

Massachusetts Forest Carbon Study: *The Impact of Alternative Land-use Scenarios on Terrestrial Carbon Storage and Sequestration in Massachusetts*

March 24, 2025

MA Executive Office of Energy & Environmental Affairs

Agenda

- Welcome
- Presentation (~40 minutes)
 - Forest Carbon Study's goals and objectives
 - Modeled Scenarios
 - Key Results
 - Takeaways and Policy Implications
 - EEA's Next Steps
- Q&A (~15 minutes)
- Wrap Up

Presenters

- Dunbar Carpenter, Manager of Land Carbon Science & Analysis, Exec. Office of Energy and Environmental Affairs
- Jonathan Thompson, Research Director & Senior Ecologist, Harvard Forest
 - Meghan Graham MacLean, Senior Lecturer of Quantitative Ecology, University of Massachusetts Amherst
 - Danelle Laflower, Research Assistant, Harvard Forest
 - Joshua Plisinski, GIS and Research Assistant, Harvard Forest
- William Van Doren, Forester, Department of Conservation and Recreation
- Hong-Hanh Chu, Policy Advisor for Carbon Sequestration & Storage, Exec. Office of Energy and Environmental Affairs

Background – The Role of Natural & Working Lands in Achieving Net Zero Emissions

Past and Future Statewide Greenhouse Gas Emissions

Current Natural & Working Lands (NWL)

Study Motivation: To better characterize *future*NWL emissions and the potential role of NWL in achieving Net Zero

Background – Study Goals and Scenario-Based Modeling Approach

- Study Goal: To better quantify future carbon sequestration and storage potential of Massachusetts forests and NWL, including trends, risks, and opportunities, in the context other land use objectives.
- **Study approach:** Simulate alternative forest and land use scenarios with different combinations of drivers and strategies and assess carbon and other outcomes.

- Scenarios are illustrative represent alternative futures intended for learning, not specific policies under consideration.
- Scenarios based on:
 - Scientific understanding of risks and opportunities for Massachusetts forest and land carbon
 - Clean Energy & Climate Plan NWL strategies (Protect, Manage, Restore, Sustainable Resource Utilization)
 - Stakeholder, agency, and administration input, via internal consultations and stakeholder workshops
- Limitations: Focus on biophysical systems; results based on many (informed) assumptions; not all social, economic, or environmental factors necessary for setting policy were considered.
- **Study Application:** Guide the Commonwealth's climate mitigation strategies and goals for NWL and for achieving Net Zero. One of many sources informing state-scale land use and management policy.

Background – Forest Carbon Study Scope

	Forest Carbon Study (2025)	Land Sector Report (2020)
Timeframe	80 years (2020-2100) and 30 year (2020-2050)	30 years (2020-2050)
	Forest Ecosystem Dynamics: growth, mortality, regeneration	(same)
Environmental	Climate Change: projected temperature, precipitation, CO_2 (RCP 8.5, CCSM4)	Historic and projected temperature, precipitation,
Drivers	Natural Disturbances: Hurricanes, forest insect pests, climate- intensified generic disturbances	Generic disturbances
	Forest Management: Climate-oriented forestry, expanded forest reserves, increased local wood production	Recent and improved forest harvesting practices; constant area and volume
	& □ 面 Wood utilization: Improved wood utilization, salvage	Recent trends
Human Drivers	NWL Conversion: building development, solar development; low-, moderate-/recent trends-, and high-impact siting	Generic development; recent trends, sprawl
	Reforestation & tree-planting: varying levels	N/A
	 Live trees (above- & below-ground) 	 Live trees (above- & below-ground)
Carbon Pools	Dead woodWood products	Harvested wood/productsSoils (partial)
Primary Outputs:	 Cumulative carbon sequestration/emissions (changes in pools) Annual carbon sequestration/emissions rate (5-yr increments) Indicators of forest ecosystem resilience and health 	 Cumulative carbon sequestration/emissions (changes in pools)

Background – Forest Carbon Study Scenario Framework

Focus Scenarios: to assess the specific effects of individual drivers in isolation:

- Total land use effect
- Building development
- Solar development
- Reforestation & treeplanting

Integrated Scenarios: to assess combinations of drivers and define a plausible range of future forest carbon outcomes.

