

TABLE OF CONTENTS

....

....

-I.--- PURPOSE

II. BACKGROUND

III. INDIRECT SOURCE PROJECTS REQUIRING MESOSCALE ANALYSIS

.

IV. MESOSCALE ANALYSIS REQUIREMENTS

a. Defining the Study Area

b. Years of Analysis

c. Data Requirements and Analysis

d. Presentation of Data and Results

e. Mitigation Measures

V. GLOSSARY

I. PURPOSE

"Guidelines for Performing Mesoscale Analysis of Indirect Sources", hereafter referred to as "Guidelines" has been prepared by the Massachusetts Department of Environmental Protection (DEP) in consultation with Massachusetts Environmental Policy Act (MEPA) staff to provide guidance on the preparation of analyses of certain indirect source projects in relation to their potential impacts on regional hydrocarbon emissions. Such analysis is herein known as "mesoscale analysis".

The Guidelines are designed for use by those parties responsible for preparation of mesoscale air quality analyses required pursuant to the MEPA process. However, they are not meant to be a substitute for on-going MEPA consultation process.

II. BACKGROUND

An indirect source is a facility, building(s), structure(s), or project that attracts or may attract mobile sources of air pollution.

A mesoscale analysis of an indirect source, for the purpose of these Guidelines, is an estimate of the mobile source emissions generated by the project as compared to the areawide (regional) emissions from the existing road network. The analysis area may include an area anywhere from approximately 0.3 km to 16 km around and including the indirect source project; the exact geographical area depends on local conditions and the extent of a project's impact on the travel patterns in the area. In all cases, the areas should be large enough to include all roadway links that are potentially directly and indirectly impacted by the project. A mesoscale analysis should be performed for hydrocarbons to establish the total amount of emissions expected from each of the project alternatives, including the "Build" and "No Build," in the base and future years.

Hydrocarbons, in the presence of sunlight, undergo complex chemical reactions and form the pollutant ozone. Given the regional nature of ozone and the complexity of its formation process, it is not feasible to estimate the impact of an individual indirect source project on ambient concentrations of Instead, total hydrocarbons, the major precursor element ozone. to ozone, serve as a reliable indicator of regional degradation or improvement in ozone concentrations. To be consistent with the emissions inventory contained in the Massachusetts SIP for Ozone and Carbon Monoxide, and the chemical reactive properties of ozone's component elements, projects should be analyzed in terms of non-methane hydrocarbons (NMHC). Non-methane hydrocarbons emissions represent that portion of total hydrocarbons that are volatile or highly reactive and as such, represent the primary precursor to ozone formation.

III. INDIRECT SOURCE PROJECTS REQUIRING MESOSCALE ANALYSIS

- Mesoscale analysis will be required for the following projects for which an Environmental Notification Form (ENF) is filed under the Massachusetts Environmental Policy Act (MEPA) after May 1, 1991:
 - o any office project generating 3,000 or more average daily traffic (ADT); and
 - o any other non-residential project generating 6,000 or more ADT.
- Mesoscale analysis will be required for the following 6 projects for which a decision on the adequacy of a Draft Environmental Impact Report (DEIR) is issued under the Massachusetts Environmental Policy Act (MEPA) after May 1, 1991:
 - any n<mark>on-residential p</mark>roject generating 1<mark>0,000 or mor</mark>e ADT.

IV. MESOSCALE ANALYSIS REQUIREMENTS

ENF

0

A proposed indirect source project may have impacts on the traffic characteristics, such as volume and speed, of roadway segments. An area which includes all the impacted roadway segments is defined as the mesoscale area.

Based on the roadway segments and their existing traffic characteristics, hydrocarbon emissions for the base case can be calculated. By changing the traffic characteristics on the roadway segments to those which are expected to occur when the indirect source project is completed, hydrocarbon emissions for the estimated time of completion can then be calculated. Similarly, hydrocarbon emissions for the build and no-build cases for future years are calculated.

Once the analysis has been completed, it can be determined if the project will result in an increase or decrease in hydrocarbon emissions. Emissions will increase or decrease based upon the effects of traffic volumes and speeds on the roadway segments in the project, as a result of the indirect source project.

a. Defining the Study Area

The analysis area should include an area anywhere from approximately 0.3 km to 16 km around and including the indirect source project; the exact geographical area depends on local conditions and the extent of a project's impact on the travel patterns in the area. In all cases, the areas should be large enough to include all roadway links that will potentially experience an increase of 10% in traffic due to the project and currently operate at Level-of-Service (LOS) D or lower or will be degraded to LOS D or lower. Before proceeding with the mesoscale analysis, the study area should be selected in consultation with MEPA staff and the DEP/DAQC staff.

ne a mange i no composio a sun og con contra mangetar a sera og og o som sener menetering.

<u>b. Years of Analysis</u>

The mesoscale analysis of the indirect source project and its alternatives, including "No Build" should be performed for each of the following years: base year, project completion year and project design year.

c. Data Requirements and Analysis

Mesoscale analysis requires data on both traffic and emissions by roadway link for each project alternative and analysis year. Once emissions are calculated for each roadway link, total emissions can be calculated by adding all emissions for each roadway link.

Data required:

- o identification of roadway links and length of links
- o average daily traffic (ADT) and average daily speeds for base, completion, and design year by roadway link
- o emission factors generated from the Mobile 4 emissions factor model (inputs to the model should be verified with MEPA prior to performing mesoscale analysis)

For Calculating Emissions by Roadway Link Use the Following Formulas:

Total NMHC Emissions of Roadway Link	= Emission Factor		x	Vehicle Miles Traveled
Vehicle Miles Traveled (VMT)	=	ADT	x	Roadway Link Length

d. Presentation of Data and Results

In presenting the mesoscale analysis data, suggested figures and tables to be included are: a map showing the mesoscale area, a list of all roadway links, data tables for ADT, VMT, speeds, emission factors and total emissions associated with each roadway link.

In presenting the mesoscale analysis results, total emissions for each project alternative and analysis year should be compared. The suggested method of comparison is in a summary table (see

example below.

SUMMARY OF MESOSCALE ANALYSIS

•••••	Total NMHC Emissions Burden (tons/day)											
	Existing Case	Base Y Build	ear No Build	Comple Build	tion Year No Build	Design Build	Year No Build					

e. Mitigation Measures

If the mesoscale analysis demonstrates that non methane hydrocarbon emissions from the preferred alternative are greater than those from the no-build case in both the short and long term, then all reasonable and feasible hydrocarbon reduction/ mitigation measures should be presented.

