MA Leading by Example Council Meeting

January 12, 2021

State Government Progress – as of January 2021

Agenda

Welcome

Local and Regional Clean Energy News

LBE Updates

The Lay of the Federal Landscape

Cutting Carbon in the Commonwealth

State Facility Planning

Massachusetts Department of Energy Resources

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth

Massachusetts Department of Energy Resources

Local and Regional Clean Energy News

MA drops to **2nd place** in ACEEE ranking for first time after a 9-year run in 1st

SAY IT AIN'T SO JOE

JUST SAY IT AIN'T SO memogenerator.net

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth

2020 ACEEE State Energy Efficiency Scorecard

- 42.5 points earned out of a possible 50, 2 points behind 2019
 > 0.5 points behind California
- LBE still receives maximum possible points (6/6)
- Biggest point gain in Transportation category, thanks in part to setting targets to reduce vehicle miles traveled, EV incentive programs, tailpipe emission standards, and more
 - MA has more EV registrations and public charging stations per capita than most states
- Points still available in Transportation, Building Policies, and Appliance Standards
- 7 out of top 10 are in northeast/mid-Atlantic
 - New England states hold ranks 2, 3, 4, and 7

Combined Heat and Power no longer a category

Declining Price of Solar

- As cumulative installed solar PV capacity has increased, price per watt has decreased
- Price of solar electricity dropped 89% over last 10 years, from \$359 to \$40/MWh

The price of solar modules declined by 99.6% since 1976 Our World Price per Watt of solar photovoltaics (PV) modules (logarithmic axis) The prices are adjusted for inflation and presented in 2019 US-\$. \$100 1976 1977 1978 \$50 1979 With each doubling of installed capacity the price of solar modules dropped on average by 20.2%. This is the learning rate of solar modules. \$20 1983 1985 986 \$10 2000 \$5 2002 2005 2008 2009 \$2 2010 2011 \$1 2012 \$0.5 2MW 5MW

100 MW

Cumulative installed solar PV capacity (logarithmic axis)

10 MW

1.000 MW

10.000 MW

1 MW

=1,000,000 Watt

100.000 MW

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth

Local Solar Saves Billions in New England

- ISO New England published detailed data on electricity produced by every small (<5MW), local solar installation in New England from 2014-2019
- In sum, small scale solar in New England has:

Produced 8,600 GWh of electricity

Enough to power 1.2 million homes for 1 year

Reduced GHG emissions by 4.6 million tons equivalent to 1 million cars off the road for 1 year

Reduced NOx, SOx, and particulate matter by 6 million lbs

Saved \$87 million in public health costs

Saved customers \$1.1 billion in wholesale electricity costs

Source: ISO New England, 2020

Source: Vote Solar

Vermont State House Backed by Battery

- VT State House is first in nation to have backup power stored in batteries
- Installed fall 2020, the 250 kWh system replaced a 50+ year-old diesel generator
- The project is expected to:
 - Save taxpayers \$44,000
 - Reduce CO2 emissions by 6,388lbs per year
 - Improving the building's resiliency
 - Reduce demand charges

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth Source: VermontBiz

UML and Stony Brook Receive Energy Resilience Grant

- \$7.36 million grant from US Navy will fund nine distinct research projects focused on grid resilience, including:
 - Improving grid control
 - Security and infrastructure monitoring
 - Energy storage
 - Materials and grid management
 - Zero-carbon fuels
 - New training methods
- Project will run through fall 2022

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth Source: Microgrid Knowledge

Climate Warning Gas Pump Labels

- Last year, the British Medical Journal advocated for climate warning labels as "a low cost, scalable intervention to facilitate change in individuals' and society's views and behaviour"
- Cambridge, MA became first U.S. city to require these labels on gas pumps
- Sweden made warnings mandatory on gas pumps in May; a similar attempt recently failed in Berkley, CA

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth

First batch of "never-charge" EVs sold out

330 of Aptera's futuristic three-wheelers sold out in first 24 hours

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth

Massachusetts Department of Energy Resources

LBE Updates

2020 LBE Recognition Award Winners

2020 LBE Recognition Award Winners

MassEVolves Honorees

The 3rd annual MassEVolves virtual recognition ceremony celebrated the work of public and private institutions to promote Electric Vehicle adoption across the Commonwealth

✤Join us in congratulating our partners for their work:

- UMass Amherst
- UMass Boston
- UMass Dartmouth
- UMass Medical School
- Bristol Community College
- Holyoke Community College
- Worcester State University

2021 EV Purchase Challenge for State Entities

MassEVolves +

MassEVolves Participation

- MassEVolves supports and publicly recognizes organizations who take specific steps to encourage greater electric vehicle adoption
- All state entities (i.e., campuses, Executive Branch agencies, and quasipublic authorities) are now eligible to participate
- Participating entities pledge to take actions such as installing EV charging stations and converting fleet assets to zero emission vehicles (ZEVs)

2021 EV Purchase Challenge

- In partnership with LBE, MassEVolves and EEA recently announced an annual, voluntary challenge to advance progress toward the adoption of electric vehicles in state fleets in support of emissions reduction targets
- The EV Purchase Challenge offers a unique opportunity to demonstrate leadership and gain additional recognition for on-the-ground efforts to reduce environmental impacts
 - > Criteria for the 2021 Challenge includes the purchase of at least one fleet ZEV
- Interested state entities first submit a MassEVolves pledge and can then elect to participate in the EV Purchase Challenge

Benefits of Participation

Access to resources

- Educational opps. for staff and drivers, support for navigating vehicle selection and procurement, fleet analyses, and technical expertise
- Peer-to-peer learning about ZEV and charging experiences
- Public recognition for participation in MassEVolves
 Additional distinction for entities that have purchased or will be purchasing fleet EVs between 2018 and end of CY 2021

CONTACT: CATIE SNYDER (CATIE.SNYDER@MASS.GOV)

More Details Coming Soon!

