Appendices (Part 3 of 3)

- Appendix A Task 1-1 Recap Nemo and Task 1-2 Supporting Documentation
- Appendix B Task 1-2 Model Updates and Piped Infrastructure
- Appendix C Task 1-2 Updated Flood Model Outputs (Mapbook)
- Appendix D GIS Mapbook of 3-acre Opportunity Sites by Land Use (January 2020 workshop)
- Appendix E Land Use Codebook (Classifications for GIS Desktop Analysis)
- Appendix F GIS-based Suitability Screening of Potential Wetland GI Sites
- Appendix G Full List of Suitable Opportunity Sites for Regional Wetland GI
- Appendix H Initial Scoring Methodology
- Appendix I Revised Scoring Methodology
- Appendix J Task 2-2 Maps and Tables of Additional GI Opportunities
- Appendix K Ranking Tool Dashboard and Supporting Materials
- Appendix L Task 3-2 Feedback on Top 35 watershed opportunities (One-Pager Summaries)
- Appendix M Stakeholder Engagement and Outreach Materials
- Appendix N Task 4 Site Investigations Recap Notes and Photos
- Appendix O Conceptual Wetland GI Supporting Documentation
- **Appendix P** Active Reservoir Management Supporting Documentation
- Appendix Q Overview of Water Bodies, Piped Infrastructure Constrictions, and Control Structures (Summary Map)

Appendix M

Stakeholder Engagement and Outreach Materials Task 1.1

Outreach materials and sample community data request

MVP Action Grant: Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in Mystic River Watershed

PROJECT OVERVIEW

The Resilient Mystic Collaborative's (RMC) Upper Mystic Stormwater Working Group, through the City of Cambridge, was awarded a \$350,000 Municipal Vulnerability Preparedness (MVP) <u>Action Grant</u> to prioritize opportunities for regional stormwater retention with an emphasis on green infrastructure solutions. An associated \$75,000 grant from the U.S. EPA will help communities incorporate the results of this work into their local Hazard Mitigation Plans.

The MVP <u>Action Grant</u> will be used to complete a comprehensive analysis of how to optimize and coordinate regional stormwater management in the Upper Mystic River Watershed. The goal of the analysis is to determine the effectiveness of new stormwater wetlands and active reservoir management in reducing river flooding at a regional scale.

WHY IS THIS PROJECT A PRIORITY? HOW DOES IT ADVANCE REGIONAL RESILIENCY EFFORTS?

"Climate impacts do not recognize town, county, or state borders."

"Extreme precipitation events, impacted by climate change, cause the Mystic River watershed to flood more frequently and severely due to changes in intensity and rainfall volume."

- Recent regional climate reports

A growing number of municipalities within the Upper Mystic River watershed have conducted climate change vulnerability assessments and determined that addressing flooding from extreme precipitation is of high priority within their municipality. This initiative aims to advance efforts to mitigate flooding from precipitation events within the watershed by aligning resources with intervention opportunities. Working together across municipal boundaries to prioritize the most cost-effective projects at the watershed scale, this project will serve as a model for other regional collaboratives across the state and country.

Mystic River

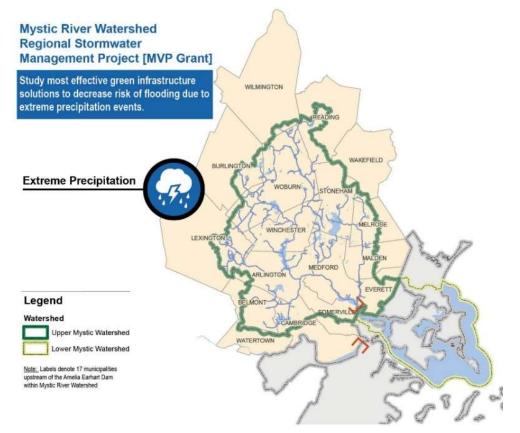
WATERSHED ASSOCIATION

Through this MVP Action Grant, the project team will identify and pursue site-specific green infrastructure opportunities for regional stormwater management and evaluate additional flood management strategies to mitigate precipitation flooding from the 10-year storm event in 2070.

WHAT ARE THE KEY PROJECT OUTCOMES? HOW WILL THIS BENEFIT MY MUNICIPALITY?

The Consensus Building Institute (CBI) released a new report this month¹, funded by the Barr Foundation, that included an overview of climate resilience initiatives in the Greater Boston region.

A major takeaway from this report was that preparing for climate impacts requires municipalities to address areas of *shared vulnerability* in addition to their own unique needs. The project team is coordinating with 17 municipalities within the Upper Mystic watershed, DCR, and MWRA to identify and pursue site-specific green infrastructure opportunities to advance regional and local stormwater management with co-benefits for RMC stakeholders. The project will involve:


- Undertaking a watershed-wide analysis to optimize and coordinate regional stormwater management in the Mystic River Watershed.
- Refining the existing watershed model to become an inclusive, shared stormwater management model for Upper Mystic municipalities. This step will help improve planning efforts and assist in prioritization of projects that reduce watershed flood risk via improved stormwater management.
- Building out a portfolio of potential green infrastructure projects in each municipality. For each
 municipality in this project, at least one green infrastructure project opportunity will be identified. (A full
 list of these will be shared in this project's Final Report.)

¹ Pathways to Climate Resilience: Strategies for the Greater Boston Area. Barr Foundation & Consensus Building Institute. August 2019. <u>https://barrfdn.issuelab.org/resource/pathways-to-climate-resilience-strategies-for-the-greater-boston-area.html</u>

MVP Action Grant: Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in Mystic River Watershed

Mystic River

- Using a consensus-based prioritization approach, the project team – working in collaboration with the RMC Upper Mystic Stormwater Working Group - will rank the most cost-effective green infrastructure projects that contribute significantly to flood reduction at the watershed scale (during precipitation events) while also delivering significant cobenefits and enhancing local climate resilience:
- A select group of priority project opportunities will then be advanced to 10% concept design and modeled within the updated Mystic River Watershed model. (<u>Note:</u> Priority opportunities in this group will not include an opportunity in each of the municipalities). The intent of

prioritization, as it applies to this effort, is to prioritize project opportunities that contribute significantly to flood reduction at the watershed scale and help position these potential projects for implementation via future MVP Action grants, or using other funding sources.

HOW CAN YOU BEST SUPPORT THIS PROJECT?

As municipal engineers, planners, first responders, and leaders within the watershed, your involvement is very important. Your input is being requested:

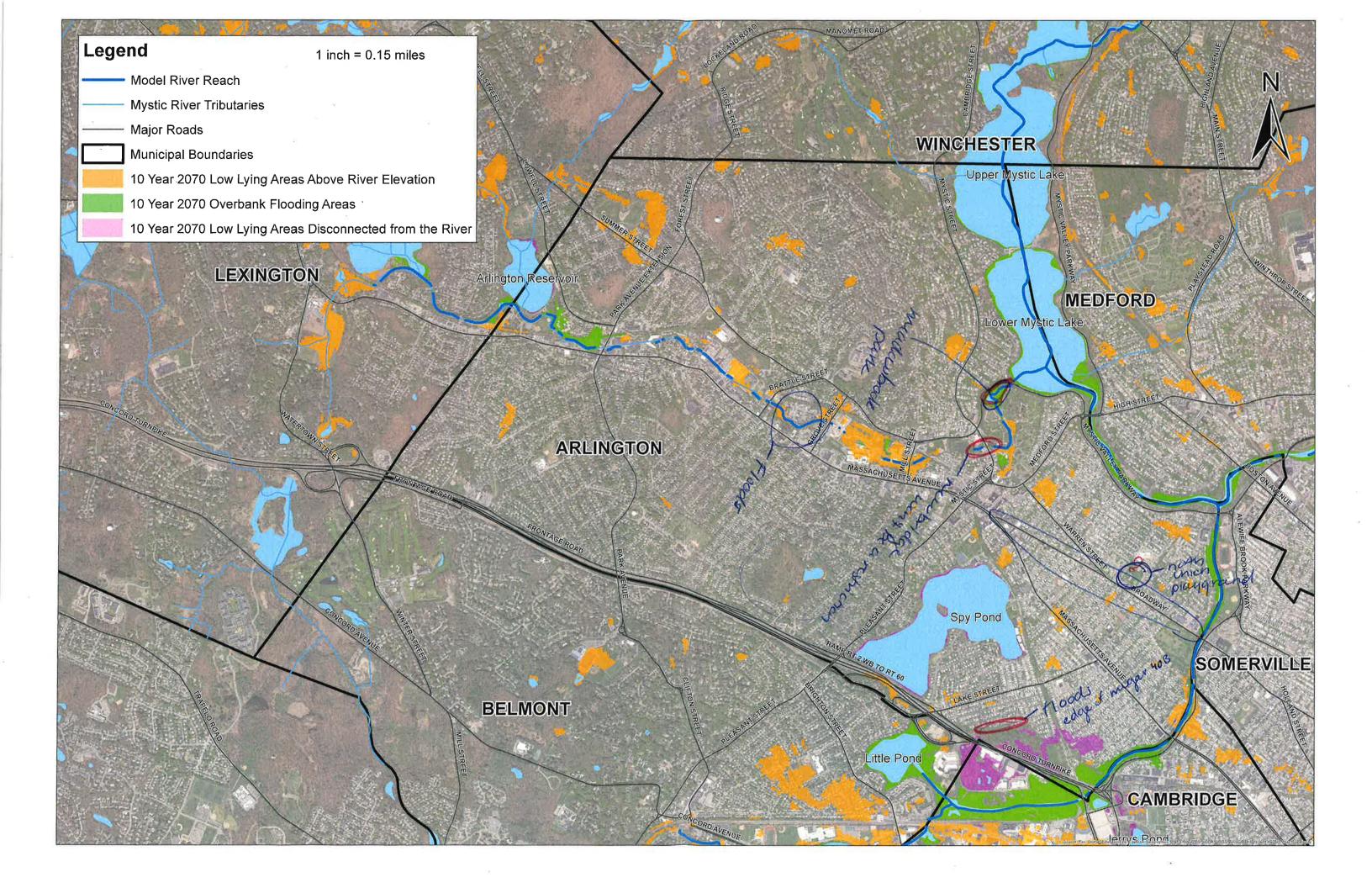
- **Review the projected flood maps** at the meeting that were developed through previous RMC and project team efforts to help calibrate the Upper Mystic Watershed model via feedback and data on actual observations;
- Provide technical feedback on drainage system functions and first-hand observations from first response to flood events at the meeting; also discuss and review any previous work done by specific communities to identify potential parcels for green infrastructure implementation.
- Share existing community data. See ATTACHMENT: Data Request Table. Within 2 weeks of the meeting, provide requested data (GIS data, reports, plans, etc.) to Jen Zoppo at Stantec.
- Meeting participants are also invited and encouraged to contribute to the RMC Upper Mystic Stormwater Working Group's prioritization ranking workshops (target date December 2019 or January 2020). As this date nears, meeting participants will receive an email with confirmed date and location.

PROJECT TIMELINE: September 2019 – June 2020

PROJECT CONTACTS:

Patrick Herron, Executive Director, Mystic River Watershed Association, Patrick.Herron@mysticriver.org 781-316-3438

MVP Action Grant: Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in Mystic River Watershed

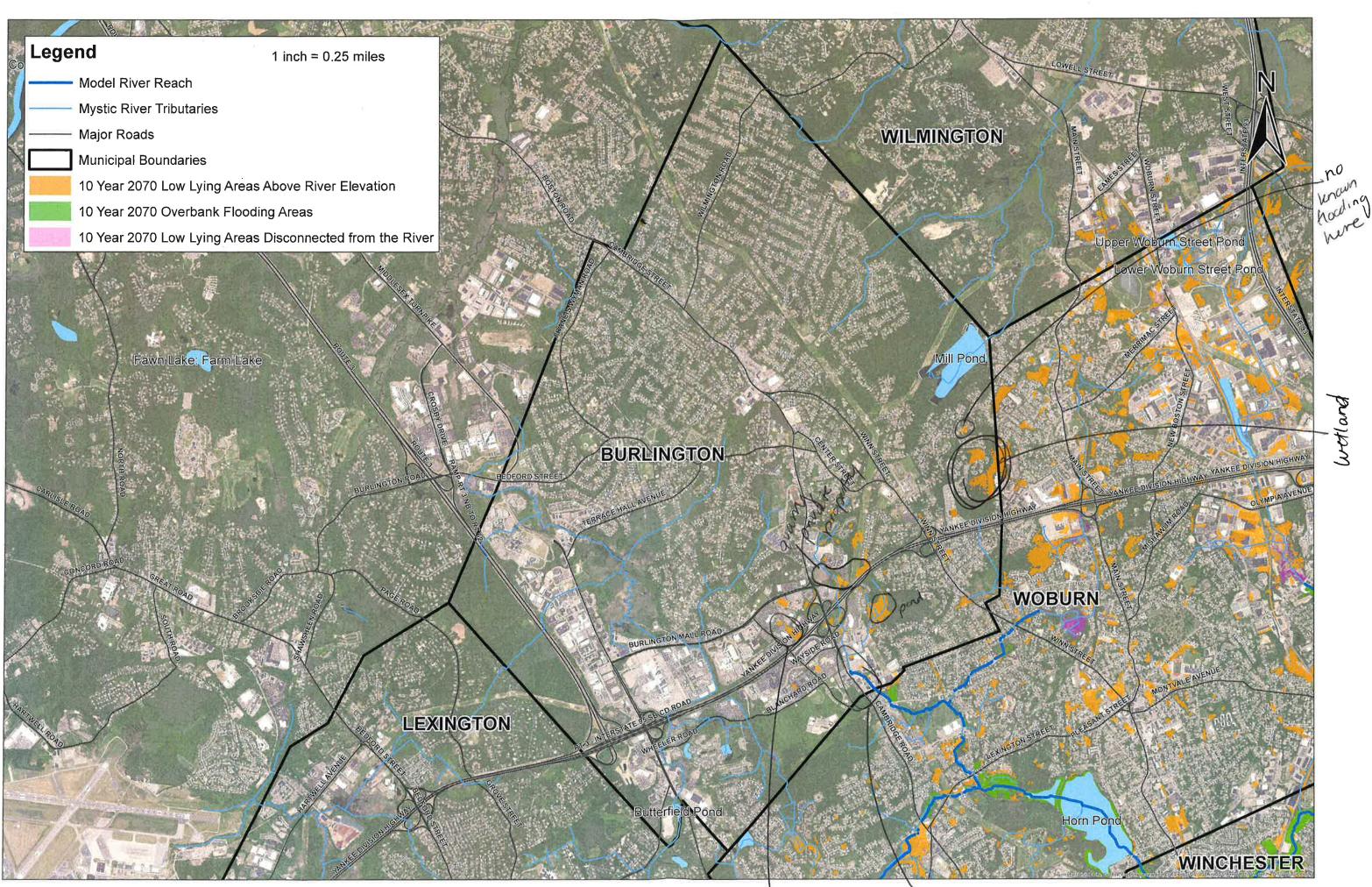

COMMUNITY DATA REQUEST

Data	Request	Priority	Notes
1	Hydrologic and Hydraulic Model of Collection System (if available)	High	
2	Reservoirs and assets not in current model (Spot Pond, Central Falls Dam, North, Middle and South Reservoir, Wright's Pond, Spy pond)	High	Not applicable to all communities
	o Bathymetry for each reservoir (XYZ points, or Stage-Area Tables)		
	o Operational Procedures (Weirs, gates, etc.)		
3	Bridges: Deck, Piers, Opening in CAD, Drawings	High	DCR, DOT
4	Information about historical flood spots (associations with storm events, dates,	Medium	
	photographs), and MVP implementation plans (if available)		
5	Existing, in-construction, near-future BMPs, LIDs (Plans, Reports)	Medium	
6	Site conditions (e.g., contamination fields, areas of ecological concern, and other habitat core areas)	Medium	
7	Capital improvement plans (5-year) including but not limited to roads, parks, and open spaces. Wide roads that could be narrowed and other opportunities (e.g., current TIGER or BUILD Transportation grant awards)	Medium	
8	GIS Layers (beyond MassGIS)		
	o Sewer, Drain and Combined Conduits, Outfalls	High	
	o Junctions, Catch Basins, Diversion Structures, Tide Gates	High	
	o In-line, Offline Storage units	High	
	o Shapefiles of berms, walls	High	
	o Building Footprints	High	
	o Parcel data, size, vacant lots, and ownership	High	Specifically of interest are GIS data for Municipal-o Land Bank properties (if any), other vacant parcels,
	o Culverts: size, length, shape, material, condition	Medium	
	o Roadway, Railroad layers	Medium	
	o Soils, Land use, impervious area	Medium	
	o LiDAR, Elevation spot checks, Survey Elevations	Low	
9	Groundwater table seasonal variability	Medium	Can be provided post alternatives site selection
10	Riverbank protection structures (e.g., spur dikes, riprap sections, retention walls, etc.) where applicable	Low	
11	Rain Gauge data	Low	
12	Boring logs	Low	Can be provided post alternatives site selection
			·

al-owned properties (including parks, Town/County cels, and easements)
1
1

Task 1.2 Supporting Documentation Regional model feedback (sign-in sheets and map markups) from municipalities

Date: 9/24/2019 Time: 3:00 pm Location: Arlington DPW SI Grove Street Arlington, MA o	+ 2476	Sign-In Sheet	
Name	Affiliation	Phone / E-Mail	Initials
Jen Zoppo Emily Sullivm WAYNE CHOUINARD Patrick Herron	Stantec Avington ArcinGTON MyRinA	jennifer. zoppo@stantee.com esyllivnn@town.avl,ngtom-ma.us wchouintariD@town.ARUNGTON.MA.US	Jours Wee
	· · · · · · · · · · · · · · · · · · ·		



MVP Action Grant: Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed

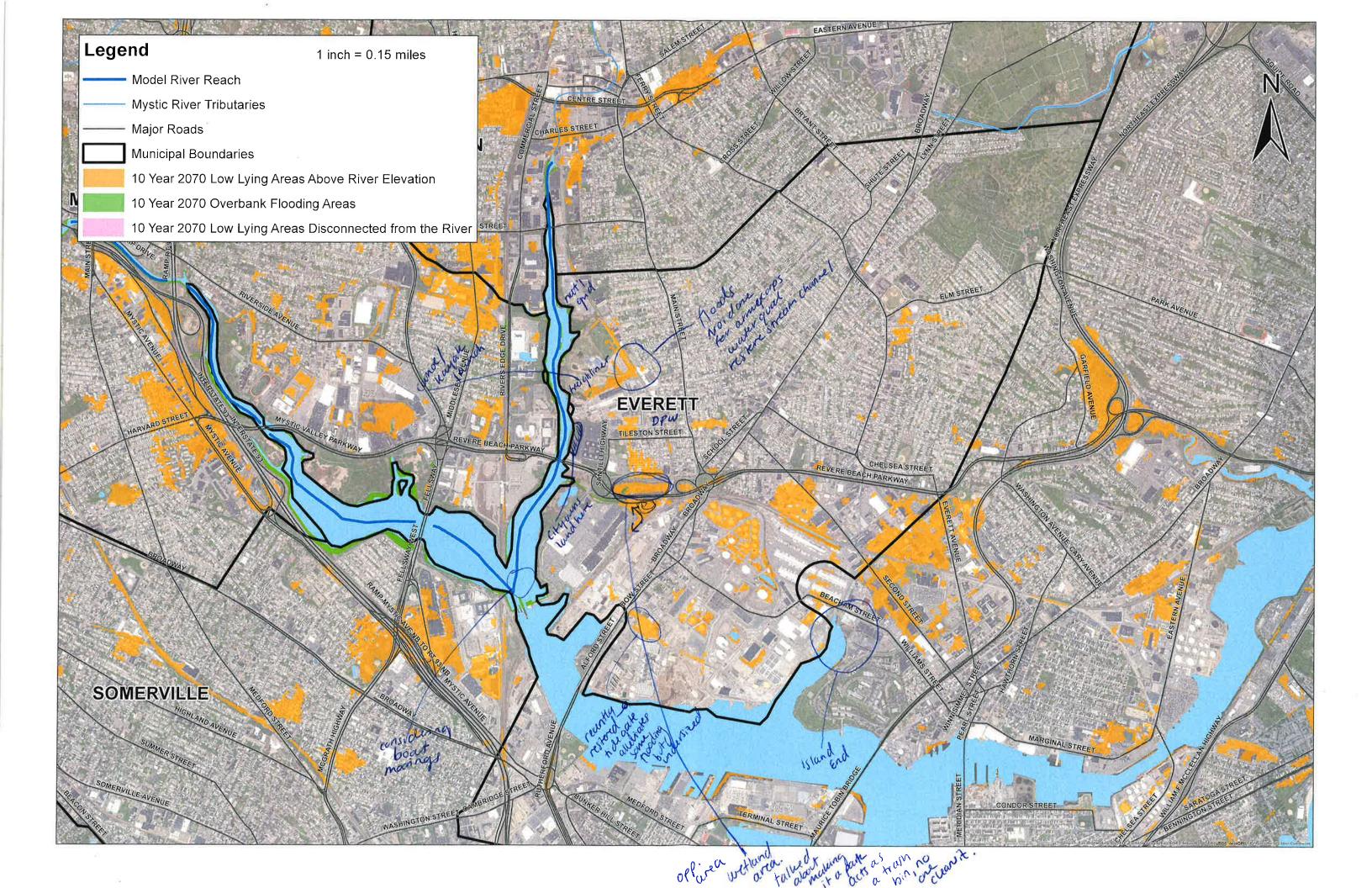
Date: 9/17/2019 Time: 3:00 - 4:00 PM Location: Town Hall Annex Burlington, MA

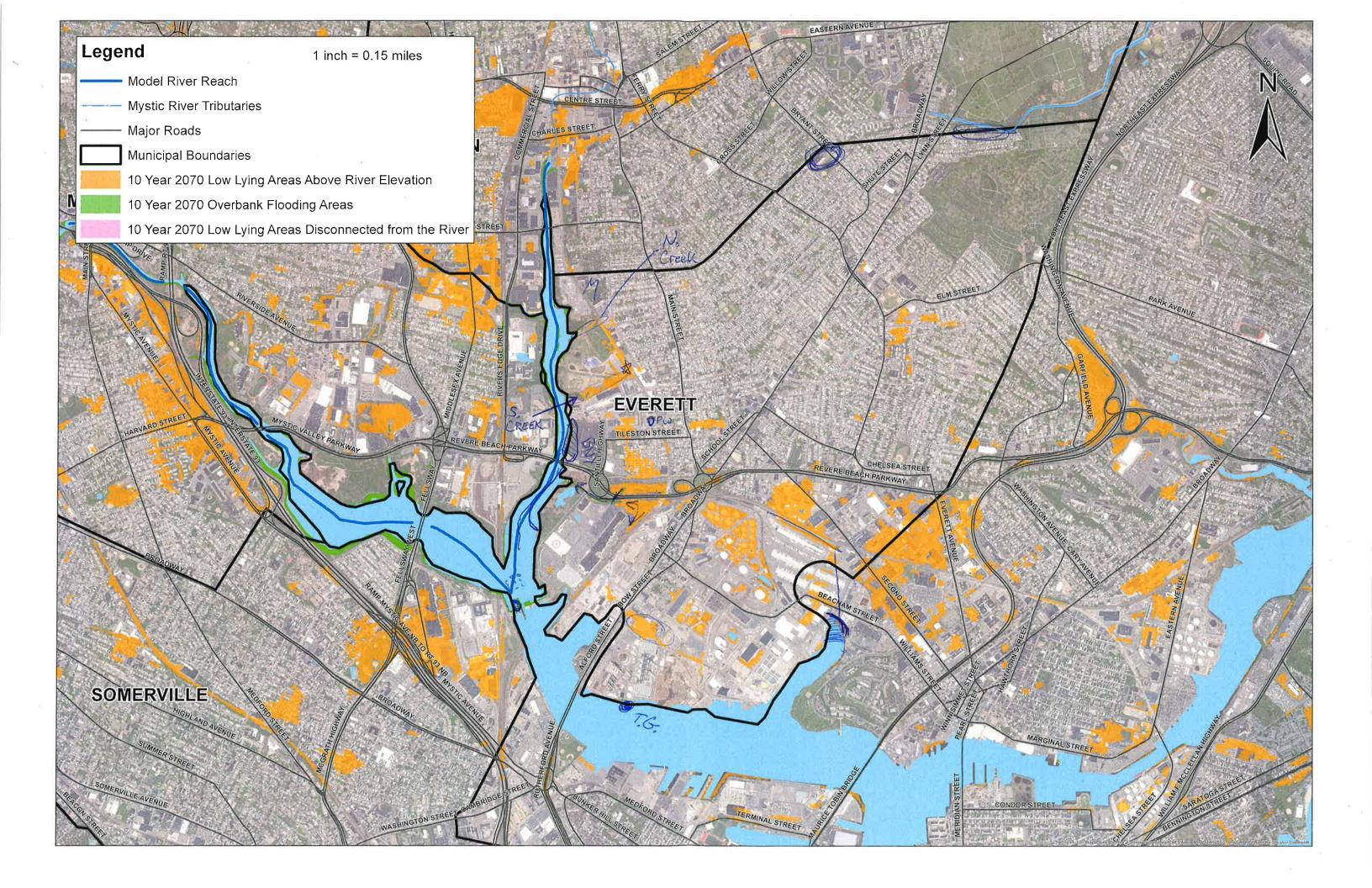
Sign-In Sheet

Name Affiliation Phone / E-Mail Initials Bul Caravahian ecar MON YOMAS B 22000 Burl Con Com Keeley@burlington.org John PP Mat Bun (on Com hemler matt annall com 197 MSH Planning Minaton con PN Steentec annit Unnifer 70 stanfcc. com Patrick Herron MURWA tricklomusticriverora

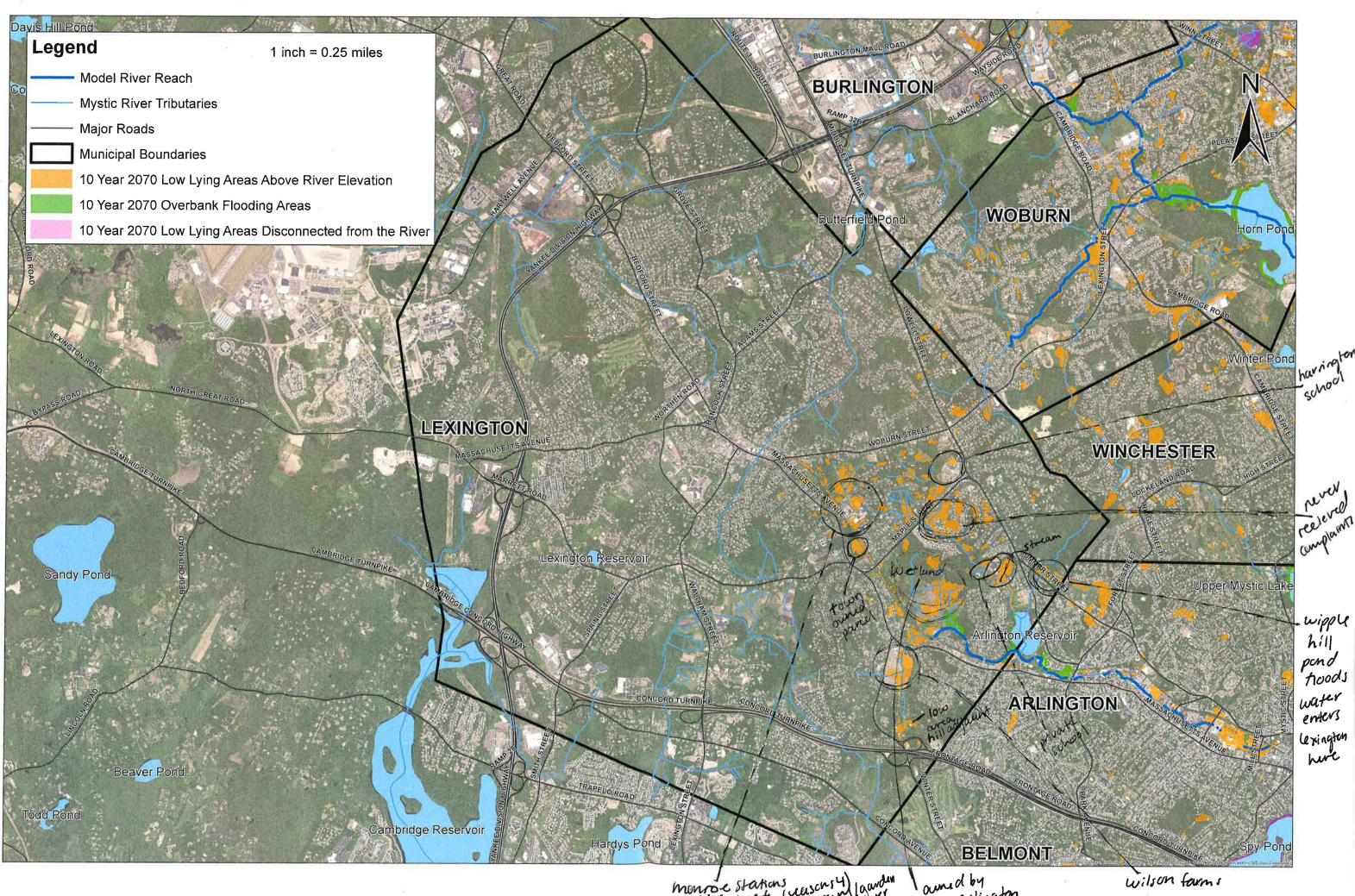
Littles brock shating rink

MVP Action Grant: Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed


Date: Time: Location:

