Improve data sharing among NPS partners and the public</td>
<td>7.a. Support improved data sharing between the NPS Program and BWR programs</td>
<td>MassDEP</td>
<td></td>
<td>Annual report describing results of data sharing to identify success story candidates, priority projects, and other program priorities</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td></td>
<td>7.b. Support improved access to MassDEP data and MassDEP’s use of external data through use of USEPA’s WQX and WQP</td>
<td>MassDEP</td>
<td></td>
<td>Migrate all compatible water quality monitoring data to WQP and standardize use of WQP for storing new data</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>8. Improve statewide coordination of NPS monitoring activities</td>
<td>8.a. Coordinate NPS monitoring needs and activities with NPS partners through EEA</td>
<td>MassDEP</td>
<td>EEA</td>
<td>Work with EEA to develop a pathway for coordination of monitoring needs and activities</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
</tbody>
</table>

Measure of Success: Methodology for NPS project prioritization for unimpaired/high-quality waters refined as needed.

5-Year Schedule: ☒ = ongoing activity, ☒ = completed activity.
<table>
<thead>
<tr>
<th>Objectives</th>
<th>Milestones</th>
<th>Agency</th>
<th>Partners</th>
<th>Measure of Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Communicate grant successes to spark further actions</td>
<td>1.a. Collection of data on grant successes for education/outreach</td>
<td>MassDEP</td>
<td>NPS partners</td>
<td>Annual publication and update of 319 and 604(b) project indicative summaries</td>
</tr>
<tr>
<td></td>
<td>1.b. MassDEP will develop/disseminate an NPS Annual Report for the public and other stakeholders, which will include project descriptions and photos of ongoing and recently completed projects</td>
<td>MassDEP</td>
<td>NPS partners</td>
<td>Annual report highlighting successes and completed project overviews</td>
</tr>
<tr>
<td></td>
<td>1.c. CZM will continue to provide mid-year project summaries and end-of-year project reports to NOAA for the CPR grant program; in addition, CZM will also develop an indicative project summaries informational document for the CPR program and post it on the CZM website</td>
<td>CZM</td>
<td></td>
<td>Mid-year project summaries and end-of-year project reports to NOAA; indicative project summaries for the CPR Program posted to the CZM website</td>
</tr>
<tr>
<td></td>
<td>2. Engage the public in setting priorities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.a. Stakeholder meetings/forums to gather input</td>
<td>MassDEP</td>
<td>NPS partners</td>
<td>Annual public stakeholder listening session</td>
</tr>
<tr>
<td></td>
<td>2.b. Communicate NPS-focused information to stakeholders</td>
<td>MassDEP</td>
<td>NPS partners</td>
<td>Continue to augment email list with information submitted by NPS partners</td>
</tr>
<tr>
<td></td>
<td>2.c. Project success presentations, hosted by grant recipients</td>
<td>MassDEP</td>
<td></td>
<td>At least one presentation annually that highlights a completed, successful s.319-grant-funded project</td>
</tr>
<tr>
<td></td>
<td>3. Educate the public and increase the capacity of NPS partners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.a. Maintain the existing MassDEP 319 website</td>
<td>MassDEP</td>
<td></td>
<td>Annual evaluation of website and continued improvement with additional information on partner programs, information on grant opportunities, and education materials</td>
</tr>
<tr>
<td></td>
<td>3.b. Targeted education to unique population segments and types of NPS pollution sources, such as environmental justice communities and hobby farms</td>
<td>MassDEP</td>
<td>NPS partners</td>
<td>Report on NPS pollution sources and activities with recommendations for targeted education approaches</td>
</tr>
<tr>
<td></td>
<td>3.c. Continue efforts to educate on climate change and NPS</td>
<td>MassDEP</td>
<td>EEA MassDEP</td>
<td>Publication of Massachusetts state agency reports related to climate change adaptation, including the linkage to NPS pollution; continued work by state-agency-led action groups devoted to addressing climate change</td>
</tr>
<tr>
<td></td>
<td>3.d. Expand/Update the Massachusetts Clean Water Toolkit to include green infrastructure practices</td>
<td>MassDEP</td>
<td></td>
<td>Updated online web-based Clean Water Toolkit manual</td>
</tr>
<tr>
<td></td>
<td>4. Engage new partners to address NPS pollution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.a. Incorporate statewide climate change plans into MassDEP NPS Program</td>
<td>MassDEP</td>
<td>EEA</td>
<td>Continued MassDEP involvement in EEA climate change workgroup</td>
</tr>
<tr>
<td></td>
<td>4.b. Incorporate groundwater protection/recharge into watershed planning and implementation activities</td>
<td>MassDEP</td>
<td>CWSRF</td>
<td>NPS Program, TMDL, and other program guidance materials revised as necessary to incorporate EEA climate change plans</td>
</tr>
<tr>
<td></td>
<td>4.c. Encourage land trusts to participate in protection of healthy watersheds/high-quality and unimpaired watershed protection</td>
<td>MassDEP</td>
<td>MA Land Trust Coalition (MLTC)</td>
<td>Number of projects funded and implemented</td>
</tr>
<tr>
<td></td>
<td>4.d. Ongoing participation on the Agricultural Commissions/State Pesticide Board</td>
<td>MassDEP</td>
<td>MDAR</td>
<td>Land conservation project incorporating healthy watershed priority area</td>
</tr>
<tr>
<td></td>
<td>5. Integrate the state NPS Plan into education and outreach activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.a. Report on success and challenges related to progress on NPS Plan goals, objectives, and milestones</td>
<td>MassDEP</td>
<td></td>
<td>Section of Annual Report to USEPA devoted to NPS Plan updates, submitted each year</td>
</tr>
<tr>
<td></td>
<td>5.b. Revise the state NPS Plan to reflect successes, challenges, and new program directions</td>
<td>MassDEP</td>
<td>NPS partners</td>
<td>Annual revisions through workplans, and an approved NPS Management Program Update for the next cycle (including milestones for 2025–2029) to be in place by October 1, 2024</td>
</tr>
<tr>
<td></td>
<td>6. Improve data quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.a. Development of common data collection/analysis procedures</td>
<td>MassDEP</td>
<td>NPS partners</td>
<td>NPS partner monitoring programs use a single QA/QC plan for all NPS water quality data collection</td>
</tr>
</tbody>
</table>
SECTION 5: PRIORITIES

The wide range of NPS pollution issues facing the Commonwealth and the number of impaired waterbodies make it necessary for the NPS Program to establish priorities for disbursing grant funds. This section presents the framework that MassDEP uses when defining priorities as well as other information relevant to project selection. The purpose of this section is to be transparent about the tools and process used to define priorities and help applicants gather the information needed to develop a robust project plan and application.

Throughout this section, the term “priorities” is used broadly to describe issues and areas of highest concern to MassDEP. Priorities are set at multiple temporal and spatial scales including annual and long-term priorities and with consideration of a range of information including waterbodies and watersheds of most concern to MassDEP and the interests of NPS partners. The types of priorities include:

- Geographic—locations around the state where MassDEP would like to encourage projects
- Leveraging—projects that align with NPS partner priority locations or project/program areas
- Technical—sources or types of impairments

Long-term priorities are set by MassDEP’s WPP division and align with monitoring objectives outlined in Section 6 of this Plan. The NPS Program establishes and outlines annual priorities in the s.319 and 604(b) grant solicitations. These annual priorities provide flexibility for MassDEP to encourage projects that align with other, dynamic activities statewide, for example a new Healthy Watersheds Program effort. The Recovery Roundtable (see Table 4.1, Goal 1, Milestone 2.a) is an opportunity for the NPS Program to discuss pollution management activities and projects at partner agencies to establish these annual priorities.

This section includes the following components:

- Section 5.1, “Defining Priorities,” describes the four primary NPS issues facing Massachusetts and establishes the high-level and long-term priorities for the NPS Program.
- Section 5.2, “NPS Prioritization Framework,” describes how MassDEP ranks and evaluates projects including a description of the various tools used to set priorities. It also presents the categories of implementation for MassDEP Priorities:
 - Restoration of waters impaired by NPS pollution
 - Outreach/education/demonstration/assessment
 - Protection of unimpaired waters
 - Healthy Watersheds Program
- Section 5.3, “Sources of Nonpoint Pollution and Tools to Manage NPS,” details activities that generate NPS pollutants in Massachusetts, describes BMPs and tools available to address NPS pollution, and identifies the statutes and programs that govern MassDEP’s approach to NPS management.

5.1 DEFINING PRIORITIES

The goals presented in this Plan are ambitious, addressing a broad range of activities and program challenges. Recognizing the magnitude of the NPS problem and the limits on resources and funding, the Plan creates a realistic framework built on a strong statewide partnership that will help direct resources to the projects and partners that can make the greatest gains in remediating NPS pollution and protecting healthy waters from NPS pollution.

The priorities of this Plan focus on targeting funds from programs administered by MassDEP. In addition, the Plan emphasizes work with other agencies and entities to coordinate activities and align funding sources
on a common set of NPS priorities, where practical and feasible. MassDEP will, over the next five years, evaluate, adapt, and modify these priorities to achieve greater results, integrate with other partner programs, and respond to new or changing policy or science related to NPS pollution. Any changes to priorities will be coordinated with and approved by USEPA.

This section addresses Elements No. 4 and 5 of the “Key Components of an Effective State Nonpoint Source Management Program” guidance issued by USEPA. As such, it describes the following:

1. How MassDEP identifies waters impaired by NPS pollution;
2. How MassDEP sets priorities for addressing NPS pollution in Massachusetts;
3. How resources will be allocated between water quality restoration and protection of high-quality waters; and
4. The primary categories and subcategories causing water quality impairments, threats, and risks across the state, including an overview of how these sources of impairments influence funding of projects within the overall set of priorities.

5.1.1 Statewide Issues

While there are a wide range of NPS pollutants, sources of NPS pollution, and other concerns relevant to the restoration and protection of water quality in the state of Massachusetts, four major statewide issues will continue to drive the Massachusetts NPS Program over the next five years. These issues will shape NPS Plan goals, priorities, program partnerships, and implementation activities across the state. Working to address these issues is critical to addressing the major barriers to improved water quality in the state and the overall control of NPS pollution.

a. Sedimentation

Sediment is the loose sand, clay, silt, and other soil that settles to the bottom of a waterbody. USEPA lists sediment as the most common pollutant in rivers, streams, lakes, and reservoirs. While natural erosion produces nearly 30% of the total sediment in the United States, erosion from human use of land accounts for the remaining 70%.

Sedimentation includes accumulations of clean sediments as well as sediments contaminated with pollutants from spills, legacy anthropogenic activities, or high levels of nutrients. Sediments may be located in rivers, streams, lakes, bays, and wetlands or accreted behind or within artificial structures such as dams, levees, or canals. Any sediment with the reasonable potential to move from its present location due to normal flows of water or flood events, or released due to intentional or unintentional events could be considered a source of pollutants.

Sedimentation is a natural process, but excess sediment in waterbodies is a water quality concern based on the physical and chemical properties of sediments. Sediments can smother critical aquatic habitats, cause physical harm to aquatic organisms, and adversely affect drinking water supplies, water supply intakes, and permitted outfalls. Phosphorus, in particular, attaches to sediment, making sediment an efficient transporter of phosphorus into nearby waterbodies. Under certain conditions, phosphorus-laden lake bottom sediments can be significant contributors of phosphorus into the water column.

b. Nutrients

The term “nutrients” primarily refers to nitrogen and phosphorus. Nutrients naturally enter waterbodies through the processes of organic matter breakdown, but anthropogenic activities can create problems by increasing the amounts of nutrients. Of particular concern is nutrient runoff from lawns, fields, and other areas where fertilizers are used inappropriately or without adequate nutrient management strategies.
Increased nutrients produce visible and harmful effects; high nutrient levels in streams and lakes can promote excessive plant and algal growth. Toxic cyanobacteria blooms caused by excessive nutrients result in beach closures, impacts to fisheries and aquaculture zones, and potential public health problems associated with cyanotoxins. When the plants and algae die, the dead and decaying vegetation depletes the water's oxygen supply. This, in turn, leads to the death of fish and other aquatic organisms. This phenomenon can occur in stagnant streams, small ponds, or across larger waterbodies.

Nutrients move relatively easily from upland areas to waterbodies. Nitrogen readily dissolves in water and is often directly transported from field to stream through drainways or from lawns through storm sewers. Phosphorus is less soluble in water, but attaches to soil particles, allowing it to enter waterbodies through sediment runoff.

Nutrients affect human health. High nitrate levels make drinking water unsafe for consumption. Consuming excessive levels of nitrate, a form of nitrogen often found in fertilizer, can cause serious illness and sometimes death. In infants, the conversion of nitrate to nitrite by the body can interfere with the oxygen-carrying capacity of the child's blood. In certain cases, high nutrient loads can cause or contribute to the development of cyanobacteria blooms that produce toxins harmful to humans and other organisms. Nutrients are also found in animal and human waste, which means many sources of bacteria also contribute nutrients.

g. Pathogens

Waterborne pathogens are disease-causing microorganisms, including bacteria, viruses, and pathogenic protozoa. Pathogens are found in the feces of humans, pets, livestock and wildlife. These sources can contaminate waterbodies via direct surface runoff, septic system failures, CSOs, etc. When transmitted to humans, pathogens such as Giardia spp., Norwalk virus, and others can cause a wide range of illnesses. Fecal coliform bacteria, such as Escherichia coli (E. coli), are commonly found in the digestive tracts of all warm-blooded animals. E. coli, like many other kinds of bacteria, is not always harmful to humans. However, because it is relatively easy and economical to monitor for E. coli and because it is often found in conjunction with bacteria that do make humans sick, E. coli is often used as an indicator that waters are polluted with animal or human waste. During rainfalls, snow melts, or other types of precipitation, untreated wastes containing E. coli and associated waste-derived pathogens may wash into creeks, rivers, streams, or lakes. People may be exposed to pathogens when these waters are used for recreation or as a source of untreated drinking water.

The sources of pathogens are diverse: CSOs, illegal straight pipe discharges, runoff from urban and agricultural areas, failing septic systems, and natural levels associated with wildlife are all common sources. While there are rules and regulations governing the treatment of human waste and the management and use of animal manure, runoff of pathogens continues to be an issue in Massachusetts.

d. Climate Change

Climate change includes a wide range of issues, including abnormal fluctuations in temperature, more frequent or more severe storms, and drought or periods of significantly decreased rainfall. Climate change impacts stem from human activities that have released pollutants to the atmosphere, resulting in measurable impacts to weather patterns, including temperature and precipitation cycles. The combustion of fossil fuels is believed to be the primary underlying cause of these changes. Climate change exacerbates adverse impacts from many NPS pollutants, typically through increased runoff, abnormal water levels and
flow rates, and watershed instability due to storm-related hydrologic changes leading to NPS pollution impacts including thermal and physical alterations to waterbodies, decreased efficiency of NPS BMPs, and damage to infrastructure such as roads, levees, and communities in low-lying areas that were not previously prone to flooding. Watershed disruption and flooding related to hydrologic impacts of climate-related changes to rainfall patterns and sea level rise can increase NPS pollutant loads from a variety of sources. Examples are wide-ranging and include:

- **Sediment**
 - Streambank, channel avulsion, streambank failure due to increased intensity and frequency of peak streamflows
 - Coastal flooding and shoreline scouring from rising sea levels and more frequent/intense storms
 - Increased runoff from agricultural lands, construction sites, and other areas prone to erosion
 - Damaged infrastructure
 - Loss of riparian vegetation and associated filtering effects

- **Nutrients, pesticides, and pathogens**
 - Increased runoff and infiltration from agricultural lands, golf courses, residential lawns, and other areas that receive organic and commercial fertilizers and pesticides
 - Flooding of urbanized areas
 - Loss of riparian vegetation and associated nutrient uptake and filtering effects
 - Inundation or overloading of wastewater lagoons and sewer collection systems
 - Septic system dysfunction

- **Stream temperature**
 - Loss of riparian vegetation and associated shading
 - Increased ambient temperatures
 - Longer summers and longer periods between rain events
 - Reduced groundwater recharge leading to lower baseflows in gaining streams

Although climate change is a global issue, Massachusetts has embarked on a number of statewide studies and initiatives to begin to address this issue. Practices that focus on addressing the root causes of climate change, such as energy efficiency improvements, as well as NPS practices designed with enhanced resilience to climate change effects are considered viable for addressing this source. MassDEP prioritizes s.319 funding for project designs that accommodate climate change, encouraging the use of up-to-date climate data and models.

5.2 NPS PRIORITIZATION FRAMEWORK

5.2.1 Framework

MassDEP has developed the following NPS prioritization framework and project evaluation methodology to meet a number of important goals and directives:

- Priorities support the achievement of the goals set forth in the NPS Plan as well as goals and needs of MassDEP, USEPA, and program partners.
- The framework uses current and available information, from both social and scientific sources, to direct activities to the watersheds and waterbodies that can be restored or protected most expeditiously.
• The framework integrates with other NPS partner priorities to provide project support for NPS-related activities across the state. This will help maximize positive outcomes from the actions and activities of partner programs.

• Priorities are clear to partners and anyone seeking funding from MassDEP for NPS-project funding. Clarity will help applicants develop highly competitive proposals that address all NPS Program priorities.

• Priorities are flexible and adaptable in response to changing conditions in Massachusetts’ water resources, advances in science and technology, new policy directives, partnership opportunities, and unique projects that could make significant improvements to NPS pollution conditions in the state.

5.2.2 Priorities and Watershed Planning

Achieving or maintaining WQS and the restoration of beneficial uses is a state and national priority. USEPA requires each state to establish a process for prioritizing and progressively addressing waters and watersheds impaired or threatened by NPS pollution. This process relies on detailed watershed assessments and development of nine-element WBPs to support implementation work.

WBPs are tools that help Massachusetts municipal officials, watershed groups, and other stakeholders understand more about conditions in their watersheds. By identifying priority water quality problems and providing recommendations for action, WBPs provide the basis for developing competitive grant projects. Similarly, reported problems and modeled predictions of watershed-wide pollution and other issues can be used as a basis for monitoring and assessment work. Watershed-based planning also facilitates leveraging of project outcomes in adjacent communities by encouraging projects that address issues at a larger scale and that include coordination with neighbors to increase beneficial outcomes.

MassDEP has addressed the need for WBPs by developing a statewide Massachusetts WBP template to organize information about Massachusetts' watersheds, available online at http://prj.geosyntec.com/MassDEPWBP and described in more detail in Section 5.2.3. The template is presented in a format that supports the development of WBPs that can be used as the basis for projects to restore water quality in the Commonwealth.

The purpose of a Massachusetts WBP is to organize information about Massachusetts watersheds, and present it in a format that will enhance the development and implementation of projects that will restore water quality and beneficial uses in the Commonwealth. The WBP follows USEPA's recommended format and is presented consistent with Massachusetts's twenty-seven major planning basins. Annual solicitations for s.319 grant funds require applicants to include or reference a WBP with which their project aligns.

The current (2016) WBP template helps users develop a watershed plan in a guided format with instant access to maps, data, modeling and other information at a watershed scale. Users can develop a WBP that aligns with USEPA’s recommended nine-element format. The WBP template provides a guided process with the following components:

1. **Choose a watershed:** A map-based step that allows users to select a waterbody and identify the applicable watershed.

2. **Review information sources:** A library of existing resources on the selected watershed (e.g., watershed water quality assessment reports). The template includes available information from basin plans and reference documents for each of Massachusetts's 27 major planning basins and uses a nested approach within each basin to make the information available by subwatershed unit.

3. **Develop your plan:** A guided template for nine-element WBPs with pre-loaded information on each element, allowing the user to add details. The WBP tool also helps users determine technical information like necessary load reductions where applicable. Depending on the availability of existing information sources for a given watershed, the WBP template may either result in a completed WBP or may require some level of additional information-gathering be gathered to complete a WBP.
The completed WBPs will meet USEPA guidelines to serve as the basis for s.319-funded NPS watershed projects. Advantages of this strategy include:

- Supports integration of information from sources including water quality assessment reports, TMDLs, and independent watershed studies;
- Flexibility to direct s.319 funds in response to local capacity or emerging issues, and flexibility to realign priorities to avoid watersheds where politics or land use changes may reduce the likelihood of implementation;
- Increased opportunities to partner with other agencies and programs; and
- Ability to develop timely and accurate proposals at the time of shovel readiness.

The NPS Program acknowledges the complexity inherent in watershed-based planning and provides technical assistance to communities and groups on using the WBP template. Available assistance includes periodic webinars and workshops. MassDEP also anticipates tasking several new Regional Coordinators with helping applicants develop WBPs.

Although WBPs are an important planning tool for the NPS Program, MassDEP also envisions the need for additional planning projects and will support planning efforts by MassDEP programs as well as NPS partners, subject to the conditions set forth in current USEPA guidance. These include:

- **Water supply/water quality source protection planning**: Development of water supply planning and protection strategies for communities with public water supplies within a sub-basin. This would apply to both surface and groundwater sources.
- **Water supply development planning**: Assessment of future water supply needs within a basin or sub-basin. This would apply to both surface and groundwater sources.
- **TMDLs**: Development of reports and assessment needed to complete reports and implementation strategies.
- **Alternative watershed plans**: Development of NPS pollution-focused plans to address specific unique circumstances in a given watershed, such as when the impairment is not specific to a pollutant, when the state must respond to a NPS pollution emergency or urgent NPS public health risk, when a small-scale water quality problem results from only a few sources, or to protect assessed unimpaired/high-quality waters.

5.2.3 Setting Priorities—Tools

Priorities for s.319 and 604(b) program funds are based on the analysis of information such as water quality data, pollution sources, water quality stressors, and the strength of partnerships and local capacity to carry out projects. This provides an objective analysis of the watersheds in the state and an ability to rank these areas based on the potential for achieving desired goals, such as restoration of water quality or protection of existing resources. Periodically, MassDEP revisits the list of priority waterbodies where NPS-focused projects will likely achieve the maximum benefit. The NPS Program also works with key partners to annually identify projects where program funds could leverage other efforts. During development of the 2014–2019 NPS Program Plan, MassDEP used several tools to develop a list of priority NPS-impaired waterbodies (see Appendix A). This list continues to be an effective tool to help set annual priorities and evaluate proposed projects.

The 2014 List of Priority NPS Impaired Waterbodies was developed using the RPST, the CAPS (discussed in more detail in Section 6.2.1), water quality assessments, the 303(d) list, and funding requirements for NPS grants. This specific, focused list of waters is used to identify to interested stakeholders places within the state where MassDEP funds could be used to address NPS pollution issues. This list is also available to the NPS Partners to help guide and coordinate other water quality improvement and protection programs. The NPS Program also regularly discusses statewide priorities for water quality with NPS partners to help identify opportunities for leveraging grant funds.
The RPST was a critical tool in developing the list of priority impaired waterbodies. The RPST was originally developed by USEPA as a TMDL prioritization-planning tool. However, soon after the tool was developed, it became clear that it could be modified to address a wide range of screening and prioritization goals. In Massachusetts, the RPST was adapted by the NPS Program with assistance from USEPA. The tool creates a combined Recovery Potential Integrated (RPI) score, which is the likelihood of project success, given a watershed’s ecological capacity, exposure to stressors, and the social factors that influence the level of effort and complexity of making improvements.

The RPST indicators are based on data selected by water quality experts familiar with the datasets and the desired outcomes. MassDEP spent considerable time in the selection of appropriate indicators and the development of RPST scores for the waterbodies in the state. MassDEP also collaborated with other partners to evaluate outcomes and “reality check” results. MassDEP uses the results from the RPST along with other tools and discussions with NPS partners when determining evaluation criteria in annual solicitations for NPS funds provided by USEPA to carry out Sections 319 and 604 of the CWA.

