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anners are concerned with extremes

P

Parts Of Massachusetts Facing
"Extreme’ Drought Conditions

WBUR, 2020

New England Deluged by Worst
Flooding in Decades

#  After days of record rainfall in Maine,

Massachusetts and New Hampshire,

thousands of residents have

evacuated their homes. In Peabody,
-~ Mass., north of Boston, a couple

== relied on the buddy system.

Brian Snyder/Reuters

By Katie Zezima

May 16, 2006 NYT, 2006 f ~ ]
BOSTON, May 15 — After days of record rainfall, rivers in Maine,

Massachusetts and New Hampshire have spilled over their banks,

Boston’s Epic Cold Snap Ties a
Century-0ld Record

It hasn't been this cold for this long since 1918.

by SPENCER BUELL . 1/2/2018, 11:22 am. @

Get a compelling long read and must-have lifestyle tips in your inbox every Sunday moming —
great with coffee!

EMAIL ADDRESS

Boston Magazine, 2018

The extreme. hane-chilling enld that has swent the region aver the nast

Boston has had 11 days of heat wave weather this
summer so far

By Caroline Enos Globe Correspondent, Updated August 12, 2020, 3:41pm
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Afternoon Heat Index Values
Valid: 08/12/2020 08:00 AM - 08/12/2020 08:00 PM EDT
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Most parts of Eastern Massachusetts, Connecticut, and Rhode Isiand hit 90 degrees while under 2 heat advisory Wednesday. NATIONAL WEATHER SERVICE

Boston Globe, 2020

Of particular concern is how the frequency and
intensity of these extremes may change over time.
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Scientists use process-based models to estimate future risks

1050
EXPLANATION

g 0 EEE ZE 1 Hydrologic response unit and number
% 750 RCP 8.5 0 —— Watershedboundary
§ 600 (2) ")~ Stream segment and number
®
Emissions Scenarios:  Global Climate Models: Watershed Models:
Emissions response to Climate response to Hydrologic response to

socio-economic change. emissions. climate and weather.

Each link in the chain contains uncertainty that propagates.
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Process-based models are ill-suited to quantify local hydro-

climatic risk

Horizontal Grid
(Latitude-Longitude) |

Vertical Grid j E
(Height or Pressure) | i
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||||||

Global Climate Models (GCMs):
Designed to capture large-scale
signals of climate change.

Errors and uncertainties arise when
downscalmg to state, basin scale;
uncertalntles are hard to quantlfy

PSRN

EXPLANATION
T Hydrologic response unit and number

o = Watershed boundary

0 }\ Stream segment and number
-
A

Direction of stream flow

Streamflow gage at outlet

Watershed Model:

Designed and calibrated to capture
flows on average.

Models generally underestimate
extreme events.



Outline

* (Brief) Review of Challenges Specific to Climate
Projections and Quantifying Future Risk

* Product #1: Projected Design Storms under Climate
Change (IDF curves)

 Product #2: A Stochastic Weather Generator for
Climate Projections across Massachusetts
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Challenges with quantiftying
future climate risk
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Bias in Climate
Model
Circulation

Observed NASH o,
. Western Edge ' —

6ON

40N + 7 =

Fig. 1 JJA mean precipitation rate (shaded. unit: mm day "),
850 hPa geopotential height (solid contour, unit: gpm), 850 hPa
subtropical high ridge line (dashed line) and moisture flux (vector,

Laifang Li et al., 2012 — Climate Dynamics
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Bias in Climate
Model
Circulation
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Bias in Climate
Model "}L\‘
Circulation
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Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE  Toward the credibility of Northeast United States

10-1002/20150D023177 summer precipitation projections in CMIP5
Key Points: and NARCCAP simulations

» Process-based evaluation of
CMIP5/NARCCAP models for

" "I 1
northeast JJA precipitation Jeanne M. Thibeault' and A. Seth
S Observed NASH N\ ~_
: Western Edge e
w i e tiﬁ_f[hl%’b:r ..':55

R
Y
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Philosophy in Developing Future Climate Projections