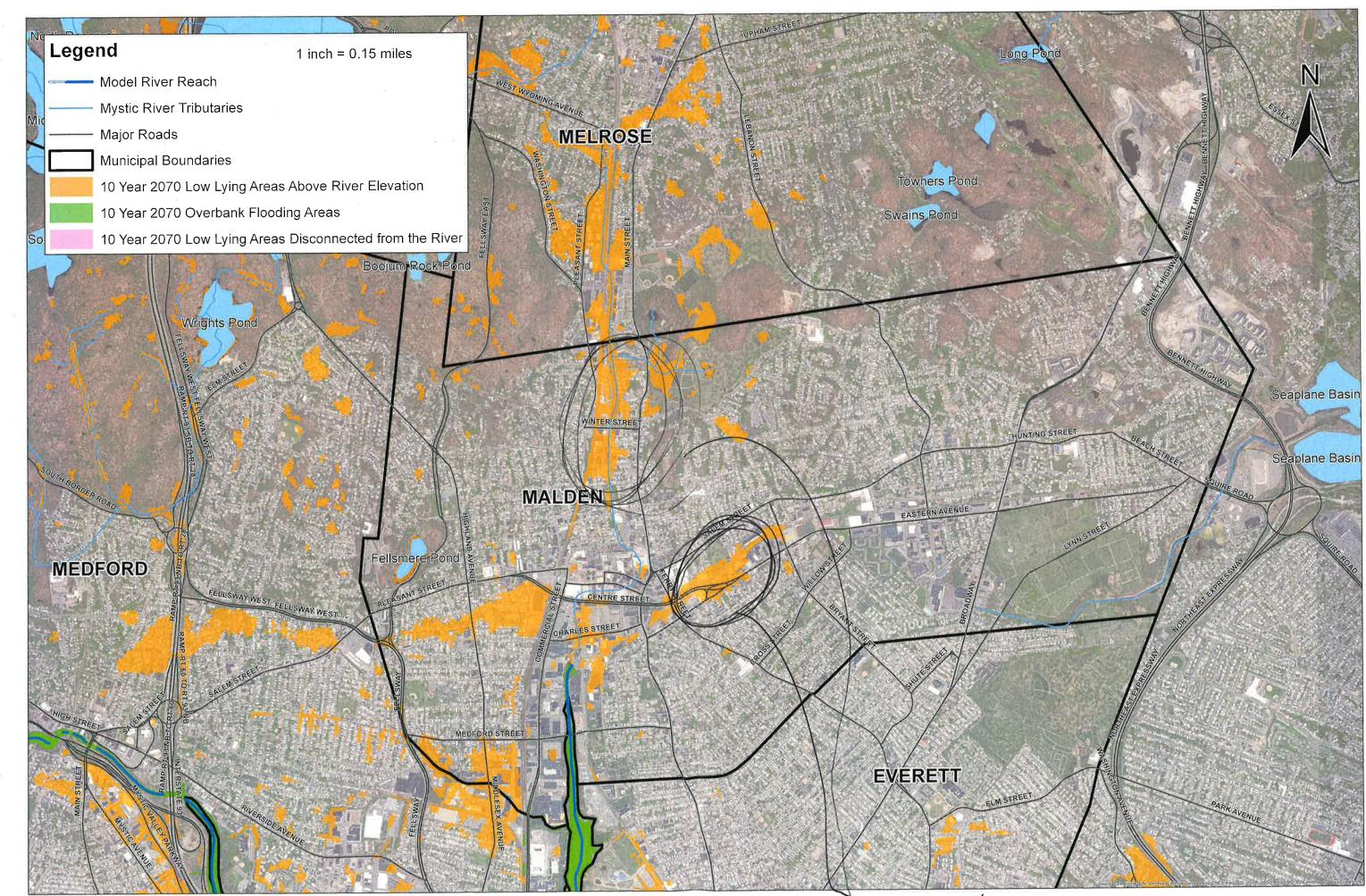

Cambridge Sign-In Sheet

Name Affiliation Phone / E-Mail Initials Stantec ennifer.7 DOOD Stanker.com Du hation Wate DPW Cwoodbur Mering aly Woo ambridge maigo DPW Jim Willow incloses cambridge na.gov JW nns Rde 16 Chal


[page left intentionally blank] No map markup from Cambridge

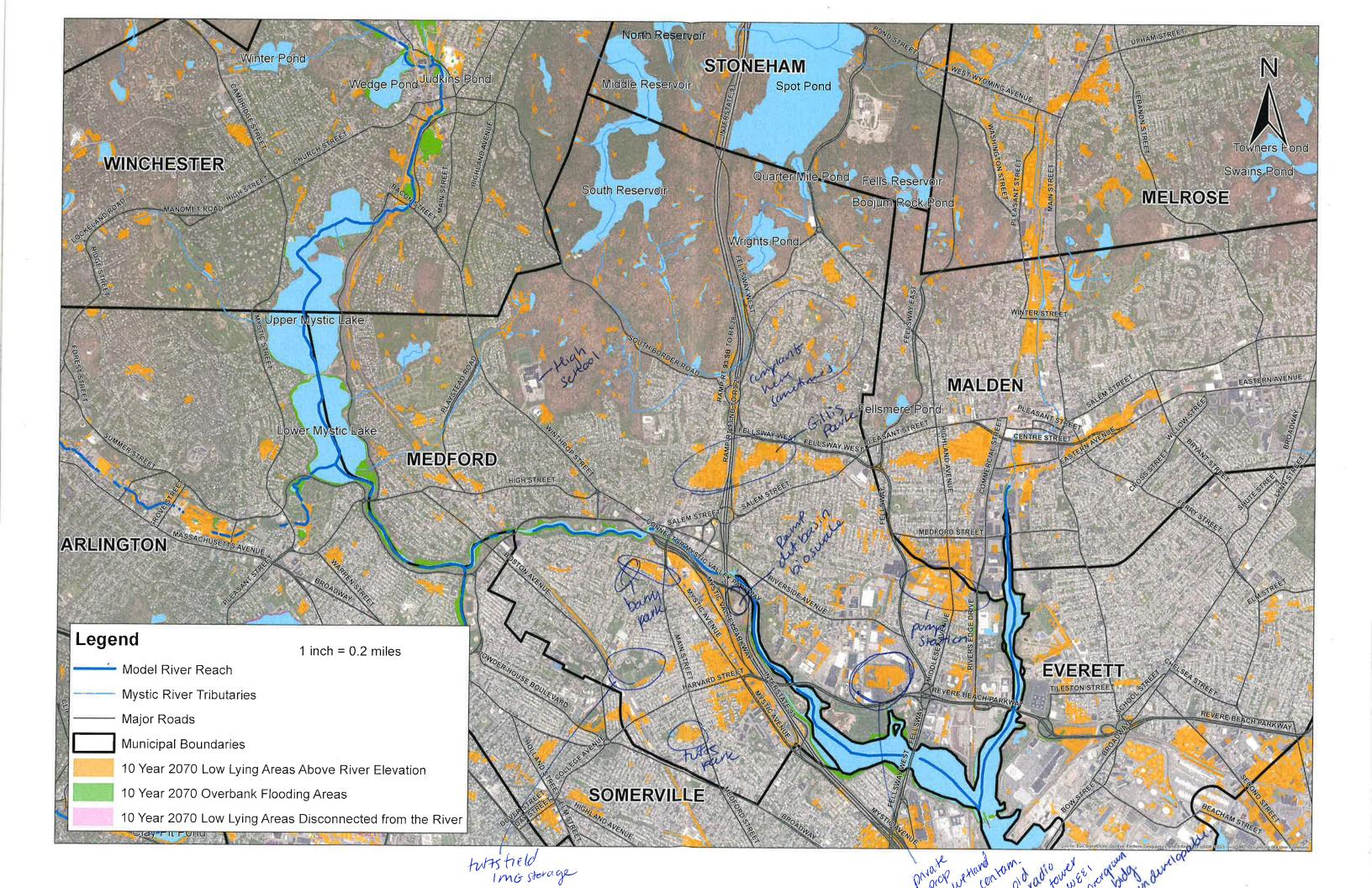
Date: 9/23/2019 Time: 8:45 am Location: my EWA 20 Academy St #306 Arlington, MA 02476 Sign-In Sheet						
Name		Affiliation	Phone / E-Mail		Initials	
Jen Zopp Greg St PATRUle He	Nor	Stantec Everett DPW/ENG MyRWA	617.512.9027	greg.Stlouis@C', evert.	mt. 23 Jul	

Date: 10/3/2019 Time: 1 PM Location: Lexington Public 201 Bed ford Str Lexington, MA 02	Works Pept cet 2420	Sign-In Sheet	×
Name	Affiliation	Phone / E-Mail	Initials
Jen Zappo JOHN LIVSET Parnick Herron	Stantec LEXINGTON MyRWA	339-832-0128 781-274-8311 781 316 3438-	H BH
			A

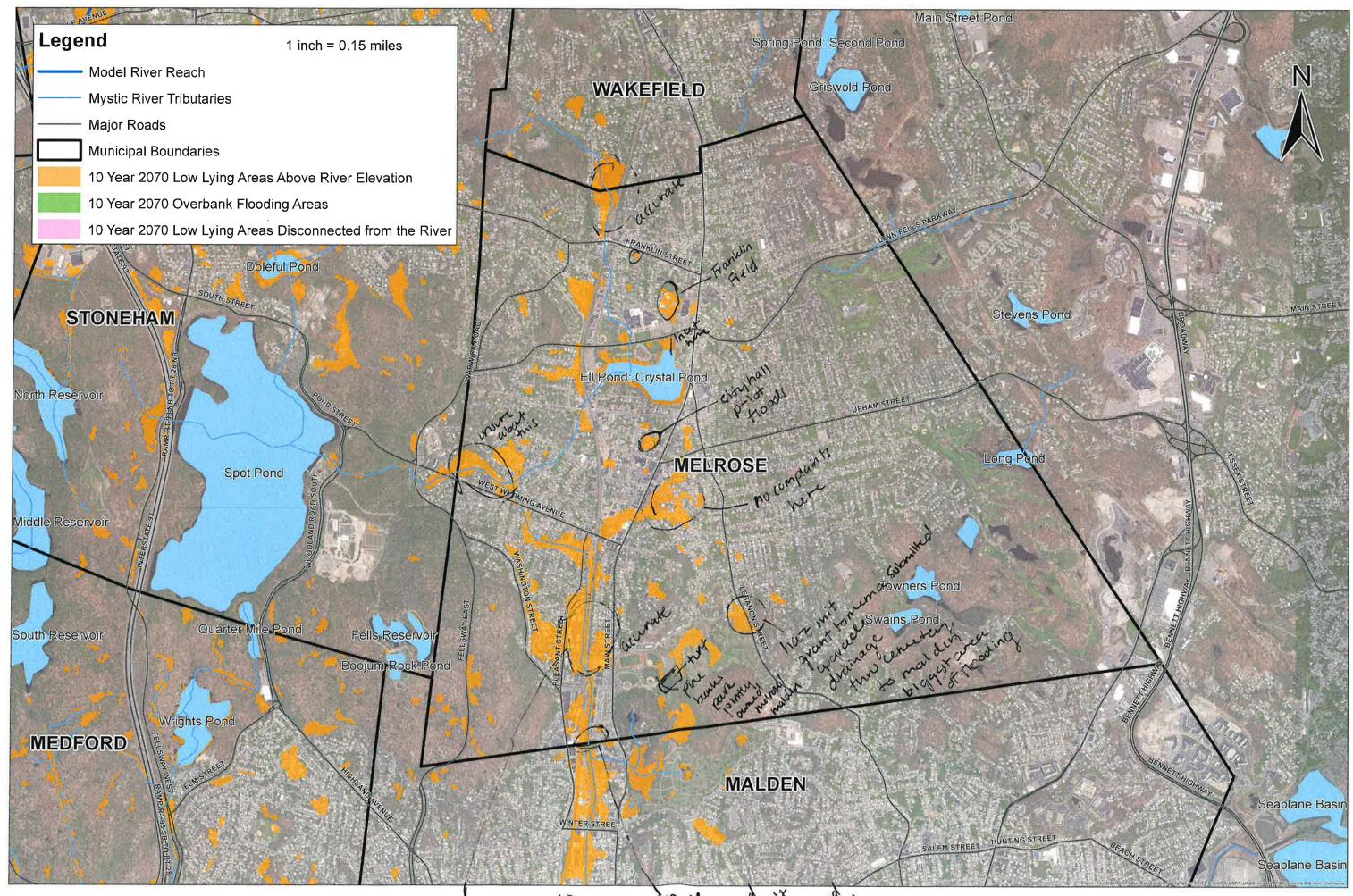


monroe stations reasons 4) lawdun yes, wet (seasons 4) lawdun

arlington

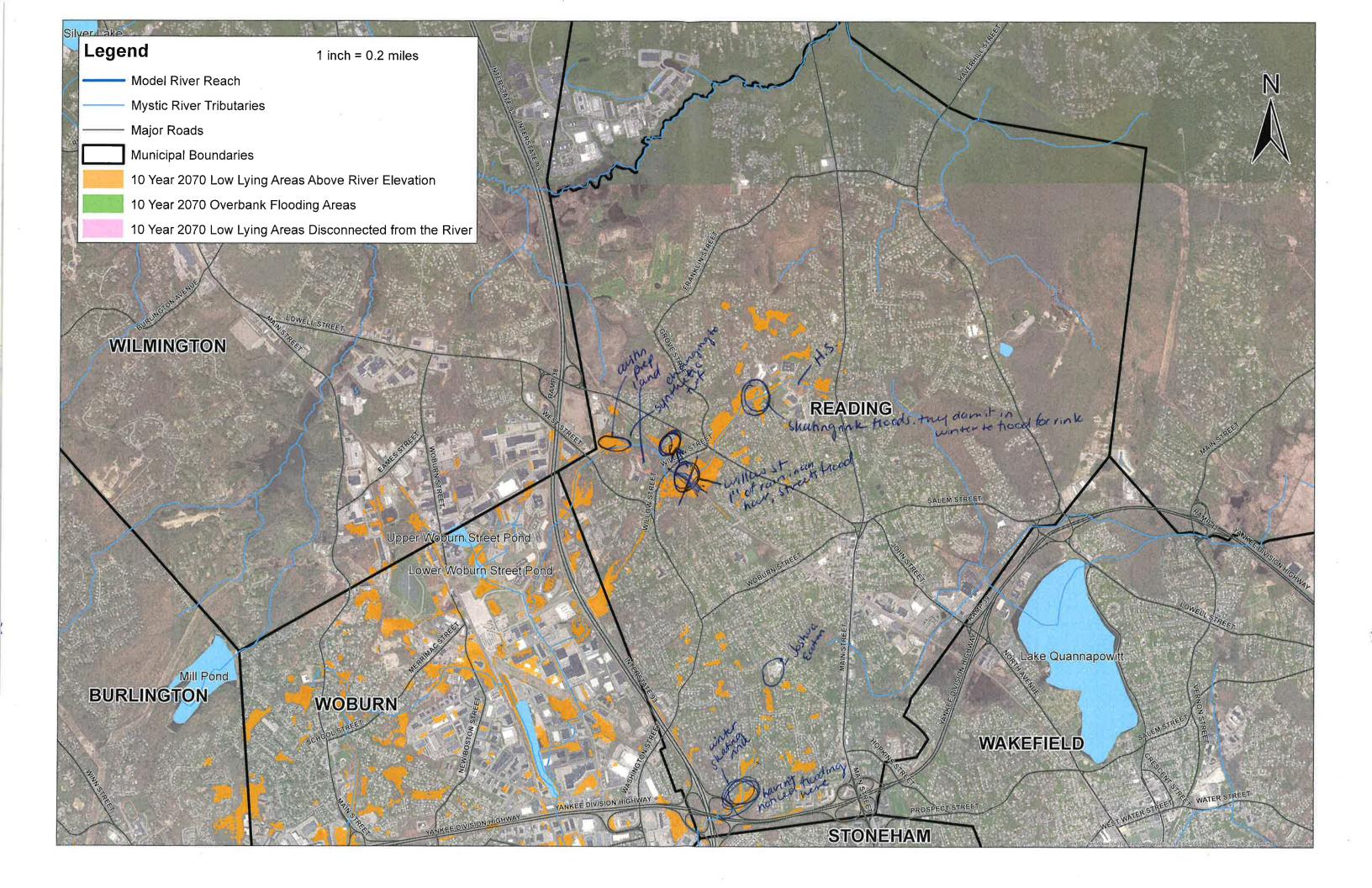

wilson forms

Date: 9/17/2019 Time: 1:00-2:15 pm Location: Malden City H 110 Pleasant St Malden, MA 02	-	Sign-In Sheet	
Name	Affiliation	Phone / E-Mail	Initials
Jenniter Zappo Jem LIP PATRICE Herron Steve Fama	Stantec Marow MyrwA Moulden	, 0	Stama@City of Malden org



never seen this flood (stere)

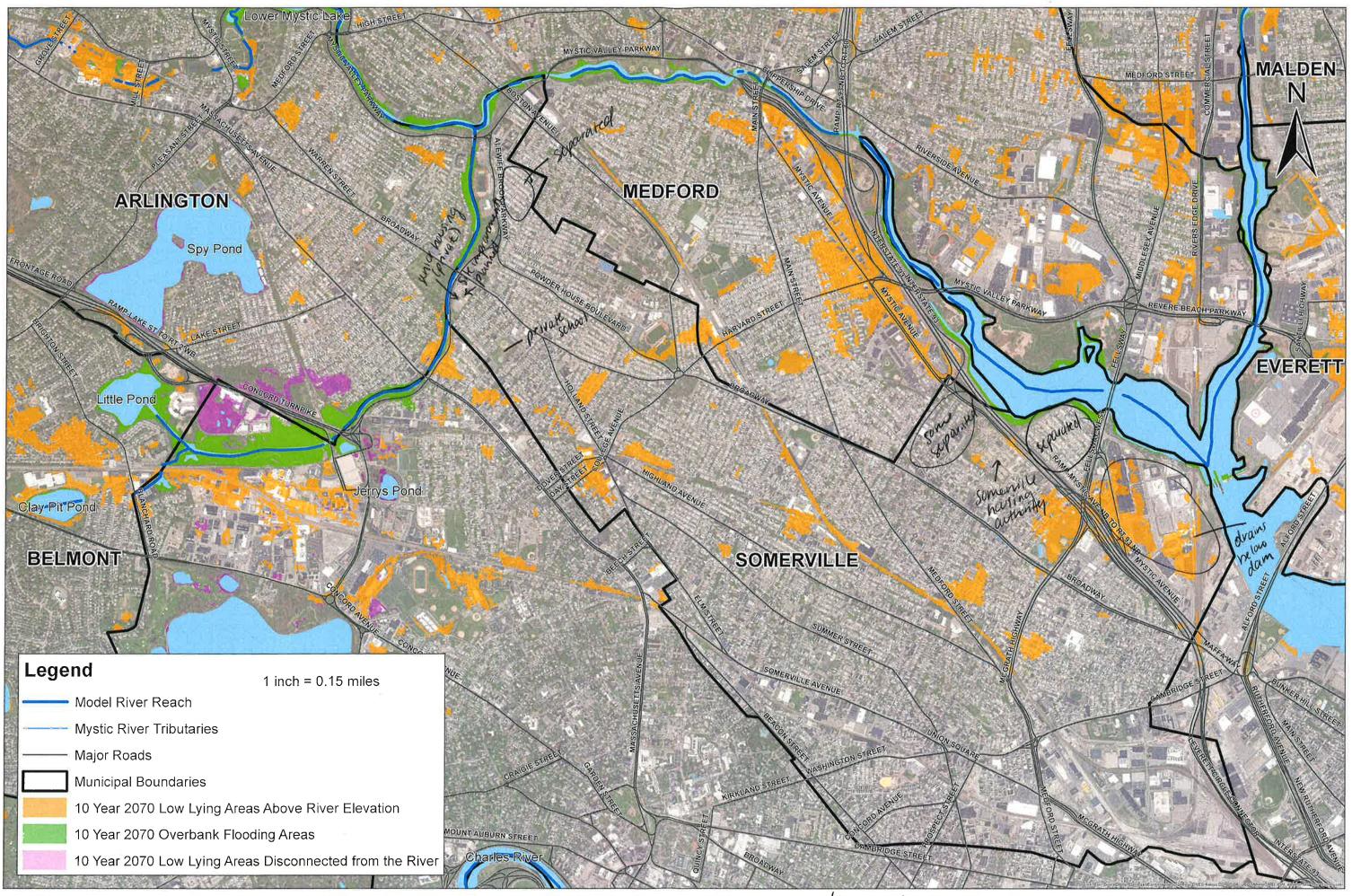
Date: 9/23/2019 Time: 3:00 pm Location: medlerd City Hall 85 George P Hassett Drive medlerd, MA 02155 Sign-In Sheet					
Name	Affiliation	Phone / E-Mail		Initials	
Jen Zoppo Penny Antonoglay	Stantec Lity of Med Ford		ennikr. Zeppo@stantc.		
Alicia Hug	Medford EFE	- 1 -	mectordono. a	1	
TIM M'GUDEN	MEDFORD	Encourne	medtand ma. ge	a Try	
Patrick Herron	MyRUA	3			
33 G					
	·				
	2	·			
	< V				
*				-	


Date: 10/4/2019			· ·	
Time: 9 Am Location: Mulrose City Ha	11	л — а		
562 main Street	C.			
metrox, mA 0217	6 Sig	n-In Sheet		
Name	Affiliation	Phone / E-Mail		Initials
Jen Zoppo		339-832-0128		A3
Elena Proactis Ellis	City of Melvose	781-979-4171		() EDPE
Elena Produis Ellis PATRICK Herror	MyRWA	781 316 3438		PH
	<u> </u>	N		
		1		·
				·
	·			
	5			
	:	3		/
	2			2 0
		·····		

at all to the section of

prosofouter ouned rest traved margh

Date: 9/24/2019 Time: 200 10:30 am DRove Reading Town Location: Dagton Cotoatoa Keading 0 Hall Sign-In Sheet sto moo Name Affiliation Phone / E-Mail Initials Stantec 339-832-0128/1 Runiter. 200 tank C. com Town of Reading 781-942-9082 Grozyck. @ ci.reading. MAUS Kozyck: AR Ma Revit 781-316-3438 Heror Reading 781-942-9082 PRCIVA rpercivaler Rindraman

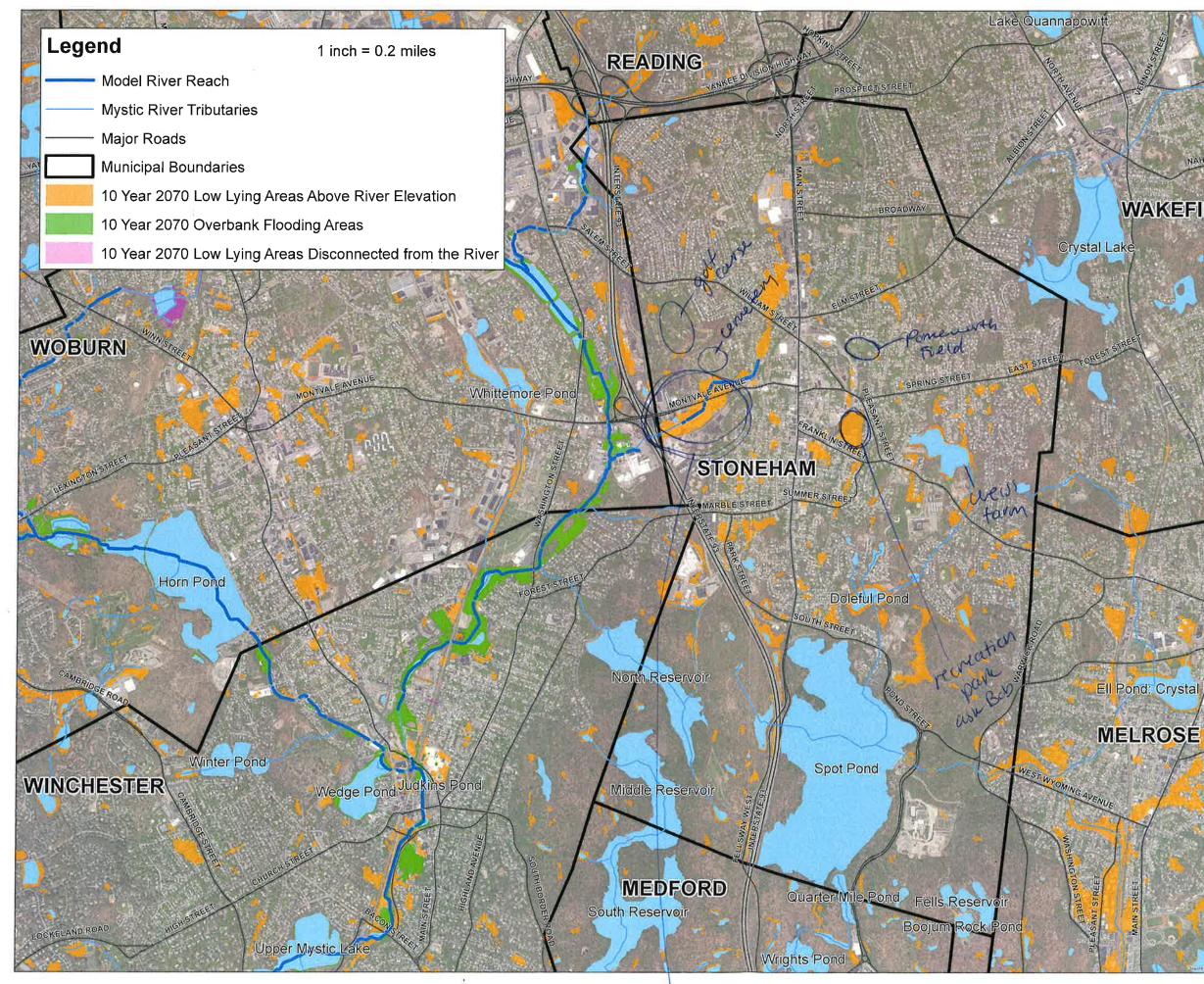


MVP Action Grant: Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed

-la ...