Annual and longer-term priorities for the NPS Program incorporate partner priorities and opportunities. The Recovery Roundtable, referenced in Goal 1, Milestone 2.a, gives MassDEP an opportunity to meet annually with partners to develop shared priorities and strategies to identify (1) mutual restoration goals and (2) mutual goals for protection of high-quality or unimpaired waters. MassDEP identifies waters for protection through conversations with partners and utilization of the tools described in this section.

5.2.4 Balancing Priorities—Restoration and Protection

Much progress has been made to improve water quality in Massachusetts, but more work remains. USEPA’s 2013 guidelines for the CWA s.319 grant program allow states flexibility to use program funds and a limited amount of watershed project funds for activities to protect unimpaired, high-quality waters where a state identifies protection as a priority, and has described a process for identifying such waters. Based on MassDEP’s program priorities and funding allocations, approximately 20% of the annual 319 appropriation is available to be directed toward projects that address NPS Program Plan priorities other than remediation of impaired waters. Consistent with USEPA’s program guidelines, MassDEP recognizes that it is important to consider the protection of waters and watersheds that are not listed as impaired, as well as those that have been delisted due to restoration efforts.

The primary focus of the NPS Program remains on the restoration of impaired waters, and the majority of s.319 funds available for NPS watershed projects (which must implement WBPs) are directed at remediating water quality impairments. Waters impaired by NPS pollution in Massachusetts greatly outnumber waters that have been fully or partially restored, highlighting the critical need to focus on this task. Additionally, any activities that would enhance or heighten the efficacy of restoration activities would also be prioritized based on the greatest benefit concept.
Protection of water quality in unimpaired or restored waters will be a secondary, but important priority. This includes an emphasis on prioritizing protection of waterbodies that have been restored. As noted in Section 4, MassDEP will be involved in a number of activities intended to advance knowledge about the scope and extent of unimpaired waters, support interagency watershed protection projects, and advance science in areas that will help projects and protect water quality. These areas of focus include:

- Identification of unimpaired, high-quality, and threatened waters;
- Incentivizing work in unimpaired and high-quality watersheds, such as supporting the USEPA Healthy Watersheds Program;
- Incorporating climate change adaptation principles into watershed planning;
- Incorporating water quality protection into watershed planning;
- Engaging partners on climate change adaptation, resiliency planning, and protection of unimpaired/high-quality waters;
- Promoting and supporting land conservation efforts; and
- Working to assess and protect stream stability.

Any MassDEP NPS-funded project or allocation of resources will address the missions of restoration or protection. The greatest amount of s.319 funding is dedicated to implementation of restoration work. MassDEP will continue to actively solicit project proposals and fund projects that protect high-quality and unimpaired waters within the funding limitations established under the s.319 Program guidelines.

5.2.5 Implementing Priorities

MassDEP has aligned funding priorities between the Sections 319 and 604(b) programs to maximize project benefits and address NPS pollution. Detailed description of these grant programs and their specific NPS areas of focus are found in Sections 2.2.1 and 2.2.2 of this Plan. The direction set by these programs focuses work at the subwatershed level, targeting projects that have the greatest demonstrated potential to restore water quality through on-the-ground installation of NPS-focused BMPs. Assessment and planning work supported by federal CWA s.604(b) funds frequently leads to projects that are implemented through MassDEP’s 319 Nonpoint Source Competitive Grant program. The majority of the projects will continue to focus on addressing impaired waters identified in the Massachusetts Integrated List of Waters, implementing recommendations from approved TMDLs and WBPs, and continuing successful work started by projects previously funded by MassDEP or NPS partner programs. MassDEP will also focus on NPS education and outreach, assessment, and protection of unimpaired waters. In all cases, projects selected for funding will support the goals and objectives of the Plan.

Restoration of Waters Impaired by NPS Pollution

MassDEP will continue to focus the majority of s.319 Program funding toward NPS watershed projects that implement WBPs to address Category 5 impairments (those on the 303(d) list) or TMDL recommendations. When evaluating these types of projects, MassDEP will focus funding on projects that can demonstrate the greatest benefits for water quality improvement. Projects that will result in significant load reductions of pollutants causing identified impairments will receive higher prioritization. Further, projects that would install or construct BMPs that can serve multiple functions will be encouraged.

Multiple function BMPs are any structural or non-structural practice that would achieve a suite of benefits, including increased resilience of the BMPs to climate change, protection of groundwater, enhanced groundwater recharge, and improved in-stream habitat. These benefits are in addition to improvement in water quality through addressing sources of NPS pollution. Priority will also be given to projects that continue work initiated under a previous 319 grant or other NPS partner programs such as section 604(b), CZM’s CPR Grants, MET, or USDA-NRCS Farm Bill programs.

USEPA nonpoint program guidelines do not allow s.319 funds to be used to fund any urban stormwater activities that are required by MS4 or other NPDES stormwater permits. However, in communities where only a portion of the municipality is a regulated MS4, work in areas that are not regulated remains fully
eligible. Projects in regulated areas are eligible only if the work is not required under the MS4 permit. A goal of the NPS Plan is to work with USEPA to establish a clear policy on projects that may be funded by Section 319 within MS4 communities. This funding restriction only applies to s.319 grants and does not limit projects eligible for CWSRF, 604(b), or partner funds.

Protection of Unimpaired Waters

MassDEP recognizes that protecting areas of the state where water quality currently meets or exceeds applicable state standards is highly desirable. Proactive protection of healthy waters, particularly those that are at risk of impacts from NPS pollutants, can be a more efficient use of public funds than the long-term restoration projects that would be needed if the waterbody is not protected and becomes impaired. Under the 2014–2019 Plan, MassDEP dedicated significant efforts toward generating and evaluating RPST results to support its prioritization strategy, including identification of unimpaired, high-quality and threatened waters. MassDEP continues to use this information in establishing annual priorities for program funding.

MassDEP will continue to direct resources to programs and partnerships that can leverage greater resources to ensure that high-quality and restored waters are not degraded. MassDEP will focus on supporting the USEPA Healthy Watershed Initiative, land conservation projects, stream and watershed stability projects, and climate change adaptation projects with connections to NPS pollution, as detailed in the goals and objectives of the Plan. Projects that demonstrate a significant ability to protect existing water quality (including groundwater) will be given consideration under this priority. MassDEP has included goals in this NPS Plan to continue developing policy and procedures to support focused work on protection of unimpaired waters by:

- Developing criteria for s.319 projects that support the Healthy Watersheds Program and protection of unimpaired/high-quality and threatened waters;
- Soliciting projects focused on protection of unimpaired/high-quality waters;
- Aligning NPS Program and partner priorities for unimpaired waters (e.g., cold water fisheries, habitat restoration, delisted waterbodies); and
- Including a list of priority unimpaired waterbodies in annual s.319 and 604(b) grant solicitations.

MassDEP will establish annual priorities for protection to maximize flexibility for directing funds to meet changing conditions and emerging threats to water quality. Annual priorities will be based on consideration of RPST output (the basis for the list of priority unimpaired waterbodies), the status of Healthy Watersheds Program projects or identification of new Healthy Watersheds projects, protection of delisted waters, and priorities and activities of program partners.

Healthy Watersheds Program

A healthy, resilient watershed is one that can withstand and/or recover from harmful environmental impacts and can sustain its health and the provision of ecosystem services into the future. It is one in which the vulnerability to flooding is minimized, hydrologic functionality is maintained, water quality supports healthy native communities of plants and animals, and water-related uses such as recreation and drinking water are protected and maintained. There should be an interconnected network of natural land cover throughout the watershed, especially in the riparian and shoreline zones, providing critical habitat areas and supporting natural flow processes. Healthy and resilient watersheds maintain ecosystem services, such as helping to ensure availability of water for human consumption and industrial use with less treatment costs.
In 2013, USEPA, TNC, and the Association of Clean Water Administrators (ACWA) jointly signed an MOU to promote the Healthy Watersheds Initiative. This MOU formalized collaboration between these groups as they strive to develop and implement healthy watershed programs in states and with regional aquatic ecosystem programs. These programs include working with states and other partners to identify healthy watersheds statewide, to implement healthy watershed protection plans, to integrate protection into USEPA programs, and to increase awareness and understanding of the importance of protecting our remaining healthy watersheds.

Massachusetts’ first Healthy Watersheds project is located in the Taunton River basin. This project is a team effort including USEPA, TNC, and stakeholders in the Taunton River watershed. The goal of the project is to identify the key actions needed to keep the watershed healthy and resilient and to implement as many of these actions as possible. The project will include a compilation of existing data into a healthy watershed report, which will enable communities to make informed decisions related to the watershed’s future health and resilience.

This Plan includes milestones aimed at collaboration with USEPA and other partners to support healthy watersheds generally and specifically to support projects in watersheds selected for protection under the Healthy Watersheds Program. USEPA recently released the Preliminary Healthy Watersheds Assessments, which can be found at https://www.epa.gov/hwp/download-2017-preliminary-healthy-watersheds-assessments.

Outreach, Education, and Assessment

Education about the causes and solutions to NPS pollution, demonstration of new or innovative NPS pollution control technology, and characterization of the scope and extent of NPS pollution in Massachusetts are major themes in the goals of this Plan. Work on these activities is therefore a priority of MassDEP and its NPS program.

Outreach and education are often recommended as effective nonstructural BMPs, to both instruct on the topic of NPS pollution and motivate changes in behavior at the local level. To achieve the greatest benefit of outreach and education, as well as minimize duplication, projects in this category are typically focused on a regional or statewide approach. In some cases, these are stand-alone projects, but are also components of effective on-the-ground projects. A project that meets this priority should provide benefits that continue beyond the life of its grant-funded aspect.

Assessment activities to advance the NPS Plan and the knowledge base of partners in Massachusetts is another MassDEP priority. These projects gather and analyze information that is used to develop targeted projects designed to restore or protect water quality. Alternatively, the outputs of these projects are used to advise policy changes, strengthen or target education efforts, or characterize NPS pollution sources in a given watershed. Assessment activities are funded by the 604(b) program and focus on:

- **Water quality assessment**: Identification and characterization of a specific NPS pollution problem site or resource of particular concern via water quality sampling. Results are used to develop recommendations for BMP implementation projects and management strategies consistent with MassDEP’s policies and programs.
- **Assessment of the effectiveness of stormwater BMPs**: Assessment of costs (including operation and maintenance), treatment effectiveness, and water quality improvements from existing stormwater management systems.
- **Assessment of land use activities**: Identification and mapping of current land use activities within a river basin or drainage area, including known and potential sources of point and nonpoint pollution and permitted water withdrawals and discharges.

- **Assessment of local and regional environmental awareness, activities, and concerns**: Identification and assessment of local and regional needs, and the status of education and technical assistance relative to managing NPS pollution within a river basin or drainage area. Planning and coordinating resource protection efforts by various groups.

- **Wetlands assessment and restoration planning**: Identification and planning for potential wetlands restoration projects.

- **Assessment of local water quality protection measures**: Analyses of the range and effectiveness of local control measures such as bylaws, regulations, and enforcement provisions within a river basin or drainage area.

5.2.6 Priorities and the MassDEP NPS Program

To lead statewide efforts to improve water quality, MassDEP must invest resources in its own programs to help others build capacity, develop projects, educate stakeholders, assess waters, and broaden the base of knowledge on NPS treatment technologies. This will require responding to unique opportunities to leverage funds, work with partners, or make a timely investment that will reap larger rewards in the future. To that end, MassDEP will continue to improve and develop the NPS Program in order to accomplish the goals and objectives of this Plan. MassDEP envisions working closely with its partners and USEPA to identify potential projects. In doing so, MassDEP will consider whether these projects align with the priorities (including annual priorities) set forth in this Plan, and whether they have tangible benefits that can help meet one or more of its goals.

5.3 SOURCES OF NONPOINT POLLUTION AND TOOLS TO MANAGE NPS

Massachusetts shares many sources of—and solutions to—NPS pollution with other states in the region. Understanding the pollution pathways for NPS is important, not only for developing effective solutions, but for developing strategies to manage limited resources and to channel those resources to projects that will have the greatest likelihood of positively changing water quality in the state. The majority of sources of NPS pollution come from land management activities conducted in ways that allow pollutants to move to the rivers, streams, lakes, groundwater, and coastal waters of the state. Some sources of NPS are regulated or controlled through existing federal, state, or local regulatory programs, while other sources are not specifically regulated. These unregulated sources represent true NPS that must be addressed through voluntary programs that focus on the use of structural or non-structural practices to mitigate the impacts of NPS pollutants.

Some sources will require new approaches and much larger scale solutions that are outside the scope of the Plan. They are included and discussed as appropriate, both to provide a complete picture of the NPS pollution sources in the state and to direct future actions by MassDEP and its partners.

The Plan acknowledges that there may be unique factors that affect the scope and magnitude of these sources. Given the needs presented in Section 4 to assess, monitor, and study NPS pollution across the state, it is the intent of the Plan and MassDEP to approach addressing these sources using the prioritization protocol set forth in this section. In future iterations of the Plan, greater attention and resources may be
committed to these sources based on their regional or statewide significance, after additional analysis has been conducted.

Since this is a statewide Plan, these NPS pollution sources are characterized in broad terms. This is intended to orient and organize partner programs and create a common language to communicate information to stakeholders. For the purposes of MassDEP’s NPS program, these sources provide a guide to the types of restoration and protection projects that could be considered eligible for grant funding or as in-kind match for grant funding.

5.3.1 Categories of NPS Pollution Sources in Massachusetts

a. Developed Areas

This category includes a wide range of activities and issues associated with buildings, lawns, roads, marinas, and other structures. With denser development there is an increase in impervious surfaces, which affect local hydrology by reducing the area where precipitation can soak naturally into the ground. Developed areas also increase the amount of pollutants—such as fertilizers, septic system leachate, and motor oil from vehicles—that stormwater runoff can carry into waterbodies and wetlands. Developed sites range in size from backyards to golf courses, from single-family homes to skyscrapers, and from small dirt roads to highways. Within this category, possible pathways for NPS pollution to enter surface and groundwater include:

- **Stormwater runoff:** This includes water that flows on and over buildings, grassed areas, parking lots, and other features found within cities, towns, and rural communities. Runoff from impervious areas includes highways, roads, parking areas, rooftops, and similar facilities. Since, by definition, water cannot infiltrate into the ground through impervious surfaces, NPS pollutants on these surfaces are washed via rain and snowmelt into storm drains and adjacent waterbodies. Runoff from pervious areas, such as lawns, parkland, recreational areas, and golf courses, also contributes pollutants. Contamination of runoff and groundwater from applied fertilizers, pesticides, and other materials such as wastes from domestic animals is a common NPS pollution issue. Stormwater runoff from developed areas is also typically warmer than runoff from undeveloped areas, and can contribute to thermal impacts to waterbodies.

 Within developed areas, street drains receive runoff from the land, building roofs, pavement, and through infiltration/inflow from groundwater. Street catch basins are often receptacles of accidental and illegal dumping of wastes, including waste oils. As such, storm drains are a potential conduit for nearly any type of NPS pollutant. Past practices of locating drain outfalls at ponds, streams, and estuaries have resulted in direct contamination of waterbodies with pollutants including heavy metals, sediment, particulates, organic matter, nutrients, and bacteria. Structures such as dry wells, catch basins, and similar structures designed to discharge untreated stormwater runoff and cooling water into the ground are conduits for NPS pollution. If designed, sited, and constructed correctly, many infiltration devices can be positive controls and not sources of pollutants. Finally, BMPs that are intended to treat NPS can become sources of NPS if they are not properly designed, operated, and maintained.

- **Onsite wastewater disposal systems:** Also called septic systems, these systems are intended to treat wastewater effluent from homes and businesses in areas that are not served by sewers. This includes traditional systems composed of septic tanks and leach fields as well as innovative and alternative systems that provide advanced treatment. Properly designed, sited, and maintained septic systems provide effective treatment of pathogens and phosphorus. Nitrogen is less effectively treated, although several innovative and alternative designs show promise. Achieving optimal
nitrogen removal is especially important in coastal areas, as nitrogen is a cause of severe water quality degradation in marine environments.

System failures caused by hydraulic overloading, improper operation and maintenance, or poor design commonly result in above-ground breakouts of untreated leachate that may contaminate surface and groundwater with nutrients and pathogens. Commercially sold septic tank additives, disposal of pharmaceuticals, and introduction of other improper materials can be a source of toxic organic compounds that are not treated by the system and can cause catastrophic system failure.

- **Construction site erosion**: Removal of existing vegetation and the excavation and grading operations associated with construction sites can result in increased rates and volumes of runoff. Sheet, rill, and gully erosion may result from these changes. As construction sites are built out, increased impervious surfaces can enhance runoff and cause offsite erosion or related NPS pollutant issues.

- **Marinas and recreational boating**: Commercial and recreational boat mooring and fleeting facilities are unique sources of NPS pollution. Boat washing, fueling, and septage off-loading are potential sources of NPS pollution. Flooting facilities where bulk or liquid materials are loaded or unloaded can also be sources of NPS pollution.

b. **Transportation**

This category includes a variety of activities involving the creation, maintenance, and use of corridors for transportation. This includes roads, railroads, and airfields, as well as support areas such as marshalling yards, equipment storage, and maintenance facilities. NPS pollutants may originate from vehicles that use transportation corridors, from materials transported, or from routine maintenance activities. Construction of new corridors frequently crosses or comes close to drainage ways, streams, and other waterbodies. Erosion of soil from disturbed areas may directly enter waters. Reconstruction activities, including resurfacing and ditch/slope maintenance, can result in runoff of petroleum products and erosion of soil from disturbed areas. An increase in rates and volume of runoff can also be caused by land use changes associated with transportation corridors. Improperly sized culverts and roadway encroachment on stream channels increase watershed vulnerability to hydrologic instability and the impacts of climate change. Specific issues include:

- **Highways, state roads, streets**: The impervious surface on streets and highways allows the buildup of NPS pollutants that are readily washed away by rain events. In addition to the runoff of oil and grease from vehicles, NPS pollution comes from the use of road salts, sand, and other deicing compounds. Roadway deicing storage areas are potential sources of NPS pollutants to both surface water and groundwater. Spills or accidental releases of transported materials are a potential source of NPS pollution.

- **Rural roads**: Unimproved roads may be sources of sediment and dust. In addition, tackifiers and related compounds can be washed off roads or shoulders during rainfall events.

- **Railroads**: Oil, grease, and fuel are potential sources of NPS pollution. Additionally, areas where bulk or liquid materials are loaded/unloaded from railcars can be sources of a variety of NPS pollutants.

- **Aviation**: Chemicals associated with deicing, as well as aircraft maintenance areas, are sources of NPS pollutants.

c. **Agriculture**

This category includes activities that occur on land and water that focus on the production of crops and livestock, as well the storage, management, and use of materials such as animal feed, fertilizer, pesticides,
and waste products. This broad category encompasses cranberry bogs, cornfields, orchards, vegetable growing, confined animal operations, and shellfish beds. Although not commercial in nature, small hobby farms, horse stables, home gardens, and similar small-scale activities also generate agricultural NPS pollutants. Many of the day-to-day activities associated with agriculture manage NPS pollution with voluntary BMPs, tailored to the unique aspects of a given operation. Some NPS pollution from agriculture comes from the unintentional misuse of regulated chemicals or inappropriate application of fertilizers or other inputs. Animal husbandry practices, particularly collection and management of manure and the management of barnyard runoff, also influence NPS. Within the agriculture category, possible pathways for NPS pollution to enter surface and groundwater include:

- **Croplands and gardens:** The two major sources of potential surface and groundwater contamination from agricultural cropland are nutrient and pesticide runoff. Nutrient contamination may result from the overapplication of inorganic (commercial fertilizers) and organic (manure, compost, biosolids, etc.) fertilizers. These fertilizers may contain highly water-soluble nitrogen compounds that have the potential to leach to groundwater. Conversely, less water-soluble nitrogen compounds are subject to surface runoff into surface waterbodies. Pesticide contamination may result from products that are used to control a wide variety of pests including insects, fungi, and undesirable plants. If not properly applied, excess chemicals can be carried into surface water and groundwater from rain or irrigation. Pesticides have the potential to contaminate surface waters from erosion in the same manner as nutrients. Another potential source is wash or rinse water from pesticide spraying equipment. Water used to clean the inside of spray tanks or equipment is often drained in a small land area that may lead to groundwater contamination. Lastly, cropland is subject to sheet, rill, and gully erosion when surface runoff is not properly managed, resulting in sediment deposition and loading of associated pollutants to adjacent waterbodies. Wind erosion from bare soil can also lead to sediment deposition in surface waters. Conservation tillage practices, cover crops, and other conservation measures can greatly reduce this NPS pollution threat.

In addition to the potential for nutrient loss, municipal biosolids or composted green waste applied to croplands as fertilizer can be a source of other types of potential pollutants. For example, biosolids may contain substances that are not removed by traditional wastewater treatment processes and not typically monitored, such as perfluorooalkyl substances (PFAS) or pharmaceutical wastes.

- **Barnyards/animal feeding operations:** Runoff of animal wastes, particularly where large amounts of animals or wastes are concentrated, may result in the direct runoff of nutrients and bacteria into surface waters. Manure piles and holding areas in close proximity to surface waters, or that drain into conduits to surface waterbodies, pose a particular threat. These threats are magnified for manure storage lagoons that hold large amounts of animal wastes. Significant groundwater impacts from animal holding or animal waste storage areas are also possible where the water table is high or where infiltration rates are high. Lastly, animal watering and feeding areas can become denuded of vegetation due to high traffic and can become sources of soil erosion.

- **Production:** Another potential NPS pollution source is wash and processing water. Milk room wash water, egg wash water, and crop cleaning and processing wash water can contaminate surface water or groundwater when not properly treated or managed.
• **Grazing:** Pollution of surface water and groundwater may occur from overgrazing, grazing near waterways, removal of riparian vegetation, overstocking of pastureland resulting in the loss of cover, and the direct discharge of animal manures to surface waters. Animals allowed in or near streams will directly contaminate water and cause watershed instability when hoofs destroy riparian vegetation that would otherwise stabilize banks and channels. In addition, groundwater contamination may occur in a similar manner to those described for organic manure loading in barnyards.

• **Irrigation/drainage:** Cropland that receives additional water through alterations to drainage or application via pumps and other appurtenances is more vulnerable to erosion and runoff of chemicals and nutrients. Excess water that cannot be used by plants or absorbed into soil can carry NPS pollutants to surface waters. Subsurface drainage, such as field tiles, can enhance the transport of NPS pollutants to both surface and groundwater.

• **Specialty crops:** Cranberries are a prime example of a specialty crop that may have direct impacts on surface waters. Due to the required cultural practices for growing cranberries, large amounts of water are used for irrigation, crop frost protection, and harvesting. The water used in cranberry bogs is typically obtained from surface waters in close proximity to the bogs. This water is normally drawn from the surface waterbody, used and retained as required, and returned to the waterbody. Excessive or improper application of fertilizers and pesticides, as well as accidents and vandalism, may result in direct introduction of pesticides and fertilizer to adjacent surface waters. Another potential impact on surface water may result from the aerial application of pesticides to cranberry bogs. Due to the close proximity of cranberry bogs and surface waters, pesticide drift may occur and result in direct input of low levels of pesticides to surface waters.