They should be tailored for the needs of decision-makers (fit for purpose):

* Example 1: Single Set of Projections for Planning + Design

* Projections should layer in complexity only when we can confirm
added complexity adds value (not driven by model biases)

* Example 2: Exploratory Vulnerability Analysis

* Added complexity in projections should be included, even if not
confirmed, to support vulnerability discovery
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Product #1: Projected design storms
under climate change across
Massachusetts (IDF curves)
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Intensity-Duration-Frequency (IDF) Curves

NOAA Atlas 14

PD5S-based depth-duration-frequency (DDF) curves
Latitude: 42 92787, Longitude: -75.1563"
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nature
g60501ence PERSPECTIVE

PUBLISHED ONLINE: 27 MARCH 2017 | DOI: 10.1038/NGEO2911

Complexity in estimating past and future extreme
short-duration rainfall

Xuebin Zhang', Francis W. Zwiers?, Guilong Li', Hui Wan' and Alex J. Cannon?

temporal ‘skilful scale’. Conventional RCMs may therefore not be
well suited to investigate the response of sub-daily extreme precipi-
tation to anthropogenic forcing. Moreover, high-resolution convec-
tion-permitting models may provide more realistic representation of
the local storm dynamics® that are important for reproducing the
magnitude of extreme local precipitation measurements. The use of
convection-permitting models, in combination with advanced sta-
tistical methods that make better use of spatial information, may be
required to reliably project future changes in short-duration pre-
cipitation extremes, although convection-permitting models are also
affected by their own uncertainties™. In the interim, it would be pru-
dent for those undertaking adaptation planning and requiring engi-
neering design values for long-lived infrastructure to be guided by
the CC relationship in most mid-latitude locations, consistent with
results for extreme daily precipitation from observations and mod-
els, bearing in mind that the levels of uncertainty in future projection 14
is high and may remain so for some time.
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Analysis across the Northeastern United States

Two separate studies:

. Steinschneider and Najibi (2022), Observed and
Projected Scaling of Daily Extreme Precipitation with
Dew Point Temperature at Annual and Seasonal Scales
across the Northeast United States, Journal of
Hydrometeorology, accepted.

45.0-

]
= 425
. Steinschneider and Najibi (under review), Precipitation
Scaling with Temperature in the Northeast US:
Variations by Weather Regime, Season, and
Precipitation Intensity, Geophysical Research Letters. 40.0-

lon

[15]
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OBSERVED
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Estimating the Extreme Precipitation —
Temperature Scaling Rate
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Thermodynamic Projections of Extreme Precipitation

BOSTON — 2030 (2°C warming) BOSTON - 2050 (3°C warming)
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Thermodynamic Projections of Extreme Precipitation
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Product #2: A stochastic weather
generator for climate projections
across Massachusetts
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Target Output

Location Info °

Extreme Precipitation > Chicopee Basin
1" (Observed)

Table shows decadal Days with precipitation > 1 inch

average for Precipitation
> 1 inch. The value Season 19605 19705 19805 1990s 2000s

highlighted in dark green

corresponding to the

season and decade Fall 1.4 23 1.4 2.4 2
currently selected on the )

o Spring 06 18 18 07 15
map. Hover over values
fo see the range Summer 14 2 18 17 16
(min/max) value for
individual years within Winter 0.8 21 07 0.9 0.4

the currently selected
decade

Extremg Precipitation > Chicopee Basin
1" (Projected)

Table shows estimated Projected change in # Days with precipitation > 1 inch

50th percentile values for
projected change in Season Baseline (days) Emissions Scenario 2030s 2050s 2070s 2090s

recipitation = 1 inch.
The value highlighted in Annual 6.46 High RCP8.5 - +1.49 +2.17 +2.43

dark green is the value

corresponding to the Medium RCP4.5 +0.62 +1.42 #1.35 +1.49
season, decade and .