Date: 972572019 Time: 1:00 pm Location: Somewille DPW		n n n	
15 Francy Road Somerville, MA	02145 Sig	n-In Sheet	
Name	Affiliation	Phone / E-Mail	Initials
JESS FOSB Rook	CTTY OF SOMER VILLE	617 625 6600x 5416	JF
Jen Zoppo Hannah Payne Paraice Heron		jennifer. zoppo@stanter. ocm hpayne@somervillema.gov ext. 2422	Azp Diffe
Intrace part m	MylwA		
. (6			

Page 1 of 1


Focus on areas draining to Aleuite

MVP Action Grant: Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed

Date: 9/20/2019 Time: 8:30 - 9:45am Location: Stoneham DPW 16 Pine Street Stoneham, MA 02180

Sign-In Sheet

Name	Affiliation	Phone / E-Mail	Initials
PATRILE HEMAN	Stantec	339-832-0128/junikr.20ppastunkc.com	A3
BEETT GOSANES	STOLEHory	131 507- GOAZ/bgansalussestonenmanager	UBRS
PATRULE Henry	Stowatter MyRWA		PH
		r (19)	
		×	
C			
			<u> </u>
C II			
	0		
· · · · · · · · · · · · · · · · · · ·		·	
			(4)

Floads, 5-6' on Montrale

NAHANT STREE

WAKEFIELD

wer Pon

N-

Lower Pond

Main Street Pond

Spring Pond: Second Pond

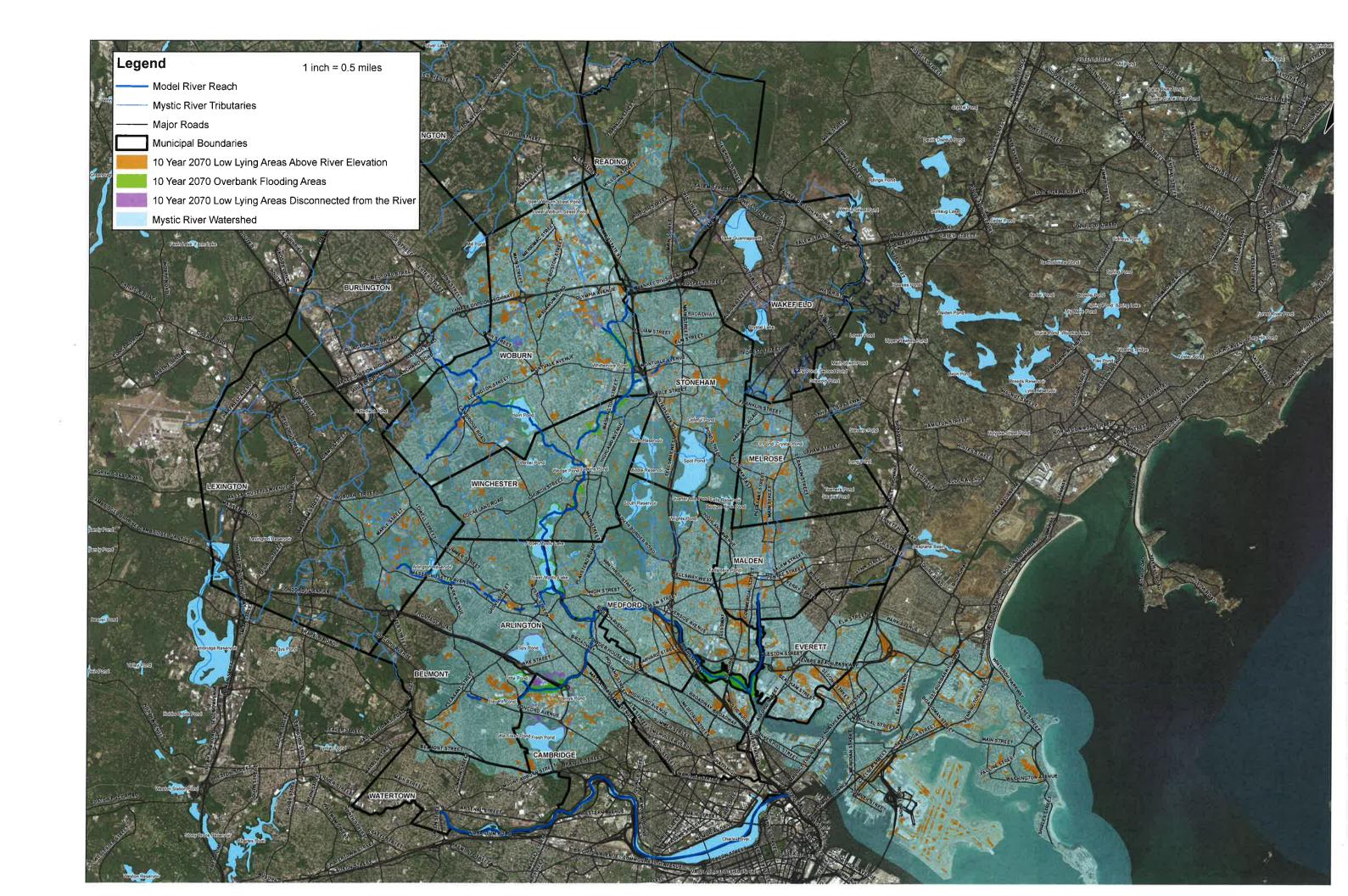
Griswold Pond

evens Pond

Ell Pond: Crystal Pond

Long Pond

Towners Pond


Swains Pond

MVP Action Grant: Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed

Date: 10/9/2019 Time: 1:00 pm Location: Wahefield Town Hall

Name	Affiliation	Phone / E-Mail	Initials
Jaire moss	Stantec Wakefield DPW	jenniker. zoppo@stankc.com cmoss@wakefield.ma.us	-J3-
BILL RENTUR	u M	wrenault e 4	LUIP-
·			
			·
2 <u></u>		· · · · · · · · · · · · · · · · · · ·	
			·
		X	F
×			

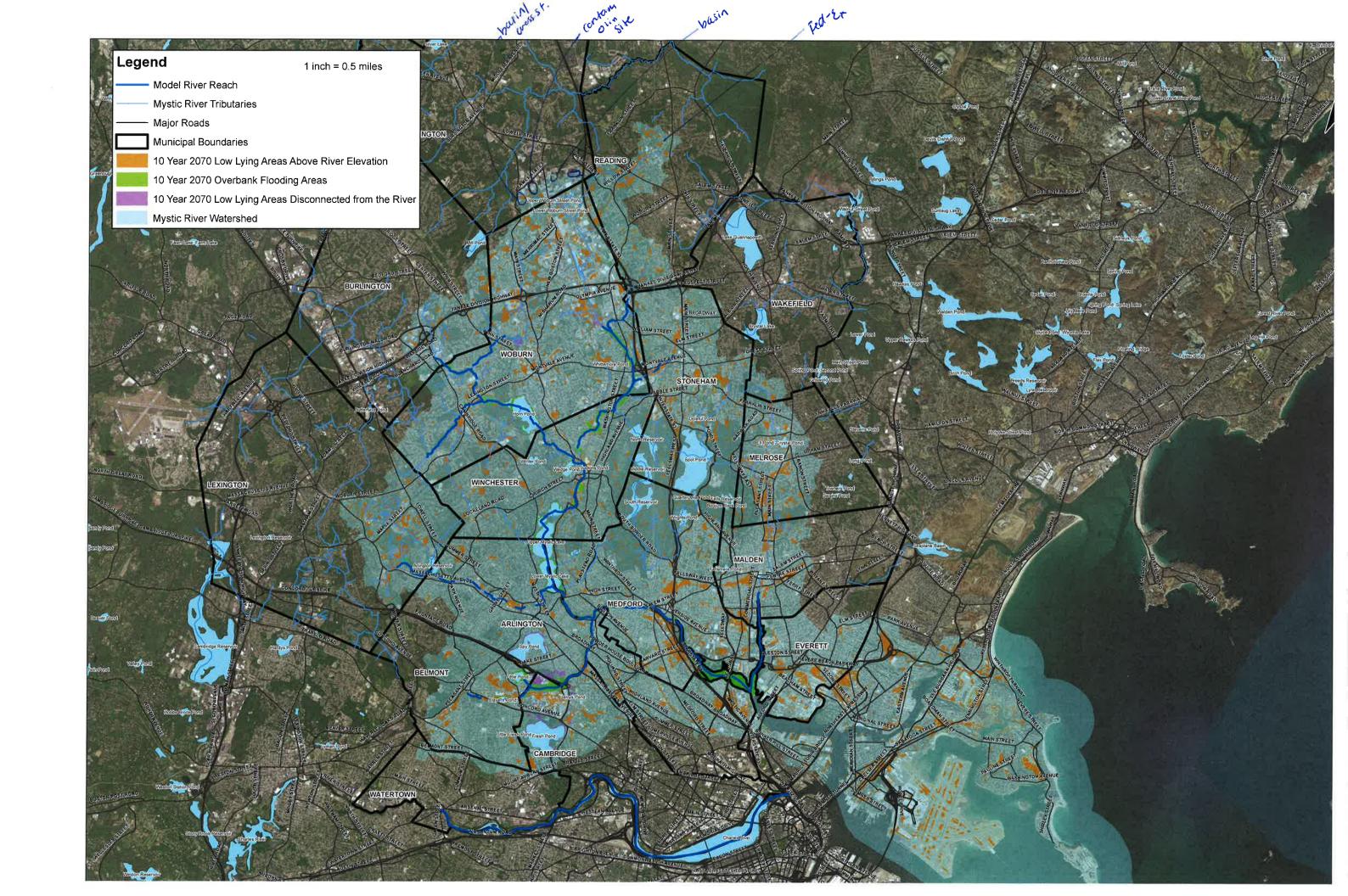
Sign-In Sheet

MVP Action Grant: Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed

Date: 9/23/19 Time: 1:00 pm Location: Watertown OPW 12 4 Orchard Street Watertown, MA 02472

Water foun Sign-In Sheet

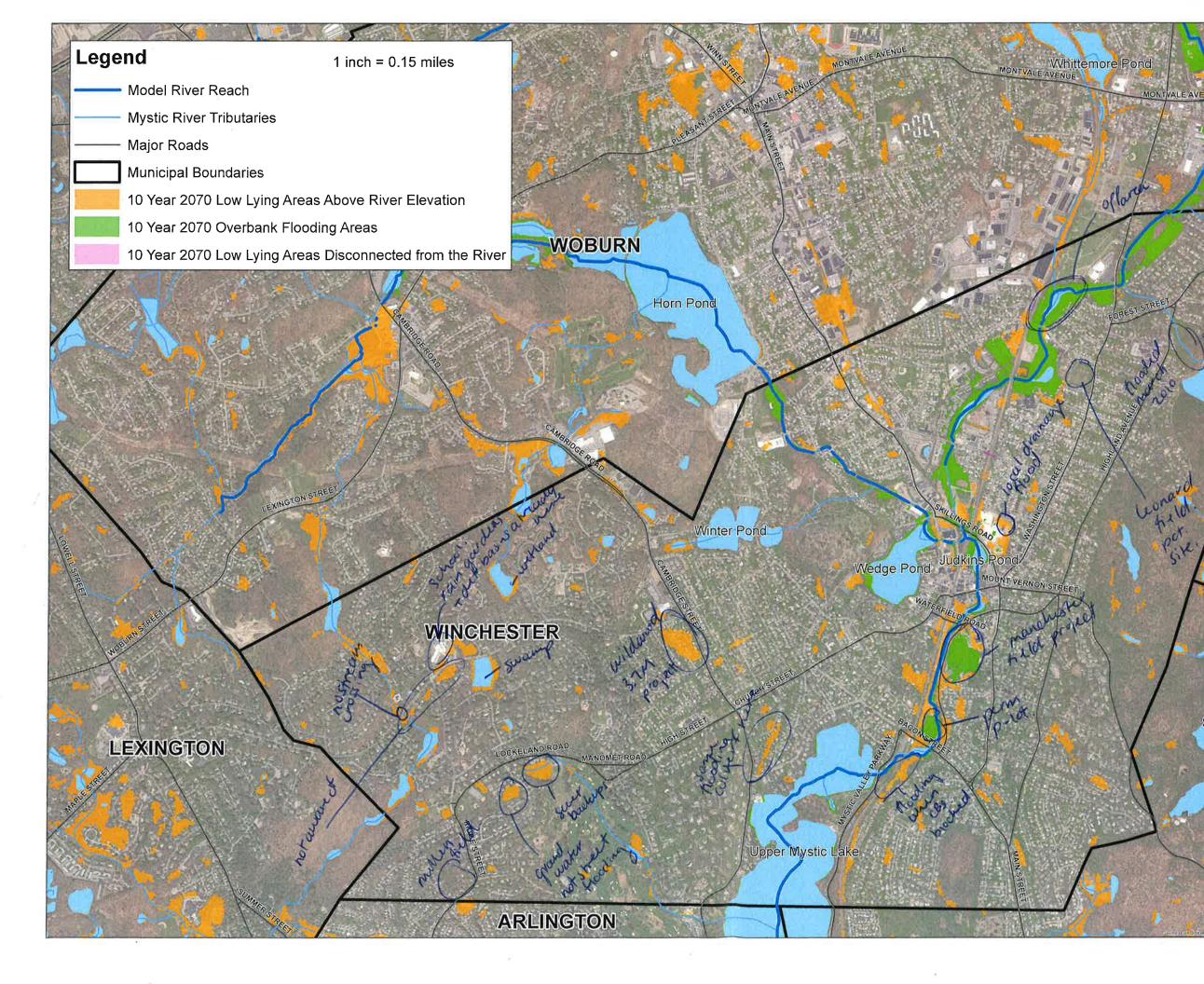
Name Affiliation Phone / E-Mail Initials Stantec co Vade town aurel rhnap NC 11 Suadon @ untertown- Ma.gov DPW Patrick Herron MYRWA


[page left intentionally blank] No map markup from Watertown

MVP Action Grant: Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed

Date: 9/27/2019 Time: 10:00 am Location: Wilmington Town Hall

Wilmington Sign-In Sheet


Name Affiliation Phone / E-Mail Initials Stantec 12nn Ler. 7 oppolo (tanter. com WILMINGTON Valminghan Margar 10 PAAA UNN Ivnn. MINGTON Ma. OV

Meeting Sign-In Sheet

MVP Action Grant: Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed

71 mt Vernon St Winchuster, MA 01890 Sign-In Sheet			
Jame	Affiliation	Phone / E-Mail	Initials
Jen Zoppo Both Rudouph Bryan Carignan Patrick Herron	Stante c Town Engineer Assistant Town Eng. MyRWA	brudouph & winchester.us b carignan @ winchester.us	BAC
× × ×	524	n n	

n e

MARBLE STREET

N

STONEHAM

North Reservoir

Spot Pond

Middle Reservoir

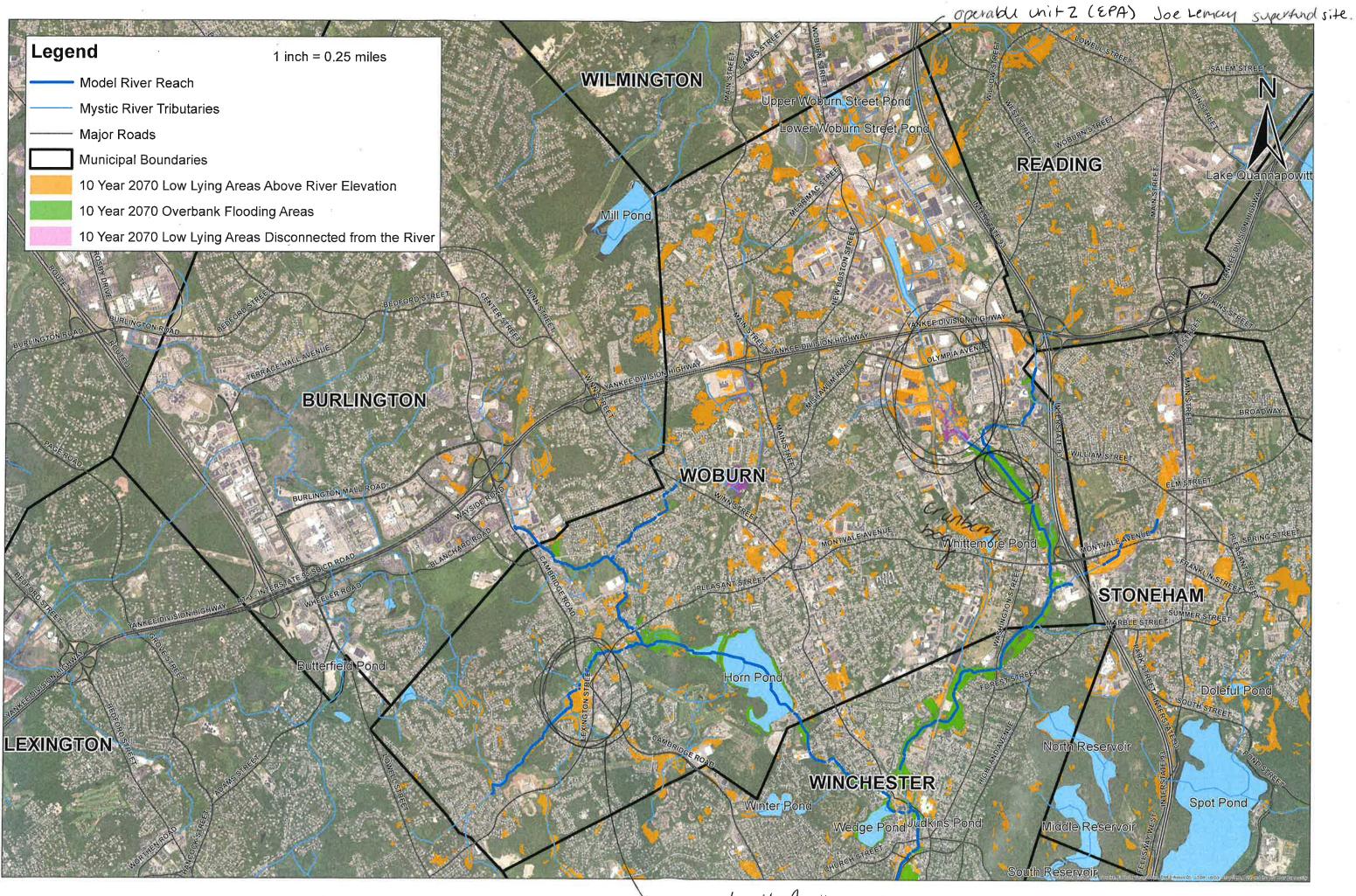
Spot Pond

South Reservoir

MEDFORD

Wrights Pond Wrights Pond Wrights Pond

Meeting Sign-In Sheet


MVP Action Grant: Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed

Date: 9/17/2019 Time: 10:30-11:45 am Location: Woburn City Hall 10 Common St-Woburn, MA 01801

Sign-In Sheet

Name Affiliation Stantc Janni MyRWA Engineering

Phone / E-Mail Initials 339-832-0128 enniter, 10000 (a) stanter.rom Patrick CMysteriver.or PH 781-316.3438 89 5883 mbarrett Ocityofuoburn. com

congested culiert y corners

Task 2 Supporting Documentation

Upper Mystic Stormwater Working Group January workshop Moderator Guide

Moderator guide

Overall goals

- 1. Assess + confirm whether the criteria selected for prioritization are aligned with MVP goals and facilitate the selection of most compatible parcels for addressing flooding.
- 2. Confirm whether the preliminary identification of top-ranking parcels using the proposed criteria and ranking make sense based on the unique knowledge of the municipalities.
- 3. Discuss/assess if parcels that ranked highly across multiple criteria best represent most compatible sites. (See printed large 11"x 17" table)
- 4. As informed by the analyses, what is your group's recommendation for weighting criteria to select the final 20 parcels to be investigated further.

Leading questions (prioritization):

- How should the final 20 Opportunities considered for this MVP project be selected, i.e. should all 20 be selected using the same criteria, or diversify (e.g. select 10 Opportunities based on 'X', select other 10 based on 'Y')?
- It is assumed (based on size of Opportunity and other GIS attributes) that "Suitable" parcels can produce a regional flood benefit experienced by downstream communities, however this cannot be modeled at this stage for each individual Opportunity. Does it make sense to prioritize projects in the upper watershed municipalities (via weighting methods, or other)? I.e. "upper watershed communities benefit locally from the project, downstream communities benefit via regional flood benefit"
- Similarly, should larger Opportunities (i.e. based on acreage) be prioritized assuming a larger regional benefit can be achieved?
- Should more priority be given to parcels (potential projects) that can be proposed/designed in the immediate next MVP Action Grant (spring 2020) cycle? Or also include project opportunities that may have greater benefit but require more coordination (e.g., consider Article 97 protected sites, contiguous parcels, land acquisition, or other).

Leading questions (methodology/criteria):

- Does the suitability analysis and draft scoring accurately reflect conditions across parcels of different sizes or is additional analysis required for large parcels (i.e., are portions of large parcels suitable but not considered by current scoring)? Which ones?
- Are any co-benefits, or criteria missing at this stage (across all 'Suitable' parcels)?
 - Ease of Implementation Degraded lands, hazardous or contaminated sites, or low-quality habitat that could be restored that can make good candidate sites (good data source for Upper Mystic?)
 - Connectivity –should MyRWA existing/proposed greenway data also be considered explicitly in scoring?
- Are there any land uses or existing conditions types that should be removed from analysis altogether as Non-Suitable (e.g. cemeteries, utility easements, dumps, other?)

Supporting Documentation

Upper Mystic Stormwater Working Group meeting minutes

Resilient Mystic Collaborative Upper Mystic Working Group October 30, 2019 | 10:00am - 12:00pm Arlington Town Hall 730 Massachusetts Ave, Arlington, MA 02476 Meeting Minutes

MEETING OBJECTIVES

- Determine criteria for ranking potential green infrastructure projects and confirm timeline
- Discuss goals, scope, timeline for concurrent EPA-funded project to incorporate green infrastructure into hazard mitigation plans and capital improvement plans

ATTENDEES:

Matt Barrett (Woburn), Melissa Surette (FEMA), Myra Schwartz (EPA), Claire Moss (Wakefield), Bryan Carignan (Winchester), John Keeley (Burlington), Mike Sprague (Lexington), Alicia Hunt (Medford), Patrick Herron (MyRWA), Sarah White (MEMA), Ray Cody (EPA), Andy Hrycyna (MyRWA), Darya Mattes (Groundworks Somerville), Jennifer Relstab (Horsley Witten), Arleen O'Donnell (ERG), Suzanne Warner (EPA), Francesca DeBenedictis (Boston Water & Sewer), Charlie Jewell (Boston Water & Sewer), Indrani Ghosh (Weston & Sampson), Kyle Johnson (Kleinfelder), Emily Sullivan (Arlington), Carri Hulet (CBI)

10:00	 Overview of MVP and EPA projects MVP project objectives include: update stormwater model, create a methodology for selecting sites for large GI projects, identify 20 GI project locations, select ~6 GI project locations for 10% conceptual design EPA project objectives include: incorporate GI into the capital planning and hazard mitigation planning efforts
10:10	 MVP project In Fall 2019, there were 16 community check-ins to ground truth model, updating model based on community check-ins and data provided by municipalities In addition to model, identifying parcels in Upper Mystic (above dam) for large GI Parcels selected are: publicly owned (local, state, etc.), open space or vacant, larger than 3 acres or are contiguous with other open/vacant parcels that total to 3 acres MEMA recommended looking into private parcels as well List of ~300 parcels with these characteristics, need to finalize the categories/criteria to shorten list to 20 parcels Categories include: Technical, Social Resiliency, Environmental, Governance, and Economic Group will discuss and finalize categories at 1/22/2020 meeting GI projects will prioritize retention, but may have infiltration, water quality, and urban heat island mitigation co-benefits
10:50	 EPA project EPA project is coordinating with the MVP project to use identified GI sites for capital and hazard mitigation planning

	 Will ask municipalities if they are interested in technical assistance to include GI in capital planning/capital improvement plans Will use the list of 20 GI sites to identify which municipalities are eligible for technical assistance to include these GI sites in their hazard mitigation planning Technical assistance may also include tips for applying for FEMA grants to design/construct GI
11:40	 Action Items/Next Steps Meeting on Tuesday, 1/22/2020 in the Arlington Health and Human Services Conference Room, located on the 2nd floor of the Arlington Senior Center, 27 Maple Street (the meeting room is one floor below MyRWA's office)
11:45	Adjourn

Resilient Mystic Collaborative Upper Mystic Working Group November 19, 2020 | 9:30-11am Virtual Meeting through Zoom Meeting Minutes

MEETING OBJECTIVES:

- Review Phase 1 Top 6 sites and select Top 3
- Review draft Phase 1 Model

ATTENDEES:

Matt Barrett (Woburn), Michael Sprague (Lexington), John Livsey (Lexington), Tim McGivern (Medford), Emily Sullivan (Arlington), Alex Rozycki (Reading), Charlie Jewell (Boston Water & Sewer), Tom Philbin (Everett), Catherine Woodbury (Cambridge), Patrick Herron (MyRWA), Catherine Pedemonti (MyRWA), Julie Wormser (MyRWA), Kyle Johnson (Kleinfelder), Chris Balerna (Kleinfelder), Hilary Holmes (Hatch), Indrani Ghosh (Weston & Sampson), Mike DuPont (Stantec), David Van Hoven (Stantec), Stefani Harrison (Stantec).

9:30	Welcome
9:35	 Select Top 3 Sites Municipalities presented the site concepts for the top 6 sites. E. Sullivan presented for Arlington and stated that Arlington should be in sites #4-6 because additional design work was needed to resolve the site constraints of an MWRA sewer line through the site. M. Sprague presented for Lexington and stated that Lexington should be in sites #1-3 because the Town was ready to proceed with the project and there was community support. A. Rozycki presented for Reading and stated that Reading should be in sites #1-3 because Town stakeholders were supportive and the site is located upstream in the upper watershed. T. McGivern presented for Medford and stated that Medford should be in sites #4-6 because the private property owner was unresponsive to recent outreach from the City. T. Philbin presented for Everett and stated that Everett should be in sites #1-3 because City stakeholders were supportive, the private property owner was supportive, and the adjacent area is in the process of designing restoration efforts and shoreline improvements. M. Barrett presented for Woburn and stated that Woburn should be in sites #1-3 because City stakeholders were supportive and Woburn has experience in managing similar projects.

	thre mu	ee sites. Only one munic	present voted three times for the present voted three times for the presentative from each e results were as follows:	ieir top
		ading	5	
		oburn	5	
			2	
	Everett2Based on the voting results, the top 3 sites were identified as Lexington, Reading, and Woburn.• M. Sprague and E. Sullivan summarized the final steps for Phase 1, and the next steps for Phase 2 of the project. The final steps for Phase 1 include today's presentation by the Consultant Team on the 			
10:10	 M. land and trer wet whi that red the wet imp opt C. Jo to 6 con also Wo 	active reservoir manage mendous impact with the lands. The model did not chare a significant co-be t stormwater flooding co ucing directly connected watershed. DCIA reduct lands and routing storm provements, and by de-pe ions, vegetating, etc.). ewell commented that be inches) should be consi- peletely mitigated. K. Joh o matters, and that "not rking Group agreed that	nitial modeling results of the top ement. Overall, the model did r e construction of the top 6 cons ot estimate stormwater quality l enefit. Ultimately, the model sh buld be mitigated more success d impervious areas (DCIAs) by 30 cion can be achieved by constru- twater to the wetlands through aving areas (using porous pave pringing down flooding (e.g. from idered successful even if flooding nnson added that where flooding all flooding is created equal". T this model was successful in gu- ways to manage flooding. More	not show structed benefits, nowed fully by 0% across cting drainage ment m 2 feet ng is not ng occurs he uiding the

	need to be done to determine how and where exactly flooding can be best managed to do the least harm.
11:00	Adjourn

Resilient Mystic Collaborative

Upper Mystic Working Group

January 22, 2020 | 9:30am - 12:00pm

Arlington Senior Center, Health and Human Services Conference Room, Second Floor

27 Maple Street, Arlington, MA 02476

Meeting Minutes

MEETING OBJECTIVES:

- Confirm clarity on project goals and schedule
- Finalize the methodology
 - Confirm scoring criteria and changes to land use categories
 - Finalize approach for selecting final sites

ATTENDEES:

Matt Barrett (Woburn), Bryan Carignan (Winchester), Michael Sprague (Lexington), Tim McGivern (Medford), Emily Sullivan (Arlington), Francesca DeBenedictis (Boston Water & Sewer), Charlie Jewell (Boston Water & Sewer), Cathy Watkins (Cambridge), Catherine Woodbury (Cambridge), Patrick Herron (MyRWA), Andy Hrycyna (MyRWA), Julie Wormser (MyRWA), Nathalie Beauvais (Kleinfelder), Kyle Johnson (Kleinfelder), Chris Balerna (Kleinfelder), Bella Purdy (Kleinfelder), Jen Zoppo (Stantec), Hilary Holmes (Hatch), Kalila Barnett (Barr Foundation), Nina Mascarenhas (MIT).

9:30	Intros, welcome new participants
9:45	 Overview of MVP project MVP project objectives include: update stormwater model, create a methodology for selecting sites for large GI projects (i.e. constructed wetlands), identify 20 GI project locations, select ~6 GI project locations for 10% conceptual design and impact modeling Next MVP grant cycles: April/May 2020 and April 2021 Task 1: calibrate watershed-scale model stormwater model through community check-ins and municipal GIS infrastructure data Task 2: GIS analysis of potential GI sites Task 3: identification and consensus prioritization of sites (purpose of this meeting) Task 4: Field assessments of potential sites Task 5: 10% concept design for select sites Task 6: active reservoir management assessment Task 7: final report
10:50	 Suitable Sites for Green Infrastructure [Pre-sorting] Changes made to criteria discussed during 10/30/2019 meeting include: using local Assessor's data to supplement MassGIS land use codes, inclusion of private parcels with consent of municipalities, other parcels identified by municipalities Approximately 465 parcels identified with new criteria, list cut down to 114 parcels for this meeting based on four criteria: 1) within/adjacent to FEMA

 100-year floodplain, 2)within/adjacent to watershed model's 2070 10-year overbank flood area, 3) shallow bedrock depth (<1ft), and 4) flatter sites (slopes <6%) Participants thought the four criteria might be too restrictive if a large parcel was sorted out due to slope/bedrock and only part of the site had deep bedrock or steep slopes The 4 categories of criteria identified to prioritize sites are: hydrology, environmental justice & equity, connectivity, and cost/feasibility of implementation These 4 categories contain a total of 14 unique criteria, which can be weighted differently to prioritize site list
 Refined Scoring Criteria for Prioritizing Sites Meeting broke out into three groups to review 14 criteria and list of project sites: Group #1, Group #2, Group #3 Group #1 (Nathalie Beauvais, Catherine Woodbury, Michael Sprague, Charlie Jewell, Emily Sullivan, Jen Zoppo) Group #1 agreed that the hierarchy of categories should be: hydrology, cost/feasibility of implementation, and political & public acceptance The 2 co-benefit categories environmental justice/equity and connectivity are less important than 3 categories above The group asked if sub-watersheds could be modeled to determine which sub-watershed is most impactful and look particularly at projects in that area Group #2 (Bryan Carignan, Matt Barrett, Bella Purdy, Andy Hrycyna, Hilary Holmes) Group #2 thought that the slope and bedrock criteria may be too restrictive, and that large parcels shouldn't be ruled out based on an average slope/depth Floodplain proximity may also be restrictive especially if only part of a parcel is in the floodplain The GI site list requires more sorting based on use (parking lot, playing field, cemetery, etc.) Group #2 agreed that the hierarchy of categories should be: hydrology, cost/feasibility of implementation, public acceptance, co-benefits The group asked if there is any information on existing wetlands and current function/quality of habitat

	 Adjacency to open space may be important for private parcels Kleinfelder reminded the group that this site identification is focused on finding large parcels for 3 acre constructed wetlands, though the list includes sites that are good opportunities for green/grey infrastructure. Communities will get the list of these opportunities so that they can pursue these smaller scale projects with high local impact independently Participants were interested in the proximity of opportunities and abutting parcels Participants were interested in seeing an environmental justice map of the watershed for context Participants were interested in understanding which sites have direct discharge to the Mystic River versus sites with remote storage capacity but not direct discharge. Connectivity to the Mystic Channel is not an existing site selection criterion, but wondered if it should be considered Next steps include refining criteria based on feedback and culling list to ~40 sites The next MVP grant application will be due sometime in April/May, the Working Group has to decide how to move forward with funding the projects identified
	 Update on Task 6: Active Reservoir Management Assessment Opti (subcontractor) is identifying the 10 most suitable reservoirs for active management Opti is still determining the scope of a feasible model (e.g. depth lowered, how far in advance, etc.)
11:40	 Action Items/Next Steps Next steps include refining criteria based on feedback and culling list to ~40 sites The next Working Group meeting will be in March to review the list of ~40 sites and select the top 6 At the March meeting the Working Groups will also determine next steps for funding (i.e. the next MVP grant)
11:45	Adjourn

Resilient Mystic Collaborative Upper Mystic Working Group May 4, 2020 | 2:30-4pm Virtual Meeting through Zoom Meeting Minutes

MEETING OBJECTIVES:

- Select the final 6-10 sites for 10 % concept design
- Discuss next steps for prioritized sites, additional grant opportunities, and active reservoir management

ATTENDEES:

Jay Corey (Woburn), Matt Barrett (Woburn), Tim McGivern (Medford), Beth Rudolph (Winchester), Bryan Carignan (Winchester), Catherine Woodbury (Cambridge), John Bolduc (Cambridge), John Livsey (Lexington), Michael Sprague (Lexington), Emily Sullivan (Arlington), Alex Rozycki (Reading), Yem Lip (Malden), Elena Proakis Ellis (Melrose), Julie Wormer (MyRWA), Patrick Herron (MyRWA), Ona Ferguson (CBI), Carri Hulet (CBI), Chris Balerna (Kleinfelder), Kyle Johnson (Kleinfelder), Nathalie Beauvais (Kleinfelder), Indrani Ghosh (Weston & Sampson), Stef Harrison (Stantec), Sara Burns (The Nature Conservancy)

2:30	Welcome and Introductions
2:40	 Project Overview Quick overview of grant goals and project context
2:45	 Selection of Top 6-10 Sites Participants narrowed the 18 potential sites to 6-10 through discussion of criteria and joint deliberation Folks on board with suggestion to think of these 18 projects as a pipeline (regional capital improvement program) and to frame that in the MVP proposal (see end of raw notes below with lots of bullets for MVP team to review) Next step: Technical team assess results of breakout group conversations as captured in this document. Choose top 6 to evaluate in the model. Some considerations: Probably pick no more than one per municipality, but exceptions would be if the community has signaled they might have capacity/interest to move forward more than one and the project is likely to provide meaningful regional benefit

• Think about/assess total impact from the set of selected projects getting done (i.e. is the whole greater than the sum of its parts, depending on how you group and sequence the projects?)