• **Aquaculture:** Also known as fish or shellfish farming, aquaculture refers to the breeding, rearing, and harvesting of plants and animals in all types of water environments, including ponds, rivers, lakes, estuaries, and the ocean. It produces food fish, sport fish, baitfish, ornamental fish, crustaceans, mollusks, algae, sea vegetables, and fish eggs. Aquaculture includes the production of seafood from hatchery fish and shellfish that are grown to market size in ponds, tanks, cages, or raceways. This category also includes the growing of aquatic plants used in a range of food, pharmaceutical, nutritional, and biotechnology products. These operations have the potential to cause NPS pollution from nutrients (typically from excess food or nutrient supplements that break down in water), chemicals (e.g., anti-fouling agents, biocides), and waste products from biota.

d. **Forestry**

This category includes activities focused on the management of forested areas for the purpose of planting and harvesting trees for timber and other associated wood products. While forestry activities are minimal
in the coastal zone, both public and private lands in the western portions of Massachusetts are managed for forestry. Within this category, possible pathways for NPS pollution to enter surface and groundwater include:

- **Harvesting:** Activities associated with cutting and removing timber can cause increased soil erosion. Access and skid roads, stream crossings, and log landings are the primary sources. Increased erosion can result in suspended or bed load sediments in streams, ponds, reservoirs, and lakes. Clear-cutting or patch-cutting large areas may result in hydrologic modifications that could cause accelerated channel or sheet erosion.

- **Reforestation:** Site preparation may result in the temporary loss of cover and result in sheet and rill erosion. Use of herbicides to suppress existing vegetation may result in water contamination.

- **Christmas tree plantations:** Site preparation and annual weed control with herbicides may result in accelerated sheet and rill erosion and water contamination.

- **Harvesting equipment:** Fuel spills and leaks from storage tanks or equipment may result in water contamination.

In Massachusetts, potential NPS pollution impacts associated with forestry are primarily addressed through continued implementation of the *Massachusetts Forest Cutting Practices Act* and its coordination with Wetlands Protection Program performance standards, and pro-active education on efforts such as forestry BMPs. The statewide MADCR Forest Stewardship Program exists to offer technical assistance and outreach efforts to the forest cutting community.

e. **Hydromodification**

This category includes any anthropogenic alteration of the bed, banks, flow path, bottom depth, velocity, water volume, or water regime of a river, lake, stream, shoreline, or wetland. Historically, waterbodies have been reshaped for a variety of purposes, such as enhancing water supplies, flood control, drainage, and creation of areas to construct roads, buildings, and other structures. Massachusetts more than 3,000 dams, with the Blackstone watershed having the highest dam density in the country. It is now recognized that these alterations have adverse effects on water quality and watershed stability, most often resulting in destabilized stream channels, head cutting of stream profiles, and displacement of water from wetlands filled or drained. Interference with natural channel process and hydrologic function leaves the watershed vulnerable to the impacts of climate change. Within this category, a number of NPS pollution pathways are recognized:

- **Channelization:** Maintenance or construction of ditches, channels, rivers, or alteration of natural channels to redirect flow may result in direct discharges of soil and sediment to flowing waters. Unstable channels, eroding slopes, and spoil material may erode, releasing sediments to water. Removal of riparian vegetation may cause temperature increase in downstream areas, stream scouring, increased flows, and flooding.

- **Dam construction/reconstruction:** Earth moving and construction activities may result in soil erosion and sediment delivery to waters. Thermal and hydrologic modifications frequently occur where the reservoir area or storage is large. Flooding of upstream wetlands may result in alterations...
in pH of unbounded waters and release of nutrients. Additionally, earthwork dams may also contribute sediments from erosion or failures.

- **Earth fills**: Filling of wetlands and other natural storage areas may displace flood storage and alter peak downstream flows. Erosion of unstabilized fill may cause sedimentation in streams and lakes.

- **Streambank/shoreline erosion**: Areas of denuded banks of streams and lakes can contribute increased amounts of soil to adjacent waterbodies. This type of erosion can result from enhanced or unnatural stream flows or increased wave action from watercraft. Bank stabilization techniques involving hard armoring may actually enhance bank erosion upstream and downstream of a given site due to increased water velocity or changes to the natural flow of water through a stream or river. Climate change can have a significant impact on watershed stability.

f. **Atmospheric Deposition**

This category includes a wide range of activities that cause or contribute to the release of pollutants to the atmosphere. These pollutants eventually return to the landscape, often great distances from the original source. The atmosphere as a significant source of pollution to surface water and the effects of artificial sources were demonstrated by the impacts of acid rain (sulfur dioxide and nitrogen oxides: SO_2 and NO_x) on lakes, and later was found to cause mercury, polychlorinated biphenyls (PCBs), and nutrient impairment. Pollutant pathways include:

- **Wet deposition**: Pollutants in the atmosphere can be picked up by precipitation or act as condensation nuclei for precipitation formation and thereby be deposited to surface water and land in the form of rain or snow.

- **Dry deposition**: Particles in the air are deposited onto surface water and land surfaces at a rate that depends on the particle size, wind speed, and other factors. Gaseous pollutants can also be deposited to water and land.

- **Volatilization**: Previously deposited gaseous and semi-volatile chemicals, such as mercury and PCBs, can be re-emitted to the atmosphere as the result of many factors, including chemical reactions and changes in temperature or wind speed.

Air pollutants are not only deposited directly to the surface of waterbodies but are also deposited to the surrounding land and then enter surface waters indirectly through stormwater runoff and groundwater seepage. Two major issues arise from atmospheric deposition—precipitation containing NPS pollutants, and clean precipitation that causes air-deposited pollutants to run off surfaces and into waterbodies. Addressing these pollutants at the source, typically through existing regulatory requirements, is the first line of defense. The use of alternative energy technology can significantly reduce atmospheric NPS.

g. **Landfills, Contaminated Areas, and Waste Management Sites**

This category includes activities related to consolidation and management of wastes generated by residential, commercial, and industrial processes, including sewage. Many of these activities are regulated, and extensive requirements are typically placed on these sites. However, the potential for offsite transport of NPS pollutants remains, as does the potential for better management with improved BMPs. Within this category, possible pathways for NPS pollution to enter surface and groundwater include:
- **Landfills:** This includes both operating and closed landfills that are or have been used for disposal of garbage and other residential, commercial, and industrial wastes considered non-hazardous material. Surface runoff from these areas may contribute sediment to nearby waters and transport a variety of contaminants washed from the material. The decomposition of these wastes generates large volumes of liquids, which mix with other accumulated depositions to form a variety of compounds that may percolate to surface and subsurface waters.

- **Hazardous waste areas:** These may be located over defined or non-defined areas where hazardous wastes of chemical, biological, or mineral material is stored, has been stored, or is spread on the land. Contamination of surface and groundwater may result from runoff or percolation of water through the area.

- **Brownfields:** A brownfield is a property whose expansion, redevelopment, or reuse may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Contamination of surface water and groundwater may result from runoff or percolation of water through the area, albeit at lower levels than at a site contaminated with a classified hazardous waste.

- **Organic waters/sludge/septage:** This includes treated and untreated plant and animal residues from food processing facilities such as shellfish depuration and fruit pumice, as well as approved sludge from anaerobic digesters, waste treatment plants, and septic tanks. Concentration of these materials in stockpiles or applications to the soil present a potential for runoff to surface waters. Some of these products are high in nitrogen, which may be discharged to ground and surface waters. Heavy metals are often associated with sludge from treatment plants serving industrial customers.

- **Waste application areas:** These are areas specifically identified for the application of liquid or solid agricultural waste such as milk room wastes, lagoon effluent, and liquefied manures. There is the potential for contamination by runoff and/or infiltration of nutrients, bacteria, and chemicals. This category also applies to areas specifically identified for approved applications of sludge, septage, or other non-farm wastes.

- **Composting areas:** Despite numerous benefits as a practice to reduce waste and landfilling, land areas used for the composting of agricultural, industrial, and residential wastes may represent another potential source of pollution. The degree of potential contamination is difficult to determine since the threat is based on the types of materials that are being composted and the site-specific composting procedures. Materials that contain high levels of nutrients and that are exposed to rain represent an increased risk to groundwater or runoff to surface waters. Increasing composting requirements in municipalities and a statewide effort to reduce food waste in landfills has resulted in an increase in large composting areas that may be a source of NPS pollution.

In Massachusetts, potential NPS pollution impacts associated with landfills, contaminated areas, and waste management sites are primarily addressed through the Massachusetts Superfund Law (MGL Chapter 21E), the Massachusetts Solid Waste Facility Regulations (310 CMR 19.000), Regulations for Land Application of Sludge and Septage (310 CMR 32.00), and Site Assignment Regulations for Solid Waste Facilities (310 CMR 16.00).

As discussed in Section 3.1.1, the Massachusetts NRD Program also plays a role in mitigating impacts associated with releases of oil or hazardous materials and substances. Where appropriate and consistent with other program goals, the NPS Program will coordinate with the NRD Program to address mutual restoration goals and leverage s.319 grant projects (e.g., help provide match requirement).
h. **Natural Resource Extraction**

This category includes activities dedicated to the recovery of sand, gravel, rock, oil, natural gas, and other natural materials that are obtained by excavation, drilling, boring, or other methods. Within this category, possible pathways for NPS to enter surface and groundwater include:

- **Surface extraction areas:** These are gravel pits, surface mines, and similar areas. Exposed soil and mineral resources are subject to wind and water erosion. Both surface and groundwater hydrology may be changed due to these land use changes.

- **Processing facilities:** Sorting, washing, and other processing facilities or storage of extracted and waste resources may contribute dust and solids to nearby waterways.

- **Offshore drilling areas:** These operations run the risk of releasing oil or related material to the offshore waters, thereby causing coastal pollution and marine fisheries habitat pollution.

In Massachusetts, potential NPS pollution impacts associated with natural resource extraction are primarily addressed through implementation of the federal CWA, Sections 401, 402, and 404. In addition, municipalities may enact local bylaws to further control potential impacts associated with natural resource extraction.

i. **Emerging Sources**

Advances in technology and changes in land use practices can lead to new sources of NPS pollution that are not well understood or quantified. The NPS Program will continue to consider new sources such as land clearing and operation of large-scale ground solar arrays; PFAS from fireworks, firefighting activities, etc.; and other emerging sources, when identifying annual priorities and working with partners to address NPS pollution across the state.

5.3.2 **BMPs to Address NPS Pollution Sources**

As a programmatic document, this Plan largely focuses on strategies and activities to facilitate and encourage implementation of practices that will prevent, stop, or reduce NPS pollution from its sources. This section, however, describes the types of practices that are available to address NPS pollution on the ground. These descriptions are provided to help inform individuals and organizations interested in NPS pollution prevention. Detailed descriptions of specific BMPs are provided in the Massachusetts Clean Water Toolkit, available at http://prj.geosyntec.com/npsmanual/default.aspx and described further at the end of this section.

NPS BMP Categories

The management of NPS pollution often involves a combination of practices designed to prevent and intercept the entry of NPS pollutants into waters along the entire pathway from source to receiving water. Most BMPs address one specific stage of this pathway, although they may be applied in different situations and to different sources.

NPS BMPs can be more effective if governmental agencies, private sector interests, and stakeholder groups coordinate projects and implement solutions that address NPS pollution sources in a holistic manner. BMPs can either complement each other—erosion control BMPs typically increase the effectiveness and reduce the maintenance requirements of a site’s sediment controls—or undermine each other—armoring stream banks may increase flow velocity and channel erosion downstream. In general,
controlling NPS pollutants through prevention where possible is the most cost-effective approach. Control of these pollutants generally becomes more difficult and expensive the farther they travel down the stormwater pathway.

As indicated in Section 5.1.1.d, increased intensity and frequency of large storm events can result in decreased efficiency of BMPs, particularly those that are not designed to accommodate such changes. MassDEP prioritizes funding of NPS projects that accommodate changing precipitation and encourages use of updated rainfall frequency analyses in BMP design, such as those available through the Northeast Regional Climate Center.

General categories of NPS BMPs are described below.

- **Preventive BMPs** are management techniques or designs that prevent or reduce the exposure of substances to precipitation, stormwater, or surface waters. All policies and practices that prevent the release of materials to the open air, soil, or water are preventive BMPs. Such practices and safeguards make up a large part of the rules, guidelines, and permit requirements for facility management and for the storage, transport, processing, and disposal of wastes and hazardous materials administered by MassDEP and other regulatory agencies. Examples include:
 - Planning, policy, and regulatory activities
 - Housekeeping to contain and cover materials and wastes, or keep them indoors
 - Land conservation
 - Groundwater seepage abatement and control
 - Recycling and composting, including rainwater harvesting
 - Household hazardous waste collections
 - Public education and outreach

- **Erosion control BMPs** maintain the integrity of the land surface to prevent material at the surface from entering stormwater or surface water. These practices include BMPs such as mulches, erosion control mats and blankets, vegetation establishment and protection, and riprap.

- **Cleanup BMPs** remove or remediate NPS pollutants that have contaminated a specific area. In most cases of significant contamination, the selection and implementation of these BMPs are governed specifically under agency rules. Other cleanup BMPs, such as cleanup of litter or illegally disposed materials, are more discretionary. Examples include:
 - Spill response
 - Contaminated site cleanup
 - Trash or litter cleanup
 - Street sweeping
 - Plugging of oil and gas wells
 - Source removal

- **Run-on and runoff control BMPs** reduce the volume, velocity, and erosive force of stormwater through diversion, infiltration, or absorption of stormwater into the surface or through physical impediments which slow the flow of stormwater. Examples include:
 - Channel systems, including vegetated swales
 - Low-impact development BMPs, such as bioretention, rain gardens and permeable pavements
Rainwater harvesting/detention
- Sand filters
- Vegetative filter strips, riparian buffers
- Hydrodynamic separators

Sediment control BMPs delay runoff before it leaves a site to filter out and/or precipitate suspended particles, including soluble pollutants which may be attached to solid particles. Example BMPs include constructed wetlands, detention basins, inlet and outlet protection, and silt fencing.

Channel, stream bank, and streambed protection BMPs protect the integrity of stream beds and stream banks to prevent erosion and loss. Stream banks can be protected or restored either by increasing resistance of the bank to erosion or by decreasing the energy of the water at the point of contact with the bank, for example by deflecting or interrupting flows. Examples include:
- Prevention of disturbance by exclusion of livestock, off-road vehicles, etc.
- Vegetative bank stabilization, including live stakes, live fascines, and brush mattresses
- Reinforcing or armoring exposed surfaces (e.g., gabions, stone toe protection)
- Channel shaping to reduce velocity and erosive force
- Log, rootwad, and boulder revetments

Habitat restoration BMPs are a special subset of biological erosion control and stream protection BMPs. They establish or protect the natural communities that most effectively protect waterways and riparian areas from erosion. Examples include:
- Reestablish hydrology of wetlands, riparian areas
- Restoration of wetland native plant communities
- Riparian buffer, connecting streams or channels to floodplains

The Massachusetts Clean Water Toolkit

The USEPA guidance for NPS programs requires that state NPS Plans must “identify best management practices and measures to control each category and subcategory of nonpoint sources.” MassDEP has developed the Massachusetts Clean Water Toolkit as the primary education tool to address this need. The Toolkit is extensively cross-referenced to other BMP guides, manuals, fact sheets, and applicable specifications that have been proven to be effective.

The Toolkit was created for use by municipal officials, residents, and land managers to promote understanding and implementation of the many different options for prevention and control of NPS pollution. The Toolkit is an interactive, web-based document that includes a wide range of BMP fact sheets and a “BMP Selector Tool” that helps users choose the best BMPs for specific NPS pollution problems.
5.3.3 Laws and Regulations to Address NPS Pollution Sources

Massachusetts waters are protected from environmental degradation by a coordinated system of federal and state control. The federal CWA, 33 U.S.C. §§ 1251 et seq., seeks to prevent water pollution by point sources primarily by requiring facilities that discharge pollutants into surface waters of the United States to obtain federal permits that limit the amount of pollutants that may be discharged. The federal CWA does not establish similar regulatory authority over nonpoint sources of pollution but does require states to develop NPS management programs (Section 319, 33 U.S.C. § 1329), as described in detail in Section 2.2.1. States may, at their discretion, use s.319 funds to develop state-specific NPS regulatory programs.

The Massachusetts Clean Waters Act, G.L. c. 21, §§ 26–53, confers on MassDEP “the duty and responsibility...to enhance the quality and value of water resources and to establish a program for prevention, control, and abatement of water pollution.” G.L. c. 21, § 27. Like the federal CWA, the state act creates a comprehensive permitting program to ensure WQS are met—id. at §§ 27(6), 43–44.

In addition to establishing the permit program, the state act directs MassDEP to establish WQS; see id. at § 27(5). The state act also confers on MassDEP the authority to adopt “rules and regulations which it deems necessary for the proper administration of the laws relative to water pollution control and to the protection of the quality and value of water resources”: G.L. c. 21, § 27(12). Unlike the federal CWA, the state act seeks to prevent water pollution by nonpoint sources by requiring dischargers of pollutants into surface waters or groundwater of the Commonwealth to obtain state permits that limit the amount of pollutants that may be discharged. The body of regulations through which the Department exercises the broad authority delegated to it under the state act appears mainly at 314 CMR 1.00–18.00. “The statutory purpose of the Act, expressed through its text, makes it clear that [MassDEP] has the discretion to create regulations that will best preserve and also restore the quality of our waters” (Friends & Fishers of the Edgartown Great Pond, Inc. v. Department of Envtl. Protection, supra at 838).

The state act is also embedded in a network of environmental laws and regulations. For instance, in 1996, MassDEP issued the Stormwater Policy, which established the Stormwater Management Standards. Since that time, MassDEP has applied the Stormwater Management Standards pursuant to its authority under the state act and the Wetlands Protection Act, G.L c. 131, § 40. In accordance with the Wetlands Regulations, 310 CMR 10.05(6)(b), Conservation Commissions and MassDEP issue Final Orders of Conditions requiring that stormwater be managed in accordance with the Stormwater Management Standards. MassDEP also applies the Stormwater Management Standards when reviewing projects that require a 401 Water Quality Certification under the federal CWA (i.e., a certification by the state that a federally issued permit in Massachusetts will not violate state WQS). MassDEP has incorporated the Stormwater Management Standards into the Wetlands Protection Act Regulations, 310 CMR 10.05(6)(b)(1)(a), and the regulations for 401 Water Quality Certification for Discharge of Dredged or Fill Material, Dredging, and Dredged Material Regulations, 314 CMR 9.06(1)(a).

In Massachusetts, some stormwater infiltration BMPs may be subject to additional requirements of the Underground Injection Control (UIC) Program, Drinking Water Protection Program, Ground Water Discharge Program, and the Massachusetts Stormwater Management Standards. Infiltration BMPs are regulated as Class V underground injection wells used to drain stormwater runoff if they meet certain criteria defining a well in Massachusetts UIC regulations at 310 CMR 27.02. The UIC regulations, 310 CMR 27.00, require the owner or operator of an existing (or proposed) stormwater infiltration device meeting the
definition of a Class V underground injection well to register with the MassDEP UIC Program and Massachusetts Groundwater Discharge Permit Regulations (314 CMR 5.00).

Agricultural activities, broadly defined, are exempted from many environmental regulations. The Wetlands Protection Act, G.L. c. 131, § 40, does not apply to “work performed for normal maintenance or improvement of lands in agricultural use or in aquacultural use” or to maintenance of drainage and flooding systems of cranberry bogs. This exemption applies only to lands already in such use and not to improvement of land for such use.

USEPA has principal responsibility nationwide for the consistent regulation of pesticide use. MDAR regulates all aspects of pesticide use, including herbicides, fungicides and rodenticides, under the Massachusetts Pesticide Control Act, MGL c. 132B, and regulations published at 333 CMR 2.00. However, regulatory exemptions for agricultural use are somewhat limited in the Quabbin and Wachusett watersheds under regulations promulgated by DCR and published at 313 CMR 11.04 and 11.09. MDAR has also published regulations at 333 CMR 11.00 that address the application of herbicides to maintain rights-of-way.

In addition, permits from MassDEP for discharges to surface or groundwater are required for concentrated animal feeding operations, some aquaculture facilities, and some silvicultural point sources under MGL c. 21, § 43 and regulations at 314 CMR 3.05 and 5.05.

In Massachusetts, potential NPS pollution impacts associated with landfills, contaminated areas, and waste management sites are primarily addressed through the Massachusetts Superfund Law (MGL c. 21E). Regulations that specify permitting and management requirements for solid waste management sites, including composting, include the Massachusetts Solid Waste Facility Regulations (310 CMR 19.00) and Regulations for Land Application of Sludge and Septage (310 CMR 32.00), and the Site Assignment Regulations for Solid Waste Facilities (310 CMR 16.00). The Site Assignment Regulations provide for general permits for composting facilities that require owners and operators to prevent unpermitted pollutant discharges to natural resources including water, and require specific BMPs including management of stormwater and leachate to prevent water pollution. Agricultural composting and small quantity residential composting are exempt from the Site Assignment Regulations for Solid Waste Facilities.

Finally, Title 5 of the State Environmental Code, titled Minimum Requirements for the Subsurface Disposal of Sanitary Sewage, published at 310 CMR 15.00, regulates the siting, construction, upgrade, and maintenance of onsite sewage disposal systems. Title 5 dovetails with MassDEP’s Groundwater Discharge Permit Program under 314 CMR 5.00, which applies to all discharges of sanitary sewage to the ground.
Primary Laws and Regulations Addressing NPS Pollution Source Categories in Massachusetts

In addition to the regulatory authority summarized above, specific laws and regulations that address each of the primary NPS pollution source categories described in section 5.3.1 are listed below.

<table>
<thead>
<tr>
<th>NPS Pollution Source Category</th>
<th>Applicable Law or Regulation</th>
</tr>
</thead>
</table>
| Developed areas | Federal CWA, Sections 401 and 402
 | - 314 CMR 9.00 (Massachusetts 401 Water Quality Certifications)
 | Massachusetts Wetlands Protection Act, MGL c.131, §§ 40 and 40A
 | - 310 CMR 10.00
 | UIC Regulations, 310 CMR 27.00
 | Subsurface Sanitary Sewage Disposal, State Environmental Code—Title V
 | - 310 CMR 15.00 |
| Transportation | Federal CWA, Section 402 |
| Agriculture | Massachusetts Pesticide Control Act, MGL ch.132B
 | - 333 CMR 2.00
 | Pesticide Board, Rights of Way Management
 | - 333 CMR 11.00
 | Permit Requirements for Surface/Groundwater Discharges (concentrated animal production facilities, some aquaculture), MGL c. 21 § 43
 | - 314 CMR 3.05 and 5.05; 314 CMR 5.00 |
| Forestry | Massachusetts Forest Cutting Practices Act
 | - MGL ch.132, §§ 40–46
 | - 304 CMR 11:00
 | MGL ch. 48, § 16 |
| Hydromodification | Federal CWA, Sections 401 and 404
 | - 314 CMR 9.00
 | Chapter 91 Waterways License |
| Atmospheric deposition | Federal Clean Air Act, 42 U.S.C. §§ 7401
 | - MGL 111, §§ 142A–142J
 | Massachusetts Clean Air Act; 310 CMR 7.00: Air Pollution Control |
| Landfills, contaminated areas, and waste management sites | Massachusetts Superfund Law, MGL Chapter 21E
 | Solid Waste Facility Regulations (310 CMR 19:00)
 | Land Application of Sludge and Septage (310 CMR 32:00)
 | Site Assignment Regulations for Solid Waste Facilities (310 CMR 16:00) |
| Natural resource extraction | Federal CWA, Sections 401, 402, and 404 |
SECTION 6: MONITORING AND ASSESSMENT

6.1 OVERVIEW

One of the key elements of the Massachusetts NPS Program is gathering and analyzing water quality information on the overall condition of waters within the state. This is critical to establishing baseline conditions, which help determine waterbodies that may be impaired or threatened by NPS pollution. In addition, water quality monitoring is needed to assess the effectiveness of efforts to address nonpoint sources with BMPs and non-structural controls, such as policy changes, education, and public outreach.

