ENGINEERING FEASIBILITY & COST ANALYSES OF NITROGEN REDUCTION FROM SELECTED POTWS IN MASSACHUSETTS

PROJECT NUMBER 2007-01/106

Prepared for

Department of Environmental Protection Central Regional Office 627 Main Street, 2nd Floor Worcester, MA 01608

Prepared by

STEARNS & WHELER, LLC Environmental Engineers and Scientists 1545 Iyannough Road Hyannis, MA 02601

And

CDM One Cambridge Place 50 Hampshire Street Cambridge, MA 02139

June 2008

Project No. 61265

ENGINEERING FEASIBILITY AND COST ANALYSES OF NITROGEN REDUCTION FROM SELECTED POTWS IN MASSACHUSETTS

EXECUTIVE SUMMARY

The states of Connecticut and Rhode Island have established nitrogen removal programs to improve water quality in Long Island Sound and Narragansett Bay, respectively. Central and western Massachusetts have a number of Publicly Owned Treatment Works (POTWs) that discharge within the Connecticut River (and four of its tributaries – the Chicopee River, Millers River, Deerfield River, and Westfield River), the Blackstone River, and the Ten Mile River watersheds, all of which eventually flow to either Long Island Sound or Narragansett Bay, but historically have not been subjected to effluent nitrogen limits. This report evaluates the point sources of nitrogen from twenty-one of these POTWs in central and western Massachusetts and estimates the costs associated with reducing the nitrogen discharge from each. Figure ES-1 presents the POTWs evaluated.

Evaluations of the twenty-one POTWs include the use of the BioWin simulation package to aid in determining:

- the maximum nitrogen reduction, either seasonal or year round, resulting from operational and minor modifications/retrofits to the existing facility under *existing* flows;
- upgrades and associated costs required to meet an effluent concentration of 8 mg/L total nitrogen seasonally (May –October) and annually at *permitted* flows; and,
- upgrades and associated costs required to meet an effluent concentration of 5 mg/L total nitrogen seasonally (May October) and annually at *permitted* flows.

The description of each facility in this report includes a discussion regarding minor modifications/retrofits and recommended upgrades to achieve the various nitrogen limits. A standard evaluation approach was developed for determining recommended upgrades. This did not result in, nor was it a project goal to determine, the most cost-effective approach for each facility to achieve the different levels of nitrogen removal.

The total costs to achieve annual TN limits of 8 and 5 mg/L at the twenty-one facilities evaluated in this report is over \$750 million and \$900 million, respectively, based on the assumptions made in this evaluation. These assumptions include the use of permitted flows and assumed influent nitrogen concentrations when data was not available. The permitted flow used for each facility is a flow that, for many communities, may not be realized in the near-term or even long-term future. On average, the twenty-one POTWs are operating at about two-thirds of permitted capacity with five facilities operating at or less than 50% capacity. Also, the majority of the facilities did not have influent nitrogen data and as a result, critical data had to be assumed. The combination of these two factors results in upgrade costs that may be conservative. The summary of the upgrade costs and associated modifications for all facilities is shown in Table ES-1.

The Upper Blackstone Water Pollution Abatement District is the only one of the facilities that is currently being upgraded to achieve nitrogen removal (an annual average TN of 8 to 10 mg/L although not required by the current permit). This facility has also undergone a recent facilities planning process that determined a 20 year design flow projection of 45 mgd (80% of the permitted flow of the facility). Thus, in addition to the evaluation at permitted capacity, this facility was also evaluated at the reduced design flow. As shown in Table ES-1, the upgrade costs for the 45 mgd facility were significantly less than those associated with upgrades at permitted capacity. With all other analyses completed at the permitted flow of the facilities, a similar reduction in upgrade costs may be seen when more realistic design year flows are used.

(continued)