Feedback from Breakout Group #1:

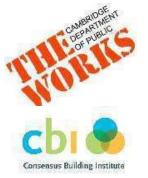
- No more than two sites per municipality. More than one could advance, if muni has capacity
- Folks on board to move forward all the projects as a pipeline
- Some good feedback on readiness: The Woburn project has superfund issues, so might not be as ready.
- Davidson park is moving forward
- All the Lexington ones are clustered, so one of these might tackle the same drainage as others.
- Melrose: Franklin field.

Feedback from Breakout Group #2:

- Good discussion on the weighting of the criteria
- Experimented with criteria weighting
- Got feedback from Woburn, Reading, and Medford.
- Designing more than two in a single municipality would be a hurdle for a community
- West Street and the other Reading site both are article 97 sites.
- Medford: Mystic Valley Parkway, possible issue would be how to get local benefit. Building infrastructure there would be a challenge.
- How we could grant them by year of implementation.
- Two qualities: intrinsic quality and readiness. If we tried to do all of them - six per year - we could say what's ready now, what's ready next year, and in two years. Need to work on a pipeline. How easy will it be to implement.


Feedback from Breakout Group #3:

- Challenge for technical team. As we looked through top-ranked sites, we got concerned that Woburn's top site, connected to Horn Pond, which is storage already. If already connected to something that stores would be more beneficial than something that stores farther downstream. Might change the ranking a bit.
- One thing that's unknowable now is that, when you get to the modeling, you'll see how much actual regional benefit it brings. Need to think a little differently about the hydrology ranking.


3.40	Lindates and Next Stens			
3:40	 Updates and Next Steps For group to discuss/sort out: Articulate the pipeline. Show that these first six (or so) are just the first steps. Show how others follow. Regional capital improvement program: Name how the whole set of projects might move the needle over time (based on all criteria) through big projects, then small projects, then zoning, etc. Understand what we'll know by the end of the current grant (total volume decrease for the first six projects) Build out an understanding of the funding pool to fund the pipeline? One per community? Regional benefits. Show that equity is big part of analysis. Readiness big part of sequencing Try to get 6 to [XX%] design by June 2022 (lots of discussion about how far you might getconsultants saying no way 100% design even for a 2-year grant, maybe 50-75%, requires more discussion) 			
	 Articulate what will be needed by the municipalities. Ask MVP if they would allow multiple municipalities to match with labor (to avoid budget/town meeting issues) 			
4:00	Adjourn			

Appendix N

Task 4 Site Investigations Recap Notes and Photos

Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Upper Mystic River **Project Update: Results of candidate green infrastructure site investigations & next steps**

Alm

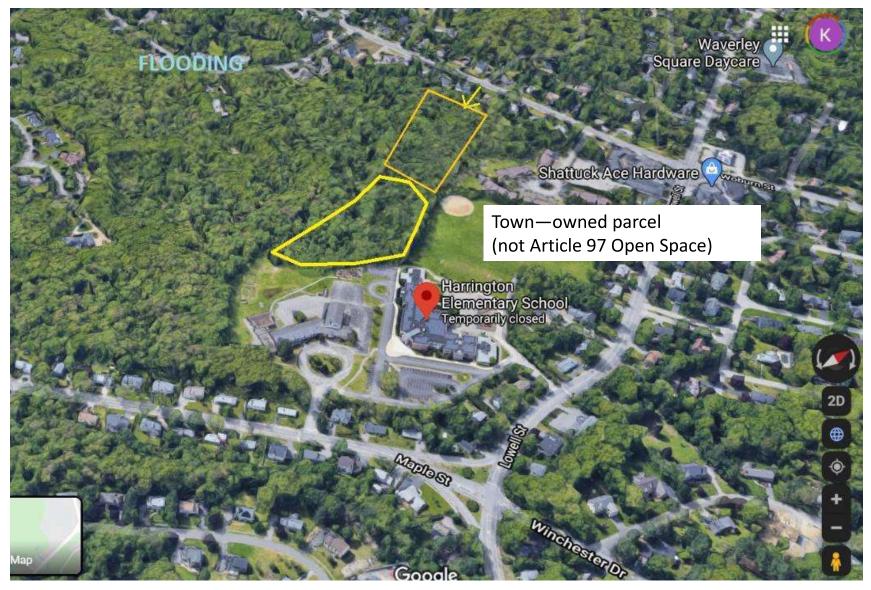
10

Image source: Boston Globe (June 2018: "Gearing up for climate change along the Mystic River")

Field investigations (15 sites visited):

- Arlington Meadowbrook Park
- Lexington Butterfield/Maple St (Harrington School), Orchard Ln
- Everett 1-2 Mystic View Rd 'Gateway' (private parcel)
- Melrose Franklin Field
- Medford former radio tower site along Mystic Valley Pkwy (private)
- Reading West St/Xavier-Aberjona parcels, Maillet Sommes land, Linneca Thelin bird sanctuary, conservation parcels at end of Longwood Rd/Arnold Ave
- Winchester Davidson Park
- Woburn 75 Bedford Rd (former Hurld Elementary), Commerce Way Lot 2, Cranberry Bog Conservation Area

Top 6 sites (August 2020) & pilot concept development (ongoing)


Lexington - Butterfield/Maple St (Harrington School)

• Pros

- watershed location (Pheasant Brook, upstream reach of Mill Brook draining to Arlington Reservoir)
- 5+ acres of opportunity space
- potential to alleviate local flooding near Solomon Pierce Rd
- good opportunity for community education opportunity (Harrington School)

• Cons

- Size of wetland opportunity may be limited by upstream drainage area
 - Maple and Lowell Streets are MassDOT alignments (potential headache if re-routing drainage from these streets)

Lexington - Butterfield/Maple St (Harrington School)

Lexington - Butterfield/Maple St (Harrington School)

Reading – Maillet Sommes land

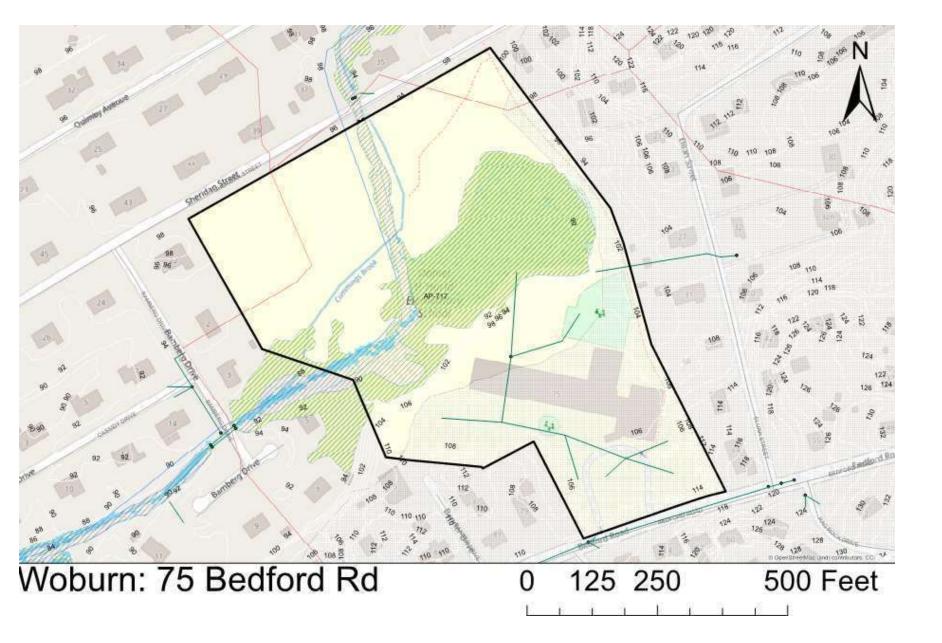
• Pros

- Localized flooding along Willow St / near Austin Prep School, Bond St and other local roads
- large opportunity space
- Town is actively looking to add trails, improve connectivity between school and downtown
- good opportunity for community education opportunity
- may be able to partner with Austin Prep future drainage improvements

• Cons

- Article 97 protected open space
- Some 12" utilities may need to be protected or rerouted

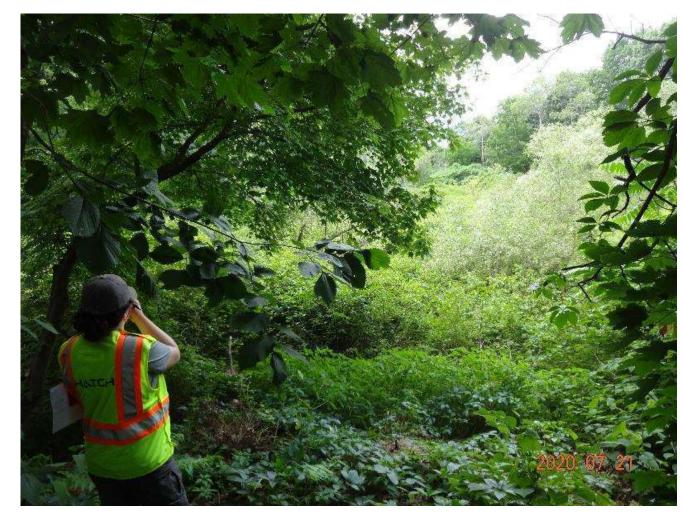
Reading – pocket headwater wetlands


Woburn - 75 Bedford Rd (former Hurld Elementary)

• Pros

- flooding occurs both downstream and upstream of this site (along Horn Pond Brook and along historic former canal)
- 3+ acres of opportunity space
- limited accessible walkable trails in immediate area
- site overall has negative community perception, Town wants building demolished and residents want green open space

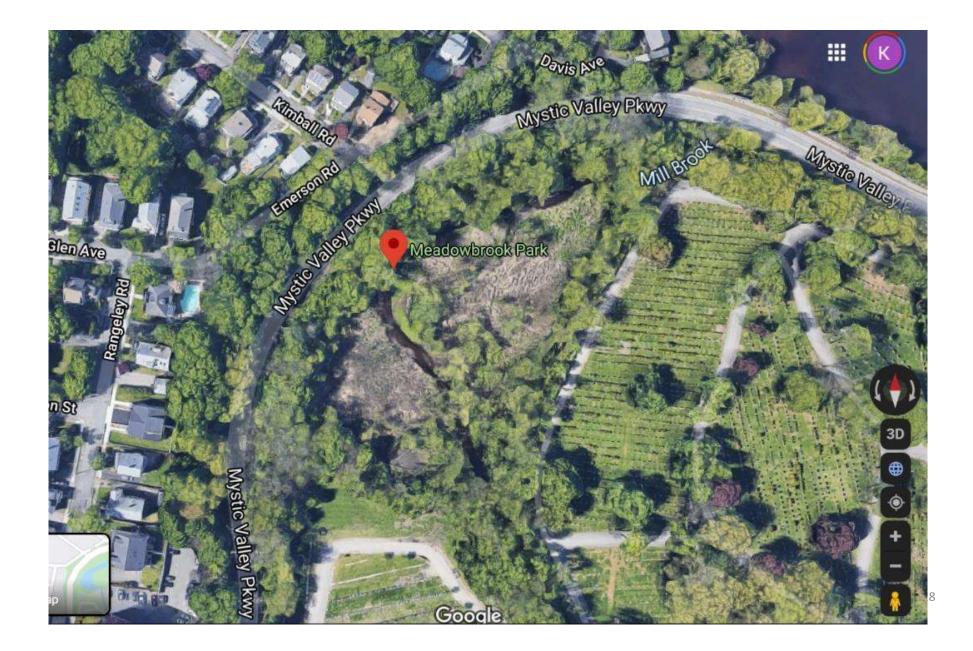
• Cons


- some Article 97 protections (pertaining to future open space/park)
- pockets of existing wetland and mature vegetation communities

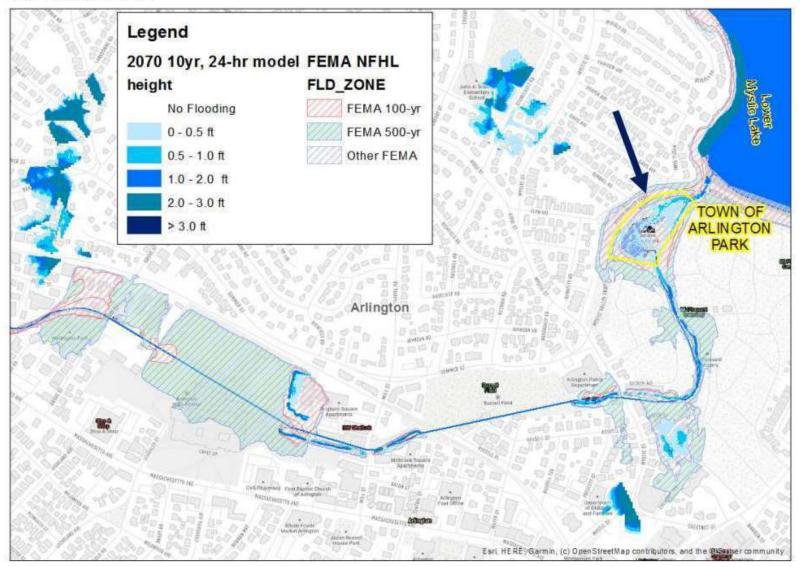


Woburn - 75 Bedford Rd (former Hurld Elementary)

Woburn - 75 Bedford Rd (former Hurld Elementary)


Arlington – Meadowbrook Park

• Pros


- location could have immediate d/s benefit (at junction with Lower Mystic Lake)
- Town Park could be more accessible from (most users today access through cemetery)
- ~3 acres of storage space, if island bar can be dredged (wetland restoration)
- would add better trail access to longest daylit portion of Mill Brook

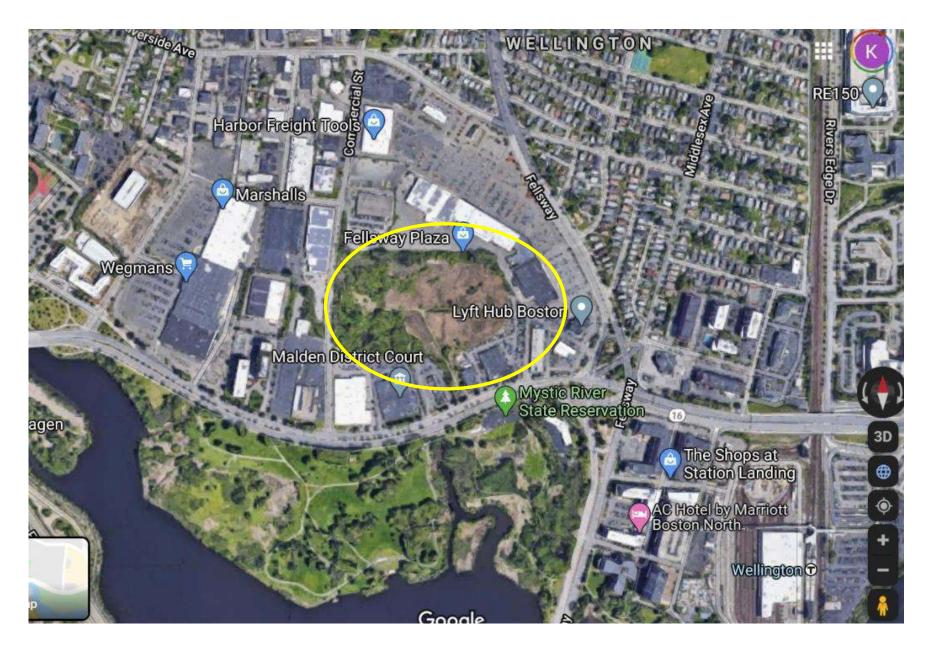
• Cons

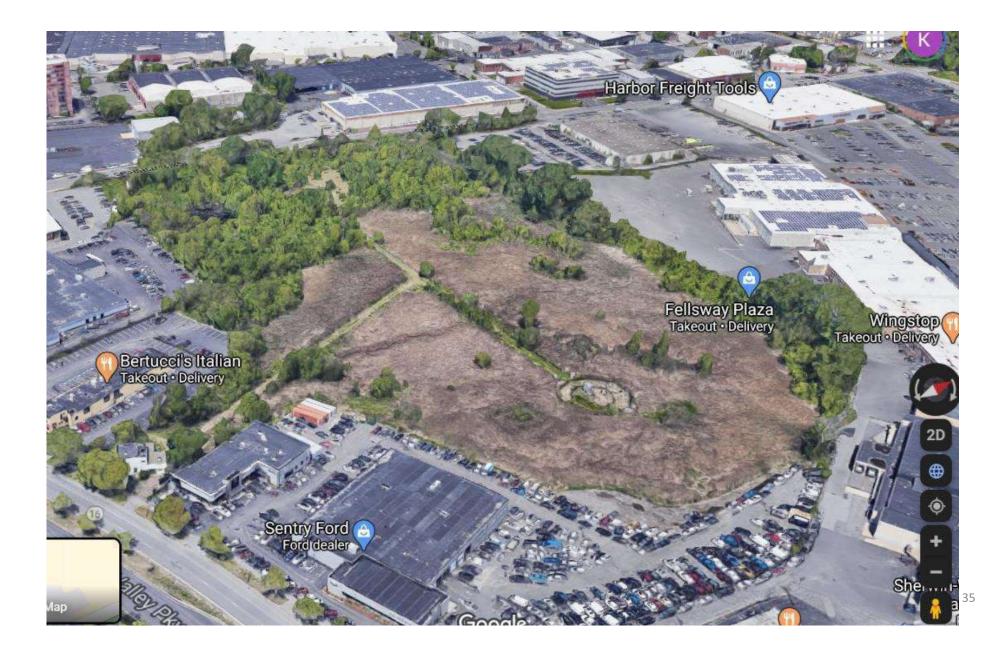
• downstream of Arlington's worst flooding areas in channelized Mill Brook

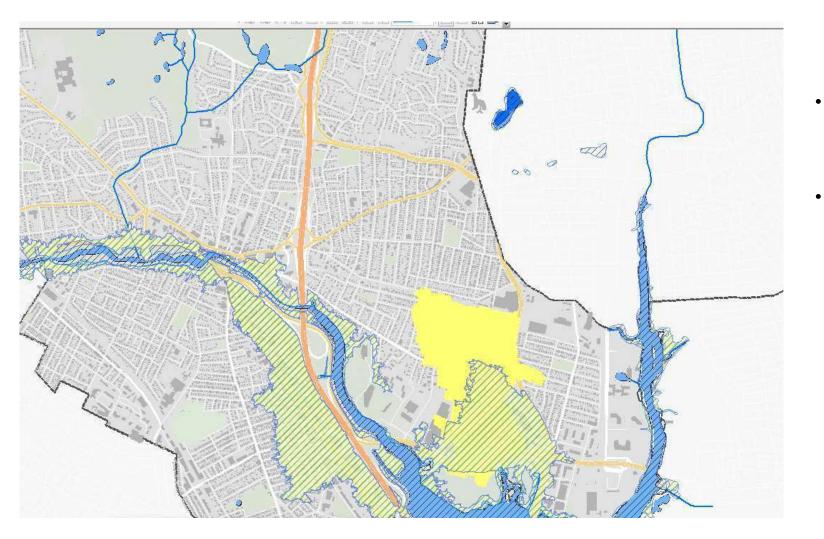
Site Opportunity map:

Arlington – Meadowbrook Park

public access points (via cemetery)

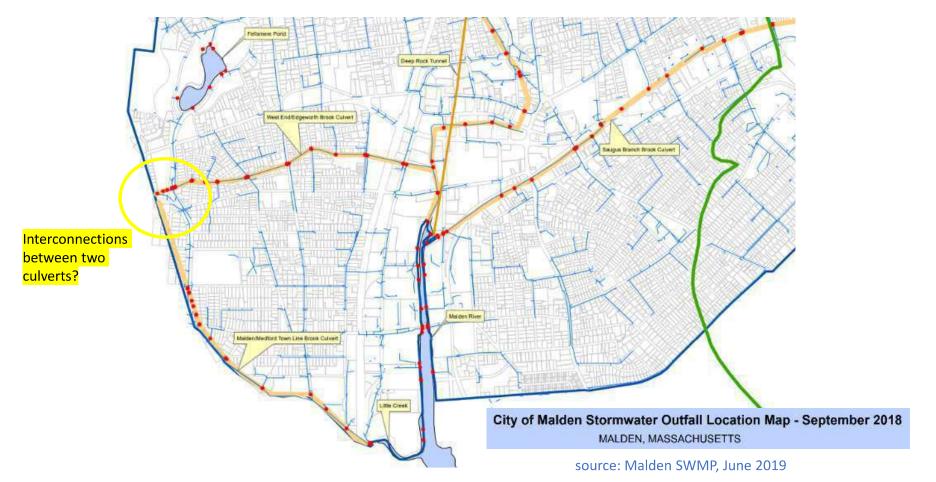

Arlington – Meadowbrook Park


Downstream condition

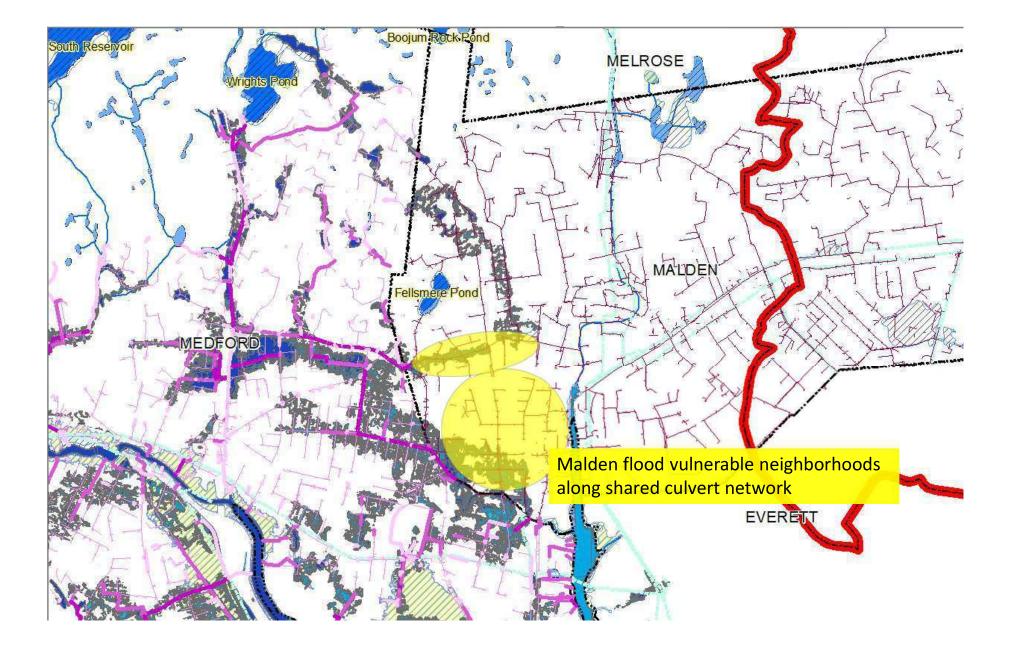

Medford – former radio tower site at 4068 Mystic Valley Pkwy, (private)

- Pros
 - Adjacent to lower reach of Mystic River (i.e., few flow constrictions)
 - Some places may be good for additional stormwater storage
 - existing phragmites wetlands (but dependent on elevation and drainage)
 - Potential for localized flood mitigation in upstream catchments

- Much of this site is within existing floodplain
- The owners are looking at developing the site on existing uplands.



