

\_

Massachusetts Division of Marine Fisheries Technical Report TR-68

### Massachusetts Striped Bass Monitoring Report for 2017

Gary A. Nelson Massachusetts Division of Marine Fisheries Annisquam River Field Station 30 Emerson Avenue Gloucester, MA 01930

Commonwealth of Massachusetts Executive Office of Energy and Environmental Affairs Department of Fish and Game Massachusetts Division of Marine Fisheries

December 2018

### Massachusetts Division of Marine Fisheries Technical Report Series

Managing Editor: Michael P. Armstrong

The Massachusetts Division of Marine Fisheries Technical Reports present information and data pertinent to the management, biology and commercial and recreational fisheries of anadromous, estuarine, and marine organisms of the Commonwealth of Massachusetts and adjacent waters. The series presents information in a timely fashion that is of limited scope or is useful to a smaller, specific audience and therefore may not be appropriate for national or international journals. Included in this series are data summaries, reports of monitoring programs, and results of studies that are directed at specific management problems.

All Reports in the series are available for download in PDF format at:

https://www.mass.gov/service-details/marine-fisheries-technical-reports or hard copies may be obtained from the Annisquam River Marine Fisheries Station, 30 Emerson Ave., Gloucester, MA 01930 USA (978-282-0308).

Recent publications in the Technical Report series:

TR-67 Chosid, D. M., M. Pol, B. P. Schondelmeier, and M. Griffin. 2019. Early Opening Experimental

Fishery for Silver Hake/ Whiting in Small Mesh Area 1 and the Western Raised Footrope Exemption Area.

TR-66 Nelson, G. A., S. H. Wilcox, R. Glenn, and T. L. Pugh. 2018. A Stock Assessment of Channeled Whelk (*Busycotypus canaliculatus*) in Nantucket Sound, Massachusetts.

TR-65 Nelson, G. A. 2017. Massachusetts Striped Bass Monitoring Report for 2016.

TR-64 Nelson, G. A. 2016. Massachusetts Striped Bass Monitoring Report for 2015.

TR-62 Nelson, G. A. 2015. Massachusetts Striped Bass Monitoring Report for 2014.

TR-61 Nelson, G. A., J. Boardman, and P. Caruso. 2015. Massachusetts Striped Bass Tagigng Programs 1991–2014.

TR-60 Nelson, G. A. and J. Stritzel-Thomson. 2015. Summary of Recreational Fishery Data for Striped Bass Collected by volunteer Anglers in Massachusetts.

TR-59 Nelson, G. A. 2014. Massachusetts Striped Bass Monitoring Report for 2013.

TR-58 Elzey, S. P., K. J. Trull, and K. A. Rogers. 2015. Massachusetts Division of Marine Fisheries Age and Growth Laboratory: Fish Aging Protocols.

TR-57 Chase, B.C., K. Ferry, and Carl Pawlowski. 2015. River herring spawning and nursery habitat assessment: Fore River Watershed 2008-2010.

TR-56 Sheppard, J.J., S. Block, H.L. Becker, and D. Quinn. 2014. The Acushnet River restoration project: Restoring diadromous populations to a Superfund site in southeastern Massachusetts.

TR-55 Nelson, G. 2013. Massachusetts striped bass monitoring report for 2012.

TR-54 Chase, B.C., A. Mansfield, and P. duBois. 2013. River herring spawning and nursery habitat assessment.

TR-53 Nelson, G.A. 2012. Massachusetts striped bass monitoring report for 2011.

TR-52 Camisa, M. and A. Wilbur. 2012. Buzzards Bay Disposal Site Fisheries Trawl Survey Report March 2001-March 2002.

TR-51 Wood, C. H., C. Enterline, K. Mills, B. C. Chase, G. Verreault, J. Fischer, and M. H. Ayer (editors). 2012. Fourth North American Workshop on Rainbow Smelt: Extended Abstract Proceedings.

TR-50 Hoffman, W. S., S. J. Correia, and D. E. Pierce. 2012. Results of an industry-based survey for Gulf of Maine cod, May 2006-December 2007.

TR-49 Hoffman, W. S., S. J. Correia, and D. E. Pierce. 2012. Results of an industry-based survey for Gulf of Maine cod, November 2003—May 2005.



Massachusetts Division of Marine Fisheries Technical Report TR-68



# Massachusetts Striped Bass Monitoring Report for 2017

Gary A. Nelson

Massachusetts Division of Marine Fisheries Annisquam River Marine Fisheries Station Gloucester, MA

December 2018

Commonwealth of Massachusetts Charles D. Baker, Governor Executive Office of Energy and Environmental Affairs Matthew A. Beaton, Secretary Department of Fish and Game Ronald Amidon, Commissioner Massachusetts Division of Marine Fisheries David E. Pierce, Director

Summary: During 2017, the Massachusetts commercial fishery for striped bass sold about 41,222 fish weighing 823,409 pounds. The recreational fishery harvested about 392,347 striped bass weighing over 5.6 million pounds. Total losses due to recreational fishing (including release mortality) were 1,550,258 fish weighing over 12 million pounds. Combined removals (commercial harvest plus recreational harvest and dead releases) were 1,591,480 fish weighing over 13 million pounds.

#### Introduction

This report summarizes the commercial and recreational striped bass fisheries conducted in Massachusetts during 2017. Data sources used to characterize the state fisheries come from monitoring programs of the Massachusetts Division of Marine Fisheries (DMF) and National Marine Fisheries Service (NMFS), which are considered to be essential elements of the long-term management approach described in Section 3 of the Atlantic States Marine Fisheries Commission's (ASMFC) Fisheries Management Report No. 41 (Amendment #6 to the Interstate Fishery management Plan for Atlantic Striped Bass (IFMP)).

#### **Commercial Fishery in 2017**

*Season:* June 26–September 1, 2017. Landings were permitted on Monday and Thursday only .

*Sold:* 823,409 pounds (against a harvest quota of 800,885 pounds). Overage: 22,524 pounds

Allowable Gear Type: Hook and line.

Minimum Size: 34 inches total length.

*Trip Limit:* 15 fish per day for fishers with a commercial lobster or boat permit and a striped bass endorsement; 2 fish per day for fishers with a commercial individual or rod & reel permit and a striped bass endorsement.

Licensing, Reporting, and Estimation of Landings. To purchase striped bass directly from fishermen, fish dealers are required to obtain special authorization from the DMF in addition to standard dealer permits. Dealer reporting seafood requirement included weekly reporting to the DMF or SAFIS system of all striped bass purchases. If sent to DMF, all landings information is entered into SAFIS by DMF personnel. Following the close of the season, dealers are also required to provide a written transcript consisting of purchase dates, number of fish, pounds of fish, and names and permit numbers of fishermen from whom they purchased. DMF personnel review dealer transactions and correct entries before calculating total landings.

Table 1. Attributes of the Massachusetts striped bass commercial fishery, 1990-2017.

|      |                | Purcl  | nased  |         |         |      |                | Purch   | nased  |         |         |
|------|----------------|--------|--------|---------|---------|------|----------------|---------|--------|---------|---------|
|      | Season         | Pounds | Number | Dealer  | Fishing |      | Season         | Pounds  | Number | Dealer  | Fishing |
| Year | (Fishing Days) | 000s   | 000s   | Permits | Permits | Year | (Fishing Days) | 000s    | 000s   | Permits | Permits |
| 1990 | 93             | 160.6  | 6.3    | 95      | 1,498   | 2007 | 22             | 1,040.3 | 54.3   | 160     | 3,906   |
| 1991 | 59             | 234.8  | 10.4   | 92      | 1,739   | 2008 | 34             | 1,160.1 | 61.1   | 167     | 3,821   |
| 1992 | 39             | 239.2  | 11.3   | 135     | 1,861   | 2009 | 27             | 1,138.3 | 59.3   | 178     | 4,020   |
| 1993 | 35             | 262.6  | 13.0   | 152     | 2,056   | 2010 | 24             | 1,224.4 | 60.3   | 178     | 3,951   |
| 1994 | 24             | 199.6  | 10.4   | 150     | 2,367   | 2011 | 18             | 1,163.8 | 56.1   | 189     | 3,965   |
| 1995 | 57             | 782.0  | 41.2   | 161     | 3,353   | 2012 | 17             | 1,219.7 | 61.5   | 186     | 3,965   |
| 1996 | 42             | 696.8  | 38.3   | 179     | 3,801   | 2013 | 16             | 1,004.5 | 58.5   | 187     | 4,016   |
| 1997 | 42             | 785.9  | 44.8   | 173     | 5,500   | 2014 | 21             | 1,138.5 | 56.1   | 195     | 3,896   |
| 1998 | 28             | 822.0  | 45.3   | 180     | 5,540   | 2015 | 17             | 865.7   | 42.2   | 160     | 3,864   |
| 1999 | 40             | 788.2  | 40.8   | 167     | 3,578   | 2016 | 17             | 938.7   | 48.0   | 173     | 3,875   |
| 2000 | 36             | 779.7  | 40.2   | 137     | 3,283   | 2017 | 20             | 823.4   | 41.2   | 188     | 4,199   |
| 2001 | 29             | 815.0  | 40.2   | 164     | 4,219   |      |                |         |        |         |         |
| 2002 | 21             | 924.9  | 44.9   | 132     | 4,598   |      |                |         |        |         |         |
| 2003 | 21             | 1055.4 | 55.7   | 151     | 4,867   |      |                |         |        |         |         |
| 2004 | 19             | 1206.3 | 60.6   | 130     | 4,376   |      |                |         |        |         |         |
| 2005 | 22             | 1104.7 | 59.5   | 162     | 4,159   |      |                |         |        |         |         |
| 2006 | 26             | 1312 1 | 69 9   | 136     | 3 980   |      |                |         |        |         |         |

