

# J. MICHAEL RUANE JUDICIAL CENTER HVAC SYSTEM EVALUATION SUMMARY

Visited September 16, 2020. Inspected the air handling units and toured the occupied portions of the building to determine if the spaces generally matched usage noted on the architectural plans. The J. Michael Ruane Judicial Center is a six-story building (including the basement), constructed in 2011, with a floor area of approximately 268,000 gross

square feet. The HVAC system includes 11 variable air volume (VAV) air handling units. The air handling units are generally in good condition. Filters and coils were generally clean. The dampers and actuators that were observed appeared to be in good condition.

# 1.0 Airflow Rate Per Person (Reduced Occupancy)

|                  |                 | Total Air                  |                              | Outde                    | oor Air                      |
|------------------|-----------------|----------------------------|------------------------------|--------------------------|------------------------------|
| <u>Courtroom</u> | Total<br>People | Supply<br>Airflow<br>(CFM) | Airflow Rate<br>(CFM/Person) | Outside<br>Airflow (CFM) | Airflow Rate<br>(CFM/Person) |
| Jury Pool Room   | 40              | 3,120                      | 78                           | 1,560                    | 39                           |
| Courtroom A      | 28              | 4,000                      | 146                          | 1,200                    | 42                           |
| Courtroom B      | 14              | 1,400                      | 100                          | 370                      | 26                           |
| Courtroom C      | 28              | 3,350                      | 120                          | 870                      | 31                           |
| Courtroom D      | 32              | 3,400                      | 106                          | 1,080                    | 34                           |
| Courtroom E      | 23              | 3,100                      | 135                          | 980                      | 43                           |
| Courtroom F      | 23              | 2,900                      | 126                          | 920                      | 40                           |
| Courtroom G      | 30              | 3,400                      | 113                          | 1,000                    | 34                           |
| Courtroom H      | 30              | 3,200                      | 107                          | 1,010                    | 34                           |
| Courtroom I      | 30              | 2,700                      | 90                           | 860                      | 29                           |
| Courtroom J      | 30              | 3,100                      | 104                          | 990                      | 33                           |
| Courtroom K      | 38              | 4,200                      | 109                          | 1,200                    | 32                           |

# 2.0 Recommendations

| Section | Recommendation/Finding                                                         | Action            |
|---------|--------------------------------------------------------------------------------|-------------------|
| 2.1     | Filtration Efficiency                                                          |                   |
|         | No actionable items identified                                                 | MERV-13/14 in use |
| 2.2     | Testing and Balancing                                                          |                   |
| RTB-1   | RTB-1: Test and rebalance air handling unit minimum outside air flow rate      | Complete          |
| RTB-3   | RTB-3: Increase outside air flow rate beyond minimum under non-peak conditions | Complete          |
| RTB-5   | RTB-5: Consider rebalancing all air inlets and outlets                         | N/A               |
| RTB-6   | RTB-6: Test and balance all air handler chilled and hot water coils            | In-progress       |
|         |                                                                                |                   |

| 2.3   | Equipment Maintenance and Upgrades                                                                                                                                                   |             |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| RE-1  | Test existing air handling system dampers and actuators for proper operation                                                                                                         | Complete    |
| RE-4  | Inspect VAV boxes and controllers                                                                                                                                                    | Complete    |
| RE-4  | Test and balance VAV box flow rates                                                                                                                                                  | N/A         |
| 2.4   | Control System                                                                                                                                                                       |             |
| RC-1  | Implement a pre and post-occupancy flush sequence                                                                                                                                    | Complete    |
| RC-3  | Install controls required to introduce outside air beyond the minimum requirement                                                                                                    | Complete    |
| RC-5  | Disable demand control ventilation sequences                                                                                                                                         | Complete    |
| 2.5   | Additional Filtration and Air Cleaning                                                                                                                                               |             |
| RFC-1 | Install portable HEPA filters in high traffic areas – if courthouse is to operate at a high occupancy (i.e. 50-75% or greater), install portable HEPA filters in high traffic areas. | In progress |
| 2.6   | Humidity Control                                                                                                                                                                     |             |
|       | No actionable items list – continuous monitoring for seasonal changes                                                                                                                | On-going    |
| 2.7   | Other Recommendations                                                                                                                                                                |             |
| 2.7.1 | Route exhaust ductwork from 2nd floor mechanical room directly to the outdoors                                                                                                       | Complete    |
| 2.7.2 | Increase VAV minimum airflow from 40%to 50% in courtrooms                                                                                                                            | Complete    |
| 2.7.3 | Replace CO2 sensors that are malfunctioning or beyond their expected life of 5-10 years                                                                                              | In-progress |



J. Michael Ruane Judicial Center Salem, MA

# HVAC SYSTEM EVALUATIONS COVID-19

Office of Court Management

December 9, 2020

Tighe&Bond



# Section 1 Existing Conditions and Site Observations

Tighe & Bond visited the J. Michael Ruane Judicial Center in Salem, MA on September 16, 2020. While on site, we inspected the air handling units and toured the occupied portions of the building to determine if the spaces generally matched usage noted on the architectural plans.

## Site Visit Attendees:

- Office of Court Management:
  - Marcos (Marc) Olivera, Facilities Supervisor
  - o Jim Cawley, Facilities, HVAC Specialist
- Tighe & Bond:
  - Sean Pringle, PE, Project Mechanical Engineer
  - o Christina Wu, Staff Engineer

# 1.1 Existing Ventilation System

The J. Michael Ruane Judicial Center is a six-story building (including the basement), constructed in 2011, with a floor area of approximately 268,000 gross square feet. The HVAC system includes 11 variable air volume (VAV) air handling units (AHU), with AHU's 1 through 4 located in the rooftop penthouse, AHU's 5 through 8 and 11 located on the  $2^{nd}$  floor, and AHU's 9 and 10 located on the  $4^{th}$  floor.

All AHU's have a heating hot water coil with freeze pump, a chilled water cooling coil, supply fan, remote return air fan, independent return air (RA), outside air (OA), and exhaust air dampers, and return, supply, and outside airflow stations. AHU's 5&7, and AHU's 6&8 work in parallel with each other and function as a single VAV system. The air handling units are generally in good condition. Filters and coils were generally clean. The dampers and actuators that were observed appeared to be in good condition. The units are original and approximately 10 years old. According to staff, motors, actuators, bearings, and other wear items are replaced when they fail. Most dampers could not be inspected because they were within ductwork, and not part of the AHU. All cooling is provided through the AHU's. In areas with large perimeter loads, finned tube radiation is provided for additional heating.

During the visit, staff informed us that to improve ventilation in response to COVID-19, the AHU's have been set to operate in occupied mode 24/7, including maintaining occupied temperatures.

**TABLE 1** Existing Air Handlers

| Unit # | Design Airflow<br>(CFM) | Design Min OA<br>(CFM) | Filters                                  | Condition |
|--------|-------------------------|------------------------|------------------------------------------|-----------|
| AHU-1  | 6,000                   | 1,900                  | 2" MERV 8 prefilter<br>12" MERV 13 final | Good      |
| AHU-2  | 6,000                   | 1,900                  | 2" MERV 8 prefilter<br>12" MERV 13 final | Good      |
| AHU-3  | 6,000                   | 1,900                  | 2" MERV 8 prefilter<br>12" MERV 13 final | Good      |
| AHU-4  | 10,800                  | 3,200                  | 2" MERV 8 prefilter<br>12" MERV 13 final | Good      |
| AHU-5  | 25,000                  | 7,000                  | 2" MERV 8 prefilter<br>12" MERV 13 final | Good      |
| AHU-6  | 25,000                  | 7,000                  | 2" MERV 8 prefilter<br>12" MERV 13 final | Good      |
| AHU-7  | 25,000                  | 7,000                  | 2" MERV 8 prefilter<br>12" MERV 14 final | Good      |
| AHU-8  | 25,000                  | 7,000                  | 2" MERV 8 prefilter<br>12" MERV 13 final | Good      |
| AHU-9  | 29,000                  | 6,800                  | 2" MERV 8 prefilter<br>12" MERV 13 final | Good      |
| AHU-10 | 4,600                   | 1,200                  | 2" MERV 8 prefilter<br>12" MERV 14 final | Good      |
| AHU-11 | 15,400                  | 2,300                  | 2" MERV 8 prefilter<br>12" MERV 14 final | Good      |

Several AHU issues were identified during the site visit:

- Minor general issues
  - Several motors / fans have bearing noises.
  - Cooling coils have rusty condensate pans and lower frames but are not showing any signs of poor drainage. This is likely due to the proximity to the coast. As these trays fail, they should be replaced with stainless steel trays.
- AHU's 5-8
  - The unfiltered exhaust air from these units is exhausted directly into the mechanical room, before exiting the building through exhaust louvers.
     Given the current pandemic, this presents a worker safety concern.
- AHU-9
  - The VFD was not working and running in bypass at the time of the visit.
     Facilities staff mentioned they have repairs scheduled.

- According to the 2020 BQ2 Associates report, the minimum OA for this unit is 0% in the DCV sequence. This should be increased to be comparable to other units.
- According to the Siemens September 2020 work report, the OA airflow station was not working at the time of the visit. This should be repaired as soon as possible.

### AHU-11

- The prefilters were much dirtier than the other units. According to Facilities staff, this AHU receives dirtier air due to the proximity to the roadway. Consider increasing the filter change frequency for this unit.
- Facilities staff also mentioned that this unit suffers from freeze stat trips in cold weather due to the close proximity of the outside air ductwork to the louver, causing poor mixing with return air and generating cold spots on the heating coil.

Supply air is regulated to each zone by variable air volume (VAV) boxes, with hot water reheat coils at each unit. As the building is less than 10 years old, we assume the VAV boxes (and all equipment) are original and have not been replaced. The working condition of these boxes is unknown but based on the age it is assumed they would be in generally good condition. Each courtroom is served by a dedicated VAV. We understand that the heating system is active during the summer to provide reheat to VAV boxes serving spaces under a demand control ventilation sequence.

The basement lockup area is provided with mixed supply air through VAV's set to a constant airflow from the 2<sup>nd</sup> floor AHU's, supplied into the corridors and the cells. Air is exhausted from the cells through the toilet exhaust risers. The attorney / client interview rooms, control rooms, corridor and other similar spaces within the secure corridor have supply and return air registers to the AHU's. Each secure area on the upper floors is supplied from a dedicated VAV set to a constant airflow into the corridors and the cells and exhausted through the cells.

Chilled water is provided by a pair of 320 ton water cooled chillers. Hot water is provided from a pair of 3.6 MMBH (output) boilers. Neither the hot nor chilled water systems contain glycol.



Photo 1 – Representative Air Handler

# 1.2 Existing Control System

The courthouse has a complete Siemens building management control system (BMS). It is tied to the existing boiler, chiller, AHU's, VAV's, auxiliary heating, and exhaust fans. While onsite, Tighe & Bond was able to observe various control system screens and setpoints. We were also provided with the sequence of operation delivered to the building during commissioning from Cosentini Associates.

The system provides air handler demand-controlled ventilation (DCV) sequences. DCV varies the outside air percentage from a minimum to a maximum limit in response to carbon dioxide ( $CO_2$ ) concentration levels measured in high density spaces throughout the building. While this feature exists, the BQ2 Associates report noted that the DCV minimum OA airflows are set close to the design OA minimum airflows. This limits the functionality if the VAV system as it limits the reduction in outside air under light occupancy. They also noted that AHU-9 has a 0% outdoor minimum. Even during lightly occupied periods, there should be some outdoor air provided. The report also mentioned that many  $CO_2$  sensors are beyond their useful life and malfunctioning.

VAV terminals that serve high density spaces also utilize zone-level DCV controls. When the space CO2 rises above the setpoint, the VAV will increase the supply air flow to the zone, increasing the outdoor air flowrate to the zone.

# Section 2 Recommendations

# 2.1 Filtration Efficiency Recommendations

The existing MERV 8 prefilter / and MERV 13/14 final arrangement provides high levels of filtration for occupied areas. This level of filtration is adequate and is in line with AHRAE recommendations.

According to conversations with staff, the court plans to upgrade the prefilters to MERV 13 and the final filters to MERV 14 across all air handlers. While upgrading the final filters to MERV 14 is a good approach, using MERV 13 prefilters will only increase the AHU pressure drop and may reduce performance. We recommend the continued use of MERV 8 prefilters and upgrading the final filters to MERV 14. Using MERV 14 final filters will not likely have any noticeable impact on the filter change frequency or pressure drop compared to the existing MERV 13 filters.

# 2.2 Testing and Balancing Recommendations

The basis of design climactic outdoor air conditions state a summer design condition of 91°F/74°F DB/WB and a winter condition of 7°F. In reviewing the originally designed entering mixed air temperatures for the chilled water and hot water coils in the air handling units, it appears that the coils as designed are insufficient to accommodate any additional outside air on a design day. The coils appear to be slightly under-designed to maintain the required cooling and heating supply air setpoints. If the courtroom AHU's are currently not experiencing any heating or cooling issues at the design outside air quantities, then we recommend maintaining the original OA flow rates, but not increasing them.

We recommend the following testing and balancing measures:

**RTB-1:** Test and rebalance air handling unit supply air and minimum outside air flow rates.

The original design outdoor airflow requirements and the outdoor airflows calculated by Tighe & Bond, based on the 2015 International Mechanical Code (IMC) are listed below.

**TABLE 2**Recommended Air Handler O.A. Flow Rates

| Unit #    | Original<br>Design Airflow<br>(CFM) | Original<br>Design Min OA<br>(CFM) | Current Code Min. OA Requirements (CFM) | Recommended<br>Min OA<br>(CFM) |
|-----------|-------------------------------------|------------------------------------|-----------------------------------------|--------------------------------|
| AHU-1     | 6,000                               | 1,900                              | 2,100                                   | 1,900                          |
| AHU-2     | 6,000                               | 1,900                              | 2,400                                   | 1,900                          |
| AHU-3     | 6,000                               | 1,900                              | 2,200                                   | 1,900                          |
| AHU-4     | 10,800                              | 3,200                              | 3,800                                   | 3,200                          |
| AHU's-5&7 | 50,000                              | 14,000                             | 10,800                                  | 14,000                         |
| AHU's-6&8 | 50,000                              | 14,000                             | 12,300                                  | 14,000                         |
| AHU-9     | 29,000                              | 6,800                              | 6,200                                   | 6,800                          |
| AHU-10    | 4,600                               | 1,200                              | 1,650                                   | 1,200                          |
| AHU-11    | 15,400                              | 2,300                              | 3,700                                   | 2,300                          |

The discrepancies in the calculated ventilation rates are likely due to variations in assumptions in the expected occupant concentration ad airflow per person. Where the original design outdoor airflow rates are higher than the values per the current code minimums, we recommend maintaining the outdoor airflows at the original designed values, as these are more conservative and will likely result in improved indoor air quality (IAQ).

We recommend that the outdoor airflows for all units be checked to confirm that they match the recommended minimum OA amounts shown in the table above. Because this system uses airflow stations, it is possible that these changes can be made with control setpoint adjustments instead of hiring a TAB Contractor, however these units may not be reporting accurate values. As noted above, while our calculations show a higher outside air requirement than design, the coils do not have adequate capacity to provide these higher outside air quantities under peak outdoor air conditions.

The airflow rate per person is shown below in Table 3. These values are based on the recommended outdoor airflow, and original design supply airflow rates shown in Table 2 above. The airflow rate per person also assumes a diversity factor of 70%, meaning the maximum number of occupants assumed to be in all zones at all times equates to 70% of the code required.

**TABLE 3**Average Airflow Rate Per Person

|                                  | All spaces | Courtrooms | Non-Courtroom<br>Spaces |  |
|----------------------------------|------------|------------|-------------------------|--|
| Total Occupancy<br>(People)      | 1,500      | 620        | 850                     |  |
| Total Supply Air<br>(CFM/Person) | 120        | 54         | 170                     |  |
| Outdoor Air<br>(CFM/Person)      | 32         | 16         | 44                      |  |

The airflow rate per person for each courtroom is shown below in Table 4. These values are based on full occupancy, the original design supply airflow rate, and the recommended outdoor airflow rate, without taking diversity into account. The airflow rate per person assumes the full supply airflow is being delivered to the room. At times when the supply airflow is reduced due to the space temperature being satisfied, the airflow rate per person will also be reduced.

**TABLE 4**Airflow Rate per Person - Courtrooms

|                |                 | Total Air               |                              | Outdo                    | or Air                       |
|----------------|-----------------|-------------------------|------------------------------|--------------------------|------------------------------|
| Courtroom      | Total<br>People | Supply<br>Airflow (CFM) | Airflow Rate<br>(CFM/Person) | Outside<br>Airflow (CFM) | Airflow Rate<br>(CFM/Person) |
| Jury Pool Room | 100             | 3,120                   | 31                           | 1,560                    | 16                           |
| Courtroom A    | 114             | 4,000                   | 35                           | 1,200                    | 10                           |
| Courtroom B    | 45              | 1,400                   | 31                           | 370                      | 8                            |
| Courtroom C    | 90              | 3,350                   | 37                           | 870                      | 10                           |
| Courtroom D    | 100             | 3,400                   | 34                           | 1,080                    | 11                           |
| Courtroom E    | 100             | 3,100                   | 31                           | 980                      | 10                           |
| Courtroom F    | 76              | 2,900                   | 38                           | 920                      | 12                           |
| Courtroom G    | 100             | 3,400                   | 34                           | 1,000                    | 10                           |
| Courtroom H    | 100             | 3,200                   | 32                           | 1,010                    | 10                           |
| Courtroom I    | 76              | 2,700                   | 36                           | 860                      | 11                           |
| Courtroom J    | 100             | 3,100                   | 31                           | 990                      | 10                           |
| Courtroom K    | 114             | 4,200                   | 36                           | 1,200                    | 11                           |

Note: Note: Courtroom occupancy is based on seating layouts shown on HVAC drawings provided to Tighe & Bond

The airflow rate per person for each Courtroom and the Jury Pool Room, based on a reduced occupancy scheduled determined by the Office of Court Management, is shown below in Table 4a. The airflow rate per person assumes the full supply airflow is being delivered to the room. At times when the supply airflow is reduced due to the space temperature being satisfied, the airflow rate per person will also be reduced.

**TABLE 4a**Airflow Rate per Person (Reduced Occupancy)

| 7 III TOW TRACE PET TETO | Total                            |                            | otal Air                     | Out                         | door Air                     |
|--------------------------|----------------------------------|----------------------------|------------------------------|-----------------------------|------------------------------|
| Courtroom                | People<br>(Reduced<br>Occupancy) | Supply<br>Airflow<br>(CFM) | Airflow Rate<br>(CFM/Person) | Outside<br>Airflow<br>(CFM) | Airflow Rate<br>(CFM/Person) |
| Jury Pool Room           | 40                               | 3,120                      | 78                           | 1,560                       | 39                           |
| Courtroom A              | 28                               | 4,000                      | 146                          | 1,200                       | 42                           |
| Courtroom B              | 14                               | 1,400                      | 100                          | 370                         | 26                           |
| Courtroom C              | 28                               | 3,350                      | 120                          | 870                         | 31                           |
| Courtroom D              | 32                               | 3,400                      | 106                          | 1,080                       | 34                           |
| Courtroom E              | 23                               | 3,100                      | 135                          | 980                         | 43                           |
| Courtroom F              | 23                               | 2,900                      | 126                          | 920                         | 40                           |
| Courtroom G              | 30                               | 3,400                      | 113                          | 1,000                       | 34                           |
| Courtroom H              | 30                               | 3,200                      | 107                          | 1,010                       | 34                           |
| Courtroom I              | 30                               | 2,700                      | 90                           | 860                         | 29                           |
| Courtroom J              | 30                               | 3,100                      | 104                          | 990                         | 33                           |
| Courtroom K              | 38                               | 4,200                      | 109                          | 1,200                       | 32                           |

# RTB-3: Increase outside air flow rate beyond minimum under non-peak conditions.

The heating coils and cooling coils generally appear to be in good condition. We recommend increasing the outdoor air flow rate by up to 35% beyond the recommended outdoor air flow rates under nonpeak outdoor air conditions. We do not believe this would cause a threat of a potential coil to freeze given the amount of outside air as a percentage of total supply air, however cold spots on the coil may develop due to poor mixing. This may cause nuisance freeze stat trips via the existing freeze stat.

### RTB-5: Consider rebalancing all air inlets and outlets.

### Lockup Spaces

The lockup ventilation strategy is based on maintaining a slight airflow deficit in the cells relative to the corridors. To minimize the risk of one prisoner infecting others, it is important that the air balance in the cells and corridors is correct. If any vents have been accidently closed or if the supply air flow is too high in the cells, the likelihood of cross contamination increases. Both prisoners and guards are at increased risk in the lockup areas due to the risk profile or prisoners and extended time within these spaces.

### Whole building or spaces with airflow/temperature issues

If the Courthouse experiences regular cooling and heating comfort complaints, we recommend exploring rebalancing all air inlets and outlets throughout the building. Prior to rebalancing the building, we recommend verifying the chiller and boiler plants are maintaining the correct supply water temperatures.

RTB-6: Test and balance all air handler chilled and hot water coils.

Testing and balancing the air handler hot and chilled water coils will help ensure the coils are receiving the proper water flow rates. Considering the coils are only 10 years old, we don't expect there to be a significant issue with the flow rates.

# 2.3 Equipment Maintenance & Upgrades

**RE-1:** Test existing air handling system dampers and actuators for proper operation.

The typical life expectancy for actuators ranges from 10-15 years. The existing damper actuators are approximately 10 years old and some may be malfunctioning. Replace dampers and actuators that are not functioning.

**RE-4:** Inspect VAV Boxes and controllers.

VAV boxes determine whether individual office areas will receive the required amount of outdoor air. We recommend, at minimum, surveying the VAV's through the BMS by looking for alarms, forcing them to exercise and checking that the airflow and damper position changes as expected. Consider cleaning airflow stations and similar preventative maintenance. Any suspect boxes should be rebalanced.

# 2.4 Control System

The Salem District Courthouse has a BMS. We recommend the following control system strategies be implemented into the existing control system:

**RC-1:** Implement a pre- and post-occupancy flush sequence.

It is our understanding based on conversations with staff that the building is currently being operated in an occupied mode 24/7, including using daytime occupied temperature setpoints. This likely results in more air changes and energy cost than necessary. If the current strategy is continued, it is recommended that the nighttime temperature setpoints be used instead of the daytime setpoints to save energy.

**RC-3:** Install controls required to introduce outside air beyond the minimum requirement in a stepped approach.

This approach can most likely be performed with programming changes within the existing BMS.

RC-5: Disable Demand-Controlled Ventilation Sequences (at the AHU level).

For the duration of the COVID-19 pandemic, we recommend disabling the AHU-level DCV sequence to provide a higher level of outside air into the building. Note that the VAV-level DCV sequences for densely occupied spaces should be left operational as this maintains adequate airflow in these spaces.

# 2.5 Additional Filtration and Air Cleaning

Based on conversations with the client, we understand that they would prefer to prioritize improving existing ventilation systems to the extent possible over portable filtration or air cleaning devices such as bipolar ionization or UVGI.

# RFC-1: Install portable HEPA filters.

If the Courthouse is to operate at a high capacity (i.e. 50% occupancy or greater), we recommend installing portable HEPA filters in high traffic areas, such as entrance lobbies. They should also be considered for Courtrooms, depending on the occupancy of the room and how much noise is generated from the filters. The noise levels will vary depending on the manufacturer.

# 2.6 Humidity Control

Installing duct mounted or portable humidifiers can help maintain the relative humidity levels recommended by ASHRAE. The feasibility of adding active humidification is determined by the building envelope. Buildings that were not designed to operate with active humidification can potentially be damaged due to a lack of a vapor barrier, adequate insulation, and air tightness.

Duct mounted humidifiers must be engineered, integrated into the building control system, tested, and commissioned. They are available in many configurations, but require substantial maintenance and additional controls. They also run the risk of adversely affecting IAQ from growing microorganisms, or leaking water through poorly sealed ductwork damaging insulation and ceilings. Portable humidifiers are easier to install and require less maintenance, but still have the potential to damage the building envelope.

While active humidification is not recommended as a whole building solution due to high installation costs, operational costs, potential to damage the building envelope and adversely affect poor IAQ, it may be warranted as a temporary solution in some areas.

# 2.7 Other Recommendations

# 2.7.1 Implement strict entry and PPE protocols for the large 2nd floor mechanical room for the duration of the pandemic.

The exhaust openings from AHU's 5-8 discharge directly into the 2<sup>nd</sup> floor mechanical room, making the entire room an exhaust plenum carrying air from all parts of the building served by the AHU's. While CDC and WHO guidance varies, there are indications that COVID-19 can be transported through air systems to some degree.

Entering and handling surfaces in this mechanical room should be treated with the same precautions used when entering AHU's and replacing filters. Refer to section 2.1 of the "Overview of Recommendations" Report.

We highly recommend routing this exhaust ductwork directly to the outdoors as soon as possible. Further investigate is required to determine if this is feasible.

# 2.7.2 Increase the VAV minimum airflow from 40% to 50% in Courtrooms

As VAV boxes open and close from maximum to the minimum position, the total airflow and the outdoor airflow delivered to spaces decreases. The current code requires air handlers to provide enough outdoor air to meet the code requirements while the VAV box is at the minimum position. Based on our outdoor air calculations, it appears this Courthouse was designed when this requirement was not in effect. Since we are not recommending increasing the outdoor air flow rate to current code minimums, an alternative approach to help increase the quantity of outside air into each space is to increase the VAV box minimum airflows from 40% to 50% of maximum airflow. Increasing the minimum airflow setting will result in an increase in outside air being delivered to the space.

Please note that this can increase the risk of overcooling, however VAVs are reheating the supply air during the summer. This will increase the demand of reheating the air and increase energy usage of the boiler system.

# 2.7.3 Replace CO2 sensors that are malfunctioning or beyond their expected life

 $CO_2$  sensors must be replaced every 5-10 years, depending on the manufacturer. The sensors will become inaccurate over time and can will not control the outdoor air flowrate as designed. The site has reportedly already replaced about half of the building sensors and is planning a project for the other half (approximately 60 in total). Because the  $CO_2$  sensors increase ventilation rates in densely occupied areas in response to occupancy to maintain the required airflow, these should be replaced as soon as possible to ensure that these spaces are properly ventilated.

# Section 3 Testing & Balancing Results

On November 13, 2020 Milharmer Associates, Inc. visited the J. Michael Ruane Judicial Center to test the airflow rates of the air handling units and the exhaust fans. The Office of Court Management's Automatic Temperature Controls (ATC) Contractor was also on site to assist in the balancing process. A summary of the tested airflow rates versus the design airflow rates are shown below in Tables 5 and 6. Their full testing and balancing report is attached.

**TABLE 5**Air Handler Testing & Balancing Results

|        |                                         | Design                            |                            |                                | Actual                      |                            |
|--------|-----------------------------------------|-----------------------------------|----------------------------|--------------------------------|-----------------------------|----------------------------|
| Unit   | Total<br>Supply Fan<br>Airflow<br>(CFM) | Recommended Outdoor Airflow (CFM) | Return<br>Airflow<br>(CFM) | Supply Fan<br>Airflow<br>(CFM) | Outdoor<br>Airflow<br>(CFM) | Return<br>Airflow<br>(CFM) |
| AHU-1  | 6,000                                   | 1,900                             | 4,100                      | 6,055                          | 2,152                       | 3,303                      |
| AHU-2  | 6,000                                   | 1,900                             | 4,100                      | 6,025                          | 2,409                       | 3,616                      |
| AHU-3  | 6,000                                   | 1,900                             | 4,100                      | 4,365                          | 2,214                       | 2,151                      |
| AHU-4  | 10,800                                  | 3,200                             | 7,600                      | 11,616                         | 4,336                       | 7,280                      |
| AHU-5  | 50,000                                  | 14,000                            | 36,000                     | 15,887                         | 7,080                       | 8,807                      |
| AHU-6  | 50,000                                  | 14,000                            | 36,000                     | 20,175                         | 7,110                       | 13,065                     |
| AHU-7  | 50,000                                  | 14,000                            | 36,000                     | 17,962                         | 7,215                       | 10,747                     |
| AHU-8  | 50,000                                  | 14,000                            | 36,000                     | 19,412                         | 7,170                       | 12,242                     |
| AHU-9  | 29,000                                  | 6,800                             | 22,200                     | 22,225                         | 6,795                       | 15,433                     |
| AHU-10 | 4,600                                   | 1,200                             | 3,400                      | 4,488                          | 1,651                       | 2,837                      |
| AHU-11 | 15,400                                  | 2,300                             | 13,100                     | 11,450                         | N/T                         | N/T                        |

N/T: Not Tested.

**TABLE 6**Return & Exhaust Fan Testing & Balancing Results

|      |                | Design<br>Fan | Actual<br>Fan |
|------|----------------|---------------|---------------|
| Unit | Serving        | Airflow       | Airflow       |
| F-14 | AHU-1 Return   | 5,850         | 5,853         |
| F-15 | AHU-2 Return   | 4,680         | 4,872         |
| F-16 | AHU-3 Return   | 4,850         | 4,850         |
| F-17 | AHU-4 Return   | 9,800         | 9,912         |
| F-20 | AHU-5 Return   | 20,000        | 13,825        |
| F-21 | AHU-6 Return   | 20,000        | 15,776        |
| F-22 | AHU-7 Return   | 20,000        | 19,250        |
| F-23 | AHU-8 Return   | 20,000        | 17,999        |
| F-18 | AHU-9 Return   | 26,000        | 18,919        |
| F-19 | AHU-10 Return  | 4,200         | 4,634         |
| F-27 | AHU-11 Return  | 13,600        | N/T           |
| F-24 | Toilet Exhaust | 7,150         | 6,070         |
| F-25 | Toilet Exhaust | 5,025         | 4,894         |
| F-26 | Toilet Exhaust | 1,475         | 1,756         |
| F-28 | Toilet Exhaust | 225           | 239           |
| F-29 | Toilet Exhaust | 1,325         | 1,740         |

N/T: Not Tested.

In reviewing the airflow report data, the following should be noted:

- 1. AHU-1, AHU-2, AHU-4, and AHU-10 are performing within acceptable airflow range of design for both fans.
- 2. AHU-3 total supply airflow is approximately 75% of the design airflow rate, although the outdoor airflow above the design airflow. This AHU serves courtrooms F and J. We recommend further investigation to determine why the supply airflow isn't meeting the designed air flow rate.
- 3. AHU-5, AHU-6, AHU-7, and AHU-8 supply and return airflow rates are approximately 75% of the design airflow rates. The outdoor airflow is within the acceptable range. We recommend further investigation to determine why the supply airflow isn't meeting the designed air flow rate. Note that the AHU's 5/6 and 7/8 are designed to operate in parallel and are fully redundant.

- 4. The report suggested that the outdoor air flow stations for AHU-5 thru AHU-8 should be relocated to allow for more uniform readings.
- 5. AHU-9 supply airflow is significantly less than design airflow rate and the outside airflow station could not be calibrated. This should be investigated further by the ATC contractor with support from the airflow station manufacturer.
- 6. Most toilet exhaust fan flow rates are within acceptable range of design. F-24 is 15% below design. We recommend that this issue be investigated and corrected.
- 7. According to the report, all air handling units appear to have sufficient capacity to increase the filter efficiency to MERV 13 or 14.

# **Disclaimer**

Tighe and Bond cannot in any way guarantee the effectiveness of the proposed recommendations to reduce the presence or transmission of viral infection. Our scope of work is intended to inform the Office of Court Management on recommendations for best practices based on the guidelines published by ASHRAE and the CDC. Please note that these recommendations are measures that may help reduce the risk of airborne exposure to COVID-19 but cannot eliminate the exposure or the threat of the virus. Implementing the proposed recommendations will not guarantee the safety of building occupants. Tighe & Bond will not be held responsible should building occupants contract the virus. The Office of Court Management should refer to other guidelines, published by the CDC and other governing entities, such as social distancing, wearing face masks, cleaning and disinfecting surfaces, etc. to help reduce the risk of exposure of COVID-19 to building occupants.

