Evapotranspiration (ET) Index Revision

June 15, 2022

Massachusetts Drought Management Task Force meeting

- Precipitation
- ET

Ť

- Streamflow
- Groundwater
- Lakes & impoundments
- Fire soil moisture in top 8"

Causes→ One or both Index Severity Levels elevate first

Impacts \rightarrow Index Severity Levels elevate after Precipitation &/or ET

Goals for Revision

Ð

Timely identification of drought onset/intensification

• Currently, no signal from Crop Moisture Index (CMI) - can cause delays in drought onset/intensification identification

- Show the effect of temperature/ET on "available" precipitation
 - Help identify "flash droughts" by knowing when impacts will occur more quickly than when just low precip
 - With climate change, importance of identifying heat/ET in addition to precip-induced dryness

Process

Analyses conducted by Cornell University

New England Drought Early Warning System

- Evaluation of results by technical group similar to 2019 DMP revision
- State and federal staff comprising of USGS, NOAA NWS, NOAA NERFC, MassDEP, DFG, DCR, EEA
- Reviewed analyses and made recommendation

Options Evaluated

- Evaporative Stress Index (ESI)— ET as calculated by energy balance using remotely sensed temperature
- Gravity Recovery and Climate Experiment (GRACE), National Water Model (NWM), Climate Prediction Center Soil Moisture (CPCSM) – Soil moisture
 → net effect of precip, ET and infiltration
- Standardized Precipitation and Evapotranspiration Index (SPEI) Precipitation minus theoretical maximum ET
- Evaporative Demand Drought Index (EDDI) Theoretical maximum ET (based on temperature, radiation, wind, etc.), aka 'thirst of the atmosphere'

Evaluation Criteria

Logistics

- Spatial resolution unique value per drought region
- Historical availability of data for evaluating against past droughts
- Long reference period/period of record for calculating percentiles
- Appropriate look-back periods or depths for drought monitoring
- Update frequency (at least 1/week)
- Timely availability

Performance

- Timely drought onset/intensification identification, especially when precipitation amounts are still near normal
- Effect of temperature/ET on drought amount of precipitation expected to remain available

Logistics Criteria

Index	Spatial	Time Period	Reference Period	Lookbacks	Update	Timely
	Resolution	Available for Use	(for percentile	Calculated or	Frequency	Availability
	(average miles	(for evaluating	calculations)	Depths Available		(Days past
	between	index)				observation)
	points)					

Logistics Criteria

Index	Spatial Resolution (average miles between points)	Time Period Available for Use (for evaluating index)	Reference Period (for percentile calculations)	Lookbacks Calculated or Depths Available	Update Frequency	Timely Availability (Days past observation)
CPCSM	No <i>,</i> (50 - 68 mi)	2008-present	1932-2000	Daily, Monthly	Daily, Monthly	1-day (daily), 5-day (month)
ESI	Yes (5 - 7 mi)	2002-present	2000-present	4-Week, 12-Week	Weekly	3+ day lag

Logistics Criteria

Index	Spatial Resolution (average miles between	Time Period Available for Use (for evaluating index)	Reference Period (for percentile calculations)	Lookbacks Calculated or Depths Available	Update Frequency	Timely Availability (Days past observation)
CPCSM	No, (50 - 68 mi)	2008-present	1932-2000	Daily, Monthly	Daily, Monthly	1-day (daily), 5-day (month)
ESI	Yes (5 - 7 mi)	2002-present	2000-present	4-Week, 12-Week	Weekly	3+ day lag
GRACE	Yes (6 – 8.5 mi)	2002-present	1948-2014	surface (2cm), root zone (100cm)	Weekly	2+ days lag
NWMv2	Yes (1.2 mi)	2001-2020	1979- 2018	0-10 cm, 10-40 cm, 40-100 cm, 100-200 cm	Daily	Current
SPEIv2	Yes, at least 1 station per region	Varies by station like precipitation	Varies by station like precipitation	1-Month to 12-Months	Weekly	1-day
EDDI	Yes (6 - 8.5 mi)	1980-present	1979-2015	1-Week to 12-Months	Daily	5-day lag

<u>https://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring/US/Soilmst/Soilmst.shtml;</u>
 <u>https://www.drought.gov/data-maps-tools/evaporative-stress-index-esi;</u>
 <u>https://spei.csic.es/home.html;</u>
 <u>https://psl.noaa.gov/eddi/</u>

How to Evaluate Performance

- Appropriate season
- Frequency Matching the Index Severity Level percentiles specified in the DMP
- Timing Earlier elevated signal relative to other indices and historical droughts when there are high temperatures
 - Early similar to precipitation index so it signals onset and/or intensification

Index Severity	Percentile
Level	Range
0	>30%
1	>20 and ≤30%
2	>10 and ≤20%
3	>2 and ≤10%
4	≤2%

Seasonality of ET

Monthly average temperature (°F)

Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Boston, MA	30	32	38	49	58	68	74	73	66	55	45	30
Worcester, MA	25	27	35	46	57	65	71	69	62	51	40	25

Monthly average potential evapotranspiration (PET) estimates (inches) for a grass-covered surface

Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Boston, MA	0.4	0.6	1.2	2.0	3.1	3.6	4.0	3.5	2.3	1.4	0.6	0.4
Worcester, MA	0.3	0.5	1.1	2.0	3.2	3.6	4.0	3.5	2.3	1.3	0.6	0.3

Values reflect averages over the years 1991-2020.