Table ES-1

FACILITY MODIFICATION AND COST SUMMARY

POTW NAME	OPERATIONAL OR LOW COST RETROFITS	MODIFICATIONS TO ACHIEVE SEASONAL TN OF 8 MG/L	CAPITAL COSTS TO ACHIEVE SEASONAL TN OF 8 MG/L (MILLIONS)	MODIFICATIONS TO ACHIEVE ANNUAL AVERAGE TN OF 8 MG/L	CAPITAL COSTS TO ACHIEVE ANNUAL TN OF 8 MG/L (MILLIONS)	MODIFICATIONS TO ACHIEVE SEASONAL TN OF 5 MG/L	CAPITAL COSTS TO ACHIEVE SEASONAL TN OF 5 MG/L (MILLIONS)	PROCESS USED TO ACHIEVE ANNUAL AVERAGE TN OF 5 MG/L	CAPITAL COSTS TO ACHIEVE ANNUAL TN OF 5 MG/L (MILLIONS)
				Blackstone River Wa	atershed				
Upper Blackstone Water Pollution Abatement District at 56 mgd	Ongoing upgrade to operate in MLE, A/O and A ² /O modes	Add two aeration tanks, IFAS in aerobic zones, and two new clarifiers	\$130	Add two aeration tanks, IFAS in aerobic zones, and two new clarifiers	\$130	Add two aeration tanks, IFAS in aerobic zones, two new clarifiers, denitrification filter, intermediate pump station, and methanol facility	\$180	Add two aeration tanks, IFAS in aerobic zones, two new clarifiers, denitrification filter, intermediate pump station, and methanol facility	\$180
Upper Blackstone Water Pollution Abatement District at 45 mgd ⁽¹⁾	Ongoing upgrade to operate in MLE, A/O and A ² /O modes	Currently designed to ad	chieve annual average	e TN of 8 mg/L and monthly lim	it of 8-10 mg/L	Add one aeration tank, IFAS in all tanks, one clarifier	\$90	Add one aeration tank, IFAS in all tanks, one clarifier	\$90
Grafton Wastewater Treatment Plant	None	Add two aeration tanks, one clarifier, denitrification filter, intermediate pump station, and a methanol facility	\$28	Add two aeration tanks, IFAS to all tanks, one clarifier, denitrification filter, intermediate pump station, and a methanol facility	\$41	Add two aeration tanks, one clarifier, denitrification filter, intermediate pump station, and a methanol facility	\$28	Add two aeration tanks, IFAS to all tanks, one clarifier, denitrification filter, intermediate pump station, and a methanol facility	\$41
Northbridge Wastewater Treatment Plant	Cycle aeration in SBR up to 1.3 mgd	Add one SBR and a building to accommodate equipment	\$6	Add one SBR and a building to accommodate equipment	\$6	Add one SBR and a building to accommodate it, a denitrification filter, intermediate pump station and a methanol facility	\$16	Add one SBR and a building to accommodate it, a denitrification filter, intermediate pump station and a methanol facility	\$16
Douglas Wastewater Treatment Facility	Currently achieving some nitrogen removal	Add two SBRs	\$4.4	Add two SBRs	\$4.4	Add two SBRs	\$4.4	Add two SBRs	\$4.4
Upton Wastewater Treatment Facility	None	Add one new aeration tank	\$5.1	Add one new aeration tank with IFAS in each tank	\$7.3	Add one new aeration tank and a methanol facility	\$5.3	Add one new aeration tank with IFAS in each tank and a methanol facility	\$7.4
Uxbridge Wastewater Treatment Facility	Currently achieving some nitrogen removal	Add five aeration tanks	\$25	Add eight aeration tanks with denitrification filters, intermediate pump station and methanol facility	\$44	Add seven aeration tanks	\$32	Add eight aeration tanks with denitrification filters, intermediate pump station and methanol facility	\$44

Table ES-1 (continued)