As required by the federal CWA, Massachusetts must identify waters impaired by NPS pollution based on currently available information (e.g., in reports under CWA Sections 305(b), 319(a), 303(d), 314(a), and 320), and revise its list of impaired waters periodically as newer assessment information becomes available. As feasible, the state also must identify important unimpaired waters that are threatened or otherwise at risk from NPS pollution. NPS Plans also must contain a description of monitoring and other evaluation programs that will be conducted to help determine short- and long-term NPS management program effectiveness.

This section describes the key monitoring programs in Massachusetts. An overview of current NPS monitoring challenges facing Massachusetts is presented, along with a discussion of the five-year goals designed to address those challenges.

6.2 KEY MONITORING PROGRAMS

Multiple entities are involved in the collection, analysis, and assessment of water quality data. Some programs have very specific regulatory or geographic focuses, while others are broad and cover regions or the entire state. The programs summarized in this section provide the majority of water monitoring data that are used to determine the scope and extent of NPS pollution issues, identify potential sources, and evaluate efforts to improve or protect water quality in given waterbodies.

6.2.1 MassDEP Division of Watershed Management (DWM)

Mission/Focus

With passage of the CWA, Congress acknowledged the importance of water monitoring and assessment by requiring states to report on the quality of their waters (Section 305b) and to identify and prioritize impaired waters for corrective actions (Section 303d). Section 106(e)(1) and 40 CFR 35.168(a) require that USEPA award Section 106 funds to a state only if it has provided for, or is carrying out as part of its program, the establishment and operation of appropriate devices, methods, systems, and procedures necessary to monitor and to compile and analyze data on the quality of navigable waters in the state, and has made provisions for annually updating the data and including them in the Section 305(b) report.

In 2003, USEPA published Elements of a State Water Monitoring and Assessment Program to increase consistency among state water monitoring programs and to provide a framework for determining if those programs meet the requirements of CWA Section 106(e)(1). That report called on each state to formulate a "comprehensive monitoring program strategy that serves all water management needs and addresses all

Water quality monitoring: The repeated sampling of environmental conditions at predetermined locations to provide a set of data to conduct assessments.

Water quality assessment: The overall process of evaluating the physical, chemical, and/or biological nature of water in relation to natural quality, human effects, and intended uses.
State water, including all waterbody types (e.g., streams, rivers, lakes, Great Lakes, reservoirs, estuaries, coastal areas, wetlands and groundwater)." In formulating this strategy, states were to incorporate the following 10 basic elements of a water resource monitoring program:

- Long-term monitoring program strategy
- Monitoring objectives
- Monitoring design
- Core and supplemental water quality indicators
- Quality assurance
- Data management
- Data analysis/assessment
- Reporting
- Programmatic evaluation
- General support and infrastructure planning

In addition to the elements listed above, each state’s monitoring strategy should identify technical issues and resource needs that were precluding the establishment of an adequate monitoring program and formulate a long-term plan for implementing such a program.

MassDEP is designated to administer the CWA programs for the Commonwealth. MassDEP first published A Water Quality Monitoring Strategy for the Commonwealth of Massachusetts in September 2005. The current version, titled A Strategy for Monitoring and Assessing the Quality of Massachusetts’ Waters to Support Multiple Water Resource Management Objectives, was released in January 2018. This document (the “Monitoring Strategy”) describes the current status of the MassDEP monitoring program and plans through 2025. The Monitoring Strategy re-examines program priorities and data needs and sets forth a monitoring plan that continues to embody USEPA’s fundamental 10 elements and meets the requirements of CWA Section 106(e)(1).

MassDEP’s long-term goal is to implement a comprehensive monitoring program that serves all water quality management needs, while addressing streams, rivers, lakes, reservoirs, estuaries, coastal areas, wetlands, and groundwater. This long-term goal includes monitoring as required to carry out the state’s NPS Program. The Monitoring Strategy describes how monitoring data from all of these waters will be gathered and used within the context of MassDEP’s water resource management programs. Because of resource limitations, the full program cannot be fully implemented over a short period of time. Therefore, the Monitoring Strategy prioritizes individual monitoring program elements for implementation as resources become available. MassDEP plans to incorporate new components into the existing program elements over time.

MassDEP Monitoring Program (Overview)

The MassDEP Monitoring Strategy provides a highly detailed description of monitoring objectives, program design, quality assurance, data management, data analysis and assessment, reporting, and other USEPA required elements. A program summary is provided below. More detailed information is provided, and updated periodically, on the MassDEP Water Quality Monitoring webpage at: https://www.mass.gov/service-details/water-quality-monitoring-program.

- **Monitoring objectives**: The monitoring program is designed to provide data and information from streams, rivers, lakes, reservoirs, estuaries, coastal areas, wetlands, and groundwater to support the following major objectives, which will each receive about 20% of the agency’s monitoring capacity over the 10-year period covered by the monitoring strategy (2015–2025):
 - Assess the status or condition of Massachusetts’ waters
 - Develop, implement, and evaluate pollution control strategies
• Develop policies and standards and identify emerging issues
• Measure the effectiveness of water quality management programs
• Maintain reserve monitoring capacity to respond to unforeseen needs

Core and supplemental water quality indicators: MassDEP uses a hierarchy of water quality indicator types ranging from those emphasizing program-focused activities, such as the number of discharge permits issued, to greater reliance on resource-focused measures, such as the assessment of biological integrity. The kinds of indicators constituting the hierarchy are:

- **Response indicators:** Measures of integrated or cumulative reactions to exposure and stress, such as biological community indices.
- **Exposure indicators:** Measures of environmental variables that suggest a degree of exposure to stressors, such as water-column pollutant levels or ambient toxicity.
- **Stressor indicators:** Activities that affect the aquatic environment, such as pollutant discharges and changes in land-use and habitat.
- **Administrative indicators:** Regulatory actions by USEPA, the state, and local entities and responses by the regulated community.

In general, monitoring programs focus on measuring exposure, response and, to a lesser degree, stressor indicators. The following table provides a breakdown of core and supplemental indicators used for assessing and managing the aquatic life and water contact recreational uses (including rivers, lakes, and coastal waters), as defined in the Massachusetts WQS.

<table>
<thead>
<tr>
<th>Indicator Type</th>
<th>Aquatic Life*</th>
<th>Recreation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroinvertebrate community</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish community</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periphyton/phytoplankton blooms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Seagrasses (e.g., eelgrass) | | Escherichia coli
| Habitat and flow** | | Enterococcus
| Dissolved oxygen | | |
| pH | | |
| Temperature | | |
| Transparency (e.g., Secchi depth) | | |
| **Supplemental** | | |
| Toxic pollutants (e.g., metals, chloride) | | Cyanotoxins
| Ammonia | | Objectionable scums, sheens, debris, deposits
| Toxicity tests (water, sediment) | | Flow/water level
| Tissue residue assays | | Sediment chemistry
| Nutrients (nitrogen, phosphorus) | | Water contaminants of concern
| Turbidity | | Turbidity
| New and emerging contaminants | | pH
| Sediment quality | | |
| Non-native species | | |
| Land-use/% impervious cover | | |

* Historically, chemical and physical indicators were emphasized; however, biological monitoring and assessment has assumed a more prominent role in the Massachusetts monitoring program (especially in assessment monitoring).

** Stream discharge/lake water level, geomorphology (slope, bank stability, channel morphology), stream substrate (sediment type, embeddedness), riparian zone (shoreline vegetation, canopy).

The table below summarizes the core and supplemental indicators that can be used to assess and manage the human health-related water uses designated in the Massachusetts WQS.
<table>
<thead>
<tr>
<th>Indicator Type</th>
<th>Finfish/Shellfish Consumption</th>
<th>Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>Mercury, PCBs, Pesticides, Shellfish bed closures (non-management)</td>
<td>Primary drinking water standards (legally enforceable under the Safe Drinking Water Act)</td>
</tr>
<tr>
<td>Supplemental</td>
<td>Other contaminants of concern, Fecal coliform bacteria</td>
<td>Secondary drinking water standards or other health-based advisories (unenforceable guidelines)</td>
</tr>
</tbody>
</table>

- **Monitoring design**: To meet the water resource assessment and restoration goals of the CWA, MassDEP has organized monitoring and assessment objectives into two general categories. Section 305(b) objectives include determining the quality or designated use support status of all waters of the Commonwealth and assessing changes in quality or use support status over time (i.e., trend analysis). As a subset of the 305(b) assessed waters, Section 303(d) requires the identification of waters impaired by pollutants, for which TMDLs are required. All of these objectives can be fulfilled through the implementation of an integrated monitoring network that incorporates both probabilistic and targeted design elements, as described below. The ultimate goal of MassDEP’s surface water monitoring program is to expend enough resources on the probabilistic monitoring effort to satisfy the reporting requirements of CWA Section 305(b), while allotting the remaining amount to deterministic or targeted data collection efforts.

- **Probabilistic sampling networks**: MassDEP began full implementation of probabilistic sampling in 2011 and conducts this sampling in conjunction with the other components of the state’s water quality monitoring strategy. This program uses sampling data from randomly selected sites to generate an unbiased assessment of water quality conditions throughout the state. To provide complete coverage, both spatially and temporally, states are encouraged to adopt networks of randomly selected sampling sites that will allow for statistically unbiased assessments that can be applied at larger scales. Because statistically valid inferences can be drawn for an entire population of waterbodies by monitoring a set of sites randomly selected from that population, a probabilistic design can achieve the goal of reporting in Section 305(b) reports the status of all waters without actually having to monitor them all.

In 1993, the 27 major watersheds and coastal drainage areas in Massachusetts were placed on a rotating five-year schedule for monitoring, assessment, TMDL development, surface water permitting, and NPS pollution control. In 2010, Massachusetts’ watersheds were regrouped on a regional basis to take advantage of potential benefits to monitoring survey logistics of more closely aligned watersheds, and to more equitably distribute the Commonwealth’s total river miles among the five groups. The new watershed alignment also facilitated the execution of a new statistically based probabilistic monitoring program component. MassDEP has determined that conforming to a rigid five-year basin schedule is not feasible or appropriate and the five-year basin schedule is being revisited and redesigned.

To aid in developing use assessments, the Massachusetts Monitoring and Assessment Program (MAP2) conducts probabilistic monitoring in shallow headwater streams, small tributaries, and lakes and ponds, as summarized below. In addition, MassDEP is providing capital funds to MassBays to conduct a state-designed probabilistic survey of coastal waters from 2020 to 2023 (also discussed in Section 6.2.2).

- **Shallow streams**: In 2010, MassDEP’s surface water monitoring program began implementing a new, statistically valid sampling design for wadeable streams in Massachusetts. While
making up the vast majority of river miles in the Commonwealth, many of these headwater streams and small tributaries to main stem rivers had not been monitored in the past; a probabilistic design was chosen to estimate the condition of those waterbody types. The goals of the probabilistic survey are to provide an unbiased assessment (support/impaired) of the aquatic life, recreational, and aesthetic uses in wadeable (i.e., 1st–4th Strahler Order), non-tidal perennial streams of Massachusetts and, over time, to provide an analysis of trends in the use assessments of those streams. In 2015, the program released water quality and biomonitoring data from about 180 randomly selected wadeable stream sites, allowing for an initial assessment of streams statewide.

MAP2 Wadeable Streams Sites

- Lakes and ponds: Beginning in 2013, MassDEP recognized a need to establish a more comprehensive monitoring program for assessing the condition of Massachusetts’ lakes and ponds. To that end, MassDEP initiated a probabilistic survey of approximately 75 lakes and ponds that was completed from 2016 to 2018. The survey design will provide adequate spatial, temporal, and analytical coverage to assess all designated uses and to allow for inferences to be drawn on the status of all waterbodies statewide.
MAP2 Lake Sites

- **Groundwater:** Public drinking water wells across the state provide groundwater sampling opportunities. Raw water testing of those wells provides information on the quality of groundwater that, through the use of a probability-based sampling design, could provide an assessment of the overall quality of groundwater throughout Massachusetts.

- **Deterministic sampling networks:** A broad array of monitoring program elements “target” particular sites, areas, or issues that require directed, and often comprehensive, sampling and analytical coverage. Targeted monitoring may be project-specific or issue-specific but is often more site-specific and is sometimes of shorter duration than monitoring to assess uses or detect trends. Targeted designs can be used to confirm causes and identify sources of impairments for reporting pursuant to sections 305(b) and 303(d) of the CWA, and to develop and implement control strategies such as TMDLs, NPDES permits, or BMPs. Furthermore, targeted monitoring can provide data and information to define new and emerging issues or to support the formulation of WQS and policies. Deterministic monitoring can be carried out in accordance with a rotating watershed schedule or in selected watersheds in response to shifting program priorities. A number of water management functions rely on the availability of more directed and comprehensive sampling and analytical coverage. For this reason, MassDEP will continue to rely on deterministic monitoring to provide data in support of multiple watershed management objectives. The scope of the targeted monitoring effort will depend on the resources available and the prevailing water quality issues within each watershed. Deterministic monitoring will incorporate the program elements summarized below.

- **Targeted monitoring to identify sources, support TMDL development, and support cleanup strategies:** Targeted monitoring is necessary to identify individual impaired waters for listing pursuant to s.303(d) of the CWA. MassDEP will use targeted monitoring to confirm causes and identify sources of impairment or, alternatively, demonstrate that previously
impaired waters are now supporting their beneficial uses and can be removed from the 303(d) list. The need for further data and information from specific waterbodies will be identified as part of the watershed assessment process, and these waters will then be targeted for monitoring. The Monitoring Strategy describes the following targeted monitoring programs:

- MAP2
- Targeted monitoring to support assessment and listing decisions
- Targeted monitoring to support TMDL development
- Targeted monitoring to locate sources of bacterial contamination

Targeted monitoring of Massachusetts lakes: Lake sampling by MassDEP consists of biological surveys of the macrophyton community, "in situ" measurements using metered probes, and limited water quality sampling to provide data for the calculation of TMDLs or the derivation of nutrient criteria. Lake surveys are generally conducted on multiple days for TMDL development and consist of bathymetric mapping; physical, chemical, and biological sampling of the open water areas, tributary stream(s), and outlet; and mapping of the aquatic macrophyton community. Lakes are typically sampled during the summer months when productivity is highest.

Targeted monitoring of fish consumption use: The goal of this monitoring element is to provide data for the assessment of the risk to human consumers associated with the consumption of freshwater finfish. Originally, fish collection efforts were generally focused on waterbodies where wastewater discharge data or previous water quality studies indicated potential toxic contamination problems. Later, concerns about mercury contamination from both local and far-field sources led to a broader survey of waterbodies throughout Massachusetts. In both cases, the analyses have been restricted to edible fish fillets. This “Toxics-in-Fish” monitoring program is a cooperative effort of MassDEP, DFG, and DPH.

Coastal monitoring: Monitoring of the coastal waters of Massachusetts is a multi-agency, multi-objective effort that uses a variety of monitoring approaches, including the five-year rotating watershed cycle, deterministic sampling, and probabilistic monitoring designs. The DWM currently focuses its monitoring efforts on the freshwater inputs to coastal waters because the major contributions of contaminants that affect coastal waters are derived within their watersheds (including the freshwater portions). This monitoring is generally performed in accordance with the five-year watershed cycle.

- Data pertaining to the saltwater portions of coastal waters are collected by other agencies and organizations and are used by the DWM to meet a variety of objectives. For example, the DWM uses data from DMF for assessing the status of coastal waters based on shellfish area closures due to bacterial contamination. Agencies such as MWRA, as well as some citizen monitoring groups, provide data on water chemistry and biological conditions that DWM uses to assess coastal waters for the use-support status of designated uses. CZM administers a number of monitoring programs related to salt marsh integrity, invasive species, sea grasses, probabilistic monitoring of sediment and water quality, and the general water quality status of coastal waters. Finally, the MassDEP is working in conjunction with the UMASS School for Marine Science and Technology to develop site-specific criteria for nitrogen loading to nutrient-sensitive coastal embayments of Southeastern Massachusetts.

Eelgrass Mapping Project: The condition of seagrass meadows is a core indicator of the aquatic life use-support status of Massachusetts’ shallow marine and estuarine waters. MassDEP initiated a program to map the distribution and abundance of seagrasses in Massachusetts’ coastal watersheds in 1994 and now has the longest historical record of eelgrass maps with a consistent methodology in the world. Information on the coverage of eelgrass beds in Massachusetts is available as data layers through the Massachusetts Office of Geographic and Environmental Information (MassGIS) at http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/eelgrass2013.html.
Massachusetts Estuaries Project (MEP): MassDEP collects water quality data and hydrodynamic information and derives TMDLs for nutrient-impaired coastal embayments in southeastern Massachusetts. This effort was initiated in 2001 to determine existing nutrient loads and to assist in evaluating future nutrient load scenarios for 89 estuaries located in 32 coastal communities. The MEP uses a linked model to quantify nitrogen inputs to targeted bays and estuaries and, where applicable, develop TMDLs to control those loadings.

Wetlands monitoring and assessment: Ongoing efforts by MassDEP to refine WQS for wetlands are focusing on the development of biological criteria within the framework of USEPA’s Biological Condition Gradient (BCG) and Tiered Aquatic Life Use (TALU) conceptual models.

The MassDEP Wetlands Program, together with the UMass Amherst and CZM, began work in 2007 to develop a program to monitor and assess wetlands. This USEPA-funded effort is focused on the development and application of assessment methods at two levels of resolution. First, work is continuing on the refinement and application of the CAPS, a Level 1 (i.e., landscape-level) assessment model that has been under development by UMass for several years (see http://www.umasscaps.org/).

Because CAPS does not use field-based information to assess ecological conditions, site-level assessment methodologies (SLAMs) were developed that use field data to evaluate wetland condition and calibrate the CAPS model. SLAMs have been developed for salt marshes and forested wetlands. Efforts are ongoing to identify dose-dependent relationships that may exist between the field data and the metrics modeled in CAPS, and to develop Indices of Biological Integrity to incorporate into the SLAMs. In March 2019, MassDEP issued the report Inland and Coastal Wetlands of Massachusetts: Status and Trends, which assesses wetland resources statewide based on data generated through CAPS, MassDEP's Wetland Information Resource (WIRe) database, and several static and ongoing wetland mapping studies.

Targeted monitoring to locate sources of bacterial contamination: Bacterial contamination is one of the leading causes of water use impairment in Massachusetts waters. To combat this problem laboratory and manpower resources have been established in MassDEP’s regional offices aimed at the formulation and implementation of protocols for locating sources of bacteria. The sampling strategy includes the bracketing of suspected point sources (e.g., pipes, ditches, culverts) and nonpoint sources (e.g., specific land-use types, small tributaries, neighborhoods). Sampling stations also include baseline “pour point” stations established during screening level sampling to document and track reference conditions. Although the methodologies developed thus far are aimed at bacteria monitoring, the conceptual framework could be modified to identify sources of other contaminants.

Fixed-Site Sampling Networks

Fixed-site monitoring network for defining reference conditions: DWM has identified a need to characterize the reference condition for Massachusetts’ surface waters to support multiple program objectives, including the interpretation of biological data obtained from the probabilistic monitoring network, the development of nutrient criteria and biocriteria, and the assessment of climate change. MassDEP maintains a fixed-site network, known as the Reference Site Network (RSN), to better understand the background level of pollutants in the state by looking at areas with the least amount of human disturbance or influence. An understanding of the inter-year and intra-year variation within indices of biotic integrity used for assessment is a critical initial step toward the development and implementation of biocriteria and tiered aquatic life use. Long-term monitoring of least-impaired streams will help to define how global changes in climate are affecting water chemistry and biota in Massachusetts’ waterbodies.

Fixed-site monitoring network for contaminant loadings and trends: MassDEP began operating a loading network in 2018 with five stations in the Connecticut River Basin and five stations in the lower Taunton Estuary. The loading network will enable watershed planning to
address point sources and nonpoint sources. The full planned build-out for the loading network is 25 stations statewide. The information obtained from this network will help quantify loads delivered to coastal waters and in major inland waterways. At state boundaries, the information also helps MassDEP understand contaminant loads entering and exiting Massachusetts. The loading network will help provide information for the LISS that is focused on the implementation of a TMDL to control hypoxia in the Sound. Massachusetts is working with the LISS committee to develop robust nitrogen load allocations and an implementation strategy for load reduction. This effort presents an opportunity for MassDEP’s NPS partner organizations to leverage other funding sources (e.g., s.604(b) grants) to expand the network, adding stations to monitor water quality in lower-order streams to better characterize statewide water quality or isolate specific pollutant sources.

- Other Monitoring Programs
 - Effectiveness monitoring: MassDEP administers a number of water quality management programs and activities and needs data and information to assess the effectiveness of these programs in restoring and protecting Massachusetts’ water resources. In general, targeted monitoring designs are most suitable for evaluating the effectiveness of restoration activities. Statewide probabilistic surveys, repeated every five or 10 years, may also be useful in demonstrating the longer-term environmental benefits of water resource management programs. Specific effectiveness monitoring programs include (1) targeted monitoring to measure success of TMDL implementation and (2) CWA Section 319 effectiveness monitoring. MassDEP has implemented the MEMP, a component of the state water monitoring strategy that evaluates selected sites for improvement due to the effectiveness of completed projects in or near impaired waters (those included in the Massachusetts Integrated List of Waters). A selected group of impaired waters that have subsequently received treatment to reduce, or eliminate, the documented stressor(s) or that should have improved as a result of upstream pollution control efforts will be monitored by WPP personnel. Collected monitoring data will be used to assess the current state of water quality conditions and by inference the effectiveness of the improvement efforts applied since the impairment determination.

 - Assessing and managing potentially toxic algae blooms: MassDEP provides technical expertise and laboratory support to the investigation of potentially toxic algae (cyanobacteria) blooms. Working in collaboration with DPH, MassDEP performs cyanobacterial counts and identifications on water samples. MassDEP intends to continue to work in collaboration with key partners to develop a comprehensive program aimed at monitoring and managing the human health and ecological risks associated with algal blooms in Massachusetts’ waters.

 - Monitoring to assess climate change: Data and information from the RSN may provide baseline data and information documenting the effects of climate change on Massachusetts’ waters. In addition, MassDEP continues to monitor air and water temperature and collect macroinvertebrate samples as part of an ongoing large-scale collaboration in the Northeast.

 - Monitoring new and unforeseen contaminants: Monitoring data may be needed in the future to assess and manage currently unregulated and unforeseen contaminants. Priority-driven targeted monitoring of selected contaminants in water, sediments, or biota may be performed, in limited instances or to answer specific questions pertaining to the presence of new or unusual contaminants in selected waterbodies.
6.2.2 National Estuary Programs (NEPs)

Mission/Focus

The NEP was established under Section 320 of the 1987 CWA Amendments as a USEPA place-based program to protect and restore the water quality and ecological integrity of estuaries of national significance. There are four NEPs that include watershed areas within Massachusetts: the Massachusetts Bays NEP (MassBays), Buzzards Bay NEP, Narragansett Bay NEP, and Long Island Sound NEP. Both Massachusetts NEPs are administered by CZM. Section 320 of the CWA calls for each NEP to develop and implement a CCMP. The CCMP is a long-term plan that contains specific targeted actions designed to address water quality, habitat, and living resources challenges in its estuarine watershed. Although NEPs are not required to have monitoring programs, USEPA recommends that each NEP have a strategy for using available monitoring data for its decision-making. Programs that support or are related to monitoring for the NEPs are summarized below. The Narragansett Bay NEP and Long Island Sound NEP do not conduct monitoring in Massachusetts.