# MILHARMER ASSOCIATES, INC.

534 New State Highway, Route 44, Suite 3

Raynham, MA 02767

Tel.: 508-823-8500; Facsimile: 508-823-8600

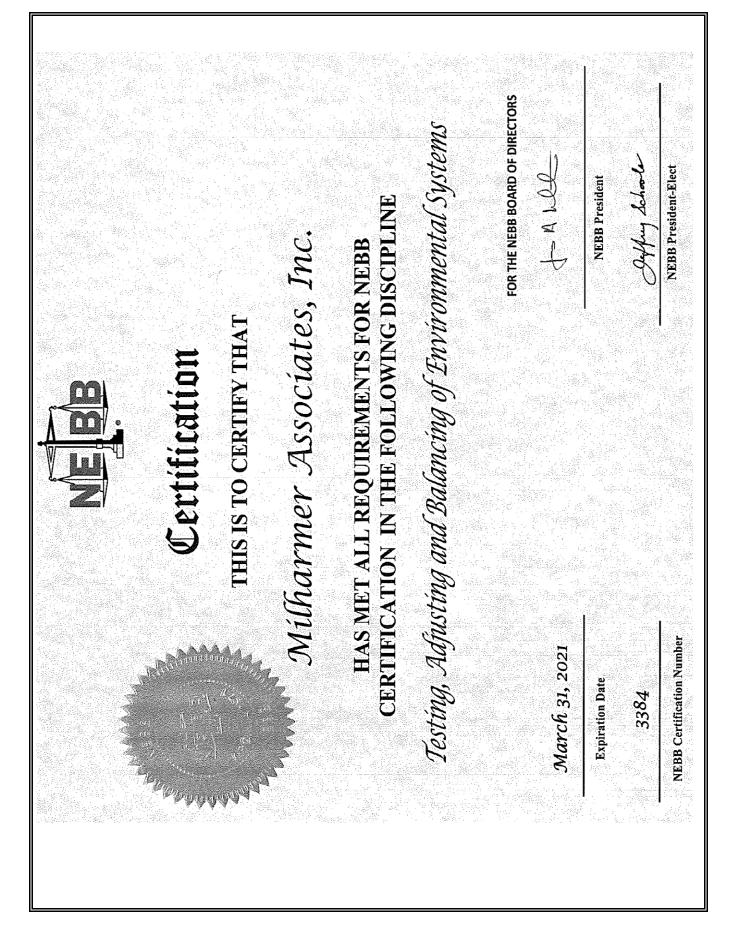


# **TEST AND BALANCE REPORT**

Project: J. Michael Ruane Judicial Center

58 Federal St., Salem, MA

Project No.: 20-548 Project Date: 11/13/2020


# **MECHANICAL CONTRACTOR**


Tighe & Bond



A N.E.B.B. Certified Company

| Project:          |                   | ne Judicial Center                                       |                      |                 |                         |
|-------------------|-------------------|----------------------------------------------------------|----------------------|-----------------|-------------------------|
| Address:          | 58 Federal St.,   | Salem, MA                                                |                      |                 | 00 = 40                 |
| Pate:             | 11/13/2020        |                                                          | Project No.          |                 | 20-548                  |
|                   |                   | CEI                                                      | RTIFICATION          |                 |                         |
|                   |                   |                                                          |                      |                 |                         |
|                   |                   |                                                          |                      |                 |                         |
|                   |                   |                                                          | tted & Certified by: | I.a.a           |                         |
|                   |                   | Willnarn                                                 | ner Associates,      | inc.            |                         |
|                   |                   |                                                          |                      |                 |                         |
| Certification No. | : <b>3384</b>     |                                                          |                      | Cortification E | voiration Data: 2 24 24 |
| eruncauori no.    | . 3304            |                                                          |                      | Certification E | xpiration Date: 3-31-21 |
|                   |                   |                                                          |                      |                 |                         |
| •                 |                   | eport is a record of system ce with the current edition. |                      | •               |                         |
|                   |                   |                                                          |                      |                 | esign quantities which  |
| exceed N.E.B.B    | . tolerances, are | noted in the Test-Adj                                    | ust-Balance Report   | Project Summa   | ry.                     |
|                   |                   |                                                          |                      |                 |                         |
|                   |                   |                                                          |                      |                 |                         |
|                   |                   |                                                          |                      |                 |                         |
|                   |                   |                                                          |                      |                 |                         |
|                   |                   |                                                          |                      |                 |                         |
|                   |                   |                                                          |                      |                 |                         |
|                   |                   |                                                          |                      |                 |                         |
|                   |                   |                                                          |                      |                 |                         |
|                   |                   |                                                          |                      |                 |                         |
|                   | L                 |                                                          |                      |                 |                         |
| 15000 arr         | LTAD O 's         | N 0 5 M                                                  | 201                  |                 |                         |
| i.e.b.b. Qualifie | ed IAB Supervis   | or Name: Scott F. M                                      | iller                |                 |                         |
| I.E.B.B. Qualifie | ed TAB Supervis   | or Signature:                                            |                      |                 |                         |
|                   |                   |                                                          |                      |                 |                         |
|                   |                   |                                                          | VE BB                |                 |                         |
|                   |                   |                                                          |                      |                 |                         |





# NEBB Certification Board

**NEBB Certified Professional** 

Scott F. Miller

HAS MET ALL THE NEBB REQUIREMENTS FOR NEBB CERTIFIED PROFESSIONAL STATUS IN

Testing, Adjusting and Balancing of Environmental Systems This Certificate, as well as individual affiliation with a NEBB Certified Firm and associated NEBB Certification

Stamp are REQUIRED to provide a NEBB Certified Report. Participation in the NEBB Quality Assurance

Program requires the Certificant be affiliated with a NEBB Certified Firm.

March 31, 2021

Expiration Date

23541

NEBB Certificant Number

Richard Fant

NEBB Certification Board Chairman Eystwia Structh

VEBB Certification Director

The NEBB Certification Board retains sole ownership of all certificates. The NEBB Certification Board Policy Manual governs use of this certificate.

Address: 58 Federal St., Salem, MA

**Date:** 11/13/2020 **Project No.** 20-548

# **TABLE OF CONTENTS**

# SECTION 1 TAB Qualifications

A. N.E.B.B. Certification

B. N.E.B.B. Company CertificateC. N.E.B.B. Supervisor Certificate

D. Instrument SheetE. Symbol Sheet

# SECTION 2 TAB Building Systems

| Project:       | J. Michael Ruane Judicial Center                 |                                        |             |
|----------------|--------------------------------------------------|----------------------------------------|-------------|
| Address:       | 58 Federal St., Salem, MA                        |                                        |             |
| Date:          | 11/13/2020                                       | Project No.                            | 20-548      |
| <u> </u>       | 11/10/2020                                       |                                        | 20 0 .0     |
|                | INSTRUME                                         | NT SHEET                               |             |
|                |                                                  |                                        | _           |
| _              | a list of Instruments owned and operated by Mi   | Iharmer Associates, Inc. and used of   | on          |
| this project.  |                                                  |                                        |             |
|                |                                                  |                                        |             |
|                |                                                  |                                        |             |
|                |                                                  |                                        |             |
| Instrument     | Instrument                                       | Calibration                            | Calibration |
| ID Number      |                                                  | Date                                   | Due Date    |
| 1              | ADM-870 Digital Multimeter                       | 8-20-20                                | 8-20-21     |
| 2              | Shortridge Flow Hood                             | 8-20-20                                | 8-20-21     |
| 3              | Ampmeter                                         | 8-20-20                                | 8-20-21     |
| 4              | Tachometer                                       | 8-20-20                                | 8-20-21     |
| 5              | Airflow Anemometer                               | 8-20-20                                | 8-20-21     |
| 6              | Digital Thermometers                             | 8-20-20                                | 8-20-21     |
|                |                                                  |                                        |             |
| 7              | Shortridge Water Meter                           | 8-20-20                                | 8-20-21     |
|                |                                                  |                                        |             |
| 8              | Sound Meter                                      | 8-20-20                                | 8-20-21     |
|                |                                                  |                                        |             |
| 9              | Vibration Meter                                  | 8-20-20                                | 8-20-21     |
|                |                                                  |                                        |             |
|                |                                                  |                                        |             |
|                |                                                  |                                        |             |
| Alata In       |                                                  | the state of the state of the state of | •           |
|                | estruments are tested annually at the M.A.I. Lab | . and sent back to the factory if devi | ation       |
| exceeds manuta | acturing tolerance.                              |                                        |             |
|                |                                                  |                                        |             |
|                |                                                  |                                        |             |
|                |                                                  |                                        |             |
|                |                                                  |                                        |             |
|                |                                                  |                                        |             |
|                |                                                  |                                        |             |
|                |                                                  |                                        |             |
| Technician:    |                                                  |                                        |             |
|                |                                                  |                                        |             |

# **SYMBOL SHEET**

| AHU         | Air Handling Unit          | HEATER O.L. | Thermal Overload                |
|-------------|----------------------------|-------------|---------------------------------|
| AC or ACU   | Air Conditioner Unit       |             | Protection For Motors           |
| ACCU        | Air Cooled Condensing Unit |             | Located at Starter Motor        |
| ADJ P.D.    | Adjusted Pitch Diameter    |             |                                 |
| AMP         | Amperage                   | HEPA        | High Efficiency Particulate     |
| AVG         | Average                    |             | Arrestance                      |
| A.D.        | Air Density                | HOA         | Hand/Off/Auto Switch            |
|             |                            | H.P.        | Horsepower                      |
| B.H.P.      | Brake Horsepower           | HPS         | High Pressure Steam             |
|             | •                          | HRC         | Heat (Recovery or Recliam) Coil |
| CFM         | Cubic Feet Per Minute      | HVAC        | Heating, Ventilation and        |
| СН          | Chiller                    |             | Air Conditioning                |
| CHWR        | Chilled Water Return       | HWR         | Hot Water Return or             |
| CHW or CHWS | Chilled Water Supply       |             | Heating Water Return            |
| CT          | Cooling Tower              | HWS         | Hot Water Supply or             |
| CWR         | Condenser Water Return     |             | Heating Water Supply            |
| CW or CWS   | Condenser Water Supply     | HX          | Heat Exchanger                  |
| DB          | Dry Bulb                   | I.D.        | Inside Diameter                 |
| D.D.        | Direct Drive               |             |                                 |
| DIA         | Diameter                   | LAT         | Leaving Air Temperature         |
|             |                            | L.D.        | Linear Supply Diffuser          |
| EAT         | Entering Air Temperature   | LPS         | Low Pressure Steam              |
| EDC         | Electric Duct Coil         | L.T.        | Light Troffer                   |
| EDH         | Electric Duct Heater       | LWT         | Leaving Water Temperature       |
| EF          | Exhaust Fan                |             |                                 |
| EMS         | Energy Mgt System          | MAU/MUA     | Make Up Air Unit                |
| EWT         | Entering Water Temperature | MBH         | 1,000 BTU's per Hour            |
| FCU         | Fan Coil Unit              | N.A.        | Not Accessible                  |
| FH          | Fume Hood                  | N/A         | Not Applicable                  |
| F.L.A.      | Full Load Amperage         | N.I.        | Not Installed                   |
| FPB         | Fan Powered Box            | N.L.        | Not Listed                      |
| FPM         | Feet Per Minute            |             |                                 |
| FT. HD.     | Feet of Head               |             |                                 |
| GPM         | Gallons Per Minute         |             |                                 |

# **SYMBOL SHEET CONTINUED**

| O.D.        | Onto de Diamentos      | TAD          | Testine Adiretine and Delensine   |
|-------------|------------------------|--------------|-----------------------------------|
|             | Outside Diameter       | TAB          | Testing, Adjusting, and Balancing |
| OA Min      | Outside Air Minimum    | TSP          | Total Static Pressure             |
| OAT         | Outside Air Total      | TP           | Thermally Protected               |
| PF          | Power Factor           | UH           | Unit Heater                       |
| PHC         | Preheat Coil           |              |                                   |
| PH          | Phase(s)               | V            | Volts                             |
| PSI         | Pounds Per Square Inch | VAV          | Variable Air Volume               |
| P.T.        | Pitot Traverse         | VD           | Volume Damper                     |
|             |                        | VFD          | Variable Frequency Drive          |
| RA          | Return Air             | VP           | Velocity Pressure                 |
| RF          | Return Air Fan         |              |                                   |
| R.G.        | Return Grille          | $\mathbf{W}$ | Watts                             |
| RHC         | Reheat Coil            | WB           | Wet Bulb                          |
| RPM         | Revolutions per Minute | W.D.         | Water Density                     |
|             |                        | W.G.         | Water Guage                       |
| SA          | Supply Air             |              |                                   |
| SAT         | Supply Air Temperature | F            | Degrees Fahrenheit                |
| S.D.        | Supply Diffuser        |              |                                   |
| SEF         | Smoke Exhaust Fan      | ΔΡ           | Differential (Delta) Pressure or  |
| SF (AIR)    | Supply Fan             |              | Pressure Drop                     |
| S.F.(Elect) | Service Factors        |              | -                                 |
| SHC         | Steam Heating Coil     | $\Delta T$   | Differential (Delta) Temperature, |
| S.P. "W.C." | Static Pressure        |              | Net Temperature                   |
|             | Measured in Inches of  |              | Decrease or Increase              |
|             | Water Column           | #            | PSI or Pounds Per Square Inch     |
|             |                        |              | Decrease or Increase              |

Address: 58 Federal St., Salem, MA

**Date:** 11/13/2020 **Project No.** 20-548

# REPORT SUMMARY

The following is the report for J. Michael Ruane Judicial Center. A survey was performed on AHU-1 thru AHU-11 and the toilet exhaust fans. In addition to the testing, we worked with the ATC contractor to calibrate the air flow stations and we have listed deficiencies below that were found during the testing. Testing on the Air Handling Units was performed with the VAV Boxes overridden to the full cooling positions and the Outside Air Damper set to it minimum position with the DCV system overridden.

- 1. AHU-1 thru 4 were all tested and found to be within design parameters and all airflow measuring stations were tested and calibrated with the ATC contractor.
- 2. AHU-5 thru AHU-8 were tested with the VAV boxes set to the full cooling position and all 4 units tested well below design for supply and return airflow. Additionally, the outside air flow stations are in a bad location and should be re-located to allow for more uniform readings. Both supply and return airflow stations calibrated fine.
- 3. AHU-9 was tested with the VAV boxes set to the full cooling position and the unit is well below design airflow. The outside air flow station also will not calibrate and should be investigated further by the ATC contractor or AFMS manufacturer.
- 4. AHU-10 was tested and found to be within design parameters and all airflow measuring stations were tested and calibrated with the ATC contractor.
- 5. AHU-11 was tested and found to be below design airflow but the return fan was under performing due to bad fan belts which need to be replaced prior to re-testing the unit.

Overall, the HVAC equipment appears to be running at design or capable of achieving design airflow throughout the facility. The units that are low on design airflow need to be investigated further to determine if there is some blockage in the duct work or if there are control issues preventing the units from reaching design airflow. Based on present readings, all Air Handling Units appear to have sufficient capacity to increase the filter efficiency to MERV 13/14.

Address: 58 Federal St., Salem, MA

**Date**: 11/13/2020 **Project No.** 20-548

# **REPORT SUMMARY**

# **AIR HANDLING UNITS**

| UNIT   | SUPPLY     | RETURN     | OUTSIDE AIR |  |  |  |
|--------|------------|------------|-------------|--|--|--|
| AHU-1  | 6,055 CFM  | 3,303 CFM  | 2,152 CFM   |  |  |  |
| AHU-2  | 6,025 CFM  | 3,616 CFM  | 2,409 CFM   |  |  |  |
| AHU-3  | 4,365 CFM  | 2,151 CFM  | 2,214 CFM   |  |  |  |
| AHU-4  | 11,616 CFM | 7,280 CFM  | 4,336 CFM   |  |  |  |
| AHU-5  | 15,887 CFM | 8,807 CFM  | 7,080 CFM   |  |  |  |
| AHU-6  | 20,175 CFM | 13,065 CFM | 7,110 CFM   |  |  |  |
| AHU-7  | 17,962 CFM | 10,747 CFM | 7,215 CFM   |  |  |  |
| AHU-8  | 19,412 CFM | 12,242 CFM | 7,170 CFM   |  |  |  |
| AHU-9  | 22,225 CFM | 15,433 CFM | 6,795 CFM   |  |  |  |
| AHU-10 | 4,488 CFM  | 2,837 CFM  | 1,651 CFM   |  |  |  |
| AHU-11 | 11,450 CFM | NA         | NA          |  |  |  |

# **FANS**

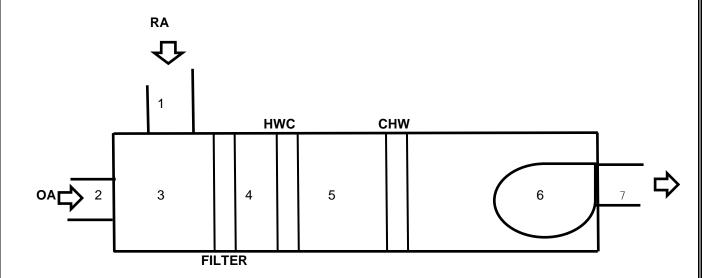
| UNIT | EXHAUST    |
|------|------------|
| F-14 | 5,853 CFM  |
| F-15 | 4,872 CFM  |
| F-16 | 4,850 CFM  |
| F-17 | 9,912 CFM  |
| F-20 | 13,825 CFM |
| F-21 | 15,776 CFM |
| F-22 | 19,250 CFM |
| F-23 | 17,999 CFM |
| F-18 | 18,919 CFM |
| F-19 | 4,634 CFM  |
| F-27 | NA         |
| F-24 | 6,070 CFM  |
| F-25 | 4,894 CFM  |
| F-26 | 1,756 CFM  |
| F-28 | 239 CFM    |
| F-29 | 1,740 CFM  |

Address: 58 Federal St., Salem, MA

**Date**: 11/13/2020 **Project No.** 20-548

|                      | FA                | N DATA SHEET  |                  |               |
|----------------------|-------------------|---------------|------------------|---------------|
|                      | FAN NO.           | AHU-1         | FAN NO           | . F-14        |
| Serves / Location:   | Courtrooms        | Mech. 6400    | Return for AHU-1 | Mech 6400     |
| Manufacturer:        | CARRIER           | -             | GREENHECK        |               |
| Model Number:        | 39MN14C011KF311X0 | GS            | QEI-20-1-50      |               |
| Size:                | 14                |               | NL               |               |
| Serial Number:       | 4309U23149        |               | 11887851         |               |
| MOTOR                | DESIGN            | TESTED        | DESIGN           | TESTED        |
| Manufacturer:        | NL                | GE            | NL               | BALDOR        |
| Frame Number:        | NL                | 215T          | NL               | 184T          |
| Horsepower:          | 10                | 10            | 5                | 5             |
| Brake Horsepower:    | 7.2               | NA            | 2.2              | NA            |
| Safety Factor:       | NL                | 1.15          | NL               | 1.15          |
| Volts/Phase:         | 460/3             | 460/3         | 460/3            | 460/3         |
| Motor Amperage:      | 12.2              | 9.9           | 6.6              | 4.9           |
| Motor RPM:           | 1760              | 1800          | 1750             | 1800          |
| Speeds:              | VFD               | 60 Hz         | VFD              | 60 Hz         |
| Heater Size:         | NL                | VFD Protected | NL               | VFD Protected |
| Heater Amps.:        | NL                | VFD Protected | NL               | VFD Protected |
| FAN                  | DESIGN            | TESTED        | DESIGN           | TESTED        |
| Supply Air CFM:      | 6000              | 6055 *1       |                  |               |
| Return Air CFM:      | 3900              | 3903          | 5850             | 5853 *2       |
| Exhaust Air CFM:     |                   |               | 1950             | 1950          |
| Outside Air CFM:     | 2100              | 2152          |                  |               |
| Suction Pressure:    | NL                | -2.07         | NL               | -1.35         |
| Discharge Pressure:  | NL                | 1.67          | NL               | 0.58          |
| Fan Static Pressure: | 5.0"              | NA            | NL               | NA            |
| External Pressure:   | NL                | 3.74          | 1.5"             | 1.93          |
| RPM                  | DESIGN            | TESTED        | DESIGN           | TESTED        |
| Fan RPM:             | NL                | NA            | NL               | INLINE        |
| Motor Drive:         | NL                | BK35          | NL               | 4.25" OD      |
| Motor Size/Bore:     | NL                | 1 3/8         | NL               | QT 1 1/8      |
| Fan Drive:           | NL                | BK77          | NL               | INLINE        |
| Fan Size/Bore:       | NL                | 1 7/16        | NL               | INLINE        |
| Belt Size / Number:  | NL                | BX77x1        | NL               | AP58x2        |
| Chaffa C C           | NL                | 27.6          | NL               | INLINE        |
| Shafts C-C:          | INL               | 27.0          | · '-             |               |

Comments: \*1 At 55.2 Hz


\*2 At 60 Hz.

Project: Plymouth Trial Court

Address: 52 Obery St., Plymouth, MA

**Date**: 10/30/2020 **Project No.** 20-547

# **AHU-1 STATIC PROFILE**



| STATIC |
|--------|
| 41"    |
| 32"    |
| -0.99  |
| -1.29" |
| -1.69" |
| -2.07" |
| +1.67" |
|        |
|        |
|        |
|        |

<sup>\*\*</sup> Pressures measured wiith VAV Boxes at full cooling position.

| Project:<br>Address:                                     | J. Michael Ruane<br>58 Federal St., Sa |                             | er            |          |                        |                    |                           |
|----------------------------------------------------------|----------------------------------------|-----------------------------|---------------|----------|------------------------|--------------------|---------------------------|
| Date:                                                    | 11/13/2020                             |                             |               |          | Project No.            | 20-5               | 48                        |
|                                                          |                                        | 7                           | TRAVERSE      | DATA     |                        |                    |                           |
| SYSTEM:                                                  | AHU-1                                  |                             |               | TRAVERSE | NUMBER :               | T1                 |                           |
|                                                          | Supply                                 |                             |               | TRAVERSE | LOCATION:              | Mech 6400          |                           |
| DUCT SIZE (R<br>DUCT SIZE (R                             |                                        | 22                          | " DIAMETER    |          | ' DEPTH                | Sq Ft =<br>Sq Ft = | 0.00<br>2.14              |
| AIR DENSITY<br>STATIC PRES<br>DUCT AIR TEI<br>BAROMETRIC | SS @ CL:<br>MP :                       | NA In\<br>70 De<br>29.92 In | eg F          |          | DESIGN<br>ACTUAL<br>SO |                    | NL<br>3395<br><b>3396</b> |
| AIR DENSITY                                              | RATIO CORRECT                          | ION =                       | 1.00          |          |                        |                    |                           |
| SCFM CORRE                                               | ECTION FACTOR                          |                             | 1.00<br>0.075 |          |                        |                    |                           |
| TEST HOLE                                                | 1                                      | 2                           | 3             | 4        | 5                      | 6                  | 7                         |
| A                                                        | 1593                                   | 1703                        | 1714          | 1533     | 1593                   | 1674               | <u>'</u>                  |
| В                                                        | 1462                                   | 1643                        | 1830          | 1724     | 1759                   | 1518               |                           |
| С                                                        | 936                                    | 1127                        | 1732          | 1702     | 1712                   | 1597               |                           |
| D                                                        | 330                                    | 1121                        | 1702          | 1702     | 1712                   | 1001               |                           |
| E                                                        |                                        |                             |               |          |                        |                    |                           |
| F                                                        |                                        |                             |               |          |                        |                    |                           |
| G                                                        |                                        |                             |               |          |                        |                    |                           |
| Н                                                        |                                        |                             |               |          |                        |                    |                           |
| 1                                                        |                                        |                             |               |          |                        |                    |                           |
| NO. OF READ                                              | INGS =                                 | 18                          | AVERAGE FF    | PM =     | 1586                   |                    |                           |
| J                                                        |                                        |                             |               |          |                        |                    |                           |
| K                                                        |                                        |                             |               |          |                        |                    |                           |
| L                                                        |                                        |                             |               |          |                        |                    |                           |
| M                                                        |                                        |                             |               |          |                        |                    |                           |
| N                                                        |                                        |                             |               |          |                        |                    |                           |
| 0                                                        |                                        |                             |               |          |                        |                    |                           |
| Р                                                        |                                        |                             |               |          |                        |                    |                           |
| Q                                                        |                                        |                             |               |          |                        |                    |                           |
| R                                                        |                                        |                             |               |          |                        |                    |                           |
| TECHNICIAN:                                              | David Burns                            |                             |               |          |                        |                    |                           |

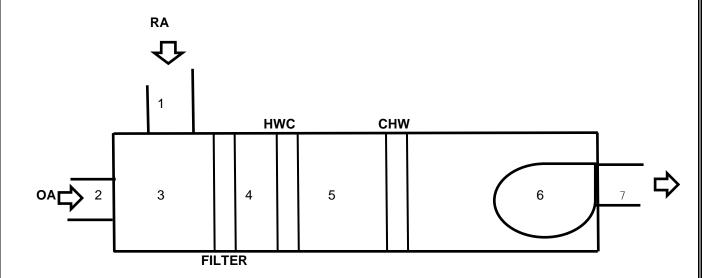
| Project:      | J. Michael Ruane   |          | er         |           |                   |           |      |
|---------------|--------------------|----------|------------|-----------|-------------------|-----------|------|
| Address:      | 58 Federal St., Sa | lem, MA  |            |           |                   |           |      |
| Date:         | 11/13/2020         |          |            |           | Project No.       | 20-5      | 548  |
|               |                    | -        | TRAVERSE   | DATA      |                   |           |      |
| SYSTEM:       | AHU-1              |          |            | TRAVERS   | SE NUMBER:        | T2        |      |
|               | Supply @ 60 Hz     |          |            | TRAVERS   | SE LOCATION:      | Mech 6400 |      |
| DUCT SIZE (R  | OLIND)             |          | " DIAMETER | •         |                   | Sq Ft =   | 0.00 |
| DUCT SIZE (R  | •                  | 22       | " WIDTH x  | . 14      | " DEPTH           | Sq Ft =   | 2.14 |
|               |                    |          | 2          |           |                   | 04        |      |
| AIR DENSITY I | r                  |          |            |           |                   |           |      |
| STATIC PRES   |                    | NA In    | •          |           | DESIGN            |           | NL   |
| DUCT AIR TEN  | ŀ                  | 70 De    | _          |           | ACTUAL            |           | 3186 |
| BAROMETRIC    | PRESS:             | 29.92 In | Hg.        |           | S                 | CFM=      | 3188 |
| AIR DENSITY I | RATIO CORRECTI     | ON =     | 1.00       | T1 + T2 = | : Total CFM       |           |      |
| SCFM CORRE    | CTION FACTOR       |          | 1.00       | Total CFN | <i>I</i> I = 6581 |           |      |
| ACTUAL DENS   | SITY               |          | 0.075      |           |                   |           |      |
| TEST HOLE     | 1                  | 2        | 3          | 4         | 5                 | 6         | 7    |
| Α             | 566                | 752      | 1428       | 1727      | 1967              | 2113      |      |
| В             | 618                | 1094     | 1409       | 1761      | 1956              | 2045      |      |
| С             | 869                | 1371     | 1637       | 1690      | 1840              | 1954      |      |
| D             |                    |          |            |           |                   |           |      |
| E             |                    |          |            |           |                   |           |      |
| F             |                    |          |            |           |                   |           |      |
| G             |                    |          |            |           |                   |           |      |
| Н             |                    |          |            |           |                   |           |      |
| I             |                    |          |            |           |                   |           |      |
| NO. OF READI  | INGS =             | 18       | AVERAGE FF | PM =      | 1489              |           |      |
| J             |                    |          | I          |           |                   |           |      |
| K             |                    |          |            |           |                   |           |      |
| L             |                    |          |            |           |                   |           |      |
| М             |                    |          |            |           |                   |           |      |
| N             |                    |          |            |           |                   |           |      |
| 0             |                    |          |            |           |                   |           |      |
| Р             |                    |          |            |           |                   |           |      |
| Q             |                    |          |            |           |                   |           |      |
| R             |                    |          |            |           |                   |           |      |
| TECHNICIAN:   | David Burns        |          |            |           |                   |           |      |

| Project:      | J. Michael Ruane   | Judicial Cente | er             |          |             |           |      |
|---------------|--------------------|----------------|----------------|----------|-------------|-----------|------|
| Address:      | 58 Federal St., Sa | alem, MA       |                |          |             |           |      |
| Date:         | 11/13/2020         |                |                |          | Project No. | 20-54     | 48   |
|               |                    | -              | RAVERSE        | DATA     |             |           |      |
| SYSTEM:       | AHU-1              | •              |                | TRAVERSE | NUMBER :    | T1        |      |
| 01012111.     | Return             |                |                | TRAVERSE |             | Mech 6400 |      |
|               |                    |                |                |          |             |           |      |
| DUCT SIZE (R  | OUND)              |                | " DIAMETER     | ?        |             | Sq Ft =   | 0.00 |
| DUCT SIZE (R  |                    | 34             | " WIDTH x      |          | DEPTH       | Sq Ft =   | 4.72 |
| DOOT OIZE (IN | .201.)             |                | WIDTITA        |          |             | 0411-     | 7.12 |
| AIR DENSITY   | DATA               |                |                |          |             |           |      |
| STATIC PRES   | S @ CL:            | -0.48 In\      | Ng.            |          | DESIGN      | CFM =     | 3900 |
| DUCT AIR TEI  | MP :               | 70 De          | g F            |          | ACTUAL      | CFM =     | 3903 |
| BAROMETRIC    | PRESS:             | 29.92 ln       | Hg.            |          | SC          | CFM=      | 3901 |
|               |                    |                |                |          |             |           |      |
|               | RATIO CORRECT      | ION =          | 1.00           |          |             |           |      |
|               | ECTION FACTOR      |                | 1.00           |          |             |           |      |
| ACTUAL DENS   | SITY               |                | 0.075          |          |             |           |      |
| TEST HOLE     | 1                  | 2              | 3              | 4        | 5           | 6         | 7    |
| Α             | 500                | 761            | 572            | 543      | 326         | 511       | 297  |
| В             | 1068               | 1227           | 955            | 679      | 776         | 826       | 710  |
| С             | 1085               | 1196           | 1280           | 1028     | 1249        | 1391      | 1017 |
| D             |                    |                |                |          |             |           |      |
| E             |                    |                |                |          |             |           |      |
| F             |                    |                |                |          |             |           |      |
| G             |                    |                |                |          |             |           |      |
| Н             |                    |                |                |          |             |           |      |
| I             |                    |                |                |          |             |           |      |
| NO 05 05 45   | IN GO              | 07             | A) /ED A O E E | 21.4     | 007         |           |      |
| NO. OF READ   | INGS =             | 27             | AVERAGE FF     | 21VI =   | 827         |           |      |
| J             | 309                | 202            |                |          |             |           |      |
| K             | 748                | 671            |                |          |             |           |      |
| L             | 1358               | 1044           |                |          |             |           |      |
| М             |                    |                |                |          |             |           |      |
| N             |                    |                |                |          |             |           |      |
| 0             |                    |                |                |          |             |           |      |
| Р             |                    |                |                |          |             |           |      |
| Q             |                    |                |                |          |             |           |      |
| R             |                    |                |                |          |             |           |      |
|               |                    |                |                | -        | -           |           |      |
| TECHNICIAN:   | David Burns        |                |                |          |             |           |      |
|               |                    |                |                |          |             |           |      |
|               |                    |                |                |          |             |           |      |

| Project:     | J. Michael Ruane   | Judicial Cente | er         |         |             |               |      |
|--------------|--------------------|----------------|------------|---------|-------------|---------------|------|
| Address:     | 58 Federal St., Sa | alem, MA       |            |         |             |               |      |
| Date:        | 11/13/2020         |                |            |         | Project No. | 20-5          | 548  |
|              |                    | VELG           | RID TRAVE  | ERSE DA | TA          |               |      |
| SYSTEM:      | AHU-1              |                |            | TRAVERS | E NUMBER:   | T1            |      |
|              | Outside Air        |                |            | TRAVERS | E LOCATION: | Mech 6400     |      |
| DUCT SIZE (R | OUND)              |                | " DIAMETER | }       |             | Sq Ft =       | 0.00 |
| DUCT SIZE (R |                    | 60             | " WIDTH x  |         | " DEPTH     | Sq Ft =       | 6.67 |
| ,            | - ,                |                |            |         |             | - 1           |      |
| AIR DENSITY  | 1                  |                |            |         |             |               |      |
| STATIC PRES  |                    | NA In\         | •          |         | DESIGN      |               | 2100 |
| DUCT AIR TEN |                    | 70 De          | •          |         | ACTUAL      |               | 2152 |
| BAROMETRIC   | PRESS:             | 29.92 In       | Hg.        |         | S           | CFM=          | 2153 |
| AIR DENSITY  | RATIO CORRECT      | ION =          | 1.00       |         | A           | FMS Cal = 0.8 | 351  |
| SCFM CORRE   | CTION FACTOR       |                | 1.00       |         |             |               |      |
| ACTUAL DENS  | SITY               |                | 0.075      |         |             |               |      |
| TEST HOLE    | 1                  | 2              | 3          | 4       | 5           | 6             | 7    |
| Α            | 564                | 531            | 496        | 518     |             |               |      |
| В            | 373                | 355            | 368        | 418     |             |               |      |
| С            | 86                 | 51             | 37         | 77      |             |               |      |
| D            |                    |                |            |         |             |               |      |
| E            |                    |                |            |         |             |               |      |
| F            |                    |                |            |         |             |               |      |
| G            |                    |                |            |         |             |               |      |
| H            |                    |                |            |         |             |               |      |
| I            |                    |                |            |         |             |               |      |
| NO. OF READ  | INGS =             | 12             | AVERAGE FF | PM =    | 323         |               |      |
| J            |                    |                |            |         |             |               |      |
| K            |                    |                |            |         |             |               |      |
| L            |                    |                |            |         |             |               |      |
| M            |                    |                |            |         |             |               |      |
| N            |                    |                |            |         |             |               |      |
| 0            |                    |                |            |         |             |               |      |
| Р            |                    |                |            |         |             |               |      |
| Q            |                    |                |            |         |             |               |      |
| R            |                    |                |            |         |             |               |      |
| TECHNICIAN:  | David Burns        |                |            |         |             |               |      |

| Project:                                                | J. Michael Ruane                       | Judicial Cente                | er                      |            |                          |                    |                             |
|---------------------------------------------------------|----------------------------------------|-------------------------------|-------------------------|------------|--------------------------|--------------------|-----------------------------|
| Address:                                                | 58 Federal St., Sa                     | alem, MA                      |                         |            |                          |                    |                             |
| Date:                                                   | 11/13/2020                             |                               |                         |            | Project No.              | 20-54              | 48                          |
|                                                         |                                        | 7                             | RAVERSE                 | DATA       |                          |                    |                             |
| SYSTEM:                                                 | F-14                                   |                               |                         | TRAVERSE   | NUMBER :                 | T1                 |                             |
|                                                         |                                        |                               |                         | TRAVERSE I | •                        | Mech 6400          |                             |
| DUCT SIZE (F                                            |                                        | 34                            | " DIAMETER<br>" WIDTH x |            | DEPTH                    | Sq Ft =<br>Sq Ft = | 0.00<br>4.72                |
| AIR DENSITY<br>STATIC PRES<br>DUCT AIR TE<br>BAROMETRIC | SS @ CL:<br>MP :                       | 0.91 ln\<br>70 De<br>29.92 ln | eg F                    |            | DESIGN (<br>ACTUAL<br>SC |                    | 5850<br>5853<br><b>5870</b> |
| AID DENOITY                                             | DATIO CODDECT                          | ION                           | 1.00                    |            | Λ.Γ                      | - MO O - L . O O   | 0.4                         |
|                                                         | RATIO CORRECT<br>ECTION FACTOR<br>SITY | ION =                         | 1.00<br>1.00<br>0.075   |            | AF                       | FMS Cal = 0.98     | 84                          |
| TEST HOLE                                               | 1                                      | 2                             | 3                       | 4          | 5                        | 6                  | 7                           |
| Α                                                       | 465                                    | 448                           | 1141                    | 857        | 825                      | 489                | 767                         |
| В                                                       | 1121                                   | 1065                          | 1840                    | 1442       | 1025                     | 1164               | 1227                        |
| С                                                       | 1996                                   | 1525                          | 1794                    | 1907       | 1564                     | 1873               | 2098                        |
| D                                                       | 1000                                   | .020                          |                         |            |                          | 10.0               |                             |
| E                                                       |                                        |                               |                         |            |                          |                    |                             |
| F                                                       |                                        |                               |                         |            |                          |                    |                             |
| G                                                       |                                        |                               |                         |            |                          |                    |                             |
| Н                                                       |                                        |                               |                         |            |                          |                    |                             |
| 1                                                       |                                        |                               |                         |            |                          |                    |                             |
| NO. OF READ                                             |                                        |                               | AVERAGE FF              | PM =       | 1240                     |                    |                             |
| J                                                       | 303                                    | 1628                          |                         |            |                          |                    |                             |
| K                                                       | 1007                                   | 1601                          |                         |            |                          |                    |                             |
| L                                                       | 1558                                   | 753                           |                         |            |                          |                    |                             |
| M                                                       |                                        |                               |                         |            |                          |                    |                             |
| N                                                       |                                        |                               |                         |            |                          |                    |                             |
| 0                                                       |                                        |                               |                         |            |                          |                    |                             |
| Р                                                       |                                        |                               |                         |            |                          |                    |                             |
| Q                                                       |                                        |                               |                         |            |                          |                    |                             |
| R                                                       |                                        |                               |                         |            |                          |                    |                             |
| TECHNICIAN:                                             | David Burns                            |                               |                         |            |                          |                    |                             |