LBE Solar Grant Updates

- PON extended through June 30, 2021, on <u>COMMBUYS</u>
 - Applications accepted and reviewed on a rolling basis until grant funds are no longer available
- New applications will be placed on hold due to potentially limited grant funding
- Submission of applications still recommended -- if projects under review do not move forward, we will return to the on-hold application queue
- Applicants will be kept apprised of any changes to application status or grant funding availability

MEMA, Salem State, Cape Cod Regional Transit Authority, and UMass Boston implemented solar grant projects under the current PON

5.7 MW of solar canopy and rooftop projects were recently awarded grants; announcements pending agreement finalization

Additional applications currently under review

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth

Massachusetts Departmen of Energy Resources

FY20 Tracking Form Update

Many thanks to everyone who has submitted their FY20 tracking form!

Salem State University Springfield Tech. Community College UMass Amherst UMass Boston UMass Lowell UMass Medical School Worcester State University

If you have not yet submitted, please reach out to Chelsea on the status of your form. Happy to answer questions and/or help with your submission!

Planning for the Decarbonized Future

...

So Much Happening, So Little Time...

Massachusetts Department of Energy Resources

LEARN MORE →

The Lay of the Federal Landscape

Biden Administration Climate and Energy Plan

- Rejoin Paris Climate Accord, with new emissions target
 - Power sector exceeded original goal of 28% reduction (33% reduction in 2019)
- Convene a world summit in November 2021 to "persuade (other countries) to join the U.S. in making more ambitious national pledges"
- 4-year, \$2 trillion climate plan
 - > 100% emission reduction from the electricity sector in the next 15 years
 - Economywide net-zero emissions by 2050

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth Source: <u>POWER</u>, JoeBiden.com

The key elements of the Biden Plan to Build a Modern, Sustainable Infrastructure and an Equitable Clean Energy Future include:

1. Build a Modern Infrastructure

Railroad electrification

Public transportation in cities of 100,000+ people

Infrastructure for pedestrians, cyclists

Redevelop Brownfield and underutilized community sites

The key elements of the Biden Plan to Build a Modern, Sustainable Infrastructure and an Equitable Clean Energy Future include:

- 1. Build a Modern Infrastructure
- 2. Position the U.S. Auto Industry to Win the 21st Century

The key elements of the Biden Plan to Build a Modern, Sustainable Infrastructure and an Equitable Clean Energy Future include:

- 1. Build a Modern Infrastructure
- 2. Position the **U.S. Auto Industry** to Win the 21st Century
- 3. Make Dramatic Investments in Energy Efficiency in Buildings

Construct 1.5 million efficient homes

The key elements of the Biden Plan to Build a Modern, Sustainable Infrastructure and an Equitable Clean Energy Future include:

- 1. Build a **Modern Infrastructure**
- 2. Position the **U.S. Auto Industry** to Win the 21st Century
- 3. Make Dramatic Investments in Energy Efficiency in Buildings
- 4. Pursue a Historic Investment in **Clean Energy Innovation** through creation of Advanced Research Projects Agency on Climate (ARPA-C)

Emission-free refrigerants

sequestration

The key elements of the Biden Plan to Build a Modern, Sustainable Infrastructure and an Equitable Clean Energy Future include:

- 1. Build a Modern Infrastructure
- 2. Position the **U.S. Auto Industry** to Win the 21st Century
- 3. Make Dramatic Investments in Energy Efficiency in Buildings
- 4. Pursue a Historic Investment in **Clean Energy Innovation**
- 5. Advance Sustainable Agriculture and Conservation

Restore areas impacted by resource extraction

Voluntary carbon farming market

Source: JoeBiden.com

The key elements of the Biden Plan to Build a Modern, Sustainable Infrastructure and an Equitable Clean Energy Future include:

- 1. Build a Modern Infrastructure
- 2. Position the **U.S. Auto Industry** to Win the 21st Century
- 3. Make Dramatic Investments in Energy Efficiency in Buildings
- 4. Pursue a Historic Investment in **Clean Energy Innovation**
- 5. Advance Sustainable Agriculture and Conservation

6. Secure Environmental Justice and Equitable Opportunity Economy

Source: JoeBiden.com

The key elements of the Biden Plan to Build a Modern, Sustainable Infrastructure and an Equitable Clean Energy Future include:

- 1. Build a Modern Infrastructure
- 2. Position the **U.S. Auto Industry** to Win the 21st Century
- 3. Make Dramatic Investments in Energy Efficiency in Buildings
- 4. Pursue a Historic Investment in **Clean Energy Innovation**
- 5. Advance Sustainable Agriculture and Conservation
- 6. Secure Environmental Justice and Equitable Opportunity Economy
- 7. Achieve a Carbon Pollution-Free Power Sector by 2035

Reform and extend tax incentives

Develop innovative financing mechanisms

Establish an Energy Efficiency and Clean Electricity Standard (EECES)

Source: JoeBiden.com

Biden's Climate and Energy Picks

Department of Interior

Deb Haaland House Representative since 2018

Environmental

Michael Regan Head of NC Dept of Environmental Quality

Department of Transportation

Pete Buttigieg Former Mayor, South Bend, Indiana

Department of Energy

Jennifer Granholm Former Governor of Michigan

Treasury Department

Janet Yellen Former Chair of Federal Reserve

Biden's White House Climate Picks

White House Council on Environmental Quality

Brenda Mallory Director of Regulatory Policy at Southern Poverty Law Center

Deputy National Climate Advisor

Ali Zaidi

N.Y. Deputy

Secretary of

Energy and

Environment

Gina McCarthy Head of EPA under President Obama

National Security Council Climate Envoy

John Kerry Former Secretary of State (among others!)