			Forest Manag	ement Regimes	
		Recent Trends	Reserves Emphasis	Local Wood Emphasis	Reserves & Local Wood Emphasis
		Current harvest practices and levels, current reserves	Climate-oriented forestry, current harvest levels , expanded reserves	Climate-oriented forestry, increased harvest levels, current reserves	Climate-oriented forestry, increased harvest levels, expanded reserves
ance Regimes	High levels of forest disturbance and NWL loss	1. Recent Trends Harvest + High Disturbance/ Development	2. Reserves Emphasis + High Disturbance/ Development	3. Local Wood Emphasis + High Disturbance/ Development	4. Combined Emphasis + High Disturbance/ Development
Land Disturb	High levels of forest disturbance and NWL loss	5. Recent Trends Harvest + Low Disturbance/ Development	6. Reserve Emphasis + Low Disturbance/ Development	7. Local Wood Emphasis + Low Disturbance / Development	8. Combined Emphasis + Low Disturbance/ Development
	Wood Utilization	Variants for all scenari	ios: (a) Recent trends wood u (b) Improved wood utiliz	utilization ration	

Overview of Key Findings

- Massachusetts' forests are expected to continue serving as a long-term net sink of atmospheric carbon over the course of the 21st Century, but this forest carbon sink is vulnerable to natural and human disturbances.
 - Hurricanes pose the largest risk to forest carbon and could temporarily weaken or reverse the net removal of carbon by the state's forests.
 - In the absence of hurricanes, the annual rate of forest carbon removal is expected to remain relatively steady through mid-century, then decline later in the century.
- Conversion of NWL to developed uses will modestly increase emissions through 2050, but most of these emissions could be avoided with less land-consumptive development patterns, while still meeting clean energy and building development needs.

- Different harvesting levels and approaches to forest management come with tradeoffs, but do not generally lead to large differences in carbon sequestration in Massachusetts relative to other factors.
 - Considerations include annual carbon sequestration rates v. long-term cumulative carbon storage, out-ofstate leakage, and non-carbon ecosystem services.
 - Active forest management can improve indicators of forest resilience and climate adaptability, including landscape-scale tree species and structural diversity and regeneration of important tree species.
- Other forest and land use strategies have more limited carbon sequestration potential:
 - Reforestation and tree planting.
 - Improved utilization of wood generated by harvesting, disturbances, and land clearing in durable products.

Results – Future Forest Carbon Storage Trajectories

- Massachusetts forests will continue to accumulate carbon through 2100
- Cumulative carbon storage is influenced most strongly by forest growth and next by major hurricanes, which can cause temporary reversals in net carbon sequestration (i.e. net emissions)
- Alternative forest management regimes can also change future carbon storage, but these effects are smaller and more contextdependent

Cumulative carbon stored in forests & wood products, 2020-2100 (excluding soil carbon, development emissions, reforestation)

- Counterfactual + Low Disturbance + No Dev/Harv Recent Trend Harvest + Low Disturbance
- Reserve Emphasis + Low Disturbance
- Local Wood Emphasis + Low Disturbance
- Combined Emphasis + Low Disturbance
- Recent Trend Harvest + High Disturbance
- Reserve Emphasis + High Disturbance
- Local Wood Emphasis + High Disturbance
- Combined Emphasis + High Disturbance

Forest Management Regime

- Combined Emphasis
- Local Wood Emphasis
- Recent Trend
- Reserve Emphasis

Results – Future Forest Carbon Sequestration Rates

- Decline in rate of net carbon sequestration expected under low disturbance scenarios due to a combination of declining growth, increased mortality, and/or disturbance emissions.
 - In the higher disturbance scenarios, net sequestration rates remain relatively strong with pulses of net emissions when a hurricane is modeled.
- Strong temporal variation in net sequestration, particularly mid-century, contingent on major disturbance activity.

Results – Attribution of Mid-Century Forest Carbon Emissions

- Net sequestration between 2020 and 2050 is the balance of forest growth (sequestration) and mortality, disturbance, and harvest (emissions)
- Reforestation and less landconsumptive development practices can slightly increase forest carbon sequestration
- By 2050, management regimes emphasizing reserves or following recent trends result in slightly higher net cumulative sequestration than those emphasizing local wood production or a combination of local wood and reserves

Cumulative carbon sequestration and emissions, 2020-2050

Soil carbon was not modeled. Therefore, estimated emissions from forest loss and the carbon accrual from reforestation are likely underestimates.