This table is adapted from data provided by the Northeast Regional Climate Center at <u>http://www.nrcc.cornell.edu/wxstation/pet/pet.html</u> and http://www.nrcc.cornell.edu/wxstation/nowdata.html .

Matching Index Severity Level Percentiles

Index Severity Level	0	1	2	3	4
DMP Percent of Months	70	10	10	8	2
+/-10%	63-77	9-11	9-11	7.2-8.8	1.8-2.2
СМІ	96	3	1	0	0
ESI-04wk	71	11	7	6.1	4.8
GRACE-rtzsm-100cm	67	11	12	10.3	0.4
NWM-SM-40cm	74	13	8	5.5	0
SPEI-02mn	73	10	8	7.9	1.5
EDDI-02mn	67	11	12	7.2	3.2

Most indices perform well:

- relative to CMI
- for Level 0 and Level 1 droughts (i.e., onset)

Crop Moisture Index (CMI), Central Region

- Rarely provides a signal
- Can delay drought calls
 - 1 of 3 onset signals like precipitation & streamflow
- More important with newer, faster developing flash droughts
- Why doesn't it work?
 Developed and calibrated for central US; not as appropriate for the NE US

Used USDM drought levels in analyses because more consistent methods across time than MA DMP but the 5 USDM drought levels were converted to the corresponding 4 MA drought levels

Product Comparison - 2016 Drought

GRACE severity level, Central Drought Region

----- SPI-60dy

----- Streamflow

GRACE-rtzsm

Index Severity

Severity

Index

4

GRACE root zone - soil moisture at 40 in

- Satellite product
- Ref period: 1948-2014

EDDI – max evapotranspiration demand /PET

Penman-Monteith, uses reference crop of well watered 0.5m alfalfa

Percentile

over POR

11th 67th

51th

47th

23th

15th

47th

23th 12th

7th

Ref period 1979-2015 •

USDM

Product Comparison - 2020 Drought

GRACE severity level, Central Drought Region

2020 Temp	Average perature	
Month	Percentile over POR	
Mar	12 th	
Apr	85 th	
May	63 th	
Jun	15 th	
Jul	2 th	record high
Aug	7 th	– summer
Sep	28 th	
Oct	43 th	
Nov	2 th	
Annual	4 th	

Percentiles are for the 129 years between 1892 and 2021. Lower percentiles=warmer months/year

<u>GRACE</u>

-generally running low despite **record** heat months

 may be due to moderation by precip rewetting soil moisture as seen by relatively low index levels

Product Comparison - 2016 Drought

NWM severity level, Central Drought Region

····· Streamflow

SPI-60dy

5 2

.....

NWM-SM-40cm

NWM 40 cm – soil moisture at 0-16 in depth

- modeling
- Ref period: 1979-2020

EDDI – max evapotranspiration demand /PET

- Penman-Monteith uses reference crop of well ٠ watered 0.5m alfalfa
- Ref period 1979-2015

USDM

2016 Average							
Tempe	iemperature						
Manth	Percentile						
wonth	over POR						
Mar	11 th						
Apr	67 th						
May	51 th						
Jun	47 th						
Jul	23 th						
Aug	7 th						
Sep	15 th						
Oct	47 th						
Νον	23 th						
Annual	12 th						

Percentiles are for the 129 years between 1892 and 2021. Lower percentiles=warmer months/year

Product Comparison - 2020 Drought

2020 / Temp	Average erature	
Month	Percentile over POR	
Mar	12 th	
Apr	85 th	
May	63 th	
Jun	15 th	
Jul	2 th	record high
Aug	7 th	Summer
Sep	28 th	
Oct	43 th	
Nov	2 th	
Annual	4 th	

Percentiles are for the 129 years between 1892 and 2021. Lower percentiles=warmer months/year

<u>NWM</u>

-does not spike until September despite July and August record heat

-may have been moderated by precipitation in July & August

Product Comparison - 2016 Drought

SPEI – Precip minus PET

- Thornthwaite PET method uses monthly temp, latitude to adjust sunlight hours based on date
- Ref period varies by station

EDDI – max evapotranspiration demand /PET

- Penman-Monteith uses reference crop of well watered 0.5m alfalfa crop
- Ref period 1979-2015

2016 Average					
Percentile Month over POR					
Mar	11 th				
Apr	67 th				
May	51 th				
Jun	47 th				
Jul	23 th				
Aug	7 th				
Sep	15 th				
Oct	47 th				
Nov	23 th				
Annual	12 th				

Percentiles are for the 129 years between 1892 and 2021. Lower percentiles=warmer months/year

Product Comparison - 2020 Drought

2020 A Tempo	Average erature	
Month	Percentile over POR	
Mar	12 th	
Apr	85 th	
May	63 th	
Jun	15 th	
Jul	2 th	record high
Aug	7 th	summer
Sep	28 th	
Oct	43 th	
Nov	2 th	
Annual	4 th	

<u>SPEI</u>

-does not signal record high heat in July and may be due to moderation by precip =L0
-this also delays intensification signal in August and moderates signal in September despite increasing impacts in streamflow

Recommendation - 2-month EDDI

- Is better than CMI and other options at signaling the role of temperature and ET in drought
- Helps identify drought onset/intensification in a timelier manner especially when it is ET rather than precipitation-induced
- Provides additional information to complement the other indices