CARES Act and the Energy Act of 2020

Consolidated Appropriations Act of 2021 included funding for clean energy and energy efficiency programs under the \$35.2 billion "Energy Act of 2020" provision

Massachusetts Department

of Energy Resources

Source: <u>Senate.gov</u>, <u>Journal of</u> <u>Accountancy</u>, <u>GreenTechMedia</u>
CARES Act Tax Benefits

- Section 48 Energy Investment Tax Credit program expansion
 - > 26% credit retained for solar built though 2022; drops to 22% in 2023, 10% in 2024 (0% in 2024 for small-scale solar)
 - > 26% credit for waste energy recovery that begins construction through 2022, 22% in 2023
 - Offshore wind projects that begin construction from 2017-2025 eligible for 30% investment tax credit (up from 12% in 2019, 18% in 2020)

- Tax incentive extensions for clean fuels and technologies, including:
 - Energy-efficient commercial buildings
 - CO2 sequestration
 - Fuel cell motor vehicles
 - > Alternative fuel vehicle refueling stations
 - Second-generation biofuels

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth

Massachusetts Department of Energy Resources

Cutting Carbon in the Commonwealth: State Policies

Massachusetts' 2050 Roadmap & 2030 Clean Energy and Climate Plan

Hong-Hanh Chu GWSA Program Manager Executive Office of Energy and Environmental Affairs <u>Hong-Hanh.Chu@mass.gov</u>

- Integrated Analytical & Policy Development Process
- Statewide Emissions: Past & Future
- 2050 Roadmap: Key Findings

Overview

- Next Steps for 2050 Roadmap
- Sector-Specific Approaches to Achieve 45% Emissions Reduction
- Next Steps for 2030 Clean Energy and Climate Plan

Integrated Analytical & Policy Development Process

2050 Decarbonization Roadmap Study (www.mass.gov/2050Roadmap)

• Long range, comprehensive analysis of cost effective and equitable pathways to reduce greenhouse gas emissions by at least 85% and achieve Net Zero in 2050.

2030 emissions limit: 45% emissions reduction from 1990 baseline level

• Iterative process to determine the emissions limit that is technically feasible and cost effective while still maximizing the Commonwealth's potential to achieve Net Zero in 2050.

Clean Energy and Climate Plan for 2030 (2030 CECP)

(www.mass.gov/2030CECP)

• Implementation plan outlining strategies, policies, and actions for how the Commonwealth can achieve the 2030 emissions limit affordably and equitably.

Statewide Emissions: Past & Future

Net Zero emissions: sources of emissions = removal of emissions

2050 Roadmap: Key Findings

Energy System Transition to 2050: Energy Demand and Supply

Energy System Transition to 2050: Energy Costs & Benefits

Annual Statewide Energy System Costs

 Equipment replacement at end of life helps with cost effectiveness

Achieving Net Zero by 2050 would lead to an estimated annual impact of:

- 400 avoided deaths from cardiovascular and respiratory illness;
- 25,000 days of work absences avoided;
- 15,000 new jobs on average
- The health benefits are valued at \$4.5 billion annually, exceeding projected costs for the Net Zero pathways.

System Transformation to 2050: Buildings Sector

Figure 8. Percentage of Massachusetts built square footage by typology and vintage for commercial buildings. Note differing scale from Residential.

- Small homes are 60% of building emissions and are relatively easy to decarbonize
 - Pace & scale of retrofits: nearly 100,000 homes installing heat pumps or other renewable thermal systems each year for the next 25-30 years.
- Electrification of space and water heating is a low-risk, cost-effective strategy.
- Investing in envelope efficiency drives down costs to consumers and the entire energy system.
- Decarbonized fuels may be available and appropriate strategy for some buildings, but the use of gas for building heat must start to decline in the near term.
- New Construction is easier to build "2050 compliant" from the start.

System Transformation to 2050: Transportation Sector

- Cars, trucks, and buses are emissions-free and mostly electric; Zero-carbon fuels like hydrogen help power the rest of the transportation system.
 - ~50% of sales of zero emission light-duty vehicles by 2030
- A healthy public transit system, bike lanes, sidewalks, and transit-oriented development complement vehicle electrification and help to reduce congestion.

Figure 6. Illustrative replacement cycles of various vehicle types.

System Transformation to 2050: Land Use

- Forests and other natural and working lands are managed strategically to enhance carbon sequestration while maintaining and building ecosystem health and resiliency.
 - MA forests are projected to sequester 5-6 MMTCO₂e per year from now through 2050 (more if include soil carbon)
 - By 2050, we will need at least 4-9 MMTCO2e of addition annual sequestration services

Next Steps

The 2050 Decarbonization Roadmap Report and 6 technical reports are available on <u>www.mass.gov/2050Roadmap</u>

- Public webinar scheduled for questions and answers on the 2050 Roadmap approach and findings: Friday, Jan 15 from 12-1:30pm
- Update the 2050 Roadmap analysis in next few years to inform greenhouse gas emissions reduction strategies and policies.

Interim Clean Energy and Climate Plan for 2030: High-Level Summary

Estimated Emissions Reduction from Full and Timely Implementation

Sector	Gross Greenhouse Gas (GHG) Emissions (MMTCO ₂ e)			GHG Reductions in 2030 (from 2017)	
	1990	2017	2030		
Transportation	30.5	30.5	22.5 - 22.7	7.8 – 8.1	
Buildings	23.8	19.7	10.3	9.4	
Electricity	28.1	13.6	8.5 - 9.4	4.2 – 5.1	
Industrial & Non-Energy	12.0	9.2	7.8 - 9.7	(0.5)* – 1.4	
Total	94.5	73.0	49.1 – 52.1	20.9 – 23.9	
% Reduction From 1990	-	23%	45% - 48%		
*Negative reduction indicates an increase – this reflects partial mitigation of emissions growth					

Transportation Sector: ~ 8 MMTCO₂e Reduction

Where emissions reductions are expected to come from? Historical & Projected MA GHG Emissions

What do the emissions savings translate to? Key Metrics

How are we going to achieve it? Main Strategies

T1. Cap Transportation Sector 40 35 Light-duty zero-At least emission vehicles 750,000 30 GHG Emissions (MMTCO2e) (ZEV) on the roads 25 **Reduction in** 20% carbon intensity of 20 (approximate) diesel fuel 15 **Reduction in** 15% commuter miles 10 56 Light-duty vehicle 5 miles traveled (VMT) billion miles each year stabilized at this level 1990 2000 2010 2017 2030

Light-Duty

Emissions and Invest in Clean Transportation Solutions; T2. Implement Coordinated

Advanced Clean Vehicle Emissions and Sales Standards;

T3: Reduce Upfront ZEV Purchase *Cost Burden;*

T4. Deploy Electric Vehicle Supply Equipment & Enable Smart Charging;

T5. Engage Consumers & Facilitate Markets;

T6. Stabilize Light-Duty VMT & Promote Alternative Transportation Modes.