Results – Building Development

- Less land-consumptive building development practices could reduce carbon emissions from land conversion by up to two-thirds
- More sprawl-oriented building development patterns could increase emissions by up to 50%

Results – Solar Development

- Solar capacity growth follows the timeline of the "Phased" pathway from analysis for the 2050 CECP
- LOW, MID, and HIGH scenarios all hit 27 GW_{AC}
- Differences in:
 - Ratio of ground mount to rooftop/brownfield
 - Land Use Intensity (ac/MW)
 - Siting restrictions

• Less land-consumptive solar development practices could reduce emissions by up to two-thirds by 2050

• Structural composition strongly influenced by disturbance and management regime

- Structural composition strongly influenced by disturbance and management regime
- Management provides for stability of structural classes

• Management complements reserve strategies and can promote rapid recovery of an array of structural conditions

Proportion of area treated in older structural conditions for high-disturbance scenarios by treatment group and time

• Management complements reserve strategies and can promote rapid recovery of an array of structural conditions

Proportion of area treated in older structural conditions for high-disturbance scenarios by treatment group and time

Results – Resilience: Tree Species Composition

• Forest management helps maintain the integrity of natural communities in the face of changing disturbance regimes

- Example: Oak-hickory communities, central Massachusetts

						Pei	rcent biom	ass in oak - h	ickory speci	ies, 0-10 yeaı	`S								
				Treate	<u>d area</u>				Untreated area										
-		High Distu	urbance			Low Distu	urbance		High Disturbance Low Disturbance										
	Recent		Local		Recent Local			Recent Local				Recent Local							
	Trends	Reserves	Wood	Combined	Trends	Reserves	Wood	Combined	Trends	Reserves	Wood	Combined	Trends	Reserves	Wood	Combined			
Acres	1,075	1,123	2,699	2,569	806	1,253	3,061	2,273	26,425	23,955	11,371	14,840	13,535	23,937	11,301	14,795			
Pre-treatment	21.9%	32.4%	27.3%	30.7%	19.6%	25.9%	25.1%	29.9%	10.0%	11.2%	9.2%	9.9%	8.9%	11.3%	9.0%	10.1%			
Post-treatment	26.6%	33.5%	34.5%	31.5%	25.9%	31.9%	30.5%	30.8%	12.7%	13.8%	11.9%	13.0%	11.9%	14.2%	11.7%	12.8%			
Post-10 yr	20.2%	35.2%	39.1%	40.0%	16.4%	34.2%	36.4%	38.7%	6.8%	6.7%	6.5%	6.8%	6.3%	6.9%	5.8%	7.2%			
Post-30 yr	36.7%	38.5%	36.3%	39.7%	10.5%	29.6%	31.0%	32.9%	20.7%	19.8%	20.6%	21.1%	4.4%	4.1%	4.3%	4.1%			
Post-55 yr	33.4%	37.4%	37.3%	41.1%	19.0%	32.1%	38.2%	34.2%	16.2%	14.6%	18.0%	16.4%	6.6%	5.5%	6.4%	6.1%			
Post-75 yr	26.9%	43.2%	39.2%	42.1%	13.8%	39.8%	35.9%	37.1%	13.5%	13.2%	14.9%	14.4%	9.0%	6.5%	9.1%	8.5%			