FACILITY MODIFICATION AND COST SUMMARY

POTW NAME	OPERATIONAL OR LOW COST RETROFITS	MODIFICATIONS TO ACHIEVE SEASONAL TN OF 8 MG/L	CAPITAL COSTS TO ACHIEVE SEASONAL TN OF 8 MG/L (MILLIONS)	MODIFICATIONS TO ACHIEVE ANNUAL AVERAGE TN OF 8 MG/L	CAPITAL COSTS TO ACHIEVE ANNUAL TN OF 8 MG/L (MILLIONS)	MODIFICATIONS TO ACHIEVE SEASONAL TN OF 5 MG/L	CAPITAL COSTS TO ACHIEVE SEASONAL TN OF 5 MG/L (MILLIONS)	PROCESS USED TO ACHIEVE ANNUAL AVERAGE TN OF 5 MG/L	CAPITAL COSTS TO ACHIEVE ANNUAL TN OF 5 MG/L (MILLIONS)
Hopedale Wastewater Treatment Facility	None	Add seven aeration tanks, two clarifiers and methanol facility	\$23	Add eight aeration tanks, two clarifiers and methanol facility	\$25	Add seven aeration tanks, two clarifiers and methanol facility	\$23	Add eight aeration tanks, two clarifiers and methanol facility	\$25
			1	Connecticut River W	atershed	1	1		
Springfield Wastewater Treatment Facility	None	Nitrate recycle pumps and other minor modifications to existing aeration tanks	\$4.5	Structural modifications to four existing aeration tanks; new diffusers; nitrate recycle pumps; two new clarifiers	\$23	Nitrate recycle pumps and other minor modifications to existing aeration tanks; two new clarifiers	\$56	Structural modifications to four existing aeration tanks; new diffusers; nitrate recycle pumps; three new clarifiers	\$65
Amherst Wastewater Treatment Plant	None	Add two aeration tanks, one clarifier, denitrification filters, intermediate pump station and methanol facility	\$48	Add four aeration tanks, one clarifier, denitrification filters, intermediate pump station and methanol facility	\$61	Add two aeration tanks, one clarifier, denitrification filters, intermediate pump station and methanol facility	\$48	Add four aeration tanks, one clarifier, denitrification filters, intermediate pump station and methanol facility	\$61
Northampton Wastewater Treatment Facility	None	50% more volume added to end of existing tanks; conversion to plug flow; aeration equipment; nitrate recycle pumps; 2 new clarifiers; demolition existing digesters	\$20	50% more volume added to end of existing tanks; conversion to plug flow; aeration equipment; nitrate recycle pumps; IFAS system; one new clarifier; methanol feed facility; demolition existing digesters	\$35	50% more volume added to end of existing tanks; conversion to plug flow; aeration equipment; nitrate recycle pumps; IFAS system; one new clarifier; methanol feed facility; demolition existing digesters	\$36	50% more volume added to end of existing tanks; conversion to plug flow; aeration equipment; nitrate recycle pumps; IFAS system; two new clarifiers; methanol feed facility; demolition existing digesters	\$39
Holyoke Wastewater Treatment Facility	None	BAFs and denitrification filters; methanol feed facility; intermediate pump station	\$99	BAFs and denitrification filters; methanol feed facility; intermediate pump station	\$99	BAFs and denitrification filters; methanol feed facility; intermediate pump station	\$99	BAFs and denitrification filters; methanol feed facility; intermediate pump station	\$99
Chicopee Wastewater Treatment Facility	None	IFAS system in aeration tanks; replace aeration equipment; denitrification filters; methanol feed facility; 4 new stacked clarifiers; intermediate pump station; demolition of old digesters	\$65	Demolition of oxygenation tanks and clarifiers; nitrification and denitrification filters; intermediate PS; methanol feed facility	\$87	IFAS system in aeration tanks; replace aeration equipment; denitrification filters; methanol feed facility; 4 new stacked clarifiers; intermediate pump station; demolition of old digesters	\$65	Demolition of oxygenation tanks and clarifiers; nitrification and denitrification filters; intermediate PS; methanol feed facility	\$87

Table ES-1 (continued)