Aviation, Marine & Rail

Heavy-Duty

Buildings Sector: ~ 9.4 MMTCO₂e Reduction

Where emissions reductions are expected to come from? Historical & Projected MA GHG Emissions What do the emissions savings translate to? Key Metrics How are we going to achieve it? Main Strategies

Electric Sector: > 4.2 MMTCO₂e Reduction

What do the emissions savings translate to?

Where emissions reductions are expected to come from? Historical & Projected MA GHG Emissions

Key Metrics 30 25 Solar energy 5.2 GW generation 20 GHG Emissions (MMTCO2e) 15 Offshore wind 3.2 GW energy generation 10 5 New transmission **1 GW** to Quebec hydroelectricity 1990 2017 2000 2010 2030 Coal Petroleum Natural Gas Municipal Waste Combustion Imported Emissions 56

How are we going to achieve it? Main Strategies

 E1. Fill Current Standards & Execute Procurements;

E2. Develop and Coordinate Regional Planning and Markets;

E3. Align Attribute Markets with GWSA Compliance;

E4. Continue to Deploy Solar in Massachusetts;

E5. Develop a Mature Offshore Wind Industry in Massachusetts;

E6. Incorporate GWSA into Distribution-Level Policy Considerations.

Next Steps

- Public comment on the interim Clean Energy and Climate Plan for 2030 now until February 22, 2021.
 - Public webinars scheduled for discussion on the strategies, policies, and actions proposed in the interim plan:
 - Session 1: Thursday, January 28, 2021, 9:30am to 11am
 - Session 2: Saturday, February 6, 2021, 10:30am to 12pm
 - Visit <u>www.mass.gov/2030CECP</u> for more information.
- Finalize the Clean Energy and Climate Plan for 2030 in Spring of 2021.
- Work with state agencies on implementation and progress tracking & reporting.
- ▶ GWSA 15-Year Progress Report due by December 31, 2023.
- Next mandated update of the Clean Energy and Climate Plan is due by December 31, 2025.

Extra slides

Energy System Transition to 2050: Energy Flows

2020 Commonwealth Energy Use (TBtu)

2050 Commonwealth Energy Use (TBtu)

Ethanol Imports: 22

Figure 19. Building electricity load duration profile for selected Single-Family Home vintages. Hours for each modeled level of intervention are sorted from highest to lowest. Each building ECM is ordered independently in this figure meaning that calendar (equivalent weather) days are not aligned. For example, the baseline peak hours are in the summer while the peak hours for the retrofitted buildings are predominantly in the winter.

62

Figure 20. Simulated changes in terrestrial carbon stocks between 2020 and 2050 as affected by five alternative land-use scenario overview and impact on live carbon and emissions by year 2050.

Transportation and Climate Initiative Cap and Invest Program "TCI-P"

Presented to: LBE Council

Christine Kirby Assistant Commissioner January 12, 2021

Transportation & Climate Initiative

- 12 northeast and mid-Atlantic states and the District of Columbia
- Working together to reduce GHG emissions from transportation
- Georgetown Climate Center provides facilitation, conducts research, and supports the states

Georgetown Climate Center: A Resource for State and Federal Climate Policy

- Launched in 2009 as a resource to states
- Builds on the success of "RGGI"
- Works at the nexus of federal-state policies
- Supports states through research, facilitation, and convening

Transportation is the Largest Source of Carbon Pollution in the TCI Region

2017 Data, U.S. Energy Information Administration

Scale of the TCI Opportunity

- 72 million people
- \$5.3 trillion in GDP
- 52 million registered vehicles
- Modeled TCI cap (254 MMT CO₂) would cover more than three times the carbon pollution covered by RGGI cap

TCI States Engaged with People, Communities, and Businesses

- Three regional TCI workshops with participation of 1,000 people
- 4,300 submissions to TCI public input portal
- Community engagement by individual states
- <u>Common themes</u>: Investments in low carbon transportation, promote equity and public health *Now more important than ever*

December 2018 Statement

December 18, 2018 statement by nine states and Washington DC committing to:

"...design a regional low-carbon transportation policy proposal that would cap and reduce carbon emissions from the combustion of transportation fuels through a cap-and-invest program or other pricing mechanism... [and]... to complete the policy development process within one year, after which each jurisdiction will decide whether to adopt and implement the policy."

Draft Memorandum of Understanding

- Draft MOU released in December 2019 Included:
 - Program Goals & Schedule
 - Elements of a Model Rule
 - Investments & Equity
 - Regional Organization
 - Program Monitoring & Review
- Invited Input through February 28, 2020
- Final MOU: Late Spring 2020 (pushed to late 2020)

N	
Draft Memorandum of Understanding of the Transportation and Climate Initiative	
For Stakeholder Input	
Draft - 12/17/2019	
WHEREAS, climate change has resulted in the increased frequency and severity of extren weather events that have adversely impacted every Signatory Jurisdiction; and	se
WHEREAS, climate change poses a clear, present, and increasingly dangerous threat to the communities and economic security of each Signatory Jurisdiction; and	
WHEREAS, these jurisdictions participate in the Transportation and Climate Initiative, which was founded in 2010 as a collaboration of states and the District of Columbia to develop strategies to reduce greenhouse gas emissions from the transportation sector; and	
WHEREAS, Signatory Jurisdictions have individually committed to mitigate the risks of clima change through strategies intended to reduce greenhouse gas emissions across all sectors; and	te
WHEREAS, transportation currently accounts for approximately 40 percent of greenhouse gas emissions in the Signatory Jurisdictions; and	
WHEREAS, Signatory Jurisdictions will need to implement bold initiatives to mitigate the impacts of greenhouse gas emissions from the transportation sector; and	
WHEREAS, Signatory Jurisdictions remain committed to working with communities and businesses to develop and implement a regional program that addresses the urgent need to mitigate greenhouse gas emissions and other hannful pollutants generated by the transportation sector; and	
WHEREAS, accelerating the transition to cleaner, more efficient transportation sector will improve public health, create new economic opportunities, and provide enhanced mobility options for all communities; and	
WHEREAS, Signatory Jurisdictions recognize and are committed to investing in and mitigatin the impacts on low-income and disadvantaged communities that are disproportionately burdene by vehicular pollution, the costs of the current transportation system, the lack of access to clean transportation options, and vulnerable to the impacts of a changing climate; and	g đ
WHEREAS, continued collaboration on clean transportation strategies, including regional electric vehicle charging infrastructure; improved multi-modal transit infrastructure; more sustainable freight movement; and support for lower carbon fuels will provide greater economic social and public health benefits to residents and communities across the region than if each jurisdiction acted alone;	
	2

