## MASSACHUSETTS INTERAGENCY RATES WORKING GROUP

A Collaboration to Advance Near- and Long-Term Rate Designs that Align with the Commonwealth's Decarbonization Goals

#### LISTENING SESSION #I – MAY 6, 2024





Massachusetts Department of Energy Resources



## AGENDA

- I. Opening Remarks
- II. Interagency Rates Working Group (IRWG) Introduction
- III. Presentation from E3
- IV. Public Comment
- V. Future Stakeholder Opportunities



## **CONTEXT & PURPOSE**

- Existing electric rates jeopardize the Commonwealth's clean energy goals as they remain a barrier to building and transportation electrification
- Massachusetts Interagency Rates Working Group (IRWG) was formed to advance near- and long-term electric rate designs that align with the Commonwealth's decarbonization goals by prioritizing the reduction of energy burden while incentivizing transportation and building electrification
  - Includes representatives from the Executive Office of Energy & Environmental Affairs (EEA), the Massachusetts Clean Energy Center (MassCEC), the Department of Energy Resources (DOER), and the Attorney General's Office (AGO)



### **SCOPE OF WORK**

### I. Electric Rates Assessment

- Status of current electric rates in MA
- Existing legal, policy, and regulatory parameters
- Alternative rate structures offered in other jurisdictions

### II. Near-Term Rates Strategy (up to 5 yrs)

- Identify existing rate option barriers
- Propose alternative rate offering(s) that can be utilized during / prior to full AMI implementation

### III. Long-Term Ratemaking Study (5-10 yrs)

- Address regulatory/ratemaking mechanisms
- Recommend AMI-enabled rate designs
- Consider long-term energy affordability



### **RATE DESIGN PRIORITIES**

- Reduce Energy Burden and Support Electrification using new rate structures that will promote energy affordability and incentivize transportation and building electrification
  - Minimize or mitigate barriers for ratepayers to electrify end-uses
  - Create rate design features targeted to reducing the energy burden for ratepayers, particularly for low- and moderate-income ratepayers and vulnerable populations
- Increase Distributed Energy Resources (DER) Opportunities and Penetration to advance decarbonization and electrification
  - Promote DER and equitably allocate costs (e.g., the costs of interconnection, incentive programs, etc.) through rate design
- Integrate Distribution System Planning into the utility's business-as-usual operations and investments
  - Pursue least-cost distribution system upgrades that accommodate transportation and building electrification and other new loads
- **Promote Operational Efficiency** to facilitate the transition to a distributed grid
  - Utilize price signals to achieve effective load management, including peak demand reduction
  - Improve grid reliability, communications, and resiliency



### **EXPECTED TIMELINE**

|                                | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Jan |
|--------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Electric Rates Assessment      |     |     |     |     |     |     |     |     |     |     |     |
| Stakeholder Sessions #I        |     |     |     |     |     |     |     |     |     |     |     |
| Energy Expenditure Analysis    |     |     |     |     |     |     |     |     |     |     |     |
| Near-Term Rate Design Analysis |     |     |     |     |     |     |     |     |     |     |     |
| Stakeholder Sessions #2        |     |     |     |     |     |     |     |     |     |     |     |
| Near-Term Rate Strategy Report |     |     |     |     |     |     |     |     |     |     |     |
| Long-Term Rate Design Analysis |     |     |     |     |     |     |     |     |     |     |     |
| Stakeholder Sessions #3        |     |     |     |     |     |     |     |     |     |     |     |
| Long-Term Ratemaking Study Rep | ort |     |     |     |     |     | _   |     |     |     |     |
| IRWG Recommendations           |     |     |     |     |     |     |     |     |     |     |     |