Fishermen must have a *MarineFisheries* commercial fishing permit (of any type) and a special striped bass fishing endorsement to sell their catch. They are required to file monthly trip level reports which include the name of the dealer(s) that they sell to and information describing their catch composition and catch rates.

Landings. The landings used here come from the SAFIS program. Commercial dealers bought 823,409 pounds (41,222 fish from count of commercial tags used) of striped bass in 2017 (Table 1). Most striped bass were sold in Barnstable, Bristol, Essex and Plymouth counties of Massachusetts.

Size Composition. Information from biological sampling, catch reports and voluntary logs is used to characterize disposition of the catch, catch weight, and size composition by catch category. Data from 492 fish sampled from the 2017 commercial harvest and 2000 DMF diet study were used to construct a length-weight equation to estimate weight-at-size for individual bass. The following geometric regression was derived:

$$\log_{10}(W) = -3.473 + 3.015 * \log_{10}(L),$$
  
RMS = 0.0027

where W equals weight in pounds, L equals total length in inches, and RMS is the residual mean square error. This equation was used to estimate the arithmetic average weight for a given length by back-transforming the predicted weight as follows:

$$W = 10^{(-3.473 + 3.015 * \log_{10}(L) + RMS/2)}$$

Size composition of the commercial harvest is presented in Appendix Table 1.

<u>Age and Sex Composition</u>. Four hundred and ninety two fish sampled from the 2017 commercial harvest were used to sex and age the harvested fish. Age composition of harvest fish was estimated from a sub-sample of 478 fish. Age was determined from scales. Age of harvested fish ranged from 6 to 20 years. About 80% of the sub-sample consisted of individuals from the 2004-2009 year classes (ages 8 -13) (Figure 1).

Estimates of Total Catch and Harvest Rates. Estimates of harvest rates (pounds of fish harvested per hour) for the commercial fishery were developed in order to provide an index that may be indicative of fishing success. In 2011, *MarineFisheries* switched to trip-level reporting. Significant information has been lost due to the generalization of the trip report to cover all fisheries in Massachusetts. The only information now available is daily total hours fished, pounds of fish sold and consumed, and area fished. This information was used under a generalized linear model (GLM) framework to generate standardized indices (Hilborn and Walter, 1992). Each record represented the summarization of a permit's pounds harvested and hours fished by year, month, and area fished reduced to 4 regions (Cape Cod Canal, Southern MA, Cape Cod Bay, North MA). Only data from July-August were used to constraint analyses to the most recent duration of the fishing season. The harvest rates for each record was calculated by dividing the total pounds caught by the total number of hours fished. The harvest rate was standardized using the GLM model

$$\ln(y) = a + \sum_{i=1}^{n} b_i X_i + e$$

where y is the observed total catch or harvest rate, a is the intercept,  $b_i$  is the slope coefficient of the *i*th factor,  $X_i$  is the *i*th categorical variable, and e is the error term. Any variable not significant at  $\alpha = 0.05$ with type-II (partial) sum of squares was dropped from the initial GLM model and the analysis was repeated. First-order interactions were not considered in the analyses. The back-transformed geometric mean for each year was estimated by

$$\hat{y} = \exp^{(LSM)}$$

where LSM is the least-squares natural log mean of each year.

Results of the GLM analyses of harvest rates are shown in Appendix Table 2. Although factors were significant, the variables accounted for only about 7% of the total variation in harvest rates.

Harvest rates steadily increased after 1999, peaked in 2004, dropped through 2008, increased slightly through 2010 and then dramatically increased in 2011 and remained at high levels in 2012, dropped through 2014, increased through 2016 and declined in 2017 (Figure 2A). The dramatic increase in harvest rates for 2011 and 2012 is attributed to large increases in harvest rates by fishers Cape Cod Bay and southern in Massachusetts (Figure 2B). The reason for the increase was due to atypical, large concentrations of striped bass (likely attracted to large aggregations of sand lance in the area) off Cape Cod, particularly off Chatham in 2011 and 2012. These large aggregations likely increased the vulnerability of



**Figure 1**. Age composition (proportion) of harvest from the Massachusetts commercial fishery. The large 1996, 2001, 2003 and 2011 Chesapeake Bay year-classes are highlighted.

striped bass to capture. In 2015 and 2016, catch rates in Cape Cod Bay and northern Massachusetts increased substantially likely the result of a shift in distribution of aggregated striped bass. Average catch rates dropped in all areas in 2017.

#### **Recreational Fishery in 2017**

Season: None

Daily Bag Limit: One fish per person

Allowable Gear Type: Hook and Line

Minimum Size: 28 inches total length

*Licensing and Reporting Requirements*: A recreational fishing permit is required in MA state waters.

*Harvest levels*: Harvest (A+B1) and total catch (A+B1+B2) estimates (Table 2) were provided by the NMFS MRIP. New MRIP estimates were

issued in 2018 as a result of corrected estimates of angler effort (Table 2). Massachusetts harvest and release estimates increased by 105% and 145% on average, respectively. The new MRIP estimate of total catch (including fish released alive) in 2017 was 13.2 million striped bass, which is a 50% increase compared to the 2016 estimate (Table 2). The estimate of total harvest in 2017 was 392,347 fish, which is a 70% increase in harvest compared to 2016. Total pounds harvested was over 5.6 million in 2017 (Table 2).

<u>Size Composition</u>. The length distributions of harvested and released fish were estimated from biological sampling conducted by the MRIP program in Massachusetts and from the volunteer Sportfish Data Collection Team (SADCT) angler program conducted by the Division. Volunteer recreational anglers were solicited to collect length and scale samples from striped bass that they captured each month (May-October). Each person was asked to collect a minimum of 5 scales from at least 10 fish per month and record the disposition of each fish (released or harvested) and fishing mode. Two thousand fifty-two samples were received from 57 anglers in 2017. The size frequencies of measured fish are shown in Figure 3 by disposition and mode. The size frequency of released fishes was used to allocate MRIP release numbers by mode among size classes. Numbers-at-length and weight-at-length data by disposition are summarized in Appendix Table 3.

<u>Age Composition</u>. A sub-sample of 635 fish from the volunteer angler survey was aged and combined with commercial and tagging samples to produce an age-length key used to convert the MRIP and MA volunteer angler size distributions into age classes. Recreational samples were selected using a weighted random design based on the total number of striped bass caught in each wave and mode stratum (as determined by MRIP). Recreational harvest and total removals in 2017 catches of striped bass were comprised mostly of the 2011, 2014 and 2015 year-classes. (Figure 4).

<u>Trends in Catch Rates</u>. To examine trends in recreational angler catches, standardized catch rates (total number of fish per trip) for striped bass were calculated for all fish caught using a delta-Gamma model (Lo et al., 1992; Stefansson, 1996) which adjusts trip catches for the effects of year, wave, county, area fished, mode fished, and time spent fishing. A delta-Gamma model was selected as the best approach to estimate year effects after examination of model dispersion (Terceiro, 2003) standardized residual deviance plots and (McCullagh and Nelder, 1989). In the delta-Gamma model, catch data is decomposed into catch success/failure and positive catch components. Each component is analyzed separately using appropriate statistical techniques and then the statistical models are recombined to obtain year estimates. The catch success/failure was modeled as a binary response to the categorical variables using multiple logistic regression:

$$logit(p) = log(p/1 - p) = a + \sum_{i=1}^{n} b_i X_i + e^{-ipt}$$

where p is the probability of catching a fish, a is the intercept,  $b_i$  is the slope coefficient of the *i*th factor,  $X_i$  is the *i*th categorical variable, and e is the error term. The function *glm* in *R* was used to estimate parameters, and goodness-of-fit was assessed using partial and empirical probability plots.