V. GLOSSARY

The following is a list of terms found throughout the Guidelines.

Average Daily Traffic

the average traffic volume which occurs over 365 days a year

emission factors a number which describes the average emissions of a pollutant from a set of vehicles in various mixes

hydrocarbon emissions primarily gaseous vapors formed by the burning of fossil fuels or the evaporation of volatile liquids. The main source of hydrocarbon emissions is transportation vehicles, refineries, petroleum storage and processing plants and users of organic solvents

MOBILE 4

diesel highway motor vehicles.

non-methane hydrocarbons that portion of total hydrocarbons that is volatile or highly reactive and as such, represent the precursor to ozone formation

MOBILE 4 is an EPA computer model that

hydrocarbons, carbon monoxide and oxides of nitrogen from gasoline-fueled and

calculates emission factors for

ozone

roadway link

a complex variety of secondary pollutants or "smog" formed when nitrogen oxides combine with hydrocarbons in sunlight

a section of roadway which is subject to travel by a constant volume of vehicles

AIR QUALITY ANALYSIS OF INDIRECT SOURCES

Microscale Analysis:

. .

Applicability: applies to projects generating 3,000 or more trips per day in CO non-attainment communities only.

Scoping language: Air quality microscale modeling for carbon monoxide will be needed for intersections deteriorating to level of service D or worse where the project contributes 10% or more to the existing traffic volumes. DEP/AQC must be consulted as to intersections, sensitive receptors and model input parameters.

<u>Mesoscale Analysis:</u>

- Applicability: applies to office parks generating 3,000 or more trips per day and non-residential projects generating 6,000 or more trips per day.
- Scoping Language: Air Quality mesoscale analysis for ozone will be needed for this project to assess the total hydrocarbon emissions associated with all project-related vehicle trips and to demonstrate that the hydrocarbon emissions associated with the preferred alternative are less than those from the build case in both the short and long term. If hydrocarbon emissions from the preferred alternative are greater than the no-build case, reasonable and feasible hydrocarbon reduction/mitigation measures must be included. Consult the "Guidelines for Performing Mesoscale Analysis of Indirect Sources" (available at the MEPA office) and DEP/DAQC to determine the appropriate study area.

.) - ²akegraatie in de s

era e segui aque

- Proposed CO Non-attainment Communities

Boston	Everett	Lowell
Cambridge	Malden	Worcester
Somerville	Medford	Springfield
Revere	Quincy	
Chelsea	Waltham	

MOBILE SOURCE

AIR QUALITY MODELING

Vanasse Hangen Brustlin, Inc.

Watertown, MA Bedford, NH Providence, RI Hartford, CT Hayes, VA Orlando, FL November 12, 1992

Thomas Wholley Vanasse Hangen Brustlin, Inc P.O. Box 9151 Watertown, MA 02272 (617) 924-1770 Outline

I. POLLUTANTS

A. Ozone:

,

B. Carbon Monoxide:

II. REGULATORY PROCESS

- A. CAAA-NEPA:
- B. MEPA:

III. TRAFFIC DATA

- A. <u>Mesoscale Analysis:</u>
 - 1) Network
 - 2) Corridor
 - 3) Site Specific
- B. Microscale Analysis:
 - 1) Peak Hour
 - 2) Eight Hour

IV. EMISSIONS DATA

- A. <u>Mesoscale Analysis:</u>
 - 1) MOBILE4.1 MOBILE5
- B. Microscale Analysis:
 - 1) MOBILE4.1 MOBILE5

V. MODELING

- A. <u>Mesoscale Analysis:</u>
 - 1) Gross Burden
- B. Microscale Analysis:
 - 1) CAL3QHC

FOUR-STEP TRAVEL DEMAND FORECAST TECHNIQUES

- TRIP GENERATION (Who?)
- TRIP DISTRIBUTION (Where?)
- MODAL SPLIT (How?)
- TRIP ASSIGNMENT (Route?)

2

VHR

MOBILE4.1 FLAGS AND INPUTS

MODITELA 1 J.C.

<u>Mesoscale Modeling Analysis</u> (Carbon Monoxide, Hydrocarbons and Oxides of Nitrogen)

System Efficiency:

MOBILE4.1 FLAGS

Tampering Rates	use MODILE4.1 defaults
Speed Flag	use one speed for all vehicles
VMT Mix	use MOBILE4.1 defaults
Annual Mileage Accumulation and/or	
Registration Distribution by Age	use MOBILE4.1 defaults
Modified Basic Exhaust Emission Rates	use MOBILE4.1 defaults
Inspection and Maintenance	Model I/M Program. Flag set to "2"
Program Inputs	
Star Year:	1983
Stringency Level:	12%
1st Model Year:	analysis year minus 14
Last Model Year:	2020
Waiver Rate Pre-1981:	1%
Waiver Rate 1981 & Post:	1%
Compliance Rate:	85%
Program Type:	decentralized/computerized
Inspection Frequency:	annual
Vehicle Types Subject to Inspection	LDGV, LDGT1, LDGT2
Test Type:	idle
Alternative Credits:	none
Transient Test:	not modelled
Purge System Check:	not modelled
Pressure Check:	not modelled
Exhaust Emission Correction Factors:	no corrections modeled
Anti-Tampering Program	no ATP modeled
Refueling Emission Factors	Stage II Vapor Recovery System modeled, Flag set to
Inputs	-
- Stage II Start Veen	1001
Dhase In Deried.	2
E LIVER III FAFILIII	S VOUTE

3 years 95% for all vehicle types Local Area Parameter (LAP) Record LAP Inputs

> Minimum Temperature ('F): Maximum Temperature ('F): "Period 1" Reid Vapor Pressure (RVP): "Period 2" RVP: "Period 2" Start Year: Oxygenated Fuel Flag: Diesel Sales Fraction:

> > 4

Temperature Flag

.