## Massachusetts Electric Rate Design Study

Study Context and Scope



May 06, 2024



Vivan Malkani Andrew DeBenedictis Ari Gold-Parker Tory Clark

## **About Energy & Environmental Economics (E3)**



## $\sim 110$ consultants across 4 offices with expertise in economics, engineering, policy, & modeling



San Francisco



**New York** 



Boston



WILLDAN

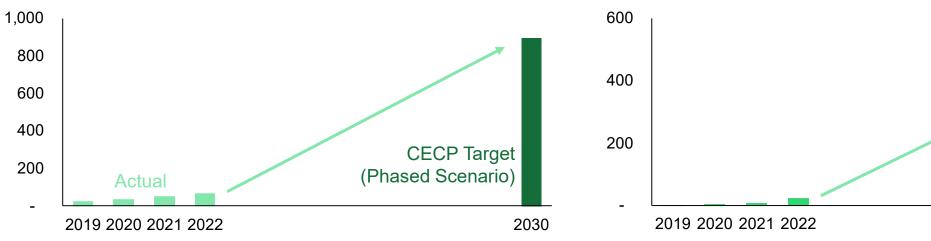
Calgary



#### **Example E3 Projects**

- **Massachusetts Storage Roadmap** Supported MassCEC/DOER to develop the *Charging Forward* report on current and future use cases for energy storage in Massachusetts
- CA Income-Based Fixed Charge Model Supporting California PUC in electric rate design proceeding exploring use of income-graduated fixed charges
- **Massachusetts Future of Gas Utility Support** Conducted decarbonization pathways study for MA local gas distribution companies for DPU "future of gas" 20-80 regulatory proceeding
- NYSERDA Building Electrification and Efficiency Model (BEEM) Worked with NYSERDA to analyze impacts of measure adoption across thousands of building types

### **Overview**


### + Role of building and transportation electrification in meeting MA climate goals

- + Electrification and energy affordability
- + Overview of today's electric rates in MA
  - Understanding electricity bills
  - Understanding utility cost recovery through rates
- + Restating key study research objectives
- + Alternative rate structures to explore in the near-term and long-term
  - Example 1: Lowering volumetric rates
  - Example 2: Time-varying rates
- + Modeling framework
  - Household energy expenditure model (HEEM) overview
- + Next steps

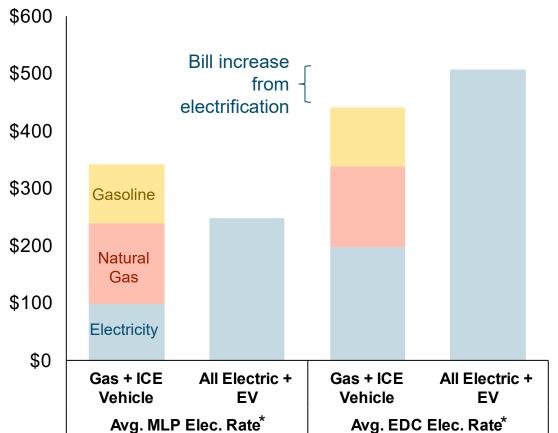
### **Transportation and building decarbonization are pillars of MA's** climate goals as defined by the Clean Energy and Climate Plan



#### Registered Light-Duty Electric Vehicles (1,000s)\*



2050 economy-wide net-zero emissions limit, with 85% gross emission reduction limit Compared to 1990 levels


2030

#### **Energy+Environmental Economics**

\*Executive Office of Energy and Environmental Affairs - Clean Energy and Climate Metrics Tracker 4