FACILITY MODIFICATION AND COST SUMMARY

POTW NAME	OPERATIONAL OR LOW COST RETROFITS	MODIFICATIONS TO ACHIEVE SEASONAL TN OF 8 MG/L	CAPITAL COSTS TO ACHIEVE SEASONAL TN OF 8 MG/L (MILLIONS)	MODIFICATIONS TO ACHIEVE ANNUAL AVERAGE TN OF 8 MG/L	CAPITAL COSTS TO ACHIEVE ANNUAL TN OF 8 MG/L (MILLIONS)	MODIFICATIONS TO ACHIEVE SEASONAL TN OF 5 MG/L	CAPITAL TO ACH SEASONA 5 MG (MILLI
Easthampton Wastewater Treatment Facility	Operate at higher SRT; install timers on aerators	one new aeration tank; conversion of existing to plug flow; aeration equipment; nitrate recycle pumps	\$11	one new aeration tank; conversion of existing to plug flow; aeration equipment; nitrate recycle pumps	\$11	one new aeration tank; conversion of existing to plug flow; aeration equipment; nitrate recycle pumps; one new clarifier	\$1
South Hadley Wastewater Treatment Facility	Operate at higher SRT; utilize new VFDs to simulate cyclical aeration	50% more bioreactor volume; convert two existing aeration tanks to plug flow; nitrate recycle pumps; aeration equipment; methanol feed facility	\$16	50% more bioreactor volume; convert two existing aeration tanks; nitrate recycle pumps; aeration equipment; one clarifier; methanol feed facility; demolition of digesters	\$19	50% more bioreactor volume; convert two existing aeration tanks; nitrate recycle pumps; aeration equipment; one clarifier; methanol feed facility; demolition of digesters	\$1
				Chicopee River Wa	tershed	1	
Palmer Water Pollution Control Facility	Operate at higher SRT; turn off first grid of diffusers to create anoxic zones; install FRP baffles	one new aeration tank; conversion of existing to plug flow; aeration equipment; nitrate recycle pumps; one new clarifier	\$18	two new aeration tanks; conversion of existing to plug flow; aeration equipment; nitrate recycle pumps; one new clarifier	\$22	one new aeration tank; conversion of existing to plug flow; aeration equipment; nitrate recycle pumps; one new clarifier; methanol feed facility	\$1
Ware Wastewater Treatment Facility	Install timers on aerators for cyclical aeration	Modify two existing aeration tanks to plug flow; aeration equipment; nitrate recycle pumps	\$6.6	Modify two existing aeration tanks to plug flow; aeration equipment; nitrate recycle pumps	\$6.6	Modify two existing aeration tanks to plug flow; aeration equipment; nitrate recycle pumps	\$6.
				Millers River Wat	ershed		
Erving Center Wastewater Treatment Facility				Minimal Costs	- Facility is nutrient of	deficient	
				Deerfield River Wa	tershed		
Greenfield Wastewater Treatment Facility	None	BAFs and denitrification filters; methanol feed facility; intermediate pump station; compensatory storage	\$49	BAFs and denitrification filters; methanol feed facility; intermediate pump station; compensatory storage	\$49	BAFs and denitrification filters; methanol feed facility; intermediate pump station; compensatory storage	\$4

L COSTS HIEVE JL TN OF G/L IONS)	PROCESS USED TO ACHIEVE ANNUAL AVERAGE TN OF 5 MG/L	CAPITAL COSTS TO ACHIEVE ANNUAL TN OF 5 MG/L (MILLIONS)
3	one new aeration tank; conversion of existing to plug flow; aeration equipment; nitrate recycle pumps; one new clarifier	\$13
9	50% more bioreactor volume; convert two existing aeration tanks; nitrate recycle pumps; aeration equipment; two clarifiers; methanol feed facility; demolition of digesters	\$22
8	two new aeration tanks; conversion of existing to plug flow; aeration equipment; nitrate recycle pumps; one new clarifier; methanol feed facility	\$23
.6	Modify two existing aeration tanks to plug flow; aeration equipment; nitrate recycle pumps	\$6.6
9	BAFs and denitrification filters; methanol feed facility; intermediate pump station; compensatory storage	\$49

Table ES-1 (continued)

FACILITY MODIFICATION AND COST SUMMARY

POTW NAME	OPERATIONAL OR LOW COST RETROFITS	MODIFICATIONS TO ACHIEVE SEASONAL TN OF 8 MG/L	CAPITAL COSTS TO ACHIEVE SEASONAL TN OF 8 MG/L (MILLIONS)	MODIFICATIONS TO ACHIEVE ANNUAL AVERAGE TN OF 8 MG/L	CAPITAL COSTS TO ACHIEVE ANNUAL TN OF 8 MG/L (MILLIONS)	MODIFICATIONS TO ACHIEVE SEASONAL TN OF 5 MG/L	CAPITAL COSTS TO ACHIEVE SEASONAL TN OF 5 MG/L (MILLIONS)	PROCESS USED TO ACHIEVE ANNUAL AVERAGE TN OF 5 MG/L	CAPITAL COSTS TO ACHIEVE ANNUAL TN OF 5 MG/L (MILLIONS)
				Westfield River Wa	tershed				
Westfield Wastewater Treatment Facility	None	Modify existing three aeration tanks; add IFAS system; increase blower capacity; nitrate recycle pumps; methanol feed facility	\$17	Modify existing three aeration tanks; add IFAS system; increase blower capacity; nitrate recycle pumps; methanol feed facility	\$16	Modify existing three aeration tanks; add IFAS system; increase blower capacity; nitrate recycle pumps; methanol feed facility	\$17	Modify existing three aeration tanks; add IFAS system; increase blower capacity; nitrate recycle pumps; methanol feed facility;	\$17
				Ten Mile River Wa	tershed				
North Attleborough Wastewater Treatment Facility	Currently achieving some nitrogen removal	Combine each set of four existing tanks into a single reactor (total of two modified tanks), add two new tanks - same size as modified tanks	\$19	Combine each set of four existing tanks into a single reactor (total of two modified tanks), add two new tanks - same size as modified tanks	\$19	Combine each set of four existing tanks into a single reactor (total of two modified tanks), add three new tanks - same size as modified tanks, add a methanol facility	\$26	Combine each set of four existing tanks into a single reactor (total of two modified tanks), add three new tanks - same size as modified tanks, add a methanol facility	\$26
Attleboro Wastewater Treatment Facility	Cyclical aeration	Combine each set of five existing tanks into a single reactor (total of two modified tanks), add three new tanks - same size as modified tanks	\$38	Combine each set of five existing tanks into a single reactor (total of two modified tanks), add five new tanks - same size as modified tanks, add one new clarifier	\$60	Combine each set of five existing tanks into a single reactor (total of two modified tanks), add six new tanks - same size as modified tanks, add one new clarifier	\$70	Combine each set of five existing tanks into a single reactor (total of two modified tanks), add eight new tanks - same size as modified tanks, add one new and a methanol facility	\$88
Notes:				the the second s					