Percent biomass in oak-hickory species, 10-25 years

				Treate	<u>d area</u>				Untreated area								
_		High Dist	urbance			Low Distu	irbance	High Disturbance Low Disturbance									
	Recent	Recent Local R			Recent Local			Recent Local				Recent Local					
	Trends	Reserves	Wood	Combined	Trends	Reserves	Wood	Combined	Trends	Reserves	Wood	Combined	Trends	Reserves	Wood	Combined	
Acres	1,075	1,123	2,699	2,569	806	1,253	3,061	2,273	26,425	23,955	11,371	14,840	13,535	23,937	11,301	14,795	
Pre-treatment	1.0%	1.0%	0.4%	0.9%	1.5%	0.9%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
Post-treatment	7.1%	12.8%	14.3%	15.8%	5.8%	10.9%	9.7%	10.2%	3.1%	3.6%	2.9%	3.2%	2.8%	3.6%	2.8%	3.2%	
Post-10 yr	34.2%	38.5%	39.6%	37.6%	29.2%	37.9%	33.9%	35.1%	15.5%	17.2%	14.7%	15.9%	14.3%	17.5%	14.5%	15.7%	
Post-30 yr	50.5%	53.8%	54.9%	63.4%	27.3%	50.5%	50.2%	49.7%	36.8%	34.4%	34.7%	35.1%	10.2%	10.2%	9.5%	10.0%	
Post-55 yr	45.6%	47.2%	46.4%	40.9%	18.1%	38.7%	50.9%	48.2%	35.9%	35.1%	37.0%	36.2%	7.0%	5.8%	7.1%	6.8%	
Post-75 yr	37.5%	41.6%	47.0%	54.4%	22.4%	38.0%	49.5%	42.9%	20.3%	19.2%	21.7%	20.9%	8.8%	7.7%	9.3%	8.6%	

Percent biomass in oak-hickory species, 025-999 years

				Treate	<u>d area</u>			Untreated area									
		High Dist	urbance			Low Distu	urbance	High Disturbance Low Disturbance									
	Recent	Recent Local				Recent Local			Recent Local			Recent Local					
	Trends	Reserves	Wood	Combined	Trends	Reserves	Wood	Combined	Trends	Reserves	Wood	Combined	Trends	Reserves	Wood	Combined	
Acres	1,075	1,123	2,699	2,569	806	1,253	3,061	2,273	26,425	23,955	11,371	14,840	13,535	23,937	11,301	14,795	
Pre-treatment	76.2%	73.6%	74.1%	74.4%	76.2%	74.0%	74.3%	72.6%	82.1%	82.1%	82.1%	82.3%	82.2%	82.1%	82.2%	82.3%	
Post-treatment	76.0%	75.6%	78.7%	77.9%	76.2%	77.3%	78.1%	76.8%	82.0%	82.0%	82.1%	82.2%	82.3%	82.0%	82.2%	82.2%	
Post-10 yr	76.0%	75.3%	78.8%	77.9%	76.0%	77.5%	78.2%	76.7%	81.7%	81.5%	81.8%	81.8%	82.0%	81.5%	81.9%	81.8%	
Post-30 yr	76.2%	77.3%	82.3%	79.1%	75.5%	77.6%	81.5%	78.9%	80.8%	80.4%	81.0%	80.8%	81.5%	80.7%	81.4%	81.2%	
Post-55 yr	76.5%	78.2%	81.6%	81.6%	75.6%	79.0%	82.9%	80.3%	79.3%	78.2%	80.0%	79.2%	81.2%	80.0%	81.1%	80.8%	
Post-75 yr	76.0%	79.2%	82.8%	82.2%	76.1%	80.4%	85.4%	81.4%	78.4%	77.0%	79.4%	78.4%	80.9%	79.3%	80.8%	80.3%	