### **Electrification required to achieve decarbonization may worsen** affordability under current MA rates

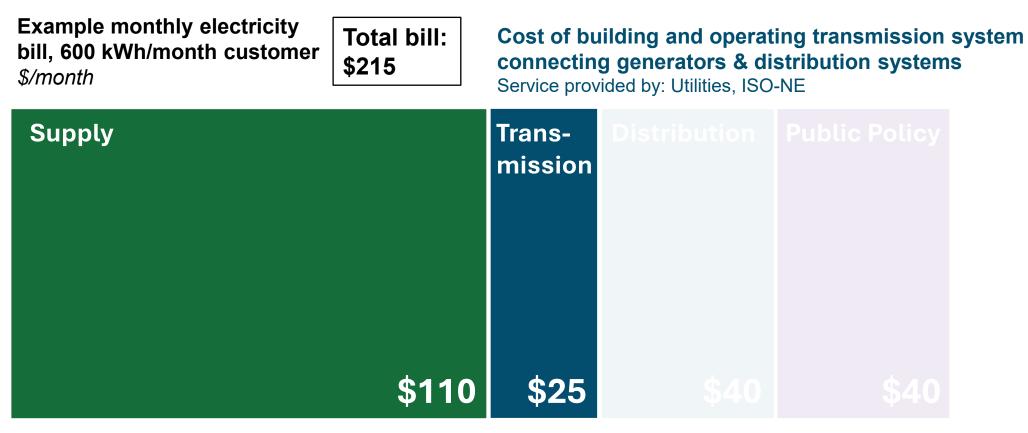
- Massachusetts' Climate and Clean Energy Plan + identified building and transportation electrification as crucial strategies to achieve economy-wide decarbonization
- However, bill increases resulting from + electrification present energy affordability challenge and present an obstacle to clean technology adoption needed to achieve decarbonization
- With today's electric rate structures, increasing + electric load may lead to potentially significant increases in monthly energy burden, despite high efficiency of electrified technologies



Illustrative MA home monthly energy expenditure

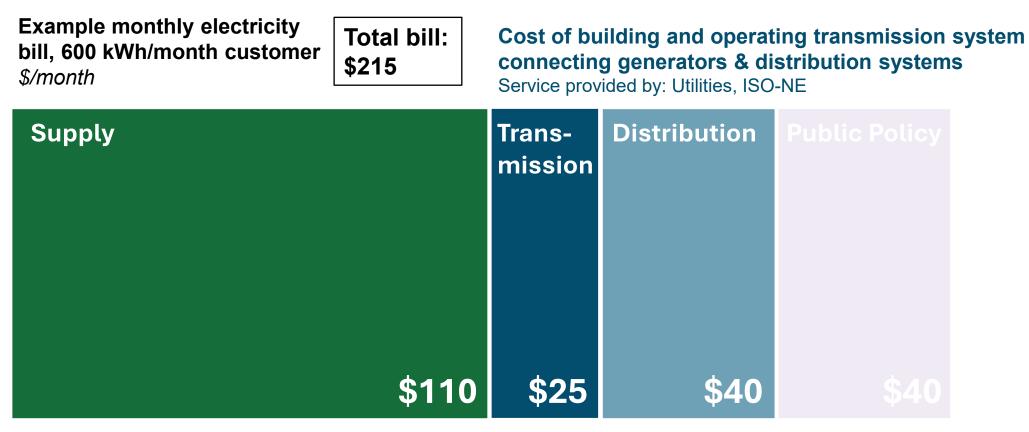
\$/month

Example monthly electricity bill, 600 kWh/month customer \$/month




Total bill:

\$215


#### Wholesale cost of electricity generated or procured

Service provided by: Utilities, municipal aggregation, or competitive supply



#### Wholesale cost of electricity generated or procured

Service provided by: Utilities, municipal aggregation, or competitive supply



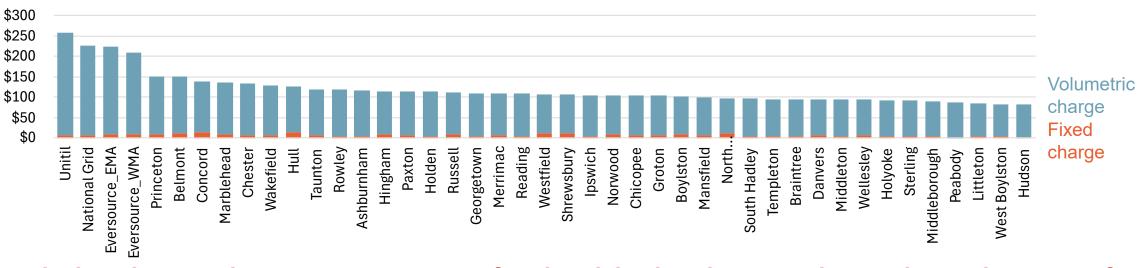
#### Wholesale cost of electricity generated or procured