Address: 58 Federal St., Salem, MA


| <b>Date:</b> 11/13/20 | )20             |               | Project No.      | 20-548        |
|-----------------------|-----------------|---------------|------------------|---------------|
|                       | F               | AN DATA SHEET | -                |               |
|                       | FAN NO          | ). AHU-2      | FAN N            | O. F-15       |
| Serves / Location:    | Courtrooms      | Mech. 6400    | Return for AHU-2 | Mech 6400     |
| Manufacturer:         | CARRIER         |               | GREENHECK        |               |
| Model Number:         | 39MN14C011KF311 | IXGS          | QEI-18-1-50      |               |
| Size:                 | 14              |               | NL               |               |
| Serial Number:        | 4309U23150      |               | 11887852         |               |
| MOTOR                 | DESIGN          | TESTED        | DESIGN           | TESTED        |
| Manufacturer:         | NL              | GE            | NL               | BALDOR        |
| Frame Number:         | NL              | 215T          | NL               | 184T          |
| Horsepower:           | 10              | 10            | 5                | 5             |
| Brake Horsepower:     | 7.2             | NA            | 2.2              | NA            |
| Safety Factor:        | NL              | 1.15          | NL               | 1.15          |
| Volts/Phase:          | 460/3           | 460/3         | 460/3            | 460/3         |
| Motor Amperage:       | 12.2            | 6.9           | 6.6              | 4.1           |
| Motor RPM:            | 1760            | 1355          | 1750             | 1447          |
| Speeds:               | VFD             | 45.2 Hz       | VFD              | 48.2 Hz       |
| Heater Size:          | NL              | VFD Protected | NL               | VFD Protected |
| Heater Amps.:         | NL              | VFD Protected | NL               | VFD Protected |
| FAN                   | DESIGN          | TESTED        | DESIGN           | TESTED        |
| Supply Air CFM:       | 6000            | 6025          |                  |               |
| Return Air CFM:       | 3600            | 3616          | 4680             | 4872          |
| Exhaust Air CFM:      |                 |               | 1080             | 1256          |
| Outside Air CFM:      | 2400            | 2409          |                  |               |
| Suction Pressure:     | NL              | -1.08         | NL               | -0.44         |
| Discharge Pressure:   | NL              | 1.12          | NL               | 0.36          |
| Fan Static Pressure:  | 5.0"            | NA            | NL               | NA            |
| External Pressure:    | NL              | 2.2           | 1.5"             | 0.8           |
| RPM                   | DESIGN          | TESTED        | DESIGN           | TESTED        |
| Fan RPM:              | 1939            | 1460          | NL               | INLINE        |
| Motor Drive:          | NL              | BK35          | NL               | 4.25" OD      |
| Motor Size/Bore:      | NL              | 1 3/8         | NL               | QT 1 1/8"     |
| Fan Drive:            | NL              | BK77          | NL               | INLINE        |
| Fan Size/Bore:        | NL              | 1 7/16        | NL               | INLINE        |
| Belt Size / Number:   | NL              | B77x1         | NL               | AP56x2        |
| Shafts C-C:           | NL              | 27.6          | NL               | INLINE        |
| onano o o.            |                 |               |                  |               |

Project: Plymouth Trial Court

Address: 52 Obery St., Plymouth, MA

**Date**: 10/30/2020 **Project No.** 20-547

# **AHU-2 STATIC PROFILE**



| LOCATION | STATIC |
|----------|--------|
| 1        | 11"    |
| 2        | 12"    |
| 3        | 31"    |
| 4        | 62"    |
| 5        | 80"    |
| 6        | -1.08" |
| 7        | +1.12" |
|          |        |
|          |        |
|          |        |

<sup>\*\*</sup> Pressures measured wiith VAV Boxes at full cooling position.

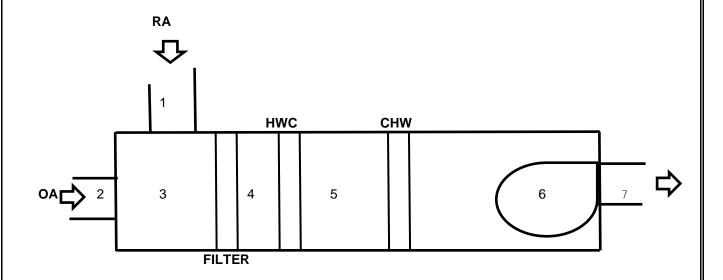
| Project:                                                 | J. Michael Ruane   | Judicial Cente               | er         |          |                       |                    |                           |
|----------------------------------------------------------|--------------------|------------------------------|------------|----------|-----------------------|--------------------|---------------------------|
| Address:                                                 | 58 Federal St., Sa | lem, MA                      |            |          |                       |                    |                           |
| Date:                                                    | 11/13/2020         |                              |            |          | Project No.           | 20-5               | 548                       |
|                                                          |                    | -                            | TRAVERSE   | DATA     |                       |                    |                           |
| SYSTEM:                                                  | AHU-2              |                              |            | TRAVERSE | NUMBER :              | T1                 |                           |
|                                                          | Supply Branch 1    |                              |            | TRAVERSE | LOCATION:             | Mech 6400          |                           |
| DUCT SIZE (R<br>DUCT SIZE (R                             |                    | 16                           | " DIAMETER |          | DEPTH                 | Sq Ft =<br>Sq Ft = | 1.40                      |
| AIR DENSITY<br>STATIC PRES<br>DUCT AIR TEN<br>BAROMETRIC | S @ CL:<br>MP :    | 1.12 ln<br>70 De<br>29.92 ln | eg F       |          | DESIGN<br>ACTUAL<br>S |                    | NL<br>2895<br><b>2905</b> |
| AIR DENSITY                                              | RATIO CORRECTI     | ION =                        | 1.00       |          |                       |                    |                           |
| SCFM CORRE                                               | CTION FACTOR       |                              | 1.00       |          |                       |                    |                           |
| ACTUAL DENS                                              | SITY               |                              | 0.075      |          |                       |                    |                           |
| TEST HOLE                                                | 1                  | 2                            | 3          | 4        | 5                     | 6                  | 7                         |
| Α                                                        | 2355               | 2050                         | 2336       | 2035     |                       |                    |                           |
| В                                                        | 2159               | 2027                         | 2281       | 1935     |                       |                    |                           |
| С                                                        | 2027               | 1940                         | 2170       | 1984     |                       |                    |                           |
| D                                                        | 1986               | 1830                         | 2098       | 1873     |                       |                    |                           |
| E                                                        |                    |                              |            |          |                       |                    |                           |
| F                                                        |                    |                              |            |          |                       |                    |                           |
| G                                                        |                    |                              |            |          |                       |                    |                           |
| Н                                                        |                    |                              |            |          |                       |                    |                           |
| 1                                                        |                    |                              |            |          |                       |                    |                           |
| NO. OF READ                                              | INGS =             | 16                           | AVERAGE FF | PM =     | 2068                  |                    |                           |
| J                                                        |                    |                              |            |          |                       |                    |                           |
| K                                                        |                    |                              |            |          |                       |                    |                           |
| L                                                        |                    |                              |            |          |                       |                    |                           |
| M                                                        |                    |                              |            |          |                       |                    |                           |
| N                                                        |                    |                              |            |          |                       |                    |                           |
| 0                                                        |                    |                              |            |          |                       |                    |                           |
| Р                                                        |                    |                              |            |          |                       |                    |                           |
| Q                                                        |                    |                              |            |          |                       |                    |                           |
| R                                                        |                    |                              |            |          |                       |                    |                           |
| TECHNICIAN:                                              | David Burns        |                              |            |          |                       |                    |                           |

| Project:     | J. Michael Ruane   | Judicial Cent | er         |           |              |           |      |
|--------------|--------------------|---------------|------------|-----------|--------------|-----------|------|
| Address:     | 58 Federal St., Sa | lem, MA       |            |           |              |           |      |
| Date:        | 11/13/2020         |               |            |           | Project No.  | 20-5      | 548  |
|              |                    | •             | TRAVERSE   | DATA      |              |           |      |
| SYSTEM:      | AHU-2              |               |            | TRAVERS   | SE NUMBER:   | T2        |      |
|              | Supply Branch 2    |               |            | TRAVERS   | SE LOCATION: | Mech 6400 |      |
| DUCT SIZE (R | OUND)              |               | " DIAMETER | <b>}</b>  |              | Sq Ft =   | 0.00 |
| DUCT SIZE (R | -                  | 20            | " WIDTH x  | 16        | _" DEPTH     | Sq Ft =   | 2.22 |
| AIR DENSITY  | DATA               |               |            |           |              |           |      |
| STATIC PRES  | S @ CL:            | 1.44 In       | Wg.        |           | DESIGN       | I CFM =   | NL   |
| DUCT AIR TEN | MP :               | 70 D          | eg F       |           | ACTUAL       | CFM =     | 3130 |
| BAROMETRIC   | PRESS:             | 29.92 ln      | Hg.        |           | S            | SCFM=     | 3143 |
| AIR DENSITY  | RATIO CORRECTI     | ON =          | 1.00       | T1 + T2 = | Total CFM    |           |      |
| SCFM CORRE   | CTION FACTOR       |               | 1.00       | Total CFN | M = 6025     |           |      |
| ACTUAL DENS  | SITY               |               | 0.075      |           |              |           |      |
| TEST HOLE    | 1                  | 2             | 3          | 4         | 5            | 6         | 7    |
| Α            | 1470               | 1369          | 1268       | 1547      | 1719         |           |      |
| В            | 1376               | 1208          | 1179       | 1539      | 1699         |           |      |
| С            | 1496               | 1274          | 1177       | 1391      | 1435         |           |      |
| D            |                    |               |            |           |              |           |      |
| E            |                    |               |            |           |              |           |      |
| F            |                    |               |            |           |              |           |      |
| G            |                    |               |            |           |              |           |      |
| Н            |                    |               |            |           |              |           |      |
| I            |                    |               |            |           |              |           |      |
| NO. OF READ  | INGS =             | 15            | AVERAGE FF | PM =      | 1410         |           |      |
| J            |                    |               |            |           |              |           |      |
| K            |                    |               |            |           |              |           |      |
| L            |                    |               |            |           |              |           |      |
| M            |                    |               |            |           |              |           |      |
| N            |                    |               |            |           |              |           |      |
| 0            |                    |               |            |           |              |           |      |
| Р            |                    |               |            |           |              |           |      |
| Q            |                    |               |            |           |              |           |      |
| R            |                    |               |            |           |              |           |      |
| TECHNICIAN:  | David Burns        |               | -          |           |              |           |      |

| Project:     | J. Michael Ruane   |          | er         |         |              |           |      |
|--------------|--------------------|----------|------------|---------|--------------|-----------|------|
| Address:     | 58 Federal St., Sa | alem, MA |            |         |              |           |      |
| Date:        | 11/13/2020         |          |            |         | Project No.  | 20-5      | 548  |
|              |                    | VELG     | RID TRAVE  | ERSE DA | \TA          |           |      |
| SYSTEM:      | AHU-2              |          |            | TRAVERS | SE NUMBER:   | T1        |      |
|              | Return             |          |            | TRAVERS | SE LOCATION: | Mech 6400 |      |
| DUCT SIZE (R | OUND)              |          | " DIAMETER | ?       |              | Sq Ft =   | 0.00 |
| DUCT SIZE (R |                    | 36       | " WIDTH x  | 16      | " DEPTH      | Sq Ft =   | 4.00 |
| ,            |                    |          |            |         | -            |           |      |
| AIR DENSITY  |                    |          |            |         |              |           |      |
| STATIC PRES  |                    | -0.11 ln |            |         | DESIGN       |           | 3600 |
| DUCT AIR TEI |                    | 70 De    | _          |         | ACTUAL       |           | 3616 |
| BAROMETRIC   | PRESS:             | 29.92 In | нg.        |         | 8            | CFM=      | 3617 |
| AIR DENSITY  | RATIO CORRECT      | ION =    | 1.00       |         |              |           |      |
| SCFM CORRE   | ECTION FACTOR      |          | 1.00       |         |              |           |      |
| ACTUAL DEN   | SITY               |          | 0.075      |         |              |           |      |
| TEST HOLE    | 1                  | 2        | 3          | 4       | 5            | 6         | 7    |
| Α            | 674                | 977      | 1017       | 1178    |              |           |      |
| В            | 392                | 936      | 1039       | 1115    |              |           |      |
| С            | 456                | 946      | 1022       | 1099    |              |           |      |
| D            |                    |          |            |         |              |           |      |
| E            |                    |          |            |         |              |           |      |
| F            |                    |          |            |         |              |           |      |
| G            |                    |          |            |         |              |           |      |
| Н            |                    |          |            |         |              |           |      |
| 1            |                    |          |            |         |              |           |      |
| NO. OF READ  | INGS =             | 12       | AVERAGE FF | PM =    | 904          |           |      |
| J            |                    |          |            |         |              |           |      |
| K            |                    |          |            |         |              |           |      |
| L            |                    |          |            |         |              |           |      |
| M            |                    |          |            |         |              |           |      |
| N            |                    |          |            |         |              |           |      |
| 0            |                    |          |            |         |              |           |      |
| Р            |                    |          |            |         |              |           |      |
| Q            |                    |          |            |         |              |           |      |
| R            |                    |          |            |         |              |           |      |
| TECHNICIAN:  | David Burns        |          |            |         |              |           |      |

| Project:      | J. Michael Ruane   |            | er         |         |             |             |      |
|---------------|--------------------|------------|------------|---------|-------------|-------------|------|
| Address:      | 58 Federal St., Sa | alem, MA   |            |         |             |             |      |
| Date:         | 11/13/2020         |            |            |         | Project No. | 20-5        | 548  |
|               |                    | VELG       | RID TRAVE  | ERSE DA | TA          |             |      |
| SYSTEM:       | AHU-2              |            |            | TRAVERS | E NUMBER:   | T1          |      |
|               | Outside Air        |            |            | TRAVERS | E LOCATION: | Mech 6400   |      |
| DUCT SIZE (R  | OLIND)             |            | " DIAMETER | )       |             | Sq Ft =     | 0.00 |
| DUCT SIZE (R  |                    | 60         | " WIDTH x  |         | " DEPTH     | Sq Ft =     | 6.67 |
| 2001 0.22 (11 |                    |            | W.B.III.X  |         | 521 111     | 09.1        | 0.01 |
| AIR DENSITY   | ı                  |            |            |         |             |             |      |
| STATIC PRES   |                    | -0.027 In\ |            |         | DESIGN      |             | 2400 |
| DUCT AIR TEN  |                    | 70 De      | _          |         | ACTUAL      |             | 2408 |
| BAROMETRIC    | PRESS :            | 29.92 In   | Hg.        |         | S           | CFM=        | 2410 |
| AIR DENSITY   | RATIO CORRECT      | ION =      | 1.00       |         | A           | FMS = 1.203 |      |
| SCFM CORRE    | CTION FACTOR       |            | 1.00       |         |             |             |      |
| ACTUAL DENS   | SITY               |            | 0.075      |         |             |             |      |
| TEST HOLE     | 1                  | 2          | 3          | 4       | 5           | 6           | 7    |
| Α             | 383                | 394        | 414        | 387     |             |             |      |
| В             | 355                | 344        | 362        | 347     |             |             |      |
| С             | 278                | 301        | 389        | 379     |             |             |      |
| D             |                    |            |            |         |             |             |      |
| E             |                    |            |            |         |             |             |      |
| F             |                    |            |            |         |             |             |      |
| G             |                    |            |            |         |             |             |      |
| Н             |                    |            |            |         |             |             |      |
| 1             |                    |            |            |         |             |             |      |
| NO. OF READ   | INGS =             | 12         | AVERAGE FF | PM =    | 361         |             |      |
| J             |                    |            |            |         |             |             |      |
| K             |                    |            |            |         |             |             |      |
| L             |                    |            |            |         |             |             |      |
| M             |                    |            |            |         |             |             |      |
| N             |                    |            |            |         |             |             |      |
| 0             |                    |            |            |         |             |             |      |
| Р             |                    |            |            |         |             |             |      |
| Q             |                    |            |            |         |             |             |      |
| R             |                    |            |            |         |             |             |      |
| TECHNICIAN:   | David Burns        |            |            |         |             |             |      |

| Project:                   | J. Michael Ruane   | Judicial Cente    | er         |          |             |                |                     |
|----------------------------|--------------------|-------------------|------------|----------|-------------|----------------|---------------------|
| Address:                   | 58 Federal St., Sa | alem, MA          |            |          |             |                |                     |
| Date:                      | 11/13/2020         |                   |            |          | Project No. | 20-54          | 48                  |
|                            |                    | •                 | TRAVERSE   | DATA     |             |                |                     |
| SYSTEM:                    | F-15               |                   |            | TRAVERSE | NUMBER :    | T1             |                     |
|                            |                    |                   |            | TRAVERSE | LOCATION:   | Mech 6400      |                     |
| DUCT SIZE (R               | OUND)              |                   | " DIAMETER | ?        |             | Sq Ft =        | 0.00                |
| DUCT SIZE (R               |                    | 36                | " WIDTH x  |          | DEPTH       | Sq Ft =        | 4.00                |
| `                          | ,                  |                   |            |          |             | ' '            |                     |
| AIR DENSITY                |                    |                   | IA / -     |          | DEGION      | OEM            | 4050                |
| STATIC PRES                |                    | NA In             | •          |          | DESIGN      |                | 4650                |
| DUCT AIR TEI<br>BAROMETRIC |                    | 70 De<br>29.92 In | -          |          | ACTUAL      | CFM=<br>CFM=   | 4872<br><b>4875</b> |
| DARONETRIC                 | PRESS.             | 29.92             | пg.        |          | 50          | ⊃rivi=         | 46/3                |
| AIR DENSITY                | RATIO CORRECT      | ION =             | 1.00       |          | AF          | -MS Cal = 1.29 | 95                  |
|                            | ECTION FACTOR      |                   | 1.00       |          |             |                |                     |
| ACTUAL DEN                 |                    |                   | 0.075      |          |             |                |                     |
| TEST HOLE                  | 1                  | 2                 | 3          | 4        | 5           | 6              | 7                   |
| Α                          | 1474               | 1510              | 1545       | 1282     | 1541        | 1417           |                     |
| В                          | 1171               | 1170              | 1084       | 1142     | 1260        | 1329           |                     |
| С                          | 911                | 867               | 1006       | 875      | 1129        | 1213           |                     |
| D                          |                    |                   |            |          |             |                |                     |
| Е                          |                    |                   |            |          |             |                |                     |
| F                          |                    |                   |            |          |             |                |                     |
| G                          |                    |                   |            |          |             |                |                     |
| Н                          |                    |                   |            |          |             |                |                     |
| I                          |                    |                   |            |          |             |                |                     |
| NO. OF READ                | INGS =             | 18                | AVERAGE FF | PM =     | 1218        |                |                     |
| J                          |                    |                   |            |          |             |                |                     |
| K                          |                    |                   |            |          |             |                |                     |
| L                          |                    |                   |            |          |             |                |                     |
| М                          |                    |                   |            |          |             |                |                     |
| N                          |                    |                   |            |          |             |                |                     |
| 0                          |                    |                   |            |          |             |                |                     |
| Р                          |                    |                   |            |          |             |                |                     |
| Q                          |                    |                   |            |          |             |                |                     |
| R                          |                    |                   |            |          |             |                |                     |
|                            |                    |                   |            |          |             |                |                     |
| TECHNICIAN:                | David Burns        |                   |            |          |             |                |                     |
| İ                          |                    |                   |            |          |             |                |                     |


Address: 58 Federal St., Salem, MA

| Date: 11/13/20       | 020            |               | Project No.      | 20-548        |  |  |
|----------------------|----------------|---------------|------------------|---------------|--|--|
|                      | F.             | AN DATA SHEET |                  |               |  |  |
|                      | FAN NO         | D. AHU-3      | FAN N            | O. F-16       |  |  |
| Serves / Location:   | Courtrooms     | Mech. 6100    | Return for AHU-3 | Mech 6100     |  |  |
| Manufacturer:        | CARRIER        |               | GREENHECK        |               |  |  |
| Model Number:        | 39MN14CD11KF41 | 1XGS          | QEI-18-1-60      | QEI-18-1-60   |  |  |
| Size:                | 14             |               | NL               |               |  |  |
| Serial Number:       | 4309U23151     |               | 11887853         | 11887853      |  |  |
| MOTOR                | DESIGN         | TESTED        | DESIGN           | TESTED        |  |  |
| Manufacturer:        | NL             | GE            | NL               | BALDOR        |  |  |
| Frame Number:        | NL             | 215T          | NL               | 184T          |  |  |
| Horsepower:          | 10             | 10            | 5                | 5             |  |  |
| Brake Horsepower:    | 7.2            | NA            | 2.2              | NA            |  |  |
| Safety Factor:       | NL             | 1.15          | NL               | 1.15          |  |  |
| Volts/Phase:         | 460/3          | 460/3         | 460/3            | 460/3         |  |  |
| Motor Amperage:      | 12.2           | 7             | 6.6              | 4.2           |  |  |
| Motor RPM:           | 1760           | 1800          | 1750             | 1536          |  |  |
| Speeds:              | VFD            | 60 Hz         | VFD              | 51.2 Hz       |  |  |
| Heater Size:         | NL             | VFD Protected | NL               | VFD Protected |  |  |
| Heater Amps.:        | NL             | VFD Protected | NL               | VFD Protected |  |  |
| FAN                  | DESIGN         | TESTED        | DESIGN           | TESTED        |  |  |
| Supply Air CFM:      | 6000           | 4365          |                  |               |  |  |
| Return Air CFM:      | 3800           | 2151          | 4850             | 4853          |  |  |
| Exhaust Air CFM:     |                |               |                  |               |  |  |
| Outside Air CFM:     | 2200           | 2214          |                  |               |  |  |
| Suction Pressure:    | NL             | -1.24         | NL               | -0.59         |  |  |
| Discharge Pressure:  | NL             | 1.14          | NL               | 0.07          |  |  |
| Fan Static Pressure: | 5.0"           | NA            | NL               | NA            |  |  |
| External Pressure:   | NL             | 2.38          | 1.5"             | 0.66          |  |  |
| RPM                  | DESIGN         | TESTED        | DESIGN           | TESTED        |  |  |
| Fan RPM:             | 1932           | 1932          | NL               | INLINE        |  |  |
| Motor Drive:         | NL             | BK77          | NL               | 4.5" OD       |  |  |
| Motor Size/Bore:     | NL             | 1 3/8         | NL               | QT 1 1/8"     |  |  |
| Fan Drive:           | NL             | BK70H         | NL               | INLINE        |  |  |
| Fan Size/Bore:       | NL             | H1 7/16       | NL               | INLINE        |  |  |
| Belt Size / Number:  | NL             | BX74x1        | NL               | AP56x2        |  |  |
| Shafts C-C:          | NL             | 27.3          | NL               | INLINE        |  |  |
| Turns Open:          | NL             | FIXED         | NL               | FIXED         |  |  |
| Comments:            |                |               |                  |               |  |  |

Address: 52 Obery St., Plymouth, MA

**Date**: 10/30/2020 **Project No.** 20-547

## **AHU-3 STATIC PROFILE**



| LOCATION | STATIC |
|----------|--------|
| 1        | 11"    |
| 2        | 10"    |
| 3        | 38"    |
| 4        | 60"    |
| 5        | 77"    |
| 6        | -1.24" |
| 7        | +1.14" |
|          |        |
|          |        |
|          |        |

<sup>\*\*</sup> Pressures measured wiith VAV Boxes at full cooling position.