Results – Resilience: Stability of Ecosystem Services

					Treate	d area			Untreated area								
	-		High Distu	urbance			Low Distu	ırbance			High Distu	ırbance			Low Distu	irbance	
	-	Recent		Local		Recent Local			Recent		Local		Recent Local				
	_	Trends	Reserves	Wood	Combined	Trends	Reserves	Wood	Combined	Trends	Reserves	Wood	Combined	Trends	Reserves	Wood	Combined
	2020	0.26	0.18	0.19	0.18	0.20	0.18	0.21	0.21	0.18	0.20	0.20	0.20	0.18	0.20	0.20	0.20
	2025	1.55	1.55	1.63	1.56	1.33	1.30	1.35	1.36	1.52	1.61	1.46	1.54	1.25	1.39	1.27	1.33
	2030	0.49	0.58	0.48	0.45	0.31	0.39	0.35	0.32	0.70	0.74	0.71	0.72	0.48	0.53	0.50	0.52
	2035	0.96	1.10	1.02	1.03	0.64	0.69	0.67	0.62	1.47	1.53	1.44	1.48	0.90	0.99	0.93	0.97
	2040	4.06	4.02	4.06	3.82	0.87	0.95	0.83	0.83	4.33	5.77	5.65	5.80	1.12	1.20	1.17	1.18
Above ground live	2045	5.69	5.98	5.53	5.44	0.45	0.50	0.45	0.45	7.24	7.54	7.53	7.52	0.52	0.58	0.56	0.57
tree dry biomass	2050	1.24	1.26	1.28	1.24	1.09	1.03	1.02	1.00	1.50	1.72	1.57	1.65	1.22	1.34	1.25	1.30
removed per acre	2055	9.25	8.83	6.49	6.66	1.20	1.07	0.93	0.90	9.62	10.37	9.78	10.25	1.39	1.51	1.45	1.48
by non-hurricane	2060	3.75	3.06	2.61	2.59	0.77	0.66	0.59	0.60	4.40	4.34	4.18	4.21	0.80	0.88	0.83	0.86
disturbances and	2065	5.26	4.22	4.10	3.90	3.16	3.01	2.72	2.64	4.77	5.64	5.00	5.41	3.36	3.71	3.45	3.59
EF1 hurricanes.	2070	3.11	2.06	2.32	2.14	0.50	0.35	0.37	0.35	3.81	3.95	3.79	3.84	0.47	0.52	0.49	0.50
tons per acre	2075	4.10	3.32	2.94	2.76	2.86	2.35	2.29	2.26	3.97	4.39	3.87	4.17	2.90	3.27	3.01	3.15
	2080	5.56	3.94	3.57	3.43	3.13	2.70	2.42	2.33	5.08	5.51	4.92	5.31	3.27	3.60	3.38	3.52
	2085	10.84	8.27	7.50	7.28	1.20	1.07	1.02	0.99	12.82	12.58	12.62	12.55	1.31	1.46	1.37	1.44
	2090	2.03	1.53	1.45	1.45	1.17	1.05	0.98	1.02	1.95	2.13	1.95	2.06	1.24	1.37	1.27	1.34
	2095	10.59	8.79	7.37	7.46	0.90	0.81	0.71	0.69	10.78	10.85	10.49	10.61	0.91	1.03	0.93	0.99
	2100	4.77	3.61	3.40	3.30	2.61	2.35	2.20	2.18	4.45	4.82	4.39	4.65	2.70	2.99	2.79	2.92

 Forest management helps aid in stability of aboveground live tree biomass, and the ecosystem services that stability provides.

					Treate	d area			Untreated area								
		High Disturbance Low Disturbance									High Dist	urbance			Low Dist	urbance	
	_	Recent		Local		Recent		Local		Recent		Local		Recent		Local	
	_	Trends	Reserves	Wood	Combined	Trends	Reserves	Wood	Combined	Trends	Reserves	Wood	Combined	Trends	Reserves	Wood	Combined
	2020	_	_	_	_	_	· _	_	· _		_	_		_	· _	_	
	2025	_	_	_	_	_		_			_	_		_	· _	_	
	2030	_	_	_	_	_		_			_	_		_	· _	_	
	2035	_	_	_	_	_	· _	-	· _		_	_		_	· _	-	
Alexia analysis di liva	2040	25.33	31.24	26.71	26.86	_		_		40.56	36.49	37.66	36.81	_	· _	_	
Above ground live	2045	1.58	1.33	2.40	2.13	_		_		4.13	4.17	4.35	4.28	_	· _	_	
tree dry biomass	2050	_	_	_	_	_	· _	-	· _		_	_		_	· _	-	
removed per acre	2055	14.22	10.29	10.68	9.85	_		_		22.95	23.39	23.86	23.43	_	· _	_	
by hurricanes with	2060	0.00	0.00	0.00	0.00	_		_		0.00	0.00	0.00	0.00	_	· _	_	
strength EF2 and	2065	_	_	_	_	_		_			_			_	· _	_	
greater, tons per	2070	0.01	0.04	0.04	0.02	-		_	· _	0.09	0.08	0.10	0.11	_	· _	_	
acre	2075	-	_	-	_	-		_	· _		_	_		_	· _	_	
	2080	-	_	_	_	_	· _	_	· _		_	_		_	· _	_	
	2085	-	_	-	_	-		_	· _		_	_		_	· _	_	
	2090	_	_	_		_	· _	_	· _		_	_		_	· _	_	
	2095	3.18	2.25	3.56	2.98	_	-	_		7.45	7.45	7.43	7.54	_		_	
	2100	_	_	_	_	_	_	_		_	_	_		_	_	_	

Key Take-Aways: Land Use

- Avoiding deforestation is critical for "holding the line" on forest carbon sequestration. Continued permanent forest loss will make achievement of net zero emissions in 2050 even harder.
- Utilizing cleared trees in durable wood products can help reduce direct emissions from land clearing and provide a local source of wood products.
- The study demonstrates the physical potential to meet the land use needs of solar and building development while minimizing impacts to forest carbon and other ecosystem services. Realizing this potential will require purposeful and strategic planning, policies, permitting, and incentives.