Positive catches were modeled assuming a Gamma error distribution with a log link using function glm in R:

$$y = \exp^{(a + \sum_{i=1}^{n} b_i X_i)} + e$$

where y is the observed positive catch,  $b_i$ , and  $X_i$  are the same symbols as defined earlier, and e is the Gamma error term. Any variable not significant at  $\alpha$ =0.05 dropped from the initial GLM model and



Figure 2. A) Harvest index (standardized pounds/hour) and B) average harvest rates by area for the Massachusetts commercial striped bass fishery, 1990-2017.

|      | Harvest | Numbers   | Harvest W | eight (lbs) | Release   | Numbers    | Total Nu  | imbers     |
|------|---------|-----------|-----------|-------------|-----------|------------|-----------|------------|
| Year | Old     | New       | Old       | New         | Old       | New        | Old       | New        |
| 1986 | 29,434  | 48,955    | 298,816   | 529,384     | 442,298   | 445,610    | 471,732   | 494,565    |
| 1987 | 10,807  | 30,782    | 269,459   | 872,782     | 93,660    | 233,065    | 104,467   | 263,847    |
| 1988 | 21,050  | 28,139    | 421,317   | 713,589     | 209,632   | 440,173    | 230,682   | 468,311    |
| 1989 | 13,044  | 43,594    | 295,227   | 1,185,606   | 193,067   | 480,528    | 206,111   | 524,121    |
| 1990 | 20,515  | 20,502    | 319,092   | 400,384     | 339,511   | 1,251,060  | 360,026   | 1,271,562  |
| 1991 | 20,799  | 51,069    | 440,605   | 866,326     | 448,735   | 1,290,441  | 469,534   | 1,341,510  |
| 1992 | 57,084  | 229,178   | 972,116   | 4,096,126   | 779,814   | 3,019,869  | 836,898   | 3,249,047  |
| 1993 | 58,511  | 116,384   | 1,113,446 | 1,908,614   | 833,566   | 1,942,334  | 892,077   | 2,058,719  |
| 1994 | 74,538  | 159,592   | 1,686,049 | 3,683,376   | 2,102,514 | 4,667,318  | 2,177,052 | 4,826,910  |
| 1995 | 73,806  | 124,300   | 1,504,390 | 2,738,834   | 3,280,882 | 8,427,141  | 3,354,688 | 8,551,441  |
| 1996 | 68,300  | 156,550   | 1,291,706 | 2,983,343   | 3,269,746 | 8,215,706  | 3,338,046 | 8,372,256  |
| 1997 | 199,373 | 365,611   | 2,891,970 | 5,132,817   | 5,417,751 | 10,675,648 | 5,617,124 | 11,041,260 |
| 1998 | 207,952 | 500,885   | 2,973,456 | 7,358,692   | 7,184,358 | 17,386,770 | 7,392,310 | 17,887,655 |
| 1999 | 126,755 | 327,086   | 1,822,818 | 4,995,322   | 4,576,208 | 13,434,701 | 4,702,963 | 13,761,786 |
| 2000 | 181,295 | 306,179   | 2,618,216 | 4,863,458   | 7,382,031 | 13,743,428 | 7,563,326 | 14,049,608 |
| 2001 | 288,032 | 551,038   | 3,644,561 | 7,187,897   | 5,410,899 | 10,222,067 | 5,698,930 | 10,773,105 |
| 2002 | 308,749 | 723,457   | 4,304,883 | 10,260,617  | 5,718,984 | 13,532,846 | 6,027,733 | 14,256,304 |
| 2003 | 407,100 | 797,161   | 4,889,035 | 10,251,621  | 4,361,710 | 9,787,679  | 4,768,810 | 10,584,841 |
| 2004 | 445,745 | 666,703   | 6,235,558 | 9,329,231   | 4,979,075 | 13,338,234 | 5,424,820 | 14,004,938 |
| 2005 | 340,742 | 536,058   | 5,119,345 | 7,541,049   | 3,988,679 | 9,042,756  | 4,329,421 | 9,578,814  |
| 2006 | 314,988 | 483,187   | 4,861,391 | 6,786,934   | 7,809,777 | 19,278,586 | 8,124,765 | 19,761,773 |
| 2007 | 315,409 | 471,873   | 5,099,862 | 7,009,584   | 5,331,470 | 10,839,699 | 5,646,879 | 11,311,572 |
| 2008 | 377,959 | 514,064   | 5,720,651 | 8,424,309   | 3,649,415 | 7,495,513  | 4,027,374 | 8,009,577  |
| 2009 | 344,401 | 694,992   | 4,795,791 | 9,409,753   | 2,282,601 | 5,989,390  | 2,627,002 | 6,684,381  |
| 2010 | 341,046 | 808,175   | 4,277,990 | 9,958,677   | 1,671,437 | 5,089,524  | 2,012,483 | 5,897,699  |
| 2011 | 255,507 | 873,496   | 3,504,603 | 11,953,163  | 973,192   | 4,035,634  | 1,228,699 | 4,909,129  |
| 2012 | 377,931 | 1,010,563 | 5,441,893 | 14,940,507  | 989,509   | 3,629,395  | 1,367,440 | 4,639,958  |
| 2013 | 282,170 | 658,713   | 3,899,919 | 9,024,975   | 1,690,888 | 4,670,184  | 1,973,058 | 5,328,897  |
| 2014 | 253,877 | 523,531   | 4,056,799 | 7,965,139   | 1,762,718 | 6,425,468  | 2,016,595 | 6,948,999  |
| 2015 | 170,770 | 485,317   | 2,701,724 | 7,798,768   | 1,546,094 | 4,470,735  | 1,716,864 | 4,956,051  |
| 2016 | 131,793 | 230,069   | 2,048,238 | 3,730,639   | 2,224,765 | 6,299,215  | 2,356,558 | 6,529,285  |
| 2017 | 181,141 | 392.347   | 2,325,778 | 5,666,309   | 3,995,814 | 12,865,677 | 4,176,955 | 13.258.024 |

Table 2. MRIP estimates of striped bass harvest, releases, and total catch in Massachusetts.



Figure 3. Sizes of striped bass caught by volunteer recreational anglers in 2017 by disposition and fishing mode.



**Figure 4**. Age composition (proportion) of harvest and total removal (harvest plus dead releases) in 2017 from the Massachusetts recreational fishery. The large 1996, 2001, 2003, 2011, and 2015 year-classes from Chesapeake Bay and the 2014 large year-class from the Hudson River are highlighted.

the analysis was repeated. First-order interactions were considered in the initial analyses but it was not always possible to generate annual means by the least-square methods with some interactions included (see Searle et al., 1980); therefore, only main effects were considered.

The annual index of striped bass total catch per trip was estimated by combining the two component models. The estimate in year i from the models is given by

$$\hat{I}_i = \hat{p}_i * \hat{y}_i$$

where  $p_i$  and  $y_i$  are the predicted annual responses from the least-squares mean estimates from the logistic and GLM models. Only data for those anglers who said they targeted striped bass were used in the analyses.

Results of the delta-Gamma model analyses are

given in Appendix Tables 4A and 4B for 1987-2017. Standardized catch rates for striped bass in Massachusetts waters increased from 1993 to 2000, declined in 2001, but increased through 2006 (Fig. 5). Catch rates declined through 2011 and remained low through 2015. Catch rates increased dramatically through 2017 as the 2011, 2014 and 2015 year-classes became vulnerable to the fishery (Fig. 5).

#### Characterization of Losses

Losses due to hook-and-release calculated by using a release mortality rate of 0.09. Losses due to hook-and-release were 1,157,911 fish (about 7 million pounds) (Table 3).

#### **Bycatch in Other Fisheries**

During 1994, *MarineFisheries* sea-sampling efforts identified striped bass as by-catch in a Nantucket Sound springtime trawl fishery directed



**Figure 5**. Standardized total catch rates (total number of fish caught per trip) of the recreational fishery for striped bass in Massachusetts waters, 1987-2017.

at long-finned squid (*Loligo pealei*). The bycatch estimate was about 3,100 fish (17,600 pounds). Anecdotal information was also reported which suggested that a single tow could land up to 19,000 pounds. Division personnel sampled this fishery at sea during 1995-2000 and observed only incidental catches of striped bass. Limited sampling and low catch rates make it unreasonable to extrapolate sample information. *MarineFisheries* will continue to monitor potential sources of striped bass by-catch during 2017.