One record for all scenarios, Flag set to "2"

67.5° 94.4° 11.5 psi 9.0 psi 1989 No oxygenated fuel program modeled, set Flag to "1" No alternative diesel sales fraction, set Flag to "1"

use scenario temperature, Flag set to "1"

	PROMPT - vertical flag input, no p	rompting	000000
MOBILE4.1	Inchill Volcious Llug Impacy no p	20	0000000
1	TAMFLG - default tampering rates		0000000
1	SPDFLG - one speed per scenario for	r all IV	0000000
1	VMFLAG - default vmt mix	`	0000000 🧖
1	MYMRFG - default registration and r	nileage accrual rates	0000000
1	NEWFLG - default exhaust emission :	rates	0000000
2	IMFLAG - Yes I/M program		0000000
1	ALHFLG - no additional correction :	factor inputs	0000000
1	ATPFLG - no anti-tampering program	-	0000000
2	RLFLAG - yes calculate refueling lo	osses	
2	LOCFLG - read in local area paramet	ters one time	0000000
1	TEMFLG - calculate exhaust temperat	tures	0000000
4	OUTFMT - 80 column descriptive form	nat	0000000
· 4	PRTFLG - print exhaust HC, CO and N	NOx emission factor res	alts0000000
, 2	IDLFLG - do not print idle emission	ns results	0000000
3	NMHFLG - print NMHC		0000000
, 1	HCFLAG - print HC components		0000000
83 12 78 2	20 1 1 085 2 1 2221 1 11		
91 3 095			
TEST HC	C 67.5 94.4 11.5 9.0 89	LAP rec	0000000
1 92 5.0	85.4 20.6 27.3 20.6	lst req sc rec	0000000
1 92 10.0	85.4 20.6 27.3 20.6	lst req sc rec	0000000
1 92 15.0	85.4 20.6 27.3 20.6	lst req sc rec	0000000
1 92 20.0	85.4 20.6 27.3 20.6	lst req sc rec	0000000
1 92 25.0	85.4 20.6 27.3 20.6	1st req sc rec	0000000
1 92 30.0	85.4 20.6 27.3 20.6	lst req sc rec	0000000
1 92 35.0	85.4 20.6 27.3 20.6	lst req sc rec	0000000
1 92 40.0	85.4 20.6 27.3 20.6	lst req sc rec	0000000
1 92 45.0	85.4 20.6 27.3 20.6	lst req sc rec	0000000
1 92 50.0	85.4 20.6 27.3 20.6	lst req sc rec	0000000 -
1 92 55.0	85.4 20.6 27.3 20.6	lst req sc rec	0000000
1 92 60.0	85.4 20.6 27.3 20.6	lst req sc rec	0000000

•

• •

.