- Existing upstream drainage area is ~190-195 acres
- The site is manmade wetland area (poor condition) that is entirely within FEMA 500-year floodplain. However, it is not in the 100-year floodplain (disconnected from riverine storage by the Parkway)



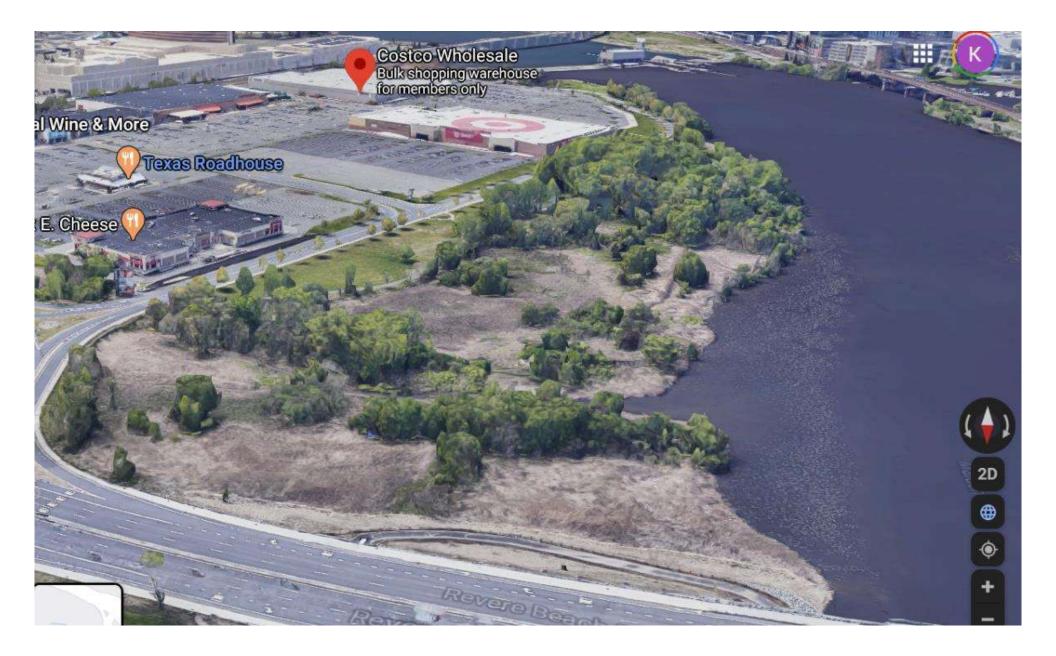
Downstream condition

Medford-Malden interconnections

38

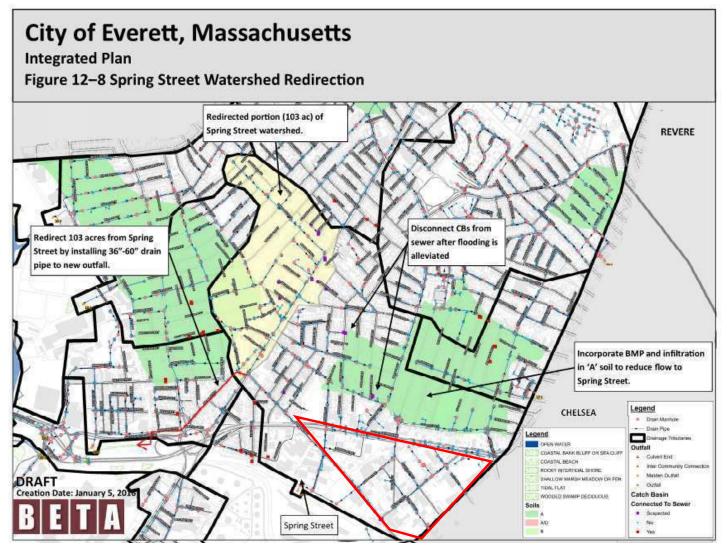
Everett - 1-2 Mystic View Rd (private)

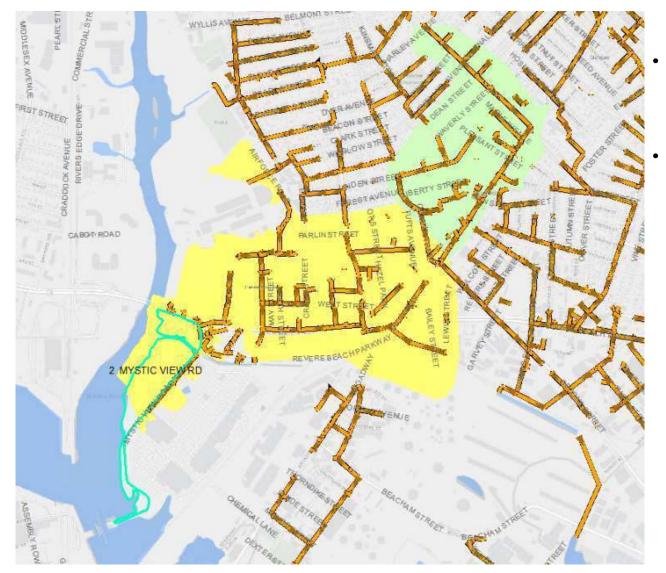
• Pros


- non-maintained wetland fringe is almost all phragmites
 - private owner maintains pathways, occasional vegetation cutback for view of river only
- City's Integrated Plan includes alternative
 - reroute additional 100+ acres of upstream drainage area from Spring St catchment
- potential to improve connectivity from Amelia Earhart Dam to Malden Center/Everett Main St
- multiple potential benefits (coastal storm protection and mitigated inland flooding, water quality)

- private owner (DDRC Gateway-Costco)
- soil conditions (urban fill can be contaminated), would need to consider potential reuse on-site

Everett - 1-2 Mystic View Rd (private)



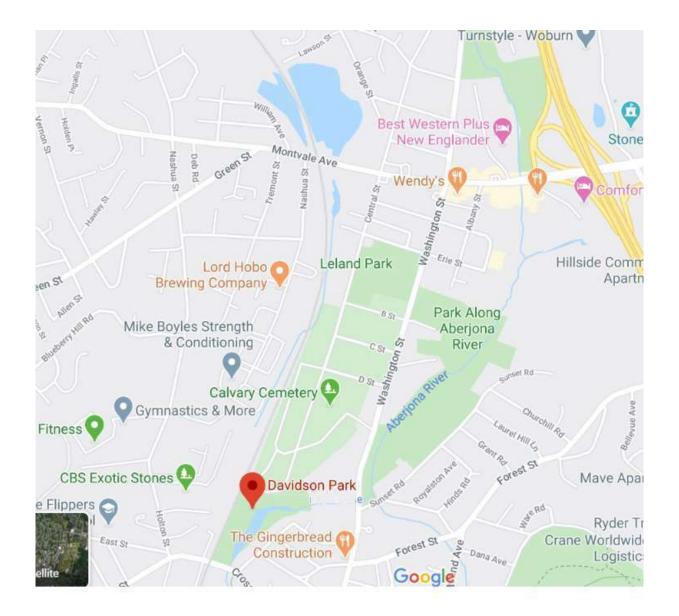

Everett - 1-2 Mystic View Rd (private)

- Private owner (DDRC Gateway; associated with shopping center) maintains footpaths through site, but does not maintain wetland areas
- Occasional cutback of fringe phragmites (along walking path) has taken place to maintain viewpoint of Malden River, but this does not last long

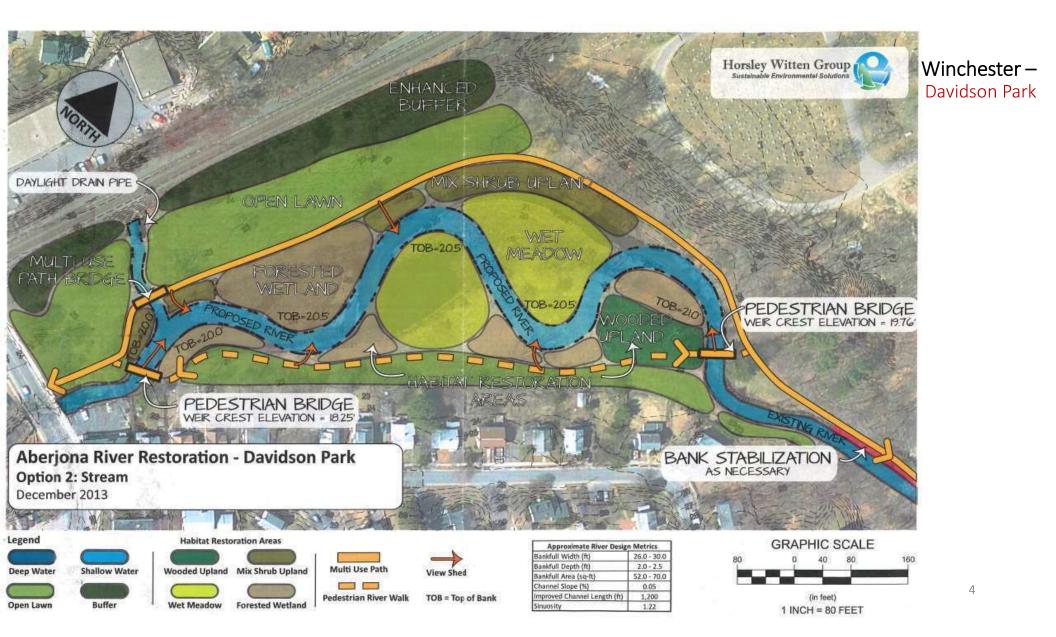
- Draft IP discusses an alternative (Spring Street Watershed Redirection) aims to alleviate flooding in Everett and Chelsea (Lower Mystic) near Commercial Triangle
- Flood mitigation benefits are low for Everett wetland GI candidate sit when considering only existing Upper Mystic drainage piping
- Need to balance WQ objectives (Upper/Lower Mystic)

source: City of Everett Draft Integrated Plan (BETA Group)

- Existing contributing drainage area to site (via MassDOT parcel) is ~225 acres
- Potential diversion (from Spring St catchment) is additional 103 acres

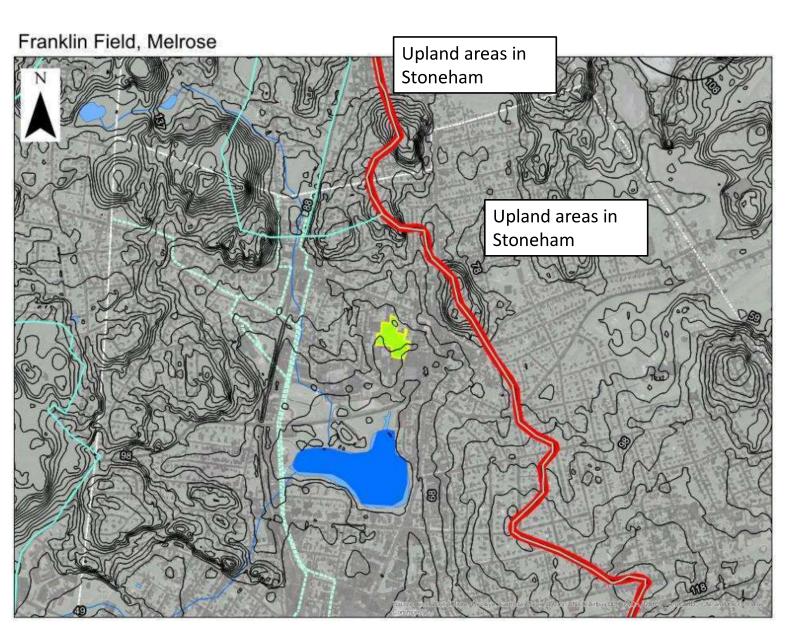

Additional site visit photos/notes

July 2020 notes for sites in next grouping within project pipeline


Winchester – Davidson Park

- Pros
 - Already in process of river restoration project
 - 3 concepts were already developed by Horsley & Witten
 - Town owns parcel across Washington St (may be additional opportunity space)
 - Town applied for MVP Action Grant for small water quality project at north end of parcel

- Awaiting feedback from Industri-Plex NRDAR Trustee Council on river restoration concept
- Already low-lying (in floodplain), not much new storage space could be created
- Town wants to maintain surface condition of turf areas (not many lawn areas in Winchester for public open space)


Winchester – Davidson Park

• Pros

- large storm piping at southeast edge of parcel currently bypasses field, but could be easily re-directed
- upstream drainage includes portions of Stoneham

- not much space for any surface GI
 - Subsurface infiltration/detention BMP would be better
- already functions as a public open space (athletic fields)

Reading – West St & Xavier-Aberjona parcels

• Pros

- A large amount of secondary Aberjona reach (large upstream drainage area) comes through this location
- West St. parcel is Town owned (without Art. 97 protection)
- Some pockets (1-2 acres each) of potential upland area could be converted to storage

- Mature hardwood trees: 150+ year old oak trees make this a significant ecological tradeoff for flood mitigation
- Floodplain delineation (extents of skunk cabbage) and succession of forest community is evident

Reading – West St & Xavier-Aberjona parcels

Reading – West St & Xavier-Aberjona parcels

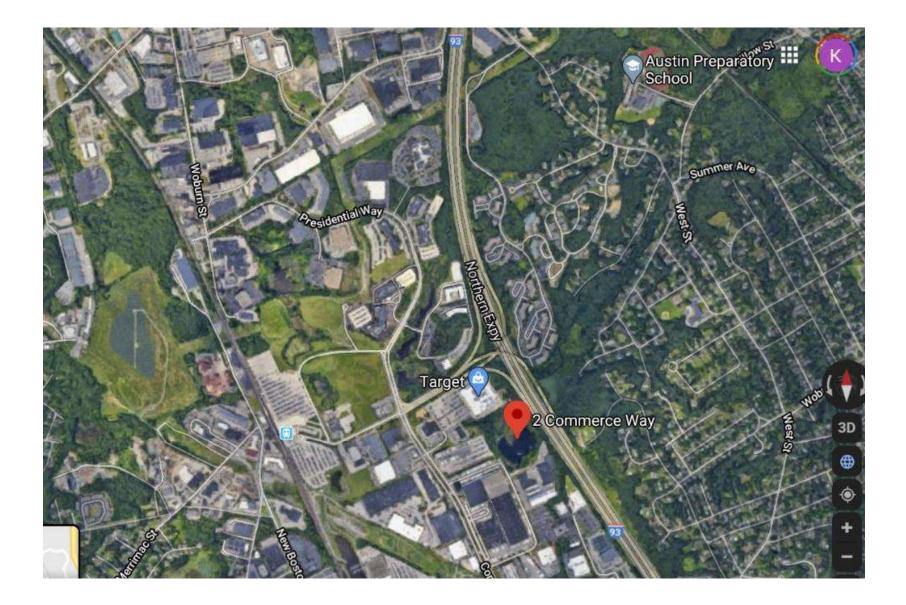
Reading — alternate "pocket headwater wetland" sites (Linneca Thelin bird sanctuary, conservation parcels at end of Longwood Rd/Arnold Ave, Reading Land Trust parcels)

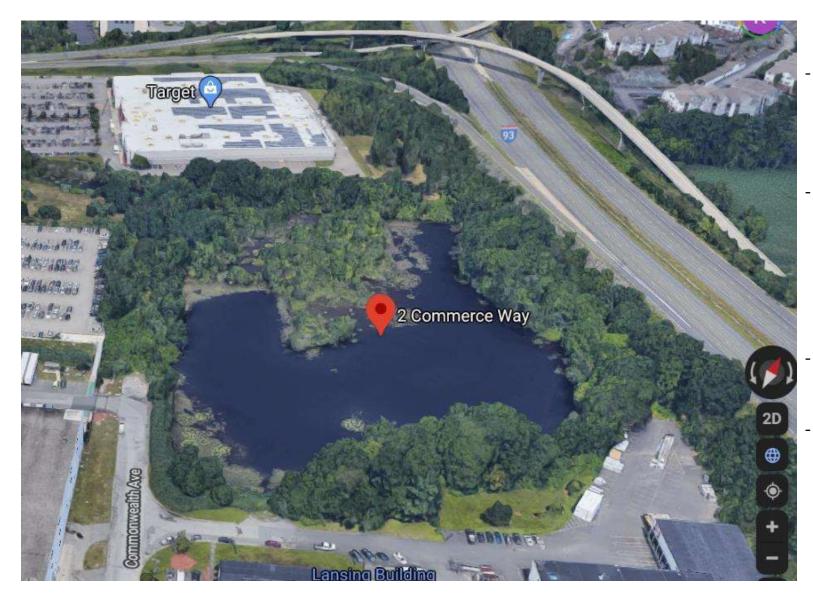
• Pros

- watershed location (headwaters of Aberjona River draining to Woburn)
- limited recreation access along river edge (priority for Town to improve)
- several local flood mitigation opportunities

- Limited opportunity size
 - Storage space < 2 acres (without significantly impacting habitat or existing wetlands)
 - Hard to divert large amounts of upstream drainage area due to headwater location
- Article 97 protections at each site (Conservation parcels)

Reading – pocket headwater wetlands


Reading – pocket headwater wetlands


Woburn – Commerce Way Lot 2

• Pros

- Close proximity to large impervious industrial center
- Immediately downstream of Reading (1 of 2 river reaches of Aberjona River into Woburn)

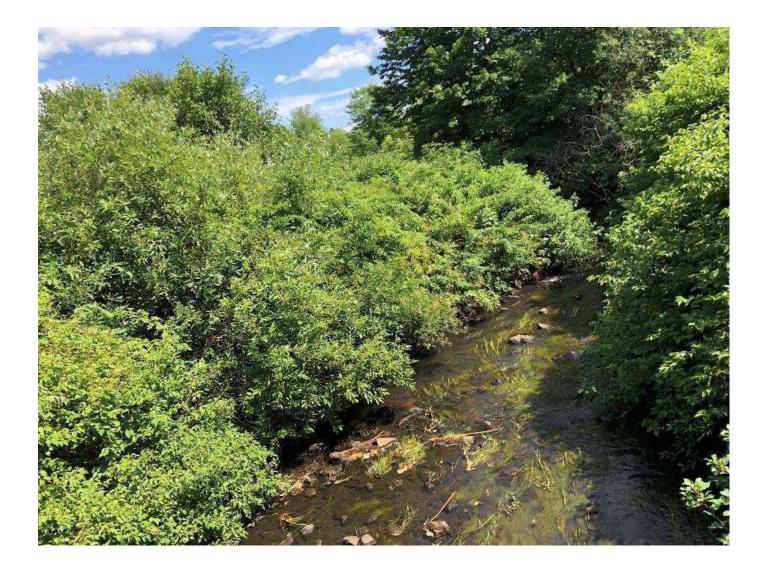
- Site is already mostly existing wetland (>70% of total site area)
- Not located in location that immediately helps either Woburn or Reading local flooding
- Offline location from Aberjona, but topography makes this site not an ideal location for additional Woburn drainage

- Site is already mostly existing wetland (>70% of total site area)
- Not located in location that immediately helps either Woburn or Reading local flooding
- Offline location from Aberjona
- Topography makes this site not an ideal location for additional Woburn drainage


Woburn – Cranberry Bog Conservation Area

• Pros

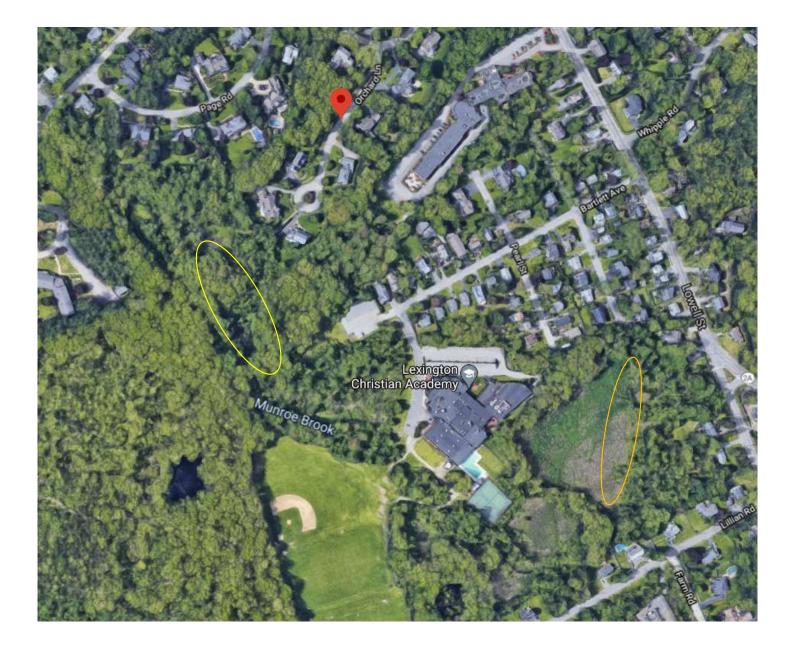
- A large amount of secondary Aberjona reach (large upstream drainage area) comes through this location
- Some pockets (1-2 acres each) of potential upland area could be converted to storage


• Cons

- Article 97 protection of historic cranberry bogs
- Ecological tradeoff for flood mitigation
- Private property holdout may require re-location

Woburn – Cranberry Bog Conservation Area

Woburn – Cranberry Bog Conservation Area

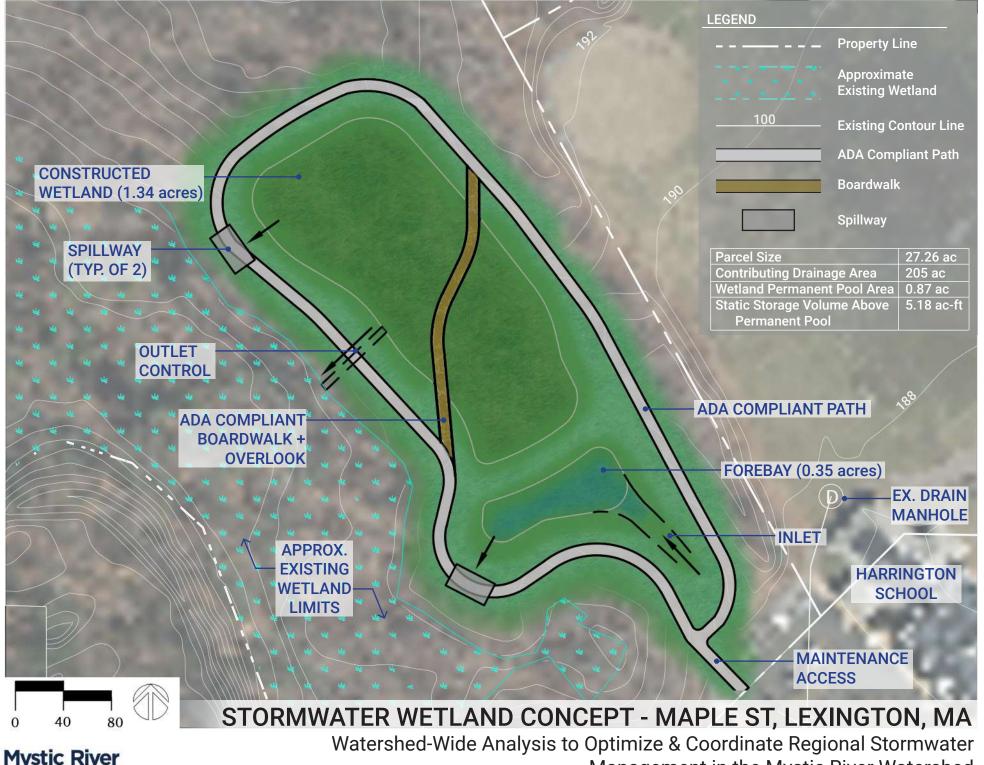

Lexington – Orchard Ln

• Pros

- Good secondary site for Lexington
 - Low-quality habitat
 - Catchments upstream experience localized flooding
 - Small trail access already exists from end of cul-de-sac

• Cons

- Coordination required with private abutters and Lexington Christian Academy
- Existing sewer easement runs along length of site and may limit opportunity size
- Maintenance access could be a challenge


Lexington– Orchard Ln (Town of Lexington parcel)

upland portions of Lexington Christian Academy wetland (500year flood zone)

Conceptual Wetland GI - Supporting Documentation

Prepared for Resilient Mystic Collaborative (RMC)

WATERSHED ASSOCIATION

Management in the Mystic River Watershed

Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed

Prepared for the Resilient Mystic Collaborative (RMC)

Maple St. (behind Harrington School) - Lexington, MA

Owner

Town of Lexington

Parcel Size

27.26 acres

Conceptual Constructed Wetland Information

Contributing Drainage Area: 205 acres Forebay Area: 0.35 acres Wetland Area: 1.34 acres Wetland Permanent Pool Area: 0.87 acres Static Storage Volume Above Permanent Pool: 5.18 acre-ft

Conceptual Estimated Cost: \$2,702,000*

Constructed Wetland: \$1,880,000 Paths/Signage/Boardwalk: \$85,000 Wetland Mitigation: \$0 *Includes 10% Mobilization and 25% Contingency Cost, *Excludes Cost for Upstream Stormwater/Grey Infrastructure and Design/Permitting

Potential Pollutant Removal Estimates

~127 lbs/year TP removal, ~663 lbs/year TN removal

Site-Specific Opportunities & Co-Benefits

- Wetland opportunity is contained on Town-owned land; less coordination and site access issues for construction or O&M.
- The larger upland site areas (away from the existing wetland) offers best opportunity for the constructed wetland. Constructed wetland concept can be kept separate, so as not to encroach on any existing wetland.
- Opportunity for local flood mitigation opportunity (flow can be routed from north (Woburn St). Some flooding also observed to northwest near Solomon Pierce Road.
- Site is adjacent to future (active) recreational facilities, with environmental education/Big Backyard opportunity (for Harrington Elementary School); pathways along edge of wooded area have grown in over time.

Lexington GIS Map – Maple Street Property

Site Photo – Maple Street Property

Design Considerations & Challenges

- Confirm Exxon Oil Easement (through the site per Lexington GIS) is abandoned.
- Consider coordination with MassDOT, MWRA for adjacent drainage opportunities off of Lowell St. and Maple St. to wetland to wetland (or distributed green infrastructure).

Table 1. Project Summary Credit for Cambridge MVP Action Grant - Lexington

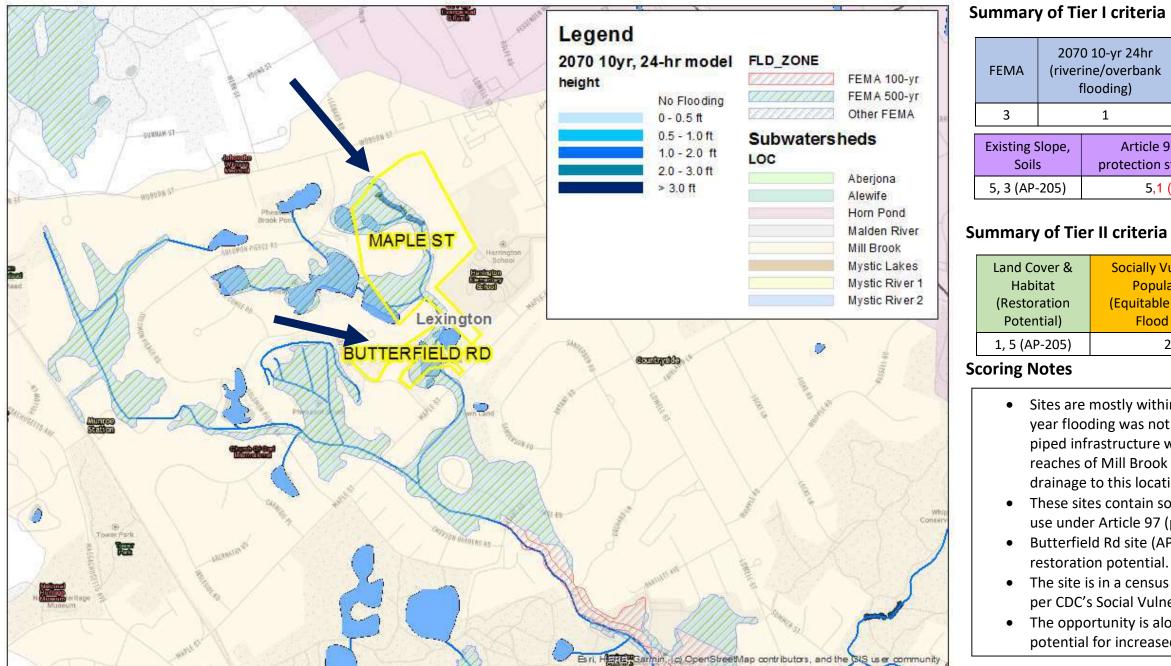
Table 1. Project Sur	nmary Credit for Cambridg	e MVP Action Grant - Lexington		
		Removed Phosphorus Load (lb/yr)	Removed Nitrogen Load (Ib/yr)	Removed Sediment Load (lb/yr)
	Structural	127.40	663.34	62,516.08
N	on-Structural	0	0	0
Land	Use Conversion	0	0	0
	Total	127.40	663.34	62,516.08

Table 2. Structural Project Summary for Lexington

able 2. Structural Project Summary for Lexington										
Project ID	ВМР Туре	BMP Storage Capacity (ft³)/ Filter Depth (in.)	Phosphorus BMP Efficiency (%)	Nitrogen BMP Efficiency (%)	Sediment BMP Efficiency (%)	Removed Phosphorus Load (lb/yr)	Removed Nitrogen Load (lb/yr)	Removed Sediment Load (lb/yr)	Impervious Area Treated (ac)	Runoff Depth (in.)
LexingtonBMP	WET POND/CREATED WETLAND	292100	39.62	24.87	62.99	127.4	663.34	62516.08	161.5	0.44

Table 3. Non-Structural Project Summary for LEXINGTON	
	There are no non-structural BMPs.
Table 4. Land Use Conversion Project Summary for LEXINGTON	
	There are no land use conversion projects.

Town of Lexington - Site Adjacent to Harrington School


Concept-Level 10% Cost Estimate - December 2020

Item Description	Included Items	Cost
Excavation and Earthwork	Site prep, earthwork, planting soils, stabilization,	
	forebay.	\$1,600,000
Site Grey Infrastructure	All connections to stormwater wetland inlet.	
Paths and Boardwalks	ADA-compliant boardwalk and stonedust trail	\$70,000
Site Improvements	Signage	\$15,000
Planting	Wetland planting, buffer planting and seeding.	\$280,000
Wetland Mitigation		\$0
	Subtotal	\$1,965,000
	10% Mobilization	\$196,500
	25% Contingency	\$540,375
	Total	\$2,702,000
Exclusions: Design and Permitting Costs, upstrean	n drainage retrofits	

SITE L3

Site Address / Name	Property Owner	Size estimate of suitable opportunity space:	Town
MAPLE ST, BUTTERFIELD RD	TOWN OF LEXINGTON, TOWN OF LEXINGTON	~26 acros (AB 201) ~7 acro (AB 205)	AP-20
KLF_ID: AP-201, AP-205	CONSERVATION	~26 acres (AP-201), ~7-acre (AP-205)	AP-20

Site Opportunity map:

Does the Town envision that implementation of a wetland-scale GI project in this location could also mitigate or solve a local flooding issue: Definitely

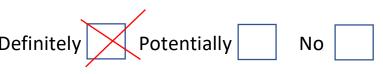
For all wetland opportunities, it is worth considering that baseflow drainage conditions (i.e., inter-storm event) would require ~1:100 loading ratio to maintain wetland function and ecology. For example, 3-acre wetland opportunity, a 300-acre (or larger) drainageshed would be re-routed towards the wetland, resulting in a local opportunity for flood storage and/or water quality treatment. When considering the size of upstream drainage that could be routed to the wetland GI, we recommend considering any localized flood issues that could potentially be addressed or mitigated as a result of this opportunity

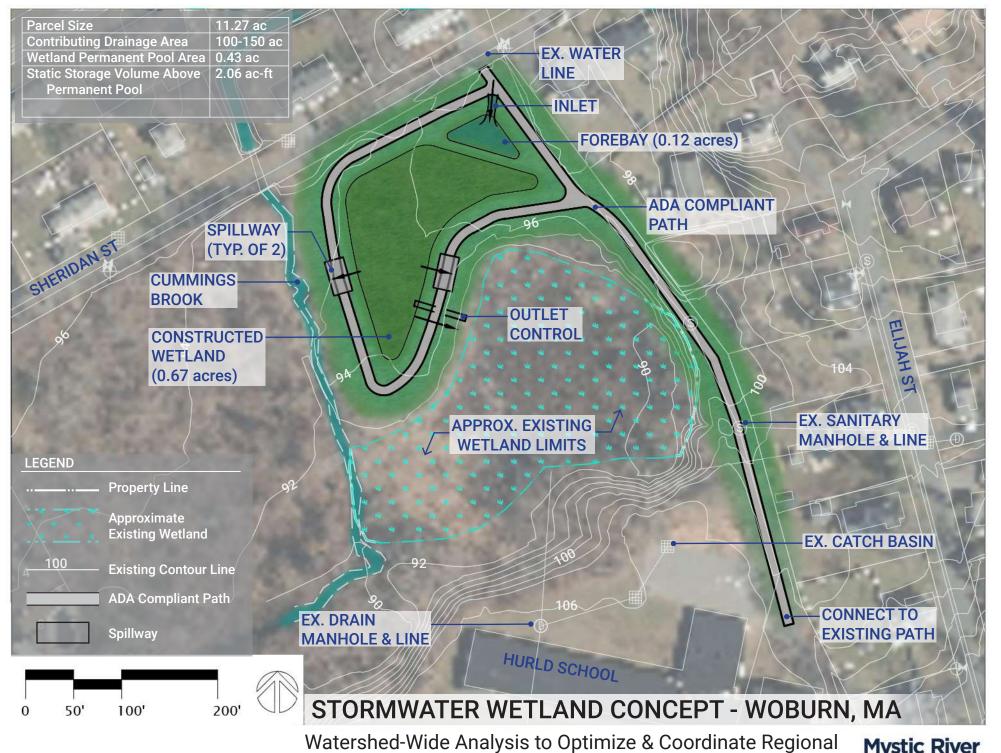
wn Notes / Feedback:

205 is Con Comm owned

Summary of Tier I criteria (1- Lowest score, 5-Highest score)

)-yr 24hr ′overbank ding)	(subc	70-10-yr 24hr atchment/pip ructure floodi	Regional (subcatchment) weight	
1	1			3
Article 97 protection status		Public Acceptance		
5,1 (AP-205	4		


Summary of Tier II criteria (1- Lowest score, 5-Highest score)


Proximity to existing park space, or Mystic waterfront (Connectivity)
5

Sites are mostly within the FEMA 500-yr zone. Modeled 2070 10-year flooding was not present in this location, however modeled piped infrastructure was limited in this area. Located in upper reaches of Mill Brook subcatchment. Routing >300 acres of drainage to this location may be a challenge (see Footnote).
 These sites contain some slopes 3-6% and are not protected site AP-205 is conservation.