#### **Estimated Total Losses in 2017**

Total estimated loss (commercial harvest plus recreational harvest plus recreational dead releases) of striped bass during 2017 was 1.59 million fish

weighing over 13 million pounds pounds (Table 3).

#### **Removals-At-Age Matrix in 2017**

The removals (numbers) by the recreational and commercial fisheries are apportioned by age and mortality source in Table 4. The 2014 (age 3 possibly from the Hudson River), and 2015 (age 2) and 2011 (age 5) year-classes from Chesapeake Bay incurred the highest losses in 2017 (Figure 6).

#### **Age-Length Relationship**

A von Bertalanffy growth model was fitted to age (years) and total length (inches) data from samples collected in the tagging study, the recreational fishery, and commercial fishery from

| FISHERY           | NUMBER    | POUNDS     | MEAN WT. |  |
|-------------------|-----------|------------|----------|--|
| Commercial        | 41 000    | 922 400    | 20.0     |  |
| Haivesi           | 41,222    | 023,409    | 20.0     |  |
| Recreational      |           |            |          |  |
| Harvest           | 392,347   | 5,666,309  | 14.4     |  |
| Release Mortality | 1,157,911 | 7,214,906  | 6.2      |  |
| Total             | 1,591,480 | 13,704,624 |          |  |

Table 3. Estimates of striped bass losses occurring in Massachusetts waters during 2017.

Table 4. Massachusetts striped bass removals-at-age matrix of 2017 by source.

|     | Recrea            | ational | Commercial |         |
|-----|-------------------|---------|------------|---------|
| Age | Release Mortality | Harvest | Harvest    | Total   |
| 2   | 268,721           | 0       | 0          | 268,721 |
| 3   | 257,821           | 0       | 0          | 257,821 |
| 4   | 104,120           | 1,529   | 0          | 105,649 |
| 5   | 163,129           | 46,589  | 0          | 209,718 |
| 6   | 193,604           | 134,621 | 278        | 328,503 |
| 7   | 62,347            | 77,213  | 2,913      | 142,473 |
| 8   | 17,546            | 25,850  | 4,785      | 48,181  |
| 9   | 10,651            | 17,000  | 6,333      | 33,985  |
| 10  | 13,457            | 18,444  | 5,332      | 37,233  |
| 11  | 13,500            | 16,710  | 4,688      | 34,898  |
| 12  | 21,970            | 24,382  | 7,140      | 53,492  |
| 13  | 17,903            | 16,386  | 4,940      | 39,228  |
| 14  | 7,767             | 7,730   | 2,720      | 18,217  |
| 15+ | 5,374             | 5,894   | 2,094      | 13,362  |

2017. The resulting equation and predicted relationship are shown in Figure 7.

## Required Fishery-Independent Monitoring Programs

#### Massachusetts Tagging Study

DMF joined the Striped Bass Cooperative State-Federal Coast-wide Tagging Study in 1991. The study's primary objective has been to develop an integrated database of tag releases and recoveries that will provide current information related to striped bass mortality and migration rates. The Massachusetts tagging effort has focused on the tag and release of large fish that reach coast-wide legal sizes. To accomplish this job, DMF contracts several select charter boat captains to take DMF personnel on board to tag and release their catch during regularly scheduled fishing trips. Fish are caught in fall by trolling artificial baits in shoal areas around Nantucket Island. Floy internal anchor tags provided by the USFWS are used. Total length of each fish is recorded. Scales are removed from each fish for aging. The release data are made available to the Annapolis, Maryland office of the USFWS, which coordinates regional tagging programs of state-federal participants.



**Figure 6**. Proportion of striped bass total removals (commercial plus recreational) in 2017 by age. The 2003, 2011 and 2015 year-classes from Chesapeake Bay and the 2014 year-class from Hudson River are indicated.



**Figure 7**. Mean length-age relationship (solid line) for striped bass captured in Massachusetts during 2017. Dotted lines represent the minimum and maximum ages found at a given length.

Summary statistics compiled since the start of this study are shown in Table 5. Striped bass recaptured in 2013-2017 were reported from coastal waters in North Carolina through Maine.

#### **Planned Management Programs in 2018**

#### Regulations

Massachusetts' recreational bag and minimum size limits will remain at 1 fish per day and 28inches total length, respectively. For the commercial fishery, minimum size limit will remain at 34-inches and the quota will be 847,585 pounds because of the overage in 2017. The commercial fishery quota will be monitored using the SAFIS system. All monitoring programs will continue in 2018.

### Acknowledgements

The collection and quality of striped bass data would suffer greatly without the efforts of many DMF employees. Staff of the Fisheries Statistics section collected, entered, and compiled all

Table 5. Massachusetts tag summary statistics. SD = standard deviation.

|      |       |       | Number | Ave.        | Ave.        | SD    | SD   |          | Lengt    | h Range  |          |
|------|-------|-------|--------|-------------|-------------|-------|------|----------|----------|----------|----------|
| Year | Trips | Boats | Tagged | Length (mm) | Length (in) | (mm)  | (in) | Min (mm) | Min (in) | Max (mm) | Max (in) |
| 1991 | 17    | 4     | 388    | 817         | 32.2        | 106.4 | 4.2  | 534      | 21.0     | 1300     | 51.2     |
| 1992 | 29    | 3     | 899    | 798         | 31.4        | 125.9 | 5.0  | 524      | 20.6     | 1267     | 49.9     |
| 1993 | 15    | 2     | 678    | 784         | 30.9        | 125.0 | 4.9  | 515      | 20.3     | 1210     | 47.6     |
| 1994 | 13    | 2     | 377    | 735         | 28.9        | 93.2  | 3.7  | 548      | 21.6     | 1028     | 40.5     |
| 1995 | 11    | 2     | 449    | 767         | 30.2        | 110.2 | 4.3  | 470      | 18.5     | 1178     | 46.4     |
| 1996 | 8     | 2     | 203    | 748         | 29.4        | 64.1  | 2.5  | 541      | 21.3     | 1077     | 42.4     |
| 1997 | 10    | 2     | 321    | 773         | 30.4        | 114.7 | 4.5  | 485      | 19.1     | 1090     | 42.9     |
| 1998 | 12    | 2     | 382    | 797         | 31.4        | 93.8  | 3.7  | 597      | 23.5     | 1055     | 41.5     |
| 1999 | 16    | 2     | 471    | 777         | 30.6        | 95.5  | 3.8  | 594      | 23.4     | 1108     | 43.6     |
| 2000 | 25    | 4     | 1095   | 752         | 29.6        | 102.6 | 4.0  | 510      | 20.1     | 1204     | 47.4     |
| 2001 | 14    | 3     | 456    | 786         | 30.9        | 102.5 | 4.0  | 503      | 19.8     | 1110     | 43.7     |
| 2002 | 12    | 3     | 239    | 764         | 30.1        | 103.6 | 4.1  | 487      | 19.2     | 1060     | 41.7     |
| 2003 | 15    | 3     | 655    | 825         | 32.5        | 92.1  | 3.6  | 602      | 23.7     | 1204     | 47.4     |
| 2004 | 25    | 7     | 784    | 707         | 27.8        | 193.1 | 7.6  | 316      | 12.4     | 1164     | 45.8     |
| 2005 | 19    | 4     | 752    | 726         | 28.6        | 210.5 | 8.3  | 299      | 11.8     | 1114     | 43.9     |
| 2006 | 11    | 4     | 390    | 813         | 32.0        | 94.2  | 3.7  | 565      | 22.2     | 1114     | 43.9     |
| 2007 | 16    | 3     | 530    | 848         | 33.4        | 105.2 | 4.1  | 600      | 23.6     | 1225     | 48.2     |
| 2008 | 13    | 2     | 456    | 821         | 32.3        | 104.6 | 4.1  | 530      | 20.9     | 1202     | 47.3     |
| 2009 | 15    | 3     | 501    | 840         | 33.1        | 101.8 | 4.0  | 572      | 22.5     | 1146     | 45.1     |
| 2010 | 13    | 3     | 329    | 825         | 32.5        | 84.0  | 3.3  | 668      | 26.3     | 1095     | 43.1     |
| 2011 | 15    | 3     | 504    | 831         | 32.7        | 91.9  | 3.6  | 580      | 22.8     | 1174     | 46.2     |
| 2012 | 15    | 3     | 643    | 852         | 33.5        | 87.7  | 3.5  | 524      | 20.6     | 1203     | 47.4     |
| 2013 | 15    | 3     | 487    | 854         | 33.6        | 92.2  | 3.6  | 617      | 24.3     | 1145     | 45.1     |
| 2014 | 15    | 3     | 455    | 876         | 34.5        | 98.8  | 3.9  | 536      | 21.1     | 1203     | 47.4     |
| 2015 | 15    | 3     | 348    | 857         | 33.7        | 90.9  | 3.6  | 597      | 23.5     | 1063     | 41.9     |
| 2016 | 14    | 3     | 711    | 788         | 31.0        | 108.2 | 4.3  | 523      | 20.6     | 1065     | 41.9     |
| 2017 | 10    | 2     | 381    | 777         | 30.6        | 97.8  | 3.9  | 518      | 20.4     | 1035     | 40.7     |