Service provided by: Utilities, municipal aggregation, or competitive supply

Cost of building and operating distribution system delivering electricity to homes and businesses Service provided by: Utilities

| bill 600 kWh/month customer | Total bill:<br>\$215 | Cost of building and operating transmission system<br>connecting generators & distribution systems<br>Service provided by: Utilities, ISO-NE |              |               |                                                                                                                                                                       |  |  |  |  |
|-----------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Supply                      |                      | Trans-<br>mission                                                                                                                            | Distribution | Public Policy | Funding for programs<br>including bill<br>assistance, energy<br>efficiency, clean<br>energy, etc.<br>Service provided by:<br>Variety of state and utility<br>programs |  |  |  |  |
|                             | \$110                | \$25                                                                                                                                         | \$40         | \$40          |                                                                                                                                                                       |  |  |  |  |

### Wholesale cost of electricity generated or procured


Service provided by: Utilities, municipal aggregation, or competitive supply

Cost of building and operating distribution system delivering electricity to homes and businesses Service provided by: Utilities

### **Electric rates recover costs through a combination of fixed and volumetric charges**

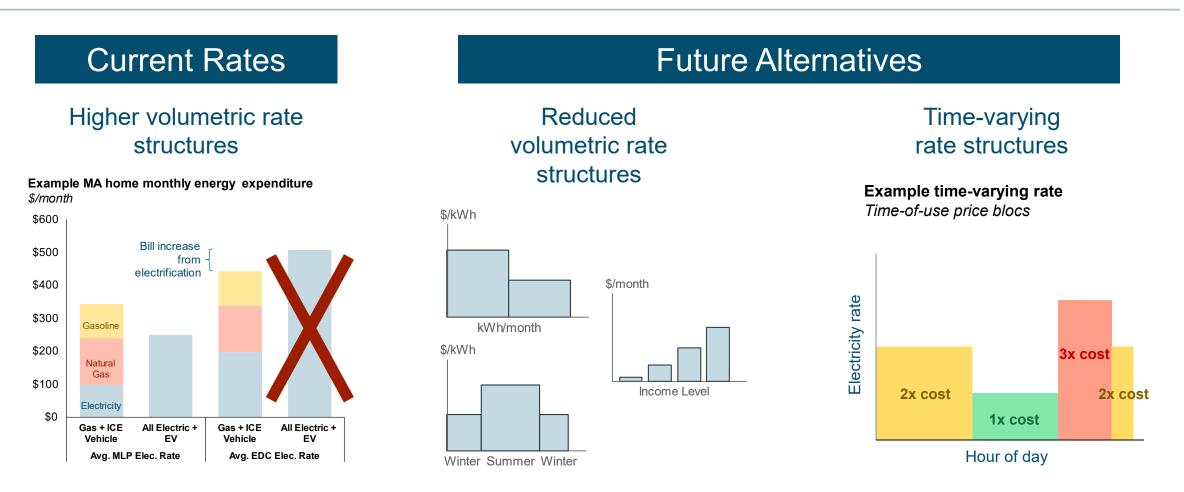
- Residential electric rates are composed of volumetric (\$/kWh) and fixed (monthly \$/customer) components
  - Historically, electric system costs were driven by the price of fossil fuels, and volumetric rates provided a strong
    price signal for conservation
  - Today, there are key questions about whether rate designs are impeding electrification of vehicles and buildings