Key Take-Aways: Forest Management

- Climate-oriented silvicultural practices and improved wood utilization can help mitigate the short-term carbon emissions from timber harvest while providing a local source of wood products.
- Different approaches to forest management are unlikely to significantly increase the level of carbon sequestration by MA forests.
- Best to manage forests holistically for long term health, biodiversity, and climate resilience.
 - The study's landscape-level outputs/results should <u>not</u> dictate sitespecific management or conservation decisions.

Key Take-Aways: Forest Management

- The findings generally support the recommendations from the Forests as Climate Solutions Initiative, including:
 - Expanding forest reserves (passive management) on some lands protects existing carbon storage;
 - Climate-oriented active forest management can help balance carbon sequestration, climate resilience, biodiversity, forest health, and other management objectives;
 - Keeping forested land as forests is important for maintaining carbon storage and sequestration, among other benefits.

Key Take-Aways: Reforestation & Tree Planting

- Reforestation and tree planting are long term investments, providing more carbon storage and sequestration (and other benefits) overtime as the planted trees grow.
- Important to scale up reforestation and tree planting now to reap their benefits sooner. Also important is appropriate stewardship to ensure vigor and climate resilience as the planted trees age.
- However, additional strategies are needed to complement reforestation and tree planting as they have limited potential to significantly increase the statewide carbon sequestration level.

Key Take-Aways: Supplemental Strategies

- Forests play an important role in balancing residual GHG emissions in 2050, but an increase in the statewide level of forest carbon sequestration is unlikely due to natural forest processes (i.e. growth and mortality), competing land use, substantial hurricane risks, and other ecological disturbances.
- Therefore, a broad range of strategies is needed to offset residual emissions and achieve statewide net zero emissions in 2050:
 - 1. In-state natural and working lands (NWL) and hybrid carbon dioxide removal (e.g. biochar, biomass burial)
 - 2. In-state engineered carbon dioxide removal options
 - 3. Out-of-state carbon dioxide removal procurement (NWL-based, marinebased, engineered, hybrid)
 - 4. Further GHG emissions reductions, including waste-based advanced biofuels and other low/zero carbon fuels for hard to decarbonize sectors

EEA's Next Steps

- Develop site suitability guidance and Holistic Land Use Strategy/Plan in coordination with other Secretariats to balance the need for clean/renewable energy and infrastructure, housing, and land conservation.
- Seek additional and consistent funding to:
 - Scale up reforestation and tree planting and stewardship, focusing on riparian and urban areas for multiple benefits.
 - Continue enhanced land conservation through implementation of Forests As Climate Solutions Initiative, Resilient Lands Initiative, and Executive Order 618 on Biodiversity Conservation.
 - Continue incentives for climate-oriented forest management and improved wood utilization through implementation of Forests As Climate Solutions Initiative.
- Continue to explore additional NWL and carbon dioxide removal opportunities to supplement forest carbon sequestration to achieve net zero emissions in 2050.
- Revisit existing NWL-related goals and consider developing new goals for the next Clean Energy and Climate Plan.