) i Fall 2.04 High RCP5.5 +0.44 +0.61 +0.53 +0.64
emissions scenario
currently selected on the Medium RCP4.5 +0.25 +0.34 +0.28 +0.08
map. Hover over values
to see the likely range Spring 1.39 High RCP8.5 +0.12 +0.39 +0.73 +0.79
(10th to 90th percentile)
for any given value. Medium RCP4.5 +0.24 +0.3 +0.47 +0.42
Projecfed decreases are
denoted by a minus (-} Summer 1.90 High RCP8.5 +0.34 +0.52 +0.38 +0.26
sign .

Medium RCP4.5 +0.27 +0.28 +0.42

Winter +0.26 +0.78 +1.05

High RCP8.5

Medium RCP4.5 +0.2 +0.53 +0.52

[22]
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m List of Statistics calculated for Resilient MA
Precipitation Temperature
m Consecutive dry days 1 Average temperatures
m Extreme precipitation > 1 in 2  Cooling degree days
E Extreme precipitation > 2 in 3 Days<OF
m Extreme precipitation > 4 in 4 Days <32 F

Total precipitation 5 Days > 100 F
m Mean precipitation 6 Days >90 F
Maximum precipitation 7 Days >95 F
m Standard deviation of precipitation 8  Growing degree days
m 2-year return level of maximum precipitation 9 Heating degree days
m 5-year return level of maximum precipitation 10 Maximum temperatures

10-year return level of maximum precipitation 11  Minimum temperatures
m 20-year return level of maximum precipitation 12 Standard deviation of temperatures
m 50-year return level of maximum precipitation 13 Number of heatwaves

100-year return level of maximum precipitation 14  Average duration of heatwaves
m 90th percentile of precipitation 15 Maximum duration of heatwaves
m 99th percentile of precipitation 16 Number of coldwaves
Consecutive wet days 17  Average duration of coldwaves
m 18 Maximum duration of coldwaves
m 19 Number of heatstress
m 20 Number of coldstress
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Weather generator simulation strategy and scenario
development

Time 1 Time 2 Time t Time n

Surface Weather ? ? ........

Weather Reglme ........

Climate
Boundary Forcing

Weather generator simulates large-scale circulation and its associated weather

Boundary conditions reflect hypothesized climate change
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Weather generator simulation strategy and scenario
development

Warming Scenario Output Statistics

1.0° warming

8.0° warming
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Weather generator simulation strategy and scenario
development
Warming Scenario Output Statistics

Temperature Change

from GCMs (°C)

1.0° warming
8°+
6°T '
4° 1 :
2° T 8.0° warming
: -

N N N N

o o o 2

& & 3 38 Year
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Weather generator simulation strategy and scenario
development
Warming Scenario Output Statistics

Temperature Change

from GCMs (°C)

1.0° warming
8°+
6°T '
4° k :
2° T ; 8.0° warming
—

N N N N

o o o 2

& & 3 38 Year
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Model Verification

-~ Piscataqua-Salmon Falls

o
B

Middle COrﬁ\ﬁ:\ch)
Franklin <

Middle Hudson

; N e
Blackstone N =
( ~—~ \‘\
-4 iy Farmington ~-, 1
Quinebaug o N
1 Housatonic Shetucket @ { J
< S———
< ~
) Lower Connecticut bl
{ we e :‘ 'y s Cape Cod—:&_uvli,_'
2;—3 ! D) e L/
. e
3 e a5 ;
S 4 \ o
2 > Q-G ) =7 e~ 2

= — rf———3

obs

obs

obs

obs

mean
3.5
34 —_— e
e —
32— o<
3.1
3.1 32 33 34 35
sim
prob.dry.days
0.45 f
e
0.42 _e%
0.39 4425?
=
0.39 0.42 0.45
sim

mean.dry.spell.length

3.4 .
3.2
v
3.0
2.8
28 30 32 34
sim
cross.correlations
1.00 (]
0.95
0.90
0.85
0.80
0.80 0.85 1.00

0.90 095
sim

obs

obs

sim
prob.wet.days

0.625
0.600
0.575
0.550

0525 / ——————
0.525 0.550 0.575 0.600 0.625
sim

max.dry.spell.length
60
50
40

30
| E-E
20 .