commercial data. Kim Trull coordinated the volunteer recreational angler data collection program, entered scale envelope data, and prepared data for analysis. Scott Elzey, Elise Koob, Collin Farrell and Kim Trull prepared and aged scale samples. John Boardman, Nick Buchan, and Nicole Ward conducted the commercial sampling of John Boardman also coordinated and stripers. conducted the USFWS cooperative tagging study. Funding for this effort was provided by the Massachusetts Division of Marine Fisheries and Sportfish Restoration Funds Grants F-57-R and F-48-R.

#### Literature Cited

- Hilborn, R. and C. J. Walters. 1992. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. 570 p. Chapman and Hall, Inc., New York, NY.
- Lo, N. C., L. D. Jacobson, and J. L. Squire. 1992.
   Indices of relative abundance from fish spotter data based on the delta-lognormal models. Can. J. Fish. Aquat. Sci. 49:2525-2526.
- McCullagh, P. and J. A. Nelder. 1989. Generalized linear models, 511 p. Chapman and Hall, London.
- Searle, S. R., F. M. Speed, and G. A. Milliken . 1980. Population marginal means in the linear model: an alternative to least-squares means. Am. Stat. 34:216-221.
- Stefánsson, G. 1996. Analysis of groundfish survey abundance data: combining the GLM and delta approaches. ICES Journal of Marine Science 53: 577–588.
- Terceiro, M. 2003. The statistical properties of recreational catch rate data for some fish stocks off the northeast US coast. Fish. Bull. 101: 653-672.

| TL (in.)  | Number | % Number | Weight (lbs) | % Weight |
|-----------|--------|----------|--------------|----------|
| 11        | 0      | 0.00     | 0            | 0.00     |
| 12        | 0      | 0.00     | 0            | 0.00     |
| 13        | 0      | 0.00     | 0            | 0.00     |
| 14        | 0      | 0.00     | 0            | 0.00     |
| 15        | 0      | 0.00     | 0            | 0.00     |
| 16        | 0      | 0.00     | 0            | 0.00     |
| 17        | 0      | 0.00     | 0            | 0.00     |
| 18        | 0      | 0.00     | 0            | 0.00     |
| 19        | 0      | 0.00     | 0            | 0.00     |
| 20        | 0      | 0.00     | 0            | 0.00     |
| 21        | 0      | 0.00     | 0            | 0.00     |
| 22        | 0      | 0.00     | 0            | 0.00     |
| 23        | 0      | 0.00     | 0            | 0.00     |
| 24        | 0      | 0.00     | 0            | 0.00     |
| 25        | 0      | 0.00     | 0            | 0.00     |
| 26        | 0      | 0.00     | 0            | 0.00     |
| 27        | 0      | 0.00     | 0            | 0.00     |
| 28        | 0      | 0.00     | 0            | 0.00     |
| 29        | 0      | 0.00     | 0            | 0.00     |
| 30        | 0      | 0.00     | 0            | 0.00     |
| 31        | 0      | 0.00     | 0            | 0.00     |
| 32        | 0      | 0.00     | 0            | 0.00     |
| 33        | 0      | 0.00     | 0            | 0.00     |
| 34        | 3,340  | 8.10     | 43,944       | 5.34     |
| 35        | 4,441  | 10.77    | 63,732       | 7.74     |
| 36        | 4,224  | 10.25    | 65,957       | 8.01     |
| 37        | 2,652  | 6.43     | 44,945       | 5.46     |
| 38        | 4,552  | 11.04    | 83,581       | 10.15    |
| 39        | 4,897  | 11.88    | 97,176       | 11.80    |
| 40        | 4,271  | 10.36    | 91,432       | 11.10    |
| 41        | 5,380  | 13.05    | 124,031      | 15.06    |
| 42        | 2,182  | 5.29     | 54,061       | 6.57     |
| 43        | 1,423  | 3.45     | 37,843       | 4.60     |
| 44        | 469    | 1.14     | 13,362       | 1.62     |
| 45        | 3,392  | 8.23     | 103,345      | 12.55    |
| Total     | 41,222 |          | 823,409      |          |
| Avg. Size | 38.8   |          | 20.0         |          |

**Appendix Table 1**. Estimated size distribution of the Massachusetts commercial striped bass harvest (numbers and weight of fish) by total length (TL in inches) in 2017.

**Appendix Table 2**. Results of the GLM analyses of total catch rates (pounds/hour) for the commercial striped bass fishery, 1991-2017.

Analysis of Deviance Table (Type III tests)

|           | Sum Sq | Df    | F values | Pr(>F)    |     |
|-----------|--------|-------|----------|-----------|-----|
| YEAR      | 1785   | 26    | 67.447   | < 2.2e-16 | *** |
| MONTH     | 12     | 1     | 11.849   | 0.0005774 | *** |
| AREA      | 2380   | 2     | 1169.237 | < 2.2e-16 | *** |
| Residuals | 63934  | 62814 |          |           |     |

|      | LSMEANS |
|------|---------|
| 1991 | 8.13    |
| 1992 | 8.68    |
| 1993 | 9.56    |
| 1994 | 8.74    |
| 1995 | 9.75    |
| 1996 | 10.48   |
| 1997 | 9.69    |
| 1998 | 10.06   |
| 1999 | 9.28    |
| 2000 | 10.43   |
| 2001 | 12.07   |
| 2002 | 12.62   |
| 2003 | 13.38   |
| 2004 | 13.93   |
| 2005 | 11.68   |
| 2006 | 11.93   |
| 2007 | 11.63   |
| 2008 | 10.42   |
| 2009 | 11.30   |
| 2010 | 11.62   |
| 2011 | 15.39   |
| 2012 | 15.98   |
| 2013 | 13.51   |
| 2014 | 11.94   |
| 2015 | 14.50   |
| 2016 | 15.51   |
| 2017 | 12.31   |

**Appendix Table 3**. Estimated size distribution of the Massachusetts recreational striped bass catch (numbers and weight of fish) in 2017 by disposition.