. ----

`

MOB											000	01
	ILE4.1	(4Nov91))									
0I/M	progra	um selec	cted:									
0	Start	year (J	January	1):		1983						
	Pre-19	81 MYR	stringe	encv rat	e:	12%						
	First	model v	vear cov	vered:	•••	1978						
	Last m	nodel ve	ar cove	ered.		2020						
	Waiver	rate (pre-198	31) :		1 %						
	Waiver	rate (1981 ar	, . .d. newer	۱.	1 2						
	Compli	ance Pa	1701 di	IG HEWET	/•	05 9 1.7						
	Theneo	tion to				00.8	toning	decent	maliand			
	Inspec	tion fr	pe.			Compu	retized	decent	rarrsea			
	Vobial		equency	ر بالم		Annua	⊥ V+a					
	Venitor	e cypes	COVELE	.u.		TDGA	- 163 - Voc					
						LDGTI	- ies					
						LDGT2	- ies					
		• • • •				HDGV	- NO					
	TART &	Later	MYR tes	st type:		Idle						
OTESI	r HC											
			Mini	.mum Tem	p: 68.	(F) M	aximum !	Temp: 9	4. (F)			
			Peri	od 1 RV	P: 11.	5 P	eriod 2	RVP:	9.0 Per:	iod 2	Yr:	
0VOC	HC emi	ssion f	actors	include	evapor	rative H	C emiss:	ion fac	tors.			
0												_
0Cal.	Year:	1992		Regio	n: Low		Alti	tude:	500. Ft	•		
			I/M	l Program	m: Yes	A	mbient !	remp:	88.0 /	88.0	/ 81	8
		An	ti-tam.	Program	n: No	Ope	rating 1	Mode:	20.6 /	27.3	/ 20	0
0Veh.	Type:	LDGV	LDGT1	LDGT2	LDGT	HDGV	LDDV	LDDT	HDDV	MC	Al:	l
+			. <u></u>									
Veh.	Spd.:	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0		
VM	IT Mix:	0.615	0.179	0.077		0.035	0.007	0.002	0.078	0.00	8	
0Comp	osite 1	Emissio	n Facto	rs (Gm/1	Mile)							
voc	HC:	7.51	9.61	12.70	10.54	21.29	1.43	2.00	4.84	10.30) 8	8.
Exhs	t CO:	59.72	81.43	112.95	90:92	265.98	4.47	5.20	32.28	104.55	5 72	2
Exhs	t NOX:	1.31	1.65	1.95	1.74	4.61	2.62	2.98	24.73	0.77		3.
0 <u>Cal</u>	Year:	1992	<u> </u>	Regio	n: Low		Altit	ude:	500. Ft			
0Cal.	Year:	1992	т/м	Region	n: Low n: Yes	A	Altit	ude:	500. Ft 88.0 /		/ 88	8
0Cal.	Year:	1992	I/M	Region Program Program	n: Low n: Yes	A	Altit mbient ?	rude:	500. Ft 88.0 / 20 6 /	88.0 27.3	/ 88	8.
OCal.	Year:	1992 Ani	I/M ti-tam.	Region Program Program	n: Low n: Yes n: No	Ai Ope: NDCV	Altit mbient : rating M	LUDE:	500. Ft 88.0 / 20.6 /	88.0 27.3	/ 88	8. 0.
OCal.	Year: Type:	1992 Ant LDGV	I/M ti-tam. LDGT1	Region Program Program LDGT2	n: Low n: Yes n: No LDGT	Ar Ope: HDGV	Altit mbient ? rating M LDDV	rude: Temp: Mode: LDDT	500. Ft 88.0 / 20.6 / HDDV	88.0 27.3 MC	/ 88 / 20 Al:	8. 0. 1
OCal. OVeh. +	Year: Type:	1992 Ant LDGV	I/M ti-tam. LDGT1	Region Program Program LDGT2	n: Low n: Yes n: No LDGT	Ar Ope: HDGV	Altit mbient ? rating M LDDV	LUDE: Iemp: Mode: LDDT 10.0	500. Ft 88.0 / 20.6 / HDDV	88.0 27.3 MC	/ 88 / 20 All	8. 0. 1
OCal. OVeh. + Veh.	Year: Type: Spd.:	1992 Ant LDGV 10.0	I/M ti-tam. LDGT1	Region Program LDGT2	n: Low n: Yes n: No LDGT	Ar Ope: HDGV 10.0	Altit mbient S rating M LDDV	LUDE: Iemp: Mode: LDDT 10.0	500. Ft 88.0 / 20.6 / HDDV 10.0	88.0 27.3 MC 10.0	/ 88 / 20 Al:	8. 0. 1
OCal. OVeh. + Veh. VM	Year: Type: Spd.: T Mix:	1992 Ant LDGV 10.0 0.615	I/M ti-tam. LDGT1 10.0 0.179	Region Program LDGT2 10.0 0.077	n: Low n: Yes n: No LDGT	Ar Ope: HDGV 10.0 0.035	Altit mbient S rating M LDDV 10.0 0.007	LUDE: LDDT 10.0 0.002	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078	88.0 27.3 MC 10.0 0.00	/ 88 / 20 	8. 0. 1
0Cal. 0Veh. + Veh. VM 0Comp	Year: Type: Spd.: T Mix: posite 1	1992 Ant LDGV 10.0 0.615 Emission	I/M ti-tam. LDGT1 10.0 0.179 n Facto	Region Program LDGT2 10.0 0.077 rs (Gm/1	n: Low n: Yes n: No LDGT Aile)	Ar Ope: HDGV 10.0 0.035	Altit mbient S rating M LDDV 10.0 0.007	LUDE: Iemp: Mode: LDDT 10.0 0.002	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078	88.0 27.3 MC 10.0 0.00	/ 88 / 20 	8.0.1
0Cal. 0Veh. + Veh. VM 0Comp VOC	Year: Type: Spd.: IT Mix: HC:	1992 Ant LDGV 10.0 0.615 Emission 4.07	I/M ti-tam. LDGT1 10.0 0.179 n Facto 5.24	Region Program LDGT2 10.0 0.077 rs (Gm/1 6.83	n: Low n: Yes n: No LDGT Mile) 5.72	Ar Ope: HDGV 10.0 0.035 13.67	Altit mbient S rating M LDDV 10.0 0.007 1.12	Lude: Temp: Mode: LDDT 10.0 0.002 1.57	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078 3.80	88.0 27.3 MC 10.0 0.00 7.21	/ 88 / 20 All	801
0Cal. 0Veh. + Veh. VM 0Comp VOC Exhs	Year: Type: Spd.: T Mix: bosite I HC: t CO:	1992 Ant LDGV 10.0 0.615 Emission 4.07 30.80	I/M ti-tam. LDGT1 10.0 0.179 n Facto 5.24 41.43	Region Program LDGT2 10.0 0.077 rs (Gm/1 6.83 55.47	n: Low n: Yes n: No LDGT 4ile) 5.72 45.65	Ar Ope: HDGV 10.0 0.035 13.67 176.96	Altit mbient 2 rating M LDDV 10.0 0.007 1.12 3.08	Lude: Femp: Mode: LDDT 10.0 0.002 1.57 3.59	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078 3.80 22.26	88.0 27.3 MC 10.0 0.00 7.21 50.23	/ 88 / 20 All 	8. 0. 1
OCal. 0Veh. + Veh. 0Comp VOC Exhs Exhs	Year: Type: Spd.: T Mix: oosite I HC: t CO: t NOX:	1992 Ant LDGV 10.0 0.615 Emission 4.07 30.80 1.17	I/M ti-tam. LDGT1 10.0 0.179 n Facto 5.24 41.43 1.49	Region Program LDGT2 10.0 0.077 rs (Gm/H 6.83 55.47 1.78	n: Low n: Yes n: No LDGT 4ile) 5.72 45.65 1.57	Ar Ope: HDGV 10.0 0.035 13.67 176.96 4.84	Altit mbient 2 rating M LDDV 10.0 0.007 1.12 3.08 2.18	Lude: Femp: Mode: LDDT 10.0 0.002 1.57 3.59 2.47	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078 3.80 22.26 20.52	88.0 27.3 MC 10.0 0.00 7.21 50.23 0.70	/ 88 / 20 Al: 	8. 0. 1 4. 8. 2.