**Example 2023 monthly electricity bills for 600 kWh/month customer** *\$/month* 



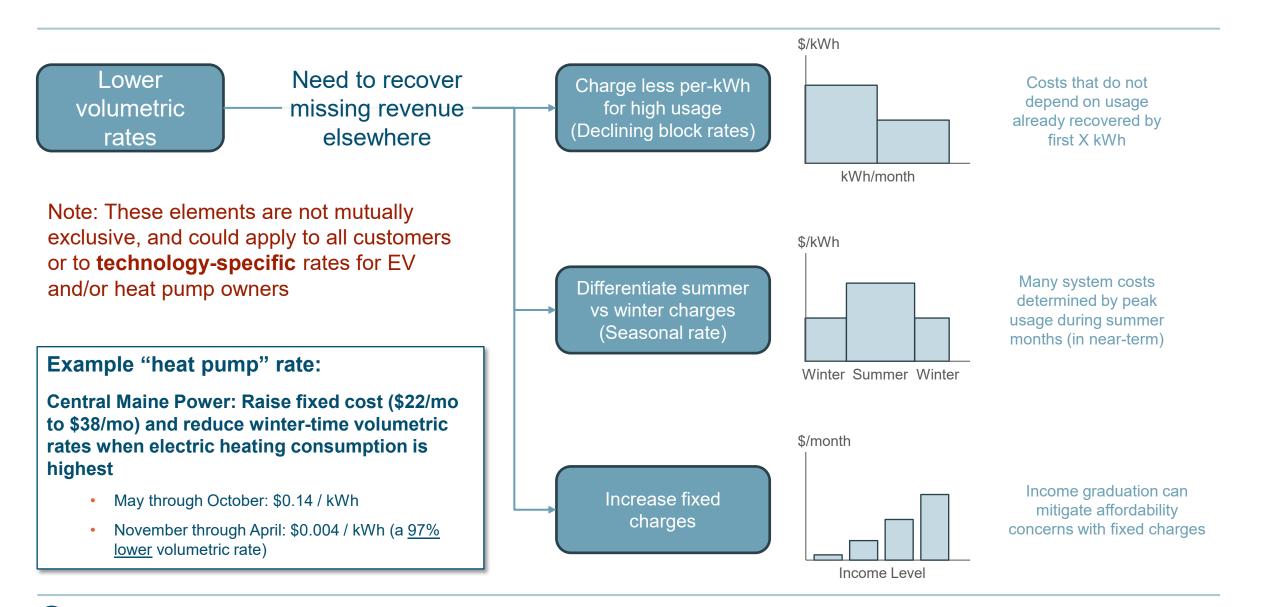
Rate design changes the way customers pay for electricity, but does not change the total amount of revenue that utilities collect

## This study will provide guidance to realign electric rate structures with the grid and policy goals of the future


- Interagency Rates Working Group goal is to advance near- and long-term electric rate designs that prioritize the reduction of energy burden while incentivizing transportation and building electrification
- + Key components of this study will include:
  - Exploring the bill impacts of existing and new rate designs across a wide range of representative MA residents
    - Task will include assessment of existing electric rates in the state as well as novel rate structures offered in peer jurisdictions
  - Identifying a potential roadmap of near-term and long-term rate design options for the Commonwealth
    - Task will include synthesis of policy, technology, and regulatory ratemaking considerations in MA in the near- and longterm