|           |         | Harv     | ested     |          | Released   |          | Total      |          |            |          |            |          |
|-----------|---------|----------|-----------|----------|------------|----------|------------|----------|------------|----------|------------|----------|
| TL (in.)  | Number  | % Number | Weight    | % Weight | Number     | % Number | Weight     | % Weight | Number     | % Number | Weight     | % Weight |
| 9         | 0       | 0.0      | 0         | 0.0      | 21,433     | 0.2      | 6,043      | 0.0      | 21,433     | 0.2      | 6,043      | 0.0      |
| 10        | 0       | 0.0      | 0         | 0.0      | 44,669     | 0.3      | 17,274     | 0.0      | 44,669     | 0.3      | 17,274     | 0.0      |
| 11        | 0       | 0.0      | 0         | 0.0      | 113,933    | 0.9      | 58,631     | 0.1      | 113,933    | 0.9      | 58,631     | 0.1      |
| 12        | 0       | 0.0      | 0         | 0.0      | 437,789    | 3.4      | 292,441    | 0.4      | 437,789    | 3.3      | 292,441    | 0.3      |
| 13        | 0       | 0.0      | 0         | 0.0      | 452,345    | 3.5      | 384,116    | 0.5      | 452,345    | 3.4      | 384,116    | 0.4      |
| 14        | 0       | 0.0      | 0         | 0.0      | 771,016    | 6.0      | 817,614    | 1.0      | 771,016    | 5.8      | 817,614    | 1.0      |
| 15        | 0       | 0.0      | 0         | 0.0      | 566,212    | 4.4      | 738,408    | 0.9      | 566,212    | 4.3      | 738,408    | 0.9      |
| 16        | 0       | 0.0      | 0         | 0.0      | 866,507    | 6.7      | 1,371,267  | 1.7      | 866,507    | 6.5      | 1,371,267  | 1.6      |
| 17        | 0       | 0.0      | 0         | 0.0      | 580,207    | 4.5      | 1,101,208  | 1.4      | 580,207    | 4.4      | 1,101,208  | 1.3      |
| 18        | 0       | 0.0      | 0         | 0.0      | 1,017,503  | 7.9      | 2,292,161  | 2.9      | 1,017,503  | 7.7      | 2,292,161  | 2.7      |
| 19        | 0       | 0.0      | 0         | 0.0      | 621,054    | 4.8      | 1,645,269  | 2.1      | 621,054    | 4.7      | 1,645,269  | 1.9      |
| 20        | 0       | 0.0      | 0         | 0.0      | 590,864    | 4.6      | 1,825,501  | 2.3      | 590,864    | 4.5      | 1,825,501  | 2.1      |
| 21        | 0       | 0.0      | 0         | 0.0      | 367,402    | 2.9      | 1,313,903  | 1.6      | 367,402    | 2.8      | 1,313,903  | 1.5      |
| 22        | 0       | 0.0      | 0         | 0.0      | 356,270    | 2.8      | 1,464,778  | 1.8      | 356,270    | 2.7      | 1,464,778  | 1.7      |
| 23        | 0       | 0.0      | 0         | 0.0      | 265,206    | 2.1      | 1,245,820  | 1.6      | 265,206    | 2.0      | 1,245,820  | 1.5      |
| 24        | 0       | 0.0      | 0         | 0.0      | 421,080    | 3.3      | 2,247,250  | 2.8      | 421,080    | 3.2      | 2,247,250  | 2.6      |
| 25        | 0       | 0.0      | 0         | 0.0      | 551,105    | 4.3      | 3,324,093  | 4.1      | 551,105    | 4.2      | 3,324,093  | 3.9      |
| 26        | 0       | 0.0      | 0         | 0.0      | 878,644    | 6.8      | 5,960,996  | 7.4      | 878,644    | 6.6      | 5,960,996  | 6.9      |
| 27        | 0       | 0.0      | 0         | 0.0      | 778,048    | 6.0      | 5,910,881  | 7.4      | 778,048    | 5.9      | 5,910,881  | 6.9      |
| 28        | 45,120  | 11.5     | 382,263   | 6.7      | 693,072    | 5.4      | 5,871,873  | 7.3      | 738,192    | 5.6      | 6,254,136  | 7.3      |
| 29        | 68,326  | 17.4     | 643,095   | 11.3     | 341,541    | 2.7      | 3,214,635  | 4.0      | 409,867    | 3.1      | 3,857,730  | 4.5      |
| 30        | 56,365  | 14.4     | 587,270   | 10.4     | 395,739    | 3.1      | 4,123,250  | 5.1      | 452,104    | 3.4      | 4,710,520  | 5.5      |
| 31        | 46,473  | 11.8     | 534,231   | 9.4      | 260,931    | 2.0      | 2,999,506  | 3.7      | 307,404    | 2.3      | 3,533,737  | 4.1      |
| 32        | 38,056  | 9.7      | 481,161   | 8.5      | 223,353    | 1.7      | 2,823,941  | 3.5      | 261,410    | 2.0      | 3,305,102  | 3.9      |
| 33        | 13,541  | 3.5      | 187,747   | 3.3      | 152,190    | 1.2      | 2,110,154  | 2.6      | 165,730    | 1.3      | 2,297,901  | 2.7      |
| 34        | 17,665  | 4.5      | 267,860   | 4.7      | 95,111     | 0.7      | 1,442,221  | 1.8      | 112,776    | 0.9      | 1,710,081  | 2.0      |
| 35        | 8,602   | 2.2      | 142,280   | 2.5      | 32,684     | 0.3      | 540,607    | 0.7      | 41,286     | 0.3      | 682,887    | 0.8      |
| 36        | 10,534  | 2.7      | 189,592   | 3.3      | 92,051     | 0.7      | 1,656,729  | 2.1      | 102,585    | 0.8      | 1,846,321  | 2.2      |
| 37        | 12,028  | 3.1      | 235,011   | 4.1      | 52,275     | 0.4      | 1,021,398  | 1.3      | 64,303     | 0.5      | 1,256,409  | 1.5      |
| 38        | 11,564  | 2.9      | 244,754   | 4.3      | 75,601     | 0.6      | 1,600,104  | 2.0      | 87,165     | 0.7      | 1,844,858  | 2.1      |
| 39        | 3,470   | 0.9      | 79,384    | 1.4      | 82,711     | 0.6      | 1,892,377  | 2.4      | 86,181     | 0.7      | 1,971,761  | 2.3      |
| 40        | 20,278  | 5.2      | 500,529   | 8.8      | 206,328    | 1.6      | 5,092,916  | 6.4      | 226,606    | 1.7      | 5,593,444  | 6.5      |
| 41        | 15,227  | 3.9      | 404,748   | 7.1      | 122,884    | 1.0      | 3,266,270  | 4.1      | 138,111    | 1.0      | 3,671,018  | 4.3      |
| 42        | 10,607  | 2.7      | 303,052   | 5.3      | 146,971    | 1.1      | 4,199,204  | 5.2      | 157,578    | 1.2      | 4,502,256  | 5.2      |
| 43        | 4,059   | 1.0      | 124,448   | 2.2      | 51,513     | 0.4      | 1,579,398  | 2.0      | 55,572     | 0.4      | 1,703,846  | 2.0      |
| 44        | 3,390   | 0.9      | 111,349   | 2.0      | 81,206     | 0.6      | 2,667,444  | 3.3      | 84,596     | 0.6      | 2,778,793  | 3.2      |
| 45        | 7,045   | 1.8      | 247,534   | 4.4      | 58,227     | 0.5      | 2,045,942  | 2.6      | 65,272     | 0.5      | 2,293,476  | 2.7      |
| Total     | 392,349 |          | 5,666,309 |          | 12,865,678 |          | 80,165,620 |          | 13,258,027 |          | 85,831,929 |          |
| Avg. Size | 32.8    |          |           |          | 22.7       |          |            |          | 23.0       |          |            |          |

Analysis of Deviance Table (Type III tests)

| Response: | tot_fish |    |            |     |
|-----------|----------|----|------------|-----|
|           | LR Chisq | Df | Pr(>Chisq) |     |
| year      | 677.02   | 30 | < 2.2e-16  | *** |
| area_x    | 44.60    | 2  | 2.068e-10  | *** |
| mode_fx   | 387.04   | 2  | < 2.2e-16  | *** |
| wave      | 423.62   | 3  | < 2.2e-16  | *** |
| cnty      | 180.10   | 7  | < 2.2e-16  | *** |
| ffdays12c | 609.71   | 12 | < 2.2e-16  | *** |
| hours     | 1066.23  | 11 | < 2.2e-16  | *** |
|           |          |    |            |     |

