

Long-Range Planning and System Improvements at

11, 2013

Agenda

- Background
- Water Distribution Study
- Leak Detection/ System Maintenance
- Metering Efforts
- Future Direction and Challenges

Made Land

Original Plan for Jamaica Pond Aqueduct Company 1795

Boston Water System: 1845-1870 Cochituate System

Boston Water System: 1900 Nashua River

Current Water Supply to Boston

Water Main Construction

L. S. P. L. RELAVING 48 IN. MAIN DAMAGED BY ELECTROLYS

NOV. 23, 1910.

Water Distribution System

- Five pressure zones 60 psi -112 psi
- Supplied from 29 metered locations
- 1011 miles of pipe from 4 inch to 48 inch
- Approximately 18214 valves
- 13,618 hydrants
- 90,000 Accounts

Pressure Zone	Feet	Miles
High Pressure Fire System	87,870	17
Northern High	25,478	5
Northern Low	470,427	89
Southern Extra High	425,248	81
Southern High	2,956,110	560
Southern Low	1,371,429	260

Source: Boston Water & Sewer Commission

Pipe Installation Time Periods

Approximately 87.4% of the system is cement lined

Miles of Pipe by Material

Material

Water Distribution Study

1967 – Transmission System
1986 – New Design Criteria
Line or Replace 17 Miles per Year

2011 Water Distribution Study

System Description and History MWRA Meter Assessment Unaccounted-for –Water Hydraulic Conditions Water Quality External Corrosion Facilities Information

Water Study Topics

Facilities Assessment Operational Practices Design Criteria Software and Technology Tools Financial Assessment Final Report with Recommendations

Boston Water Pipe

Early Thick-Walled Cast Iron/Earliest Pipe in 1848

Thinner Walled Pipe - 1950'sDuctile Iron pipe - 1970

1915 Pit Cast Pipe -1" Wall

1980 Ductile Iron Pipe – ¹/₂" Wall

Cement Lined & Unlined Pipe Samples

Removal of Pipe Samples

BWSC Water Main Breaks 1975 to 2012

Total Breaks: 1215

Pipe Break Locations

Corrosion Rates and Soil Types – Likelihood of Failure

Consequences of Failure -Leverage GIS and Hydraulic Model

Water Age/Chemistry Historic Shorelines

Economic Zones

Critical Users

Roads and Tunnels

Hydraulic Criticality

Annual Rehabilitation Planning (ARP) Model

Highest Priority Pipe Renewal – ARP Output

KANEW: Convergence of Renewal Requirements

- Old 1800's and Early 1900's Cast Iron Pipe and Spun Cast Pipe with long lives are due for replacement mid- century
- Mid 1900s Cast Iron Pipe and Newer Ductile Iron
 Pipe from 1960s and
 1970s also coming due
 mid-century

Trend in Pipe Wall Thickness

Conclusions

- New Understanding of Boston's Water System
- No longer Rely on Old RulesLong Range Plan

Leak Detection Efforts

6 full time personnel 3 additional as needed Required to survey entire system every 2 years

BWSC Engineering Services Leak Detection Totals By Year				
YEAR	Number of Leaks Detected	Miles of Main Surveyed		
2004	273	683		
2005	180	815		
2006	197	985		
2007	194	809		
2008	167	672		
2009	231	841		
2010	252	994		
2011	187	776		
2012	274	753		
Total:	1,955	7,328		

Previous Leak Detection Methods

Newer Leak Detection Methods

Permaloggers

Newer Leak Detection Methods

NEWER LEAK DETECTION METHODS

CORRELATORS

Leak Location Pinpointed

Boston's Water Consumption Trend 1977 - 2012

Metering Efforts

Automated Metering Reading System

- System operating successfully for over 10 years
- 90,000 residential/commercial meters
- Four reads per day for each meter 99% accuracy
- Transmits over a secured FCC licensed frequency
- Reduced calls to Customer Service

What is AMR and how does it work?

Data Collection Units (DCU) Locations

• 62 DCUs

- Boston School Department
- Non-School Locations
 - EDIC
 - 1 Ashburton Place
 - Boston University

What do we get?

Readings

Date	Reading	Comments
8/28/2003 7:58:41 PM	16,622	
8/28/2003 1:56:45 PM	16,611	
8/28/2003 7:52:34 AM	16,562	
8/28/2003 1:49:41 AM	16,542	
8/27/2003 7:48:27 PM	16,520	
8/27/2003 1:45:30 PM	16,501	
8/27/2003 7:44:14 AM	16,488	
8/27/2003 1:44:28 AM	16,465	
8/26/2003 7:42:19 PM	16,425	
8/26/2003 1:39:53 PM	16,391	
8/26/2003 7:34:37 AM	16,378	
8/26/2003 1:29:37 AM	16,361	
8/25/2003 7:27:26 PM	16,334	
8/25/2003 1:25:27 PM	16,307	
8/25/2003 7:22:05 AM	16,286	
8/25/2003 1:20:40 AM	16,275	
8/24/2003 7:19:27 PM	16,259	
8/24/2003 1:16:35 PM	16,237	

Readings | Management Reports | Tamper Reports | DCU | 1

Account Information on Web

- On-line bill payment
- Consumption

Proactive Customer Service

- Collected data used to support analyses for:
 - Daily Consumption Review High/Low usage
 - Consumption Analysis Trends/Patterns Failing Meters
 - Anomalies Theft/Broken Meters
 - Leak Detection
 - Customer Service Web

Strategy

- Upgrade the AMR system install new software, DCUs, MTUs and meters
- Replacement process proposed in 2 phases:

Phase I

- Concentrate on replacing all MTUs on all accounts >1.5" meters
- Large meters are retrofitted and not "changed out"
- Largest meters (7000+) account for 55% of BWSC sales

Phase II

• Establish a 3-5 year plan to replace the remaining 82,000 meters and MTUs.

Benefits

- More accurate data From 4 reads to 24 reads/day
- Two-way communication
- Reduced cost Switch from cellular to WiFi
- More efficient downloads and data processing
- Improved analysis of data
- More robust reporting Better customer service

Constant Usage Report

Zero Consumption

Identify Sources of Lost Revenues

- Leaks
- Under-registering meters
- Theft
- Non-metered accounts
- Non-metered construction flushing
- Construction bypass
- Un-permitted street sweepers
- Other unaccounted-for water

Future Direction and Challenges

- In leadership
- Governance
- Employees
- Revenue
- Regulations on top of decaying infrastructure
- Adapting to our changing climate

Political Climate

Political Hyper Frenzy over rates- risk averse"

"Have to justify every cost- much more of bottom line new normal"

 "Culture change has been pretty drastic"

"The trust is going away"

Workforce Issues

- Most have reduced staffing, some drastically
- Public pension changes & eroding benefits creating mass exodus
- "Losing critical mass of professional talent"

Decaying Infrastructure

- Still trying to address, but struggling with priorities in revised CIP budgets
- Competing requirements; wastewater, drainage
- "Are we replacing the right things?"

- Across the nation, utilities are seeing consumption/revenues drop
- Water saving devices have made an impact as well as efforts by consumers
- Seek additional sources of revenue
- Raise rates
- Conflicts with need for Stormwater revenue

Climate Change

- Will sea level rise impact coastal groundwater sources?
- Increase in severe droughts
- More intense rainfall causing water quality problems in surface supplies?
- Intense heat periods causing shortages in summer supply

Discussion