1. The Upper Blackstone Water Pollution Abatement Facility is the only one included in this study that has undergone a recent wastewater facility plan and a current nitrogen removal upgrade at a flow that is less than the permitted capacity.

This study is not intended to be a substitute for a thorough evaluation that would be required if a facility were to embark on any major improvements. Further, the cost estimates are "order of magnitude" projections for nitrogen removal only based on the best available data and the noted limitations of this study. As such, they should be used for broad planning purposes in determining where more specific evaluations are warranted in the context of meeting the interstate nutrient loading goals. The usefulness of this study lies not in the individual facility evaluations, but more in the estimated total dollars established for upgrades in the individual watersheds or for the entire project.

Some of the facilities in this report are currently achieving or nearly achieving annual average TN levels of 8 mg/L. Despite this, these same facilities have some costs associated with achieving a limit of 8 mg/L. There are several reasons for this. In some cases, the facility would not be able to continue to achieve low levels of TN at their permitted capacity. In other cases where the facility is near its permitted capacity and still achieving TN levels close to 8 mg/L, the evaluations in this report were conducted at maximum loading conditions and minimum temperatures, a condition that these facilities may not yet have experienced. It should be noted that any facility that is designed to achieve an effluent limit of 8 mg/L will have safety factors built into the design which will allow the facility to typically outperform its limit to ensure the limit is consistently achieved.

Further, many of the facilities included in this study may also be facing future limits on other parameters including phosphorus and certain metals resulting in the need for advanced treatment. The focus of this report is strictly on nitrogen removal and thus evaluations and costs estimates only consider the impacts of nitrogen removal on these facilities. In addition, any baseline improvements to existing, aging processes are not included in the estimate.

In moving forward with the results of this report the following should be considered:

1. Truth check on permitted capacity. Due to the exodus of many large water use industries in the watersheds analyzed, the permitted capacity of many of the facilities is well above a twenty year projected flow in the service area. Needs analyses should be performed and modeling re-run based on both current and more realistic design year flows.

- 2. Facilities should be encouraged to increase sampling of nitrogen components in influent, primary effluent and final effluent to get a better understanding of the constituent profile across the plant. These parameters include TKN, ammonia, nitrate, and nitrite. Characterization of the influent should also be done so that this data can then be used in conjunction with the nitrogen series in the BioWin simulations to reduce the need to use default values in the modeling.
- 3. Further investigation of conversion of a conventional activated sludge process to an MLE process to achieve seasonal or year-round nitrogen removal at both current and more realistic design year treatment plant flows within existing and/or new tankage.
- 4. Nitrogen trading with the watersheds.
- 5. Obtaining a better understanding of the fate and transport of total nitrogen discharged from POTWs in Massachusetts on Long Island Sound and Narragansett Bay.

This study will provide the Commonwealth of Massachusetts with preliminary information necessary to assess technical and financial impacts associated with potential nitrogen reduction alternatives to the POTWs in Massachusetts that contribute nitrogen to Narragansett Bay and Long Island Sound. This report will help communities to begin identifying possible nitrogen reduction alternatives and associated costs. It will also assist the commonwealth in effectively assessing the financial impacts of future total nitrogen limits within each watershed required to meet the water quality goals of Narragansett Bay and Long Island Sound.

TABLE OF CONTENTS

Page No.