| Coefficients | :         |            |         |          |       |     |
|--------------|-----------|------------|---------|----------|-------|-----|
|              | Estimate  | Std. Error | t value | Pr(> t ) |       |     |
| (Intercept)  | 0.232331  | 0.286929   | 0.810   | 0.418111 |       | ffe |
| year1988     | -0.091524 | 0.311300   | -0.294  | 0.768756 |       | ffe |
| year1989     | -0.148687 | 0.305547   | -0.487  | 0.626526 |       | ++c |
| year1990     | -0.166431 | 0.296534   | -0.561  | 0.574631 |       | hou |
| year1991     | -0.047751 | 0.295253   | -0.162  | 0.871521 |       | hou |
| year1992     | 0.107739  | 0.289510   | 0.372   | 0.709791 |       | hou |
| year1993     | 0.021048  | 0.288837   | 0.073   | 0.941908 |       | hou |
| year1994     | 0.067160  | 0.286531   | 0.234   | 0.814685 |       | hou |
| year1995     | 0.309579  | 0.285930   | 1.083   | 0.278947 |       | hou |
| year1996     | 0.295242  | 0.286224   | 1.032   | 0.302313 |       | nou |
| year1997     | 0.361844  | 0.285728   | 1.266   | 0.205384 |       | hou |
| year1998     | 0.451241  | 0.285349   | 1.581   | 0.113807 |       | hou |
| year1999     | 0.392610  | 0.285559   | 1.375   | 0.169180 |       |     |
| year2000     | 0.442978  | 0.285931   | 1.549   | 0.121334 |       |     |
| year2001     | 0.176741  | 0.285818   | 0.618   | 0.536337 |       |     |
| year2002     | 0.189804  | 0.286199   | 0.663   | 0.507214 |       |     |
| year2003     | 0.235764  | 0.286347   | 0.823   | 0.410315 |       |     |
| year2004     | 0.282785  | 0.287026   | 0.985   | 0.324524 |       |     |
| year2005     | 0.307687  | 0.287274   | 1.071   | 0.284154 |       |     |
| year2006     | 0.545807  | 0.286365   | 1.906   | 0.056664 | •     |     |
| year2007     | 0.243192  | 0.286862   | 0.848   | 0.396577 |       |     |
| year2008     | 0.185531  | 0.287686   | 0.645   | 0.518993 |       |     |
| year2009     | 0.123672  | 0.287294   | 0.430   | 0.666856 |       |     |
| year2010     | 0.066527  | 0.288339   | 0.231   | 0.817532 |       |     |
| year2011     | -0.079099 | 0.289150   | -0.274  | 0.784429 |       |     |
| year2012     | -0.056743 | 0.289227   | -0.196  | 0.844463 |       |     |
| year2013     | -0.009849 | 0.286624   | -0.034  | 0.972589 |       |     |
| year2014     | 0.059094  | 0.287795   | 0.205   | 0.837312 |       |     |
| year2015     | 0.011613  | 0.287203   | 0.040   | 0.967746 |       |     |
| year2016     | 0.228681  | 0.287683   | 0.795   | 0.426676 |       |     |
| year2017     | 0.688647  | 0.286302   | 2.405   | 0.016165 | *     |     |
| area_x2      | -0.003511 | 0.026679   | -0.132  | 0.895300 |       |     |
| area_x5      | 0.107036  | 0.017192   | 6.226   | 4.86e-10 | ***   |     |
| mode_fx6     | 0.343961  | 0.035081   | 9.805   | < 2e-16  | ***   |     |
| mode_tx/     | 0.452419  | 0.021928   | 20.632  | < 2e-16  | ***   |     |
| wave4        | -0.315128 | 0.016683   | -18.889 | < 2e-16  | ***   |     |
| waves        | -0.1/0265 | 0.021611   | -/.8/8  | 3.44e-15 | ***   |     |
| wave6        | 0.506723  | 0.082158   | 6.168   | 7.04e-10 | ***   |     |
| cnty19       | -0.207096 | 0.079421   | -2.608  | 0.009124 | * *   |     |
| cnty21       | -0.033502 | 0.041350   | -0.810  | 0.41/835 |       |     |
| Cnty23       | -0.053481 | 0.024577   | -2.176  | 0.029559 | *<br> |     |
| cnty25       | -0.324272 | 0.059286   | -5.470  | 4.55e-08 | ***   |     |
| cnty5        | -0.13//08 | 0.036927   | -3.729  | 0.000193 | ***   |     |
| cnty/        | -0.364684 | 0.051347   | -7.102  | 1.260-12 | ***   |     |
| Cnty9        | 0.122497  | 0.018957   | 6.462   | 1.05e-10 |       |     |
| TTdays12C10  | 0.072922  | 0.023830   | 3.060   | 0.002215 | **    |     |
| TTUAYS12C20  | 0.196186  | 0.024467   | 8.018   | 1.12e-15 | ***   |     |
| TTUAYS12C30  | 0.211124  | 0.028350   | 10.007  | 9.85e-14 | ***   |     |
| FTUAYS12C40  | 0.346294  | 0.034604   | 10.007  | < 2e-16  | ***   |     |
| TTOAYS12C50  | 0.380343  | 0.030553   | 10 20   | < 2e-16  | ***   |     |
| ffdave12c70  | 0.432154  | 0.041979   | 10.294  | < 2e-16  | ***   |     |
| ffdave12c20  | 0.474524  | 0.031360   | 9.133   | < 2e-16  | ***   |     |
| ffdave12c00  | 0.4/09//  | 0.073629   | 0.4/8   | 9.45e-11 | ***   |     |
| rruaysizc90  | 0.340/05  | 0.004436   | 0.498   | o.zoe-II |       |     |

| ffdays12c100 | 0.562314 | 0.032860 | 17.112 | < 2e-16  | *** |
|--------------|----------|----------|--------|----------|-----|
| ffdays12c150 | 0.576093 | 0.057000 | 10.107 | < 2e-16  | *** |
| ffdays12c200 | 0.477501 | 0.046124 | 10.353 | < 2e-16  | *** |
| hours2       | 0.180429 | 0.044940 | 4.015  | 5.96e-05 | *** |
| hours3       | 0.371598 | 0.042319 | 8.781  | < 2e-16  | *** |
| hours4       | 0.509826 | 0.041830 | 12.188 | < 2e-16  | *** |
| hours5       | 0.648125 | 0.042654 | 15.195 | < 2e-16  | *** |
| hours6       | 0.746534 | 0.043277 | 17.250 | < 2e-16  | *** |
| hours7       | 0.895858 | 0.047781 | 18.749 | < 2e-16  | *** |
| hours8       | 0.938340 | 0.050472 | 18.591 | < 2e-16  | *** |
| hours9       | 0.901822 | 0.067628 | 13.335 | < 2e-16  | *** |
| hours10      | 1.078734 | 0.078067 | 13.818 | < 2e-16  | *** |
| hours11      | 1.369839 | 0.158567 | 8.639  | < 2e-16  | *** |
| hours12      | 1.063897 | 0.091009 | 11.690 | < 2e-16  | *** |
|              |          |          |        |          |     |

#### Appendix 4A cont'd.

| Year | LSMEANS  |
|------|----------|
| 1987 | 4.499867 |
| 1988 | 4.106306 |
| 1989 | 3.878158 |
| 1990 | 3.809955 |
| 1991 | 4.290044 |
| 1992 | 5.011756 |
| 1993 | 4.595585 |
| 1994 | 4.812456 |
| 1995 | 6.132649 |
| 1996 | 6.045353 |
| 1997 | 6.461696 |
| 1998 | 7.065956 |
| 1999 | 6.663586 |
| 2000 | 7.007814 |
| 2001 | 5.369792 |
| 2002 | 5.440397 |
| 2003 | 5.696273 |
| 2004 | 5.970512 |
| 2005 | 6.121059 |
| 2006 | 7.766774 |
| 2007 | 5.738738 |
| 2008 | 5.417198 |
| 2009 | 5.092250 |
| 2010 | 4.809410 |
| 2011 | 4.157647 |
| 2012 | 4.251638 |
| 2013 | 4.455766 |
| 2014 | 4.773798 |
| 2015 | 4.552430 |
| 2016 | 5.656065 |
| 2017 | 8.959324 |

Appendix Table 4B. Results of the logistic regression analysis of MRFSS striped bass success/failure.

Analysis of Deviance Table (Type III tests)

| Response: | р        |    |               |  |
|-----------|----------|----|---------------|--|
|           | LR Chisq | Df | Pr(>Chisq)    |  |
| year      | 1610.9   | 30 | < 2.2e-16 *** |  |
| area_x    | 484.5    | 2  | < 2.2e-16 *** |  |
| mode_fx   | 4892.8   | 2  | < 2.2e-16 *** |  |
| wave      | 519.1    | 3  | < 2.2e-16 *** |  |
| cnty      | 657.8    | 7  | < 2.2e-16 *** |  |
| ffdays12c | 590.0    | 12 | < 2.2e-16 *** |  |
| hours     | 478.1    | 11 | < 2.2e-16 *** |  |