AP-205 IS conservative use under Article 97 (per MassGIS Open Space layer)^{AP-205} Is conservation potential.
 Butterfield Rd site (AP-205) scored high for land cover/habitat

The site is in a census tract that scores in the low-middle range per CDC's Social Vulnerability Index (0.25 < x 0.5, out of 1.0).
The opportunity is along a primary tributary to Mystic River, with potential for increased connectivity/public open space.

Stormwater Management in the Mystic River Watershed

Mystic River

Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed

Prepared for the Resilient Mystic Collaborative (RMC)

75 Bedford Road (former Hurld School)- Woburn, MA

Owner

City of Woburn

Parcel Size

• 11.27 acres (site has protected site use under Article 97)

Conceptual Constructed Wetland Information

Contributing Drainage Area: 100-150 acres Forebay Area: 0.12 acres Wetland Area: 0.67 acres Wetland Permanent Pool Area: 0.43 acres Static Storage Volume Above Permanent Pool: 2.06 acre-ft

Conceptual Estimated Cost: \$1,464,000*

Constructed Wetland: \$997,000 Paths/Signage/Boardwalk: \$68,000 Wetland Mitigation: \$0 *Includes 10% Mobilization and 25% Contingency Cost, *Excludes Cost for Upstream Stormwater/Grey Infrastructure and Design/Permitting

Potential Pollutant Removal Estimates

~46 lbs/year TP removal, ~217 lbs/year TN removal

Site-Specific Opportunities & Co-Benefits

- Passive recreational opportunity with increased connectivity to the former Hurld School (building to be demolished and used for future public open space), improving site perception.
- Opportunity to connect to existing trail on east side of property connects Bedford Road and Sheridan Street. Recreation/trail opportunities are limited in this area of the City (Horn Pond areas are closest).
- The larger upland site area away from the existing wetland and Cummings Brook offer best opportunity for the constructed wetland.
- Existing upland parts of site is early successional woodland dominated by invasive tree, shrub, groundcover and vine species.

Woburn GIS Map – 75 Bedford Road Property

Site Photo – 75 Bedford Road Property

Design Considerations & Challenges

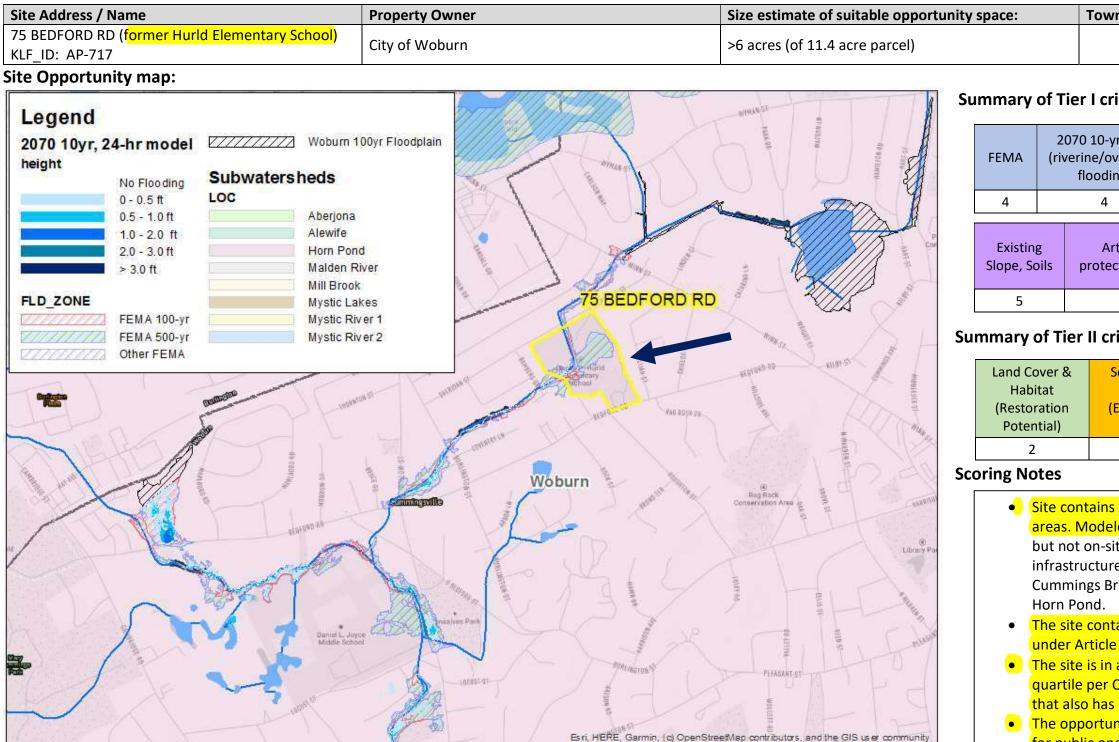
- Advantageously re-routing upstream stormwater for multiple benefits (such as Cummings Brook and Middlesex Canal low-lying areas) which have both low-flow, stagnant water issues and downstream flooding
- Other upstream drainage (near Rag Rock Hill on Bedford Rd side) may be more advantageous based on alternative siting layouts

Table 1. Project Summary Credit for Cambridge MVP Action Grant - Woburn

Table 1. Project Summary Credit for Cambridg	le 1. Project Summary Credit for Cambridge MVP Action Grant - Woburn					
	Removed Phosphorus Load (lb/yr)	Removed Nitrogen Load (lb/yr)	Removed Sediment Load (lb/yr)			
Structural	46.1	217.9	34,191.4			
Non-Structural	0	0	0			
Land Use Conversion	0	0	0			
Total	46.1	217.9	34,191.4			

Table 2. Structural Project Summary for Woburn

able 2. Structural Project Summary for Woburn										
Project ID	ВМР Туре	BMP Storage Capacity (ft³)/ Filter Depth (in.)	Phosphorus BMP Efficiency (%)	Nitrogen BMP Efficiency (%)	Sediment BMP Efficiency (%)	Removed Phosphorus Load (lb/yr)	Removed Nitrogen Load (Ib/yr)	Removed Sediment Load (lb/yr)	Impervious Area Treated (ac)	Runoff Depth (in.)
WoburnBMP	WET POND/CREATED WETLAND	406,300	55.7	34.7	80.3	83.7	388.6	57677.5	88.1	1.1


Table 3. Non-Structural Project Summary for WOBURN	
	There are no non-structural BMPs.
Table 4. Land Use Conversion Project Summary for WOBURN	
	There are no land use conversion projects.

Town of Woburn - 75 Bedford Rd. site

Concept-Level 10% Cost Estimate - December 2020

earthwork, planting soils, stabilization, tions to stormwater wetland inlet. liant boardwalk and stonedust trail	\$800,000 \$53,000
	\$53,000
liant boardwalk and stonedust trail	
	4
	\$15,000
lanting, buffer planting and seeding.	\$197,000
	\$0
Subtotal	\$1,065,000
10% Mobilization	\$106,500
25% Contingency	\$292,875
Total	\$1,464,000
	Subtotal 10% Mobilization 25% Contingency

SITE WOB1

Does the Town envision that implementation of a wetland-scale GI project in this location could also mitigate or solve a local flooding issue: Definitely

For all wetland opportunities, it is worth considering that baseflow drainage conditions (i.e., inter-storm event) would require ~1:100 loading ratio to maintain wetland function and ecology. For example, 3-acre wetland opportunity, a 300-acre (or larger) drainageshed would be re-routed towards the wetland, resulting in a local opportunity for flood storage and/or water quality treatment. When considering the size of upstream drainage that could be routed to the wetland GI, we recommend considering any localized flood issues that could potentially be addressed or mitigated as a result of this opportunity

Town Notes / Feedback:

5

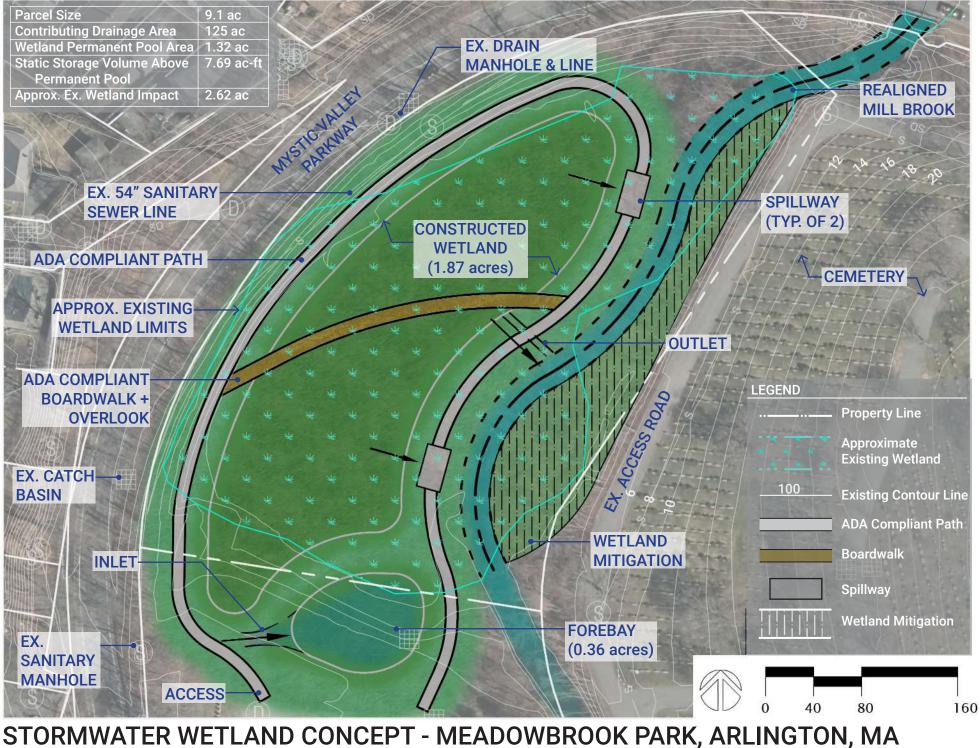
Summary of Tier I criteria (1- Lowest score, 5-Highest score)

)-yr 24hr ′overbank ding)	-	2070-10-yr 24 ubcatchment/p rastructure floc	iped	Regional (subcatchment) weight
4		5		5
Article 97 tection status		Public Acceptance		

Summary of Tier II criteria (1- Lowest score, 5-Highest score)

5

Socially Vulnerable	Proximity to existing
Populations	park space, or Mystic
(Equitable Access &	waterfront
Flood Risk)	(Connectivity)
5	5


 Site contains both FEMA 100-yr and FEMA 500-yr flood zone areas. Modeled 2070 10-year flooding is present downstream but not on-site (however model resolution and piped infrastructure was limited in this area). The site is along Cummings Brook, upstream of confluence with Little Brook, and

 The site contains flat slopes <3% and is not protected site use under Article 97 (per MassGIS Open Space layer).
 The site is in a census tract that scores in the most vulnerable quartile per CDC's Social Vulnerability Index (x > 0.75, out of 1.0) that also has modeled piped infrastructure flooding.
 The opportunity is located along Cummings Brook with potential for public open space or greenway connectivity potential.

efinitely 🔀 P

Potentially

No

Watershed-Wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed

Prepared for Resilient Mystic Collaborative (RMC)

Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed

Prepared for the Resilient Mystic Collaborative (RMC)

0 Mystic Valley Parkway (Meadowbrook Park) - Arlington, MA

Owner

Town of Arlington Park

Parcel Size

9.1 acres (site has protected site use under Article 97)

Conceptual Constructed Wetland Information

Contributing Drainage Area: 125 acres Forebay Area: 0.36 acres Wetland Area: 1.87 acres Wetland Permanent Pool Area: 1.32 acres Static Storage Volume Above Permanent Pool: 7.69 acre-ft Existing Wetland Impacted Area: 2.62 acres

Conceptual Estimated Cost: \$4,015,000*

Constructed Wetland: \$2,345,000 Paths/Signage/Boardwalk: \$100,000 Wetland Mitigation and Stream Restoration: \$475,000 *Includes 10% Mobilization and 25% Contingency Cost, *Excludes Cost for Upstream Stormwater/Grey Infrastructure and Design/Permitting

Potential Pollutant Removal Estimates

~76 lbs/year TP removal, ~365 lbs/year TN removal

Site-Specific Opportunities & Co-Benefits

- Mill Brook, an urban stream passing through the site, offers opportunity for stream restoration, flood mitigation, and ecological enhancement.
- Existing site is dominated by invasive phragmites grasses and Japanese knotweed.
- Opportunity for improved passive recreation accessibility (park has limited site access via cemetery).
- Opportunity to reduce erosion and pre-treat stormwater runoff from Town Cemetery and other upstream areas (water quality cobenefit).

Design Considerations & Challenges

• Constructed stormwater wetland could operate as a stormwater improvement separate from Mill Brook, assuming upstream runoff could be conveyed from west of site. However, MWRA sewer crossing is barrier to implementation.

Arlington GIS Map – Meadowbrook Park Property

Site Photo – Meadowbrook Park Property

 Alternative flood storage concept could utilize existing wetland area, adding active controls at downstream outlet to better detain and treat flows prior to discharging to Lower Mystic Lake.

Table 1. Project Summary Credit for Cambridge MVP Action Grant - Arlington

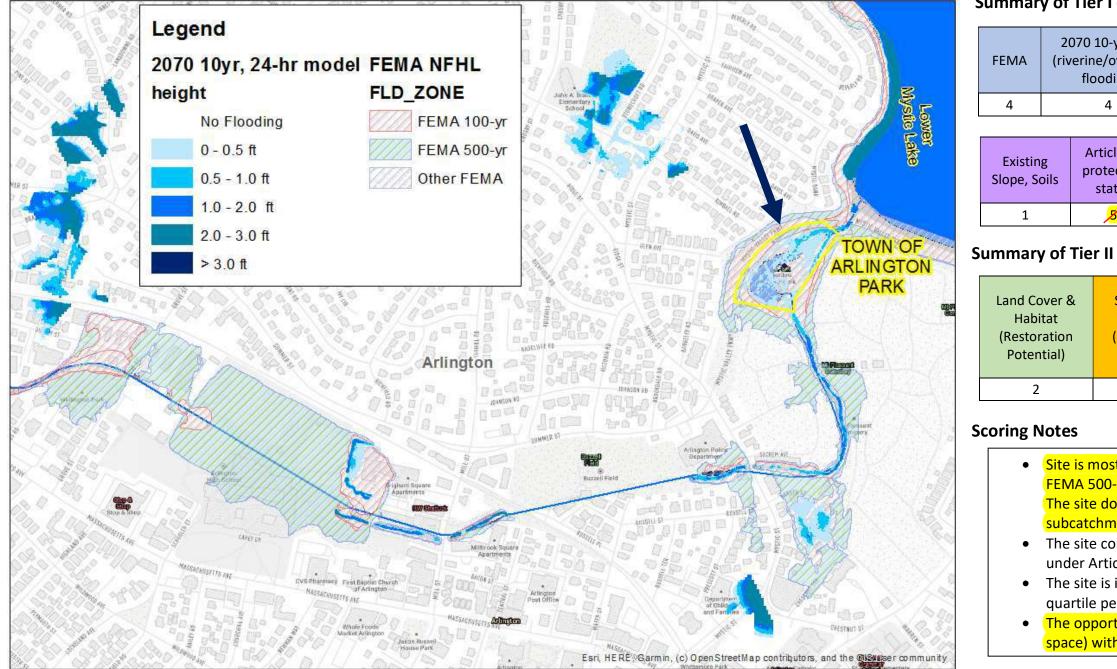
able 1. Project Summary Credit for Cambridge MVP Action Grant - Arlington						
	Removed Phosphorus Load (lb/yr)	Removed Nitrogen Load (lb/yr)	Removed Sediment Load (lb/yr)			
Structural	76.8	365.94	49,083.67			
Non-Structural	0	0	0			
Land Use Conversion	0	0	0			
Total	76.8	365.94	49,083.67			

Table 2. Structural Project Summary for Arlington

Project ID	ВМР Туре	BMP Storage Capacity (ft³)/ Filter Depth (in.)	Phosphorus BMP Efficiency (%)	Nitrogen BMP Efficiency (%)	Sediment BMP Efficiency (%)	Removed Phosphorus Load (lb/yr)	Removed Nitrogen Load (lb/yr)	Removed Sediment Load (lb/yr)	Impervious Area Treated (ac)	Runoff Depth (in.)
ArlingtonBMP	WET POND/CREATED WETLAND	406,300	57.08	36.08	81.9	76.8	365.94	49,083.67	74.29	1.27

Table 3. Non-StructuralProject Summary forARLINGTON	
	There are no non-structural BMPs.
Table 4. Land Use Conversion Project Summary for ARLINGTON	
	There are no land use conversion projects.

Town of Arlington - Meadowbrook Park


Concept-Level 10% Cost Estimate - December 2020

Item Description	Included Items	Cost
	Site prep, earthwork, planting soils, stabilization,	
Excavation and Earthwork	forebay.	\$2,000,000
Site Grey Infrastructure	All connections to stormwater wetland inlet.	
Paths and Boardwalks	ADA-compliant boardwalk and stonedust trail	\$85,000
Site Improvements	Signage	\$15,000
Planting	Wetland planting, buffer planting and seeding.	\$345,000
Wetland Mitigation and Stream Restoration	Mitigation of lost wetland & Mill Brook stabilization	\$475,000
	Subtotal	\$2,920,000
	10% Mobilization	\$292,000
	25% Contingency	\$803,000
	Total	\$4,015,000

SITE A1

Site Address / Name	Property Owner	Size estimate of suitable opportunity space:	Town
Meadowbrook Park	Town of Arlington	~2 7E acros	Poten
KLF_ID: AP-027	Town of Arlington	~3.75 acres	loss o

Site Opportunity map:

Does the Town envision that implementation of a wetland-scale GI project in this location could also mitigate or solve a local flooding issue: Definitely

For all wetland opportunities, it is worth considering that baseflow drainage conditions (i.e., inter-storm event) would require ~1:100 loading ratio to maintain wetland function and ecology. For example, 3-acre wetland opportunity, a 300-acre (or larger) drainageshed would be re-routed towards the wetland, resulting in a local opportunity for flood storage and/or water quality treatment. When considering the size of upstream drainage that could be routed to the wetland GI, we recommend considering any localized flood issues that could potentially be addressed or mitigated as a result of this opportunity

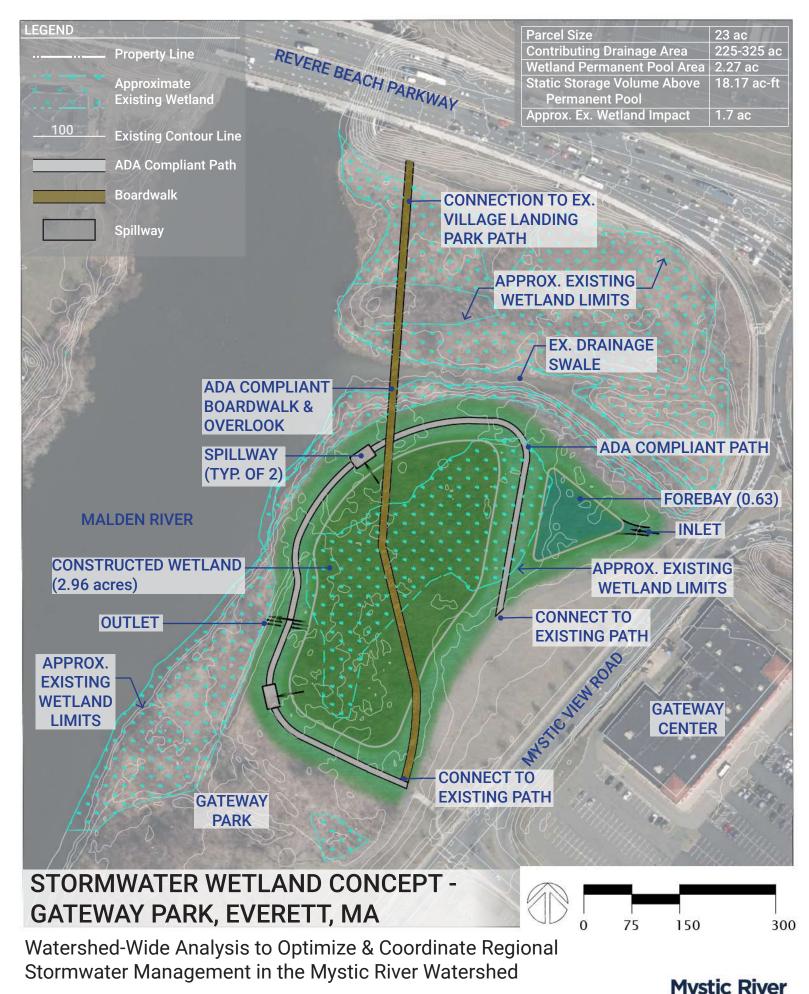
wn Notes / Feedback:

ential for flood storage. If there is benefit w/o s of usable space, public may be amenable.

Summary of Tier I criteria (1- Lowest score, 5-Highest score)

)-yr 24hr	2070-10-yr 24hr	Regional
'overbank	(subcatchment/piped	(subcatchment)
ding)	infrastructure flooding)	weight
4	5	3

cle 97 ection atus	Public Acceptance
<mark>8</mark> 1	5


Summary of Tier II criteria (1- Lowest score, 5-Highest score)

Socially Vulnerable	Proximity to existing
Populations	park space, or Mystic
(Equitable Access &	waterfront
Flood Risk)	(Connectivity)
1	5

Site is mostly within FEMA 100-yr flood zone, with portions in FEMA 500-yr zone, and modeled 2070 10-year flooding on-site. The site downstream of flood areas in the Mill Brook subcatchment, and the site discharges to Lower Mystic Lake.
 The site contains some slopes >6% and is not protected site use under Article 97 (per MassGIS Open Space layer).
 The site is in a consume tract that constant in the least under article.

The site is in a census tract that scores in the least vulnerable quartile per CDC's Social Vulnerability Index (x < 0.25, out of 1.0).
The opportunity is located within an existing park (public open space) with greater connectivity or greenway potential.

Prepared for Resilient Mystic Collaborative (RMC)

WATERSHED ASSOCIATION

Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed

Prepared for the Resilient Mystic Collaborative (RMC)

2 Mystic View Road (Gateway Park) - Everett, MA

Owner

DDRC Gateway LLC

Parcel Size

~23 acres

Conceptual Constructed Wetland Information

Contributing Drainage Area: 225-325 acres Forebay Area: 0.63 acres Wetland Area: 2.96 acres Wetland Permanent Pool Area: 2.27 acres Static Storage Volume Above Permanent Pool: 18.17 acre-ft Existing Wetland Impacted Area: 1.7 acres

Conceptual Estimated Cost: \$4,653,000*

Constructed Wetland: \$2,850,000 Paths/Signage/Boardwalk: \$159,000 Wetland Mitigation: \$375,000 *Includes 10% Mobilization and 25% Contingency Cost, *Excludes Cost for Upstream Stormwater/Grey Infrastructure and Design/Permitting

Potential Pollutant Removal Estimates

~166 lbs/year TP removal, ~769 lbs/year TN removal

Site-Specific Opportunities & Co-Benefits

- The location of proposed wetland park is strategically aligned with the long-term visions for the City of Everett waterfront and Malden River Greenway plans. Concept would improved passive recreation and pedestrian accessibility between the Amelia Earhart Dam and Village Landing Park up to Malden Center and (proposed) Spot Pond Brook Greenway.
- Existing site vegetation is dominated by invasive phragmites grasses, which are contracted to be removed every few years by private owner to preserve viewpoints.
- Concept builds off previous site visioning process with Shadley Associates, and has potential tie-in to proposed Spring Street Diversion Alternative in the City's Integrated (Water) Plan.

Everett MuniMapper – 2 Mystic View Rd Property

Site Photo - 2 Mystic View Rd Property

Design Considerations & Challenges

• Property is privately owned by DDRC Gateway LLC with activity and use limitations (AULs). Although proposed concept site uses are in line with AULs, further analysis of to determine if any required soil remediation is required.

Table 1. Project Summary Credit for Cambridge MVP Action Grant - Everett

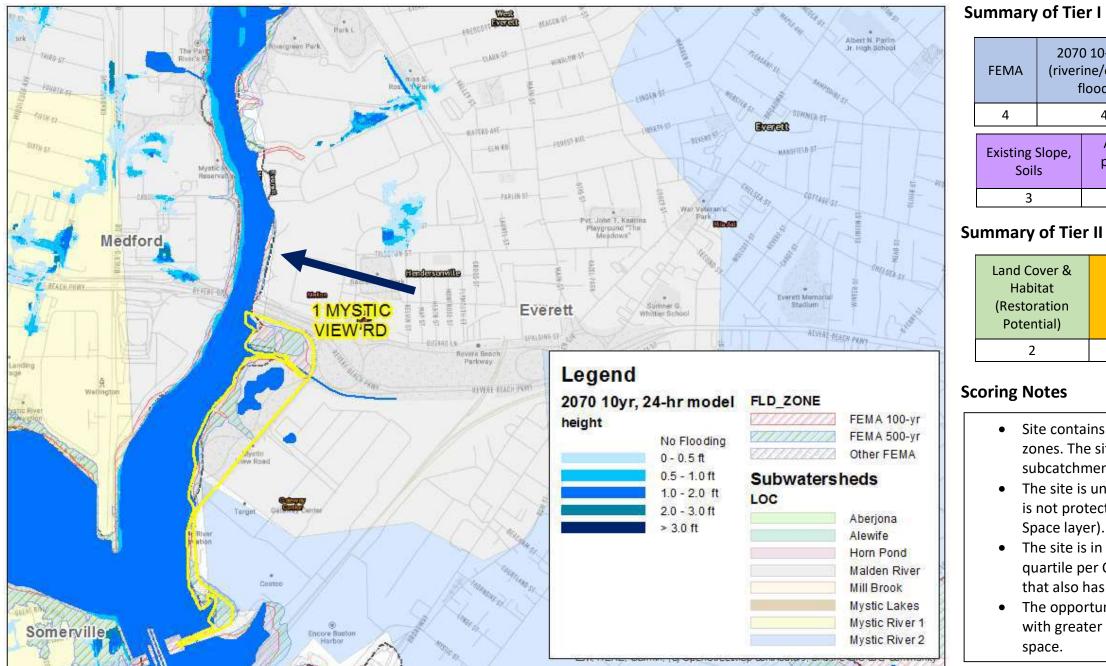
ible 1. Project Summary Credit for Cambridge MVP Action Grant - Everett							
	Removed Phosphorus Load (lb/yr)	Removed Nitrogen Load (lb/yr)	Removed Sediment Load (lb/yr)				
Structural	166.29	768.93	95,624.25				
Non-Structural	0	0	0				
Land Use Conversion	0	0	0				
Total	166.29	768.93	95,624.25				

Table 2. Structural Project Summary for Everett

able 2. Structural Project Summary for Everett										
Project ID	ВМР Туре	BMP Storage Capacity (ft³)/ Filter Depth (in.)	Phosphorus BMP Efficiency (%)	Nitrogen BMP Efficiency (%)	Sediment BMP Efficiency (%)	Removed Phosphorus Load (lb/yr)	Removed Nitrogen Load (Ib/yr)	Removed Sediment Load (lb/yr)	Impervious Area Treated (ac)	Runoff Depth (in.)
EverettBMP	WET POND/CREATED WETLAND	901,180	59.31	37.79	83.79	166.29	768.93	95,624.25	152.17	1.51

Table 3. Non-StructuralProject Summary for EVERETT	
	There are no non-structural BMPs.
Table 4. Land Use Conversion Project Summary for EVERETT	
	There are no land use conversion projects.