EXECUTIVE SUMMARY

SECTION 1 – INTRODUCTION

1.1	Background	1-1
1.2	Objectives	1-3
1.3	Organization	1-4

SECTION 2 – QUALITY ASSURANCE PROGRAM

2.1	Introduction	2-1
2.2	Data Collection Procedures	2-2
2.3	Evaluation and Modeling Procedures	2-3
2.4	Cost Estimating Procedures	2-13
2.5	References	2-19

SECTION 3 – BLACKSTONE RIVER WATERSHED

3.1	Introduction	3-1
3.2	Upper Blackstone WPAD	3-2
3.3	Grafton	3-19
3.4	Northbridge	3-35
3.5	Douglas	3-48
3.6	Upton	3-62
3.7	Uxbridge	3-77
3.8	Hopedale	3-93
	=	

SECTION 4 – CONNECTICUT RIVER WATERSHED

4.1	Introduction	4-1
4.2	Springfield (Bondi Island)	4-3
4.3	Amherst	4-19
4.4	Northampton	4-35
4.5	Holyoke	4-52
4.6	Chicopee	4-62
4.7	Easthampton	4-79
4.8	South Hadley	4-95

Page No.

SECTION 5 – CHICOPEE RIVER WATERSHED

5.1 Introduction	5-1
5.2 Palmer	5-2
5.3 Ware	5-19

SECTION 6 – MILLERS RIVER WATERSHED

6.1 Introduction	6-1
6.2 Erving Center	6-2

SECTION 7 – DEERFIELD RIVER WATERSHED

7.1	Introduction	7-1
7.2	Greenfield	7-2

SECTION 8 - WESTFIELD RIVER WATERSHED

8.1 Introduction	8-1
8.2 Westfield	8-2

SECTION 9 – TEN MILE RIVER WATERSHED

9.1	Introduction	9-1
9.2	North Attleborough	9-2
9.3	Attleboro	9-18

SECTION 10 - SUMMARY

10.1	Introduction	10-1
10.2	Watershed Summaries	10-2
10.3	Next Steps	10-20

List of Tables

Table No.		<u>Page No.</u>
ES-1	Facility Modification and Cost Summary	ES-3
1.1-1	List of POTWs	1-2
2.2-1	Plant Data	2-2

List of Tables (continued)

<u>Table No.</u>		Page No.
2.3-1	Typical Model Input Parameters	2-5
2.3-2	Typical Design Criteria	2-7
2.3-3	Anticipated Performance	2-13
2.4-1	Non-Component Allowances	2-17
	BLACKSTONE RIVER	
3.1-1	Blackstone River POTWs	3-1
	UPPER BLACKSTONE	
3.2-1	Design Influent Flow and Concentrations	3-4
3.2-2	Upper Blackstone WWTF	
	Monthly Averages 2003-2006	3-5
3.2-3	Select Monthly Permit Limits	3-6
3.2-4	Model Input Parameters at Permitted Capacity	3-7
3.2-5	Results for Seasonal Limit of 8 mg/L TN	3-10
3.2-6	Results for Annual Average Limit of 8 mg/L TN	3-12
3.2-7	Results for Seasonal Limit of 5 mg/L TN	3-14
3.2-8	Results for Annual Average Limit of 5 mg/L TN	3-16
3.2-9	Plant Flow and Effluent Limit Summary	3-17
3.2-10	Nitrogen Removal Process Summary for UBWPAD	3-17
3.2-11	Required Modifications Summary for UBWPAD at 56 MGD	3-18
3.2-12	Cost Summary for Nitrogen Removal at UBWPAD at 56 MGD	3-18
	GRAFTON	
3.3-1	Grafton WWTPMonthly Averages 2004-2006	3-21
3.3-2	Select Monthly Permit Limits	3-22
3.3-3	Existing Influent Parameters	3-23
3.3-4	Model Input Parameters at Permitted Capacity	3-24
3.3-5	Results for Seasonal Limit of 8 mg/L TN	3-26
3.3-6	Results for Annual Average Limit of 8 mg/L TN	3-28
3.3-7	Results for Seasonal Limit of 5 mg/L TN	3-30
3.3-8	Results for Annual Average Limit of 5 mg/L TN	3-32
3.3-9	Plant Flow and Effluent Limit Summary	3-33
3.3-10	Nitrogen Removal Process Summary for	
0.0.11	Gratton WWTP	3-33
3.3-11	Required Modifications Summary for	0.04
2 2 1 2	Gratton WWTP	3-34
3.3-12	Cost Summary for Nitrogen Removal at Grafton WWTP	3-34

List of Tables (continued)

Table No.