| Coefficients | :        |            |         |                        |              |         |         |                    |   |
|--------------|----------|------------|---------|------------------------|--------------|---------|---------|--------------------|---|
|              | Estimate | Std. Error | z value | Pr(> z )               | ffdave12e100 | 0 96551 | 0 05022 | 14 612 . 20 16 **  |   |
| (Intercept)  | -2.64555 | 0.34168    | -7.743  | 9.73e-15 **            | ffdays12C100 | 1.07220 | 0.05925 | 14.015 < 20-10 *** |   |
| vear1988     | 0.37140  | 0.37544    | 0.989   | 0.322551               | TTdays12C150 | 1.07339 | 0.10180 | 10.544 < 2e-16 ^^  | 2 |
| vear1989     | -0.94533 | 0.35637    | -2.653  | 0.007986 **            | ffdays12c200 | 0.87082 | 0.08193 | 10.629 < 2e-16 **  | * |
| vear1990     | 0.40192  | 0.35869    | 1.121   | 0.262499               | hours2       | 0.36957 | 0.05727 | 6.453 1.10e-10 **  | * |
| vear1991     | 0.11594  | 0.35294    | 0.328   | 0.742545               | hours3       | 0.54538 | 0.05505 | 9.907 < 2e-16 **   | * |
| vear1992     | 0.32887  | 0.34671    | 0.949   | 0.342848               | hours4       | 0.75180 | 0.05547 | 13.553 < 2e-16 **  | * |
| vear1993     | 1 03277  | 0 34673    | 2 979   | 0 002895 **            | hours5       | 0.80479 | 0.05820 | 13.828 < 2e-16 **  | * |
| vear1994     | 1 82744  | 0 34710    | 5 265   | 1 40e-07 **            | * hours6     | 0 95563 | 0 06103 | 15 659 < 2e-16 **  | * |
| year1995     | 1 89355  | 0.34456    | 5 496   | 3 890-08 **            | * bours7     | 0.96092 | 0.07338 | 13.095 < 20.16 **  | * |
| year 1995    | 1 64192  | 0.34377    | 4 700   | 1 670-06 **            | hours?       | 0.90092 | 0.07336 | 13.033 < 2e - 10   |   |
| year 1990    | 1 15110  | 0.34277    | 2 282   | 0.000710 **            | nourso       | 0.90079 | 0.07806 | 12.411 < 20-10 **  |   |
| year 1997    | 1 61422  | 0.34032    | 4 742   | 2 110 06 **            | nours9       | 1.15088 | 0.11986 | 9.602 < 2e-16 **   |   |
| year 1996    | 1 20705  | 0.34036    | 4.743   | 2.110-00 **            | " hours10    | 1.27666 | 0.14273 | 8.945 < 2e-16 **   | × |
| year 1999    | 1 10022  | 0.34030    | 3.703   | 0.000133 **            | _ hours11    | 0.80991 | 0.27641 | 2.930 0.003388 **  |   |
| year2000     | 1.19022  | 0.34134    | 3.487   | 0.000489 **            | " hours12    | 1.41293 | 0.17227 | 8.202 2.37e-16 **  | * |
| year2001     | 0.83645  | 0.34004    | 2.460   | 0.013901 *             |              |         |         |                    |   |
| year2002     | 0.96398  | 0.34147    | 2.823   | 0.004/5/ **            |              |         |         |                    |   |
| year2003     | 0.95840  | 0.34128    | 2.808   | 0.004980 **            |              |         |         |                    |   |
| year2004     | 0.86484  | 0.34315    | 2.520   | 0.011/26 *             |              |         |         |                    |   |
| year2005     | 0.91976  | 0.34319    | 2.680   | 0.007362 **            |              |         |         |                    |   |
| year2006     | 1.19230  | 0.34224    | 3.484   | 0.000494 **            | *            |         |         |                    |   |
| year2007     | 0.64928  | 0.34252    | 1.896   | 0.058014 .             |              |         |         |                    |   |
| year2008     | 0.65127  | 0.34375    | 1.895   | 0.058145 .             |              |         |         |                    |   |
| year2009     | 0.61397  | 0.34289    | 1.791   | 0.073363 .             |              |         |         |                    |   |
| year2010     | 0.56718  | 0.34486    | 1.645   | 0.100035               |              |         |         |                    |   |
| year2011     | 0.34601  | 0.34502    | 1.003   | 0.315925               |              |         |         |                    |   |
| year2012     | 0.29948  | 0.34565    | 0.866   | 0.386266               |              |         |         |                    |   |
| year2013     | 0.66807  | 0.34246    | 1.951   | 0.051082 .             |              |         |         |                    |   |
| year2014     | 0.23134  | 0.34402    | 0.672   | 0.501291               |              |         |         |                    |   |
| year2015     | 0.11812  | 0.34252    | 0.345   | 0.730207               |              |         |         |                    |   |
| year2016     | 0.59837  | 0.34501    | 1.734   | 0.082856 .             |              |         |         |                    |   |
| vear2017     | 1.24686  | 0.34387    | 3.626   | 0.000288 **            | *            |         |         |                    |   |
| area_x2      | -0.21801 | 0.04466    | -4.882  | 1.05e-06 **            | k            |         |         |                    |   |
| area x5      | 0.52670  | 0.02809    | 18.750  | < 2e-16 **             | *            |         |         |                    |   |
| mode fx6     | 2.74995  | 0.05697    | 48.274  | < 2e-16 **             | k            |         |         |                    |   |
| mode fx7     | 1.89487  | 0.03113    | 60.879  | < 2e-16 **             | *            |         |         |                    |   |
| wave4        | -0.58332 | 0.02937    | -19.861 | < 2e-16 **             | *            |         |         |                    |   |
| wave5        | -0.66542 | 0.03509    | -18,961 | < 2e-16 **             | *            |         |         |                    |   |
| wave6        | -0.29600 | 0.10420    | -2.841  | 0.004500 **            |              |         |         |                    |   |
| cntv19       | -0 72868 | 0 09698    | -7 513  | 5 76e-14 **            | *            |         |         |                    |   |
| cnty21       | 0 39380  | 0.07847    | 5 019   | 5 20e-07 **            | *            |         |         |                    |   |
| cnty23       | _0 03199 | 0.03993    | -0.801  | 0 422998               |              |         |         |                    |   |
| cnty25       | 0 81333  | 0.03333    | 6 882   | 5 92e-12 **            | *            |         |         |                    |   |
| cnty5        | -0 50725 | 0.05791    | -8 760  | 20-16 **               | k            |         |         |                    |   |
| cnty7        | -0.29615 | 0.05751    | -4 246  | 2 180-05 **            | *            |         |         |                    |   |
| cnty/        | 0.52015  | 0.000773   | 17 044  | 2.10e 05 2.16 **       | ġ.           |         |         |                    |   |
| ffdavc12c10  | 0.33213  | 0.03122    | 2 820   | < 2e=10<br>0 000120 ** | 6-           |         |         |                    |   |
| ffdays12c10  | 0.14410  | 0.03/03    | 2.029   | 0.000123 **            | k            |         |         |                    |   |
| ffdays12c20  | 0.3303/  | 0.04015    | 0.720   | ~ Ze-10 ^^             | ÷            |         |         |                    |   |
| ffdays12c30  | 0.3/035  | 0.040/8    | 7.91/   | 2.43e-13 **            | <br>tr       |         |         |                    |   |
| fildays12c40 | 0.30402  | 0.00085    | 9.209   | < 20-10 **             |              |         |         |                    |   |
| TTDays12C50  | 0.741/6  | 0.05505    | 13.4/4  | < 26-10 **             | n.           |         |         |                    |   |
| TTdays12c60  | 0.63240  | 0.07240    | 8./35   | < 2e-16 **             | к<br>њ       |         |         |                    |   |
| TTdays12c70  | 0.88835  | 0.09/68    | 9.095   | < 2e-16 **             | к<br>•       |         |         |                    |   |
| ttdays12c80  | 0.64648  | 0.12910    | 5.008   | 5.51e-07 **            | к            |         |         |                    |   |
| ttdays12c90  | 0.65279  | 0.14159    | 4.611   | 4.02e-06 **            | α            |         |         |                    |   |

Appendix 4B cont'd.

| Year | Probability |
|------|-------------|
| 1987 | 0.5188172   |
| 1988 | 0.6098545   |
| 1989 | 0.2952498   |
| 1990 | 0.0170915   |
| 1992 | 0.5996908   |
| 1993 | 0.7517703   |
| 1994 | 0.8702021   |
| 1995 | 0.8774883   |
| 1996 | 0.8477587   |
| 1997 | 0.7731881   |
| 1990 | 0.0441755   |
| 2000 | 0.7799762   |
| 2001 | 0.7133581   |
| 2002 | 0.7387126   |
| 2003 | 0.7376340   |
| 2004 | 0.7191297   |
| 2005 | 0.7300871   |
| 2006 | 0.7803323   |
| 2007 | 0.6740521   |
| 2009 | 0.6658044   |
| 2010 | 0.6553154   |
| 2011 | 0.6037975   |
| 2012 | 0.5926139   |
| 2013 | 0.6777343   |
| 2014 | 0.5/60652   |
| 2015 | 0.0402001   |
| 2017 | 0.7895410   |