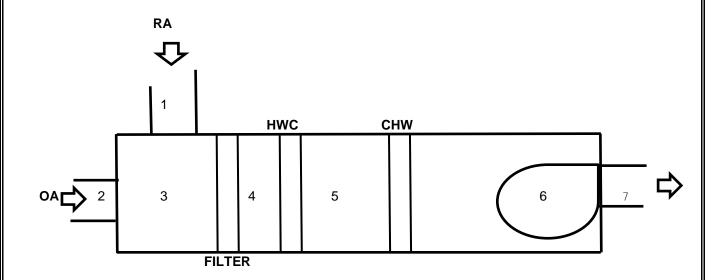
| Project:     | J. Michael Ruane   | Judicial Cente | er          |          |             |            |      |
|--------------|--------------------|----------------|-------------|----------|-------------|------------|------|
| Address:     | 58 Federal St., Sa | alem, MA       |             |          |             |            |      |
| Date:        | 11/13/2020         |                |             |          | Project No. | 20-54      | 48   |
|              |                    | -              | RAVERSE     | DATA     |             |            |      |
| CVCTEM.      | ALII 2             |                | KAVERSE     |          | WILLMOED .  | T4         |      |
| SYSTEM:      | AHU-3              |                |             | TRAVERSE | •           | T1         |      |
|              | Supply             |                |             | IKAVERSE | LOCATION.   | Mech 6100  |      |
| DUCT SIZE (R | SOLIND)            |                | " DIAMETER  | ?        |             | Sq Ft =    |      |
| DUCT SIZE (R |                    | 30             | " WIDTH x   |          | DEPTH       | Sq Ft =    | 3.33 |
| DOOT GIZE (I | (201.)             |                | WIDTITA     |          | DEI III     | 0911-      | 5.55 |
| AIR DENSITY  | DATA               |                |             |          |             |            |      |
| STATIC PRES  | SS @ CL:           | 1.14 ln\       | Ng.         |          | DESIGN (    | CFM =      | 6000 |
| DUCT AIR TE  | MP :               | 70 De          | eg F        |          | ACTUAL      | CFM =      | 4365 |
| BAROMETRIC   | PRESS :            | 29.92 In       | Hg.         |          | SC          | CFM=       | 4380 |
|              |                    |                |             |          |             |            |      |
|              | RATIO CORRECT      | ION =          | 1.00        |          | AF          | FMS = .875 |      |
|              | ECTION FACTOR      |                | 1.00        |          |             |            |      |
| ACTUAL DEN   |                    |                | 0.075       |          |             |            |      |
| TEST HOLE    | 1                  | 2              | 3           | 4        | 5           | 6          | 7    |
| Α            | 1462               | 1363           | 1254        | 1338     | 1052        | 1300       | 1510 |
| В            | 1582               | 1291           | 1310        | 1293     | 1238        | 1225       | 1335 |
| С            | 1616               | 1212           | 1171        | 1074     | 1111        | 1198       | 1245 |
| D            |                    |                |             |          |             |            |      |
| E            |                    |                |             |          |             |            |      |
| F            |                    |                |             |          |             |            |      |
| G            |                    |                |             |          |             |            |      |
| Н            |                    |                |             |          |             |            |      |
| I            |                    |                |             |          |             |            |      |
| NO. OF READ  | NNGS –             | 24             | AVERAGE FF  | DM =     | 1311        |            |      |
| NO. OF READ  | - VIII             | 2-7            | 7.0210.0211 | IVI —    | 1011        |            |      |
| J            | 1468               |                |             |          |             |            |      |
| K            | 1530               |                |             |          |             |            |      |
| L            | 1276               |                |             |          |             |            |      |
| M            |                    |                |             |          |             |            |      |
| Ν            |                    |                |             |          |             |            |      |
| 0            |                    |                |             |          |             |            |      |
| Р            |                    |                |             |          |             |            |      |
| Q            |                    |                |             |          |             |            |      |
| R            |                    |                |             |          |             |            |      |
|              |                    |                |             | -        |             |            |      |
| TECHNICIAN:  | David Burns        |                |             |          |             |            |      |
|              |                    |                |             |          |             |            |      |
|              |                    |                |             |          |             |            |      |

| Project:     | J. Michael Ruane              | Judicial Cente | er         |          |             |           |                                                   |   |
|--------------|-------------------------------|----------------|------------|----------|-------------|-----------|---------------------------------------------------|---|
| Address:     | 58 Federal St., S             | alem, MA       |            |          |             |           |                                                   |   |
| Date:        | 11/13/2020                    |                |            |          | Project No. | 20-5      | 548                                               |   |
|              |                               | -              | RAVERSE    | DATA     |             |           |                                                   |   |
| OVOTENA      | ALILLO                        |                | KAVEKSE    |          | NUMBED .    | T4        |                                                   | _ |
| SYSTEM:      | AHU-3                         |                |            |          | NUMBER :    | T1        |                                                   |   |
|              | Return                        |                |            | TRAVERSE | LOCATION:   | Mech 6100 |                                                   | _ |
| DUCT SIZE (F | SOLIND)                       |                | " DIAMETER | <b>,</b> |             | Sq Ft =   | 0.00                                              |   |
| DUCT SIZE (F | ŕ                             | 38             | " WIDTH x  |          | DEPTH       | Sq Ft =   | 4.22                                              |   |
| DOOT SIZE (I | (LOT.)                        |                | WIDTITA    | 10       | DEI III     | 0411-     | 7.22                                              |   |
| AIR DENSITY  | DATA                          |                |            |          |             |           |                                                   | _ |
| STATIC PRES  | SS @ CL:                      | -0.09 ln\      | Ng.        |          | DESIGN      | CFM =     | 3800                                              |   |
| DUCT AIR TE  | MP :                          | 70 De          | eg F       |          | ACTUAL      | CFM =     | 2152                                              |   |
| BAROMETRI    | C PRESS :                     | 29.92 In       | Hg.        |          | S           | CFM=      | 2153                                              |   |
| AID DENOITY  | / D. 4 TIO. O. O. D. D. C. O. | -1011          | 4.00       |          |             |           |                                                   | _ |
|              | RATIO CORRECT                 | ION =          | 1.00       |          | Al          | FMS = NA  |                                                   |   |
|              | ECTION FACTOR                 |                | 1.00       |          |             |           |                                                   |   |
| ACTUAL DEN   |                               | 0              | 0.075      |          | _           | •         | 7                                                 |   |
| TEST HOLE    | 1                             | 2              | 3          | 4        | 5           | 6         | 7                                                 |   |
| A            | 778                           | 812            | 785        | 693      |             |           | 1                                                 |   |
| В            | 868                           | 831            | 857        | 814      |             |           | 1                                                 |   |
| С            | 533                           | 527            | 518        | 512      |             |           | 1                                                 |   |
| D<br>-       | 529                           | 564            | 558        | 534      |             |           | 1                                                 |   |
| E _          | 109                           | 278            | 259        | 117      |             |           | 1                                                 |   |
| F            | 116                           | 229            | 279        | 133      |             |           | 1                                                 |   |
| G            |                               |                |            |          |             |           | 1                                                 |   |
| H            |                               |                |            |          |             |           | 1                                                 |   |
| I            |                               |                |            |          |             |           |                                                   |   |
| NO. OF READ  | DINGS =                       | 24             | AVERAGE FF | PM =     | 510         |           |                                                   |   |
|              |                               | <u>-</u>       |            |          | T           | <b>-</b>  | <del>, , , , , , , , , , , , , , , , , , , </del> |   |
| J            |                               |                |            |          |             |           |                                                   |   |
| K            |                               |                |            |          |             |           |                                                   |   |
| L            |                               |                |            |          |             |           |                                                   |   |
| M            |                               |                |            |          |             |           |                                                   |   |
| N            |                               |                |            |          |             |           |                                                   |   |
| 0            |                               |                |            |          |             |           |                                                   |   |
| Р            |                               |                |            |          |             |           | igsquare                                          |   |
| Q            |                               |                |            |          |             |           | igsquare                                          |   |
| R            |                               |                |            |          |             |           |                                                   |   |
| TEOLINUOLAN  | . Devidel Design              |                |            |          |             |           |                                                   |   |
| TECHNICIAN   | : David Burns                 |                |            |          |             |           |                                                   |   |
|              |                               |                |            |          |             |           |                                                   |   |

| Project:<br>Address: | J. Michael Ruane<br>58 Federal St., Sa |            | er              |          |             |               |      |
|----------------------|----------------------------------------|------------|-----------------|----------|-------------|---------------|------|
| Address.<br>Date:    | 11/13/2020                             | ilem, iviA |                 |          | Project No. | 20-54         | 48   |
|                      |                                        |            |                 |          | •           |               |      |
|                      |                                        | 7          | <b>TRAVERSE</b> | DATA     |             |               |      |
| SYSTEM:              | AHU-3                                  |            |                 | TRAVERSE |             | <u>T1</u>     |      |
|                      | Outside Air                            |            |                 | TRAVERSE | LOCATION:   | OSA Intake    |      |
| DUCT SIZE (R         | ROUND)                                 |            | " DIAMETER      | ?        |             | Sq Ft =       | 0.00 |
| DUCT SIZE (R         | •                                      | 48         | " WIDTH x       |          | DEPTH       | Sq Ft =       | 6.00 |
|                      | ,                                      |            |                 |          |             | 94            | 0.00 |
| AIR DENSITY          | DATA                                   |            |                 |          |             |               |      |
| STATIC PRES          | SS @ CL:                               | -0.07 In\  | Ng.             |          | DESIGN      | CFM =         | 2200 |
| DUCT AIR TE          | MP :                                   | 70 De      | •               |          | ACTUAL      | CFM =         | 2214 |
| BAROMETRIC           | PRESS :                                | 29.92 In   | Hg.             |          | SC          | CFM=          | 2215 |
| AID DENCITY          | RATIO CORRECT                          | ION        | 1.00            |          | ۸۲          | FMS = .715    |      |
|                      | ECTION FACTOR                          | ION =      | 1.00            |          | Ar          | -IVIS = ./ IS |      |
| ACTUAL DEN           |                                        |            | 0.075           |          |             |               |      |
| TEST HOLE            | 1                                      | 2          | 3               | 4        | 5           | 6             | 7    |
| A                    | 312                                    | 352        | 460             | 498      | 526         | 520           | 404  |
| В                    | 289                                    | 438        | 357             | 346      | 496         | 320           | 501  |
| C                    | 343                                    | 342        | 409             | 261      | 275         | 394           | 495  |
| D                    | 492                                    | 283        | 294             | 241      | 246         | 311           | 251  |
| E                    | 402                                    | 200        | 204             | 271      | 240         | 011           | 201  |
| F                    |                                        |            |                 |          |             |               |      |
| G                    |                                        |            |                 |          |             |               |      |
| Н                    |                                        |            |                 |          |             |               |      |
| 1                    |                                        |            |                 |          |             |               |      |
|                      |                                        |            |                 |          |             |               |      |
| NO. OF READ          | INGS =                                 | 32         | AVERAGE F       | PM =     | 369         |               |      |
|                      |                                        |            |                 |          | ı           |               |      |
| J                    | 227                                    |            |                 |          |             |               |      |
| K                    | 400                                    |            |                 |          |             |               |      |
| L                    | 397                                    |            |                 |          |             |               |      |
| M                    | 263                                    |            |                 |          |             |               |      |
| N                    |                                        |            |                 |          |             |               |      |
| O<br>P               |                                        |            |                 |          |             |               |      |
|                      |                                        |            |                 |          |             |               |      |
| Q<br>R               |                                        |            |                 |          |             |               |      |
| 17                   |                                        |            |                 |          |             |               |      |
| TECHNICIAN:          | David Burns                            |            |                 |          |             |               |      |
| I LOI INICIAN.       | David Bullis                           |            |                 |          |             |               |      |
|                      |                                        |            |                 |          |             |               |      |

| Project:                                                | J. Michael Ruane   | Judicial Cente                 | er                      |            |                          |                    |                             |
|---------------------------------------------------------|--------------------|--------------------------------|-------------------------|------------|--------------------------|--------------------|-----------------------------|
| Address:                                                | 58 Federal St., Sa | ılem, MA                       |                         |            |                          |                    |                             |
| Date:                                                   | 11/13/2020         |                                |                         |            | Project No.              | 20-54              | 48                          |
|                                                         |                    | 1                              | RAVERSE                 | DATA       |                          |                    |                             |
| SYSTEM:                                                 | F-16               |                                |                         | TRAVERSE   | NUMBER :                 | T1                 |                             |
|                                                         |                    |                                |                         | TRAVERSE I | •                        | Exhaust Duct       |                             |
| DUCT SIZE (F<br>DUCT SIZE (F                            |                    |                                | " DIAMETER<br>" WIDTH x |            | DEPTH                    | Sq Ft =<br>Sq Ft = | 0.00<br>4.22                |
| AIR DENSITY<br>STATIC PRES<br>DUCT AIR TE<br>BAROMETRIC | SS @ CL:<br>MP :   | 0.003 ln\<br>70 De<br>29.92 ln | g F                     |            | DESIGN (<br>ACTUAL<br>SC |                    | 4850<br>4853<br><b>4856</b> |
| AIR DENSITY                                             | RATIO CORRECT      | ION =                          | 1.00                    |            | AF                       | MS = 1.129         |                             |
| SCFM CORRE                                              | ECTION FACTOR      |                                | 1.00                    |            |                          |                    |                             |
| ACTUAL DEN                                              | SITY               |                                | 0.075                   |            |                          |                    |                             |
| TEST HOLE                                               | 1                  | 2                              | 3                       | 4          | 5                        | 6                  | 7                           |
| Α                                                       | 260                | 0                              | 147                     | 627        | 878                      | 1321               | 1627                        |
| В                                                       | 192                | 165                            | 492                     | 690        | 937                      | 1121               | 1559                        |
| С                                                       | 209                | 381                            | 626                     | 1029       | 1268                     | 1641               | 1825                        |
| D                                                       |                    |                                |                         |            |                          |                    |                             |
| E                                                       |                    |                                |                         |            |                          |                    |                             |
| F                                                       |                    |                                |                         |            |                          |                    |                             |
| G                                                       |                    |                                |                         |            |                          |                    |                             |
| Н                                                       |                    |                                |                         |            |                          |                    |                             |
| 1                                                       |                    |                                |                         |            |                          |                    |                             |
| NO. OF READ                                             | DINGS =            | 30                             | AVERAGE FF              | PM =       | 1150                     |                    |                             |
| J                                                       | 1889               | 2099                           | 1824                    |            |                          |                    |                             |
| K                                                       | 1752               | 1935                           | 2098                    |            |                          |                    |                             |
| L                                                       | 1859               | 1999                           | 2056                    |            |                          |                    |                             |
| M                                                       |                    |                                |                         |            |                          |                    |                             |
| N                                                       |                    |                                |                         |            |                          |                    |                             |
| 0                                                       |                    |                                |                         |            |                          |                    |                             |
| Р                                                       |                    |                                |                         |            |                          |                    |                             |
| Q                                                       |                    |                                |                         |            |                          |                    |                             |
| R                                                       |                    |                                |                         |            |                          |                    |                             |
| TECHNICIAN:                                             | David Burns        |                                |                         |            |                          |                    |                             |

Address: 58 Federal St., Salem, MA


**Date:** 11/13/2020 **Project No.** 20-548

| <b>Date:</b> 11/13/20                                     | )20             |                 | Project No.      | 20-548                     |  |  |
|-----------------------------------------------------------|-----------------|-----------------|------------------|----------------------------|--|--|
|                                                           | F.              | AN DATA SHEET   | •                |                            |  |  |
|                                                           | FAN NO          | ). AHU-4        | FAN N            | O. F-17                    |  |  |
| Serves / Location:                                        | Courtrooms      | Mech. 6100      | Return for AHU-4 | Return for AHU-4 Mech 6100 |  |  |
| Manufacturer:                                             | CARRIER         |                 | GREENHECK        | GREENHECK                  |  |  |
| Model Number:                                             | 39MN25C011KF511 | IXGS            | QEI-24-1-75      | QEI-24-1-75                |  |  |
| Size:                                                     | 25              |                 | NL               | NL                         |  |  |
| Serial Number:                                            | 4309U23152      |                 | 1187854          | 1187854                    |  |  |
| MOTOR                                                     | DESIGN          | TESTED          | DESIGN           | TESTED                     |  |  |
| Manufacturer:                                             | NL              | GE              | NL               | BALDOR                     |  |  |
| Frame Number:                                             | NL              | 256T            | NL               | 213T                       |  |  |
| Horsepower:                                               | 20              | 20              | 7.5              | 7.5                        |  |  |
| Brake Horsepower:                                         | 13.3            | NA              | 4.6              | NA                         |  |  |
| Safety Factor:                                            | NL              | 1.15            | NL               | 1.15                       |  |  |
| Volts/Phase:                                              | 460/3           | 460/3           | 460/3            | 460/3                      |  |  |
| Motor Amperage:                                           | 23.7            | 17.1            | 9.6              | 6.4                        |  |  |
| Motor RPM:                                                | 1760            | 1800            | 1770             | 1770                       |  |  |
| Speeds:                                                   | VFD             | 60 Hz           | VFD              | 59 Hz                      |  |  |
| Heater Size:                                              | NL              | VFD Protected   | NL               | VFD Protected              |  |  |
| Heater Amps.:                                             | NL              | VFD Protected   | NL               | VFD Protected              |  |  |
| FAN                                                       | DESIGN          | TESTED          | DESIGN           | TESTED                     |  |  |
| Supply Air CFM:                                           | 10800           | 11616           |                  |                            |  |  |
| Return Air CFM:                                           | 7000            | 7280            | 9800             | 9912                       |  |  |
| Exhaust Air CFM:                                          |                 |                 | 2800             | 2630                       |  |  |
| Outside Air CFM:                                          | 3800            | 4336            |                  |                            |  |  |
| Suction Pressure:                                         | NL              | -2.51           | NL               | -0.77                      |  |  |
| Discharge Pressure:                                       | NL              | 1.1             | NL               | 0.84                       |  |  |
| Fan Static Pressure:                                      | 5.2"            | NA              | NL               | NA                         |  |  |
| External Pressure:                                        | NL              | 3.61            | 2.0"             | 1.61                       |  |  |
| RPM                                                       | DESIGN          | TESTED          | DESIGN           | TESTED                     |  |  |
| Fan RPM:                                                  | 1387            | 1387            | NL               | INLINE                     |  |  |
| Motor Drive:                                              | NL              | 2B5V66          | NL               | 4" OD                      |  |  |
| Motor Size/Bore:                                          |                 | D.4. = /0       | NL               | Q1 1 3/8                   |  |  |
|                                                           | NL              | B1 5/8          |                  |                            |  |  |
| Fan Drive:                                                | NL<br>NL        | 2BK90           | NL               | INLINE                     |  |  |
|                                                           |                 |                 |                  | INLINE<br>INLINE           |  |  |
| Fan Size/Bore:                                            | NL              | 2BK90           | NL               |                            |  |  |
| Fan Drive: Fan Size/Bore: Belt Size / Number: Shafts C-C: | NL<br>NL        | 2BK90<br>1 7/16 | NL<br>NL         | INLINE                     |  |  |

Address: 52 Obery St., Plymouth, MA

**Date**: 10/30/2020 **Project No.** 20-547

## **AHU-4 STATIC PROFILE**



| STATIC |
|--------|
| 52"    |
| 49"    |
| -1.48" |
| -1.72" |
| 2.14"  |
| -2.51" |
| +1.10" |
|        |
|        |
|        |
|        |

<sup>\*\*</sup> Pressures measured wiith VAV Boxes at full cooling position.

| Project:     | J. Michael Ruane   | Judicial Cent | er         |          |             |                |       |
|--------------|--------------------|---------------|------------|----------|-------------|----------------|-------|
| Address:     | 58 Federal St., Sa | alem, MA      |            |          |             |                |       |
| Date:        | 11/13/2020         |               |            |          | Project No. | 20-5           | 48    |
|              |                    |               | TRAVERSE   | DATA     |             |                |       |
| SYSTEM:      | AHU-4              |               |            | TRAVERSE | NUMBER :    | T1             |       |
|              | Supply             |               |            |          | LOCATION:   | Mech 6100      |       |
|              |                    |               |            |          |             | _              |       |
| DUCT SIZE (F |                    |               | " DIAMETER |          |             | Sq Ft =        | 0.00  |
| DUCT SIZE (F | RECT.)             | 54            | " WIDTH x  | 16"      | DEPTH       | Sq Ft =        | 6.00  |
| AIR DENSITY  | DATA               |               |            |          |             |                |       |
| STATIC PRES  | SS @ CL:           | 1.1 ln        | Wg.        |          | DESIGN      | CFM =          | 10800 |
| DUCT AIR TE  | MP :               | 70 D          | eg F       |          | ACTUAL      | CFM =          | 11616 |
| BAROMETRIC   | PRESS :            | 29.92 ln      | Hg.        |          | SC          | CFM=           | 11654 |
| AID DENGITY  | RATIO CORRECT      | ION -         | 1.00       |          | ٨٢          | MS Cal = 1.0   | 06    |
|              | ECTION FACTOR      | ION –         | 1.00       |          | Ai          | 1013 Cai = 1.0 | 90    |
| ACTUAL DEN   |                    |               | 0.075      |          |             |                |       |
| TEST HOLE    | 1                  | 2             | 3          | 4        | 5           | 6              | 7     |
| Α            | 2599               | 2672          | 2394       | 2379     | 1818        | 2425           | 2420  |
| В            | 2041               | 2145          | 2230       | 2155     | 1390        | 2236           | 1932  |
| С            | 1642               | 1695          | 1696       | 1399     | 1310        | 1340           | 1550  |
| D            | 1042               | 1000          | 1000       | 1000     | 1010        | 1040           | 1000  |
| E            |                    |               |            |          |             |                |       |
| F            |                    |               |            |          |             |                |       |
| G            |                    |               |            |          |             |                |       |
| Н            |                    |               |            |          |             |                |       |
| 1            |                    |               |            |          |             |                |       |
| NO. OF READ  | DINGS =            | 27            | AVERAGE FF | PM =     | 1936        |                |       |
|              |                    |               |            |          |             |                |       |
| J            | 2540               | 2420          |            |          |             |                |       |
| K            | 1698               | 1606          |            |          |             |                |       |
| L            | 1355               | 1169          |            |          |             |                |       |
| M            |                    |               |            |          |             |                |       |
| N            |                    |               |            |          |             |                |       |
| 0            |                    |               |            |          |             |                |       |
| Р            |                    |               |            |          |             |                |       |
| Q            |                    |               |            |          |             |                |       |
| R            |                    |               |            |          |             |                |       |
| TECHNICIAN:  | David Burns        |               |            |          |             |                |       |

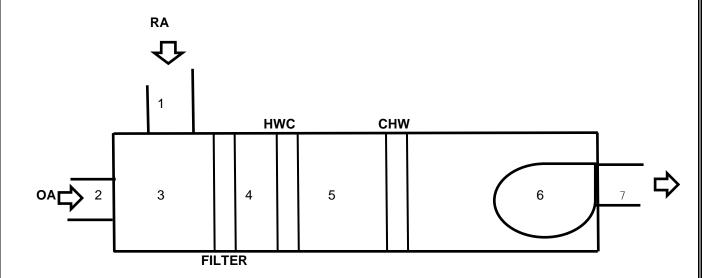
| Project:      | J. Michael Ruane   | Judicial Cente | er         |            |             |             |      |
|---------------|--------------------|----------------|------------|------------|-------------|-------------|------|
| Address:      | 58 Federal St., Sa | ılem, MA       |            |            |             |             |      |
| Date:         | 11/13/2020         |                |            |            | Project No. | 20-54       | 18   |
|               |                    | -              | TRAVERSE   | DATA       |             |             |      |
| CVCTEM.       | ALII 4             |                | IKAVEKSE   |            | WINDED .    | Т4          |      |
| SYSTEM:       | AHU-4              |                |            | TRAVERSE I | •           | T1          |      |
|               | Return             |                |            | TRAVERSE I | LOCATION.   | Mech 6100   |      |
| DUCT SIZE (R  | SOLIND)            |                | " DIAMETER | )          |             | Sq Ft =     | 0.00 |
| DUCT SIZE (R  |                    | 36             | " WIDTH x  |            | DEPTH       | Sq Ft =     | 7.50 |
| DOCT SIZE (IN | (201.)             |                | WIDTITA    |            |             | 5411- [     | 7.50 |
| AIR DENSITY   | DATA               |                |            |            |             | _           |      |
| STATIC PRES   | SS @ CL:           | -0.85 ln\      | Ng.        |            | DESIGN (    | CFM =       | 7000 |
| DUCT AIR TEI  | MP :               | 70 De          | eg F       |            | ACTUAL      | CFM =       | 7282 |
| BAROMETRIC    | PRESS:             | 29.92 In       | Hg.        |            | SC          | CFM=        | 7271 |
|               |                    |                |            |            |             |             |      |
|               | RATIO CORRECT      | ION =          | 1.00       |            | AF          | MS Cal = NA |      |
|               | ECTION FACTOR      |                | 1.00       |            |             |             |      |
| ACTUAL DEN    |                    |                | 0.075      |            |             |             |      |
| TEST HOLE     | 1                  | 2              | 3          | 4          | 5           | 6           | 7    |
| Α             | 366                | 0              | 224        | 0          | 0           | 0           | 0    |
| В             | 1155               | 0              | 0          | 0          | 0           | 0           | 0    |
| С             | 2144               | 544            | 410        | 393        | 774         | 1223        | 1047 |
| D             | 1796               | 1572           | 1347       | 1400       | 1390        | 1274        | 1498 |
| Е             | 1920               | 2280           | 2340       | 2518       | 1894        | 1887        | 1961 |
| F             |                    |                |            |            |             |             |      |
| G             |                    |                |            |            |             |             |      |
| H             |                    |                |            |            |             |             |      |
| I             |                    |                |            |            |             |             |      |
| NO. OF READ   | INGS =             | 45             | AVERAGE FF | PM =       | 971         |             |      |
|               |                    |                |            |            |             |             |      |
| J             | 0                  | 0              |            |            |             |             |      |
| K             | 0                  | 0              |            |            |             |             |      |
| L             | 230                | 1632           |            |            |             |             |      |
| M             | 1556               | 1760           |            |            |             |             |      |
| N             | 1925               | 2193           |            |            |             |             |      |
| 0             |                    |                |            |            |             |             |      |
| Р             |                    |                |            |            |             |             |      |
| Q             |                    |                |            |            |             |             |      |
| R             |                    |                |            |            |             |             |      |
|               |                    |                |            |            |             |             |      |
| TECHNICIAN:   | David Burns        |                |            |            |             |             |      |
|               |                    |                |            |            |             |             |      |

| Project:      | J. Michael Ruane   | Judicial Cent | er         |          |             |                 |               |
|---------------|--------------------|---------------|------------|----------|-------------|-----------------|---------------|
| Address:      | 58 Federal St., Sa | lem, MA       |            |          |             |                 |               |
| Date:         | 11/13/2020         |               |            |          | Project No. | . 20-           | 548           |
|               |                    | VELG          | RID TRAVE  | RSE DAT  | ГА          |                 |               |
| SYSTEM:       | AHU-4              |               |            | TRAVERSE | NUMBER :    | T1              |               |
|               | OSA                |               |            | TRAVERSE | LOCATION:   | OSA Intake      |               |
| DUCT SIZE (R  | OLIND)             |               | " DIAMETER | ,        |             | Sq Ft =         | 0.00          |
| DUCT SIZE (R  | •                  | 48            | " WIDTH x  |          | ' DEPTH     | Sq Ft =         | 10.00         |
| 0001 0122 (10 | .201.)             |               | WIDTITA    |          | DEI III     | 0411-           | 10.00         |
| AIR DENSITY   |                    |               |            |          |             |                 |               |
| STATIC PRES   |                    | -0.37 ln      | •          |          |             | N CFM =         | 3800          |
| DUCT AIR TEN  |                    | 70 De         | _          |          |             | L CFM =         | 4336          |
| BAROMETRIC    | PRESS :            | 29.92 In      | Hg.        |          | \$          | SCFM=           | 4335          |
| AIR DENSITY   | RATIO CORRECT      | ION =         | 1.00       |          | ŀ           | AFMS Cal = 1.2  | 271           |
| SCFM CORRE    | CTION FACTOR       |               | 1.00       |          | *           | *AFMS fluctua   | iting, unable |
| ACTUAL DENS   | SITY               |               | 0.075      |          |             | to calibrate pr | operly.       |
| TEST HOLE     | 1                  | 2             | 3          | 4        | 5           | 6               | 7             |
| Α             | 474                | 438           | 427        | 388      |             |                 |               |
| В             | 470                | 454           | 429        | 406      |             |                 |               |
| С             | 467                | 455           | 442        | 485      |             |                 |               |
| D             | 371                | 366           | 383        | 483      |             |                 |               |
| E             |                    |               |            |          |             |                 |               |
| F             |                    |               |            |          |             |                 |               |
| G             |                    |               |            |          |             |                 |               |
| Н             |                    |               |            |          |             |                 |               |
| 1             |                    |               |            |          |             |                 |               |
| NO. OF READ   | INGS =             | 16            | AVERAGE FF | PM =     | 434         |                 |               |
| J             |                    |               |            |          |             | 1               |               |
| K             |                    |               |            |          |             |                 | 1 1           |
| L             |                    |               |            |          |             |                 |               |
| M             |                    |               |            |          |             |                 |               |
| N             |                    |               |            |          |             |                 |               |
| 0             |                    |               |            |          |             |                 |               |
| Р             |                    |               |            |          |             |                 |               |
| Q             |                    |               |            |          |             |                 |               |
| R             |                    |               |            |          |             |                 |               |
| TECHNICIAN:   | David Burns        |               |            |          |             |                 |               |

| Project:     | J. Michael Ruane   | Judicial Cent | er         |          |                 |              |      |
|--------------|--------------------|---------------|------------|----------|-----------------|--------------|------|
| Address:     | 58 Federal St., Sa | alem, MA      |            |          |                 |              |      |
| Date:        | 11/13/2020         |               |            |          | Project No.     | 20-5         | 48   |
|              |                    |               | TRAVERSE   | DATA     |                 |              |      |
| SYSTEM:      | F-17               |               |            | TRAVERSE | NUMBER :        | T1           |      |
|              |                    |               |            | TRAVERSE | LOCATION:       | Mech 6100    |      |
| DUCT SIZE (R | SUIND)             |               | " DIAMETER | •        |                 | Sq Ft =      | 0.00 |
| DUCT SIZE (R |                    | 48            | " WIDTH x  |          | DEPTH           | Sq Ft =      | 8.00 |
| 0122 (1      | (201.)             | 10            | WIBTITA    |          | <i>DEI</i> 1111 | 0411         | 0.00 |
| AIR DENSITY  |                    |               |            |          |                 |              |      |
| STATIC PRES  |                    | -1.21 In      | -          |          | DESIGN          |              | 9800 |
| DUCT AIR TEI |                    | 70 D          | ŭ          |          | ACTUAL          |              | 9912 |
| BAROMETRIC   | PRESS :            | 29.92 In      | Hg.        |          | SC              | CFM=         | 9888 |
| AIR DENSITY  | RATIO CORRECT      | ION =         | 1.00       |          | AF              | MS Cal = 0.9 | 11   |
| SCFM CORRE   | ECTION FACTOR      |               | 1.00       |          |                 |              |      |
| ACTUAL DEN   | SITY               |               | 0.075      |          |                 |              |      |
| TEST HOLE    | 1                  | 2             | 3          | 4        | 5               | 6            | 7    |
| Α            | 939                | 1014          | 1036       | 1023     | 1439            | 1229         | 1271 |
| В            | 896                | 924           | 994        | 1061     | 1427            | 1234         | 1236 |
| С            | 884                | 938           | 996        | 1162     | 1414            | 1271         | 1268 |
| D            | 837                | 919           | 1001       | 1039     | 1377            | 1256         | 1265 |
| E            |                    |               |            |          |                 |              |      |
| F            |                    |               |            |          |                 |              |      |
| G            |                    |               |            |          |                 |              |      |
| Н            |                    |               |            |          |                 |              |      |
| 1            |                    |               |            |          |                 |              |      |
| NO. OF READ  | INGS =             | 48            | AVERAGE FF | PM =     | 1239            |              |      |
| J            | 1242               | 1265          | 1438       | 1426     | 1968            |              |      |
| K            | 1231               | 1269          | 1516       | 1389     | 1956            |              |      |
| L            | 1256               | 1271          | 1537       | 1379     | 1727            |              |      |
| M            | 1259               | 1251          | 1517       | 1382     | 842             |              |      |
| N            | 120                |               | 1011       |          |                 |              |      |
| 0            |                    |               |            |          |                 |              |      |
| P            |                    |               |            |          |                 |              |      |
| Q            |                    |               |            |          |                 |              |      |
| R            |                    |               |            |          |                 |              |      |
|              |                    |               |            |          | •               |              |      |
| TECHNICIAN:  | David Burns        |               | -          |          |                 |              |      |

Address: 58 Federal St., Salem, MA

**Date:** 11/13/2020 **Project No.** 20-548


|                      | FA!               | N DATA SHEET  |              |               |  |  |
|----------------------|-------------------|---------------|--------------|---------------|--|--|
|                      | FAN NO.           | AHU-5         | FAN NO       | . F-20        |  |  |
| Serves / Location:   | Admin Areas       | Mech 2250     | AHU-5 Return | Mech 2250     |  |  |
| Manufacturer:        | CARRIER           |               | GREENHECK    |               |  |  |
| Model Number:        | 39MN50C011KF622X0 | GS            | QEI-36-1-150 | QEI-36-1-150  |  |  |
| Size:                | 50                |               | NL           |               |  |  |
| Serial Number:       | 4309U23190        |               | 1187857      |               |  |  |
| MOTOR                | DESIGN            | TESTED        | DESIGN       | TESTED        |  |  |
| Manufacturer:        | NL                | *1            | NL           | AO Smith      |  |  |
| Frame Number:        | NL                | *1            | NL           | S254T         |  |  |
| Horsepower:          | 40                | *1            | 15           | 15            |  |  |
| Brake Horsepower:    | 31.3              | *1            | 7.1          | NA            |  |  |
| Safety Factor:       | NL                | 1.15          | NL           | 1.15          |  |  |
| Volts/Phase:         | 460/3             | 460/3         | 460/3        | 460/3         |  |  |
| Motor Amperage:      | 52                | 36.7          | 18.9         | 12            |  |  |
| Motor RPM:           | *1                | 1722          | 1770         | 1800          |  |  |
| Speeds:              | VFD               | 57.4 Hz       | VFD          | 60 Hz         |  |  |
| Heater Size:         | NL                | VFD Protected | NL           | VFD Protected |  |  |
| Heater Amps.:        | NL                | VFD Protected | NL           | VFD Protected |  |  |
| FAN                  | DESIGN            | TESTED        | DESIGN       | TESTED        |  |  |
| Supply Air CFM:      | 25000             | 15887         |              |               |  |  |
| Return Air CFM:      | 18000             | 8807          | 20000        | 13825         |  |  |
| Exhaust Air CFM:     |                   |               |              |               |  |  |
| Outside Air CFM:     | 7000              | 7080 *2       |              |               |  |  |
| Suction Pressure:    | NL                | -1.1          | NL           | -1.15         |  |  |
| Discharge Pressure:  | NL                | 3.19          | NL           | 0.04          |  |  |
| Fan Static Pressure: | 5.5"              | NA            | NL           | NA            |  |  |
| External Pressure:   | NL                | 4.29          | 1.5"         | 1.19          |  |  |
| RPM                  | DESIGN            | TESTED        | DESIGN       | TESTED        |  |  |
| Fan RPM:             | 1162              | 1134          | NL           | INLINE        |  |  |
| Motor Drive:         | NL                | 2B5V90        | NL           | 5.7" OD       |  |  |
| Motor Size/Bore:     | NL                | B2 1/8        | NL           | 1 5/8         |  |  |
| Fan Drive:           | NL                | 2B5V136       | NL           | INLINE        |  |  |
| Fan Size/Bore:       | NL                | B1 15/16      | NL           | INLINE        |  |  |
| Belt Size / Number:  | NL                | 5VX1320 x2    | NL           | BP98x3        |  |  |
| Shafts C-C:          | NL                | 48"           | NL           | INLINE        |  |  |
| Turns Open:          | NL                | FIXED         | NL           | FIXED         |  |  |

Comments: \*1 No motor nameplate tag.