Page No.

NORTHBRIDGE

3.4-1	Design Flows and Loads	3-36
3.4-2	Northbridge WWTP Monthly Averages 2004-2006	3-37
3.4-3	Select Monthly Permit Limits	3-38
3.4-4	Existing Influent Parameters	3-39
3.4-5	Model Input Parameters at Permitted Capacity	3-40
3.4-6	Results for Seasonal Limit of 8 mg/L TN	3-41
3.4-7	Results for Annual Average Limit of 8 mg/L TN	3-42
3.4-8	Results for Seasonal Limit of 5 mg/L TN	3-44
3.4-9	Results for Annual Average Limit of 5 mg/L TN	3-45
3.4-10	Plant Flow and Effluent Limit Summary	3-46
3.4-11	Nitrogen Removal Process Summary for	
	Northbridge WWTP	3-47
3.4-12	Required Modifications Summary for	
	Northbridge WWTP	3-47
3.4-13	Cost Summary for Nitrogen Removal at	
	Northbridge WWTP	3-47

DOUGLAS

3.5-1	Design Flows and Loads	3-49
3.5-2	Douglas WWTF Monthly Averages 2004-2006	3-50
3.5-3	Select Monthly Permit Limits	3-51
3.5-4	Existing Influent Parameters	3-52
3.5-5	Model Input Parameters at Permitted Capacity	3-53
3.5-6	Results for Seasonal Limit of 8 mg/L TN	3-54
3.5-7	Results for Annual Average Limit of 8 mg/L TN	3-56
3.5-8	Results for Seasonal Limit of 5 mg/L TN	3-57
3.5-9	Results for Annual Average Limit of 5 mg/L TN	3-59
3.5-10	Plant Flow and Effluent Limit Summary	3-60
3.5-11	Nitrogen Removal Process Summary for Douglas WWTF	3-60
3.5-12	Required Modifications Summary for	
	North Douglas WWTF	3-61
3.5-13	Cost Summary for Nitrogen Removal at Douglas WWTF	3-61
	UPTON	
3.6-1	Design Flows and Loads	3-63
3.6-2	Upton WWTF Monthly Averages 2004-2006	3-65

List of Tables (continued)

Table No.

Page No.

3.6-3	Select Monthly Permit Limits	3-66
3.6-4	Existing Influent Parameters	3-67
3.6-5	Model Input Parameters at Permitted Capacity	3-67
3.6-6	Results for Seasonal Limit of 8 mg/L TN	3-69
3.6-7	Results for Annual Average Limit of 8 mg/L TN	3-71
3.6-8	Results for Seasonal Limit of 5 mg/L TN	3-73
3.6-9	Results for Annual Average Limit of 5 mg/L TN	3-74
3.6-10	Plant Flow and Effluent Limit Summary	3-75
3.6-11	Nitrogen Removal Process Summary for Upton WWTF	3-76
3.6-12	Required Modifications Summary for Upton WWTF	3-76
3.6-13	Cost Summary for Nitrogen Removal at Upton WWTF	3-76

UXBRIDGE

3.7-1	Uxbridge WWTF Monthly Averages 2004-2006	3-79
3.7-2	Select Monthly Permit Limits	3-80
3.7-3	Existing Influent Parameters	3-81
3.7-4	Model Input Parameters at Permitted Capacity	3-82
3.7-5	Results for Seasonal Limit of 8 mg/L TN	3-84
3.7-6	Results for Annual Average Limit of 8 mg/L TN	3-86
3.7-7	Results for Seasonal Limit of 5 mg/L TN	3-88
3.7-8	Results for Annual Average Limit of 5 mg/L TN	3-90
3.7-9	Plant Flow and Effluent Limit Summary	3-91
3.7-10	Nitrogen Removal Process Summary for	
	Uxbridge WWTF	3-91
3.7-11	Required Modifications Summary for Uxbridge WWTF	3-92
3.7-12	Cost Summary for Nitrogen Removal at Uxbridge WWTF	3-92