0Cal. 0Veh. + Veh. VM 0Comp VOC Exhs Exhs	Year: Type: Spd.: T Mix: bosite I HC: t CO: t NOX:	1992 Ant LDGV 10.0 0.615 Emission 4.07 30.80 1.17	I/M ti-tam. LDGT1 10.0 0.179 n Facto 5.24 41.43 1.49	Region Program LDGT2 10.0 0.077 rs (Gm/I 6.83 55.47 1.78	n: Low n: Yes n: No LDGT 4ile) 5.72 45.65 1.57	Ar Ope: HDGV 10.0 0.035 13.67 176.96 4.84	Altit mbient 2 rating M LDDV 10.0 0.007 1.12 3.08 2.18	Lude: Femp: Mode: LDDT 10.0 0.002 1.57 3.59 2.47	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078 3.80 22.26 20.52	88.0 27.3 MC 10.0 0.00 7.21 50.23 0.70	/ 88 / 20 Al: 	8 . 0 . 1 4 . 8 . 2 .
0Cal. 0Veh. + Veh. VM 0Comp VOC Exhs Exhs 0Cal.	Year: Type: Spd.: T Mix: bosite F HC: t CO: t NOX: Year:	1992 An LDGV 10.0 0.615 Emission 4.07 30.80 1.17 1992	I/M ti-tam. LDGT1 10.0 0.179 n Facto 5.24 41.43 1.49	Region Program LDGT2 10.0 0.077 rs (Gm/I 6.83 55.47 1.78 Region	n: Low n: Yes n: No LDGT 4ile) 5.72 45.65 1.57 n: Low	Ar Ope: HDGV 10.0 0.035 13.67 176.96 4.84	Altit mbient 2 rating M LDDV 10.0 0.007 1.12 3.08 2.18 Altit	Lude: Temp: Mode: LDDT 10.0 0.002 1.57 3.59 2.47 LUDE:	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078 3.80 22.26 20.52 500. Ft	88.0 27.3 MC 10.0 0.00 7.21 50.23 0.70	/ 88 / 20 Al: 	8 . 0 . 1 4 . 8 . 2 .
0Cal. 0Veh. + Veh. VM 0Comp VOC Exhs Exhs 0Cal.	Year: Type: Spd.: IT Mix: bosite I HC: t CO: t NOX: Year:	1992 An LDGV 10.0 0.615 Emission 4.07 30.80 1.17 1992	I/M ti-tam. LDGT1 10.0 0.179 n Facto 5.24 41.43 1.49 I/M	Region Program LDGT2 10.0 0.077 rs (Gm/1 6.83 55.47 1.78 Region Program	n: Low n: Yes n: No LDGT 4ile) 5.72 45.65 1.57 n: Low n: Yes	Ar Ope: HDGV 10.0 0.035 13.67 176.96 4.84	Altit mbient 2 rating M LDDV 10.0 0.007 1.12 3.08 2.18 Altit mbient 2	Lude: Femp: Mode: LDDT 10.0 0.002 1.57 3.59 2.47 Lude: Femp:	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078 3.80 22.26 20.52 500. Ft 88.0 /	88.0 27.3 MC 10.0 0.00 7.21 50.23 0.70	/ 88 / 20 Al: 	8 0 1 4 8 2
0Cal. 0Veh. + Veh. VM 0Comp VOC Exhs Exhs 0Cal.	Year: Type: Spd.: IT Mix: bosite D HC: HC: t CO: t NOX: Year:	1992 An LDGV 10.0 0.615 Emission 4.07 30.80 1.17 1992 An	I/M ti-tam. LDGT1 10.0 0.179 n Facto 5.24 41.43 1.49 I/M ti-tam.	Region Program LDGT2 10.0 0.077 rs (Gm/H 6.83 55.47 1.78 Region Program	n: Low n: Yes n: No LDGT 411e) 5.72 45.65 1.57 n: Low n: Yes n: No	Ar Ope: HDGV 10.0 0.035 13.67 176.96 4.84 Ar Ope:	Altit mbient 2 rating M LDDV 10.0 0.007 1.12 3.08 2.18 Altit mbient 2 rating M	Lude: Femp: Mode: LDDT 10.0 0.002 1.57 3.59 2.47 Lude: Femp: Mode:	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078 3.80 22.26 20.52 500. Ft 88.0 / 20.6 /	88.0 27.3 MC 10.0 0.00 7.21 50.23 0.70 88.0 27.3	/ 88 / 20 All 8 3 38 3 38 2 4 8 2 4 8 2	8 · 0 · 1 4 · 8 · 2 · 0
0Cal. 0Veh. + Veh. VM 0Comp VOC Exhs Exhs 0Cal. 0Veh.	Year: Type: Spd.: T Mix: bosite D HC: t CO: t NOX: Year: Type:	1992 An LDGV 10.0 0.615 Emission 4.07 30.80 1.17 1992 An LDGV	I/M ti-tam. LDGT1 10.0 0.179 n Facto 5.24 41.43 1.49 I/M ti-tam. LDGT1	Region Program LDGT2 10.0 0.077 rs (Gm/H 6.83 55.47 1.78 Region Program Program LDGT2	n: Low n: Yes n: No LDGT 45.65 1.57 n: Low n: Yes n: No LDGT	Ar Ope: HDGV 10.0 0.035 13.67 176.96 4.84 Ar Ope: HDGV	Altit mbient 2 rating M LDDV 10.0 0.007 1.12 3.08 2.18 Altit mbient 2 rating M	Lude: Femp: Mode: LDDT 10.0 0.002 1.57 3.59 2.47 Lude: Femp: Mode: LDDT	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078 3.80 22.26 20.52 500. Ft 88.0 / 20.6 / HDDV	88.0 27.3 MC 10.0 0.00 7.21 50.23 0.70 88.0 27.3 MC	/ 88 / 20 All 8 3 38 2 3 3 4 3 2 4 8 2 4 20 All	8 0 1 4 8 0 1
0Cal. 0Veh. + Veh. VM 0Comp VOC Exhs Exhs 0Cal. 0Veh. +	Year: Type: Spd.: T Mix: Dosite D HC: t CO: t NOX: Year: Type:	1992 An LDGV 10.0 0.615 Emission 4.07 30.80 1.17 1992 An LDGV	I/M ti-tam. LDGT1 10.0 0.179 n Facto 5.24 41.43 1.49 I/M ti-tam. LDGT1	Region Program LDGT2 10.0 0.077 rs (Gm/H 6.83 55.47 1.78 Region Program Program LDGT2	n: Low n: Yes n: No LDGT 45.65 1.57 n: Low n: Yes n: No LDGT	Ar Ope: HDGV 10.0 0.035 13.67 176.96 4.84 Ar Ope: HDGV	Altit mbient 2 rating M LDDV 10.0 0.007 1.12 3.08 2.18 Altit mbient 2 rating M	Lude: Femp: Mode: LDDT 10.0 0.002 1.57 3.59 2.47 Lude: Femp: Mode: LDDT	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078 3.80 22.26 20.52 500. Ft 88.0 / 20.6 / HDDV	88.0 27.3 MC 10.0 0.00 7.21 50.23 0.70	/ 88 / 20 All 8 3 38 3 38 3 38 3 38 3 38 3 38 3 38	8 0 1 4 8 0 1
0Cal. 0Veh. + Veh. VM 0Comp VOC Exhs Exhs 0Cal. 0Veh. + Veh.	Year: Type: Spd.: TMix: Dosite D HC: HC: TC: Year: Type: Spd	1992 An LDGV 10.0 0.615 Emission 4.07 30.80 1.17 1992 An LDGV	I/M ti-tam. LDGT1 10.0 0.179 n Facto 5.24 41.43 1.49 I/M ti-tam. LDGT1 15.0	Region Program LDGT2 10.0 0.077 rs (Gm/1 6.83 55.47 1.78 Region Program Program LDGT2	n: Low n: Yes n: No LDGT 45.65 1.57 n: Low n: Yes n: No LDGT	Ar Ope: HDGV 10.0 0.035 13.67 176.96 4.84 Ar Ope: HDGV	Altit mbient ? rating M LDDV 10.0 0.007 1.12 3.08 2.18 Altit mbient ? rating M LDDV	Lude: Temp: Mode: LDDT 10.0 0.002 1.57 3.59 2.47 Lude: Temp: Mode: LDDT 15.0	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078 3.80 22.26 20.52 500. Ft 88.0 / 20.6 / HDDV 15.0	88.0 27.3 MC 10.0 0.00 7.21 50.23 0.70 88.0 27.3 MC 15.0	/ 88 / 20 All 8 3 38 / 8 / 8 / 8 / 8 / 20 All	8 0 1 4 8 2 8 0 1