Address: 52 Obery St., Plymouth, MA

**Date**: 10/30/2020 **Project No.** 20-547

## **AHU-5 STATIC PROFILE**



| LOCATION | STATIC |
|----------|--------|
| 1        | 24"    |
| 2        | 32"    |
| 3        | 43"    |
| 4        | 65"    |
| 5        | 79"    |
| 6        | -1.11" |
| 7        | +3.19" |
|          |        |
|          |        |
|          |        |

<sup>\*\*</sup> Pressures measured wiith VAV Boxes at full cooling position.

| Project:       | J. Michael Ruane   | Judicial Cente | er                                      |            |             |              |       |
|----------------|--------------------|----------------|-----------------------------------------|------------|-------------|--------------|-------|
| Address:       | 58 Federal St., Sa | alem, MA       |                                         |            |             |              |       |
| Date:          | 11/13/2020         |                |                                         |            | Project No. | 20-5         | 48    |
|                |                    |                | RAVERSE                                 | DATA       |             |              |       |
| SYSTEM:        | AHU-5              |                |                                         | TRAVERSE   | NUMBER ·    | T1           |       |
| OTOTEWI.       | Supply             |                |                                         | TRAVERSE   |             | Mech 2250    |       |
|                | Сирріу             |                |                                         | TIVIVEICOL | 200/111011. | WOOTI ZZOO   |       |
| DUCT SIZE (F   | SOLIND)            |                | " DIAMETER                              | )          |             | Sq Ft =      | 0.00  |
| DUCT SIZE (F   | ,                  | 60             | " WIDTH x                               |            | DEPTH       | Sq Ft =      | 12.50 |
| DOOT SIZE (I   | (201.)             |                | WIDITIX                                 |            | DEI III     | 54 i t =     | 12.50 |
| AIR DENSITY    |                    |                |                                         |            |             |              |       |
| STATIC PRES    |                    | 3.79 ln\       | •                                       |            | DESIGN (    |              | 25000 |
| DUCT AIR TE    |                    | 70 De          | _                                       |            | ACTUAL      |              | 15887 |
| BAROMETRIC     | PRESS :            | 29.92 In       | Hg.                                     |            | SC          | CFM=         | 16044 |
| AIR DENSITY    | RATIO CORRECT      | ION =          | 1.01                                    |            | AF          | MS Cal = 1.0 | 23    |
| SCFM CORRE     | ECTION FACTOR      |                | 1.01                                    |            |             |              |       |
| ACTUAL DEN     | SITY               |                | 0.076                                   |            |             |              |       |
| TEST HOLE      | 1                  | 2              | 3                                       | 4          | 5           | 6            | 7     |
| Α              | 2022               | 1646           | 1629                                    | 1102       | 951         | 648          | 601   |
| В              | 2086               | 1990           | 1836                                    | 1258       | 867         | 964          | 1435  |
| С              | 1884               | 1773           | 1687                                    | 1266       | 881         | 819          | 905   |
| D              | 1582               | 1274           | 1385                                    | 1165       | 773         | 909          | 1012  |
| Е              | 1140               | 1059           | 1182                                    | 1096       | 952         | 1058         | 987   |
| F              |                    |                |                                         |            |             |              |       |
| G              |                    |                |                                         |            |             |              |       |
| Н              |                    |                |                                         |            |             |              |       |
| 1              |                    |                |                                         |            |             |              |       |
| NO. OF READ    | INGS =             | 50             | AVERAGE FF                              | PM =       | 1275        |              |       |
| 1101 01 112/12 |                    |                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |            | 12.0        |              |       |
| J              | 573                | 930            | 1241                                    |            |             |              |       |
| K              | 1188               | 1051           | 1491                                    |            |             |              |       |
| L              | 1269               | 1708           | 1710                                    |            |             |              |       |
| M              | 1226               | 1542           | 1707                                    |            |             |              |       |
| N              | 1323               | 1580           | 1404                                    |            |             |              |       |
| 0              |                    |                |                                         |            |             |              |       |
| Р              |                    |                |                                         |            |             |              |       |
| Q              |                    |                |                                         |            |             |              |       |
| R              |                    |                |                                         |            |             |              |       |
|                |                    |                |                                         |            |             |              |       |
| TECHNICIAN:    | David Burns        |                |                                         |            |             |              |       |
|                |                    |                |                                         |            |             |              |       |

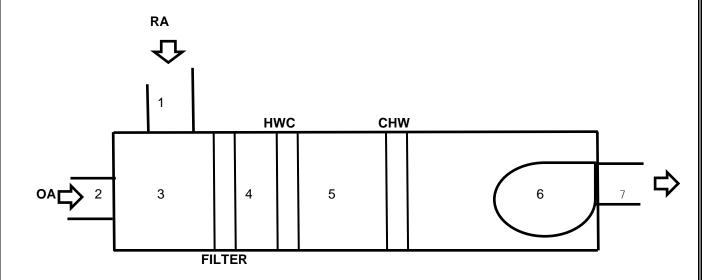
| Project:      | J. Michael Ruane   | Judicial Cente | er         |         |              |              |       |
|---------------|--------------------|----------------|------------|---------|--------------|--------------|-------|
| Address:      | 58 Federal St., Sa | lem, MA        |            |         |              |              |       |
| Date:         | 11/13/2020         |                |            |         | Project No.  | 20-          | 548   |
|               |                    | \/=! -         |            |         |              |              |       |
|               |                    | VELG           | RID TRAVE  |         |              |              |       |
| SYSTEM:       | AHU-5              |                |            |         | SE NUMBER :  | T1           |       |
|               | Return             |                |            | TRAVERS | SE LOCATION: | Return Intak | (e    |
| DUCT SIZE (RO | אווער)             |                | " DIAMETER | )       |              | Sq Ft =      | 0.00  |
| DUCT SIZE (RE |                    | 60             | " WIDTH x  | 30      | " DEPTH      | Sq Ft =      | 12.50 |
| DOOT SIZE (IN |                    |                | WIDTITA    |         | -            | 54 T L       | 12.50 |
| AIR DENSITY [ | DATA               |                |            |         |              |              |       |
| STATIC PRESS  | S @ CL:            | NA In          | Wg.        |         | DESIGN       | I CFM =      | 18000 |
| DUCT AIR TEM  | 1P :               | 70 De          | eg F       |         | ACTUAL       | CFM =        | 8812  |
| BAROMETRIC    | PRESS:             | 29.92 In       | Hg.        |         | S            | SCFM=        | 8817  |
|               |                    |                |            |         |              |              |       |
|               | RATIO CORRECTI     | ON =           | 1.00       |         |              |              |       |
|               | CTION FACTOR       |                | 1.00       |         |              |              |       |
| ACTUAL DENS   |                    |                | 0.075      |         |              |              |       |
| TEST HOLE     | 1                  | 2              | 3          | 4       | 5            | 6            | 7     |
| Α             | 706                | 716            | 734        | 1083    |              |              |       |
| В             | 1117               | 1063           | 631        | 644     |              |              |       |
| С             | 188                | 379            | 586        | 608     |              |              |       |
| D             |                    |                |            |         |              |              |       |
| E             |                    |                |            |         |              |              |       |
| F             |                    |                |            |         |              |              |       |
| G             |                    |                |            |         |              |              |       |
| H             |                    |                |            |         |              |              |       |
| I             |                    |                |            |         |              |              |       |
| NO. OF READI  | NGS =              | 12             | AVERAGE FF | PM =    | 705          |              |       |
|               |                    |                |            |         |              |              |       |
| J             |                    |                |            |         |              |              |       |
| K             |                    |                |            |         |              |              |       |
| L             |                    |                |            |         |              |              |       |
| M             |                    |                |            |         |              |              |       |
| N             |                    |                |            |         |              |              |       |
| 0             |                    |                |            |         |              |              |       |
| Р             |                    |                |            |         |              |              |       |
| Q             |                    |                |            |         |              |              |       |
| R             |                    |                |            |         |              |              |       |
|               |                    |                |            |         |              |              |       |
| TECHNICIAN:   | David Burns        |                |            |         |              |              |       |
|               |                    |                |            |         |              |              |       |

| Project:                     | J. Michael Ruane                      |          | er                   |          |             |              |       |
|------------------------------|---------------------------------------|----------|----------------------|----------|-------------|--------------|-------|
| Address:                     | 58 Federal St., Sa                    | llem, MA |                      |          | Duningt No  | 00.4         | T 40  |
| Date:                        | 11/13/2020                            |          |                      |          | Project No. | 20-          | 048   |
|                              |                                       | VELG     | RID TRAVE            | RSE DAT  | Α           |              |       |
| SYSTEM:                      | AHU-5                                 |          |                      |          | NUMBER :    | T1           |       |
|                              | Outside Air                           |          |                      | TRAVERSE | LOCATION:   | OSA Intake   |       |
| DUOT 0175 /5                 | OLIND)                                |          | " DIAMETER           |          |             | 0 - 5        |       |
| DUCT SIZE (R<br>DUCT SIZE (R | · · · · · · · · · · · · · · · · · · · | 60       | " DIAMETER " WIDTH x |          | DEDTH       | Sq Ft =      | 0.00  |
| DUCT SIZE (R                 | (ECI.)                                | 60       | WIDINX               |          | DEPTH       | Sq Ft =      | 15.00 |
| AIR DENSITY                  | DATA                                  |          |                      |          |             |              |       |
| STATIC PRES                  | SS @ CL:                              | NA In\   | •                    |          | DESIGN      | CFM =        | 7000  |
| DUCT AIR TEI                 | MP :                                  | 70 De    | _                    |          | ACTUAL      | CFM =        | 7080  |
| BAROMETRIC                   | PRESS :                               | 29.92 In | Hg.                  |          | S           | CFM=         | 7084  |
| AIR DENSITY                  | RATIO CORRECTI                        | ION =    | 1.00                 |          | ΔΙ          | FMS = 0.761  |       |
|                              | ECTION FACTOR                         | 011 -    | 1.00                 |          | 7.0         | 1010 - 0.701 |       |
| ACTUAL DEN                   |                                       |          | 0.075                |          |             |              |       |
| TEST HOLE                    | 1                                     | 2        | 3                    | 4        | 5           | 6            | 7     |
| Α                            | 312                                   | 535      | 706                  | 753      | 306         |              |       |
| В                            | 677                                   | 275      | 797                  | 609      | 519         |              |       |
| С                            | 488                                   | -96      | 781                  | 216      | 664         |              |       |
| D                            | 691                                   | -87      | 806                  | -172     | 652         |              |       |
| Е                            |                                       |          |                      |          |             |              |       |
| F                            |                                       |          |                      |          |             |              |       |
| G                            |                                       |          |                      |          |             |              |       |
| Н                            |                                       |          |                      |          |             |              |       |
| I                            |                                       |          |                      |          |             |              |       |
| NO. OF READ                  | INGS =                                | 20       | AVERAGE FF           | PM =     | 472         |              |       |
| . 10. 01 112/12              |                                       | 20       |                      |          |             |              |       |
| J                            |                                       |          |                      |          |             |              |       |
| K                            |                                       |          |                      |          |             |              |       |
| L                            |                                       |          |                      |          |             |              |       |
| M                            |                                       |          |                      |          |             |              |       |
| N                            |                                       |          |                      |          |             |              |       |
| 0                            |                                       |          |                      |          |             |              |       |
| Р                            |                                       |          |                      |          |             |              |       |
| Q                            |                                       |          |                      |          |             |              |       |
| R                            |                                       |          |                      |          |             |              |       |
| TECHNICIAN:                  | David Burns                           |          |                      |          |             |              |       |

| Project:     | J. Michael Ruane   | Judicial Cente | er         |            |                |                |         |
|--------------|--------------------|----------------|------------|------------|----------------|----------------|---------|
| Address:     | 58 Federal St., Sa | alem, MA       |            |            |                |                |         |
| Date:        | 11/13/2020         |                |            |            | Project No.    | 20-5           | 548     |
|              |                    | VELG           | RID TRAVE  | ERSE DAT   | A              |                |         |
| SYSTEM:      | F-20               |                |            | TRAVERSE   |                | T1             |         |
| 0.0.2        | . 20               |                |            |            | LOCATION:      | Mech 2250 I    | Exhaust |
|              |                    |                |            |            | 200,1110111    |                |         |
| DUCT SIZE (F | SOLIND)            |                | " DIAMETER | )          |                | Sq Ft =        | 0.00    |
| DUCT SIZE (F |                    |                | " WIDTH x  |            | DEPTH          | Sq Ft =        | 12.50   |
| DOOT GIZE (I | (201.)             |                | WIDTITA    |            | DEI III        | 0411-          | 12.50   |
| AIR DENSITY  |                    |                |            |            |                |                |         |
| STATIC PRES  |                    | NA In\         | •          |            | DESIGN         |                | 20000   |
| DUCT AIR TE  |                    | 70 De          | _          |            | ACTUAL         |                | 5013    |
| BAROMETRIC   | C PRESS :          | 29.92 In       | Hg.        |            | S              | CFM=           | 5015    |
| AIR DENSITY  | RATIO CORRECT      | ION =          | 1.00       |            | A              | FMS = .864     |         |
| SCFM CORRE   | ECTION FACTOR      |                | 1.00       |            |                |                |         |
| ACTUAL DEN   | SITY               |                | 0.075      |            |                |                |         |
| TEST HOLE    | 1                  | 2              | 3          | 4          | 5              | 6              | 7       |
| Α            | 476                | 689            | 575        | 586        |                |                |         |
| В            | 406                | 387            | 404        | 559        |                |                |         |
| С            | 174                | 153            | 129        | 276        |                |                |         |
| D            |                    |                |            |            |                |                |         |
| E            |                    |                |            |            |                |                |         |
| F            |                    |                |            |            |                |                |         |
| G            |                    |                |            |            |                |                |         |
| Н            |                    |                |            |            |                |                |         |
| 1            |                    |                |            |            |                |                |         |
| NO. OF READ  | DINGS =            | 12             | AVERAGE FF | PM =       | 401            |                |         |
| J            |                    |                |            |            |                | T              |         |
| K            |                    |                |            |            |                |                |         |
| L            |                    |                |            |            |                |                |         |
| M            |                    |                |            |            |                |                |         |
| N            |                    |                |            |            |                |                |         |
| 0            |                    |                |            |            |                |                |         |
| Р            |                    |                |            |            |                |                |         |
| Q            |                    |                |            |            |                |                |         |
| R            |                    |                |            |            |                |                |         |
|              |                    |                |            | AHU-5 Retu | rn + F-20 Exha | aust = Total C | FM      |
| TECHNICIAN:  | David Burns        |                |            |            | s = 13825 cfm. |                | ••      |
|              |                    |                |            | _          |                |                |         |
|              |                    |                |            |            |                |                |         |

Address: 58 Federal St., Salem, MA

**Date:** 11/13/2020 **Project No.** 20-548


|                      | FAI              | N DATA SHEET  | •            |               |  |  |
|----------------------|------------------|---------------|--------------|---------------|--|--|
|                      | FAN NO.          | AHU-6         | FAN NO.      | F-21          |  |  |
| Serves / Location:   | Admin Areas      | Mech 2250     | AHU-6 Return | Mech 2250     |  |  |
| Manufacturer:        | CARRIER          | -             | GREENHECK    | •             |  |  |
| Model Number:        | 39MN50C011F722XG | S             | QEI-36-1-150 | QEI-36-1-150  |  |  |
| Size:                | 50               |               | NL           |               |  |  |
| Serial Number:       | 4309U23195       |               | 11887858     |               |  |  |
| MOTOR                | DESIGN           | TESTED        | DESIGN       | TESTED        |  |  |
| Manufacturer:        | NL               | *1            | NL           | BALDOR        |  |  |
| Frame Number:        | NL               | *1            | NL           | 254T          |  |  |
| Horsepower:          | 40               | *1            | 15           | 15            |  |  |
| Brake Horsepower:    | 31.3             | *1            | 7.1          | NA            |  |  |
| Safety Factor:       | NL               | 1.15          | NL           | 1.15          |  |  |
| Volts/Phase:         | 460/3            | 460/3         | 460/3        | 460/3         |  |  |
| Motor Amperage:      | 52               | 38.9          | 17.7         | 11.2          |  |  |
| Motor RPM:           | *1               | 1699          | 1765         | 1800          |  |  |
| Speeds:              | VFD              | 56.6 Hz       | VFD          | 60 Hz         |  |  |
| Heater Size:         | NL               | VFD Protected | NL           | VFD Protected |  |  |
| Heater Amps.:        | NL               | VFD Protected | NL           | VFD Protected |  |  |
| FAN                  | DESIGN           | TESTED        | DESIGN       | TESTED        |  |  |
| Supply Air CFM:      | 25000            | 20175         |              |               |  |  |
| Return Air CFM:      | 18000            | 13065         | 20000        | 15776         |  |  |
| Exhaust Air CFM:     |                  |               |              |               |  |  |
| Outside Air CFM:     | 7000             | 7110 *2       |              |               |  |  |
| Suction Pressure:    | NL               | -1.86         | NL           | -1.54         |  |  |
| Discharge Pressure:  | NL               | 3.99          | NL           | 0.37          |  |  |
| Fan Static Pressure: | 5.5"             | NA            | NL           | NA            |  |  |
| External Pressure:   | NL               | 5.85          | 1.5"         | 1.91          |  |  |
| RPM                  | DESIGN           | TESTED        | DESIGN       | TESTED        |  |  |
| Fan RPM:             | NL               | 1119          | NL           | INLINE        |  |  |
| Motor Drive:         | NL               | 2B5V90        | NL           | 5.7" OD       |  |  |
| Motor Size/Bore:     | NL               | B2 1/8        | NL           | 1 5/8         |  |  |
| Fan Drive:           | NL               | 2B5V136       | NL           | INLINE        |  |  |
| Fan Size/Bore:       | NL               | B1 15/16      | NL           | INLINE        |  |  |
| Belt Size / Number:  | NL               | 5VX1320 x2    | NL           | BP98x3        |  |  |
| Shafts C-C:          | NL               | 48"           | NL           | INLINE        |  |  |
|                      |                  |               |              |               |  |  |

Comments: \*1 No motor nameplate tag.

Address: 52 Obery St., Plymouth, MA

**Date**: 10/30/2020 **Project No.** 20-547

# **AHU-6 STATIC PROFILE**



| LOCATION | STATIC |
|----------|--------|
| 1        | 52"    |
| 2        | 48"    |
| 3        | 90"    |
| 4        | -1.17" |
| 5        | -1.41" |
| 6        | -1.86" |
| 7        | +3.99" |
|          |        |
|          |        |
|          |        |

<sup>\*\*</sup> Pressures measured wiith VAV Boxes at full cooling position.

| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J. Michael Ruane   |                             | er         |            |                          |                    |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|------------|------------|--------------------------|--------------------|--------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58 Federal St., Sa | alem, MA                    |            |            |                          |                    |                                |
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/13/2020         |                             |            |            | Project No.              | 20-5               | 48                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 7                           | RAVERSE    | DATA       |                          |                    |                                |
| SYSTEM:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AHU-6              |                             |            | TRAVERSE   | NUMBER :                 | T1                 |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Supply             |                             |            | TRAVERSE I | •                        | Mech 2250          |                                |
| DUCT SIZE (RO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OUND)              | 60                          | " DIAMETER |            | DEPTH                    | Sq Ft =<br>Sq Ft = | 0.00<br>12.50                  |
| AIR DENSITY DESSENTED FOR A PROPERTY OF THE PR | S@CL:<br>1P:       | NA In\<br>70 De<br>29.92 In | eg F       |            | DESIGN (<br>ACTUAL<br>SC |                    | 25000<br>20175<br><b>20186</b> |
| AIR DENSITY F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RATIO CORRECT      | ION =                       | 1.00       |            | AF                       | MS = 1.059         |                                |
| SCFM CORRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CTION FACTOR       |                             | 1.00       |            |                          |                    |                                |
| ACTUAL DENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SITY               |                             | 0.075      |            |                          |                    |                                |
| TEST HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                  | 2                           | 3          | 4          | 5                        | 6                  | 7                              |
| Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2068               | 2116                        | 1999       | 2113       | 1464                     | 2014               | 2274                           |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1881               | 1883                        | 1839       | 1558       | 1937                     | 1984               | 2373                           |
| С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1680               | 1677                        | 1457       | 865        | 1137                     | 832                | 1956                           |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1273               | 1484                        | 1268       | 792        | 544                      | 858                | 1217                           |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1102               | 1355                        | 966        | 1012       | 620                      | 907                | 1190                           |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                             |            |            |                          |                    |                                |
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                             |            |            |                          |                    |                                |
| Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                             |            |            |                          |                    |                                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                             |            |            |                          |                    |                                |
| NO. OF READI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                             | AVERAGE FF | PM =       | 1614                     |                    |                                |
| J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2559               | 2568                        | 2609       |            |                          |                    |                                |
| K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2352               | 2435                        | 2331       |            |                          |                    |                                |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1848               | 1730                        | 1847       |            |                          |                    |                                |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1232               | 1608                        | 1760       |            |                          |                    |                                |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1315               | 1417                        | 1384       |            |                          |                    |                                |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                             |            |            |                          |                    |                                |
| Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                             |            |            |                          |                    |                                |
| Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                             |            |            |                          |                    |                                |
| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                             |            |            |                          |                    |                                |
| TECHNICIAN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | David Burns        |                             |            |            |                          |                    | <del></del>                    |

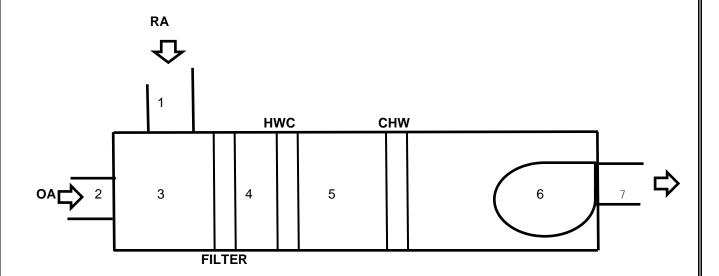
|             |                                                                                                | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |                      |                       |                       |
|-------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------|-----------------------|-----------------------|
|             | lem, MA                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 | Duningt No.          | 00                    | F 40                  |
| 11/13/2020  |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 | Project No.          | . 20-                 | 548                   |
|             | VELG                                                                                           | RID TRAVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RSE DA                                                                          | ATA                  |                       |                       |
| AHU-6       |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      | T1                    |                       |
| Return      |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TRAVERS                                                                         | SE LOCATION:         | Return Intal          | ке                    |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      | •                     | 0.00                  |
| CT.)        | 60                                                                                             | " WIDTH x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30                                                                              | _" DEPTH             | Sq Ft =               | 12.50                 |
| ATA         |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
| @ CL:       | NA In                                                                                          | Wg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 | DESIGN               | N CFM =               | 18000                 |
| ₽ :         | 70 De                                                                                          | eg F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 | ACTUA                | L CFM =               | 13063                 |
| PRESS :     | 29.92 In                                                                                       | Hg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 | 9                    | SCFM=                 | 13070                 |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
|             | ON =                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
|             | 0                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                               | F                    | 0                     | 7                     |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 | 5                    | 0                     | 7                     |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
| 1316        | 1336                                                                                           | 863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 867                                                                             |                      |                       | +                     |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
| -           |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      | +                     | +                     |
| -           |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      | +                     | +                     |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       | +                     |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
| IGS =       | 12                                                                                             | AVERAGE FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PM =                                                                            | 1045                 |                       |                       |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
|             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                      |                       |                       |
| David Burns |                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 |                      |                       |                       |
|             | AHU-6 Return  UND) CT.)  ATA  @ CL: PRESS:  ATIO CORRECTION FACTOR TY  1 1041 1374 1316  IGS = | VELGAHU-6 Return  UND) CT.) 60  ATA  @ CL: NA In PRESS: 29.92 | VELGRID TRAVE   AHU-6   Return     DIAMETER     WIDTH x       WIDTH x       ATA | VELGRID TRAVERSE DAN | VELGRID TRAVERSE DATA | VELGRID TRAVERSE DATA |

| Project:          | J. Michael Ruane                 |           | er         |          |             |            |       |
|-------------------|----------------------------------|-----------|------------|----------|-------------|------------|-------|
| Address:<br>Date: | 58 Federal St., Sa<br>11/13/2020 | iem, IVIA |            |          | Project No. | 20         | 548   |
| Date.             | 11/13/2020                       |           |            |          | Project No. | 20-        | 340   |
|                   |                                  | VELG      | RID TRAVE  | RSE DAT  | Α           |            |       |
| SYSTEM:           | AHU-6                            |           |            |          | NUMBER :    | T1         |       |
|                   | OSA                              |           |            | TRAVERSE | LOCATION:   | OSA Intake |       |
|                   |                                  |           |            |          |             |            |       |
| DUCT SIZE (R      |                                  |           | " DIAMETER |          | D = D = 1   | Sq Ft =    | 0.00  |
| DUCT SIZE (R      | ECT.)                            | 60        | " WIDTH x  | 36"      | DEPTH       | Sq Ft =    | 15.00 |
| AIR DENSITY       | DATA                             |           |            |          |             |            |       |
| STATIC PRES       | S @ CL:                          | NA In\    | Ng.        |          | DESIGN      | CFM =      | 7000  |
| DUCT AIR TEN      | ИР :                             | 70 De     | eg F       |          | ACTUAL      | CFM =      | 7110  |
| BAROMETRIC        | PRESS:                           | 29.92 ln  | Hg.        |          | S           | CFM=       | 7114  |
|                   |                                  | -         |            |          |             |            |       |
| AIR DENSITY       | RATIO CORRECTI                   | ON =      | 1.00       |          | А           | FMS = .167 |       |
| SCFM CORRE        | CTION FACTOR                     |           | 1.00       |          |             |            |       |
| ACTUAL DENS       | SITY                             |           | 0.075      |          |             |            |       |
| TEST HOLE         | 1                                | 2         | 3          | 4        | 5           | 6          | 7     |
| Α                 | 718                              | 763       | 753        | 906      | 1014        |            |       |
| В                 | 363                              | 655       | 831        | 803      | 1010        |            |       |
| С                 | 341                              | 318       | 427        | 435      | 509         |            |       |
| D                 | 131                              | 325       | -307       | -233     | 541         |            |       |
| E                 |                                  |           |            |          |             |            |       |
| F                 |                                  |           |            |          | _           |            |       |
| G                 |                                  |           |            |          | _           |            |       |
| H                 |                                  |           |            |          |             |            |       |
| I                 |                                  |           |            |          |             |            |       |
| NO. OF READI      | INGS =                           | 20        | AVERAGE FF | PM =     | 474         |            |       |
| J                 |                                  |           |            |          | T           |            |       |
| K                 |                                  |           |            |          | 1           |            |       |
| L                 |                                  |           |            |          |             |            |       |
| М                 |                                  |           |            |          |             |            |       |
| N                 |                                  |           |            |          |             |            |       |
| 0                 |                                  |           |            |          |             |            |       |
| Р                 |                                  |           |            |          |             |            |       |
| Q                 |                                  |           |            |          |             |            |       |
| R                 |                                  |           |            |          |             |            |       |
| TECHNICIAN:       | David Burns                      |           |            |          |             |            |       |

| Project:       | J. Michael Ruane   | Judicial Cente | er           |              |                 |               |                                                  |
|----------------|--------------------|----------------|--------------|--------------|-----------------|---------------|--------------------------------------------------|
| Address:       | 58 Federal St., Sa | ılem, MA       |              |              |                 |               |                                                  |
| Date:          | 11/13/2020         |                |              |              | Project No.     | 20-5          | 548                                              |
|                |                    |                |              |              |                 |               |                                                  |
|                |                    | VELG           | RID TRAVE    |              |                 |               |                                                  |
| SYSTEM:        | F-21               |                |              | TRAVERSE     |                 | <u>T1</u>     |                                                  |
|                |                    |                |              | TRAVERSE     | LOCATION:       | Mech 2250     |                                                  |
| DUCT SIZE (RO  | OUND)              |                | " DIAMETER   | •            |                 | Sq Ft =       | 0.00                                             |
| DUCT SIZE (RI  |                    |                | " WIDTH x    |              | DEPTH           | Sq Ft =       | 12.50                                            |
| 2001 O.Z. (11. |                    |                | WIDTITA      |              | <i>DEI</i> 1111 | <b>0</b> 411- | 12.00                                            |
| AIR DENSITY [  | DATA               |                |              |              |                 |               |                                                  |
| STATIC PRESS   | S @ CL:            | NA In\         | Ng.          |              | DESIGN          | CFM =         | 20000                                            |
| DUCT AIR TEM   | 1P :               | 70 De          | g F          |              | ACTUAL          | CFM =         | 2713                                             |
| BAROMETRIC     | PRESS:             | 29.92 In       | Hg.          |              | S               | CFM=          | 2714                                             |
| AIR DENSITY F  | RATIO CORRECT      | ION –          | 1.00         |              | ΔΙ              | FMS = 1.081   |                                                  |
|                | CTION FACTOR       | 101 <b>1</b> = | 1.00         |              | A               | 1.001         |                                                  |
| ACTUAL DENS    |                    |                | 0.075        |              |                 |               |                                                  |
| TEST HOLE      | 1                  | 2              | 3            | 4            | 5               | 6             | 7                                                |
| A              | 521                | 467            | 508          | 615          | Ī               | Ī             |                                                  |
| В              | 361                | 439            | 237          | 245          |                 |               |                                                  |
| С              | -231               | -174           | -206         | -179         |                 |               |                                                  |
| D              | -231               | -174           | -200         | -173         |                 |               |                                                  |
| E              |                    |                |              |              |                 |               |                                                  |
| F              |                    |                |              |              |                 |               |                                                  |
| G              |                    |                |              |              |                 |               |                                                  |
| Н              |                    |                |              |              |                 |               |                                                  |
| 1              |                    |                |              |              |                 |               |                                                  |
|                |                    |                |              |              |                 |               |                                                  |
| NO. OF READI   | NGS =              | 12             | AVERAGE FF   | PM =         | 217             |               |                                                  |
|                | -                  |                |              |              | 1               | 1             |                                                  |
| J              |                    |                |              |              |                 |               |                                                  |
| K              |                    |                |              |              |                 |               | <u> </u>                                         |
| L              |                    |                |              |              |                 |               | <u> </u>                                         |
| M              |                    |                |              |              |                 |               | <del>                                     </del> |
| N              |                    |                |              |              |                 |               | <u> </u>                                         |
| 0              |                    |                |              |              |                 |               |                                                  |
| P              |                    |                |              |              |                 |               |                                                  |
| Q              |                    |                |              |              |                 |               |                                                  |
| R              |                    |                |              |              |                 |               |                                                  |
|                |                    |                |              |              | aust = Total Cl | FM            |                                                  |
| TECHNICIAN:    | David Burns        |                | 13063 + 2713 | 3 = 15776 CF | M               |               |                                                  |
|                |                    |                |              |              |                 |               |                                                  |

Address: 58 Federal St., Salem, MA

**Date:** 11/13/2020 **Project No.** 20-548


|                      | FAI              | N DATA SHEET  | 1            |               |  |
|----------------------|------------------|---------------|--------------|---------------|--|
|                      | FAN NO.          | AHU-7         | FAN NO.      | F-22          |  |
| Serves / Location:   | Admin Areas      | Mech 2250     | AHU-7 Return | Mech 2250     |  |
| Manufacturer:        | CARRIER          | -             | GREENHECK    | •             |  |
| Model Number:        | 39MN50C011F722XG | S             | QEI-36-1-150 |               |  |
| Size:                | 50               |               | NL           |               |  |
| Serial Number:       | 4309U23194       |               | 11887859     |               |  |
| MOTOR                | DESIGN           | TESTED        | DESIGN       | TESTED        |  |
| Manufacturer:        | NL               | *1            | NL           | BALDOR        |  |
| Frame Number:        | NL               | *1            | NL           | 254T          |  |
| Horsepower:          | 40               | *1            | 15           | 15            |  |
| Brake Horsepower:    | 31.3             | *1            | 7.1          | NA            |  |
| Safety Factor:       | NL               | 1.15          | NL           | 1.15          |  |
| Volts/Phase:         | 460/3            | 460/3         | 460/3        | 460/3         |  |
| Motor Amperage:      | 52               | 36            | 17.7         | 10.9          |  |
| Motor RPM:           | *1               | 1662          | 1765         | 1798          |  |
| Speeds:              | VFD              | 55.4 Hz       | VFD          | 60 Hz         |  |
| Heater Size:         | NL               | VFD Protected | NL           | VFD Protected |  |
| Heater Amps.:        | NL               | VFD Protected | NL           | VFD Protected |  |
| FAN                  | DESIGN           | TESTED        | DESIGN       | TESTED        |  |
| Supply Air CFM:      | 25000            | 17962         |              |               |  |
| Return Air CFM:      | 18000            | 10747         | 20000        | 19250         |  |
| Exhaust Air CFM:     |                  |               |              |               |  |
| Outside Air CFM:     | 7000             | 7215 *2       |              |               |  |
| Suction Pressure:    | NL               | -1.56         | NL           | -1.28         |  |
| Discharge Pressure:  | NL               | 4.32          | NL           | 0.5           |  |
| Fan Static Pressure: | 5.5"             | NA            | NL           | NA            |  |
| External Pressure:   | NL               | 5.88          | 1.5"         | 1.78          |  |
| RPM                  | DESIGN           | TESTED        | DESIGN       | TESTED        |  |
| Fan RPM:             | NL               | 1119          | NL           | INLINE        |  |
| Motor Drive:         | NL               | 2B5V90        | NL           | 5.7" OD       |  |
| Motor Size/Bore:     | NL               | B2 1/8        | NL           | 1 5/8         |  |
| Fan Drive:           | NL               | 2B5V136       | NL           | INLINE        |  |
| Fan Size/Bore:       | NL               | B1 15/16      | NL           | INLINE        |  |
| Belt Size / Number:  | NL               | 5VX1320 x2    | NL           | BP98x3        |  |
| Shafts C-C:          | NL               | 48"           | NL           | INLINE        |  |
|                      |                  |               |              |               |  |

Comments: \*1 No motor nameplate tag.