Monitoring Programs (Overview)

- **MassBays** (http://www.mass.gov/eea/agencies/mass-bays-program/)
 - The MassBays planning area encompasses Ipswich Bay, Massachusetts Bay, and Cape Cod Bay.
 - An updated MassBays monitoring plan is currently being finalized.
 - MassBays has compiled a list of 69 coastal monitoring programs in the Bays. A nascent Monitoring Coordinators’ Network connects those leading these efforts. In 2018, MassBays was awarded $400,000 from USEPA and MassDEP to support capacity-building among monitoring coordinators. Program components include:
 - An online application, AquaQAPP, to facilitate SAP/QAPP generation for marine and freshwater water column and benthic monitoring;
 - A part-time circuit rider to provide one-on-one support and training workshops for monitoring groups;
 - Templates suitable for monitoring groups’ data upload to USEPA’s WQX; and
 - Visualization of water quality conditions and trends on MassBays’ website.
 - MassBays funds a biennial Healthy Estuaries Grant Program to support local initiatives to characterize coastal ecosystems and water quality within the MassBays planning area.
 - The MassBays Annual Workplan establishes annual priorities for the Program and for each of the five MassBays regions. The workplan, reviewed by a management committee made up of stakeholders, identifies geographic and topical priorities as well as specific project priorities.
 - MassBays has assessed data from 47 sub-embayments in the Program’s planning area, with a summary document available online (*Estuarine Delineation and Assessment 2.0*) and an accompanying interactive StoryMap in development.
 - MassBays’ staff scientist is partnering with MassDEP to establish a probabilistic monitoring survey of Massachusetts’ coastal waters to be piloted in 2020 and implemented 2021-2023 by MassBays with MassDEP funding.
o **Ocean acidification monitoring**: MassBays, in collaboration with UMass Boston, is developing a system to monitor coastal acidification. The system was deployed in Duxbury Harbor in spring 2019 to measure surface seawater pH and partial pressure of carbon dioxide continuously (every 15 minutes). Discreet seawater samples are being collected every two to four weeks to measure dissolved inorganic carbon and total alkalinity, thereby generating value for aragonite saturation. A second system is being constructed to be deployed in Barnstable Harbor later in 2019.

- **Buzzards Bay NEP**
 o The Buzzards Bay NEP conducts or supports two monitoring programs related to estuary water quality. The Baywatchers monitoring program was initiated by the NEP in 1992 and subsequently operated continuously by the nonprofit Buzzards Bay Coalition, with some financial and technical support from the NEP. MassDEP has used data from this long-term monitoring program to identify impaired waterbodies added to the 303(d) list, and the Massachusetts Estuaries Project has used Baywatchers data to develop watershed nitrogen TMDLs for 11 Buzzards Bay embayments. The data are also a centerpiece of the Buzzards Bay Coalition’s quadrennial State of the Bay reports.
 o The Buzzards Bay NEP created a program to map stormwater networks and monitor stormwater discharges, and maintains a stormwater water quality database. This effort is undertaken through the Buzzards Bay Stormwater Collaborative, a partnership between Buzzards Bay municipalities, the NEP, and initially with the nonprofit Buzzards Bay Action Committee, then subsequently with Mass Maritime Academy (see http://stormwater.buzzardsbay.org). The goal of this initiative is to identify illicit connections to stormwater networks and to systematically rank and prioritize stormwater discharges for management action, in both MS4 and non-MS4 communities. The long-term goal of the program is to reduce shellfish bed closures and other impairments. These data and the prioritization will also assist municipalities with MS4 compliance, although that is outside the scope of the NPS Program.
 o The Buzzards Bay CCMP was updated in November 2013, including the following approaches related to monitoring (https://buzzardsbay.org/management-solutions/2013-ccmp/newccmp-monitoring/):
 o Shellfish bed closures, eutrophication indicators, and eelgrass bed cover are identified as key water quality measures that must be tracked, but in the long run, the state’s list of impaired waters (as river miles and water acres) will be the ultimate measure of success of actions taken to comply with the CWA. This also means considerable effort will be needed to monitor and characterize the many unassessed freshwater and marine bodies in the bay and watershed.
 o While programmatic and environmental data are collected by USEPA, the Buzzards Bay Coalition, Buzzards Bay NEP, and MassDEP, more effort is needed to make this information available on line, and where needed, synthesizing and aggregating data to show watershed comparisons and trends in time.
 o Programmatic actions by municipalities to comply with permits and watershed TMDL goals are both short-term and long-term measures to be tracked. Government will need to expand funding to research institutions to enable managers to better discern threats from emerging issues and concerns.

- **Narragansett Bay Estuary Program (NBEP)**
 o NBEP’s mission is to restore and preserve Narragansett Bay and its watershed in Rhode Island and Massachusetts through partnerships and voluntary actions that conserve and restore natural resources, enhance water quality, and promote collaboration, community involvement, and local stewardship.
 o The NBEP accomplishes its mission through four broad focus areas—convening, data management and analysis, technology transfer, and execution of local planning and restoration projects. NBEP provides technical assistance, assessment and planning
expertise, funding, and other actionable information to help stakeholders work to address stormwater, flooding, land use changes, coastal resilience, and other impacts of population growth and climate change in the watershed.

- Two signature activities of the NBEP are the creation of periodic Status and Trends Reports and a CCMP. The most recent Status and Trends Report, titled The State of the Narragansett Bay and Its Watershed, was published in 2017.
- NBEP expects to offer data compilation, assessments, planning, and other forms of technical assistance in urban communities in both Rhode Island and Massachusetts to inform development of annual status and trends updates, inform development of a revised CCMP (expected in 2022), and otherwise provide actionable information for local communities seeking to enhance and protect remaining habitat and build more resilient communities in the region.

6.2.3 Massachusetts Department of Fish and Game—Division of Fisheries and Wildlife (DFW)

Mission/Focus

DFW is responsible for the conservation—including restoration, protection and management—of fish and wildlife resources for the benefit and enjoyment of the public. DFW’s charge is the stewardship of all wild amphibians, reptiles, birds, mammals, and freshwater and diadromous fishes in the state, as well as endangered, threatened, and special concern species, including native wild plants and invertebrates.

DFW’s monitoring activities help to identify priority habitat areas, cold water fisheries, and other important habitat requiring protection. DFW monitoring data are used by MassDEP in the RPST (see Section 5.2.3), which provides a screening and assessment method for NPS pollution project funding prioritization. Data are also available by request and DFW maintains several GIS map layers that can also be used to support project prioritization.

Monitoring Programs (Overview)

- **Fish conservation:** DFW is involved in several fisheries conservation activities. Most of these activities are focused on gathering data about fish and fish habitats across the state.
 - **Statewide fisheries survey and inventory:** Waterbodies in watersheds are prioritized and sampled using a standard sampling protocol. Basin prioritization is an annual effort driven by DFW priorities, coordination with MassDEP on sampling cycles, and public requests.
 - **Target Fish Community development:** The Target Fish Community illustrates what a river fish population should look like in southern New England, and represents a measurable goal for restoration efforts. Currently the agency is going through a second round of the inventory process to compare results to the first round.
 - **Coldwater fishery resource identification:** This project’s goal is to identify waters that DFW considers to be coldwater fisheries resources. The identified resources are organized geographically by watershed and the information is updated annually. DFW is expanding this effort to further characterize already-identified coldwater resources.

- **State Wildlife Conservation Strategy:** This document, also known as the Massachusetts State Wildlife Action Plan and most recently updated in 2015, includes (in Chapter 7) a recognition of the need to monitor conservation efforts to (1) ensure that time and money are providing desired results and (2) determine if changing conditions (e.g., climate, development) require a change in strategy. (See https://www.mass.gov/service-details/state-wildlife-action-plan-swap=.)
Other monitoring: DFW is also expanding other monitoring efforts in areas like climate change, with new programs likely to be defined over the next five years. For example DFW is currently working to better understand climate change impacts on coldwater refugia.

6.2.4 Massachusetts Department of Fish and Game—Division of Marine Fisheries (DMF)

Mission/Focus

DMF is responsible for the development and promulgation of the Commonwealth’s laws governing commercial and recreational fishing activity conducted in the marine environment. Central to the vision is a commitment to balance our living marine resources with our coastal culture through innovation, collaboration, and leadership.

Monitoring Programs (Overview)

- **Resource Assessment Surveys Project (RASP):** RASP’s mission is to collect and analyze data to provide the basis for resource management actions. Fish are sampled using standardized spring and fall surveys of Massachusetts’ territorial waters. Surveys are timed to coincide with seasons when either adults or juveniles are available inshore.

 [Web Link]

- **Fisheries Dependent Investigations (FDI):** FDI collects, processes, and manages operational, biological, and economic data from commercial fisheries. These fisheries-dependent data are collected at-sea and shore-side and are used to document fishery performance, supplement and enhance stock assessments, and support fisheries management. Fisheries sampled include: pot fisheries targeting American lobster, black sea bass, and scup; trawl fisheries targeting groundfish, squid, silver hake, Atlantic herring, and Atlantic mackerel; hook fisheries targeting groundfish, striped bass, spiny dogfish, haddock, and scup; gillnet fisheries targeting groundfish, and spiny dogfish; and seine fisheries targeting Atlantic herring, and menhaden.

 [Web Link]

- **Shellfish sanitation surveys:** Public health protection is supported through sanitary surveys of shellfish growing areas to determine their suitability as shellfish sources for human consumption. These surveys include (1) an evaluation of pollution sources that may affect an area, (2) evaluation of hydrographic and meteorological characteristics that may affect distribution of pollutants, and (3) an assessment of water quality. Each growing area must have a complete sanitary survey every 12 years, a triennial evaluation every three years, and an annual review in order to maintain a classification, which allows shellfish harvesting.

 Two DMF laboratories located in Gloucester and New Bedford test water and shellfish samples for fecal coliform bacteria to determine the classification of shellfish growing areas and potential pollution sources. Shellfish are also tested for various poisonous or deleterious substances based upon an assessment of pollution sources impacting growing areas as determined by the sanitary survey and as a result of pollution events such as oil and chemical spills. Contaminants periodically recovered from shellfish include hydrocarbons, heavy metals, pesticides, and PCBs. Action levels
and tolerances have been established by the U.S. Food and Drug Administration for various contaminants to protect the public.

- **Anadromous fish monitoring**: DMF collects water quality and fish biology samples at several sites around the state to support better understanding of anadromous fish habitat and ecosystem health.

- **Climate change temperature database**: The DMF Fisheries Habitat Program compiles all marine and coastal continuous bottom temperature monitoring records collected by MarineFisheries. The database contains over 7 million records from 1986 to present. The database inventories more than 30 seafloor stations plus more than 40 estuarine and riverine sites where bottom temperature data are collected seasonally, typically March to October. Approximately 200,000 temperature records are collected annually. The long-term goal for this effort is to establish a secure, accessible platform that allows the database to be easily updated and for near-real-time data updates to be accessible for end-users.

- **Eelgrass monitoring**: DMF uses divers, underwater cameras, and vessel-based acoustic instruments to monitor eelgrass health and extend and designated sites. High-resolution eelgrass meadow health monitoring is completed seasonally at West Beach in Beverly. DMF also monitors eelgrass extent at Sandwich Town Neck Beach and Duxbury-Kingston-Plymouth bays with annual in-water photo and/or side scan sonar surveys.

- **Other DMF monitoring**: DMF conducts a variety of species- and habitat-specific monitoring programs focused on key commercial and recreational fish species. These programs include monitoring of lobster, tautog, bluefin tuna, striped bass, shark, smelt spawning habitat, eelgrass, and artificial reef sites. The full range of DMF monitoring, research and related programs is described at http://www.mass.gov/eea/agencies/dfg/dmf/programs-and-projects/.

6.2.5 Department of Conservation and Recreation (DCR)

- **Water quality sampling and watershed monitoring**: Activities to monitor water quality within major water supply reservoirs and their watersheds are conducted by the DCR DWSP—Environmental Quality Section staff at Wachusett Reservoir in West Boylston and at the Quabbin Reservoir in Belchertown. Annual Water Quality Reports are produced for both the Wachusett Reservoir and the Quabbin Reservoir and Ware River watersheds. These reports detail the results of sampling performed in the tributaries and the reservoirs for bacteria, nutrients, conductivity, temperature, turbidity, algae, hydrogen ion activity, and giardia/cryptosporidium.

- **Lakes & Ponds Program**: Massachusetts has over 3,000 lakes and ponds that provide opportunities for recreation and valuable habitat for a wide diversity of plants and animals. This program works with local groups and municipalities to protect, manage, and restore these valuable aquatic resources. Program staff provide technical assistance to communities and citizen groups, help to monitor water quality at various public beaches to ensure public safety, and provide educational materials to the public about various lake issues such as non-native species, algal blooms, and impacts associated with NPS pollution.

A key goal of the Lakes & Ponds Program is to prevent further infestation of lakes and ponds by non-native invasive aquatic plants, and to work toward controlling and removing existing populations of these plants. To meet this goal, the Weed Watchers Program was developed to train local lake groups to monitor their ponds for the presence of exotic invasive species and to develop a removal plan if an infestation is found. Weed Watcher volunteers:

- Receive training in the identification and removal of invasive species, boat ramp signs, permitting guidelines, and reporting forms;
- Patrol their lakes every other week during the summer for the presence of invasive species in key locations (boat ramps, inlets and shallow coves etc.); and
Complete and return yearly summaries of the monitoring results. If a potential infestation is found, the Weed Watchers group will work with DCR staff to identify the species and to develop and implement a removal plan. The DCR Lakes and Ponds Program also provides guidance on permitting invasive species control projects. The DCR web site highlights the efforts of the Weed Watcher groups.

The Lakes & Ponds Program also tracks bacteria and other pollutant issues at DCR beaches and has recently conducted bacteria source tracking studies in select locations to try to determine the cause of the issue. This information could support identification of areas where NPS pollution BMPs may be effective at managing upstream sources of bacteria that impact lakes and ponds.

6.2.6 Massachusetts Department of Public Health (DPH)

- **Beach monitoring:** The Beaches Bill monitoring program is a major data source of bacteria and beach posting/closing information. Administered by DPH, communities are required to report their beaches monitoring data (most beaches sampled weekly) and decisions to post/close their beaches over the course of each year’s beach season. DPH publishes annual reports of these data and periodically (about every two years) provides MassDEP-DWM analysts with a copy of its database. To date, the beach closing/posting information has been used by DWM analysts as a surrogate indicator of water quality conditions rather than using the actual bacteria data for assessments. This surrogate was chosen by DWM analysts until such a time as all data quality assurance considerations (e.g., QAPP, QAQC, sample collection, analysis, data quality, and validation procedures) for the bacteria data are in place. The current assessment decision guidance for using these data is that postings/advisories at “public bathing beach” areas should be neither frequent nor prolonged during the swimming season (the number of days posted or closed should not exceed 10% during the locally operated swimming season). DWM analysts calculate the number of days and the percentage of time during each beach season (typically over a five-year window or as an update to the last reporting cycle) that each marine beach was posted/closed. An area is considered to be in support of Primary Contact Recreational Use if marine beach(es) along the shoreline of an estuarine segment are posted for <10% of the swimming season(s). If postings exceed 10% of the swimming season(s), the Primary Contact Recreational Use will be assessed as impaired. Data for multiple beaches located along the shoreline of a segment that may lead to conflicting assessment decisions are handled on a case-by-case basis by the DWM analysts. See the DPH Beach and Algae webpage for links to annual beach quality reports, water quality information, and other related topics.

6.2.7 Office of Coastal Zone Management (CZM)

Mission/Focus

CZM's mission is to balance the impacts of human activity with the protection of coastal and marine resources. As a networked program, CZM works with other state agencies, federal agencies, local governments, academic institutions, nonprofit groups, and the general public to promote sound management of the Massachusetts coast. CZM is funded primarily through the Commonwealth of Massachusetts, NOAA, and USEPA.

Monitoring Programs (Overview)

- **Water quality at state beaches:** CZM coordinates with the Massachusetts DPH and certain nonprofit organizations to provide information to the public on conditions at coastal beaches throughout Massachusetts. See the DPH Beach and Algae webpage for additional information.
- **Coastal wetland monitoring:** CZM works with the MassDEP Wetlands Program to monitor wetlands within the Massachusetts Coastal Zone. CZM
conducted eight years of on-the-ground data collection to model wetland condition and is revisiting the selection of indicators of wetland condition. There is also an increased emphasis on long-term monitoring and continuous monitoring for salt marshes, including a greater focus on climate change impacts.

6.2.8 Massachusetts Water Resources Authority (MWRA)

- **Harbor and river monitoring:** MWRA has been monitoring water quality in Boston Harbor and its tributaries since 1989. The harbor monitoring program is required by MWRA’s NPDES permit. All harbor and tributary areas affected by CSOs in Boston, Chelsea, Cambridge, and Somerville are included in the monitoring program.

 - MWRA makes at least 20 visits to each sampling location every year. Some sampling locations in Boston Harbor are only visited between April and December because of freezing in winter. The locations are spread out and measured in both wet and dry weather. Most of the waters included in this monitoring program are designated for recreational use. Three bacterial indicators are and/or have been used to assess suitability for recreational use, fecal coliform, E. coli, and Enterococcus.

 - Long-term harbor monitoring helps in identifying change in water quality over time. Since MWRA was created in 1984, the Boston Harbor Project made significant improvements in the infrastructure of greater Boston’s wastewater treatment system. MWRA has also improved CSO treatment and control.

- **Massachusetts Bay monitoring:** The bay monitoring program measures water quality from stations near the Deer Island Treatment plant outfall, which discharges all of the treated water from the MWRA system 9 miles from shore. The program also includes monitoring stations as far as Cape Cod Bay. “Nearfield” stations are located within 7 kilometers (4.3 miles) of the MWRA Deer Island Treatment outfall diffuser. “Farfield” stations include all stations in Boston Harbor; the coastal, offshore, and northern boundary regions; and Cape Cod Bay.

- **CSO monitoring:** The CSO monitoring area includes the “receiving waters” of all CSO communities in greater Boston. These areas include the Inner Harbor, Boston Harbor embayments, and tributary rivers. Monitoring focuses on measuring the water quality impacts of CSOs, i.e., bacteria and nutrient loadings. Dissolved oxygen, sewage indicator bacteria, nutrient concentrations, and water clarity are also measured.

CSOs affect a large area of Boston Harbor, discharging along the shoreline into streams, rivers, estuarine areas, and beaches. To allow for an intensive study of each affected body of water, receiving waters are divided into geographic areas based on tributary locations and proximity to CSOs. Each area is monitored on a rotating schedule, with all areas sampled equally. Monitoring areas are Charles River, Mystic River/Alewife Brook, Inner Harbor, Northern Dorchester Bay/Carson Beach, Southern Dorchester Bay/Tenean Beach, Neponset River, and Quincy Bay/Wollaston Beach. Beach monitoring is carried out in conjunction with DCR.

6.2.9 Other Sources of Data

Use of reliable scientific data and technical information from external sources has become an integral part of MassDEP DWM’s waterbody assessments. DWM assembles data and information from a wide variety of sources. Where recent DWM data are not available, waterbody health decisions may have to be based solely on external (non-DWM), non-direct or secondary data. Because DWM has limited control over QA planning and implementation for outside monitoring activities, the degree to which QAPPs, standard operating procedures, and other QA/QC measures are in place varies from project to project. Data reviews
can be formal and documented or informal data quality assessments based on best professional judgement. Although external data evaluation takes place in different ways, DWM strives to verify the accuracy and evaluate the quality of all the external data used in decision-making. The following general list provides some of the possible sources of information for DWM’s watershed assessment, TMDL, and other work.

Federal agencies:
- USEPA
- U.S. Fish and Wildlife Service
- U.S. Army Corps of Engineers
- NOAA
- USGS

State agencies:
- MassDEP—Drinking Water Program
- MassDEP—Wetlands and Waterways Program
- MassDEP—Watershed Permitting Program
- CZM
- DCR
- DOT
- DMF
- DFW
- DPH
- MWRA
- MassGIS

Municipalities:
- Municipal Conservation Commissions
- Municipal and Industrial NPDES Permit Monitoring Requirements (including contracts for toxicity testing)
- Public drinking water system testing

Private consulting firms:
- Miscellaneous project data

Academic and research:
- Colleges, universities, and other academic/research institutions
- Scientific/engineering literature, including conference and symposium papers

Volunteer monitoring organizations
- Watershed associations
- Lake and pond associations

The types of secondary data gathered by DWM for potential use vary widely depending on the source (chemical, biological, ecological, regulatory, etc.), including:
- Measured surface water quality/quantity data
• Hydrologic and water quality model output
• Measured pollutant loads
• Literature values and data
• Historical environmental data
• Permit records (e.g., Discharge Monitoring Reports [DMRs])
• Geographic information system data
• Beach and shellfish bed closure records
• Measured fish tissue contaminants
• Sediment quality data
• Weather records

External Data Submittals to WPP

MassDEP has developed guidance for the submittal of water quality data by external data providers to WPP. Data submitted and provided to WPP may be used to make decisions regarding surface water quality assessments as required by Sections 305(b) and 303(d) of the CWA. Detailed information on data submittal can be found in the Data Submittal Guidelines for External Data. Submittal of QAPPs for MassDEP review is a separate process and is explained in the QAPP Submittal and Approval Process. One effort to aid with QAPP creation is a collaboration between MassDEP and EPA to develop an online QAPP generator, AquaQAPP, which will guide external data collection procedures acceptable to both agencies. This effort is funded through the EPA Exchange Network Grant Program to facilitate incorporating citizen monitoring data into WQX.

• **External data review process:** In addition to using data collected internally, WPP often uses quality-assured data from other groups (e.g., grant recipients; local, state, and/or federal agencies; environmental consultants and volunteer monitoring organizations) to assess waterbody health and develop cleanup plans for impaired waterbodies. To be considered usable by WPP, the data must meet the submittal requirements outlined below and undergo detailed review to help evaluate the accuracy, precision, and representativeness of the data. Prerequisites for data submittal include the following:
 o Monitoring data must be generated through implementation of a MassDEP- or EPA-approved QAPP;
 o Analytical data must be provided by an analytical laboratory certified by the Commonwealth of Massachusetts in the applicable analyses, or a laboratory with a documented and acceptable Quality Assurance Plan, as well as documented and acceptable standard operating procedures; and
 o Quality-assured data (and metadata) must be provided in sufficient detail for WPP to evaluate the usability of the data.

Additional review criteria for quality-assured data from non-DEP groups are applied, using best professional judgement, to evaluate the usability of the data by WPP. These include:
 o Overall clarity, organization, and detail of the data submittal;
 o Overall precision, accuracy, representativeness, comparability, and completeness of the data, in comparison to QAPP data quality objectives (DQOs) and WPP data quality needs;
 o Estimated accuracy of lab analyses, using quality control/performace evaluation (QC/PE) samples, spiked sample matrices, and positive/negative controls (for bacteria samples), as compared to project DQOs;
 o Overall evaluation of QAPP implementation (i.e., documentation of actual QC measures to ensure data quality, such as the frequency of instrument calibration and maintenance, problem identification and response, and personnel training);
Method consistency/variability among project participants and over time throughout the duration of the project;

Evaluation of field audit information, side-by-side and/or inter-laboratory QC audit information, if available, to assess inter-group and/or inter-lab precision (if available); and

Availability of personal communication with project lead(s) and/or QC officer(s), if needed.

For data that meet the prerequisites and pass the preliminary review process described above, a subsequent detailed review is performed. The detailed review includes evaluation of sample holding times, frequency of QC samples, field blanks and duplicates, laboratory records, QC results in analytical reports, chain-of-custody forms, and other data quality indicators. Based on this review, data may be accepted, accepted with caveat/qualification, or rejected. Where desired information is not on file, WPP staff may make requests to data providers to provide missing information.