## Other rate designs may improve electrification signals without compromising affordability

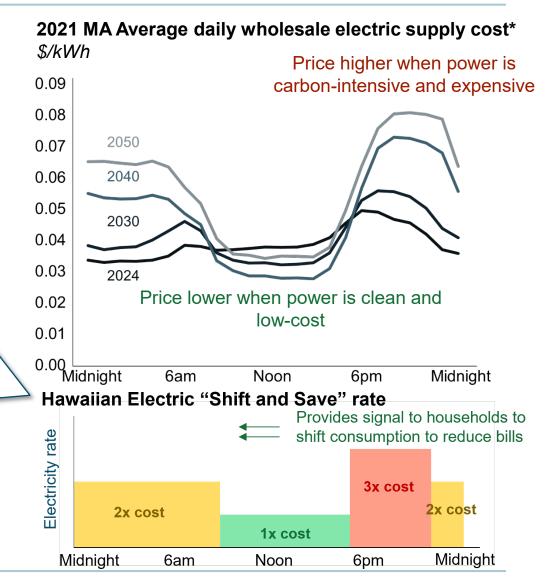



## Other rate designs may improve electrification signals without compromising affordability



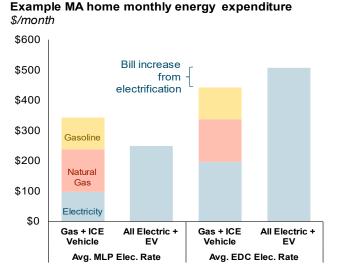
## Reminder: Rate design changes the way customers pay for electricity, but does not change the total amount of revenue that utilities collect

## **Example 1: Lowering volumetric charges**




## **Example 2 (longer term): Using time-varying rates (TVR)** to better align rates with costs

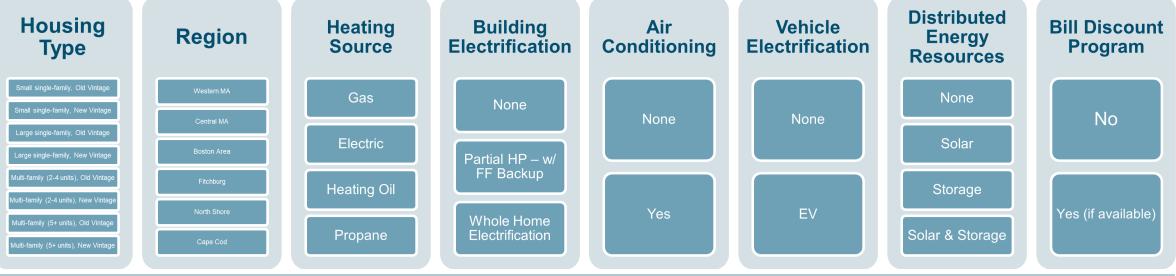
- TVR aligns customer and utility costs, providing price signal to shift and/or reduce consumption away from key hours of constrained supply
  - Requires advanced metering infrastructure (AMI) to track hourly usage, widespread deployment expected by 2027-2028
- + For example, Hawaiian Electric "Shift and Save" volumetric rates follow a 1:2:3 ratio


#### **Example TVR rate**

- **Hawaiian Electric**: three blocks of time-varying costs to incentivize load shifting and peak
- **1x costs during daytime**, when generation costs and emissions are lowest due to high penetration of solar
- **2x costs overnight**, when electricity generation relies on fossil fuels, i.e. more expensive and emissions-intensive than daytime
- **3x costs during evening peak**, i.e. period of maximum grid stress and emissions intensity



## Understanding energy affordability impacts across a variety of customers is crucial to exploring different rate designs


 "Average" customer bill impacts obscure the range of customer experiences and the connections between impacts and key drivers



## Understanding energy affordability impacts across a variety of customers is crucial to exploring different rate designs

- "Average" customer bill impacts obscure the range of customer experiences and the connections between impacts and key drivers
- E3 will develop a household energy expenditure model (HEEM) to better understand impacts across a wide swathe of residential customers





#### Proposed HEEM customer segmentation

### **Next Steps**

- + Continue developing database of existing rates, pilots, and low-income bill programs in MA across utilities
- + Continue HEEM development, focusing on energy expenditure for existing rates
  - Model will eventually explore energy expenditure across new revenue-neutral rate designs
- + Conduct literature review of electrification-friendly rates in peer jurisdictions, plus relevant policy, regulatory, and technology ratemaking considerations