Address: 52 Obery St., Plymouth, MA

**Date**: 10/30/2020 **Project No.** 20-547

## **AHU-7 STATIC PROFILE**



| STATIC |
|--------|
| 38"    |
| 41"    |
| 52"    |
| 79"    |
| -1.06" |
| -1.56" |
| +4.32" |
|        |
|        |
|        |
|        |

<sup>\*\*</sup> Pressures measured wiith VAV Boxes at full cooling position.

| -                                                  | J. Michael Ruane   |                               | er         |            |                          |                    |                                |
|----------------------------------------------------|--------------------|-------------------------------|------------|------------|--------------------------|--------------------|--------------------------------|
|                                                    | 58 Federal St., Sa | ılem, MA                      |            |            |                          |                    |                                |
| Date:                                              | 11/13/2020         |                               |            |            | Project No.              | 20-54              | 48                             |
|                                                    |                    | -                             | RAVERSE    | DATA       |                          |                    |                                |
| SYSTEM:                                            | AHU-7              |                               |            | TRAVERSE   | NUMBER :                 | T1                 |                                |
|                                                    | Supply             |                               |            | TRAVERSE I | •                        | Mech 2250          |                                |
| DUCT SIZE (RO                                      | DUND)              | 60                            | " DIAMETER |            | DEPTH                    | Sq Ft =<br>Sq Ft = | 0.00<br>12.50                  |
| AIR DENSITY DESTATIC PRESSENDUCT AIR TEMBAROMETRIC | S @ CL:<br>IP :    | 3.19 In\<br>70 De<br>29.92 In | eg F       |            | DESIGN (<br>ACTUAL<br>SC |                    | 25000<br>17962<br><b>18113</b> |
| AIR DENSITY F                                      | RATIO CORRECT      | ION =                         | 1.01       |            | AF                       | MS = 1.112         |                                |
| SCFM CORREC                                        | CTION FACTOR       |                               | 1.01       |            |                          |                    |                                |
| ACTUAL DENS                                        | ITY                |                               | 0.076      |            |                          |                    |                                |
| TEST HOLE                                          | 1                  | 2                             | 3          | 4          | 5                        | 6                  | 7                              |
| Α                                                  | 1691               | 1788                          | 1603       | 1669       | 1737                     | 1479               | 1981                           |
| В                                                  | 1819               | 1701                          | 1683       | 1789       | 1546                     | 1622               | 1838                           |
| С                                                  | 933                | 1045                          | 1447       | 1246       | 1304                     | 1342               | 1690                           |
| D                                                  | 1296               | 821                           | 345        | 422        | 1179                     | 1152               | 1439                           |
| E                                                  | 796                | 482                           | 381        | 156        | 679                      | 808                | 1275                           |
| F                                                  |                    |                               |            |            |                          |                    |                                |
| G                                                  |                    |                               |            |            |                          |                    |                                |
| Н                                                  |                    |                               |            |            |                          |                    |                                |
| 1                                                  |                    |                               |            |            |                          |                    |                                |
| NO. OF READII                                      |                    |                               | AVERAGE FF | PM =       | 1437                     |                    |                                |
| J                                                  | 2003               | 1863                          | 2100       |            |                          |                    |                                |
| K                                                  | 2170               | 2289                          | 2354       |            |                          |                    |                                |
| L                                                  | 1909               | 1684                          | 2066       |            |                          |                    |                                |
| М                                                  | 1543               | 1666                          | 1769       |            |                          |                    |                                |
| N                                                  | 1281               | 1424                          | 1524       |            |                          |                    |                                |
| 0                                                  |                    |                               |            |            |                          |                    |                                |
| Р                                                  |                    |                               |            |            |                          |                    |                                |
| Q                                                  |                    |                               |            |            |                          |                    |                                |
| R                                                  |                    |                               |            |            |                          |                    |                                |
| TECHNICIAN:                                        | David Burns        |                               |            |            |                          |                    |                                |

| Project:      | J. Michael Ruane      |          | er         |          |             |              |       |  |  |  |
|---------------|-----------------------|----------|------------|----------|-------------|--------------|-------|--|--|--|
| Address:      | 58 Federal St., Sa    | lem, MA  |            |          |             |              |       |  |  |  |
| Date:         | 11/13/2020            |          |            |          | Project No. | 20-          | 548   |  |  |  |
|               | VELGRID TRAVERSE DATA |          |            |          |             |              |       |  |  |  |
| SYSTEM:       | AHU-7                 |          |            | TRAVERS  | E NUMBER:   | T1           |       |  |  |  |
|               | Return                |          |            | TRAVERS  | E LOCATION: | Return Intak | е     |  |  |  |
| DUCT SIZE (R  | OLIND)                |          | " DIAMETER | <b>,</b> |             | Sq Ft =      | 0.00  |  |  |  |
| DUCT SIZE (R  |                       | 60       | " WIDTH x  |          | " DEPTH     | Sq Ft =      | 12.50 |  |  |  |
| DOOT OIZE (IX |                       |          | WIDTITA    |          | DEI III     | 0411-        | 12.00 |  |  |  |
| AIR DENSITY I | r                     |          |            |          |             |              |       |  |  |  |
| STATIC PRES   | ŀ                     | NA In\   |            |          | DESIGN      |              | 18000 |  |  |  |
| DUCT AIR TEN  | ŀ                     | 70 De    | _          |          | ACTUAL      |              | 10750 |  |  |  |
| BAROMETRIC    | PRESS:                | 29.92 In | Hg.        |          | S           | CFM=         | 10756 |  |  |  |
| AIR DENSITY I | RATIO CORRECTI        | ON =     | 1.00       |          |             |              |       |  |  |  |
| SCFM CORRE    | CTION FACTOR          |          | 1.00       |          |             |              |       |  |  |  |
| ACTUAL DENS   |                       |          | 0.075      |          |             |              |       |  |  |  |
| TEST HOLE     | 1                     | 2        | 3          | 4        | 5           | 6            | 7     |  |  |  |
| Α             | 1128                  | 1218     | 1174       | 1053     |             |              |       |  |  |  |
| В             | 858                   | 961      | 843        | 927      |             |              |       |  |  |  |
| С             | 474                   | 502      | 511        | 668      |             |              |       |  |  |  |
| D             |                       |          |            |          |             |              |       |  |  |  |
| E             |                       |          |            |          |             |              |       |  |  |  |
| F             |                       |          |            |          |             |              |       |  |  |  |
| G             |                       |          |            |          |             |              |       |  |  |  |
| Н             |                       |          |            |          |             |              |       |  |  |  |
| I             |                       |          |            |          |             |              |       |  |  |  |
| NO. OF READI  | INGS =                | 12       | AVERAGE FF | PM =     | 860         |              |       |  |  |  |
| J             |                       |          |            |          |             |              |       |  |  |  |
| K             |                       |          |            |          |             |              |       |  |  |  |
| L             |                       |          |            |          |             |              |       |  |  |  |
| М             |                       |          |            |          |             |              |       |  |  |  |
| N             |                       |          |            |          |             |              |       |  |  |  |
| 0             |                       |          |            |          |             |              |       |  |  |  |
| Р             |                       |          |            |          |             |              |       |  |  |  |
| Q             |                       |          |            |          |             |              |       |  |  |  |
| R             |                       |          |            |          |             |              |       |  |  |  |
| TECHNICIAN:   | David Burns           |          |            |          |             |              |       |  |  |  |

| Project:                     | J. Michael Ruane                 |            | er                   |          |             |              |             |
|------------------------------|----------------------------------|------------|----------------------|----------|-------------|--------------|-------------|
| Address:<br>Date:            | 58 Federal St., Sa<br>11/13/2020 | ilem, IVIA |                      |          | Drainat Na  | 20.1         | E 10        |
| Date.                        | 11/13/2020                       |            |                      |          | Project No. | 20-          | 040         |
|                              |                                  | VELG       | RID TRAVE            | RSE DAT  | A           |              |             |
| SYSTEM:                      | AHU-7                            |            |                      | TRAVERSE |             | T1           |             |
|                              | OSA                              |            |                      | TRAVERSE | LOCATION:   | OSA Intake   |             |
| DU 10T 017E (D               | OLIND)                           |            | " DIAMETED           |          |             | 0 5          |             |
| DUCT SIZE (R<br>DUCT SIZE (R |                                  | 60         | " DIAMETER " WIDTH x |          | DEDTU       | Sq Ft =      | 0.00        |
| DUCT SIZE (R                 | EC1.)                            | 60         | WIDIRX               |          | DEPTH       | Sq Ft =      | 15.00       |
| AIR DENSITY                  | DATA                             |            |                      |          |             |              |             |
| STATIC PRES                  | S @ CL:                          | NA In\     | Ng.                  |          | DESIGN      | CFM =        | 7000        |
| DUCT AIR TEN                 | ИР :                             | 70 De      | eg F                 |          | ACTUAL      | CFM =        | 7215        |
| BAROMETRIC                   | PRESS:                           | 29.92 In   | Hg.                  |          | S           | CFM=         | 7219        |
| AID DENCITY                  |                                  | ION        | 1.00                 |          | Λ.Ι         | FMS = .417   |             |
|                              | RATIO CORRECTI<br>CTION FACTOR   | ION =      | 1.00<br>1.00         |          | Ai          | FIVIS = .417 |             |
| ACTUAL DENS                  |                                  |            | 0.075                |          |             |              |             |
| TEST HOLE                    | 1                                | 2          | 3                    | 4        | 5           | 6            | 7           |
| A                            | 272                              | 461        | 438                  | 874      | 883         |              | <del></del> |
| В                            | 655                              | 384        | 518                  | 936      | 855         |              |             |
| C                            | 478                              | 383        | 622                  | 1001     | 672         |              |             |
| D                            | 580                              | -107       | -164                 | -90      | -36         |              |             |
| E                            |                                  |            |                      |          |             |              |             |
| F                            |                                  |            |                      |          |             |              |             |
| G                            |                                  |            |                      |          |             |              |             |
| Н                            |                                  |            |                      |          |             |              |             |
| 1                            |                                  |            |                      |          |             |              |             |
|                              |                                  |            |                      |          |             |              |             |
| NO. OF READI                 | INGS =                           | 20         | AVERAGE FF           | ZIVI =   | 481         |              |             |
| J                            |                                  |            |                      |          |             |              |             |
| K                            |                                  |            |                      |          |             |              |             |
| L                            |                                  |            |                      |          |             |              |             |
| M                            |                                  |            |                      |          |             |              |             |
| N                            |                                  |            |                      |          |             |              |             |
| 0                            |                                  |            |                      |          |             |              |             |
| Р                            |                                  |            |                      |          |             |              |             |
| Q                            |                                  |            |                      |          |             |              |             |
| R                            |                                  |            |                      |          |             |              |             |
| TECHNICIAN:                  | David Burns                      |            |                      |          |             |              |             |

| A al alma a a a               |                    |          | er                           |         |                         |              |       |
|-------------------------------|--------------------|----------|------------------------------|---------|-------------------------|--------------|-------|
|                               | 58 Federal St., Sa | ılem, MA |                              |         |                         |              |       |
| Date:                         | 11/13/2020         |          |                              |         | Project No              | . 20-5       | 548   |
|                               |                    | VELG     | RID TRAVE                    | ERSE DA | ATA                     |              |       |
| SYSTEM:                       | F-22               |          |                              | TRAVERS | SE NUMBER:              | T1           |       |
|                               |                    |          |                              | TRAVER  | SE LOCATION:            | Mech 2250    | _     |
| DUCT SIZE (RC                 | DUND)              |          | " DIAMETER                   | 2       |                         | Sq Ft =      | 0.00  |
| DUCT SIZE (RE                 |                    | 60       | " WIDTH x                    | 30      | _" DEPTH                | Sq Ft =      | 12.50 |
|                               |                    |          |                              |         |                         |              |       |
| AIR DENSITY D<br>STATIC PRESS | ı                  | NA In    | \\/ a                        |         | DECICA                  | N CFM =      | 20000 |
| DUCT AIR TEM                  |                    | 70 D     | •                            |         |                         | L CFM =      | 8500  |
| BAROMETRIC I                  |                    | 29.92 In | _                            |         |                         | SCFM=        | 8505  |
| DAI(OIVIL I I(IO I            | ILLOO .            | 29.92    | rig.                         |         | `                       | JOI IVI-     | 0303  |
| AIR DENSITY R                 | ATIO CORRECT       | ION =    | 1.00                         |         | ,                       | AFMS = 1.081 |       |
|                               | CTION FACTOR       |          | 1.00                         |         |                         |              |       |
| ACTUAL DENS                   | ITY                |          | 0.075                        |         |                         |              |       |
| TEST HOLE                     | 1                  | 2        | 3                            | 4       | 5                       | 6            | 7     |
| Α                             | 257                | 1274     | 1922                         | 1578    |                         |              |       |
| В                             | 512                | 674      | 693                          | 724     |                         |              |       |
| С                             | 184                | 115      | 109                          | 116     |                         |              |       |
| D                             |                    |          |                              |         |                         |              |       |
| E                             |                    |          |                              |         |                         |              |       |
| F                             |                    |          |                              |         |                         |              |       |
| G                             |                    |          |                              |         |                         |              |       |
| Н                             |                    |          |                              |         |                         |              |       |
| I                             |                    |          |                              |         |                         |              |       |
| NO. OF READIN                 | NGS =              | 12       | AVERAGE FF                   | PM =    | 680                     |              |       |
| J                             |                    |          |                              |         |                         |              |       |
| K                             |                    |          |                              |         |                         |              |       |
| L                             |                    |          |                              |         |                         |              |       |
| М                             |                    |          |                              |         |                         |              |       |
| N                             |                    |          |                              |         |                         |              |       |
| 0                             |                    |          |                              |         |                         |              |       |
| Р                             |                    |          |                              |         |                         |              |       |
| Q                             |                    |          |                              |         |                         |              |       |
| R                             |                    |          |                              |         |                         |              |       |
| TECHNICIAN:                   | David Burns        |          | AHU-7 Return<br>10750 + 8500 |         | xhaust = Total (<br>CFM | CFM          |       |

Address: 58 Federal St., Salem, MA

**Date:** 11/13/2020 **Project No.** 20-548

|                      | FAI              | N DATA SHEET  |              |               |
|----------------------|------------------|---------------|--------------|---------------|
|                      | FAN NO.          | AHU-8         | FAN NO.      | F-23          |
| Serves / Location:   | Admin            | Mech 2250     | AHU-8 Return | Mech 2250     |
| Manufacturer:        | CARRIER          |               | GREENHECK    |               |
| Model Number:        | 39MN50C011F622XG | S             | QEI-36-1-150 |               |
| Size:                | 50               |               | NL           |               |
| Serial Number:       | 4309U23191       |               | 11887860     |               |
| MOTOR                | DESIGN           | TESTED        | DESIGN       | TESTED        |
| Manufacturer:        | NL               | *1            | NL           | BALDOR        |
| Frame Number:        | NL               | *1            | NL           | 254T          |
| Horsepower:          | 40               | *1            | 15           | 15            |
| Brake Horsepower:    | 31.3             | *1            | 7.1          | NA            |
| Safety Factor:       | NL               | 1.15          | NL           | 1.15          |
| Volts/Phase:         | 460/3            | 460/3         | 460/3        | 460/3         |
| Motor Amperage:      | 52               | 36.7          | 17.7         | 11.4          |
| Motor RPM:           | *1               | 1722          | 1765         | 1800          |
| Speeds:              | VFD              | 57.4 Hz       | VFD          | 60 Hz         |
| Heater Size:         | NL               | VFD Protected | NL           | VFD Protected |
| Heater Amps.:        | NL               | VFD Protected | NL           | VFD Protected |
| FAN                  | DESIGN           | TESTED        | DESIGN       | TESTED        |
| Supply Air CFM:      | 25000            | 19412         |              |               |
| Return Air CFM:      | 18000            | 12242         | 20000        | 17999         |
| Exhaust Air CFM:     |                  |               |              |               |
| Outside Air CFM:     | 7000             | 7170 *2       |              |               |
| Suction Pressure:    | NL               | -0.99         | NL           | -1.21         |
| Discharge Pressure:  | NL               | 4.94          | NL           | 0.31          |
| Fan Static Pressure: | 5.5"             | NA            | NL           | NA            |
| External Pressure:   | NL               | 5.88          | 1.5"         | 1.52          |
| RPM                  | DESIGN           | TESTED        | DESIGN       | TESTED        |
| Fan RPM:             | NL               | 1162          | NL           | INLINE        |
| Motor Drive:         | NL               | 2B5V136       | NL           | 5.7" OD       |
| Motor Size/Bore:     | NL               | B2 1/8        | NL           | 1 5/8         |
| Fan Drive:           | NL               | 2B5V136       | NL           | INLINE        |
| Fan Size/Bore:       | NL               | B1 15/16      | NL           | INLINE        |
| Belt Size / Number:  | NL               | 5VX1320 x2    | NL           | BP98x3        |
| Shafts C-C:          | NL               | 48"           | NL           | INLINE        |
| Turns Open:          | NL               | FIXED         | NL           | FIXED         |

Comments: \*1 No motor nameplate tag.

| -                                                             | J. Michael Ruane   |                              | er         |            |                          |                    |                                |
|---------------------------------------------------------------|--------------------|------------------------------|------------|------------|--------------------------|--------------------|--------------------------------|
|                                                               | 58 Federal St., Sa | ılem, MA                     |            |            |                          |                    |                                |
| Date:                                                         | 11/13/2020         |                              |            |            | Project No.              | 20-5               | 48                             |
|                                                               |                    | 7                            | RAVERSE    | DATA       |                          |                    |                                |
| SYSTEM:                                                       | AHU-8              |                              |            | TRAVERSE I | NUMBER :                 | T1                 |                                |
|                                                               | Supply             |                              |            | TRAVERSE I | •                        | Mech 2250          |                                |
| DUCT SIZE (ROUND) " DIAM<br>DUCT SIZE (RECT.) 60 " WIDT       |                    |                              |            |            | DEPTH                    | Sq Ft =<br>Sq Ft = | 0.00<br>12.50                  |
| AIR DENSITY D<br>STATIC PRESS<br>DUCT AIR TEM<br>BAROMETRIC I | @ CL:<br>P :       | 2.8 ln\<br>70 De<br>29.92 ln | eg F       |            | DESIGN (<br>ACTUAL<br>SC |                    | 25000<br>19412<br><b>19557</b> |
| AIR DENSITY R                                                 | ATIO CORRECT       | ION =                        | 1.01       |            | AF                       | MS = 1.013         |                                |
| SCFM CORREC                                                   | CTION FACTOR       |                              | 1.01       |            |                          |                    |                                |
| ACTUAL DENSI                                                  | ITY                |                              | 0.076      |            |                          |                    |                                |
| TEST HOLE                                                     | 1                  | 2                            | 3          | 4          | 5                        | 6                  | 7                              |
| Α                                                             | 3949               | 3573                         | 4008       | 1569       | 0                        | 4028               | 4015                           |
| В                                                             | 2920               | 3521                         | 3043       | 3335       | 3417                     | 3336               | 3563                           |
| С                                                             | 384                | 1590                         | 1148       | 1712       | 1507                     | 1212               | 1454                           |
| D                                                             | 0                  | 1036                         | 0          | 584        | 646                      | 747                | 0                              |
| E                                                             | 0                  | 0                            | 0          | 0          | 0                        | 482                | 414                            |
| F                                                             |                    |                              |            |            |                          |                    |                                |
| G                                                             |                    |                              |            |            |                          |                    |                                |
| Н                                                             |                    |                              |            |            |                          |                    |                                |
| 1                                                             |                    |                              |            |            |                          |                    |                                |
| NO. OF READIN                                                 |                    |                              | AVERAGE FF | PM =       | 1553                     |                    |                                |
| J                                                             | 4002               | 3980                         | 3897       |            |                          |                    |                                |
| K                                                             | 3075               | 2016                         | 2103       |            |                          |                    |                                |
| L                                                             | 897                | 0                            | 0          |            |                          |                    |                                |
| M                                                             | 462                | 0                            | 0          |            |                          |                    |                                |
| N                                                             | 0                  | 0                            | 0          |            |                          |                    |                                |
| 0                                                             |                    |                              |            |            |                          |                    |                                |
| Р                                                             | <u> </u>           |                              |            |            |                          |                    |                                |
| Q                                                             |                    |                              |            |            |                          |                    |                                |
| R                                                             |                    |                              |            |            |                          |                    |                                |
| TECHNICIAN:                                                   | David Burns        |                              |            |            |                          |                    |                                |

| Project:     | J. Michael Ruane   |             | er         |          |             |              |       |
|--------------|--------------------|-------------|------------|----------|-------------|--------------|-------|
| Address:     | 58 Federal St., Sa | lem, MA     |            |          |             |              |       |
| Date:        | 11/13/2020         |             |            |          | Project No. | 20-          | 548   |
|              |                    | VELG        | RID TRAVE  | RSE DA   | ТА          |              |       |
| SYSTEM:      | AHU-8              |             |            | TRAVERSE | E NUMBER:   | T1           |       |
|              | Return             |             |            | TRAVERS  | E LOCATION: | Return Intak | е     |
| DUCT SIZE (R | OUND)              |             | " DIAMETER | •        |             | Sq Ft =      | 0.00  |
| DUCT SIZE (R | •                  | 60          | " WIDTH x  |          | " DEPTH     | Sq Ft =      | 12.50 |
| ,            | ,                  |             |            |          |             | •            |       |
| AIR DENSITY  |                    | <del></del> |            |          |             |              |       |
| STATIC PRES  |                    | NA In       | •          |          | DESIGN      |              | 18000 |
| DUCT AIR TEN |                    | 70 De       | -          |          | ACTUAL      |              | 12238 |
| BAROMETRIC   | PRESS:             | 29.92 In    | нg.        |          | 51          | CFM=         | 12245 |
| AIR DENSITY  | RATIO CORRECT      | ION =       | 1.00       |          |             |              |       |
| SCFM CORRE   | CTION FACTOR       |             | 1.00       |          |             |              |       |
| ACTUAL DENS  | SITY               |             | 0.075      |          |             |              |       |
| TEST HOLE    | 1                  | 2           | 3          | 4        | 5           | 6            | 7     |
| Α            | 1867               | 1952        | 1558       | 1483     |             |              |       |
| В            | 166                | 257         | 316        | 1492     |             |              |       |
| С            | 876                | 622         | 479        | 684      |             |              |       |
| D            |                    |             |            |          |             |              |       |
| E            |                    |             |            |          |             |              |       |
| F            |                    |             |            |          |             |              |       |
| G            |                    |             |            |          |             |              |       |
| Н            |                    |             |            |          |             |              | 1     |
| I            |                    |             |            |          |             |              |       |
| NO. OF READ  | INGS =             | 12          | AVERAGE FF | PM =     | 979         |              |       |
| J            |                    |             |            |          |             | 1            |       |
| K            |                    |             |            |          |             |              |       |
| L            |                    |             |            |          |             |              |       |
| М            |                    |             |            |          |             |              |       |
| N            |                    |             |            |          |             |              | 1 1   |
| 0            |                    |             |            |          |             |              |       |
| Р            |                    |             |            |          |             |              |       |
| Q            |                    |             |            |          |             |              |       |
| R            |                    |             |            |          |             |              |       |
| TECHNICIAN:  | David Burns        |             |            |          |             |              |       |

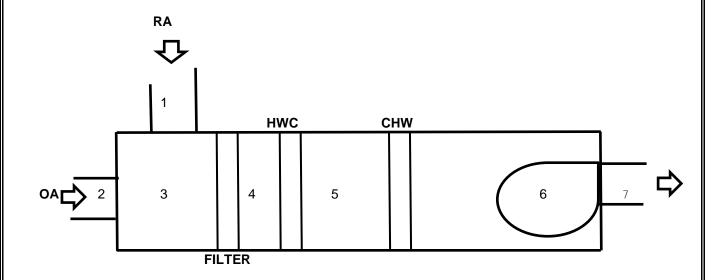
| Project:                   | J. Michael Ruane      | Judicial Cente | er         |          |             |            |       |  |
|----------------------------|-----------------------|----------------|------------|----------|-------------|------------|-------|--|
| Address:                   | 58 Federal St., Sa    | alem, MA       |            |          |             |            |       |  |
| Date:                      | 11/13/2020            |                |            |          | Project No. | 20-5       | 548   |  |
|                            | VELGRID TRAVERSE DATA |                |            |          |             |            |       |  |
| SYSTEM:                    | AHU-8                 |                |            | TRAVERSE | NUMBER :    | T1         |       |  |
|                            | OSA                   |                |            | TRAVERSE | LOCATION:   | OSA Intake |       |  |
| DUCT SIZE (ROUND) " DIAMET |                       |                |            | •        |             | Sq Ft =    | 0.00  |  |
| DUCT SIZE (R               |                       | 60             | " WIDTH x  |          | DEPTH       | Sq Ft =    | 15.00 |  |
| BOOT GIZE (I               | (201.)                |                | WIDTITA    |          | DEI III     | 0411-      | 10.00 |  |
| AIR DENSITY                |                       |                |            |          |             |            |       |  |
| STATIC PRES                |                       | NA In          | •          |          | DESIGN      |            | 7000  |  |
| DUCT AIR TE                |                       | 70 De          | -          |          | ACTUAL      |            | 7170  |  |
| BAROMETRIC                 | PRESS :               | 29.92 In       | Hg.        |          | S           | CFM=       | 7174  |  |
| AIR DENSITY                | RATIO CORRECT         | ION =          | 1.00       |          | A           | FMS = .175 |       |  |
| SCFM CORRE                 | ECTION FACTOR         |                | 1.00       |          |             |            |       |  |
| ACTUAL DEN                 |                       |                | 0.075      |          |             |            |       |  |
| TEST HOLE                  | 1                     | 2              | 3          | 4        | 5           | 6          | 7     |  |
| Α                          | 687                   | 713            | 864        | 923      | 778         |            |       |  |
| В                          | 896                   | 1034           | 314        | 328      | 626         |            |       |  |
| С                          | 686                   | 969            | 577        | 549      | 603         |            |       |  |
| D                          | -334                  | -236           | -249       | -194     | 26          |            |       |  |
| E                          |                       |                |            |          |             |            |       |  |
| F                          |                       |                |            |          |             |            |       |  |
| G                          |                       |                |            |          |             |            |       |  |
| Н                          |                       |                |            |          |             |            |       |  |
| 1                          |                       |                |            |          |             |            |       |  |
| NO. OF READ                | INGS =                | 20             | AVERAGE FF | PM =     | 478         |            |       |  |
| J                          |                       |                |            |          |             |            |       |  |
| K                          |                       |                |            |          |             |            |       |  |
| L                          |                       |                |            |          |             |            |       |  |
| M                          |                       |                |            |          |             |            |       |  |
| N                          |                       |                |            |          |             |            |       |  |
| 0                          |                       |                |            |          |             |            |       |  |
| Р                          |                       |                |            |          |             |            |       |  |
| Q                          |                       |                |            |          |             |            |       |  |
| R                          |                       |                |            |          |             |            |       |  |
| TECHNICIAN:                | David Burns           |                |            |          |             |            |       |  |

| Project:      | J. Michael Ruane   | Judicial Cente | er            |               |                 |             |             |
|---------------|--------------------|----------------|---------------|---------------|-----------------|-------------|-------------|
| Address:      | 58 Federal St., Sa | alem, MA       |               |               |                 |             |             |
| Date:         | 11/13/2020         |                |               |               | Project No.     | 20-5        | 548         |
|               |                    | VELG           | RID TRAVE     | RSE DAT       | Δ               |             |             |
| SYSTEM:       | F-23               | VLLG           | NID INAVL     | TRAVERSE      |                 | T1          |             |
| STSTEW.       | F-23               |                |               | TRAVERSE      |                 | Mech 2250   |             |
|               |                    |                |               | INAVENSE      | LOCATION.       | MECH ZZJU   |             |
| DUCT SIZE (R  | OLIND)             |                | " DIAMETER    | )             |                 | Sq Ft =     | 0.00        |
| DUCT SIZE (RI |                    |                | " WIDTH x     |               | DEPTH           | Sq Ft =     | 12.50       |
| DUCT SIZE (KI | EG1.)              |                | WIDTHX        |               | DEFIII          | Sq Ft =     | 12.50       |
| AIR DENSITY [ | DATA               |                |               |               |                 |             |             |
| STATIC PRESS  |                    | NA In\         | •             |               | DESIGN          |             | 20000       |
| DUCT AIR TEN  | /IP :              | 70 De          | g F           |               | ACTUAL          | CFM =       | 5762        |
| BAROMETRIC    | PRESS:             | 29.92 In       | Hg.           |               | S               | CFM=        | 5765        |
| AIR DENSITY I | RATIO CORRECT      | ION =          | 1.00          |               | AF              | -MS = 1.259 |             |
|               | CTION FACTOR       |                | 1.00          |               |                 |             |             |
| ACTUAL DENS   |                    |                | 0.075         |               |                 |             |             |
| TEST HOLE     | 1                  | 2              | 3             | 4             | 5               | 6           | 7           |
| Α             | 892                | 953            | 959           | 1009          |                 |             |             |
| В             | 584                | 638            | 696           | 723           |                 |             |             |
| С             | -211               | -309           | -174          | -225          |                 |             |             |
| D             |                    |                |               |               |                 |             |             |
| Е             |                    |                |               |               |                 |             |             |
| F             |                    |                |               |               |                 |             |             |
| G             |                    |                |               |               |                 |             |             |
| Н             |                    |                |               |               |                 |             |             |
| 1             |                    |                |               |               |                 |             |             |
| NO. OF READI  | NGS =              | 12             | AVERAGE FF    | PM =          | 461             |             |             |
| J             |                    |                |               |               | <u> </u>        |             | <del></del> |
| K             |                    |                |               |               |                 |             |             |
| L             |                    |                |               |               |                 |             |             |
| M             |                    |                |               |               |                 |             |             |
| N             |                    |                |               |               |                 |             |             |
| 0             |                    |                |               |               |                 |             |             |
| Р             |                    |                |               |               |                 |             |             |
| Q             |                    |                |               |               |                 |             |             |
| R             |                    |                |               |               |                 |             |             |
|               |                    |                | AHI I-8 Retur | n + F-23 Fvha | aust = Total Cl | <u> </u>    |             |
| TECHNICIAN:   | David Burns        |                | 12237 + 5762  |               |                 | 141         |             |
|               |                    |                |               |               |                 |             |             |

Address: 58 Federal St., Salem, MA

**Date:** 11/13/2020 **Project No.** 20-548

|                      | FA!              | N DATA SHEET  |              |               |
|----------------------|------------------|---------------|--------------|---------------|
|                      | FAN NO.          | AHU-9         | FAN NO.      | . F-18        |
| Serves / Location:   | Admin            | Mech 4600     | AHU-9 Return | Mech 4600     |
| Manufacturer:        | CARRIER          |               | GREENHECK    |               |
| Model Number:        | 39MN61C011F833XG | iS            |              |               |
| Size:                | 50               |               | NL           |               |
| Serial Number:       | 4309U23198       |               |              |               |
| MOTOR                | DESIGN           | TESTED        | DESIGN       | TESTED        |
| Manufacturer:        | NL               | GE            | NL           | BALDOR        |
| Frame Number:        | NL               | 326T          | NL           | 256T          |
| Horsepower:          | 50               | 50            | 20           | 20            |
| Brake Horsepower:    | 34.8             | NA            | 12           | NA            |
| Safety Factor:       | NL               | 1.15          | NL           | 1.15          |
| Volts/Phase:         | 460/3            | 460/3         | 460/3        | 460/3         |
| Motor Amperage:      | 57.9             | 36.8          | 23.5         | 15.4          |
| Motor RPM:           | 1760             | 1798          | 1765         | 1800          |
| Speeds:              | VFD              | 60 Hz         | VFD          | 60 Hz         |
| Heater Size:         | NL               | VFD Protected | NL           | VFD Protected |
| Heater Amps.:        | NL               | VFD Protected | NL           | VFD Protected |
| FAN                  | DESIGN           | TESTED        | DESIGN       | TESTED        |
| Supply Air CFM:      | 29000            | 22225         |              |               |
| Return Air CFM:      | 22200            | 15433         | 26000        | 18919         |
| Exhaust Air CFM:     |                  |               |              |               |
| Outside Air CFM:     | 6800             | 6795          |              |               |
| Suction Pressure:    | NL               | -3.12         | NL           | -1.26         |
| Discharge Pressure:  | NL               | 2.67          | NL           | 1.05          |
| Fan Static Pressure: | 5.2"             | NA            | NL           | NA            |
| External Pressure:   | NL               | 5.79          | 1.5"         | 2.31          |
| RPM                  | DESIGN           | TESTED        | DESIGN       | TESTED        |
| Fan RPM:             | 989              | 993           | NL           | INLINE        |
| Motor Drive:         | NL               | 2B5V90        | NL           | 6" OD         |
| Motor Size/Bore:     | NL               | B2 1/8        | NL           | 1 5/8         |
| Fan Drive:           | NL               | 2B5V160       | NL           | INLINE        |
| Fan Size/Bore:       | NL               | B2 3/16       | NL           | INLINE        |
| Belt Size / Number:  | NL               | 5VX1400x2     | NL           | BX106x3       |
| Shafts C-C:          | NL               | 50"           | NL           | INLINE        |
|                      |                  | •             |              | <u> </u>      |


Comments: \*1 AFMS not reading airflow properly or tracking changes in flow.