External data categories: WPP categorizes external data into three general levels, which are related to the monitoring objectives (i.e., why the data were collected):

- Educational/stewardship level
- Screening level
- Regulatory/assessment level

While extremely important, data collected primarily for educational and/or stewardship purposes (level 1) generally does not meet the rigor (i.e., accuracy, precision, frequency, comparability, overall confidence, etc.) required for use in making water quality assessment decisions or in developing TMDLs. Although this type of data can be submitted, it is unlikely the data will be used for 305(b) or 303(d)-related decision-making.

Screening-level data (level 2) are also very important and welcome, but generally fail to meet one or more WPP criteria required for direct use in water quality assessments or TMDLs. Level 2 data may meet the DQOs in the submitter’s QAPP, but not those in the WPP’s monitoring program QAPP approved by USEPA. Level 2 data may be used to direct future WPP sampling efforts and as supporting evidence.

Level 3 assessment-level data have been deemed by MassDEP, based on the WPP’s external data review procedures, to be directly usable for 305(b) and 303(d) decision-making. These data are considered scientifically sound and legally defensible, and are typically the result of extensive planning, attention to detail, relatively stringent DQOs, training, standard field and lab procedures, metadata collection, project organization, and data verification. Contingent upon WPP staff review and approval, these data can help determine if a waterbody is meeting WQS or is impaired.

6.2.10 Data Management

MassDEP Data Management

In 2015, WPP procured and began using EQuIS (Environmental Quality Information System, a commercial off-the-shelf software solution) to handle and store the following primary data types:

- Ambient surface water quality data (physical/chemical results)
- Benthic macroinvertebrate data
- Fish community data
- Fish toxics data
- Algal data
- Fieldsheet metadata

EQuIS supports data streamlining and standardization of data handling and QA/QC activities and provides tools for data sharing with the public and USEPA via WQX. WQX is the mechanism for USEPA’s data partners to submit water monitoring data to USEPA. States, tribes, watershed groups, other federal agencies, volunteer groups, universities, and other organizations submit data to WQX to make their data publicly accessible through WQP. WQP is a cooperative service sponsored by USGS, USEPA, and the
National Water Quality Monitoring Council that integrates publicly available water quality data from multiple agencies. As of the date of this Plan, WPP has successfully flowed 20 years’ (1994 to 2014) worth of monitoring data to STORET.WQX and is working towards flowing more recent data in the near future. This Plan includes a milestone to support improved access to water quality data through use of the WQP.

External Data Management

While DWM may use acceptable secondary data, DWM does not formally manage any secondary (non-DWM) data in its EQuIS data repository. To manage large secondary data sources, such as DMRs and herbicide applications, stand-alone DWM databases are used (e.g., ToxTD and HERB). Those databases assist in the review and evaluation of the data. For ToxTD data, most of the review is performed during the data entry process by DWM staff. Discrepancies, obvious errors, and questionable entries are noted and the authors of the external DMRs and toxicity reports are contacted for clarification. Based on the outcomes of these communications, revised reports may be received by DWM, or explanatory notes recorded on the existing report. Similar steps are taken for the HERB program database.

As stated above, MassDEP supports improved access to water quality data through use of the WQP and WPP is actively working to make its data available through that system. MassDEP also encourages other agencies and organizations collecting environmental data to upload them to WQX to make them available to the public, including to MassDEP. Submittal of quality-assured external data will promote accessibility and use of all available data for improved water quality characterization and management.

6.3 NPS MONITORING CHALLENGES AND GOALS

6.3.1 NPS Monitoring Challenges

The key challenges described below continue to affect NPS monitoring activities by MassDEP and the NPS partner organizations.

1. **Greater Focus on Monitoring and Identifying NPS Pollution Sources**

During the previous update to this Plan (2014–2019), USEPA indicated that, generally, NPS pollution monitoring in Massachusetts needed to be improved to help meet the goals/objectives of the state NPS Program. Demonstration of measurable improvements to water quality associated with the implementation of s.319 funds, as well as the efforts of other federal/state programs, is a primary focus of USEPA for NPS pollution monitoring. Particularly when multiple consecutive s.319 projects have been completed in a specific area, there is a need to assess if water quality improvements have resulted from these projects. To this end, MassDEP has worked with USEPA to clarify criteria and documentation needs for NPS Success Stories and has developed Success Stories documenting water quality benefits from s.319 projects. This Plan continues MassDEP’s commitment to tracking water quality improvements and developing Success Stories. MassDEP also is implementing the MEMP, described in Section 6.2.1.

2. **Program and Policy Challenges**

USEPA metrics for s.319 programs are not well aligned with the majority of MassDEP DWM-WPP monitoring programs, which focus on federal CWA requirements under Sections 305b and 303d for the assessment of use attainment in waterbodies and identification of sources of impairment. For sources of NPS pollution, identification is challenging and constrained by existing DWM-WPP missions and resource allocations. The same constraints also limit the ability of DWM-WPP to conduct the type of monitoring that is typically required to document water quality improvements associated with s.319 NPS watershed projects and other NPS Program activities.

USEPA guidelines require the state water quality agency to undertake monitoring that will demonstrate the effectiveness of conservation practices implemented by NRCS in the Palmer River watershed under the NWQI. Tetra Tech, under contract to USEPA, developed a monitoring plan that found significant challenges associated with this requirement. MassDEP, with USEPA, has been conducting a bacteria source tracking program in the target watershed for several years, and it was hoped that this would
provide adequate baseline data for the NWQI task. Tetra Tech found that significant additional sample collection would be necessary to detect a meaningful signal after several years, and only if conservation practices could be implemented over a very large portion of the watershed using a carefully designed implementation plan. MassDEP has provided s.319 funds to MACD for technical support to increase the rate of outreach, education, and implementation in the Palmer River watershed.

3. Coordination of Monitoring Programs

Improved coordination between MassDEP and USEPA water programs, such as s.319, TMDL, NPDES, Monitoring, and 303d, was seen as a critical need in order to make progress on the multiple objectives for state water quality monitoring. The need for coordinated efforts between MassDEP and its NPS Program partners is heightened by the limitations placed on the use of s.319 funds for NPS monitoring, as described in the USEPA NPS Program Guidelines. A planning effort involving MassDEP and USEPA program leads is a recommended first step in this process. MassDEP monitoring efforts related to NPS pollution can be aided by USEPA program coordination and agreement on the prioritization of resources and program goals.

MassDEP s.319 Program needs related to monitoring/assessment could be addressed through better coordination of monitoring and assessment activities among programs within BWR as well as between MassDEP and NPS partner agencies including CZM, DPH, and MWRA. Setting priorities in advance of the development of monitoring work plans could allow for targeted monitoring or baseline monitoring in high-priority NPS watersheds. Implementing these monitoring work plans would require significant internal lead time, and flexibility to meet state/federal monitoring goals. WPP is open to conducting targeted NPS monitoring projects as resources allow. To justify targeted monitoring (e.g., to determine NPS implementation project effectiveness), a substantial amount of s.319-funded work would need to be completed (e.g., more than just a single BMP installation).

Further, there is opportunity for improved coordination of monitoring efforts among the water programs that are under EEA oversight (MassDEP, DFG, MDAR, and DCR). Through improved communication of monitoring needs and activities, EEA could identify opportunities for collaboration between agencies to share resources for more efficient collection of data that meets the needs of multiple programs.

4. New and Emerging NPS Issues

MassDEP understands the importance of monitoring new and emerging NPS pollution sources as new technology and changes in land use practices lead to new sources of NPS pollution that are not well understood or quantified. Examples of emerging issues worth increased attention include clear cutting for solar development, PFAS issues, and runoff from large-scale outdoor composting facilities.

There is strong interest in cyanobacteria (blue-green algae) monitoring as a NPS concern. Some monitoring of this type was conducted in recent years by DPH until grant funding from the U.S. Centers for Disease Control and Prevention was eliminated. MassDEP is evaluating monitoring approaches to characterize the scope and extent of this issue. Limitations in funding/human resources, as well as gaps in the science, are barriers to a comprehensive approach on this issue. Further, cyanobacteria may or may not be true indicator of nutrient/NPS pollutant loadings. Nutrient sinks in lakes/ponds as well as poorly understood algal bloom catalysts need to be studied.

6.3.2 Goals, Objectives, and Milestones to Address Monitoring Challenges

The goals, objectives, and milestones listed in the table below are included in this NPS Plan to address the monitoring challenges described in Section 6.3.1. They are excerpted from Table 4.1 in section 4 of this Plan, which includes additional information about agency lead, partners, measures of success, and implementation schedule.
Goal 4 (from Table 4.1): Monitor waters for NPS impairments and improvements to prioritize actions, measure success, and increase program efficacy

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Milestones</th>
<th>Challenges Addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Establish methods to categorize and assess unimpaired/high-quality waters</td>
<td>1.a. Use consistent methodologies for identifying unimpaired/high-quality waters</td>
<td>1, 3</td>
</tr>
<tr>
<td></td>
<td>1.b. NPS partner monitoring programs help assess and identify unimpaired/high-quality waters</td>
<td>1, 3</td>
</tr>
<tr>
<td>2. Integrate NPS monitoring needs into MassDEP monitoring programs</td>
<td>2.a. Integration of NPS sampling plan into state surface water monitoring program, including sampling design and protocols</td>
<td>1, 3</td>
</tr>
<tr>
<td></td>
<td>2.b. Advance selection of watersheds for baseline monitoring</td>
<td>1, 3</td>
</tr>
<tr>
<td></td>
<td>2.c. Post-implementation monitoring to assess water quality improvements</td>
<td>1, 3</td>
</tr>
<tr>
<td></td>
<td>2.d. Monitoring in Palmer River Watershed to support the NWQI project</td>
<td>2, 3</td>
</tr>
<tr>
<td>3. Assess existing data and report on water quality improvements</td>
<td>3.a. Clarification of delisting requirements</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3.b. Identification of watersheds that are likely to show water quality improvements as a result of watershed-focused improvement activities</td>
<td>1, 2</td>
</tr>
<tr>
<td></td>
<td>3.c. Annually assess selected waterbodies for possible follow-up success story monitoring (e.g., review existing data and information to determine if additional monitoring is recommended)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td></td>
<td>3.d. Assessment of water quality data by DWM-WPP to determine if improvements in water quality have occurred in watersheds with NPS-focused water quality improvement activities</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td></td>
<td>3.e. Continue the MEMP.</td>
<td>1</td>
</tr>
<tr>
<td>4. Improve resource allocation to meet mandates</td>
<td>4.a. Coordination on CWA monitoring requirements, resource allocations, and NPS monitoring priorities</td>
<td>3</td>
</tr>
<tr>
<td>5. Determine impacts of NPS pollution sources</td>
<td>5.a. Conduct water quality monitoring programs in selected watersheds to identify impacts of NPS pollution sources.</td>
<td>1, 4</td>
</tr>
<tr>
<td></td>
<td>5.b. Monitoring and assessment activities in 604(b) and s.319 projects support identification of NPS pollution sources</td>
<td>1, 3</td>
</tr>
<tr>
<td>6. Increase use of volunteer data for assessment of scope and extent of NPS pollution</td>
<td>6.a. Organize current volunteer monitoring efforts and expand through guidance, technical support, and leveraging of resources</td>
<td>3, 4</td>
</tr>
<tr>
<td>7. Identify and maximize use of available quality-assured data</td>
<td>7.a. Support improved data sharing among the NPS program and DWM programs to better support water quality characterization, NPS identification, and prioritization of funding for multiple programs</td>
<td>1, 3</td>
</tr>
<tr>
<td></td>
<td>7.b. Support improved access to MassDEP data and MassDEP’s use of external data through use of USEPA’s WQX and WQP</td>
<td>1, 3</td>
</tr>
</tbody>
</table>
SECTION 7: MASSACHUSETTS NPS RESOURCE LIBRARY

The tables below provide links to NPS information resources that are referenced throughout this NPS Program Plan.

7.1 LINKS TO NPS RESOURCES

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>USEPA NPS pollution definition</td>
<td>https://www.epa.gov/nps/basic-information-about-nonpoint-source-nps-pollution</td>
</tr>
<tr>
<td>Massachusetts Section 319 Nonpoint Source Competitive Grants Program webpage</td>
<td>https://www.mass.gov/service-details/grants-financial-assistance-watersheds-water-quality</td>
</tr>
<tr>
<td>Massachusetts Clean Water Toolkit</td>
<td>http://prj.geosyntec.com/npsmanual/</td>
</tr>
<tr>
<td>Massachusetts Alternative Septic System Test Center (MASTC) website</td>
<td>http://www.masstc.org/</td>
</tr>
<tr>
<td>USEPA website</td>
<td>https://www.epa.gov/environmental-topics/water-topics</td>
</tr>
<tr>
<td>USEPA CWA Section 319 webpage</td>
<td>https://www.epa.gov/nps/319-grant-program-states-and-territories</td>
</tr>
<tr>
<td>Cape Cod Section 208 Plan</td>
<td>http://www.capecodcommission.org/index.php?id=491&maincatid=76</td>
</tr>
<tr>
<td>USEPA Healthy Watersheds Initiative webpage</td>
<td>https://www.epa.gov/healthywatersheds</td>
</tr>
<tr>
<td>USEPA CWA 303(d) Program—Framework for Implementing CWA 303(d) Program</td>
<td>https://www.epa.gov/tmdl/new-vision-implementing-cwa-section-303d-impaired-waters-program-responsibilities#vision</td>
</tr>
<tr>
<td>USEPA Groundwater/Drinking Water Programs</td>
<td>https://www.epa.gov/ground-water-and-drinking-water</td>
</tr>
<tr>
<td>USEPA Sole Source Aquifer Protection Program</td>
<td>https://www.epa.gov/dwssa</td>
</tr>
<tr>
<td>USEPA National Estuary Program Overview</td>
<td>https://www.epa.gov/nep#tabs-2</td>
</tr>
<tr>
<td>USEPA Resilience and Adaptation in New England (RAINE) database</td>
<td>https://www.epa.gov/raine</td>
</tr>
</tbody>
</table>
7.1 LINKS TO NPS RESOURCES (continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>USEPA Coastal Wetlands webpage</td>
<td>https://www.epa.gov/wetlands/coastal-wetlands</td>
</tr>
<tr>
<td>USEPA Climate Change webpage</td>
<td>https://www.epa.gov/climate-research</td>
</tr>
<tr>
<td>USEPA Soak Up the Rain Program</td>
<td>https://www.epa.gov/soakuptherain</td>
</tr>
<tr>
<td>USEPA Green Infrastructure webpage</td>
<td>https://www.epa.gov/green-infrastructure</td>
</tr>
<tr>
<td>USDA-NRCS, Massachusetts webpage</td>
<td>https://www.nrcs.usda.gov/wps/portal/nrcs/site/ma/home/</td>
</tr>
<tr>
<td>Massachusetts Energy and Environmental Grant and Loan technical information</td>
<td>https://www.mass.gov/organizations/eea-office-of-grants-and-technical-assistance</td>
</tr>
<tr>
<td>USEPA Recovery Potential Screening overview</td>
<td>https://www.epa.gov/rps/overview-recovery-potential-screening-rps</td>
</tr>
<tr>
<td>Massachusetts Forest Cutting Practices Act</td>
<td>https://www.mass.gov/guides/forest-cutting-practices-act</td>
</tr>
<tr>
<td>MassDEP Eelgrass Mapping Project</td>
<td>https://www.mass.gov/guides/eelgrass.mapping-project</td>
</tr>
<tr>
<td>CAPS webpage</td>
<td>http://www.umasscaps.org/</td>
</tr>
<tr>
<td>Massachusetts Bays National Estuary Program</td>
<td>https://www.mass.gov/organizations/ma/es/maestuary-program</td>
</tr>
<tr>
<td>Buzzards Bay National Estuary Program</td>
<td>https://buzzardsbay.org/</td>
</tr>
<tr>
<td>Narragansett Bay CCMP</td>
<td>http://nbep.org/about/comprehensive-conservation-management-plan/</td>
</tr>
<tr>
<td>MA-DMF Fisheries Dependent Investigations webpage</td>
<td>https://www.mass.gov/service-details/fisheries-dependent-investigations</td>
</tr>
<tr>
<td>MA-DMF Services webpage</td>
<td>https://www.mass.gov/organizations/ma/ma fisheries services</td>
</tr>
<tr>
<td>DPH Beaches and Algae</td>
<td>https://www.mass.gov/beach-water-quality</td>
</tr>
<tr>
<td>MassDEP Statement of Data Integrity</td>
<td>http://www.mass.gov/eea/docs/dep/water/resources/a-thru-m/integfrm.doc</td>
</tr>
<tr>
<td>MassDEP TMDLs</td>
<td>https://www.mass.gov/total-maximum-daily-loads-tmdls</td>
</tr>
<tr>
<td>MassDEP Water Quality Assessment Reports</td>
<td>https://www.mass.gov/service-details/water-quality-assessments#2</td>
</tr>
</tbody>
</table>
7.2 **LINKS TO LAWS AND REGULATIONS RELATED TO NPS POLLUTION**

<table>
<thead>
<tr>
<th>Federal Laws/Regulations</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal CWA:</td>
<td></td>
</tr>
<tr>
<td>− Section 401 (Certification)</td>
<td>http://water.epa.gov/lawsregs/guidance/wetlands/sec401.cfm</td>
</tr>
<tr>
<td>− Section 402 (NPDES)</td>
<td>http://water.epa.gov/lawsregs/guidance/wetlands/section402.cfm</td>
</tr>
<tr>
<td>− Section 404 (Wetlands/Waters of U.S.)</td>
<td>http://water.epa.gov/lawsregs/guidance/wetlands/sec404.cfm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Massachusetts State Laws/Regulations</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massachusetts 401 Water Quality Certifications; 314 CMR 9.00</td>
<td>http://www.mass.gov/eea/agencies/massdep/air/regulations/310-cmr-7-00-air-pollution-control-regulation.html</td>
</tr>
</tbody>
</table>
https://malegislature.gov/Laws/GeneralLaws/PartI/TitleVII/Chapter48/Section 16 |
| **Chapter 91 Waterways License** | https://malegislature.gov/Laws/GeneralLaws/PartI/TitleXIV/Chapter91 |
| **Massachusetts Clean Air Act, MGL 111, §§ 142A-142J:** | http://www.mass.gov/eea/agencies/massdep/air/regulations/310-cmr-7-00-air-pollution-control-regulation.html
− 310 CMR 7.00: Air Pollution Control |
| **Massachusetts Superfund Law, MGL ch. 21E** | https://malegislature.gov/Laws/GeneralLaws/PartI/TitleII/Chapter21e |
| **Solid Waste Facility Regulations; 310 CMR 19:00** | http://www.mass.gov/eea/agencies/massdep/recycle/regulations/310-cmr-19-00.html |
| **Permit Requirements for Surface/Groundwater Discharges, MGL c. 21 § 43** | http://www.mass.gov/eea/agencies/massdep/water/regulations/314-cmr-3-00-surface-water-discharge-permit-program.html
− 314 CMR 3.00 (Surface Water Discharges)
− 314 CMR 5.00 (Groundwater Discharges) |
− 333 CMR 2.00 |
− 333 CMR 11.00 |
Appendix A:
2015 List of Priority NPS Impaired Waterbodies

January 2, 2014

The following Massachusetts waterbodies are proposed as nonpoint source impaired waters that are most likely to respond to remediation efforts that will result in meeting water quality standards. Proposals that would address these impaired segments with watershed-based projects will receive prioritization for funding in the FFY 2015 319 funding round.

Waterbodies listed here are defined by segment or waterbody number in the Water Quality Assessment Reports for the respective basins, (http://www.mass.gov/eea/agencies/massdep/water/watersheds/water-quality-assessments.html#2). Water quality impairments are found in the Final Massachusetts 2012 Integrated list of Waters (http://www.mass.gov/eea/docs/dep/water/resources/07v5/12list2.pdf)

This list has been developed using the following approach:

1. The Massachusetts Recovery Potential Screening Tool was used to identify HUC-12 subwatersheds that are most highly recoverable. Watersheds showing high and medium-high recoverability potential (darkest and next darkest blue) were selected.

2. For watersheds selected in Step 1, maps of MS4 regulated areas were compared to watershed maps found in the Water Quality Assessment Reports. Segment locations were reconciled with regulated areas, and the waterbodies located in regulated areas were screened out as ineligible to receive 319 funds.

3. For remaining waterbodies, the Integrated List of Waters was examined to identify segments impaired by causes most likely to respond to NPS BMPs and remediation efforts.

4. The targeted waterbodies are shown below, with the water quality impairments that can most effectively be addressed through NPS BMPs and suggested BMP types to be implemented.

5. Applicants are referred to Water Quality Assessment Reports found at http://www.mass.gov/dep/water/resources/wqassess.htm#wqar for information about Category 4C (non-pollutant) impairment causes shown in parentheses in the table below.