0Cal. 0Veh. + Veh. VM 0Comp VOC Exhs Exhs 0Cal. 0Veh. + Veh.	Year: Type: Spd.: TMix: Dosite H HC: HC: CO: TO: Year: Type: Spd.:	1992 An LDGV 10.0 0.615 Emission 4.07 30.80 1.17 1992 An LDGV 15.0 0.615	I/M ti-tam. LDGT1 10.0 0.179 n Facto 5.24 41.43 1.49 I/M ti-tam. LDGT1 15.0 0.179	Region Program LDGT2 10.0 0.077 rs (Gm/1 6.83 55.47 1.78 Region Program Program LDGT2 15.0 0.077	n: Low n: Yes n: No LDGT 45.65 1.57 n: Low n: Yes n: No LDGT	Ar Ope: HDGV 10.0 0.035 13.67 176.96 4.84 Ar Ope: HDGV 15.0 0.035	Altit mbient 2 rating M LDDV 10.0 0.007 1.12 3.08 2.18 Altit mbient 2 rating M LDDV 15.0 0.007	Lude: Temp: Mode: LDDT 10.0 0.002 1.57 3.59 2.47 Lude: Temp: Mode: LDDT 15.0 0.002	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078 3.80 22.26 20.52 500. Ft 88.0 / 20.6 / HDDV 15.0 0.078	88.0 27.3 MC 10.0 0.00 7.21 50.23 0.70 88.0 27.3 MC 15.0 0.00	/ 88 / 20 All 08 3 38 7 88 / 81 / 81 / 81 / 81	801 482 801
0Cal. 0Veh. + Veh. VM 0Comp VOC Exhs Exhs 0Cal. 0Veh. + VM	Year: Type: Spd.: TMix: Josite H HC: HC: CO: TO: Year: Type: Spd.: TMix:	1992 An LDGV 10.0 0.615 Emission 4.07 30.80 1.17 1992 An LDGV 15.0 0.615	I/M ti-tam. LDGT1 10.0 0.179 n Facto 5.24 41.43 1.49 I/M ti-tam. LDGT1 15.0 0.179	Region Program LDGT2 10.0 0.077 rs (Gm/1 6.83 55.47 1.78 Region Program Program LDGT2 15.0 0.077	Aile) 5.72 45.65 1.57 A: Low n: Yes n: No LDGT	Ar Ope: HDGV 10.0 0.035 13.67 176.96 4.84 Ar Ope: HDGV 15.0 0.035	Altit mbient 2 rating M LDDV 10.0 0.007 1.12 3.08 2.18 Altit mbient 2 rating M LDDV 15.0 0.007	Lude: Femp: Mode: LDDT 10.0 0.002 1.57 3.59 2.47 Lude: Femp: Mode: LDDT 15.0 0.002	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078 3.80 22.26 20.52 500. Ft 88.0 / 20.6 / HDDV 15.0 0.078	88.0 27.3 MC 10.0 0.00 7.21 50.23 0.70 88.0 27.3 MC 15.0 0.00	/ 88 / 20 All 08 3 38 7 88 / 81 / 81 / 81 / 81 / 81 / 81 / 81 /	
0Cal. 0Veh. + VM 0Comp VOC Exhs Exhs 0Cal. 0Veh. + Veh. VM 0Cal.	Year: Type: Spd.: T Mix: Dosite I HC: t CO: t NOX: Year: Type: Spd.: Type: Spd.:	1992 An LDGV 10.0 0.615 Emission 4.07 30.80 1.17 1992 An LDGV 15.0 0.615 Emission	I/M ti-tam. LDGT1 10.0 0.179 n Facto 5.24 41.43 1.49 I/M ti-tam. LDGT1 15.0 0.179 n Facto	Region Program LDGT2 10.0 0.077 rs (Gm/I 6.83 55.47 1.78 Region Program Program LDGT2 15.0 0.077 ors (Gm/I	Aile) Aile) 5.72 45.65 1.57 A: Low n: Yes n: No LDGT Mile)	Ar Ope: HDGV 10.0 0.035 13.67 176.96 4.84 Ar Ope: HDGV 15.0 0.035	Altit mbient 2 rating M LDDV 10.0 0.007 1.12 3.08 2.18 Altit mbient 2 rating M LDDV 15.0 0.007	Lude: Femp: Mode: LDDT 10.0 0.002 1.57 3.59 2.47 LUDE: Femp: Mode: LDDT 15.0 0.002	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078 3.80 22.26 20.52 500. Ft 88.0 / 20.6 / HDDV 15.0 0.078 2.05	88.0 27.3 MC 10.0 0.00 7.21 50.23 0.70 88.0 27.3 MC 15.0 0.00	/ 88 / 20 All 8 3 38 / 88 / 20 All 08	8 0 1 4 8 2 8 0 1 - - - - - - - - - - - - -
OCal. OVeh. + Veh. VM OComp VOC Exhs OCal. OVeh. + Veh. VM OCal.	Year: Type: Spd.: T Mix: Dosite H HC: t CO: t NOX: Year: Type: Spd.: Type: Spd.: T Mix: Dosite H HC:	1992 An LDGV 10.0 0.615 Emission 4.07 30.80 1.17 1992 An LDGV 15.0 0.615 Emission 3.08	I/M ti-tam. LDGT1 10.0 0.179 n Facto 5.24 41.43 1.49 I/M ti-tam. LDGT1 15.0 0.179 n Facto 3.93	Region Program LDGT2 10.0 0.077 rs (Gm/H 6.83 55.47 1.78 Region Program Program LDGT2 15.0 0.077 ors (Gm/H 5.10	h: Low n: Yes n: No LDGT 411e) 5.72 45.65 1.57 h: Low n: Yes n: No LDGT Mile) 4.28	Ar Ope: HDGV 10.0 0.035 13.67 176.96 4.84 Ar Ope: HDGV 15.0 0.035 10.29	Altit mbient 2 rating M LDDV 10.0 0.007 1.12 3.08 2.18 Altit mbient 2 rating M LDDV 15.0 0.007 0.90	Lude: Femp: Mode: LDDT 10.0 0.002 1.57 3.59 2.47 LUDE: Femp: Mode: LDDT 15.0 0.002 1.26	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078 3.80 22.26 20.52 500. Ft 88.0 / 20.6 / HDDV 15.0 0.078 3.05	88.0 27.3 MC 10.0 0.00 7.21 50.23 0.70 88.0 27.3 MC 15.0 0.00 6.15	/ 88 / 20 All 08 338 / 88 / 20 All 08 5	
OCal. OVeh. + Veh. VM OComp VOC Exhs OCal. OVeh. + Veh. VM OComp VOC Exhs	Year: Type: Spd.: T Mix: Dosite H HC: t CO: t NOX: Year: Type: Spd.: Type: Spd.: T Mix: Dosite H HC: t CO:	1992 An LDGV 10.0 0.615 Emission 4.07 30.80 1.17 1992 An LDGV 15.0 0.615 Emission 3.08 21.37	I/M ti-tam. LDGT1 10.0 0.179 n Facto 5.24 41.43 1.49 I/M ti-tam. LDGT1 15.0 0.179 n Facto 3.93 28.67	Region Program DDGT2 10.0 0.077 rs (Gm/H 6.83 55.47 1.78 Region Program DDGT2 15.0 0.077 ors (Gm/H 5.10 36.87	n: Low n: Yes n: No LDGT 411e) 5.72 45.65 1.57 n: Low n: Yes n: No LDGT 4.28 31.14	Ar Ope: HDGV 10.0 0.035 13.67 176.96 4.84 Ar Ope: HDGV 15.0 0.035 10.29 124.39	Altit mbient 2 rating M LDDV 10.0 0.007 1.12 3.08 2.18 Altit mbient 2 rating M LDDV 15.0 0.007 0.90 2.22	Lude: Femp: Mode: LDDT 10.0 0.002 1.57 3.59 2.47 LUDE: Femp: Mode: LDDT 15.0 0.002 1.26 2.59	500. Ft 88.0 / 20.6 / HDDV 10.0 0.078 3.80 22.26 20.52 500. Ft 88.0 / 20.6 / HDDV 15.0 0.078 3.05 16.06	88.0 27.3 MC 10.0 0.00 7.21 50.23 0.70 88.0 27.3 MC 15.0 0.00 6.15 32.62	/ 88 / 20 All 08 3 38 2 3 38 2 4 8 3 38 2 4 8 2 2 0 8 5 2 2	