Project: Plymouth Trial Court

Address: 52 Obery St., Plymouth, MA

**Date**: 10/30/2020 **Project No.** 20-547

## **AHU-7 STATIC PROFILE**



| LOCATION | STATIC |
|----------|--------|
| 1        | 38"    |
| 2        | 41"    |
| 3        | 52"    |
| 4        | 79"    |
| 5        | -1.06" |
| 6        | -1.56" |
| 7        | +4.32" |
|          |        |
|          |        |
|          |        |

<sup>\*\*</sup> Pressures measured wiith VAV Boxes at full cooling position.

| Project:                              | J. Michael Ruane   |          | er         |          |             |             |           |
|---------------------------------------|--------------------|----------|------------|----------|-------------|-------------|-----------|
| Address:                              | 58 Federal St., Sa | ılem, MA |            |          |             |             |           |
| Date:                                 | 11/13/2020         |          |            |          | Project No. | 20-54       | 48        |
|                                       |                    | -        | RAVERSE    | DATA     |             |             |           |
| SYSTEM:                               | AHU-9              |          |            | TRAVERSE | NUMBER :    | T1          |           |
| · · · · · · · · · · · · · · · · · · · | Supply             |          |            | TRAVERSE |             | Supply Duct |           |
|                                       | - C. P. P. P.      |          |            |          |             |             |           |
| DUCT SIZE (R                          | OUND)              |          | " DIAMETER | <b>?</b> |             | Sq Ft =     | 0.00      |
| DUCT SIZE (RI                         |                    | 60       | " WIDTH x  |          | DEPTH       | Sq Ft =     | 12.50     |
| (                                     | ,                  |          |            |          |             | 94.1        | . = . 0 0 |
| AIR DENSITY I                         | DATA               |          |            |          |             |             |           |
| STATIC PRES                           | S @ CL:            | 2.67 ln\ | Ng.        |          | DESIGN      | CFM =       | 29000     |
| DUCT AIR TEN                          | /IP :              | 70 De    | eg F       |          | ACTUAL      | CFM =       | 22225     |
| BAROMETRIC                            | PRESS:             | 29.92 In | Hg.        |          | SC          | CFM=        | 22384     |
|                                       |                    |          |            |          |             |             |           |
| AIR DENSITY I                         | RATIO CORRECT      | ION =    | 1.01       |          |             |             |           |
| SCFM CORRE                            | CTION FACTOR       |          | 1.01       |          |             |             |           |
| ACTUAL DENS                           | SITY               |          | 0.076      |          |             |             |           |
| TEST HOLE                             | 1                  | 2        | 3          | 4        | 5           | 6           | 7         |
| Α                                     | 1063               | 1642     | 1778       | 1825     | 1927        | 1919        | 2013      |
| В                                     | 1094               | 1681     | 1794       | 1791     | 1852        | 1927        | 1979      |
| С                                     | 916                | 1655     | 1815       | 1655     | 1901        | 1944        | 1984      |
| D                                     | 884                | 1637     | 1823       | 1688     | 1871        | 1951        | 1986      |
| E                                     | 787                | 1008     | 1476       | 1443     | 1823        | 1777        | 1871      |
| F                                     |                    |          |            |          |             |             |           |
| G                                     |                    |          |            |          |             |             |           |
| Н                                     |                    |          |            |          |             |             |           |
| I                                     |                    |          |            |          |             |             |           |
|                                       |                    |          |            |          |             |             |           |
| NO. OF READI                          | NGS =              | 50       | AVERAGE FF | PM =     | 1778        |             |           |
| J                                     | 2101               | 2263     | 2476       |          |             |             |           |
| K                                     | 1868               | 2186     | 2389       |          |             |             |           |
| L                                     | 1873               | 2138     | 2065       |          |             |             |           |
| M                                     | 2024               | 2124     | 1841       |          |             |             |           |
| N                                     | 2021               | 2135     | 1204       |          |             |             |           |
| 0                                     |                    |          |            |          |             |             |           |
| P                                     |                    |          |            |          |             |             |           |
| Q                                     |                    |          |            |          |             |             |           |
| R                                     |                    |          |            |          |             |             |           |
|                                       |                    |          |            |          |             |             |           |
| TECHNICIAN:                           | David Burns        |          |            |          |             |             |           |
|                                       |                    |          |            |          |             |             |           |
|                                       |                    |          |            |          |             |             |           |

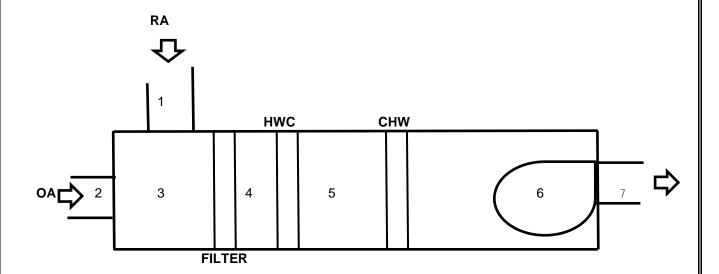
| •             | J. Michael Ruane      | Judicial Cent | er         |          |             |               |                       |  |
|---------------|-----------------------|---------------|------------|----------|-------------|---------------|-----------------------|--|
|               | 58 Federal St., Sa    | lem, MA       |            |          |             |               |                       |  |
| Date:         | 11/13/2020            |               |            |          | Project No. | 20-5          | 48                    |  |
|               | VELGRID TRAVERSE DATA |               |            |          |             |               |                       |  |
| SYSTEM:       | AHU-9                 |               |            | TRAVERSE | NUMBER :    | T1            |                       |  |
|               | Return                |               |            | TRAVERSE | LOCATION:   | Return Intake | Э                     |  |
| DUCT SIZE (RC | DUND)                 | " DIAMETER    | ·          |          | Sq Ft =     | 0.00          |                       |  |
| DUCT SIZE (RE |                       | 48            | " WIDTH x  |          | DEPTH       | Sq Ft =       | 14.67                 |  |
|               | •                     |               |            |          |             | -             |                       |  |
| AIR DENSITY D | r                     |               | 107        |          | DEGION      | 0514          | 22222                 |  |
| STATIC PRESS  |                       | NA In         | •          |          | DESIGN      |               | 22200                 |  |
| BAROMETRIC I  | ŀ                     | 70 De         | _          |          | ACTUAL      | CFM=<br>CFM=  | 15433<br><b>15442</b> |  |
| DARONETRIC    | PRESS.                | 29.92 In      | пg.        |          | 50          | ⊃FIVI=        | 15442                 |  |
| AIR DENSITY R | ATIO CORRECTI         | ON =          | 1.00       |          |             |               |                       |  |
| SCFM CORREC   | CTION FACTOR          |               | 1.00       |          |             |               |                       |  |
| ACTUAL DENS   | ITY                   |               | 0.075      |          |             |               |                       |  |
| TEST HOLE     | 1                     | 2             | 3          | 4        | 5           | 6             | 7                     |  |
| Α             | 996                   | 1031          | 1074       | 1281     | 1245        | 1064          |                       |  |
| В             | 884                   | 1024          | 1111       | 1224     | 1256        | 981           |                       |  |
| С             | 868                   | 969           | 1115       | 1178     | 1253        | 859           |                       |  |
| D             | 885                   | 906           | 1038       | 1137     | 1197        | 667           |                       |  |
| E             |                       |               |            |          |             |               |                       |  |
| F             |                       |               |            |          |             |               |                       |  |
| G             |                       |               |            |          |             |               |                       |  |
| Н             |                       |               |            |          |             |               |                       |  |
| 1             |                       |               |            |          |             |               |                       |  |
| NO. OF READIN | NGS =                 | 24            | AVERAGE FF | PM =     | 1052        |               |                       |  |
| J             |                       |               |            |          | T           |               |                       |  |
| K             |                       |               |            |          |             |               |                       |  |
| L             |                       |               |            |          |             |               |                       |  |
| M             |                       |               |            |          |             |               |                       |  |
| N             |                       |               |            |          |             |               |                       |  |
| 0             |                       |               |            |          |             |               |                       |  |
| Р             |                       |               |            |          |             |               |                       |  |
| Q             |                       |               |            |          |             |               |                       |  |
| R             |                       |               |            |          | 1           |               |                       |  |
|               |                       |               |            |          |             |               |                       |  |
| TECHNICIAN:   | David Burns           |               | -          |          |             |               |                       |  |

| Project:      | J. Michael Ruane   | Judicial Cente | er         |          |             |            |       |
|---------------|--------------------|----------------|------------|----------|-------------|------------|-------|
| Address:      | 58 Federal St., Sa | alem, MA       |            |          |             |            |       |
| Date:         | 11/13/2020         |                |            |          | Project No. | 20-5       | 48    |
|               |                    | VELG           | RID TRAVE  | ERSE DAT | A           |            |       |
| SYSTEM:       | AHU-9              |                |            | TRAVERSE | NUMBER :    | T1         |       |
|               | OSA                |                |            | TRAVERSE | LOCATION:   | OSA Intake |       |
| DUCT SIZE (R  | SOLIND)            | " DIAMETER     | •          |          | Sq Ft =     | 0.00       |       |
| DUCT SIZE (R  |                    | 108            | " WIDTH x  |          | DEPTH       | Sq Ft =    | 22.50 |
| DOOT SIZE (IV | (201.)             | 100            | WIDTITA    |          | DEI III     | 5q i t =   | 22.50 |
| AIR DENSITY   |                    |                |            |          |             |            |       |
| STATIC PRES   |                    | NA In          | •          |          | DESIGN      |            | 6800  |
| DUCT AIR TE   |                    | 70 De          | =          |          | ACTUAL      |            | 6795  |
| BAROMETRIC    | C PRESS :          | 29.92 In       | Hg.        |          | SC          | CFM=       | 6799  |
| AIR DENSITY   | RATIO CORRECT      | ION =          | 1.00       |          | AF          | FMS = .071 |       |
| SCFM CORRE    | ECTION FACTOR      |                | 1.00       |          |             |            |       |
| ACTUAL DEN    | SITY               |                | 0.075      |          |             |            |       |
| TEST HOLE     | 1                  | 2              | 3          | 4        | 5           | 6          | 7     |
| Α             | 296                | 317            | 302        | 307      | 314         | 333        |       |
| В             | 254                | 306            | 319        | 328      | 325         | 341        |       |
| С             | 202                | 287            | 300        | 345      | 292         | 367        |       |
| D             | 196                | 243            | 303        | 336      | 289         | 352        |       |
| E             |                    |                |            |          |             |            |       |
| F             |                    |                |            |          |             |            |       |
| G             |                    |                |            |          |             |            |       |
| Н             |                    |                |            |          |             |            |       |
| 1             |                    |                |            |          |             |            |       |
| NO. OF READ   | INGS =             | 24             | AVERAGE FF | PM =     | 302         |            |       |
| J             |                    |                |            |          | 1           |            |       |
| K             |                    |                |            |          |             |            |       |
| L             |                    |                |            |          |             |            |       |
| M             |                    |                |            |          |             |            |       |
| N             |                    |                |            |          |             |            |       |
| 0             |                    |                |            |          |             |            |       |
| Р             |                    |                |            |          |             |            |       |
| Q             |                    |                |            |          |             |            |       |
| R             |                    |                |            |          |             |            |       |
| TECHNICIAN:   | David Burns        |                |            |          |             |            |       |

| •             | J. Michael Ruane          | Judicial Cent      | er               |           |             |             |       |  |  |
|---------------|---------------------------|--------------------|------------------|-----------|-------------|-------------|-------|--|--|
|               | 58 Federal St., Salem, MA |                    |                  |           |             |             |       |  |  |
| Date:         | 11/13/2020                |                    |                  |           | Project No. | 20-5        | 48    |  |  |
|               |                           | VELG               | RID TRAVE        | ERSE DATA | <u> </u>    |             |       |  |  |
| SYSTEM:       | F-18                      |                    |                  | TRAVERSE  |             | T1          |       |  |  |
|               |                           | TRAVERSE LOCATION: |                  |           |             |             |       |  |  |
| DUCT SIZE (RO | OLIND)                    |                    | " DIAMETER       | ,         |             | Sq Ft =     | 0.00  |  |  |
| DUCT SIZE (RE |                           | 72                 | " WIDTH x        |           | DEPTH       | Sq Ft =     | 15.00 |  |  |
| DOCT SIZE (IN | LO1.)                     | 12                 | VVIDITIX         |           | DEFIII      | 54 i t =    | 13.00 |  |  |
| AIR DENSITY [ |                           |                    |                  |           |             |             |       |  |  |
| STATIC PRESS  |                           | NA In              | •                |           | DESIGN      |             | 26000 |  |  |
| DUCT AIR TEM  |                           | 70 De              | •                |           | ACTUAL      |             | 18919 |  |  |
| BAROMETRIC    | PRESS:                    | 29.92 In           | Hg.              |           | SC          | CFM=        | 18929 |  |  |
| AIR DENSITY F | RATIO CORRECT             | ION =              | 1.00             |           | AF          | -MS = 1.259 |       |  |  |
| SCFM CORRE    | CTION FACTOR              |                    | 1.00             |           |             |             |       |  |  |
| ACTUAL DENS   | SITY                      |                    | 0.075            |           |             |             |       |  |  |
| TEST HOLE     | 1                         | 2                  | 3                | 4         | 5           | 6           | 7     |  |  |
| Α             | 1341                      | 1671               | 1613             | 1673      | 1481        | 2202        | 1830  |  |  |
| В             | 1777                      | 1797               | 1737             | 1552      | 1361        | 2052        | 1661  |  |  |
| С             | 1745                      | 1867               | 1682             | 1589      | 1362        | 1937        | 1437  |  |  |
| D             | 1705                      | 1729               | 1716             | 1665      | 1593        | 2025        | 1539  |  |  |
| E             | 1673                      | 1631               | 1658             | 1688      | 1344        | 2203        | 1670  |  |  |
| F             |                           |                    |                  |           |             |             |       |  |  |
| G             |                           |                    |                  |           |             |             |       |  |  |
| Н             |                           |                    |                  |           |             |             |       |  |  |
| I             |                           |                    |                  |           |             |             |       |  |  |
| NO. OF READI  | NGS =                     | 50                 | AVERAGE FF       | PM =      | 1261        |             |       |  |  |
|               |                           |                    | 7.17.21.0.102.11 |           | .20.        |             |       |  |  |
| J             | 540                       | 1149               | 0                |           |             |             |       |  |  |
| K             | 80                        | 520                | 0                |           |             |             |       |  |  |
| L             | 161                       | 0                  | 0                |           |             |             |       |  |  |
| М             | 178                       | 0                  | 0                |           |             |             |       |  |  |
| N             | 462                       | 481                | 285              |           |             |             |       |  |  |
| 0             |                           |                    |                  |           |             |             |       |  |  |
| Р             |                           |                    |                  |           |             |             |       |  |  |
| Q             |                           |                    |                  |           |             |             |       |  |  |
| R             |                           |                    |                  |           |             |             |       |  |  |
|               |                           |                    |                  |           |             |             |       |  |  |
| TECHNICIAN:   | David Burns               |                    | <u>-</u>         |           |             |             |       |  |  |
|               |                           |                    |                  |           |             |             |       |  |  |

Address: 58 Federal St., Salem, MA

**Date**: 11/13/2020 **Project No.** 20-548


| <b>Date:</b> 11/13/20              | )20             |                | Project No.   | 20-548        |
|------------------------------------|-----------------|----------------|---------------|---------------|
|                                    | F.              | AN DATA SHEET  |               |               |
|                                    | FAN NO          | D. AHU-10      | FAN NO.       | F-19          |
| Serves / Location:                 |                 |                | AHU-10 Return |               |
| Manufacturer:                      | CARRIER         |                | GREENHECK     |               |
| Model Number:                      | 39MN1C011KF911> | KGS            | QEI-18-1-30   |               |
| Size:                              | 50              |                | NL            |               |
| Serial Number:                     | 4309023153      |                | 11887856      |               |
| MOTOR                              | DESIGN          | TESTED         | DESIGN        | TESTED        |
| Manufacturer:                      | NL              | GE             | NL            | BALDOR        |
| Frame Number:                      | NL              | 215T           | NL            | 182T          |
| Horsepower:                        | 10              | 10             | 3             | 3             |
| Brake Horsepower:                  | 6               | NA             | 1.6           | NA            |
| Safety Factor:                     | NL              | 1.15           | NL            | 1.15          |
| Volts/Phase:                       | 460/3           | 460/3          | 460/3         | 460/3         |
| Motor Amperage:                    | 12.2            | 7.9            | 4             | 2.6           |
| Motor RPM:                         | 1760            | 1800           | 1755          | 1556          |
| Speeds:                            | VFD             | 60 Hz          | VFD           | 51.9 Hz       |
| Heater Size:                       | NL              | VFD Protected  | NL            | VFD Protected |
| Heater Amps.:                      | NL              | VFD Protected  | NL            | VFD Protected |
| FAN                                | DESIGN          | TESTED         | DESIGN        | TESTED        |
| Supply Air CFM:                    | 4600            | 4488           |               |               |
| Return Air CFM:                    | 2950            | 2837           | 4200          | 4634          |
| Exhaust Air CFM:                   |                 |                |               |               |
| Outside Air CFM:                   | 1650            | 1651           |               |               |
| Suction Pressure:                  | NL              | -1.63          | NL            | -0.78         |
| Discharge Pressure:                | NL              | 1.1            | NL            | 0.05          |
| Fan Static Pressure:               | 5.0"            | NA             | NL            | NA            |
| External Pressure:                 | NL              | NA             | 1.5"          | 0.83          |
| RPM                                | DESIGN          | TESTED         | DESIGN        | TESTED        |
| Fan RPM:                           | 2455            | 2455           | NL            | INLINE        |
| Motor Drive:                       | NL              | BK90           | NL            | 3.5" OD       |
| Motor Size/Bore:                   | NL              | 1 3/8          | NL            | QTX 1 1/8     |
| Fan Drive:                         | NL              | BK65H          | NL            | INLINE        |
| Fan Size/Bore:                     | NL              | H1 3/16        | NL            | INLINE        |
|                                    |                 |                | L II          | A55x2         |
| Belt Size / Number:                | NL              | BX70x1         | NL            | ASSAZ         |
| Belt Size / Number:<br>Shafts C-C: | NL<br>NL        | BX70x1<br>24.6 | NL<br>NL      | INLINE        |

Project: Plymouth Trial Court

Address: 52 Obery St., Plymouth, MA

**Date**: 10/30/2020 **Project No.** 20-547

## **AHU-10 STATIC PROFILE**



| LOCATION | STATIC |
|----------|--------|
| 1        | 26"    |
| 2        | 33"    |
| 3        | 52"    |
| 4        | 88"    |
| 5        | -1.12" |
| 6        | -1.63" |
| 7        | +1.10" |
|          |        |
|          |        |
|          |        |

<sup>\*\*</sup> Pressures measured wiith VAV Boxes at full cooling position.

| Project:               | J. Michael Ruane   | Judicial Cente | er         |          |             |             |      |
|------------------------|--------------------|----------------|------------|----------|-------------|-------------|------|
| Address:               | 58 Federal St., Sa | alem, MA       |            |          |             |             |      |
| Date:                  | 11/13/2020         |                |            |          | Project No. | 20-5        | 48   |
|                        |                    | -              |            | DATA     |             |             |      |
| 0)/07514               | ALIII 40           |                | RAVERSE    |          |             | T.          |      |
| SYSTEM:                | AHU-10             |                |            | TRAVERSE |             | T1          |      |
|                        | Supply             |                |            | TRAVERSE | _OCATION:   | Supply Duct |      |
| DUCT SIZE (F           | ROUND)             |                | " DIAMETER | <b>}</b> |             | Sq Ft =     | 0.00 |
| DUCT SIZE (F           | ,                  |                | " WIDTH x  |          | DEPTH       | Sq Ft =     | 2.67 |
|                        | - ,                |                |            |          |             | - 1         |      |
| AIR DENSITY            |                    |                |            |          |             |             |      |
| STATIC PRESS @ CL: 1.1 |                    |                | •          |          | DESIGN      |             | 4600 |
| DUCT AIR TE            |                    | 70 De          | _          |          | ACTUAL      |             | 4488 |
| BAROMETRIC             | C PRESS :          | 29.92 In       | Hg.        |          | SC          | CFM=        | 4503 |
| AIR DENSITY            | RATIO CORRECT      | ION =          | 1.00       |          |             |             |      |
|                        | ECTION FACTOR      | 1011 =         | 1.00       |          |             |             |      |
| ACTUAL DEN             |                    |                | 0.075      |          |             |             |      |
| TEST HOLE              | 1                  | 2              | 3          | 4        | 5           | 6           | 7    |
| Α                      | 1004               | 1134           | 1324       | 1728     | 2009        | 2068        | ·    |
| В                      | 1067               | 1386           | 1560       | 1690     | 1894        | 2131        |      |
| С                      | 1501               | 1483           | 1821       | 1839     | 2033        | 2168        |      |
| D                      | 1167               | 1517           | 1800       | 2047     | 1827        | 2154        |      |
| E                      | 1107               | 1317           | 1000       | 2047     | 1021        | 2104        |      |
| F                      |                    |                |            |          |             |             |      |
| G                      |                    |                |            |          |             |             |      |
| Н                      |                    |                |            |          |             |             |      |
| <br>I                  |                    |                |            |          |             |             |      |
| NO. OF READ            | DINGS =            | 24             | AVERAGE FF | PM =     | 1681        |             |      |
|                        |                    |                |            |          |             |             |      |
| J                      |                    |                |            |          |             |             |      |
| K                      |                    |                |            |          |             |             |      |
| L                      |                    |                |            |          |             |             |      |
| M                      |                    |                |            |          |             |             |      |
| N                      |                    |                |            |          |             |             |      |
| 0                      |                    |                |            |          |             |             |      |
| Р                      |                    |                |            |          |             |             |      |
| Q                      |                    |                |            |          |             |             |      |
| R                      |                    |                |            |          |             |             |      |
| TECHNICIAN:            | David Burns        | _              |            |          |             |             |      |
|                        |                    |                |            |          |             |             |      |

| -                                                           | J. Michael Ruane   |                               | er         |          |                        |                    |                             |
|-------------------------------------------------------------|--------------------|-------------------------------|------------|----------|------------------------|--------------------|-----------------------------|
|                                                             | 58 Federal St., Sa | ılem, MA                      |            |          |                        |                    |                             |
| Date:                                                       | 11/13/2020         |                               |            |          | Project No.            | 20-54              | 18                          |
|                                                             |                    | 7                             | RAVERSE    | DATA     |                        |                    |                             |
| SYSTEM:                                                     | AHU-10             |                               |            | TRAVERSE | NUMBER :               | T1                 |                             |
|                                                             | Return             |                               |            |          |                        | Return Intake      |                             |
| DUCT SIZE (RC                                               |                    | 34                            | " DIAMETER |          | DEPTH                  | Sq Ft =<br>Sq Ft = | 0.00<br>3.78                |
| AIR DENSITY D<br>STATIC PRESS<br>DUCT AIR TEM<br>BAROMETRIC | S @ CL:<br>IP :    | -0.3 In\<br>70 De<br>29.92 In | eg F       |          | DESIGN<br>ACTUAL<br>SO |                    | 2950<br>2846<br><b>2846</b> |
| AIR DENSITY F                                               | RATIO CORRECT      | ION =                         | 1.00       |          |                        |                    |                             |
| SCFM CORREC                                                 | CTION FACTOR       |                               | 1.00       |          |                        |                    |                             |
| ACTUAL DENS                                                 | ITY                |                               | 0.075      |          |                        |                    |                             |
| TEST HOLE                                                   | 1                  | 2                             | 3          | 4        | 5                      | 6                  | 7                           |
| Α                                                           | 618                | 1534                          | 1495       | 1563     | 1572                   | 1387               | 595                         |
| В                                                           | 1513               | 1311                          | 1393       | 1295     | 1438                   | 1512               | 328                         |
| С                                                           | 855                | 1003                          | 832        | 612      | 444                    | 626                | 788                         |
| D                                                           | 259                | 142                           | 233        | 0        | 130                    | 203                | 309                         |
| E                                                           |                    |                               |            |          |                        |                    |                             |
| F                                                           |                    |                               |            |          |                        |                    |                             |
| G                                                           |                    |                               |            |          |                        |                    |                             |
| Н                                                           |                    |                               |            |          |                        |                    |                             |
| I                                                           |                    |                               |            |          |                        |                    |                             |
| NO. OF READII                                               | NGS =              | 36                            | AVERAGE FF | PM =     | 754                    |                    |                             |
| J                                                           | 518                | 619                           |            |          |                        |                    |                             |
| K                                                           | 541                | 480                           |            |          |                        |                    |                             |
| L                                                           | 213                | 131                           |            |          |                        |                    |                             |
| M                                                           | 373                | 278                           |            |          |                        |                    |                             |
| N                                                           |                    |                               |            |          |                        |                    |                             |
| 0                                                           |                    |                               |            |          |                        |                    |                             |
| Р                                                           |                    |                               |            |          |                        |                    |                             |
| Q                                                           |                    |                               |            |          |                        |                    |                             |
| R                                                           |                    |                               |            |          |                        |                    |                             |
| TECHNICIAN:                                                 | David Burns        |                               |            |          |                        |                    |                             |

| •                 | J. Michael Ruane   |          | er         |          |             |            |      |
|-------------------|--------------------|----------|------------|----------|-------------|------------|------|
|                   | 58 Federal St., Sa | ilem, MA |            |          |             |            |      |
| Date:             | 11/13/2020         |          |            |          | Project No. | 20-54      | 48   |
|                   |                    | 7        | RAVERSE    | DATA     |             |            |      |
| SYSTEM: A         | AHU-10             |          |            | TRAVERSE | NUMBER :    | T1         |      |
| (                 | OSA                |          |            | TRAVERSE | LOCATION:   | OSA Intake |      |
| DUCT SIZE (ROUND) |                    |          | " DIAMETER | ,        |             | Sq Ft =    | 0.00 |
| DUCT SIZE (RE     |                    | 30       | " WIDTH x  |          | DEPTH       | Sq Ft =    | 4.17 |
| Damper @ 2.5V     | •                  |          | WIDTITA    | 20       |             | 5411-      | 4.17 |
| AIR DENSITY D     |                    |          |            |          |             |            |      |
| STATIC PRESS      | ı                  | 0.06 ln\ | Va.        |          | DESIGN      | CFM =      | 1650 |
| DUCT AIR TEMI     |                    | 70 De    |            |          | ACTUAL      |            | 1651 |
| BAROMETRIC F      | PRESS :            | 29.92 In | _          |          | SC          | CFM=       | 1652 |
|                   | '                  |          |            |          |             | '          | •    |
| AIR DENSITY R     | ATIO CORRECT       | ION =    | 1.00       |          |             |            |      |
| SCFM CORREC       | TION FACTOR        |          | 1.00       |          |             |            |      |
| ACTUAL DENSI      | TY                 |          | 0.075      |          |             |            |      |
| TEST HOLE         | 1                  | 2        | 3          | 4        | 5           | 6          | 7    |
| Α                 | 1938               | 1239     | 1186       | 1449     | 1480        | 1416       | 1096 |
| В                 | 0                  | 683      | 0          | 526      | 0           | 333        | 0    |
| С                 | 0                  | 0        | 0          | 0        | 0           | 0          | 0    |
| D                 | 0                  | 0        | 0          | 0        | 0           | 0          | 0    |
| E                 |                    |          |            |          |             |            |      |
| F                 |                    |          |            |          |             |            |      |
| G                 |                    |          |            |          |             |            |      |
| Н                 |                    |          |            |          |             |            |      |
| I                 |                    |          |            |          |             |            |      |
| NO. OF READIN     | IGS =              | 32       | AVERAGE FF | PM =     | 396         |            |      |
| J                 | 884                |          |            |          |             |            |      |
| K                 | 431                |          |            |          |             |            |      |
| L                 | 0                  |          |            |          |             |            |      |
| М                 | 0                  |          |            |          |             |            |      |
| N                 |                    |          |            |          |             |            |      |
| 0                 |                    |          |            |          |             |            |      |
| Р                 |                    |          |            |          |             |            |      |
| Q                 |                    |          |            |          |             |            |      |
| R                 |                    |          |            |          |             |            |      |
| TECHNICIAN:       | David Burns        |          |            |          |             |            |      |
|                   | 24.14 24110        |          |            |          |             |            |      |

| Project:                     | J. Michael Ruane               | Judicial Cente | er         |          |             |             |      |
|------------------------------|--------------------------------|----------------|------------|----------|-------------|-------------|------|
| Address:                     | 58 Federal St., Sa             | alem, MA       |            |          |             |             |      |
| Date:                        | 11/13/2020                     |                |            |          | Project No. | 20-54       | 48   |
|                              |                                |                | ED AVEDOE  | DATA     |             |             |      |
|                              |                                |                | RAVERSE    |          |             |             |      |
| SYSTEM:                      | F-19                           |                |            | TRAVERSE |             | T1          |      |
|                              |                                |                |            | TRAVERSE | LOCATION:   | F-19 Intake |      |
| DUCT SIZE (R                 | OLIND)                         |                | " DIAMETER | )        |             | Sq Ft =     | 0.00 |
| DUCT SIZE (R<br>DUCT SIZE (R |                                | 34             | " WIDTH x  |          | DEPTH       | Sq Ft =     | 3.78 |
| DOCT SIZE (IN                | LCT.)                          |                | WIDTITA    | 10       | DEFIII      | 5q11=       | 3.70 |
| AIR DENSITY                  | DATA                           |                |            |          |             |             |      |
| STATIC PRES                  | STATIC PRESS @ CL: -0.66 InWg. |                |            |          | DESIGN      | CFM =       | 4200 |
| DUCT AIR TEI                 | MP :                           | 70 De          | eg F       |          | ACTUAL      | CFM =       | 4634 |
| BAROMETRIC                   | PRESS :                        | 29.92 In       | Hg.        |          | SC          | CFM=        | 4629 |
|                              |                                |                |            |          |             | •           |      |
| AIR DENSITY                  | RATIO CORRECT                  | ION =          | 1.00       |          |             |             |      |
| SCFM CORRE                   | CTION FACTOR                   |                | 1.00       |          |             |             |      |
| ACTUAL DEN                   | SITY                           |                | 0.075      |          |             |             |      |
| TEST HOLE                    | 1                              | 2              | 3          | 4        | 5           | 6           | 7    |
| Α                            | 1781                           | 1769           | 1781       | 1146     | 1637        | 1782        | 1760 |
| В                            | 831                            | 1642           | 1804       | 950      | 1013        | 1216        | 1685 |
| С                            | 892                            | 1508           | 1575       | 1158     | 869         | 1061        | 1433 |
| D                            | 915                            | 1280           | 1612       | 1126     | 885         | 1171        | 1124 |
| E                            |                                |                |            |          |             |             |      |
| F                            |                                |                |            |          |             |             |      |
| G                            |                                |                |            |          |             |             |      |
| Н                            |                                |                |            |          |             |             |      |
| 1                            |                                |                |            |          |             |             |      |
|                              |                                |                |            |          |             |             |      |
| NO. OF READ                  | INGS =                         | 36             | AVERAGE F  | PM =     | 1226        |             |      |
| ı                            | 1308                           | 972            |            |          | 1           |             |      |
| J<br>K                       | 1135                           | 749            |            |          |             |             |      |
|                              | 565                            | 749            |            |          |             |             |      |
| L<br>M                       | 674                            | 599            |            |          |             |             |      |
|                              | 674                            | 599            |            |          |             |             |      |
| N                            |                                |                |            |          |             |             |      |
| 0                            |                                |                |            |          |             |             |      |
| P                            |                                |                |            |          |             |             |      |
| Q                            |                                |                |            |          |             |             |      |
| R                            |                                |                |            |          |             |             |      |
|                              |                                |                |            |          |             |             |      |
| TECHNICIAN:                  | David Burns                    |                |            |          |             |             |      |
|                              |                                |                |            |          |             |             |      |

Address: 58 Federal St., Salem, MA

Date: 11/13/2020 Project No. 20-548

| <b>Date:</b> 11/13/20 | J20            |                | Project No.   | 20-548          |
|-----------------------|----------------|----------------|---------------|-----------------|
|                       | F              | FAN DATA SHEET | Γ             |                 |
|                       | FAN NO         | O. AHU-11      | FAN N         | O. F-27         |
| Serves / Location:    | Law Library    | Mech 6400      | AHU-11 Return | Mech 6400       |
| Manufacturer:         | CARRIER        | •              | GREENHECK     | •               |
| Model Number:         | 39MN1CD11KFB22 | ZXGS           | QEI-30-1-75   |                 |
| Size:                 | NL             |                | NL            |                 |
| Serial Number:        | 4390U23200     |                | 11887861 0910 |                 |
| MOTOR                 | DESIGN         | TESTED         | DESIGN        | TESTED          |
| Manufacturer:         | NL             | GE             | NL            | BALDOR          |
| Frame Number:         | NL             | 284T           | NL            | 213T            |
| Horsepower:           | 40             | 25             | NL            | 7.5             |
| Brake Horsepower:     | NL             | NA             | NL            | NA              |
| Safety Factor:        | NL             | 1.15           | NL            | 1.15            |
| Volts/Phase:          | 460/3          | 460/3          | 460/3         | 460/3           |
| Motor Amperage:       | 29.8           | 24.2           | 9.7           | 8.8             |
| Motor RPM:            | 1775           | 1800           | 1770          | 1800            |
| Speeds:               | VFD            | 60 Hz          | VFD           | 60 Hz           |
| Heater Size:          | NL             | VFD Protected  | NL            | VFD Protected   |
| Heater Amps.:         | NL             | VFD Protected  | NL            | VFD Protected   |
| FAN                   | DESIGN         | TESTED         | DESIGN        | TESTED          |
| Supply Air CFM:       | 15400          | 11450          |               |                 |
| Return Air CFM:       | 11700          |                | 13600         | *1              |
| Exhaust Air CFM:      |                |                |               |                 |
| Outside Air CFM:      | 3700           | *2             | 1900          |                 |
| Suction Pressure:     |                |                |               |                 |
| Discharge Pressure:   |                |                |               |                 |
| Fan Static Pressure:  |                |                |               |                 |
| External Pressure:    |                |                |               |                 |
| RPM                   | DESIGN         | TESTED         | DESIGN        | TESTED          |
| Fan RPM:              | NL             | NA             | NL            | INLINE          |
| Motor Drive:          | NL             | 2TB80          | NL            | 5" OD           |
| Motor Size/Bore:      | NL             | Q1 1 7/8       | NL            | Q1 1 3/8 - 5/16 |
| Fan Drive:            | NL             | 2B5V124        | NL            | INLINE          |
| Fan Size/Bore:        | NL             | B1 11/16       | NL            | INLINE          |
| Belt Size / Number:   | NL             | B116x2         | NL            | *1              |
| Shafts C-C:           | NL             | 43"            | NL            | INLINE          |
| Turns Open:           | NL             | FIXED          | NL            | FIXED           |
| 1 _                   |                |                |               |                 |

Comments: \*1 Needs new belt.