This is a partial list. Applicants wishing to work in other watersheds are encouraged to follow similar methodology in order to identify competitive, high priority projects. Contact Jane Peirce at 508-767-2792 or jane.peirce@state.ma.us for assistance and access to resources.
<table>
<thead>
<tr>
<th>BASIN</th>
<th>Segment ID</th>
<th>Description</th>
<th>Size</th>
<th>Impairment Cause</th>
<th>BMP type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deerfield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South River</td>
<td>MA33-08</td>
<td>Emments Road, Ashfield to confluence with Deerfield River, Conway.</td>
<td>12.96 MILES</td>
<td>Fecal Coliform bacteria</td>
<td></td>
</tr>
<tr>
<td>Chickley River</td>
<td>MA33-11</td>
<td>Headwaters Savoy Mountain State Forest, Savoy to confluence with Deerfield River, Charlemont.</td>
<td>11.08 MILES</td>
<td>(Physical substrate habitat alterations*) Sediment, dam removal, bank stabilization</td>
<td></td>
</tr>
<tr>
<td>Green River</td>
<td>MA33-30</td>
<td>From Greenfield swimming pool dam (northwest of Nashs Mill Road), Greenfield to confluence with the Deerfield River, Greenfield. (formerly segment MA33-10 and part of segment MA33-09)</td>
<td>3.74 MILES</td>
<td>Fecal Coliform bacteria</td>
<td></td>
</tr>
<tr>
<td>Farmington</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big Pond</td>
<td>MA31004</td>
<td>Otis</td>
<td>325.20 ACRES</td>
<td>Oxygen, Dissolved nutrients</td>
<td></td>
</tr>
<tr>
<td>Shaw Pond</td>
<td>MA31036</td>
<td>Becket/Otis</td>
<td>80.43 ACRES</td>
<td>Oxygen, Dissolved nutrients</td>
<td></td>
</tr>
<tr>
<td>Upper Spectacle Pond</td>
<td>MA31044</td>
<td>Sandisfield/Otis</td>
<td>52.66 ACRES</td>
<td>Oxygen, Dissolved nutrients</td>
<td></td>
</tr>
<tr>
<td>York Lake</td>
<td>MA31052</td>
<td>New Marlborough</td>
<td>28.76 ACRES</td>
<td>Oxygen, Dissolved nutrients</td>
<td></td>
</tr>
<tr>
<td>Hoosic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheshire Reservoir, North Basin</td>
<td>MA11002</td>
<td>[North Basin] Cheshire</td>
<td>284.02 ACRES</td>
<td>Nutrient/Eutrophication Biological Indicators nutrients</td>
<td></td>
</tr>
<tr>
<td>Mauserts Pond</td>
<td>MA11009</td>
<td>Clarksburg</td>
<td>50.90 ACRES</td>
<td>Turbidity nutrients</td>
<td></td>
</tr>
<tr>
<td>Cheshire Reservoir, South Basin</td>
<td>MA11019</td>
<td>[South Basin] Cheshire/Lanesborough</td>
<td>91.72 ACRES</td>
<td>Enterococcus bacteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Excess Algal Growth nutrients</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>MA</td>
<td>Description</td>
<td>Length</td>
<td>Alterations</td>
<td>Vegetative Covers</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----</td>
<td>--</td>
<td>---------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>North Branch Hoosic River</td>
<td>MA1-02</td>
<td>From USGS Gage, North Adams to confluence with Hoosic River, North Adams.</td>
<td>1.54 MILES</td>
<td>(Other flow regime alterations*)</td>
<td>Site specific</td>
</tr>
<tr>
<td>Hoosic River</td>
<td>MA1-03</td>
<td>Headwaters, outlet Cheshire Reservoir, Cheshire to Adams WWTP discharge, Adams.</td>
<td>8.84 MILES</td>
<td>(Physical substrate habitat alterations*)</td>
<td>Sediment, dam removal, bank stabilization</td>
</tr>
<tr>
<td>Hoosic River</td>
<td>MA1-04</td>
<td>Adams WWTP discharge, Adams to confluence with North Branch Hoosic River, North Adams.</td>
<td>5.39 MILES</td>
<td>(Alteration in stream-side or littoral vegetative covers*)</td>
<td>Sediment, bank stabilization</td>
</tr>
<tr>
<td>Hoosic River</td>
<td>MA1-05</td>
<td>Confluence with North Branch Hoosic River, North Adams to the Vermont State line, Williamstown.</td>
<td>8.23 MILES</td>
<td>(Other flow regime alterations*)</td>
<td>Site specific</td>
</tr>
<tr>
<td>Green River</td>
<td>MA1-06</td>
<td>Headwaters southwest of Sugarloaf Mountain (west of Ingraham Road), New Ashford to confluence with Hoosic River, Williamstown.</td>
<td>12.50 MILES</td>
<td>(Alteration in stream-side or littoral vegetative covers*)</td>
<td>Sediment, bank stabilization</td>
</tr>
<tr>
<td>Paull Brook</td>
<td>MA1-20</td>
<td>Headwaters, outlet of Mt. Williams Reservoir, North Adams to confluence with unnamed tributary, Williamstown.</td>
<td>2.09 MILES</td>
<td>Site specific</td>
<td>Site specific</td>
</tr>
<tr>
<td></td>
<td>Location</td>
<td>Details</td>
<td>Area (ACRES)</td>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Housatonic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Buel</td>
<td>MA21014</td>
<td>Monterey/New Marlborough</td>
<td>194.40</td>
<td>Dissolved oxygen saturation, Oxygen, Dissolved, Phosphorus (Total)</td>
<td></td>
</tr>
<tr>
<td>Housatonic River</td>
<td>MA21-04</td>
<td>Confluence of Southwest Branch Housatonic River and West Branch Housatonic River, Pittsfield to outlet of Woods Pond, Lee/Lenox (pond was formerly segment MA21120),</td>
<td>12.32 MILES</td>
<td>Fecal Coliform</td>
<td></td>
</tr>
<tr>
<td>Lake Garfield</td>
<td>MA21040</td>
<td>Monterey</td>
<td>256.90</td>
<td>Nitrogen (Total)</td>
<td></td>
</tr>
<tr>
<td>Laurel Lake</td>
<td>MA21057</td>
<td>Lee/Lenox</td>
<td>173.51</td>
<td>Dissolved oxygen saturation, Oxygen, Dissolved</td>
<td></td>
</tr>
<tr>
<td>Wahconah Falls Brook</td>
<td>MA21-11</td>
<td>Headwaters, outlet of Windsor Reservoir, Windsor to confluence with East Branch Housatonic River, Dalton.</td>
<td>3.38 MILES</td>
<td>Fecal Coliform</td>
<td></td>
</tr>
<tr>
<td>Housatonic River</td>
<td>MA21-19</td>
<td>Outlet of Woods Pond, Lee/Lenox to the Risingdale Impoundment dam, Great Barrington (impoundment formerly segment MA21121),</td>
<td>19.88 MILES</td>
<td>Excess Algal Growth, Phosphorus (Total)</td>
<td></td>
</tr>
<tr>
<td>Millers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gales Pond</td>
<td>MA35024</td>
<td>Warwick</td>
<td>11.73</td>
<td>Turbidity</td>
<td></td>
</tr>
<tr>
<td>Millers River</td>
<td>MA35-03</td>
<td>Confluence with Otter River, Winchendon to South Royalston USGS Gage, Royalston.</td>
<td>3.52 MILES</td>
<td>Phosphorus (Total)</td>
<td></td>
</tr>
<tr>
<td>Laurel Lake</td>
<td>MA35035</td>
<td>Enving/Warwick</td>
<td>44.43</td>
<td>Oxygen, Dissolved</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>MA Code</td>
<td>Description</td>
<td>Distance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
<td>---</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millers River</td>
<td>MA35-04</td>
<td>South Royalston USGS Gage, Royalston to Erving Center WWTP (formerly known as Erving Paper Company), Erving.</td>
<td>18.46 MILES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fecal Coliform</td>
<td>bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phosphorus (Total)</td>
<td>nutrients</td>
</tr>
<tr>
<td>Beaver Brook</td>
<td>MA35-09</td>
<td>Fernald School discharge, Templeton to confluence with Millers River, Royalston.</td>
<td>3.43 MILES</td>
<td>Fecal Coliform</td>
<td>bacteria</td>
</tr>
<tr>
<td>Westfield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westfield River</td>
<td>MA32-05</td>
<td>Confluence with Middle Branch Westfield River, Huntington to Route 20 Bridge, Westfield.</td>
<td>17.84 MILES</td>
<td>Turbidity</td>
<td>nutrients</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Excess Algal Growth</td>
<td>nutrients</td>
</tr>
<tr>
<td>Powdermill Brook</td>
<td>MA32-09</td>
<td>Source, east of Pitcher Road, Montgomery to confluence with Westfield River, Westfield.</td>
<td>9.54 MILES</td>
<td>Turbidity</td>
<td>nutrients</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sedimentation/Siltation</td>
<td>Sediment, bank stabilization</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Excess Algal Growth</td>
<td>nutrients</td>
</tr>
<tr>
<td>Moose Meadow Brook</td>
<td>MA32-23</td>
<td>Source in wetland west of Bungy Mountain, Montgomery to confluence with Westfield River, Westfield.</td>
<td>8.18 MILES</td>
<td>Fecal Coliform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Turbidity</td>
<td>nutrients</td>
</tr>
<tr>
<td>Little River</td>
<td>MA32-36</td>
<td>From the dam northwest of Gorge Road, Russell to Horton's Bridge, Westfield. (formerly part of segment MA32-26)</td>
<td>5.80 MILES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Escherichia coli</td>
<td>bacteria</td>
</tr>
<tr>
<td>Jacks Brook</td>
<td>MA32-39</td>
<td>Headwaters, east of Fowler Road, Westfield to inlet of Crane Pond/Little River, Westfield.</td>
<td>2.4 MILES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Escherichia coli</td>
<td>bacteria</td>
</tr>
</tbody>
</table>
Output from the Recovery Potential Screening Tool with s.319 eligible impairments, 2013
Appendix B:

Massachusetts Office of Coastal Zone Management
Coastal Nonpoint Pollution Control Program

15-Year Program Strategy (2014 to 2029)
5-Year Implementation Plan (2014 to 2019)

Note the Coastal Nonpoint Pollution Control Program 15-Year Program Strategy (2014 to 2029) with 5-Year Implementation Plan (2014 to 2019) is a living planning document and portions of the document may not reflect current conditions and will be updated by CZM as part of their ongoing planning process. Implementation of the MassDEP Circuit Rider Technical Assistance has continued with the hiring of two new circuit riders by MassDEP, such that all regions have circuit riders. MassDEP will continue to partner with CZM on Nonpoint Source Pollution Control efforts.
INTRODUCTION

In the 1998 Final Administrative Changes to the Coastal Nonpoint Pollution Control Program (CNPCP) Guidance, the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Environmental Protection Agency (USEPA) required states to develop a 15-year program strategy and a 5-year implementation plan as part of their CNPCP. The guidance emphasizes the need for state coastal programs to coordinate the development of this fifteen-year strategy and five-year plan with their respective Section 319 Nonpoint Source Programs.

This 15-Year Program Strategy/5-Year Implementation Plan presents updated long-term goals (15-year; 2014 to 2029) and 5-year (2014-2019) action/implementation efforts for the Massachusetts Office of Coastal Zone Management (CZM) CNPCP. This document was developed and is being submitted in coordination with the 2014 update to the Massachusetts Nonpoint Source Management Plan. This document is an update to the CNPCP prepared in 2000, and was developed through a series of planning sessions conducted between December 2013 and February 2014, involving staff of CZM, the Massachusetts Department of Environmental Protection (MassDEP), the Massachusetts Executive Office of Energy and Environmental Affairs (EEA), the USEPA, and Geosyntec Consultants. Additional input on specific topics was also provided from other CZM partner agencies, including:

- Massachusetts Department of Agriculture (MDAR);
- Massachusetts Department of Conservation and Recreation (DCR);
- Massachusetts Department of Transportation (MassDOT); and
- Massachusetts Division of Ecological Restoration (DER).

To provide appropriate historical context and sense of continuity between the previous and current versions of the 15-Year Program Strategy/5-Year Implementation Plan, each section lists previous actions that have been achieved and/or are no longer planned for the period of 2014 to 2019.

For each of the six major source categories of the CNPCP, this document describes important long-term goals to be realized within a 15-year strategy timeframe. The document then lists specific implementation actions and benchmarks that can be anticipated to occur within the 5-year plan window. For each action item, the responsible organizations have been listed. In some cases, the specific action item may be an implementation effort that has been planned by the organization, but which requires funding that has not yet been secured.

Unless otherwise noted in the CNPCP, action items will be worked on continuously over the 5-year planning period, rather than in specific years. Massachusetts CZM, as the coordinator of the CNPCP, will review the 5-year action/implementation efforts annually until 2019. In 2019, CZM will complete a more comprehensive review of implementation efforts, report on progress, shortcomings, and new opportunities. A renewed 5-year implementation plan will be developed for the 5-year period of 2019 to 2024. In addition, the 15-year long term goals will be reviewed and revised if necessary.
URBAN AREAS

A. Urban Areas: Stormwater Management

1. Long Term (15 Year) Goal:
By 2029, implementation of the Massachusetts Stormwater Management Standards will continue to reduce water quality impairments, remove waters from the state’s 303d list, restore segments not supporting, and protect supporting beneficial uses such as shellfish beds and swimming beaches.

2. Actions/Implementation Efforts (to 2019):
The following benchmarks and actions are anticipated:

- Increase compliance of stormwater policy implementation through continued technical assistance and education efforts by CZM, MassDEP, MassBays and Buzzards Bays staff, including:
 - Specific targeted hands-on technical assistance to local officials, such as Conservation Commissions, through CZM, MassDEP, NRCS, and the MassBays and Buzzards Bay National Estuary Programs (NEPs).
 - Contingent on MassDEP funding, guidance documents, technical assistance and workshops related to stormwater management.
 - Offer NPDES Phase II assistance to affected municipalities, such as workshops, technical assistance, and guidance materials.
- Increase compliance and enforcement of stormwater plans through enforcement activities of local conservation commissions and MassDEP, including inspections at project sites. The role of MassDEP will be in support of conservation commissions.
- Increase compliance and implementation of stormwater plans through grants, including:
 - CZM will continue to implement the Coastal Pollutant Remediation (CPR) grant program, funding stormwater assessment and remediation projects in coastal watershed municipalities. Require CPR grant recipients to (1) complete an Operation & Maintenance (O/M) Plan for relevant implementation projects and (2) provide an agreement and documentation of O/M activities for the life-cycle of the BMP.
 - In addition to mid-year project summaries and end-of-year project reports provided to NOAA, CZM will develop an indicative project summaries informational document for the CPR grant program. These summaries will provide information (project description, constituent of concern and resource, remediation scheme/technology and any follow-up info) for past CPR projects. The goal of the document is to provide information (in the form of brief case studies) to municipal decision-makers regarding stormwater mitigation options. CZM will maintain this information on its web page.
 - Other grant programs that promote development and implementation of Low Impact Development and Green Infrastructure practices and other green technology stormwater mitigation practices.

- Actions from 2000 CNPCP that have been achieved and/or will not continue in 2014-2019
 - Continued implementation of the MassDEP Circuit Rider Technical Assistance in each regional office. (This will not be continued due to staffing limitations.)
 - MassDEP to re-write of the Hydrology Guidance document for conservation commissions, local officials, and others. (This has been achieved.)
 - Continued review and fine-tuning of the Massachusetts Stormwater Standards through the Stormwater Advisory Committee and Technical committee. (This has been achieved.)
• CZM, working with MassDEP, STEP, and UMass, will develop and implement pilot testing project for innovative stormwater treatment technologies, evaluating performance of separate installations of several different technologies. (*This has been achieved.*)

• MassDEP will work with local communities and watershed groups to implement stormwater “daylighting” efforts in the Charles and Neponset. Stormwater daylighting is a technique that uncovers stormwater conduits and exposing (or restoring) the channel as a more natural streambed. (*This has been achieved.*)

B. Urban Areas: Onsite Disposal Systems (Title 5)

1. *Long Term (15 Year) Goal:*

 By 2029, reduce impairments to surface waters and drinking water supplies through improved treatment and disposal of wastewater.

2. *Actions/Implementation Efforts (to 2019):*

 The following benchmarks and actions are anticipated:

 • Conduct outreach to communities (especially in Barnstable County) on EEA’s Alternative Nutrient Attenuation Strategies Policy.

 • MassDEP will continue to offer technical assistance through specific training to local Boards of Health, soil evaluators, and system inspectors.

 • MassDEP will continue funding assistance programs, including the Community Septic Management Program and the Clean Water State Revolving Fund.

 • MassDEP will continue to evaluate and approve proposals for facilities planning that include an integrated approach to wastewater management, i.e. the use of on-site system upgrades coupled with conventional wastewater treatment facilities to address town-wide or area-wide wastewater needs in an economical fashion. Continued activities will include providing enhanced subsidies, in the form of 0% interest loans from the Clean Water State Revolving Fund, to nutrient management projects resulting from comprehensive wastewater management plans. Also included is continued implementation of the Section 208 plan for Cape Cod, which was developed in part to encourage and facilitate the development and implementation of area-wide waste treatment management plans.

 • Continued and expanded use of MassDEP web site to act as a clearinghouse for publications and information related to disposal of wastewater.

 • MassDEP will continue to evaluate and revise the Title 5 regulations, as appropriate, to improve the regulations as necessary.

 • MassDEP will issue wastewater management guidance to municipalities to support correction of major problems in most environmentally sound manner. For the planning period of 2014-2019, this will be achieved through the anticipated completion and approval of the Section 208 Plan for Cape Cod by 2015.

 • MassDEP will continue to support the work of the Massachusetts Septic System Test Center, contributing to the reduction of coastal nonpoint contamination by onsite disposal systems in the followings ways:

 ➢ The Test Center will provide verification of contaminant (nutrient, organic load and pathogen) removals by innovative/alternative (I/A) onsite disposal systems which can provide superior quality of effluent discharged to ground water.

 ➢ The Test Center will provide verification of the performance of conventional Title 5 onsite disposal systems to serve as benchmark for comparison with I/A technologies and will provide needed data on levels of contaminants released to ground water by conventional systems.
The Test Center will provide a platform for research and development testing of new onsite disposal technologies, components and materials for technology vendors and MassDEP, which may improve both I/A and conventional performance. The Test Center will provide outreach on I/A and conventional technologies to Boards of Health, health agents, system designers and the public in the form of facility tours and training workshops, published reports on verified technology performance furnished to MA Boards of Health, publication of testing results on the Test Facility webpage on the Buzzards Bay NEP website, and through print media articles.

Actions from 2000 CNPCP that have been achieved and/or will not continue in 2014-2019

- MassDEP will continue education efforts for affected public and others, including Wastewater News and Waterlines. *(This has been achieved.)*
- MassDEP and STEP will continue to encourage the development of and approve innovative/alternative technologies for the onsite treatment and disposal of sewage. *(This has been achieved.)*

C. Urban Areas: Erosion, Sedimentation and Construction Site Control

1. **Long Term (15 year) Goal:**

 By 2029, through continued implementation of the Wetlands Protection Program performance standards, local site planning and project review through the Subdivision Control Act, and pro-active education on efforts such as conservation planning and sensitive development, the quantity of water resources assessed as non-supporting due to turbidity or suspended solids from site development sources will be substantially reduced.

2. **Actions/Implementation Efforts (to 2019):**

 The following benchmarks and actions are anticipated:

 - Through MassDEP and local conservation commissions: ongoing compliance and enforcement of erosion control measures at project sites.
 - Technical assistance to assist Massachusetts communities in their development, adoption, and implementation of these local by-laws and regulations through the Massachusetts' National Estuary Programs (Massachusetts Bays NEP and Buzzards Bay NEP) and other state efforts such as the CZM regional offices and MassDEP wetland staff.
 - Regional planning agencies in Massachusetts, such as the Cape Cod Commission, the Metropolitan Area Planning Council, the Merrimac Valley Planning Commission, and the Southeastern Regional Planning and Economic Development District, will also provide direct assistance to communities to support local level control of stormwater, erosion and sediment and chemical controls.
 - The Middlesex Conservation District will continue to offer the program service to its 52 communities to review Erosion and Sedimentation Control Plans for all soil disturbing projects over 5000 sq. ft. The district charges on an hourly basis so the program has built in sustainability.

Actions from 2000 CNPCP that have been achieved and/or will not continue in 2014-2019

- North Shore Region Conservation Subdivision Pilot: CZM to continue to work with an alliance of local officials, developers, engineers, realtors, conservation organizations, and state agencies to create and promote innovative sustainable development designs that protects land and water resources while maximized the economic potential. The Alliance intends to begin bylaw distribution and outreach program in spring 2000, focusing on the Parker River Area of Critical Environmental Concern (ACEC) communities in Phase One. Phase Two will include targeting communities outside the ACEC but having impact to that ecosystem. *(This has been achieved.)*
The current publication, *Massachusetts Guidelines for Erosion & Sediment Control in Urban and Suburban Areas*, will be scanned and posted on the Web in its entirety (including pictures). *(This has been achieved.)*

MassDEP, with CZM, MassBays NEP, and Buzzards Bay NEP, will work to develop state-endorsed model by-laws and regulations for local municipalities. *(Guidelines related to this topic were provided in the *Massachusetts Guidelines for Erosion & Sediment Control in Urban and Suburban Areas*.)

D. Urban Areas: Watershed Protection

1. Long Term (15 Year) Goals:
 a. Watershed Protection

 By 2029, CZM and its partner agencies will develop and implement a comprehensive plan to assess and rank watersheds within the coastal zone, with the intent of:
 1. Identifying and prioritizing the protection of high-quality watersheds;
 2. Establishing programs to educate stakeholders on the importance of protection of these high quality watersheds;
 3. Targeting resources to protect these high quality watersheds from future environmental impacts to the greatest extent practical; and
 4. Aligning partner program resources to enhance and improve existing efforts to protect water quality in these high quality watersheds.

 b. Climate Change Adaptation

 By 2029, working with partner agencies on the local, state, and federal level, CZM and its partner agencies will:
 1. Develop and implement watershed-based strategies to plan for and implement practices that mitigate the adverse effects of climate change on waters and wetlands within the coastal zone; and
 2. Work with coastal zone stakeholders to plan for and implement adaptations to existing infrastructure to increase resilience and protect critical habitats from the adverse effects of climate change.

 2. Actions/Implementation Efforts (to 2019):
 a. Watershed Protection

 MassDEP, CZM and other program partners will continue work to monitor and assess sources of NPS contamination in the Massachusetts coastal zone;

 CZM will continue to fund watershed protection projects through the Coastal Pollution Remediation (CPR) grant program, including projects to protect high quality watersheds.

 CZM staff will coordinate with MassDEP staff to identify high priority Section 319 grant projects within the Massachusetts coastal zone, including projects to protect high quality watersheds, which will reduce NPS pollutants through improved stormwater management practices and other techniques.

 CZM will coordinate with MassDEP, MDAR and USDA-NRCS to implement Agricultural BMP’s within high priority areas of the Massachusetts coastal zone.
• CZM, MassDEP and other agency partners will make recommendations for the protection and preservation of high priority lands that have sensitive habitat and/or will further the goal of protecting high priority resource areas from NPS pollution.
• CZM and MassDEP will continue to promote the promulgation of municipal conservation zoning bylaws or similar environmentally prudent zoning to protect natural resources from NPS pollution;
• CZM, MassDEP and other agency partners will continue to engage watershed organizations and municipalities in NPS pollution control through outreach and education efforts.

b. Climate Change Adaptation
• Update applicable CZM policy to include climate change as a new driving factor for NPS pollution causes and solutions.
• Working with partner agencies, promote new regulations and broaden existing programs to incorporate climate change for projects designed to increase infiltration, improve stormwater quality, and protect groundwater.
• Working with local agencies, units of government, and stakeholder organizations, increase awareness of the effects of climate change on water quality and promote solutions that mitigate the effects of climate change on water resources.
• Support and promote watershed planning by NPS partner agencies, including analysis and consideration of the effects climate change will have on current and future NPS pollution sources.
• Promote the design, siting, and construction of BMPs that address NPS pollution and are capable of withstanding the effects of climate change on water levels, flooding frequency, wave action, and related factors.
• Support projects to restore aquatic habitats adversely affected by NPS pollution and climate change.
• Support efforts to research, design, and demonstrate BMPs that address NPS pollution and are resilient to climate change impacts.

Actions from 2000 CNPCP that have been achieved and/or will not continue in 2014-2019
• Watershed teams will provide technical assistance and guidance to watershed organizations and municipal boards regarding the implementation of the Phase II Stormwater rules. (This has been achieved.)
• Watershed will implement rapid watershed planning tools and techniques to assess small subwatersheds, using impervious cover as the indicator for stream quality. (This has been achieved.)
• Watershed teams will engage local constituents and work to control NPS pollution by weighing in on NPDES permits and implementing TMDL’s before, during, and after the public participation process. (The watershed teams referenced no longer exist.)
• The Watershed Initiative supports the efforts of watershed organizations and other groups by offering various funding opportunities, such as watershed stewardship service contracts to make environmental improvements; volunteer monitoring grants for volunteer groups to collect water quality data, and Communities Connected by Water service contracts for watershed organizations to work with municipalities to integrate growth planning with environmental protection. (The Watershed Initiative no longer exists.)
E. Urban Areas: Roads and Highways

1. **Long Term (15 Year) Goal:**

 By 2029, all new state and local roads, highways, bridges, and facilities will be full compliance with the Stormwater Management Standards or MS4 permit where applicable and practicable. Existing roads, highways, bridges and facilities will incorporate adequate NPS Best Management Practices when reconstruction, widening or drainage work is planned OR such BMPs will be programmed when water quality assessments demonstrate violations of standards.

2. **Actions/Implementation Efforts (to 2019):**

 The following benchmarks and actions are anticipated:
 - State Highway Facilities will continue compliance through implementation of the MassDOT Environmental Management System.
 - MassDOT and the MADCR will implement NPDES Phase II requirements within established times.
 - MassDOT will obtain an Individual MS4 Permit.
 - MassDOT will finalize its assessment of highway drainage to impaired waters.
 - Where warranted, MassDOT will continue to design and construct water quality mitigation projects to reduce pollutant loading to the maximum extent practical.
 - MassDOT will update its Stormwater Handbook for Roads and Bridges.