2°, "

•

CAL3QHC 3 INPUTS

Carbon Monoxide (CO) Microscale Modeling

Average Time60 MinutesSurface Roughness370 cmSettling and Deposition velocity0 cm/secondWindspeed1 meter/secondRange of Wind Directions10' increments from 0' to 360'Stability Classuse Class"D"Mixing Height1000 meters

EXAMPLE - TWO WAY	INTERSE	CTION		60.1	75.	0. 0.	8	0.3048
REC 1		45.	-3	5.	6.0			
REC 2		-45.	-3	5.	6.0			
REC 3		-45.	3	5.	6.0			
REC 4	•	45.	3	5.	6.0			
REC 5		45.	-15	0.	6.0			
REC 6		-45.	-15	0.	6.0			
REC 7		-150.	3	5.	6.0			
REC 8		-150.	-3	5.	6.0			
MAIN ST. AND LOCAL	L ST. IN	TERSECT	ION	9 :	L 0			
1								
Link 1	AG	101	000.	10.	0.	1500.	20.9	0. 40.
1								
Link 2	AG	10.	0.	10. 1	L 0 00.	1500.	20.9	0. 40.
1								
Link 3	AG	-10. 1	000.	-10.	0.	1200.	20.9	0. 40.
1	•							
Link 4	AG	0.	0.	1000.	0.	1000.	20.9	0. 40.
1								
Link 5	AG	-10.	0.	-101	.000.	1200.	20.9	0. 40.
1								
Link 6	AG -1	000.	0.	0.	0.	1000.	20.9	0. 40.
2			_	_		_		
Link 7	AG	-10.	10.	-10. 1	.000.	0.	20.0	2
90	40	3.0 1	200 6	.25 160	0 1 3	5		
2								
Link 8	AG	-20.	0	1000.	0.	0.	20.0	2
90	50	3.0 1	000 6	.25 180	0 1 3	} .		
2								
Link 9	AG	10.	-10.	101	.000.	0.	20.0	2
90	40	3.0 1	500 6	.25 180	0 1 3	}		
1.000.41000. 0.	Y 10 0	36						

.

.

JOB: EXAMPLE - TWO WAY INTERSECTION DATE: 11/05/1992 TIME: 15:41:35.86 RUN: MAIN ST. AND LOCAL ST. INTERSECTION

.

SITE & METEOROLOGICAL VARIABLES

VS 🛥	.0 CM/S	VD =	.0 CM/S	20 = 175. CM				
U =	1.0 M/S	CLAS =	4 (D)	ATIM = 60. MINUTES	MIXH =	1000. M	AMB =	.O PPM

LINK VARIABLES

LINK DESCRIPTION	*	L	INK COORDIN	IATES (M)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
	*	X1	Yl	X2	¥2	*	(M)	(DEG)		(G/MI)	(M) (M)		(VEH)
1. Link 1	*	3.0	-304.8	3.0	.0	*	305.	360. AG	1500.	20.9	.0 12.2		
2. Link 2	*	3.0	.0	3.0	304.8	*	305.	360. AG	1500.	20.9	.0 12.2		
3. Link 3	*	-3.0	304.8	-3.0	.0	*	305.	180. AG	1200.	20.9	.0 12.2		
4. Link 4	*	.0	.0	304.8	.0	*	305.	90. AG	1000.	20.9	.0 12.2		
5. Link 5	*	-3.0	.0	-3.0	-304.8	*	305.	180. AG	1200.	20.9	.0 12.2		
6. Link 6	*	-304.8	.0	.0	.0	*	305.	90. AG	1000.	20,9	.0 12.2		
7. Link 7	*	-3.0	3.0	-3.0	43.5	*	40.	360. AG	894.	100.0	.0 6.1	.78	6.7
8. Link 8	*	-6.1	.0	-47.8	.0	*	42.	270. AG	1118.	100.0	.0 6.1	.71	6.9
9. Link 9	*	. 3.0	-3.0	3.0	-56.2	*	53.	180. AG	894.	100.0	.0 6.1	.83	8.9
										3			