Features of Regional Cap & Invest Approach

LOW-CARBON

BIFNE

- Guarantees Pollution Reduction
- Regional Consistency of Allowance Prices
- Offers Flexibility in Compliance
- Drives Innovation and Investments in Low Carbon Transportation Programs

THE MARKET SETS THE CARBON PRICE IN A CAP-AND-INVEST SYSTEM

HISTORICALLY, THESE KINDS OF MARKETS HAVE DELIVERED LOWER-THAN-EXPECTED PRICES

LOWER-CARBON FUELS require fewer allowances
Time Flexibility, including unlimited banking
A allowances & multi-year compliance

- Program sets a cap that declines by 30% from 2023 to 2032, projecting a reduction of covered emissions by at least 26% for participating jurisdictions
- Estimated gas price impacts would start at 5 cents/gallon in 2023
- Projected to create \$250 million in revenue for the region, with \$150 million from Massachusetts
- Equity provisions include dedicating at least 35% of each jurisdictions revenues to overburdened and underserved communities

Range of Clean Transportation Investments in Modeled TCI Scenarios

\$554 million to \$2 billion

\$1.6 billion

\$333 million to

\$1.2 billion

Electric cars, light trucks and vans

Low & zero-\$425 million to emission buses and trucks

- Modeled annual clean transportation investments by strategy in 2032
- Combined \$1.84 billion to \$6.92 billion in modeled scenarios

\$259 million to \$970 million

Pedestrian and bike safety, ride sharing

Transit expansion

and upkeep

\$148 million to \$554 million

System efficiency

\$148 million to \$554 million

Indirect/ Other

Reducing Pollution Delivers Multiple Benefits

Preliminary Public Health Benefits

- Fewer asthma symptoms
- Fewer premature deaths
- Fewer traffic-related injuries
- Total estimated public health benefits:
 \$3 billion to \$10 billion

TCI Program Development Timeline

- December 17, 2019 Release of a regional policy proposal in the form of a draft Memorandum of Understanding (MOU), accompanied by modeling results that estimate the energy and emissions implications of different cap levels and investment scenarios, as well as potential costs and benefits of different program design options.
- January/February 2020 Gather and consider public input on Draft MOU
- September 2020: Public Engagement Webinars
 - September 16: "Program design, modeling, and the implications of COVID-19"
 - September 29: "Ensuring environmental justice and equity in a regional low-carbon transportation program"
- December 2020 MA, CT, RI & DC release a final Memorandum of Understanding.
- Fall/Winter 2020-2021 Participating jurisdictions develop a "model rule."
- **2021** Participating jurisdictions take any legislative steps that could be needed to implement the regional program and conduct rulemaking processes to adopt regulations.
- 2022 Program implementation begins with emissions reporting.
- **2023** The first compliance period begins.

Updates to MassEVIP (Electric Vehicle Incentive Program)

Program	Deadline	Equipment	Max incentive amount	Eligibility		
Direct Current Fast Charging*	3/19/21	Fast chargers	80% of hardware & installation (100% for public facilities, 60% for educational campuses), up to \$50k per station	Property owners with publicly accessible parking; educational campuses with 15+ students		
Public Access Charging	Rolling	Level 1* + 2 chargers	80% of hardware & installation (100% for public facilities*) up to \$50k per street address	Property owners or managers with publicly accessible parking Public must have access for min. 12 hours/day, 7 days/week		
Workplace and Fleets Charging	Rolling	Level 1* + 2 chargers	60% of hardware & installation, up to \$50,000 per street address	Employers and fleet operators with 15 or more employees in non-residential places of business*		
<u>Multi-Unit</u> <u>Dwelling and</u> <u>Campus* Charging</u>	Rolling	Level 1 + 2 chargers	60% of hardware & installation, up to \$50,000 per street address	Multi-unit dwellings with five or more residential units and educational campuses with at least 15 students		
Fleets Incentives*	Rolling	BEV, PHEV, and ZEM (motorcycles)	BEV: \$7,500 PHEV: \$5,000 ZEM: \$750	Municipalities, state agencies and public universities and colleges. No EV charging station required.*		

*New for this iteration

Creating a Clean, Affordable and Resilient Energy Future for the Commonwealth

Massachusetts Department of Energy Resources

State Facility Decarbonization Plans

Carbon Mitigation Planning

Fall 2020

The Charge

BE REVOLUTIONARY[™]

"In conformity with the adoption of our new tag line "Be Revolutionary," we should set an aggressive timeline for reaching a completely renewable energy future.

I am asking the Task Force to study, or oversee a study, that would ask what it would take to get to 100% reliance on renewable energy sources for heating, cooling, and electricity usage on our campus by 2030.

You may think of this as a serious engineering feasibility study. Much as many might have a "gut feeling" that these timelines are unrealistic, I would like to see a study conducted from a scientific/engineering point of view. This could be done by involving our own students, faculty, physical plant professionals, and outside consultants if necessary. We owe our student body such a study.

Thank you." – Chancellor Subbaswamy

This study is just a start.

Provides a framework for an energy transition

This is a rigorous assessment of the work needed to transition the campus to 100% renewable energy. A tool to create a carbon neutral future

The study creates a vision and analysis to engage the community, and for the administration to assess capital planning and financing options.

Is it possible to get to 100% reliance on renewable energy sources?