Extra Slides

Forest Carbon Study Integrated Scenarios

		I. F	orest Management Reg	imes	
		1. Recent Trends	2. Reserves Emphasis	3. Local Wood Emphasis	4. Reserves & Local Wood Emphasis
	Forestry:	Current forestry practices and harvesting levels	Climate-oriented forestry, current harvest levels (meets ~6% of wood consumption)	Climate-oriented forestry, increased harvest levels to meet 20% of MA wood consumption	Climate-oriented forestry, increased harvest levels to meet 15% of MA wood consumption
	Forest Reserves:	Current forest reserves (3.3% of forests)	Expand forest reserves to 33% of forest land	Current forest reserves	Expand forest reserves to 20% of forest land
er Change & rbance Regimes	1A. High Ecological Disturbance 1B. Uncoordinated Land Use/Cover Change	Recent Trends Harvest + High Disturbance/ Development Scenario	Reserves Emphasis + High Disturbance/ Development Scenario	Local Wood + High Disturbance/ Development Scenario	Combined Emphasis + High Disturbance/ Development Scenario
II. Land Cove Ecological Distu	2A. Low Ecological Disturbances 2B. Coordinated Land Use/Cover Change	Recent Trends Harvest + Low Disturbance/ Development Scenario	Reserve Emphasis + Low Disturbance/ Development Scenario	Local Wood + Low Disturbance / Development Scenario	Combined Emphasis + Low Disturbance/ Development Scenario
	Wood Utilization	Two variants for all	scenarios: (a) <i>Recent trends</i> (b) <i>Improved woo</i>	wood utilization od utilization	

Forest Management Regimes: Modeling Details

Recent Trends

- Current forestry practices and harvesting levels
- Baseline as point of comparison, illustrates future with minimal change in forest management
- Initial modeling results shared in FCS Workshop #1

Reserves Emphasis

- Immediate expansion of reserves to 33% of statewide forest land (up from ~3.5% today)
- Immediate shift to climate-oriented forestry practices on remaining land
- Maintain current harvest levels to avoid additional leakage

Local Wood Emphasis

- Immediate increase in harvest levels to meet 20% of state's current wood consumption from in-state forests (from ~7% today)
- Immediate shift to climate-oriented forestry practices
- Maintain existing forest reserves

- Reserves & Local Wood Emphasis
 - Immediate expansion of reserves to 20% of statewide forest land (up from ~3.5% today)
 - Immediate shift to climate-oriented forestry practices on remaining land
 - Immediate increase in harvest levels to meet 15% of state's current wood consumption from in-state forests (from ~7% today)
- **Definitions** (Operational definitions for modeling study purposes; not policy-prescriptive)
 - <u>Forest Reserves</u>: Areas with no harvesting (wildland definition)
 - <u>Climate-oriented forestry</u>: forestry practices that emphasize forest carbon sequestration and storage, climate adaptation, and disturbance resilience developed by DCR

High Disturbance

 A plausible, relatively high-emissions future with increased ecological disturbances and uncoordinated land use change

• High Ecological Disturbance

- Climate-intensified generic forest disturbances
- Climate-intensified hurricanes (applied 100yrs after 20th century hurricanes (e.g., 1938 hurricane happens in 2038))
- Ongoing insect pest outbreaks (EAB, HWA)
- Uncoordinated Land Use/Cover Change
 - Deforestation from building development, following recent trends
 - Deforestation from increasing ground-based solar development
 - No active reforestation

Low Disturbance

• A plausible, relatively low-emissions future with a lower level of ecological disturbances and more coordinated, well-planned land use change

• Low Ecological Disturbances

- Generic disturbances follow recent trends
- No hurricanes
- Ongoing insect pest outbreaks (EAB, HWA)

• Coordinated Land Use/Cover Change

- Reduced deforestation from building development due to more compact development patterns
- Reduced deforestation from improved siting of solar development
- Ambitious afforestation/reforestation

Wood Utilization Variants: Modeling Details

Recent Trends in Wood Utilization

- Logging and mill efficiencies, and primary product ratios set by 2018 USFS Timber Product Output reports
- Modest estimate of hurricane salvaging (~25% of larger size classes)

Improved Wood Utilization

- Changes in logging and milling efficiency, markets for wood products, and post-disturbance salvage logging
 - 5% increase in logging efficiencies for growing stock, 10% increase for non-growing stock (simulating better markets for non-growing stock, e.g., wood-fiber insulation)
 - Modest increases in mill efficiencies (5% reduction in course woody residues, ~1% reduction for other residues)
 - ~10% increase in wood going into longer lived products (e.g., lumber/mass timber) from shorter-term products (e.g., paper)
- Increase proportions of harvested and disturbance-killed trees converted into long-lived wood products, particularly hemlock (~60% of larger trees into longer-lived products such as CLT)
- Increase in salvage harvesting following hurricanes (~75% for larger size classes)