 Actions from 2000 CNPCP that have been achieved and/or will not continue in 2014-2019
 - A minimum of four regional workshops will be held on the new MHD policy/"meeting-the-stormwater-standards" document (MHD Volume 1). *(This has been achieved.)*
 - MHD will finalize the road and highway engineering and BMP specifications document (MHD Volume 2). *(This has been achieved.)*
 - A minimum of four regional workshops will be held on the MHD Volume 2 Document. *(This has been achieved.)*

MARINAS AND RECREATIONAL BOATING

A. Marinas and Recreational Boating: Marina Siting

1. **Long Term (15 Year) Goal:**

 By 2029, all new, upgraded and expanded marine facilities sited in Massachusetts receive planning and implementation assistance from the CZM marina technical assistance staff prior to or during CZM federal consistency or MEPA review. As a result, new and expanded marinas are designed and sited in such a manner as to minimize impacts on water quality and aquatic resources.

2. **Actions/Implementation Efforts (to 2019):**

 The following actions and benchmarks are anticipated:
 - During pre-application technical assistance or permitting review (by CZM or other state and federal agencies), designs for new, upgraded or expanded marinas will incorporate pump-outs, improved fueling facilities stormwater management, and hull maintenance facilities where feasible.
 - Continue to Maintain the Massachusetts Clean Marina Guide on the CZM website.
• Continue to provide technical assistance related to the siting, design, construction and operation of marine facilities.

Actions from 2000 CNPCP that have been achieved and/or will not continue in 2014-2019

• CZM will publish the marina guidance document and deliver it to marine facility operators and other target audiences, such as town harbormasters, marine industry reps, and others. (This has been achieved.)

• CZM and its contractors will hold workshops throughout Massachusetts; to publicize and teach the use of the marina guidance document. (This has been achieved.)

• CZM will run a pilot small-grants program to fund pollution prevention technologies at public and private marine facilities. (This has been achieved.)

B. Marinas and Recreational Boating: Marina Operation

1. Long Term (15) Goal:

By 2029, implementation of the Massachusetts Clean Marina Program, federal regulatory programs, and state regulatory programs (CZM federal consistency, Stormwater Policy and Management Standards, MEPA, and Chapter 91) will reduce water quality impairments, remove waters from the state’s 303 d list, restore segments not supporting, and protect supporting beneficial uses such as shellfish beds and swimming beaches.

2. Action/Implementation Efforts (to 2019):

• CZM will continue to provide technical assistance related to the siting, design, construction and operation of marine facilities.

• USEPA carried out an extensive technical assistance program for marina owners in the mid-2000s. USEPA does not currently anticipate any new assistance initiatives over the next 5 years for marina operators.

• USEPA will issue a new multi-sector general permit, which will include requirements for marinas.

Actions from 2000 CNPCP that have been achieved and/or will not continue in 2014-2019

• CZM and the Massachusetts Office of Technical Assistance and Technology (OTA) marina technical assistance team is created and staff are educated and prepared to provide expertise in the siting, design, construction and operation of marine facilities. (This has been achieved.)

• CZM will publish the marina guidance document and deliver it to all marine facility operators and other target audiences, such as town harbormasters, marine industry reps, and other. (This has been achieved.)

• Boater education brochures will be developed and distributed to inform the boating public of issues concerning recreational boat use and water and aquatic habitat degradation. Brochures will contain recommendations and steps to prevent and minimize such impacts. (This has been achieved.)

• CZM and its contractor will hold five workshops will be held in fall 2000 in five regions throughout Massachusetts to publicize the release of the document and provide specific technical assistance and education. Contingent on available funding, a second and third phase of workshops will be run in 2001 and 2003. (This has been achieved.)

• CZM will run a pilot small-grants program to fund BMPs and other environmental improvements for existing marine facilities. This program will likely provide small grants, cost-share or no/low interest loans for: vacuum sanders for hull maintenance; hull washing facilities; purchase, operation and maintenance of pump-out facilities; public and boater education; fueling station retrofitting and
maintenance; and solid, liquid, recyclable and hazardous waste management. (*This was achieved using one-time funding from USEPA.*)

- Contingent on available funding, a Clean Marina Program will be piloted and evaluated to encourage marinas to develop and implement marina management plans. Participants in the program receive publicity from the state, a flag to fly over their facility and are free to use a Clean Marina logo in any advertisements and correspondence. Program is developed as a positive approach, which recognizes the efforts of marinas to protect the resources that provide their livelihood. (*This program was piloted and dropped due to lack of industry interest.*)

- CZM and OTA will pilot a technical assistance and inspection program. In two ACECs, all marina operations will be offered a visit and review for implementation of good housekeeping and BMPs. Technical advice and steps to implement BMPs will be delivered through and audit plan. (*This action item has been supplanted by the new multi-sector permit which gives marina enforcement jurisdiction to EPA.*)

- CZM will work with MassDEP and other agencies to explore mechanisms for the coordination of annual marina operator’s license with MassDEP’s Chapter 91 program, and how efforts may be initiated to conduct inspections, make NPS control recommendations, and utilize compliance action if necessary. (*This action items has been supplanted by the new multi-sector permit which gives marina enforcement jurisdiction to EPA.*)

C. Marinas and Recreational Boating: Pump-Out Facilities

1. **Long Term (15 Year) Goal:**

 By 2029, state waters of Massachusetts will continue to be regulated as an approved No-Discharge Area. Pump-out facilities will be installed and maintained so that one facility exists for every 450 boats with marine sanitary devices.

2. **Actions/Implementation Efforts (to 2019):**

 The following benchmarks and actions are anticipated:

 - Contingent on continued Clean Vessel Act Grant Program funding, the DFG-Division of Marine Fisheries grants program will continue to fund purchase, operation and maintenance of pump-out facilities at private new and existing marine facilities, in support of statewide NDA designation. Increased emphasis will be given to supporting operation and maintenance for existing facilities.
 - Support the efforts of local harbormasters and state environmental police pursuant to the statewide No discharge Zone (NDZ) designation.
 - CZM will continue to maintain the Massachusetts Clean Marina Guide on the CZM website.
 - CZM will continue to disseminate boater education brochures via the CZM website to inform the boating public of the need, requirement, and availability of pump-out facilities.

Actions from 2000 CNPCP that have been achieved and/or will not continue in 2014-2019

 - The boater education brochure and others will be distributed to all Massachusetts’ boaters with their registrations. (*This has been achieved.*)

D. Marinas and Recreational Boating: Recreational Boating and Public Education

1. **Long Term (15 Year) Goal:**

 By 2029, education efforts aimed at improvements in recreational boating best management practices will result in advances in the number of vessels equipped with pump-out ready holding tanks (marine sanitary devices).
2. **Actions/Implementation Efforts (to 2019):**

The following benchmarks and actions are anticipated:

- CZM will continue to disseminate the Massachusetts Clean Marina Guide via the CZM website.
- CZM will continue to disseminate boater education brochures via the CZM website to inform the boating public of the need, requirement, and availability of pump-out facilities.

Actions from 2000 CNPCP that have been achieved and/or will not continue in 2014-2019

- This brochure and others will be distributed to all Massachusetts’ boaters with their DFWELE registrations. (This has been achieved, see bullet above regarding future website dissemination)
- Contingent on funding, CZM will work to develop educational signage and provide these signs to marine facilities. (This has been achieved and is now done by towns)
- Contingent on funding, CZM will run workshops targeted towards recreational boaters and boating groups will be organized and held to educate boaters about environmental concerns. (*This has been achieved; funding is not available for continuation.*)
- CZM participates and organizes activities for the National Clean Boating Campaign. (*CZM does not have staff to dedicate to this.*)

AGRICULTURE

1. **Long Term (15 Year) Goal:**

MDAR, in partnership with NRCS, MACD, and MassDEP, will continue efforts to implement Best Management Practices through Conservation Farm Plans and will continue to provide technical and financial assistance to support the achievement of meeting water quality standards.

2. **Actions/Implementation Efforts (to 2019):**

The following efforts will be continued in order to build on progress towards achieving water quality goals.

- **Regulatory Certainty Pilot Program:** MDAR is partnering with NRCS, MACD and MassDEP to develop a pilot Regulatory Certainty Program in the Palmer River Watershed. Regulatory certainty is a process which incentivizes the adoption of agricultural conservation practices on farms. Farmers that are implementing site specific conservation practices to address water quality, and who are voluntarily participating in the Regulatory Certainty Program, are presumed to be doing all that they can to comply with water quality mandates.

- **Accelerated Conservation Planning Partnership:** The Accelerated Conservation Planning Partnership is a cooperative initiative among MDAR, NRCS, and the Massachusetts Association of Conservation Districts (MACD). The partnership is intended to accelerate conservation planning and the provision of technical assistance to farmers to address water quality and other resource concerns. Through the partnership NRCS and MDAR, this program jointly funds four conservation planners, a nutrient management planner and support staff throughout the state.

- **Farm Inspections:** MDAR will continue to actively engage small, medium and large animal operations in the state on water quality issues. MDAR staff will continue to conduct farm inspections, make note of technical assistance needed, and provide farm owners with information on funding opportunities.

- **Agricultural Environmental Enhancement Program (AEEP):** Originally started as a fencing program in 1999, AEEP has steadily provided funding to farmers over the past 15 years for implementation of conservation practices to protect water quality. Since 1999, the program has
funded 456 projects statewide that improve water quality, conserve water, reduce greenhouse gas emissions, and conserve energy. Agricultural operations have received over $5 million dollars to help them address environmental concerns on their farms. In FY 2013, 31 projects were funded totaling $369,210. For FY 2014, another 30 farms are expected to be funded in the amount of $345,000. This program is expected to continue at a similar level of funding through planning period of 2014-2109.

- **Nutrient Management Planning Legislation:** State legislation requiring planning for the application of all forms of nutrients, including manure, was passed in 2012 (Chapter 262 of the Acts of 2012, An Act Relative to the Regulation of Plant Nutrients). Updated regulations associated with this legislation are expected to be released in 2014.

- **Pesticide Mixing, Loading and Storage Guidelines:** MDAR will continue to promote proper use, handling and storage of agricultural pesticides, consistent with the state guidelines developed in 1998 (viewable online).

- **Pesticide Collection Events:** MDAR will continue to conduct pesticide collection events statewide. Multiple events statewide were coordinated by MDAR with funding through EPA were conducted through the years 1998 to 2001 (80,000 lbs. collected); 2005 to 2008 (28,322 lbs. and 2640 gallons collected) and 2012 (18,548 lbs. and 1172 gallons collected).

- **Drip and Automated Irrigation Systems:** MDAR will continue to fund the implementation of drip irrigation systems on farms. Since 2008, MDAR has funded over 100 auto-irrigation systems on cranberry farms. Auto-irrigation systems are a widely adopted technology in the cranberry sector and have resulted in significant savings in fuel and water use on frost nights and when irrigating.

- **USDA-NRCS Farm Bill Programs:** As described in Section 3.1.8 of the Massachusetts Nonpoint Source Management Plan, Farm Bill programs funded through the United States Department of Agriculture (USDA) - Natural Resources Conservation Service (NRCS) and USDA-Farm Service Agency (FSA) will continue to be important to controlling nonpoint source pollution in the Massachusetts coastal zone and statewide.

Actions from 2000 CNPCP that have been achieved and/or will not continue in 2014-2019

Over the past 14 years (since development of the 2000 CNPCP), there have been significant changes in funding levels and organization of both state and federal agency programs related to agricultural planning and NPS pollution prevention. Significant progress has been made in implementing the actions identified in the 2000 CNPCP for this category. A summary of actions that were achieved is provided below, based on discussions between staff of CZM, MDAR and other program partners:

A. **Agriculture - Farm Planning:** Farm Planning is a continuing and ongoing effort, as described in the summary MDAR and USDA-NRCS program descriptions provided above.

B. **Agriculture - Nutrient Management and Animal Feeding Operation:** MDAR, with support from USDA-NRCS programs, continues to conduct farm inspections which address this sub-category via technical assistance. MDAR also continues to fund related projects to enhance and protect water quality. As described above, new state legislation addressing agricultural nutrient control was passed in 2012 and associated regulations are expected in 2014.

C. **Agriculture - Grazing, Erosion and Sediment Control:** MDAR, with support from USDA-NRCS programs, continues to conduct farm inspections which address this sub-category via technical assistance. MDAR also continues to fund related projects to enhance and protect water quality.

D. **Agriculture - Irrigation:** For this sub-category, MDAR continues to fund and implement drip irrigation systems to address the issues related to improved water management. MDAR reports that they have funded over 100 of these systems.

E. **Agriculture - Pesticide Control Program:** MDAR has funded pesticide container collection and recycling events collection events; has implemented new mixing, loading, and storage guidelines;
and continues to implement these guidelines. These new guidelines were developed and implemented in response to the original 6217 planning effort.

F. Agriculture - Assistance Grants: Although funding and programs have changed, MDAR continues to work with partners to provide assistance and grants to farmers for environmental improvements as part of their Agricultural Environmental Enhancement Program (AEEP, see description above).

FORESTRY

A. Forestry: Forest Cutting Practice

1. Long Term (15 Year) Goal:

- By 2029, through continued implementation of the Forest Cutting Practices Act and its coordination with the Wetlands Protection Program performance standards, and pro-active education on efforts such as forestry BMPs, less than 5% of water resources will be assessed as non-supporting and no wetland enforcement orders will be issued due to forestry operations.

 - The MADCR Forest Stewardship Program will continue to provide statewide technical assistance and outreach efforts to the forest cutting community. Although activities of this program are not anticipated within the coastal zone, this program’s statewide activities will include coastal zone forestry operations as necessary.
 - The MADCR Forest Stewardship Program website will be updated on a continuing basis and will include information on forestry regulations, program information and availability of technical assistance.

Actions from 2000 CNPCP that have been achieved and/or will not continue in 2014-2019

No significant forestry operations have occurred in the Massachusetts coastal zone in recent years and none are anticipated during the planning period of 2014-2019. The statewide program activities of the MADCR Forestry Stewardship Program and the regulatory structure of the Forest Cutting Practices Act have been ongoing and will continue to guide forestry activities in the coastal zone as needed.

HYDROMODIFICATION

A. Hydromodification: Erosion & Sediment Control from Dams, Wetlands Protection Program, Chapter 91 Program, MCZM Dredging Program

1. Long Term (15 Year) Goal:

Continue to implement the Wetlands Protection Program performance standards, Chapter 91 permits and licensing, and 401 Water Quality Certification to prevent or minimize impacts from channelization, stream and coastal bank hardening, and channel dredging. Maximize the opportunities for restoration of coastal and riparian habitat.

2. Actions/Implementation Efforts (to 2019):

- Development of comprehensive Dredged Material Management Guidance document and innovative web site.
- Early resource identification and location through interactive GIS-based marine Resource Characterization tools.
• Continue joint-processing (federal and state agencies) pre-application meetings and guidance for all channel and dredging modification project.
• Federal and state agency personnel technical coordination and education meetings.
• Public meetings and outreach efforts for state Designated Port Areas.

Actions from 2000 CNPCP that have been achieved and/or will not continue in 2014-2019
• Regulatory committee, chaired by DEP, to revise Dredged Material Management regulations (310 CMR 9.00) (*This has been achieved.*)
• Contingent on funding, another round of Riverfront Protection Act workshops will be developed and implemented by DEP. (*This has been achieved; funding is not available for continuation.*)

B. Hydromodification: Erosion & Sediment Control and Dams - Dam Safety Program

1. Long Term (15 Year) Goal:
Continue to implement the DCR Dam Safety Program’s erosion control provisions for slopes, embankments, and crests of existing and new dams to prevent these structures from becoming sources of NPS pollution.

2. Actions/Implementation Efforts (to 2019):
• Continue implementation of the state’s dam safety law (MGL Chapter 253) licensing provisions and protocols. All projects (new, reconstruction, or repair) require strict erosion and sedimentation controls.
• In-water siltation controls are also mandatory requirements for all projects (new, reconstruction, or repair).
• DCR Dam Safety Program staff inspect existing dams according to the requirements of MGL Chapter 253, which was revised in 2003 to require dam owners to hire engineers to conduct inspections as follows:
 ➢ High Hazard Potential dams - every 2 years;
 ➢ Significant Hazard Potential dams - every 5 years; and
 ➢ Low Hazard Potential dams - every 10 years.

The revisions Chapter 253 also directed the Dam Safety Program to require, via enforcement, repair or removal of structurally deficient dams in order for owners to bring dams into compliance. The revisions also authorized the Dam Safety Program to conduct enforcement, including assessing fines for non-compliance. Pursuant to the law change, revised regulations were promulgated in November of 2005.

VI. WETLAND RESTORATION AND ASSESSMENT

A. Wetlands Restoration and Assessment: Wetland Restoration Efforts

1. Long Term (15 Year) Goal:
 a. By 2019, restore 2,500 acres of Massachusetts’s coastal wetlands.
 b. By 2019, ecological assessment methodologies for wetlands will be fully developed and utilized by state planning groups, regional non-profits and volunteers, and local officials as an effective tool for identifying wetland sites requiring remediation/ restoration, evaluating the success of restoration projects, inventorying subwatersheds or land holdings, and for piloting wetlands biocriteria.
2. Actions/Implementation Efforts (to 2019):

- By 2019, review and update existing inventories of the entire Massachusetts coastline to identify tidally restricted salt marshes that are feasible to restore (DER with other agencies and groups).
- DER will continue to work with Massachusetts Audubon Society, CZM, ACEC Program, and other partners to implement the Great Marsh Restoration Plan. Activities will focus on restoration of the salt marshes in the Great Marsh, and protection of the Great Marsh from anticipated sea-level rise.
- Continue to identify and support wetland restoration projects under the GROWetlands (Groups Restoring Our Wetlands) Initiative.
- Maintain an active working relationship with our Coastal America partners under the “Resolution to Restore Massachusetts Wetlands” (a Coastal America agreement signed in 1994). Engage federal agencies as partners on specific projects as appropriate. *(Note: Completed and continues)*
- DER will continue to participate in the Massachusetts Corporate Wetlands Restoration Partnership.
- Continue to establish protocols for project monitoring and report results of projects and the program overall.
- In order to increase understanding of restoration project results and the functions of restored wetlands and to improve restoration techniques, we will build working relationships with academic institutions to establish research projects at selected wetland restoration sites. *(Note: Completed and continues)*
- DER will continue to target education and outreach programs to local, state, and federal stakeholders to ensure understanding of and support for wetland restoration.

Actions from 2000 CNPCP that have been achieved and/or will not continue in 2014-2019

- Complete 10 watershed wetlands restoration plans identifying priority restoration sites in 10 watersheds. This goal was not completed and is not included in the current implementation plan due to lack of staffing resources. One watershed-scale wetland restoration plan is currently being developed by DER.

B. Wetland Assessment

1. Long Term (15 Year) Goal:

By 2029, ecological assessment methodologies for salt marsh wetlands and freshwater herbaceous and shrub marshes will be fully developed and utilized by state planning groups, regional non-profits and volunteers, and local officials as an effective tool for identifying wetland sites requiring remediation/restoration, evaluating the success of restoration projects, inventorying subwatersheds or land holdings, and for piloting wetlands biocriteria.

2. Actions/Implementation Efforts (to 2019):

- CZM will continue to work with MassDEP to develop and refine wetlands assessment tools, including the CAPS (Conservation Assessment and Prioritization System) Model developed in partnership with UMass Amherst. Opportunities to expand the use of CAPS will be evaluated by CZM and MassDEP.
- CZM will continue to work with MassDEP to incorporate wetland condition assessments into routine MassDEP watershed-scale water quality assessments.
- CZM and MassDEP will continue to participate and work with USEPA’s New England Biological Assessment of Wetlands Working Group.
• CZM will continue to utilize methodologies to evaluate the trajectory of condition in early wetlands restoration projects. As part of this, CZM will continue to engage volunteers in the use and application of wetland assessment methodologies.

• CZM will continue to participate in USEPA’s New England Biological Assessment of Wetlands Workgroup.

• CZM staff will present papers and give presentations on wetland assessment as necessary/requested

Actions from 2000 CNPCP that have been achieved and/or will not continue in 2014-2019

• Continue work on EPA Region I Pilot: Cape Cod Bay Salt Marsh Assessment Project to refine methodologies for salt marshes degraded by proximate land use and tidal restrictions. Indicators include aquatic macro-invertebrates, vegetation, avifauna, fish, pore and surface water chemistry, and hydrology. (This has been achieved.)

• Develop and test indicator protocol for fish or nekton for addition as a viable and effective component of the salt marsh assessment toolbox. (This has been achieved.)

• Through the North Shore Volunteer Wetland Health Project, continue to refine the volunteer training modules and handbook. (This has been achieved.)
Appendix C:

Attorney General’s Certification

(from original 1989 Massachusetts Nonpoint Source Management Plan)
VI ATTORNEY GENERAL’S CERTIFICATION

I hereby certify, pursuant to my authority as the chief legal officer of the Commonwealth of Massachusetts, that in my opinion, the laws of the Commonwealth of Massachusetts provide adequate authority for the Department of Environmental Quality Engineering to implement the Massachusetts Nonpoint Source Management Program, submitted to the United States Environmental Protection Agency pursuant to the 1987 amendments to the Clean Water Act, 33 U.S.C. § 319.

The following state statutes or regulations, which are fully effective as of this date, provide the legal authority for implementation of the Massachusetts Nonpoint Source Management Program:

1. In General: G.L. c. 21, § 27 (duties and responsibilities of the Division of Water Pollution Control within the Department of Environmental Quality Engineering);

2. Silviculture: G.L. c. 132, §§ 40-46 and 304 C.M.R. 11.00 concerning forest cutting practices;

3. Construction: G.L. c. 131, § 40 (Wetlands Protection Act); G.L. c. 41, §§ 81K-81GG (the Subdivision Control Law);

4. Land disposal: G.L. c. 111, §§ 150A, 150A 1/2 (1987 Solid Waste Act); 310 C.M.R. 19.00 (regulations concerning landfills); 310 C.M.R. 32.00 (regulations concerning the land application of sludge and septage).

In addition, the program recommends enactment/promulgation of additional authorities:

1. Establishment of a soil erosion and sedimentation control law. A proposed bill is currently pending in the legislature.

2. Amendments to the subdivision control law, G.L. c. 41, §§ 81K-81GG, to address stormwater runoff and
nonpoint source controls. Review and proposals for amendments are scheduled to be accomplished one year after approval of the final plan; legislation would be filed within two years of approval;

3. Amendment of G.L. c. 90 to require that prior to commencement of any local road work using Chapter 90 funds, the local road/highway authority must have a nonpoint source stormwater management plan approved by the local Conservation Commission. Action on this is scheduled to be complete by the end of the third year following approval.

4. Pesticides: Under current G.L. c. 132B, expansion of the State Limited Use category to include a provision for Drinking Water Protection. No schedule has been developed as this is currently only a draft recommendation.

5. Enactment of legislation to create a state nonpoint source pollution control program. Legislation filed in 1988 proposed grants to public entities to conduct diagnostic/feasibility studies and implementation projects. Also, the proposed bill would allow the state to match any available funds from § 319 of the federal Clean Water Act.

6. Possible revisions to Title 5 (310 C.M.R. 15.00, regulations concerning the disposal of sanitary sewage). Review and revision is scheduled for completion by the end of the second year following approval.

Based on my evaluation of existing authority, I hereby certify that the Department of Environmental Quality Engineering has the authority to implement the provisions of the Nonpoint Source Management Plan.

James M. Shannon
Attorney General
Commonwealth of Massachusetts