20 30 40

sim

50 60

basin.monthly.means

obs

obs

obs

6.5
6.0
55
5.0
45

4.0

4.5

4.0

35

1.2

1.0

0.8

0.6

0.4

0.8

0.7

0.6

0.5

0.4

skew

w

40 45 50 55 6.0 65
sim

mean.wet.spell.length

f
&%
eos 8
= o
.
3.5 4.0 4.5
sim
annual.sd
wn
o)
[s)

| |

0.4 0.6 0.8 1.0 1.2

sim

basin.annual.sd

max

175 /
I -
| T
—
S
125 ——
100
100 125 150 175
sim

max.wet.spell.length

80

60

40‘ ——
—a—
=

20 -
20 40 60 80

sim

annual.skew

3

2

1 y
55—

0 1 2 3 4
sim

basin.annual.skew



Intro | IDF | SWG | Conclusions

Number of Additional Days with Precipitation > 1 Inch (Nashua Basin)

Emissi
Scenario

RCP8.5 0.85 1.56 2.02 2.41
>4 RCP4.5 0.85 1.07 1.35 1.35

RCP8.5 0.27 0.50 0.64 0.75
o RCP4.5 0.27 0.36 0.42 0.42

RCP8.5 0.17 0.23 0.34 0.42
-3 RCP4.5 0.13 0.21 0.21 0.23

RCP8.5 0.16 0.32 0.42 0.59
+08 RCP4.5 0.13 0.20 0.27 0.27

RCP8.5 0.26 0.45 0.63 0.74
1.18

RCP4.5 0.26 0.39 0.39 0.45
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Conclusions and Closing Thoughts

* We have produced two separate products to support climate
adaptation across Massachusetts

* These products combine statistical and process-based climate
modeling, and emphasize thermodynamic effects of climate change

* Future climate projections should balance the best available science
with the needs of decision-makers and decision making processes
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Bias in Climate Model Circulation

Projected Change
in June-Aug. Prcp

JJA 2080s-1980s GISS-E2-R

Projected Change in North

Atlantic Subtropical High

GISS-E2-R

Journal of Geophysical Research: Atmospheres

1 60N
i RESEARCH ARTICLE  Toward the credibility of Northeast United States
son 101002/201500023177 summer precipitation projections in CMIP5
i 50N Key Points: and NARCCAP simulations
+ Process-based evaluation of
o CHIPSNARCCAD ol o Jeanne M. Thibeault’ and A, Seth'
E L 40N —
) N
w 30N —
30N 20N
90w 8OW 70W BOW 40W
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N 50N
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Thermodynamic (temperature-driven) vs dynamic (circulation-driven) change: Regional
changes to extreme preC|p|tat|on CMIP5 changes to annual maximum precipitation (1950-2100)

nlature LETTERS a Thermodynamic contribution b Dyna co.ntribution
climate Chﬂllgﬁ PUBLISHED ONLINE: 15 MAY 2017 | DOI: 10.1038/NCLIMATE3287 = ey i -

Understanding the regional pattern of projected
future changes in extreme precipitation

S. Pfahl'™, P, A. O'Gorman? and E. M. Fischer!

a Change in annual maximum precipitation (Rx1day)

Signal of Change

E— [ — —— [ ——
5 <12 =8 =6 3 = 1 3 6 9 12 15 =5 =12 =9 =§ =3 1 3 6 9 12 15
(%K™ (%K™
b Uncertainty of changes in thermodynamic scaling a Uncertainty of changes in full scaling

Uncertainty in Signal
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Comparison of Hour vs Daily Scaling Rates

Summer Precipitation
Estimating the Extreme s

Precipitation — Temperature
Scaling Rate

—
~
-- -

Scaling Rate = (1+a)ATemperature
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Theory suggests a=0.07
(Clausius-Clapeyron rate)
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Large scale pressure patterns: 500 hPa
geopotential height
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Weather generator simulation strategy and scenario

development

Regionally, climate can be
divided into regimes that
impact local weather.

GCMs can provide key
insight to how these
regimes may change over
time.
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