2025	2030	2032		
Νο	Maybe	Yes		
The study finds that while theoretically possible, it would be impractical due to the scale of change required on campus.	The study shows that the campus can achieves more than 80% reductions by 2030, but final stages of transformation will still be underway.	The study shows that it is possible to implement and reach 100%, but only if we start now!		

UMA emissions impact

Statewide Emissions % Share

UMA Emission Sources

What will it take to get to 100% renewable energy?

1	Transition Away From Steam	Replace the campus circulatory heating system from inefficient steam to efficient low-temperature hot water.				
2	Stop Burning Fossil Fuels	Leverage the low-temperature hot water system to avoid combustion. A modern system can trade and store energy using a variety of renewable thermal technologies.				
3	Accelerate Energy Efficiency	Upgrade and renovate buildings to lower energy demand and make them compatible with low-temperature hot water.				
4	Expand the Use of Renewable Energy	Expand on-site solar, ground-source heating and cooling and use more electricity from the rapidly greening grid.				
5	Integrate the Transition Into UMass Amherst Culture	The energy transition provides a once in a generation opportunity for research, education and higher-ed leadership aligned with the strategic motto: "Be Revolutionary"				

Current District Energy System

UMassAmherst

Future District Energy System

200% of source energy is used productively

UMassAmherst

Energy Transition Recommendation

Financial Implications

Cashflow - BAU vs Energy Transition Through 2050

UMassAmherst

Financial Implications

UMassAmherst

Cashflow - BAU vs Energy Transition Through 2050

Carbon Mitigation Task Force

Study Process

Carbon Mitigation Taskforce Members

Student	Representing	Staff	Office/Department	Faculty	Department	
Kimberly Acevedo	Graduate Student Senate	Ezra Small, (Operations Co- Chair)	Physical Plant	Dwayne Breger (Academics Co- Chair)	Enviro Conservation and Clean Energy Extension	
Anna Morel-Paletta	SGA, Sustainability	Ludmilla Pavlova- Gillham	Campus Planning	Krish Thiagarajan	Mechanical and	
Jonathan Blum	SGA, Economics		Design &	Sharmin	industrial Engineering	
	MASSPIRG 100%	Ted Mendoza	Construction Management	Ben Weil	Building Construction	
Caroline Williams	Renewable Energy	Ray Jackson	Physical Plant	Krish Thiagarajan SharminMechanical and Industrial EngineerBen WeilBuilding Construct TechnologyRobert PollinEconomicsAjla AksamijaArchitecture	recimology	
	Campaign	D's se Natis	Transportation	Robert Pollin	Economics	
	Masters in	Diana Noble	Services	Ajla Aksamija	Architecture	
Angle Gregory	Sustainability Science	Gary Ritter	Environmental Health	Scott Auerbach	iCons, Chemistry	
		-	& Safety			

Consulting Services Request for Proposal

- RFP Issued July 2019
- 13 Respondents, 5 brought to campus for interviews
- Budget proposals ranged from under \$200,000 to over \$1M, though most were between \$200-\$300k.
- CMTF made recommendation to Chancellor
- Consultant was contracted and ready to start in Jan/Feb 2020

The consultant team

Lead Engineering Firm

Renewable Energy Procurement

Scenario Planning and Data Visualization

Facilitation & Engagement

95

Climate Action Solutions

A Menu of Options

enu of Options				Scope 1 & 2 Solutions			Scope 3 Solutions	3	
Education & Behavior Change	Procurement Policy	Space Planning & Management	Strategic Energy Management	Renewable & Low-carbon Energy	District Energy Solutions	Transportation	Grounds Management, Policies & Procedures	Offsets / RECs	Waste Management
Student Engagement	Business Travel	Space Use Optimization	Campus-wide ECMs	On-site Renewables	Ground Source Heating / Cooling	Intra-campus connectivity	Irrigation	Green Power Purchases (RECs)	Waste Diversion
Improved Commuting	Air Travel	No-Net Growth Policies	Retro and Continuous Commissioning	Off-site Renewables	Central CHP	Inter-campus connectivity	Equipment Practices	Land Management	Waste Reduction
Avoided Travel	Fleet Fuel Switch	Zero-net Energy Buildings	Meter Monitoring Verification	Energy Storage	Building-level CHP	Parking	Landscape Design	Mission-linked Offsets	Composting
Lab / Researcher Engagement	Efficient Lab Equipment	Green Building Standards	Revolving Loan Fund	Fuel Cells	Hot-water heating	Human Powered Transportation		Other Offsets	
			ESCOs	Biomass	Central Chilled Water				
			Utility Rebate Programs	Biogas	Distributed Equipment Upgrades				
			Utility Contract Optimization	Hydro	Central Plant Upgrades				
			Demand-side Management	Modular Nuclear	Distribution Efficiency				
			Expanded Internal Implementation Staff	Other Alternative Fuels					

Energy Transition Recommendation

What we currently do know

Becoming carbon neutral actions will include:

- 1. Purchase renewable power from the grid
- 2. Transition away from steam for the heating system
- **3**. Implement disruptive infrastructure changes to adopt a low-temperature hot water system
- 4. Obtain additional funding beyond current budget
- 5. Change renovation and new construction standards

What we currently do not know

Unknown aspects to implementing a plan:

- 1. Community support, interest, and concerns
- 2. Impact from the pandemic on long term operations
- 3. State funding and support to become carbon neutral
- 4. Availability of emerging future technologies for low-carbon operations

UMass Dartmouth

Carbon Reduction and Energy Mater Plan 2020

Jamie Jacquart Assistant Director of Campus Sustainability

Decarbonization Commitments

Campus and State Commitments Baseline of GHG emissions from 2004: 25,622 Metric Tons

- Campus: Second Nature Climate Commitment: 2007
 - 80% reduction by 2050
 - (40% by 2020)
- State: Global Warming Solutions Act: 2008
 - All state facilities will reduce by 80% by 2050
- Campus: Chancellor's Carbon Commitment: 2019
 - 100% reduction by 2030, 2040 at the latest
- State: Global Warming Solutions Revision: 2020
 - 100% reduction by 2050

Chancellor's Carbon Commitment - 2019

The University's good faith commitment to achieving zero carbon emissions by 2030, or alternatively 2050:

- Energy and capital planning decisions will be framed towards achieving that goal;
- Budgetary decisions relating to energy and capital planning will be considered from a Life-Cycle Cost Analysis perspective;

Primary Drivers of Value Change

- Science
- Our students
- Research (our own faculty)
- System and State commitments
- Sunrise Movement

Progress to date

RAMBOLL Bright ideas. Sustainable change.