RECEPTOR LOCATIONS

-		*	C001	RDINATES (M)	1	*
	RECEPTOR	*	x	Y	2	*
1.	REC 1	*	13.7	-10.7	1.8	*
2.	REC 2	+	-13.7	-10.7	1.8	*
з.	REC 3	*	-13.7	10.7	1.8	*
4.	REC 4	*	13.7	10.7	1.8	*
5.	REC 5	*	13.7	-45.7	1.8	
6.	REC 6	*	-13.7	-45.7	1.8	*
7.	REC 7	*	-45.7	10.7	1.8	
8.	REC 8	+	-45.7	-10.7	1.8	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND	*	CONCE	NTRATIO	NC					
(DEGR)) * - *:	REC1	REC2	REC3	REC4	REC5	REC 6	REC7	REC8
0.	*	1.9	4.7	1.6	1.3	2.4	2.8	.2	2.4
10.	*	1.1	5.8	2.6	.6	1.1	3.4	.5	3.2
20.	*	.6	5.7	3.3	.1	.3	3.5	.7	3.5
30.	*	.6	5.1	3.6	.0	.2	3.5	.7	4.0
40.	*	.6	4.1	3.5	.0	.2	3.3	.9	4.3
50.	*	.7	3.5	3.3	.0	.2	3.0	1.0	4.5
60.	*	.7	2.9	3.2	.0	.3	3.0	1.2	4.4
70.	*	.8	3.2	3.2	.1	.3	2.9	1.3	4.0
80.	*	.8	3.2	3.4	.2	.2	2.8	1.8	3.2
90.	*	.6	3.1	3.6	.6	.1	2.8	2.5	2.4
100.	*	.2	2.9	3.8	.8	.0	2.5	3.3	1.7
110.	*	.1	2.7	3.9	.8	.0	2.4	4.1	1.3
120.	*	.0	2.7	3.8	.7	.0	2.1	4.5	1.2
130.	*	.0	2.9	4.3	.7	0	1.9	4.4	1.1
140.	*	.0	3.0	4.8	.6	.0	1.7	4.3	.9
150.	*	.0	3.0	5.3	.6	.0	1.8	4.0	.8
160.	*	.1	2.8	5.4	.7	.1	1.8	3.5	.7
170.	*	.8	2.2	5.3	1.4	.5	1.7	3.2	.5
180.	*	1.8	1.4	4.3	2.6	1.2	1.1	2.4	.2
190.	*	3.0	.5	3.4	3.8	1.8	.5	1.7	.0
200.	*	3.7	.1	2.9	4.1	2.1	.1	1.2	.0
210.	*	3.8	.0	2.9	-3.9	2.1	.0	.9	.0
220.	*	3.7	.0	3.0	3.5	2.4	.0	.7	.0
230.	*	3.4	.0	3.2	3.5	2.6	.0	.7	.0
240.	*	3.3	.0	3.1	4.0	3.0	.0	.7	.0
250.	*	3.3	.1	2.7	4.7	3.1	.0	.8	.1
260.	*	3.8	.3	1.9	4.7	3.1	•0	.8	.2
270.	*	4.5	1.1	1.1	4.0	3.2	.1	.5	.5
280.	*	5.3	1.9	.3	3.3	3.4	.2	.2	.8
290.	*	5.4	2.7	.1	2.8	3.5	.3	.1	.8
300.	*	4.9	3.1	.0	2.8	3.9	.3	.0	.7
310.	*	4.2	3.2	.0	2.8	4.2	.4	.0	.7
320.	*	4.0	3.0	.0	2.9	4.8	.6	.0	.7
330.	*	3.9	2.9	.0	2.7	5.0	.9	.0	.9
340.	*	3.5	2.9	.1	2.5	4.8	1.2	.0	1.2
350.	*	2.9	3.5	.6	2.0	4.0	1.7	.0	1.7
360.	* -*-	1.9	4.7	1.6	1.3	2.4	2.8	.2	2.4
MAX	*	5.4	5.8	5.4	4.7	5.0	3.5	4.5	4.5
DEGR.	*	290	10	160	250	330	20	120	50

		MESOSCA	LE ANAL	YSIS	T		
Ĺ							
	HYDROCARBONS		1992 - E)	KISTING			
				1			SUB
	ROADWAY SEGMENT	LENGTH	LENGTH	ADT	SPEED	EF	TOTAL
		(FEET)	(MILES)	(VEH/DAY)	(MPH)	(GM per)	(GM/DAY)
						(VEH-MILE)	
1	LINK 1	26,786	5.07	53,000	55	1.77	475,908
6	LINK 2	27,253	5.16	8,700	20	2.99	134,267
3	LINK 3	7,100	1.34	33,000	15	3.65	161,969
4	LINK 4	2,675	0.51	33,000	20	2.99	49,989
				TOTAL (G	M/ DAY)		822,133
							-
			1997 - N	O BUILD			
	•						SUB
	ROADWAY SEGMENT	LENGTH	LENGTH	ADT	SPEED	EF	TOTAL
		(FEET)	(MILES)	(VEH/DAY)	(MPH)	(GM per)	(GM/DAY)
						(VEH-MILE)	
1	LINK 1	26,786	5.07	58,000	55.0	1.23	<u>361,915</u>
2	LINK 2	27,253	5.16	9,600	20.0	2.23	110,499
3	LINK 3	7,100	1.34	36,000	17.5	2.45	118,602
4	LINK 4	2,675	0.51	36,000	17.5	2.45	44,685
				TOTAL (G	M/ DAY)		635,701
	·						· · · · · · · · · · · · · · · · · · ·
	·	19	997 - BUIL	.D			
			1 211 0 22 1				SUB
	KUADWAY SEGMENT	LENGTH	LENGTH	AUT	SPEED	EF	IOTAL
			(MILES)	(VEH/DAY)	(MPH)	(GM per)	(GM/DAY)
-		00 700	F 07	50.400	55.0	(VEH-MILE)	000 154
븲		25,/86	5.07	59,160	0.00	1.23	110 700
2		27,253	5.16	10,320	20.0	2.23	118,786
3		/,100	1.34	36,870	15.0	2./1	134,359
4		2,0/5	0.51	37,170	15.0	2./1	51,033
	<u></u>			TOTAL (C		<u> </u>	672 220
		1 1		IIVIAL (G			0/3.332