## **INSTRUCTIONS FOR PUBLIC COMMENTS**

- Please use the "raise hand" function on Zoom if you have a comment you wish to make on behalf of yourself or your organization, we will operate on a first-come, first-served basis.
- Speakers will be asked to identify themselves by name and affiliation and will have up to 3 minutes to comment.
- Written comments are also welcome! Please send written comments to Rates.WG@mass.gov.All written comments will be considered public and may be posted on the IRWG website. For written comments on the Public Listening Sessions, please include the subject line: "Listening Session #1."



## **FUTURE STAKEHOLDER OPPORTUNITIES**

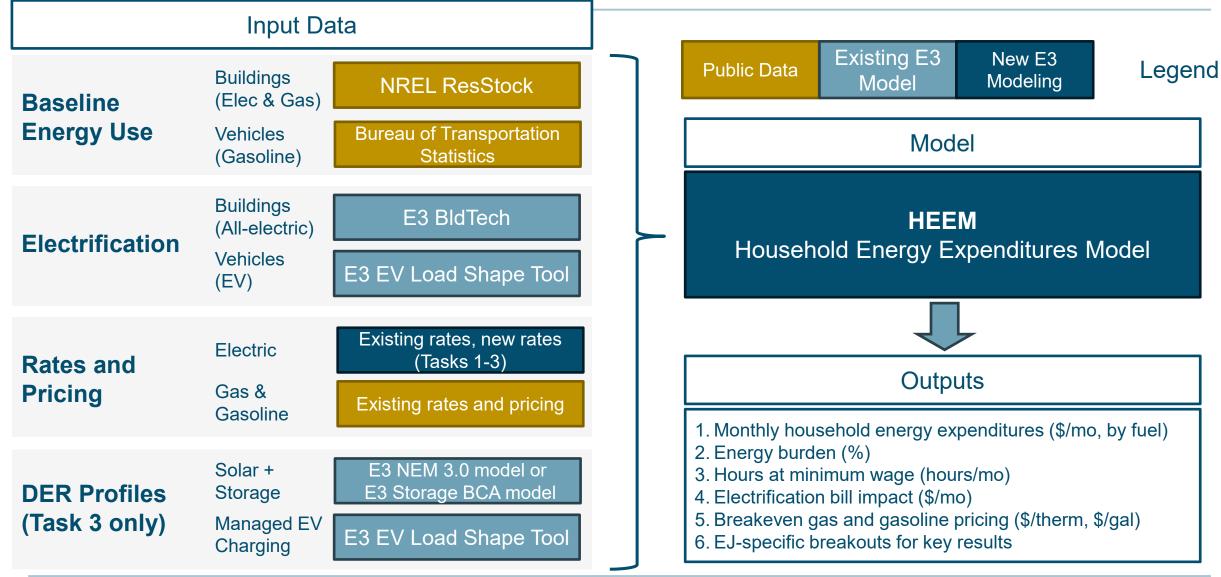
- The IRWG expects to host subgroup meetings to discuss further subject matter specific topics in greater detail; tentatively, we expect to host three sessions aimed at the following topic areas
  - Consumer and advocacy organizations
  - Distributed generation/distributed energy resource developers/providers
  - Electric distribution companies, utilities, suppliers
- Please email <u>Rates.WG@mass.gov</u> with the name, title, organization, and email address(es) of any interested parties for the above sessions, including the subject line: "IRWG Subgroup Interest"



## THANK YOU!

## MASSACHUSETTS INTERAGENCY RATES WORKING GROUP

A Collaboration to Advance Near- and Long- Term Rate Designs that Align with the Commonwealth's Decarbonization Goals




## **Appendix**



Energy+Environmental Economics

# HEEM model will support evaluation of key affordability results across a wide swath of customer types