Reductions overview

- Switched from #6 fuel oil to natural gas in 2010
- Instituted and Energy Savings Contract \$25M
- Installed a co-generation plant
- Increased square footage of campus from 1.6M sq. ft. to 3.9M sq. ft.
 - Library infill project
 - Charlton College of Business & Pavilion
 - School for Marine Science & Technology East
 - New Residence Hall not yet been included
 - Still heating old residence halls
- Current reductions achieved of 13%

UNIVERSITY of Massachusetts Dartmouth

Energy Conservation Measures

Heating Plant Upgrades

Steam Service Valves and Controls

Maintenance Related Upgrades – Pipe Insulation

HVAC Upgrades

Premium Efficiency Motors

New HVAC System

Mechanical Upgrades

Reduce Ground Water Leakage

Variable Frequency Drives

Auditorium Absorption Chiller Replacement

Water Conservation

Domestic Water Upgrades

Co-Generation Plant

Generate 1.6 MW's of electricity and steam for heat/air-conditioning

Building Controls

Re-commission / Expand Existing BMS Controls

Add Central Building Management Controls

Electric and Steam Sub-meters

Lighting Improvements

Lighting Upgrades

Lighting Controls

Exterior LED Area Lighting

Building Envelope Improvements

Weatherization

Other Technologies

Kitchen Hood Controls

Energy Conservation Through Behavior Change®

Dartmouth

Challenges

Brutalist Architecture

- Large window to wall ratio
- Overhangs with exposed roof, 3 sides and floors
- Single pane windows (R-value of 1)
- Historic exterior and interior walls (R-value of 1.1)

UMass Dartmouth Annual GHG Emissions:

FY'08 to FY'19

UMD GHG Emissions Progress

Therefore, we needed TRANSFORMATION,

not incremental improvements

UMD Growth versus Emissions

•••••• Emissions (MTCO2e) —— Growth (SF) •••••• Emissions/1000 SF

Energy Master Planning Process

RAMBOLL Bright ideas. Sustainable change.
UMASS DARTMOUTH ENERGY MASTER PLAN

Tim Erwin – Ramboll

Energy Master Planning and Results

RAMBOLL Bright ideas. Sustainable change.

Data Analysis Findings

How does your campus compare?

Technologies Considered

Fuel Based Based

- Gas turbine (simple cycle)
- Gas turbine (combined cycle)
- Gas engine
- Solid oxide fuel cell CHP
- Gas boiler
- Oil boiler
- Gas-fired Rankine steam turbine

Renewables

- Photovoltaics
- Wind turbine
- Large Solar Thermal
- Nuclear
 - Micro (in development)

- Renewable Fuel
 - Bio-oil fired gas turbine (simple cycle)
 - Bio-oil engine
 - Biomass ORC cogeneration unit (wood chips)
 - Biomass ORC cogeneration unit (wood pellets)
 - Biomass HOB (wood chips)
 - Biomass HOB (wood pellets)
 - Bio oil boiler
 - Biogas production anaerobic digester

Electrification

.

- Electric boiler
- HP (air-to-water) large scale
- HP (air-to-water) small scale
- GSHP open loop (2300 m depth)
- GSHP closed loop, horizontal, individual
- GSHP closed-loop, vertical
- Heat Pump (sewage water-to water)
- Heat Pump (Seawater to water)
- Heat recovery chiller
- Conventional chiller

Technologies Recommended

Fuel Based Based

- Gas turbine (simple cycle)
- Gas turbine (combined cycle)
- Gas engine
- Solid oxide fuel cell CHP
- Gas boiler
- Oil boiler
- Gas-fired Rankine steam turbine

Renewables

- Photovoltaics
- Wind turbine
- Large Solar Thermal

Nuclear

• Micro (in development)

Renewable Fuel

- Bio-oil fired gas turbine (simple cycle)
- Bio-oil engine
- Biomass ORC cogeneration unit (wood chips)
- Biomass ORC cogeneration unit (wood pellets)
- Biomass HOB (wood chips)
- Biomass HOB (wood pellets
- Bio oil boiler
- Biogas production anaerobic digester

Electrification

- Electric boiler
- HP (air-to-water) large scale
- HP (air-to-water) small scale
- GSHP open loop (2300 m depth)
- GSHP closed loop, horizontal, individual
- GSHP closed-loop, vertical
- Heat Pump (sewage water-to water)
- Heat Pump (Seawater to water)
- Heat recovery chiller
- Conventional chiller

29 technologies considered → 8 technologies considered viable

Solution Screening and Selection Process

Selected Scenario

RAMBOLL Bright ideas. Sustainable change.

Implementation Plan

- Size assets
- Generate phased process flow diagram
- Identify geographical layout
- Generate preliminary electrical 1-line
- Generate implementation schedule