<sup>\*2</sup> AFMS not working properly. Shield inside unit is directing return air into the OSA monitoring station.

| Project:      | J. Michael Ruane   | Judicial Cente | er         |            |             |              |       |
|---------------|--------------------|----------------|------------|------------|-------------|--------------|-------|
| Address:      | 58 Federal St., Sa | ılem, MA       |            |            |             |              |       |
| Date:         | 11/13/2020         |                |            |            | Project No. | 20-54        | 48    |
|               |                    | 7              | RAVERSE    | ΠΑΤΑ       |             |              |       |
| SYSTEM:       | AHU-11             |                | NAVENOL    | TRAVERSE   | WINDED :    | <br>T1       |       |
| STSTEW.       | Supply             |                |            | TRAVERSE   |             | Mech 2904    |       |
|               | Зирріу             |                |            | TIVAVEINOE | LOCATION.   | IVICUIT 2304 |       |
| DUCT SIZE (R  | OLIND)             |                | " DIAMETER | )          |             | Sq Ft =      | 0.00  |
| DUCT SIZE (R  | *                  |                | " WIDTH x  |            | DEPTH       | Sq Ft =      | 8.03  |
| DOCT SIZE (K  | EG1.)              |                | WIDTHX     |            | DEFIII      | 34 Ft =      | 6.03  |
| AIR DENSITY I | 1                  |                |            |            |             |              |       |
| STATIC PRES   | 2.68 In\           | •              |            | DESIGN (   |             | 15400        |       |
| DUCT AIR TEN  |                    | 70 De          | _          |            | ACTUAL      |              | 11450 |
| BAROMETRIC    | PRESS:             | 29.92 In       | Hg.        |            | SC          | FM=          | 11532 |
| AIR DENSITY I | RATIO CORRECT      | ION =          | 1.01       |            | AF          | MS = 1.097   |       |
| SCFM CORRE    | CTION FACTOR       |                | 1.01       |            |             |              |       |
| ACTUAL DENS   | SITY               |                | 0.076      |            |             |              |       |
| TEST HOLE     | 1                  | 2              | 3          | 4          | 5           | 6            | 7     |
| Α             | 2502               | 2530           | 2398       | 2029       | 1857        | 1480         | 1498  |
| В             | 1856               | 1603           | 1374       | 1548       | 1332        | 1592         | 1388  |
| С             | 1741               | 1348           | 1078       | 782        | 823         | 1143         | 1442  |
| D             | 1890               | 1337           | 1137       | 875        | 690         | 1022         | 1357  |
| E             | 1522               | 1265           | 1324       | 1065       | 920         | 1123         | 1142  |
| F             | 1585               | 1316           | 1542       | 1137       | 1460        | 1305         | 1549  |
| G             |                    |                |            |            |             |              |       |
| Н             |                    |                |            |            |             |              |       |
| 1             |                    |                |            |            |             |              |       |
| NO. OF READI  | NGS =              | 42             | AVERAGE FF | PM =       | 1426        |              |       |
| J             |                    |                |            |            |             |              |       |
| K             |                    |                |            |            |             |              |       |
| L             |                    |                |            |            |             |              |       |
| M             |                    |                |            |            |             |              |       |
| N             |                    |                |            |            |             |              |       |
| 0             |                    |                |            |            |             |              |       |
| Р             |                    |                |            |            |             |              |       |
| Q             |                    |                |            |            |             |              |       |
| R             |                    |                |            |            |             |              |       |
| TECHNICIAN:   | David Burns        |                |            |            |             |              |       |

Address: 58 Federal St., Salem, MA

**Date**: 11/13/2020 **Project No.** 20-548

| Date: 11/13/20       |                 |              | Project No.     | 20-548    |  |
|----------------------|-----------------|--------------|-----------------|-----------|--|
|                      | F/              | AN DATA SHEE | T               |           |  |
|                      | FAN NO.         | F-24         | FAN NO          | . F-25    |  |
| Serves / Location:   | Toilet exh.     | Roof         | Toilet Exh.     | Roof      |  |
| Manufacturer:        | GREENHECK       |              | GREENHECK       |           |  |
| Model Number:        | 24-AFSW-21-10-1 |              | 22-AFSW-21-10-1 |           |  |
| Size:                | NL              |              | NL              |           |  |
| Serial Number:       | 11887138        |              | 11887137        |           |  |
| MOTOR                | DESIGN          | TESTED       | DESIGN          | TESTED    |  |
| Manufacturer:        | NL              | DAYTON       | NL              | DAYTON    |  |
| Frame Number:        | NL              | 182/4T       | NL              | 182/4T    |  |
| Horsepower:          | 5               | 5            | 5               | 5         |  |
| Brake Horsepower:    | 3.5             | NA           | 1.9             | NA        |  |
| Safety Factor:       | NL              | 1.15         | NL              | 1.15      |  |
| Volts/Phase:         | 460/3           | 460/3        | 460/3           | 460/3     |  |
| Motor Amperage:      | 6.33            | 5.75         | 6.33            | 5.3       |  |
| Motor RPM:           | 1760            | 1768         | 1760            | 1768      |  |
| Speeds:              | NL              | 1            | NL              | 1         |  |
| Heater Size:         | NL              | NA           | NL              | NA        |  |
| Heater Amps.:        | NL              | NA           | NL              | NA        |  |
| FAN                  | DESIGN          | TESTED       | DESIGN          | TESTED    |  |
| Supply Air CFM:      |                 |              |                 |           |  |
| Return Air CFM:      |                 |              |                 |           |  |
| Exhaust Air CFM:     | 7150            | 6070         | 5025            | 4894      |  |
| Outside Air CFM:     |                 |              |                 |           |  |
| Suction Pressure:    | NL              | -0.71        | NL              | -1.07     |  |
| Discharge Pressure:  | NL              | 0.27         | NL              | 0.52      |  |
| Fan Static Pressure: | NL              | NA           | NL              | NA        |  |
| External Pressure:   | 2"              | 0.98         | 1.5"            | 1.59      |  |
| RPM                  | DESIGN          | TESTED       | DESIGN          | TESTED    |  |
| Fan RPM:             | NL              | NA           | NL              | NA        |  |
| Motor Drive:         | NL              | 4.5" OD      | NL              | 4" od     |  |
| Motor Size/Bore:     | NL              | SHx1 1/8     | NL              | QTx 1 1/8 |  |
| Fan Drive:           | NL              | 2AK74        | NL              | 2AK84     |  |
| Fan Size/Bore:       | NL              | QT 1 7/16    | NL              | Q1 7/16   |  |
| Belt Size / Number:  | NL              | AP54x2       | NL              | A55x2     |  |
| Shafts C-C:          | NL              | 20"          | NL              | 20.5"     |  |
| Turns Open:          | NL              | FIXED        | NL              | FIXED     |  |
| Comments:            |                 |              |                 |           |  |
|                      |                 |              |                 |           |  |

| Project:                     | J. Michael Ruane   | Judicial Cente | er         |          |             |           |      |
|------------------------------|--------------------|----------------|------------|----------|-------------|-----------|------|
| Address:                     | 58 Federal St., Sa | alem, MA       |            |          |             |           |      |
| Date:                        | 11/13/2020         |                |            |          | Project No. | 20-5      | 48   |
|                              |                    |                |            |          |             |           |      |
|                              |                    | 7              | RAVERSE    |          |             |           |      |
| SYSTEM:                      | F-24               |                |            | TRAVERSE |             | <u>T1</u> |      |
|                              |                    |                |            | TRAVERSE | LOCATION:   |           |      |
| DUCT SIZE (R                 | OLIND)             |                | " DIAMETER | )        |             | Sq Ft =   | 0.00 |
| DUCT SIZE (R<br>DUCT SIZE (R |                    | 30             | " WIDTH x  |          | DEPTH       | Sq Ft =   | 5.00 |
| DOOT SIZE (IX                | LO1.)              |                | WIDTITA    |          | DEI III     | 0411-     | 3.00 |
| AIR DENSITY I                | DATA               |                |            |          |             |           |      |
| STATIC PRES                  | S @ CL:            | Ng.            |            | DESIGN   | CFM =       | 7150      |      |
| DUCT AIR TEN                 | MР :               | 70 De          | g F        |          | ACTUAL      | CFM =     | 6070 |
| BAROMETRIC                   | PRESS:             | 29.92 In       | Hg.        |          | SC          | CFM=      | 6063 |
|                              |                    |                |            |          |             |           |      |
| AIR DENSITY I                | RATIO CORRECT      | ION =          | 1.00       |          |             |           |      |
| SCFM CORRE                   | CTION FACTOR       |                | 1.00       |          |             |           |      |
| ACTUAL DENS                  | SITY               |                | 0.075      |          |             |           |      |
| TEST HOLE                    | 1                  | 2              | 3          | 4        | 5           | 6         | 7    |
| Α                            | 1297               | 1455           | 1517       | 1548     | 1568        | 1567      | 1664 |
| В                            | 1165               | 981            | 1231       | 1177     | 1272        | 1559      | 1650 |
| С                            | 1246               | 677            | 683        | 851      | 1219        | 1512      | 1542 |
| D                            | 782                | 793            | 783        | 976      | 1416        | 1490      | 1602 |
| E                            | 973                | 987            | 925        | 1248     | 1501        | 1498      | 1356 |
| F                            |                    |                |            |          |             |           |      |
| G                            |                    |                |            |          |             |           |      |
| Н                            |                    |                |            |          |             |           |      |
| I                            |                    |                |            |          |             |           |      |
|                              |                    |                |            |          |             |           |      |
| NO. OF READI                 | INGS =             | 40             | AVERAGE FF | PM =     | 1214        |           |      |
| J                            | 939                |                |            |          |             |           |      |
| K                            | 1020               |                |            |          |             |           |      |
| L                            | 1299               |                |            |          |             |           |      |
| M                            | 890                |                |            |          |             |           |      |
| N                            | 700                |                |            |          |             |           |      |
| 0                            |                    |                |            |          |             |           |      |
| P                            |                    |                |            |          |             |           |      |
| Q                            |                    |                |            |          |             |           |      |
| R                            |                    |                |            |          |             |           |      |
|                              |                    |                |            |          |             |           |      |
| TECHNICIAN:                  | David Burns        |                |            |          |             |           |      |
|                              |                    |                |            |          |             |           |      |
|                              |                    |                |            |          |             |           |      |

| •                       | J. Michael Ruane   |          | er              |          |             |         |      |
|-------------------------|--------------------|----------|-----------------|----------|-------------|---------|------|
|                         | 58 Federal St., Sa | lem, MA  |                 |          |             |         |      |
| Date:                   | 11/13/2020         |          |                 |          | Project No. | 20-5    | 48   |
|                         |                    | 7        | <b>TRAVERSE</b> | DATA     |             |         |      |
| SYSTEM:                 | F-25               |          |                 | TRAVERSE | NUMBER :    | T1      |      |
|                         |                    |          |                 | TRAVERSE | LOCATION:   |         |      |
| DUCT SIZE (RO           | OUND)              |          | " DIAMETER      | ,        |             | Sq Ft = | 0.00 |
| DUCT SIZE (RI           |                    | 24       | " WIDTH x       |          | DEPTH       | Sq Ft = | 4.00 |
| (                       |                    |          |                 |          |             | -4      |      |
| AIR DENSITY             | r                  |          |                 |          |             |         |      |
| STATIC PRESS @ CL: -1.0 |                    |          | •               |          | DESIGN      |         | 5025 |
| DUCT AIR TEM            | ŀ                  | 70 De    | _               |          | ACTUAL      |         | 4894 |
| BAROMETRIC              | PRESS:             | 29.92 In | нg.             |          | SC          | CFM=    | 4884 |
| AIR DENSITY F           | RATIO CORRECTI     | ON =     | 1.00            |          |             |         |      |
| SCFM CORRE              | CTION FACTOR       |          | 1.00            |          |             |         |      |
| ACTUAL DENS             | SITY               |          | 0.075           |          |             |         |      |
| TEST HOLE               | 1                  | 2        | 3               | 4        | 5           | 6       | 7    |
| Α                       | 546                | 1517     | 1816            | 1765     | 1395        | 1222    |      |
| В                       | 0                  | 1332     | 1726            | 1446     | 1090        | 1010    |      |
| С                       | 0                  | 1517     | 1777            | 1720     | 880         | 699     |      |
| D                       | 0                  | 1506     | 1793            | 1764     | 945         | 1266    |      |
| E                       | 722                | 1597     | 1718            | 1571     | 1067        | 1298    |      |
| F                       |                    |          |                 |          |             |         |      |
| G                       |                    |          |                 |          |             |         |      |
| H                       |                    |          |                 |          |             |         |      |
| I                       |                    |          |                 |          |             |         |      |
| NO. OF READI            | NGS =              | 30       | AVERAGE FF      | PM =     | 1224        |         |      |
| J                       |                    |          |                 |          |             |         |      |
| K                       |                    |          |                 |          |             |         |      |
| L                       |                    |          |                 |          |             |         |      |
| М                       |                    |          |                 |          |             |         |      |
| N                       |                    |          |                 |          |             |         |      |
| 0                       |                    |          |                 |          |             |         |      |
| Р                       |                    |          |                 |          |             |         |      |
| Q                       |                    |          |                 |          |             |         |      |
| R                       |                    |          |                 |          |             |         |      |
| TECHNICIAN:             | David Burns        |          |                 |          |             |         |      |

Address: 58 Federal St., Salem, MA

Date: 11/13/2020 Project No. 20-548

| Date: 11/13/20       | )20         |              | Project No. | 20-548   |  |  |
|----------------------|-------------|--------------|-------------|----------|--|--|
|                      | F           | AN DATA SHEE | Τ           |          |  |  |
|                      | FAN NO      | ). F-26      | FAN NO      | . F-28   |  |  |
| Serves / Location:   | Toilet exh. | Roof         | Toilet Exh. | Roof     |  |  |
| Manufacturer:        | GREENHECK   |              | GREENHECK   |          |  |  |
| Model Number:        | BSQ-160HP-7 |              | BSC-80-4    | BSC-80-4 |  |  |
| Size:                | NL          |              | NL          |          |  |  |
| Serial Number:       | 11887614    |              | 11887615    |          |  |  |
| MOTOR                | DESIGN      | TESTED       | DESIGN      | TESTED   |  |  |
| Manufacturer:        | NL          | WEG          | NL          | MARATHON |  |  |
| Frame Number:        | NL          | B56          | NL          | 48Y      |  |  |
| Horsepower:          | 3/4         | 3/4          | 1/4         | 1/4      |  |  |
| Brake Horsepower:    | 0.45        | NA           | 0.15        | NA       |  |  |
| Safety Factor:       | NL          | 1.35         | NL          | 1.35     |  |  |
| Volts/Phase:         | 460/3       | 460/3        | 115/1       | 115/1    |  |  |
| Motor Amperage:      | 1.2         | 1.1          | 5           | 3.6      |  |  |
| Motor RPM:           | 1740        | 1748         | 1725        | 1731     |  |  |
| Speeds:              | NL          | 1            | NL          | 1        |  |  |
| Heater Size:         | NL          | NA           | NL          | СВ       |  |  |
| Heater Amps.:        | NL          | NA           | NL          | СВ       |  |  |
| FAN                  | DESIGN      | TESTED       | DESIGN      | TESTED   |  |  |
| Supply Air CFM:      |             |              |             |          |  |  |
| Return Air CFM:      |             |              |             |          |  |  |
| Exhaust Air CFM:     | 1475        | 1756         | 225         | 239      |  |  |
| Outside Air CFM:     |             |              |             |          |  |  |
| Suction Pressure:    | NL          | -0.72        | NL          | -0.31    |  |  |
| Discharge Pressure:  | NL          | 0.14         | NL          | 0.04     |  |  |
| Fan Static Pressure: | NL          | NA           | NL          | NA       |  |  |
| External Pressure:   | 1"          | 0.86         | 1"          | 0.35     |  |  |
| RPM                  | DESIGN      | TESTED       | DESIGN      | TESTED   |  |  |
| Fan RPM:             | NL          | INLINE       | NL          | INLINE   |  |  |
| Motor Drive:         | NL          | VP34         | NL          | VP34     |  |  |
| Motor Size/Bore:     | NL          | 5/8          | NL          | 1/2      |  |  |
| Fan Drive:           | NL          | INLINE       | NL          | INLINE   |  |  |
| Fan Size/Bore:       | NL          | INLINE       | NL          | INLINE   |  |  |
| Belt Size / Number:  | NL          | A48          | NL          | *1       |  |  |
| Shafts C-C:          | NL          | INLINE       | NL          | INLINE   |  |  |
|                      | INL         | IINLIINE     | INL         | IINLIINL |  |  |

Comments: \*1 Has unibelt, needs new belt.

| Project:                      | J. Michael Ruane   |                   | er         |          |             |           |      |
|-------------------------------|--------------------|-------------------|------------|----------|-------------|-----------|------|
| Address:                      | 58 Federal St., Sa | llem, MA          |            |          |             |           |      |
| Date:                         | 11/13/2020         |                   |            |          | Project No. | 20-5      | 48   |
|                               |                    | 7                 | TRAVERSE   | DATA     |             |           |      |
| SYSTEM:                       | F-26               |                   |            | TRAVERSE | NUMBER :    | T1        |      |
|                               |                    |                   |            | TRAVERSE | LOCATION:   | Mech 6100 |      |
| DUCT SIZE (RO                 | OUND)              |                   | " DIAMETER | ?        |             | Sq Ft =   | 0.00 |
| DUCT SIZE (RI                 | •                  | 22                | " WIDTH x  |          | DEPTH       | Sq Ft =   | 1.53 |
|                               | ·                  |                   |            |          |             |           |      |
| AIR DENSITY I<br>STATIC PRESS |                    | 0.14              | Ma         |          | DESIGN      | CEM       | 1475 |
| DUCT AIR TEM                  |                    | 0.14 ln\<br>70 De |            |          | ACTUAL      |           | 1756 |
| BAROMETRIC                    |                    | 29.92 In          | _          |          |             | CFM=      | 1758 |
| <i>5,</i> 11 (3)2 11 (10)     |                    | 20.02             | 9.         |          |             | Z1        |      |
| AIR DENSITY F                 | RATIO CORRECTI     | ION =             | 1.00       |          |             |           |      |
|                               | CTION FACTOR       |                   | 1.00       |          |             |           |      |
| ACTUAL DENS                   | SITY               |                   | 0.075      |          |             |           |      |
| TEST HOLE                     | 1                  | 2                 | 3          | 4        | 5           | 6         | 7    |
| Α                             | 962                | 1250              | 1332       | 1400     | 1398        | 1492      |      |
| В                             | 988                | 985               | 979        | 983      | 1069        | 1353      |      |
| С                             | 1170               | 955               | 895        | 940      | 1188        | 1349      |      |
| D                             |                    |                   |            |          |             |           |      |
| Е                             |                    |                   |            |          |             |           |      |
| F                             |                    |                   |            |          |             |           |      |
| G                             |                    |                   |            |          |             |           |      |
| Н                             |                    |                   |            |          |             |           |      |
| I                             |                    |                   |            |          |             |           |      |
| NO. OF READI                  | NGS =              | 18                | AVERAGE FF | PM =     | 1149        |           |      |
| J                             |                    |                   |            |          |             |           |      |
| K                             |                    |                   |            |          |             |           |      |
| L                             |                    |                   |            |          |             |           |      |
| М                             |                    |                   |            |          |             |           |      |
| N                             |                    |                   |            |          |             |           |      |
| 0                             |                    |                   |            |          |             |           |      |
| Р                             |                    |                   |            |          |             |           |      |
| Q                             |                    |                   |            |          |             |           |      |
| R                             |                    |                   |            |          |             |           |      |
| TECHNICIAN:                   | David Burns        |                   |            |          |             |           |      |

| Project:<br>Address:            | J. Michael Ruane<br>58 Federal St., Sa |          | er                                      |        |              |           |      |
|---------------------------------|----------------------------------------|----------|-----------------------------------------|--------|--------------|-----------|------|
| Address.<br>Date:               | 11/13/2020                             | ilem, MA |                                         |        | Project No.  | 20-5      | 548  |
|                                 |                                        |          |                                         |        |              |           |      |
| 0) (0.7.5.4                     |                                        |          | TRAVERSE                                |        | 05.11111055  |           |      |
| SYSTEM:                         | F-28                                   |          |                                         |        | SE NUMBER :  | T1        |      |
|                                 |                                        |          |                                         | IRAVER | SE LOCATION: | Mech 2904 |      |
| DUCT SIZE (F                    | SULIND)                                |          | " DIAMETER                              | •      |              | Sq Ft =   | 0.00 |
| DUCT SIZE (F                    |                                        | 12       | " WIDTH x                               | `<br>6 | " DEPTH      | Sq Ft =   | 0.50 |
| D001 012L (I                    | (201.)                                 |          | WIDTITA                                 |        |              | 0411-     | 0.00 |
| AIR DENSITY                     | DATA                                   |          |                                         |        |              |           |      |
| STATIC PRESS @ CL: -0.3         |                                        |          | Wg.                                     |        | DESIGN       | CFM =     | 225  |
| DUCT AIR TE                     | MP :                                   | 70 D     | eg F                                    |        | ACTUAL       | .CFM =    | 239  |
| SAROMETRIC PRESS : 29.92 In Hg. |                                        |          |                                         | S      | CFM=         | 239       |      |
|                                 |                                        |          |                                         |        |              |           |      |
|                                 | RATIO CORRECT                          | ION =    | 1.00                                    |        |              |           |      |
|                                 | ECTION FACTOR                          |          | 1.00                                    |        |              |           |      |
| ACTUAL DEN                      |                                        |          | 0.075                                   |        |              | _         |      |
| TEST HOLE                       | 1                                      | 2        | 3                                       | 4      | 5            | 6         | 7    |
| Α                               | 483                                    | 378      | 539                                     |        |              |           |      |
| В                               | 421                                    | 515      | 534                                     |        |              |           |      |
| C                               |                                        |          |                                         |        |              |           |      |
| D                               |                                        |          |                                         |        |              |           |      |
| E                               |                                        |          |                                         |        |              |           |      |
| F                               |                                        |          |                                         |        |              |           |      |
| G<br>H                          |                                        |          |                                         |        |              |           |      |
| П<br>I                          |                                        |          |                                         |        |              |           |      |
| Ī                               |                                        |          |                                         |        |              |           |      |
| NO. OF READ                     | INGS =                                 | 6        | AVERAGE F                               | PM =   | 478          |           |      |
|                                 |                                        |          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |        |              |           |      |
| J                               |                                        |          |                                         |        |              |           |      |
| K                               |                                        |          |                                         |        |              |           |      |
| L                               |                                        |          |                                         |        |              |           |      |
| M                               |                                        |          |                                         |        |              |           |      |
| N                               |                                        |          |                                         |        |              |           |      |
| 0                               |                                        |          |                                         |        |              |           |      |
| Р                               |                                        |          |                                         |        |              |           |      |
| Q                               |                                        |          |                                         |        |              |           |      |
| R                               |                                        |          |                                         |        |              |           |      |
|                                 |                                        |          |                                         |        |              |           |      |
| TECHNICIAN:                     | David Burns                            |          | _                                       |        |              |           |      |
|                                 |                                        |          |                                         |        |              |           |      |

Address: 58 Federal St., Salem, MA

Date: 11/13/2020 Project No. 20-548

| Date: 11/13/20               |             | AN DATA SHEET | Project No. | 20-548 |
|------------------------------|-------------|---------------|-------------|--------|
|                              |             |               | T FANNO     |        |
|                              | FAN NO      |               | FAN NO.     |        |
| Serves / Location:           | Toilet exh. | Roof          |             |        |
| Manufacturer:                | GREENHECK   |               |             |        |
| Model Number:                | BSQ-130-7   |               |             |        |
| Size:                        |             | NL            |             |        |
| Serial Number:               |             | 11887616      |             |        |
| MOTOR                        | DESIGN      | TESTED        | DESIGN      | TESTED |
| Manufacturer:                | NL          | WEG           |             |        |
| Frame Number:                | NL          | B56           |             |        |
| Horsepower:                  | 1.5         | 3/4           |             |        |
| Brake Horsepower:            | 0.55        | NA            |             |        |
| Safety Factor:               | NL          | 1.25          |             |        |
| Volts/Phase:                 | 460/3       | 460/3         |             |        |
| Motor Amperage:              | 1.2         | 1.2           |             |        |
| Motor RPM:                   | 1740        | 1744          |             |        |
| Speeds:                      | NL          | 1             |             |        |
| Heater Size:                 | NL          | NA            |             |        |
| Heater Amps.:                | NL          | NA            |             |        |
| FAN                          | DESIGN      | TESTED        | DESIGN      | TESTED |
| Supply Air CFM:              |             |               |             |        |
| Return Air CFM:              |             |               |             |        |
| Exhaust Air CFM:             | 2475        | 1740          |             |        |
| Outside Air CFM:             |             |               |             |        |
| Suction Pressure:            | NL          | -0.3          |             |        |
| Discharge Pressure:          | NL          | 0.13          |             |        |
| Fan Static Pressure:         | NL          | NA            |             |        |
| External Pressure:           | 1.25"       | 0.43          |             |        |
| RPM                          | DESIGN      | TESTED        | DESIGN      | TESTED |
| Fan RPM:                     | NL          | INLINE        |             |        |
| Motor Drive:                 | NL          | 1VP34         |             |        |
| Motor Size/Bore:             | NL          | 5/8           |             |        |
| - D:                         | NL          | INLINE        |             |        |
| Fan Drive:                   |             | IN II IN IE   |             |        |
| Fan Drive:<br>Fan Size/Bore: | NL          | INLINE        |             |        |
|                              | NL<br>NL    | A41-1         |             |        |
| Fan Size/Bore:               |             |               |             |        |

| Project:<br>Address:                                       | J. Michael Ruane<br>58 Federal St., Sa |                               | er         |      |                        |                    |                                                  |
|------------------------------------------------------------|----------------------------------------|-------------------------------|------------|------|------------------------|--------------------|--------------------------------------------------|
| Date:                                                      | 11/13/2020                             | iem, wa                       |            |      | Project No.            | 20-                | 548                                              |
|                                                            |                                        | -                             | RAVERSE    | ΠΔΤΔ |                        |                    |                                                  |
| SYSTEM:                                                    | F-29                                   |                               | INAVEINOL  |      | E NUMBER:              | T1                 |                                                  |
| 010121111                                                  | . 20                                   |                               |            |      | E LOCATION:            | Mech 4600          |                                                  |
| DUCT SIZE (ROUND)  DUCT SIZE (RECT.)  18                   |                                        | 18                            | " DIAMETER |      | " DEPTH                | Sq Ft =<br>Sq Ft = | 0.00                                             |
| AIR DENSITY I<br>STATIC PRES<br>DUCT AIR TEN<br>BAROMETRIC | S @ CL:<br>MP :                        | -0.3 ln\<br>70 De<br>29.92 ln | eg F       |      | DESIGN<br>ACTUAL<br>Se |                    | 2475<br>1740<br><b>1740</b>                      |
| AIR DENSITY I                                              | RATIO CORRECTI                         | ON =                          | 1.00       |      |                        |                    |                                                  |
| SCFM CORRE                                                 | CTION FACTOR                           |                               | 1.00       |      |                        |                    |                                                  |
| ACTUAL DENS                                                |                                        |                               | 0.075      |      |                        |                    |                                                  |
| TEST HOLE                                                  | 1                                      | 2                             | 3          | 4    | 5                      | 6                  | 7                                                |
| Α                                                          | 1147                                   | 1153                          | 858        | 1215 | 1081                   |                    |                                                  |
| В                                                          | 783                                    | 1443                          | 1441       | 1548 | 1352                   |                    |                                                  |
| C                                                          | 562                                    | 681                           | 1125       | 1173 | 770                    |                    |                                                  |
| D<br>-                                                     | 403                                    | 631                           | 961        | 945  | 615                    |                    |                                                  |
| E                                                          |                                        |                               |            |      |                        |                    |                                                  |
| F                                                          |                                        |                               |            |      |                        |                    |                                                  |
| G                                                          |                                        |                               |            |      |                        |                    |                                                  |
| H                                                          |                                        |                               |            |      |                        |                    |                                                  |
| 1                                                          |                                        |                               |            |      |                        |                    |                                                  |
| NO. OF READI                                               | INGS =                                 | 20                            | AVERAGE FF | PM = | 994                    |                    |                                                  |
| J                                                          |                                        |                               |            |      |                        |                    |                                                  |
| K                                                          |                                        |                               |            |      |                        |                    |                                                  |
| L                                                          |                                        |                               |            |      |                        |                    |                                                  |
| М                                                          |                                        |                               |            |      |                        |                    |                                                  |
| N                                                          |                                        |                               |            |      |                        |                    |                                                  |
| 0                                                          |                                        |                               |            |      |                        |                    |                                                  |
| P                                                          |                                        |                               |            |      |                        |                    | <del>                                     </del> |
| Q                                                          |                                        |                               |            |      |                        |                    |                                                  |
| R                                                          |                                        |                               |            |      | 1                      |                    | $\vdash$                                         |
| TECHNICIAN:                                                | David Burns                            |                               |            |      | •                      |                    |                                                  |