City of Everett - Gateway Park


Concept-Level 10% Cost Estimate - December 2020

Cost	Included Items	Item Description
	Site prep, earthwork, planting soils, stabilization,	Excavation and Earthwork
\$2,400,000	forebay.	
	All connections to stormwater wetland inlet.	Site Grey Infrastructure
\$144,000	ADA-compliant boardwalk and stonedust trail	Paths and Boardwalks
\$15,000	Signage	Site Improvements
\$450,000	Wetland planting, buffer planting and seeding.	Planting
\$375,000	Mitigation of lost wetland - 2.5 acres	Wetland Mitigation
\$3,384,000	Subtotal	
\$338,400	10% Mobilization	
\$930,600	25% Contingency	
\$4,653,000	Total	
	Total	Exclusions: Design and Permitting Costs, upstrean

SITE E1

Site Address / Name	Property Owner	Size estimate of suitable opportunity space:	Town
2 MYSTIC VIEW RD	Drivete nervel (DDDC CATEMAN LLC)		DCR-c
KLF_ID: AP-157	Private parcel (DDRC GATEWAY LLC)	23+ acre parcel	site st

Site Opportunity map:

Does the Town envision that implementation of a wetland-scale GI project in this location could also mitigate or solve a local flooding issue: Definitely

For all wetland opportunities, it is worth considering that baseflow drainage conditions (i.e., inter-storm event) would require ~1:100 loading ratio to maintain wetland function and ecology. For example, 3-acre wetland opportunity, a 300-acre (or larger) drainageshed would be re-routed towards the wetland, resulting in a local opportunity for flood storage and/or water quality treatment. When considering the size of upstream drainage that could be routed to the wetland GI, we recommend considering any localized flood issues that could potentially be addressed or mitigated as a result of this opportunity

n Notes / Feedback:

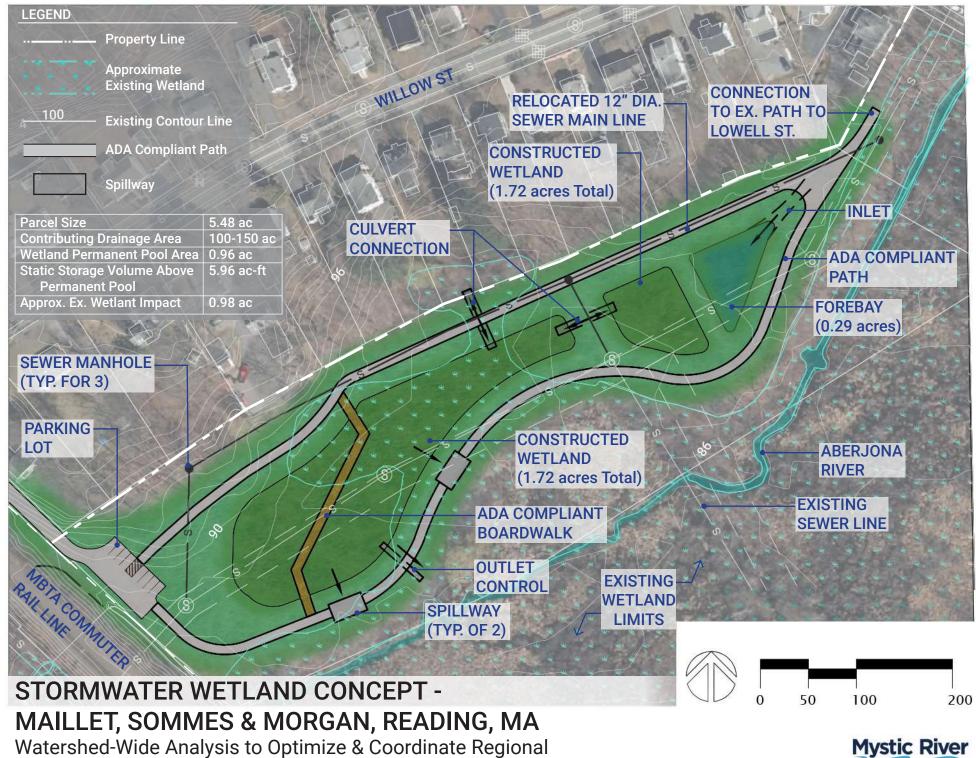
controlled site. Adjacent to former contaminated status unknown. Preferred site to the City.

Summary of Tier I criteria (1- Lowest score, 5-Highest score)

)-yr 24hr ′overbank ding)	2070-10-yr 24hr (subcatchment/pipe infrastructure floodin		Regional Ibcatchment) weight
4	5		1
Article 97 protection status	Public Acceptance		
5	5	5	

Summary of Tier II criteria (1- Lowest score, 5-Highest score)

Socially Vulnerable	Proximity to existing
Populations	park space, or Mystic
(Equitable Access &	waterfront
Flood Risk)	(Connectivity)
5	5


• Site contains areas within FEMA 100-yr and FEMA 500-yr flood zones. The site is at downstream end of Malden River subcatchment, adjacent to the Amelia Earhart Dam. • The site is undeveloped and contains slopes between 3-6% and is not protected site use under Article 97 (per MassGIS Open

• The site is in a census tract that scores in the most vulnerable quartile per CDC's Social Vulnerability Index (x > 0.75, out of 1.0) that also has modeled piped infrastructure flooding.

• The opportunity is located immediately adjacent to waterfront with greater connectivity or greenway potential as public open

No

Stormwater Management in the Mystic River Watershed

Prepared for Resilient Mystic Collaborative (RMC)

WATERSHED ASSOCIATION

Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed

Prepared for the Resilient Mystic Collaborative (RMC)

0 Willow Street (Maillet, Sommes & Morgan Land) - Reading, MA

Owner

Town of Reading (conservation parcel)

Parcel Size

5.48 acres; protected site use under Article 97

Conceptual Constructed Wetland Information

Contributing Drainage Area: 100-150 acres Forebay Area: 0.29 acres Wetland Area: 1.72 acres Wetland Permanent Pool Area: 0.96 acres Static Storage Volume Above Permanent Pool: 5.96 acre-ft Existing Wetland Impacted Area: 1 acre

Conceptual Estimated Cost: \$2,828,000*

Constructed Wetland: \$1,880,000 Paths/Signage/Boardwalk: \$97,000 Wetland Mitigation: \$80,000 *Includes 10% Mobilization and 25% Contingency Cost, *Excludes Cost for Upstream Stormwater/Grey Infrastructure and Design/Permitting

Potential Pollutant Removal Estimates

~79 lbs/year TP removal, ~364 lbs/year TN removal

Site-Specific Opportunities & Co-Benefits

- Concept compliments existing recreational and trail use; proposed ADA-compliant trail and boardwalk connects to existing open space circulation.
- It is envisioned that recreation/trail improvements can improve access linkage between Willow Street/Austin Preparatory School and depot/Town center (via Hunt & Vine Street).
- Wetland environmental education (co-benefit) and collaboration opportunity with Austin Preparatory School drainage improvements.
- Existing upland space at site comprised of low-quality lawn, Japanese knotweed, and oriental bittersweet invasives.
- Relocates existing sanitary sewer outside of the existing wetland.

Reading GIS Map - 0 Willow St Property

Site Photo – 0 Willow St Property

Design Considerations & Challenges

- Opportunities to mitigate flooding at Willow St, Lowell and Bond Streets, and washout sheet flow from Lee and Hunt Streets.
- Existing 12" sewer alignment cuts below advantageous areas for wetland space; may need to work around or relocate towards private parcels at north edge of site.

Table 1. Project Summary Credit for Cambridge MVP Action Grant - Reading

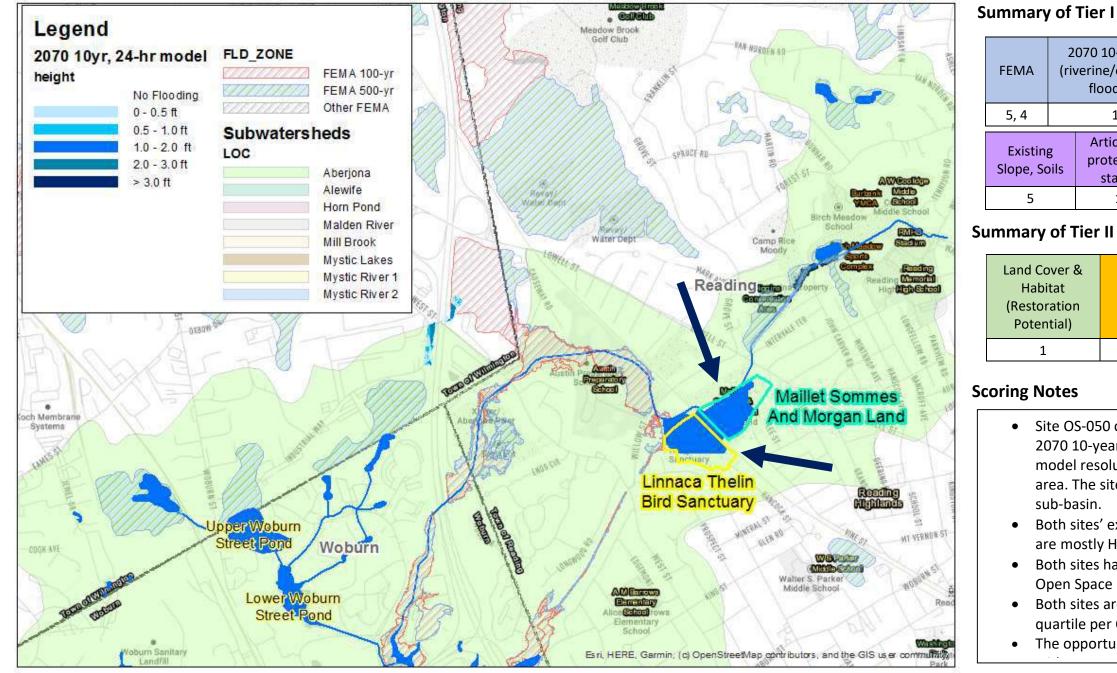
	able 1. Project Summary Credit for Cambridge MVP Action Grant - Reading						
		Removed Phosphorus Load (lb/yr)	Removed Nitrogen Load (Ib/yr)	Removed Sediment Load (lb/yr)			
	Structural	79.54	364.36	56,172.53			
Ī	Non-Structural	0	0	0			
Ī	Land Use Conversion	0	0	0			
	Total	79.54	364.36	56,172.53			

Table 2. Structural Project Summary for Reading

Project ID	ВМР Туре	BMP Storage Capacity (ft³)/ Filter Depth (in.)	Phosphorus BMP Efficiency (%)	Nitrogen BMP Efficiency (%)	Sediment BMP Efficiency (%)	Removed Phosphorus Load (lb/yr)	Removed Nitrogen Load (Ib/yr)	Removed Sediment Load (Ib/yr)	Impervious Area Treated (ac)	Runoff Depth (in.)
ReadingBMP	WET POND/CREATED WETLAND	374,350	55.91	34.91	80.5	79.54	364.36	56,172.53	74.83	1.06

Table 3. Non-Structural Project Summary for READING	
	There are no non-structural BMPs.
Table 4. Land Use Conversion Project Summary for READING	
	There are no land use conversion projects.

Town of Reading - Maillet Sommes & Morgan Land


Concept-Level 10% Cost Estimate - December 2020

Item Description	Included Items	Cost				
Excavation and Earthwork	Site prep, earthwork, planting soils, stabilization,					
	forebay.	\$1,600,000				
Site Grey Infrastructure	All connections to stormwater wetland inlet.					
Paths and Boardwalks	ADA-compliant boardwalk and stonedust trail	\$82,000				
Site Improvements	te Improvements Signage					
Planting	Wetland planting, buffer planting and seeding.	\$280,000				
Wetland Mitigation	Mitigation of lost wetland - 0.6 acres	\$80,000				
	Subtotal	\$2,057,000				
	10% Mobilization	\$205,700				
	25% Contingency	\$565,675				
	Total	\$2,828,000				
Exclusions: Design and Permitting Costs, upstream drainage retrofits						

SITE R2

Site Address / Name	Property Owner	Size estimate of suitable opportunity space:	Town
Maillet Sommes and Morgan Land, Linnaca Thelin		~11 acres (OS-056)	Potent
Bird Sanctuary		~11.8 acres (OS-050)	
KLF_ID: OS-056, OS-050		11.8 acres (05-050)	expan

Site Opportunity map:

Does the Town envision that implementation of a wetland-scale GI project in this location could also mitigate or solve a local flooding issue: Definitely

For all wetland opportunities, it is worth considering that baseflow drainage conditions (i.e., inter-storm event) would require ~1:100 loading ratio to maintain wetland function and ecology. For example, 3-acre wetland opportunity, a 300-acre (or larger) drainageshed would be re-routed towards the wetland, resulting in a local opportunity for flood storage and/or water quality treatment. When considering the size of upstream drainage that could be routed to the wetland GI, we recommend considering any localized flood issues that could potentially be addressed or mitigated as a result of this opportunity

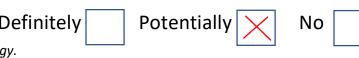
wn Notes / Feedback:

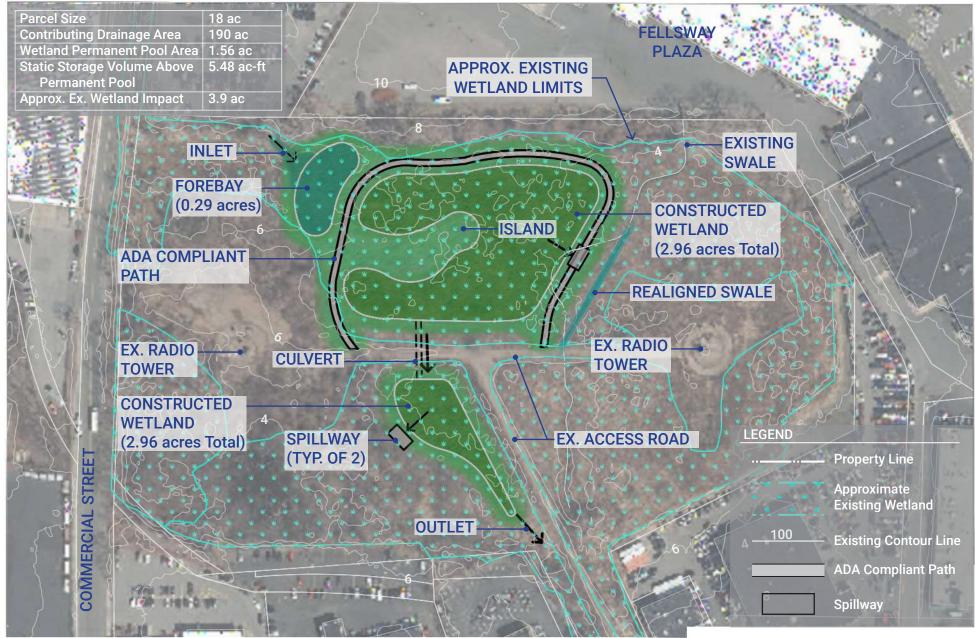
ential opportunity and second most likely, tream of localized flooding at Austin Prep. Could and recreation opportunities following work.

Summary of Tier I criteria (1- Lowest score, 5-Highest score)

)-yr 24hr 'overbank ding)		-2070-10 (subcatchm infrastructur	ent/piped	Regional (subcatchment) weight
1		1		5
cle 97 ection atus	,	Public Acceptance		
1	4			

Summary of Tier II criteria (1- Lowest score, 5-Highest score)


Socially Vulnerable	Proximity to existing
Populations	park space, or Mystic
(Equitable Access &	waterfront
Flood Risk)	(Connectivity)
1	5


• Site OS-050 contains portions in FEMA 500-yr zone. Modeled 2070 10-year flooding was not modeled in this location, however model resolution and piped infrastructure was limited in this area. The site is located in the upper reaches of the Aberjona

• Both sites' existing conditions contain mostly flat slopes <3% and are mostly HD wetland/woodland cover.

• Both sites have uses protected under Article 97 (per MassGIS Open Space layer). Locally designated for future green Open Space

Both sites are in a census tract that scores in the least vulnerable quartile per CDC's Social Vulnerability Index (x < 0.25, out of 1.0).
The opportunity is located within 500 feet the Aberjona River

STORMWATER WETLAND CONCEPT -4068 MYSTIC VALLEY PARKWAY, MEDFORD, MA

Watershed-Wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed

300

75

150

Watershed-wide Analysis to Optimize & Coordinate Regional Stormwater Management in the Mystic River Watershed

Mystic River

Prepared for the Resilient Mystic Collaborative (RMC)

4068 Mystic Valley Parkway - Medford, MA

Owner

Fellsway Associates LLC

Parcel Size

18 acres

Conceptual Constructed Wetland Information

Contributing Drainage Area: 190 acres Forebay Area: 0.29 acres Wetland Area: 2.52 acres Wetland Permanent Pool Area: 1.56 acres Static Storage Volume Above Permanent Pool: 5.48 acre-ft Existing Wetland Impacted Area: 3.9 acres

Conceptual Estimated Cost: \$3,944,000*

Constructed Wetland: \$2,442,000 Paths/Signage/Boardwalk: \$81,000 Wetland Mitigation: \$345,000 *Includes 10% Mobilization and 25% Contingency Cost, *Excludes Cost for Upstream Stormwater/Grey Infrastructure and Design/Permitting

Potential Pollutant Removal Estimates

~109 lbs/year TP removal, ~547 lbs/year TN removal

Site-Specific Opportunities & Co-Benefits

- Property is privately owned by Fellsway Associates LLC with development planned in the northwest upland portion of the site.
- Site has close proximity to Mystic River Reservation with potential for increased connectivity and public open space.
- Existing wetlands appear man-made. Low-quality habitat comprised almost entirely of invasive phragmites grasses.
- Existing radio tower, building, and access roads would not be impacted by concept.
- Opportunity for water quality improvement of adjacent largely-impervious commercial areas

MuniMapper – 4068 Mystic Valley Parkway Property

Site Photo – 4068 Mystic Valley Parkway Property

Design Considerations & Challenges

- Extent of existing upstream drainage site needs to be confirmed. Past wet weather observation (anecdotal by MyRWA) has noted that outlet by Mystic Valley Parkway has positive flow, but not substantial.
- Site outlet elevation is not much higher than Mystic River; active outlet controls may be needed to improve performance during low- to mid-size storm events.

Table 1. Project Summary Credit for Cambridge MVP Action Grant - Reading

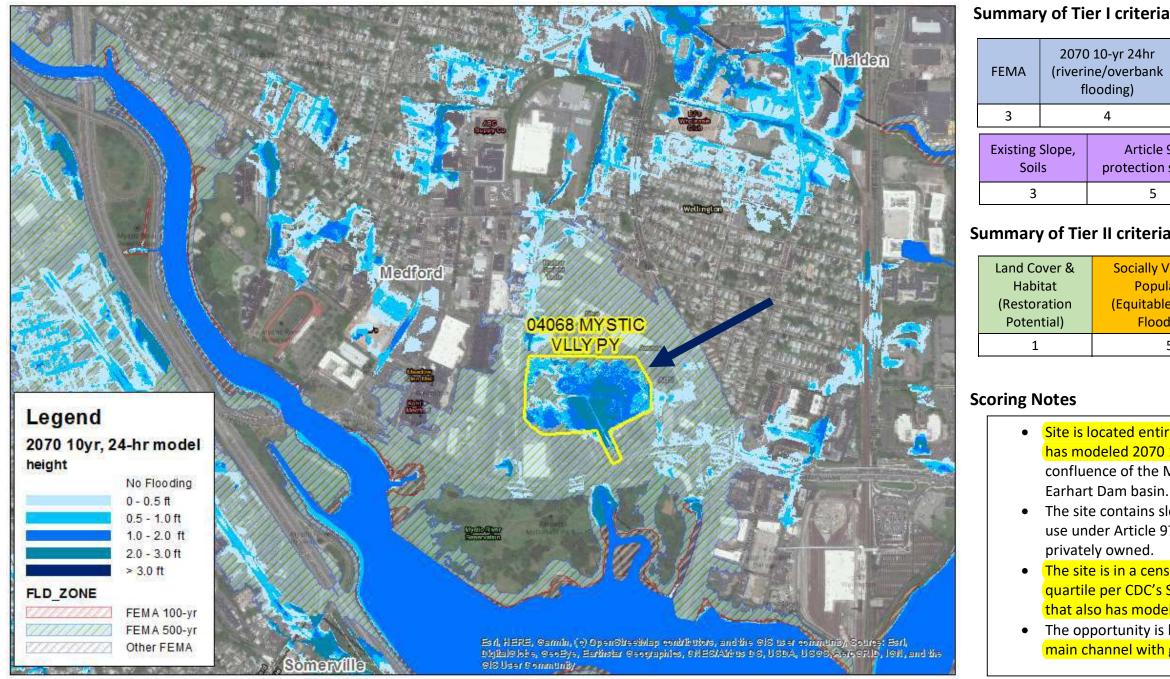
	able 1. Project Summary Credit for Cambridge MVP Action Grant - Reading						
		Removed Phosphorus Load (lb/yr)	Removed Nitrogen Load (Ib/yr)	Removed Sediment Load (lb/yr)			
	Structural	79.54	364.36	56,172.53			
Ī	Non-Structural	0	0	0			
Ī	Land Use Conversion	0	0	0			
	Total	79.54	364.36	56,172.53			

Table 2. Structural Project Summary for Reading

Project ID	ВМР Туре	BMP Storage Capacity (ft³)/ Filter Depth (in.)	Phosphorus BMP Efficiency (%)	Nitrogen BMP Efficiency (%)	Sediment BMP Efficiency (%)	Removed Phosphorus Load (lb/yr)	Removed Nitrogen Load (Ib/yr)	Removed Sediment Load (Ib/yr)	Impervious Area Treated (ac)	Runoff Depth (in.)
ReadingBMP	WET POND/CREATED WETLAND	374,350	55.91	34.91	80.5	79.54	364.36	56,172.53	74.83	1.06

Table 3. Non-Structural Project Summary for READING	
	There are no non-structural BMPs.
Table 4. Land Use Conversion Project Summary for READING	
	There are no land use conversion projects.

City of Medford - Mystic Valley Parkway (Radio Tower site)


Concept-Level 10% Cost Estimate - December 2020

Item Description	Included Items	Cost
Excavation and Earthwork	Site prep, earthwork, planting soils, stabilization,	
	forebay.	\$2,400,000
Site Grey Infrastructure	All connections to stormwater wetland inlet.	
Paths and Boardwalks	ADA-compliant boardwalk and stonedust trail	\$66,000
Site Improvements	Signage	\$15,000
Planting	Wetland planting, buffer planting and seeding.	\$42,000
Vetland Mitigation	Mitigation of lost wetland - 2.3 acres	\$345,000
	Subtotal	\$2,868,000
	10% Mobilization	\$286,800
	25% Contingency	\$788,700
	Total	\$3,944,000

SITE MED2

Site Address / Name	Property Owner	Size estimate of suitable opportunity space:	Town
04068 MYSTIC VLLY PY		~18 acres	previ
KLF_ID: AP-265	FELLSWAY ASSOCIATES LLC private		prom

Site Opportunity map:

Does the Town envision that implementation of a wetland-scale GI project in this location could also mitigate or solve a local flooding issue: Definitely

For all wetland opportunities, it is worth considering that baseflow drainage conditions (i.e., inter-storm event) would require ~1:100 loading ratio to maintain wetland function and ecology. For example, 3-acre wetland opportunity, a 300-acre (or larger) drainageshed would be re-routed towards the wetland, resulting in a local opportunity for flood storage and/or water quality treatment. When considering the size of upstream drainage that could be routed to the wetland GI, we recommend considering any localized flood issues that could potentially be addressed or mitigated as a result of this opportunity

n Notes / Feedback:

vious radio tower/contaminated site

Summary of Tier I criteria (1- Lowest score, 5-Highest score)

)-yr 24hr ′overbank ding)	2070-10-yr 24hr (subcatchment/piped infrastructure flooding)		Regional (subcatchment) weight
4	5		1
Article 97 protection status		Public Acceptance	
5		4	

Summary of Tier II criteria (1- Lowest score, 5-Highest score)

Socially Vulnerable	Proximity to existing
Populations	park space, or Mystic
(Equitable Access &	waterfront
Flood Risk)	(Connectivity)
5	3

• Site is located entirely within the FEMA 500-yr flood zone, and has modeled 2070 10-year flooding on-site. The site is near the confluence of the Mystic River channelized section and Amelia

• The site contains slopes between 3-6%, and is not protected site use under Article 97 (per MassGIS Open Space layer), but is

• The site is in a census tract that scores in the most vulnerable quartile per CDC's Social Vulnerability Index (x < 0.25, out of 1.0) that also has modeled piped infrastructure flooding.

• The opportunity is located in close proximity to the Mystic River main channel with greater connectivity or greenway potential.

Potentially

No

Mystic MVP Grant Top 6 Site Key Quantity Estimates

Maple Street, Lexington				
Parcel Size (acres)	27.26			
Contributing Drainage Area (acres)	205			
Forebay Area (sf)	15,110			
Wetland Area (sf)	58,420			
Permanent Pool Area (sf)	38,080			
Assumed elevation of wetland outlet, El. NAVD88	179.0			
Assumed elevation of top of permanent pool, El. NAVD88	174.0			
Static Storage Volume Above Permanent Pool (acre-ft)	5.18			
Existing Wetland Area Impacted (sf)	0			

75 Bedford Street, Woburn				
Parcel Size (acres)	11.27			
Contributing Drainage Area (acres)	100-150			
Forebay Area (sf)	5,285			
Wetland Area (sf)	29,320			
Wetland Permanent Pool Area (sf)	18,900			
Assumed elevation of wetland outlet, El. NAVD88	94.0			
Assumed elevation of top of permanent pool, El. NAVD88	90.0			
Static Storage Volume Above Permanent Pool (acre-ft)	2.06			
Existing Wetland Area Impacted (sf)	0			

0 Mystic Valley Parkway (Meadowbrook Park), Arlington		
Parcel Size (acres)	9.1	
Contributing Drainage Area (acres)	125	
Forebay Area (sf)	15,750	
Wetland Area (sf)	81,260	
Wetland Permanent Pool Area (sf)	57,420	
Assumed elevation of wetland outlet, El. NAVD88	7.0	
Assumed elevation of top of permanent pool, El. NAVD88	2.0	
Static Storage Volume Above Permanent Pool (acre-ft)	7.69	
		note: includes area impacted fo
Existing Wetland Area Impacted (sf)	113,940	paths

Parcel Size (acres)	23	
Contributing Drainage Area (acres)	225-325	
Forebay Area (sf)	27,500	
Wetland Area (sf)	128,740	
Wetland Permanent Pool Area (sf)	99,040	
Assumed elevation of wetland outlet, El. NAVD88	7.0	
Assumed elevation of top of permanent pool, El. NAVD88	0.0	
Static Storage Volume Above Permanent Pool (acre-ft)	18.17	
Existing Wetland Area Impacted (sf)	72,980]
		•
0 Willow Street (Maillet, Sommes & Morgan Land), Reading		-
Parcel Size (ac)	5.48	-
Contributing Drainage Area (acres)	100-150	
Forebay Area (sf)	12,740	
Wetland Area (sf)	74,870	
Wetland Permanent Pool Area (sf)	41,770	
Assumed elevation of wetland outlet, El. NAVD88	91.0	
Assumed elevation of top of permanent pool, El. NAVD88	86.0	
Static Storage Volume Above Permanent Pool (acre-ft)	5.96	
Existing Wetland Area Impacted (sf)	42,580	
4068 Mystic Valley Parkway, Medford		1
Parcel Size (acres)	18	1
Contributing Drainage Area (acres)	190	
Forebay Area (sf)	12,730	
Wetland Area (sf)	109,880	
Wetland Permanent Pool Area (sf)	67,740	
Assumed elevation of wetland outlet, El. NAVD88	5.0	
Assumed elevation of top of permanent pool, El. NAVD88	2.0	
Static Storage Volume Above Permanent Pool (acre-ft)	5.48]
		note: includes area impact
Existing Wetland Area Impacted (sf)	168,430	for paths

Appendix P

Active Reservoir Management -Supporting Documentation

Screening assessment of large water bodies, reservoirs, and ponds with potential for Active Reservoir Management (ARM)