0	Task Mode	Task Name	Duration	Start	Finish	Predecessors	2014	2019	2024 2024	2029	2034
1		UMassD Energy Master Plan Schedule	2580 days	Fri 1/1/21	Thu 11/21/30			-			
2		Manual Schedule Inputs	0 days	Fri 1/1/21	Fri 1/1/21			1/1			
3	*	Completion of Energy Master Plan	0 days	Fri 1/1/21	Fri 1/1/21			▲ 1/1			
4	=;	Phase 1 - Enabling and Centralization	2083 days	Fri 1/1/21	Tue 12/26/28			-		-	
5		Funding authorization from state for Phase 1	36 mons	Fri 1/1/21	Thu 10/5/23	3		*			
5	-	Engineering	480 days	Fri 10/6/23	Thu 8/7/25						
0	=	Procurement	483 days	Fri 11/29/24	Tue 10/6/26						
8	-	Construction	780 days	Wed 12/31/25	Tue 12/26/28					-	
3		Phase 1 Complete	0 days	Tue 12/26/28	Tue 12/26/28	46,45,49,52,47,				12/26	
4		Phase 2 - Earnest Shift from Fossil Fuels to Electrification	1660 days	Fri 10/6/23	Thu 2/14/30				-		
5		Funding authorization from state for Phase 2	24 mons	Fri 10/6/23	Thu 8/7/25	5			*		
6		Engineering	440 days	Fri 8/8/25	Thu 4/15/27						
0		Procurement	500 days	Fri 10/2/26	Thu 8/31/28					-	
8	-	Construction	580 days	Fri 11/26/27	Thu 2/14/30						
12		Phase 2 Complete	0 days	Thu 2/14/30	Thu 2/14/30	111,93,98,101,				♠ 2/14	
13	-	Phase 3 - Alternate Fuel Sourcing for Full Carbon Neutrality	1380 days	Fri 8/8/25	Thu 11/21/30				r		
14	=;	Funding authorization from state for Phase	48 mons	Fri 8/8/25	Thu 4/12/29	55			*		
15	-	Electricity Procurement	262 days	Fri 4/13/29	Mon 4/15/30					r - 1	
20	-	Bio Diesel - Procurement	262 days	Fri 4/13/29	Mon 4/15/30						
25		Sole Sourced Engineering	3 mons	Fri 4/13/29	Thu 7/5/29	114				1	
26	=	Procurement	280 days	Fri 7/6/29	Thu 8/1/30						
41		Construction	199 days	Mon 2/18/30	Thu 11/21/30					-	
48		Phase 3 Complete	0 days	Thu 11/21/30	Thu 11/21/30	147,124,119				11/2	1
49	-	Project Complete	0 days	Thu 11/21/30	Thu 11/21/30	53,112,148				* 11/2	1

Implementation Costs

(Values in Millions of Dollars) Escalation = 4.5%	Phase 1	Phase 2	Phase 3	Total
Value in 2020	\$49.06	\$44.30	\$0.58	\$84.94
Funding Year	2025	2030	2035	-
Escalated	\$61.13	\$68.80	\$1.12	\$131.05

Phase 1: Implementation of district low-temperature hot water and chilled water

Phase 2: Implementation of geothermal seasonal storage system and supporting infrastructure including Netzero plant Phase 3: Switch from gas to alternative peaking fuel

Pathway to NetZero Carbon

RAMBOLL Bright ideas. Sustainable change.

Recommendations and Next Steps

- Assess funding options for implementation
- Complete geotechnical test borings to confirm ground conditions and seasonal storage capability
- Finalize purchasing strategy to enable net zero claim (i.e. renewable energy credits and carbon offsets)
- Align near-term replacement of building-level heating and cooling systems with recommended strategy
- Implement thermal energy efficiency measures where possible in planned building renovations and new construction
- Advance system design

Getting to Zero

Climate Action for Massachusetts State Buildings Cape Cod Community College Case Study

Getting to Zero: DCAMM Plan

	~~~	Budget Carbon	Measure Progress Count Carbon
DCAMM CLIMATE ACTION		Build for the Future	Efficiency Zero Net Low Carbon Fuels Resiliency
	<u></u>	Accelerate Progress	Goals Collaboration
		Improve Continuously	Skills Evaluation





# **Three Projects at Cape Cod Community College**

New Science Building -- Remove Old Science Building -- 25A Energy Project

Measure Progress **Budget Carbon** Count Carbon Efficiency Zero Net Build for the Future Low Carbon Fuels Resiliency Goals **Accelerate Progress**  $\checkmark$ Collaboration Skills Improve Continuously Evaluation 



DCAMM

CLIMATE

ACTION

PLAN

$( \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{A} \mathbf{A})$	ΛΟΤ	

# New Science Building (and demo of old)



### Make Efficiency the First Fuel

- Target EUI = 57
- Current MA LEED Plus standard

### **Strategic Electrification**

- Air to Water Heat Pump
- Back up natural gas boiler



- Capacity to achieve a ZNEB
- Roof of the "pavilion" should be solar ready (code)





# **All Electric Building Cuts Emissions**





# **Reducing Embodied Carbon**



# • Wood decking (CLT) in lieu of steel

- Lower embodied carbon
- Aesthetically pleasing
- Price difference unknown
- Thermally modified wood cladding
- Structural timber was not cost effective



# **Solar PPA Results in Net Zero Building**







# **Energy Project: Why Cape Cod Community College?**

- Commitment of the College to sustainability
- New building management system (BMS) was a priority
- Existing electric resistance heat
- Motivated facility team







# **Efficiency + Infrastructure + Electrification Planning**

- Efficiency Measure
- Planning for emerging electric technology

hot water

• Infrastructure sized for future electrification









# **Campus-wide Energy Project**

System	Existing	Future		
Heating	Electric resistance (most buildings)	Air Source Heat Pump VRF		
Air Conditioning	Portable, Window Units or None (most buildings)			
Ventilation	None/Little	Demand Control Destratification fans		
Heat Recovery	None	Energy Recovery Units		
Controls	Few	BAS Kitchen hood and cooler		
Other		Solar thermal DHW Domestic Water Upgrades VFDs Retro-commissioning		



# Improved Ventilation and Humidity Control -> Increase energy

# Ventilation systems are not functioning or have failed



Frozen Ventilation Louvers

# Humidity control is ineffective





# **Reduced Campus Carbon from Fuel and Electricity**





Page 136

# **Net Zero Campus is Within Reach**



Solar Potential = 2 MW





Page 137



Fred Mitchell Frederick.Mitchell@mass.gov

Sarah Hammond Creighton Sarah.Creighton@mass.gov

# **Next LBE Council Meeting**

### Save the Date!

## <u>Tentative:</u> Tuesday, March 9 10:00 am–12:00 pm

$\partial$
Upcoming Tentative
Meeting Dates:
May 11
July 13
, Sept 7
)





Massachusetts Department of Energy Resources

Creating A Clean, Affordable and Resilient Energy Future For the Commonwealth

()