BAOWNANE		.	Explicity modeled in ICM-2D		FEMA NFHL notes; site use notes from MS4 NOI's and		Flow Control at Outlat (to confirm)
BASIN NAME	(Acres)	Priority	regional model?	ARM Opportunity status; outreach + prioritization notes	published web content	Owner or Operator	Flow Control at Outlet (to confirm)
				Represented in model w/bathymetry but simplified runoff-storage			
				relationship in model; outfall structure (discharge goes through open			
Spot Pond	282.19	3	bathymetry only; no outflow	channel ditch Melrose, then Malden, and buried connection to Malden River)	minimal flood hazard - recreation - fishing	DCR / received back from MWRA	Spot Pond earthen dam
•		-		updated stop log portion and ogee overflow weir based on call/email with	¥		
Upper Mystic Lake*	158.35	2	yes	DCR; scematic shared by Mike Galvin/Bill Gode	recreation - floodway	DCR	Mystic Dam
Fresh Pond	151.67			not an opportunity per existing use / separate from Mystic watershed drainage	recreation - 0.2% annual chance flood hazard	City of Cambridge	n/a; disconnected from watershed
				moeled in VHB updated HEC-RAS model; model data shared via Sharepoint, but simulation of controlled released (active controls) not yet			
Horn Pond*	98.73		yes	integrated in ICM-2D model	recreation - regulatory floodway	City of Woburn	Scalley Dam (Horn Pond Dam)
				assumption made about length of weir; 36" pipe is likely limiting factor; bathymetry in ICM2D is an improvement over what is included in Jeff	recreation - arsenic pollution - without base flood elevation		rectangular standpipe; culvert to Little
Spy Pond	93.92	1	yes	Walker study	Zone A	Arlington land trust	Pond
Lower Mystic Lake*	85.22		yes	not an opportunity per DCR	recreation - regulatory floodway Zone AE	DCR	n/a; begins Mystic River at southeast end
				The City of Medford's model already accounts for the hydrologic response from the Middle/South Reservoir through its calibration. South and Middle			
South Reservoir	72.12		no	Reservoirs are connected.	minimal flood hazard	Town of Winchester DPW	South Reservoir Dam (S) and East Dike (in Medford)
				The City of Medford's model already accounts for the hydrologic response from the Middle/South Reservoir through its calibration. South and Middle			
Middle Reservoir	52.96		no	Reservoirs are connected.	minimal flood hazard	Town of Winchester DPW	Middle Reservoir Dike (in Medford)
				North Reservoir is separate, but has a pumped connection from the Middle			
				Reservoir. The regional model does does not have available data on the sub-			
				surface or open channel network between the Aberjona River and the North Reservoir. The available HydroCAD model provided by the Town would have			
				been prohibitively time-intensive to import to ICM and would have required			
North Reservoir	51.98		ves	major assumptions on the conveyance features downstream of the outlet structure.	minimal flood hazard	Town of Winchester DPW	North Reservoir Dam (in Winchester)
			,				
				An emergency spillway, built in 2006, was added to the Arlington Reservoir model element. The emergency spillway geometry was based on 2018	beach recreation - without base flood elevation - some regulatory		
Arlington Reservoir*	24.9		yes	Arlington Reservoir Master Plan.	floodway	Inhabitants of Arlington - Public	Dam (earthen embankment)
Wright's Pond	24.22	4	ves	was added into ICM-2D model update using outlet/stop log data from AECOM dam safety report	recreation - without base flood elevation	MDC	Wrights Pond Dam
		· · · · ·		topogprahically challenging; pond sits too low for flood mitigation ARM (may	recreation / minimal flood hazard; low flow typical, can dry up in		
Wedge Pond*	22.73		yes	be good water quality ARM opportunity) opportunity may be limited; discharges to Spot Pond Brook conduit	summer months	Town of Winchester	outlet flows under Main St to Judkins Pond
Ell Pond: Crystal Pond, Melrose	20.71		no	(controlling impact)	without base flood elevation	City of Melrose	crest gate (flood control; added 2008) flows under Mishawum Rd to Aberjona
MISHAWUM LAKE	18.05			ICM-2D model is cut at Highway	polluted - floodway Zone AE	MARK-PHILLIP TRUST	River
Little Pond, Belmont	16.12		yes	downstream of Spy Pond, upstream of Alewife Brook	recreation- significant wetlands - regulatory floodway Zone AE	DCR/ Commonwealth of Massachusetts	n/a, flows to Little River
	10.12		yes	removed from model; refer to ENSR 2000 report limited opportunity for	minimal flood hazard; eutrophication some issues maintaining		
Winter Pond	14.74			flood mitigation ARM (may be good water quality ARM opportunity)	water level	Town of Winchester	flows to Little Winter Pond
Fells Reservoir	11.27		no	not an opportunity per existing use	recreation - potential for drinking water use in emergency cases	MWRA	earthen embankment
Clay Pit Pond	10.54	5	ves	opportunity may be limited; some flooding has occurred in adjacent areas in recent past	man-made pond: impaired - flooding issues - floodway Zone AE	Inhabitants of Belmont	buried connection to Blair Pond / Little River
		Ŭ	,			JAMITKOWSKI WALTER J JR,	
Upper Woburn Street Pond FOWLE BROOK/HORN POND	9.04 8.74			ICM-2D model is cut at Highway updates are likely included in VHB's latest HEC-RAS update	area of minimal flood hazard recreation - regulatory floodway	TRUSTEE City of Woburn	earthen dam? -
BROOKS POND	6.97			to Lower Mystic Lake; not an opportunity	recreation - without base flood elevation	City of Medford	-
Doleful Pond Quarter Mile Pond	6.74 5.47			DCR has no info to provide DCR has no info to provide	minimal flood hazard - recreation recreational fishing - without base flood elevation	DCR DCR	piped flow to Spot Pond -
Follomore Bond		tigd to 4	1/22		recreation - fishing - without base flood elevation; backup water	Comm of Mass	Follomoro Dond Dom
Fellsmere Pond Whittemore Pond + Walker pond /	4.71	tied to 4	yes	was added into ICM-2D model update	supply Malden		Fellsmere Pond Dam n/a; small impoundment before joining
adjacent Woburn parcels	4.32	6		not yet integrated in ICM-2D model; 2D detailed zone is east of railway	impaired - recreation fishing recreation - potential for drinking water use in emergency cases	KRAFT GENERAL FOODS INC	Aberjona
Boojum Rock Pond	3.62			opportunity may be limited due to size	(Fells Reservoir MWRA)	DCR	-
Little Fresh Pond	3.39			not an opportunity per existing use / separate from Mystic watershed drainage	recreation - 0.2% annual chance flood bazard	City of Cambridge	n/a: disconnected from watershed
						RESOURCES FOR RESPONSIBLE	
Lower Woburn Street Pond	3.29			not yet integrated in ICM-2D model; 2D detailed zone is south of highway removed from model; refer to ENSR 2000 report limited opportunity for	area of minimal flood hazard	SITE MGMT TR.	n/a; culvert at Congress St
LITTLE WINTER POND	2.87			flood mitigation ARM (may be good water quality ARM opportunity)	minimal flood hazard	Town of Winchester	flows to Wedge Pond
Jerrys Pond SMITH POND	2.57 2.51			may be opportunity as part of future site redevelopment opportunity may be limited due to size	polluted private water - without base flood elevation Zone A recreation - toxic algal bloom	GCP Applied Technologies INC Town of Winchester	n/a; mad-made -
Judkins Pond	2.08			opportunity may be limited due to size and elevation	impaired - minimal flood hazard	Town of Winchester	n/a; flow to Aberjona

1

Draft Control Logic for ARM at two case study locations -Spy Pond (Arlington) and Wright's Pond (Medford)

Draft Control Logic for Mystic River MVP

The proposed control logic for both Spy Pond and Wright's Pond would rely on real-time calculations that compare forecast conditions to current measured conditions, determining if a drawdown is required to create storage capacity. For both sites the logic will determine a binary Release / Don't Release decision which would be used to control a pump to draw down the ponds. An overview of the control structure is shown in Figure 1. The control logic relies on site specific thresholds and maximum / minimum bounds on desired water level. Proposed control settings are shown in Tables 2 and 3 for the two sites.

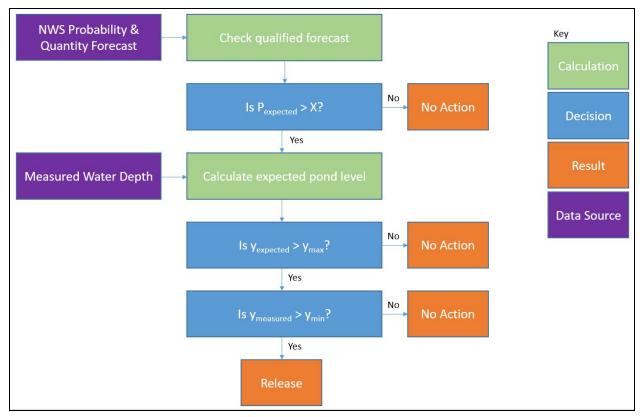


Figure 1: Logic Flow Diagram for Spy Pond and Wright's Pond

Table 1: Forecast Parameters

	Spy Pond	Wright's Pond
Probability Trust Threshold (%)	60	60
Quantity Trust Threshold (in)	0.05	0.05
Forecast Window (hrs)	48	48
Drainage Area (acres)	706	264

Table 2: Control Parameters

	Spy Pond	Wright's Pond
Minimum Drawdown Elevation (ft)	2.0 ft NGVD 29	132.2 ft NAVD88
Maximum Target Elevation (ft)	4.0 ft NGVD29	135.2 ft NAVD88
Downstream Release Defeat Threshold (in)	N/A	48

Calculation 1: Check qualified forecast

Data Sources:

- NWS Probability of Precipitation (POP) model
- NWS Quantitative Precipitation Forecast (QPF) model

Specified Parameters:

- Forecast window
- Probability Trust Threshold
- Quantity Trust Threshold

For each time step, the POP and QPF forecasts will be compared against the specified thresholds. If both forecast models exceed their respective threshold for a time step in the forecast window, the predicted rainfall volume (QPF) will be added to the total expected rainfall. National Weather Service forecasts are available up to 48 hours in advance, however if a longer forecast duration is required a proprietary forecast model from DarkSky can be used instead with a maximum duration of one week. An overview of the forecast calculations is shown in Figure 2.

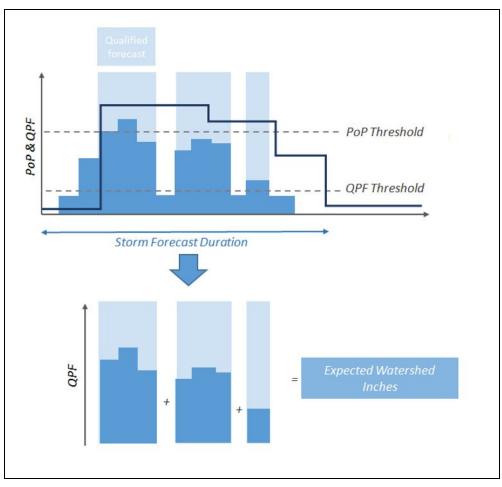


Figure 2: Overview of Forecast Qualification and Calculation

Calculation 2: Calculate expected pond level

Data Sources:

- Measured Water Level (from Opti gateway or approved alternative)
- Expected Watershed Inches (from Calculation 1)

Specified Parameters:

- Maximum Water Level
- Minimum Water Level

For each time step, the "Expected Watershed Inches" value calculated in step 1 is applied to a simple hydrologic model to translate expected rainfall to expected inflow volume. Using the measured water level in the pond, the current storage volume is calculated using a stage-storage relationship. The Expected Inflow Volume is added to the Current Storage Volume, and this new volume is used to back out the expected stage ($\gamma_{expected}$) again using the stage-storage relationship. An overview of the different parameters and calculated values is shown in Figure 3.

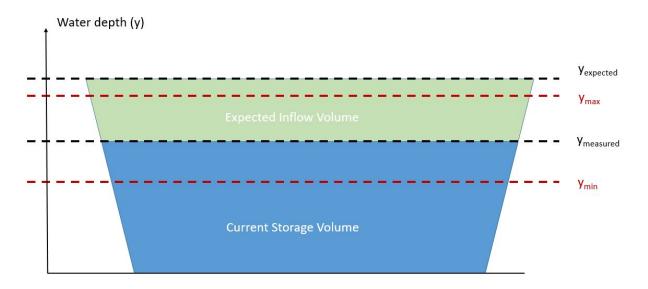


Figure 3: Calculated Levels and Volumes used in Spy Pond & Wright's Pond Control Logic

Once the expected stage is determined, the following logic is used to determine whether or not to initiate a release:

IF

 $y_{expected} > y_{max} AND y_{measured} > y_{min}$,

THEN:

Initiate Release

ELSE:

No Release

Release Defeat Logic:

Data Sources:

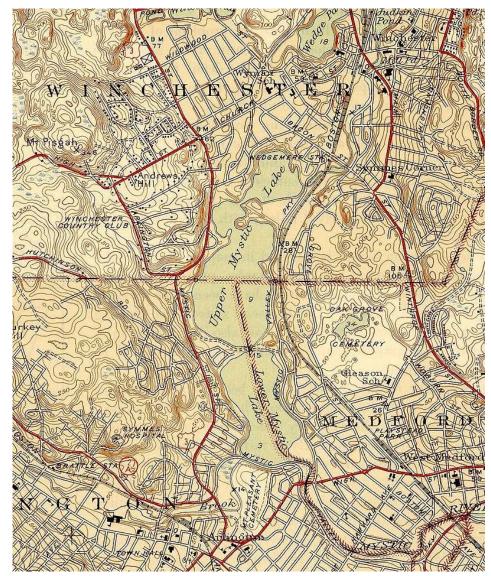
• Downstream water level (from Opti gateway or approved alternative)

Specified Parameters:

• Downstream Release Defeat Threshold

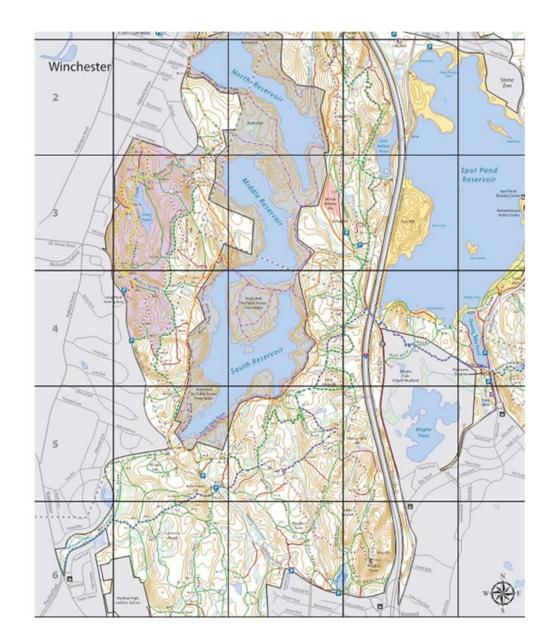
In addition to the predictive control logic, a release defeat is suggested for Wright's Pond that could limit releases based on a measured downstream condition. Because the downstream 48" culvert would likely constrain flow from the pond, an additional level sensor placed in the culvert could be used to

determine when outflow should be halted to avoid downstream flooding. When the measured downstream level exceeds the defined Downstream Release Defeat Threshold, all other control decisions will be overridden to a "No Release" decision.


Notes from communications with staff from DCR, Town of Arlington, Town of Winchester, and City of Medford (April - August 2020)

Active Reservoir Management Update

April 2020


DCR Update

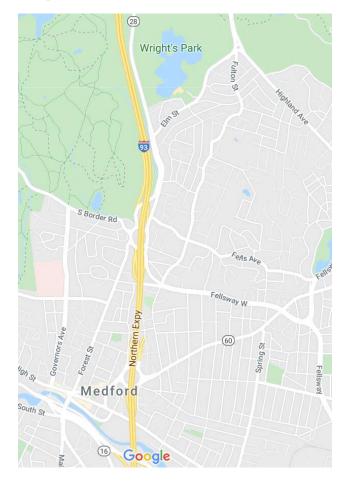

- Upper Mystic Lake:
 - Maximum Drawdown is 2ft
 - Gravity drained, so long lead time (~72 hours) to drawdown
 - A dam was added in 2010
 - Designed for extreme storms, has yet to be used
 - An anticipated storm with at least 4 inches of rainfall is needed to lower the water level, to prevent environmental damage.
 - The Upper Mystic Lake Dam crest gates:
 - are 7' wide,
 - have a maximum crest gate elevation of 114.8' MDC Base,
 - and have a minimum crest gate elevation of 110.5' MDC Base ***although it is not reasonable to plan for the UML to be dropped as low as 110.5'***
- Lower Mystic Lake:
 - Water level controlled by Amelia Earhart Dam
- Spot Pond
 - ARM may be limited by drinking water uses
 - Continuing research on ARM options

Winchester Update

- Winchester has been working on a 20-year program to mitigate flooding, especially along the Aberjona
- Center Falls Dam & Horn Pond
 - Flow at Center Falls Dam is coordinated with Woburn based on Horn Pond levels and discharges
 - Winchester recently rebuilt Scully Dam at Horn Pond
 - Our team is working to capture the management between Center Falls Dam and Horn Pond in the regional model scenarios
- North, Middle and South Reservoirs
 - Provides about 1/3 of Winchester's drinking water (based on Summer)
 - South and Middle Reservoirs are connected. North Reservoir is separate, but has a pumped connection from the Middle Reservoir.
 - South and North Reservoirs are actively managed to prevent downstream flooding
 - Our team is working to incorporate operations at the reservoirs within regional model scenarios

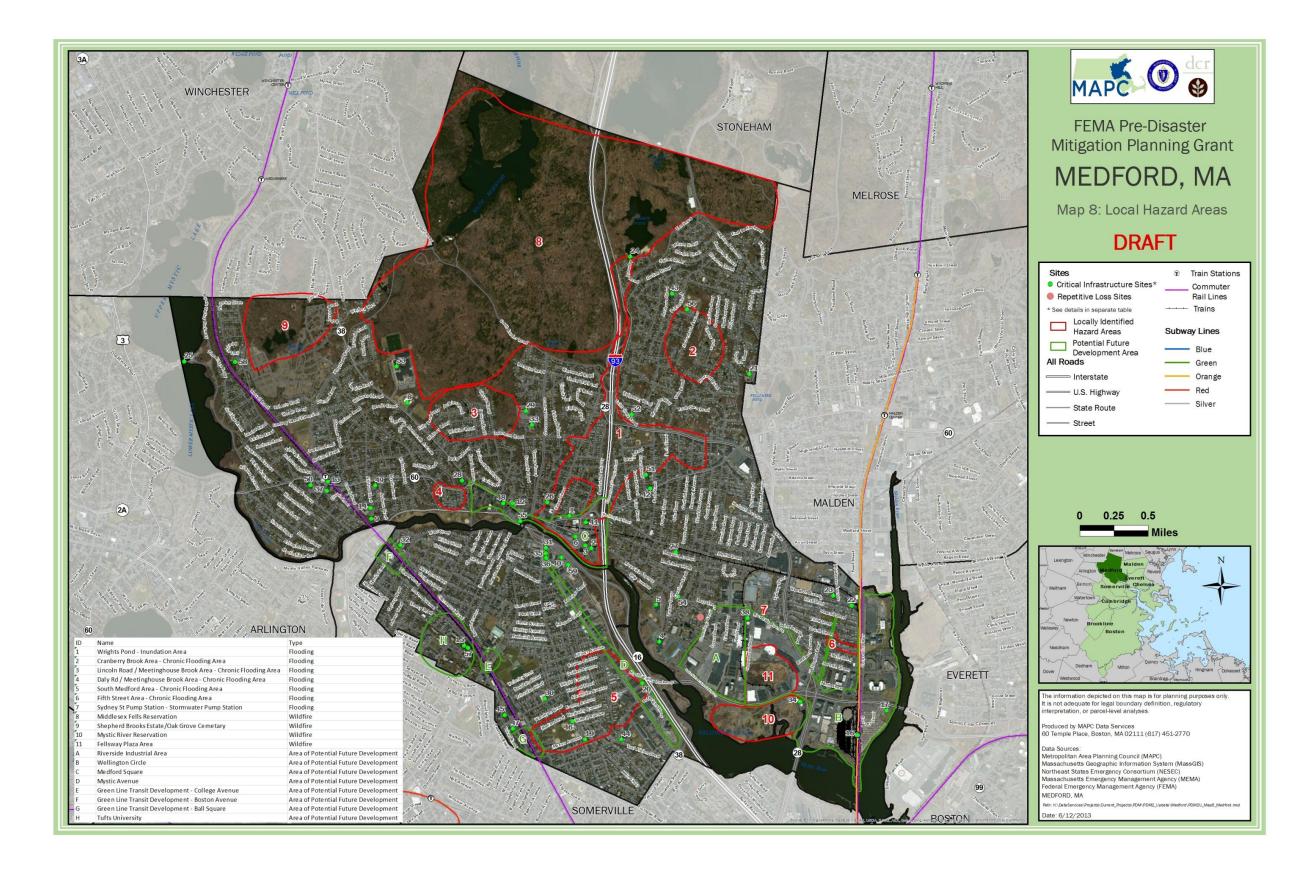
PROFILE OF OUTFALL AT SPY POND* Scale: 1* = 4' All Elevations are Relative to the MDPW Datum of 1929.

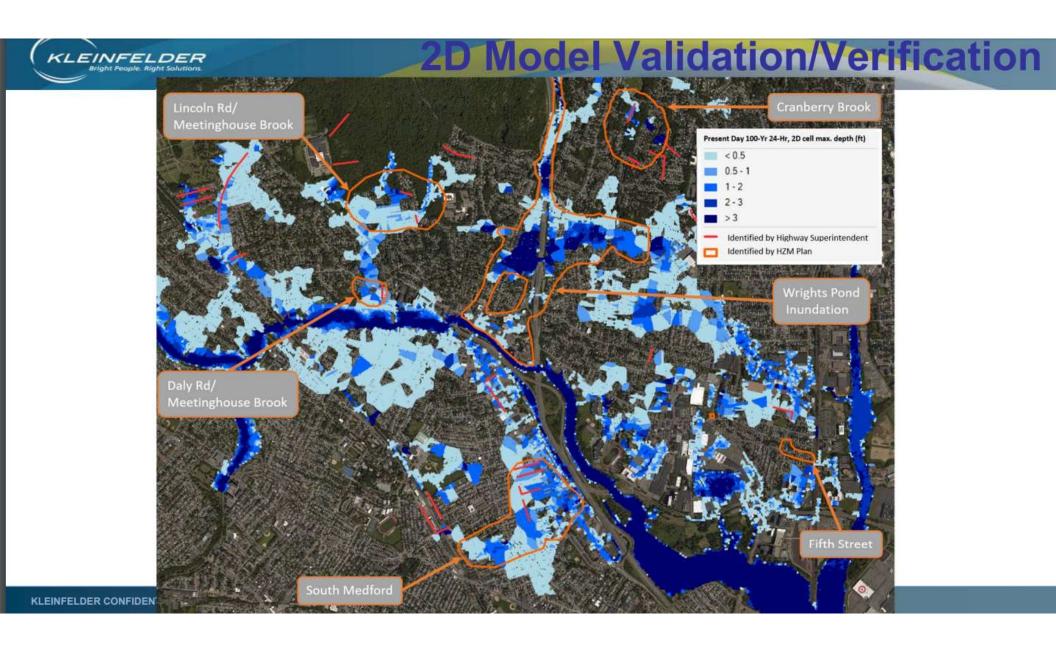
Spy Pond

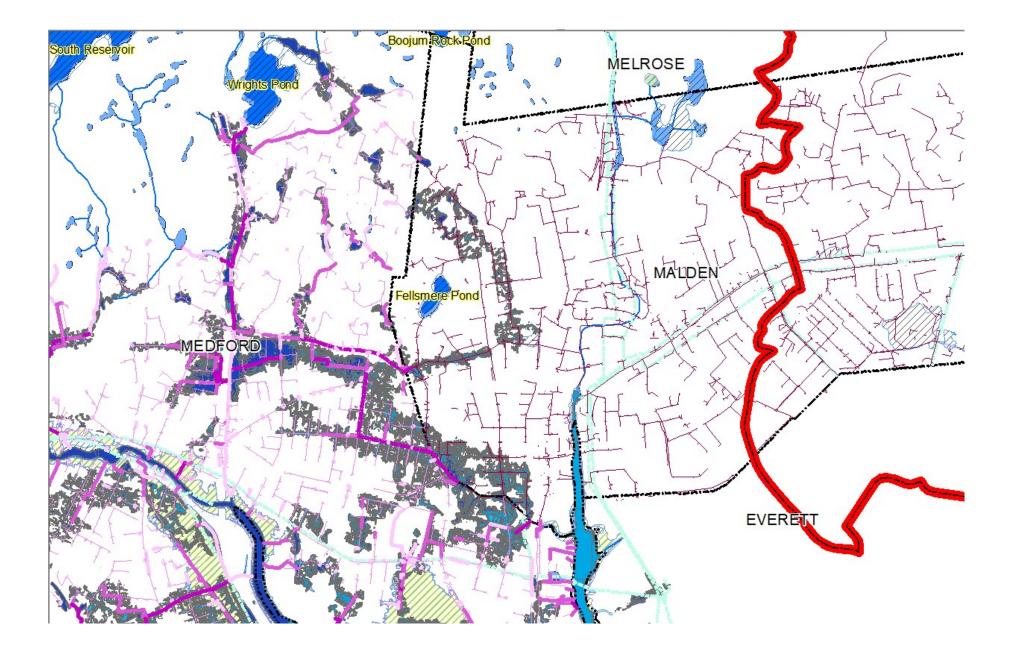

- Using Jeffrey Walker's findings for model scenarios
 - Gravity spillway elevation: 4.17' MDW Datum of 1929
 - Assumed water level at start of event (48 hours prior to rainfall): 4.17'
 - Max drawdown: 1.5 feet
 - Min water level: (4.17' 1.5'), or 2.67'

Additional Ponds in The Watershed

- Looking into adapting the approach from Walker's Spy Pond Study, at a high level, for other sites:
 - Spot Pond (DCR/Stoneham),
 - Clay Pit Pond (Belmont),
 - Wright's Pond (DCR/Medford),
 - Walker/Whittemore Pond (Woburn)
- Researching:
 - Downstream flow constrictions
 - Key Pond elevations, especially outfalls
 - Drawdown limitations


Wright's Pond




e. Dams

Dams serve as critical infrastructure for Medford since their failure would result in significant damage within the city. There are three dams with the potential to cause such damage if they were to fail: the Mystic Lakes dam, the Wright's Pond Dam and the Amelia Earhart Dam.

(excerpt from Medford CCVA, January 2019)

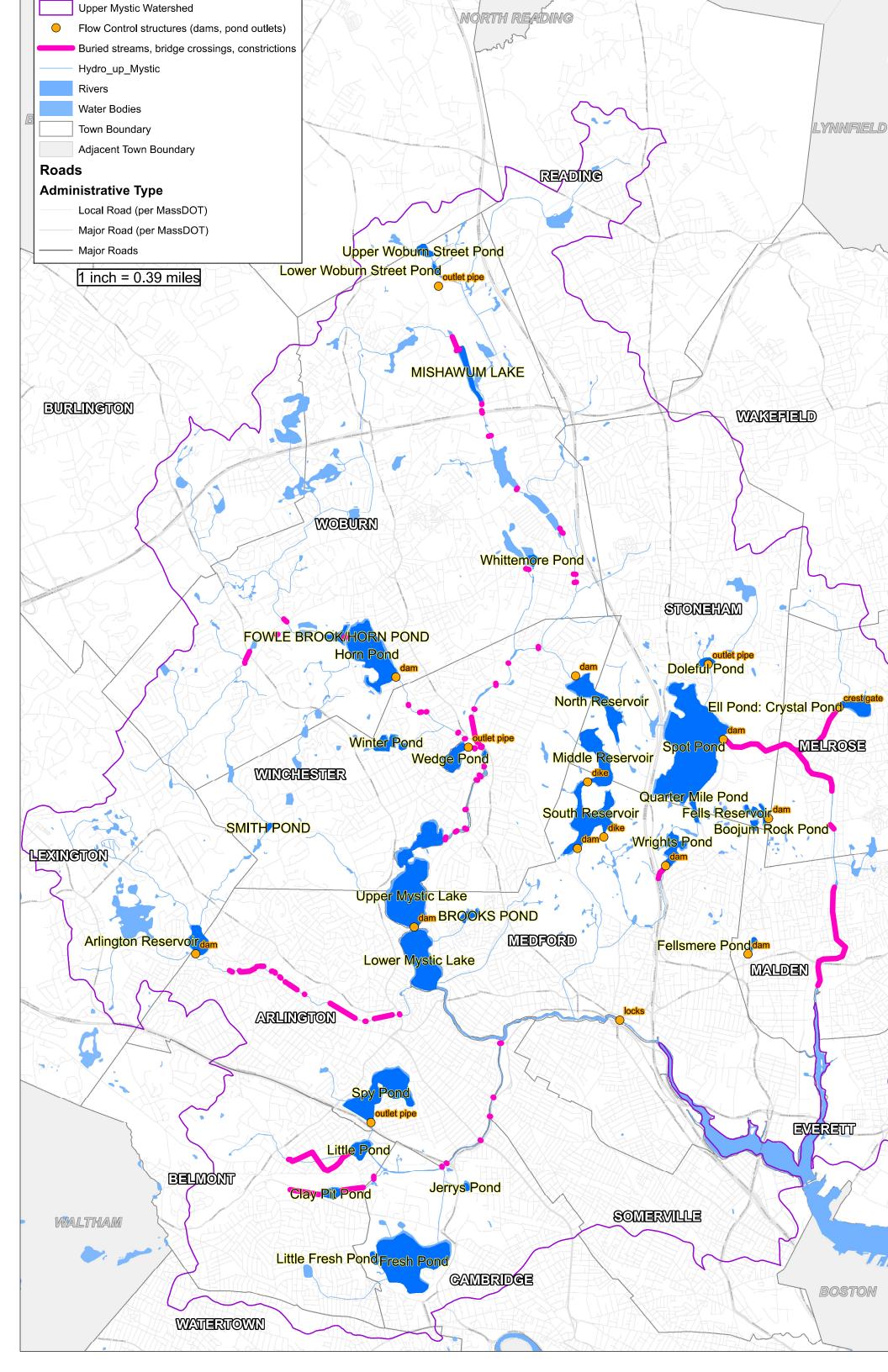


Flow controls / Active Reservoir Management

Medford's other dam, the Wright's Pond Dam, is managed by the City, and is not currently in danger of breaching in the near future as a result of any identified climate changerelated hazards. Water from Wright's Pond routinely flows out through a spillway and into a 48" culvert where it enters Medford's storm drain system and flows out to the Mystic River. The City has operational guidelines to follow to prevent downstream flooding, resulting from precipitation and overflow from Wright's Pond.

(excerpt from Medford CCVA, January 2019)

PC-SWMM modeling assumptions



- Simplified storage area in PCSWMM
- Assume outflow at 139'-NAVD
- Assumes storage curve from 129' (bottom) to 142' (12 ft depth)
- No controlled discharge other than gravity drainage when at full capacity

Overview of Water Bodies, Piped Infrastructure Constrictions, and Control Structures (Summary Map)