HOPEDALE

3.8-1	Hopedale WWTF Monthly Averages 2004-2006	3-95
3.8-2	Select Monthly Permit Limits	3-96
3.8-3	Existing Influent Parameters	3-97
3.8-4	Model Input Parameters at Permitted Capacity	3-97
3.8-5	Results for Seasonal Limit of 8 mg/L TN	3-99
3.8-6	Results for Annual Average Limit of 8 mg/L TN	3-101
3.8-7	Results for Seasonal Limit of 5 mg/L TN	3-103
3.8-8	Results for Seasonal Limit of 5 mg/L TN	3-105
3.8-9	Plant Flow and Effluent Limit Summary	3-106
3.8-10	Nitrogen Removal Process Summary for Hopedale WWTF	3-106
3.8-11	Required Modifications Summary for Hopedale WWTF	3-107
3.8-12	Cost Summary for Nitrogen Removal at Hopedale WWTF	3-107

List of Tables (continued)

<u>Table No.</u>		Page No.
	CONNECTICUT RIVER	
4.1-1	Connecticut River POTWs	4-2
	SPRINGFIELD (BONDI ISLAND)	
4.2-1	Springfield WWTF Monthly Averages 2003-2006	4-6
4.2-2	Select Monthly Permit Limits	4-8
4.2-3	Existing Primary Effluent Parameters	4-9
4.2-4	Model Input Parameters at Permitted Capacity	4-9
4.2-5	Results for Seasonal Limit of 8 mg/L TN	4-11
4.2-6	Results for Annual Average Limit of 8 mg/L TN	4-13
4.2-7	Results for Seasonal Limit of 5 mg/L TN	4-14
4.2-8	Results for Annual Average Limit of 5 mg/L TN	4-16
4.2-9	Plant Flow and Effluent Limit Summary	4-17
4.2-10	Nitrogen Removal Process Summary for	
	Springfield WWTF	4-17
4.2-11	Required Modifications Summary for Springfield WWTF	4-18
4.2-12	Cost Summary for Nitrogen Removal at	
	Springfield WWTF	4-18
	AMHERST	
4.3-1	Amherst WWTP Monthly Averages 2004-2006	4-22
4.3-2	Select Monthly Permit Limits	4-23
4.3-3	Existing Influent Parameters	4-24
4.3-4	Model Input Parameters at Permitted Capacity	4-24
4.3-5	Results for Seasonal Limit of 8 mg/L TN	4-26
4.3-6	Results for Annual Limit of 8 mg/L TN	4-28
4.3-7	Results for Seasonal Limit of 5 mg/L TN	4-30
4.3-8	Results for Annual Average Limit of 5 mg/L TN	4-32
4.3-9	Plant Flow and Effluent Limit Summary.	4-33
4.3-10	Nitrogen Removal Process Summary for Amherst WWTP	4-33
4.3-11	Required Modifications Summary for Amherst WWTP	4-34

NORTHAMPTON

4.3-12

4.4-1	Northampton WWTF Monthly Averages 2003-2006	4-38
4.4-2	Select Monthly Permit Limits	4-39
4.4-3	Existing Influent Parameters	4-40

Cost Summary for Nitrogen Removal at Amherst WWTP

4-34

List of Tables (continued)

Table No.		Page No.
4.4-4	Model Input Parameters at Permitted Capacity	4-40
4.4-5	Results for Seasonal Limit of 8 mg/L TN	4-42
4.4-6	Results for Annual Average Limit of 8 mg/L TN	4-44
4.4-7	Results for Seasonal Limit of 5 mg/L TN	4-46
4.4-8	Results for Annual Average Limit of 5 mg/L TN	4-48
4.4-9	Plant Flow and Effluent Limit Summary	4-49
4.4-10	Nitrogen Removal Process Summary for Northampton WWTF	4-49
4.4-11	Required Modifications Summary for	,
	Northampton WWTF	4-50
4.4-12	Cost Summary for Nitrogen Removal at	
	Northampton WWTF	4-51
	HOLYOKE	
4.5-1	Holyoke WPCF Monthly Averages 2004-2006	4-55
4.5-2	Select Monthly Permit Limits	4-56
4.5-3	Existing Influent Parameters	4-57
4.5-4	Model Input Parameters at Permitted Capacity	4-57
4.5-5	Plant Flow and Effluent Limit Summary	4-59
4.5-6	Nitrogen Removal Process Summary for Holyoke WPCF	4-60
4.5-7	Required Modifications Summary for Holyoke WPCF	4-60
4.5-8	Cost Summary for Nitrogen Removal at Holyoke WPCF	4-61
	CHICOPEE	
4.6-1	Chicopee WWTF Monthly Averages 2003-2006	4-65
4.6-2	Select Monthly Permit Limits	4-67
4.6-3	Existing Primary Effluent Parameters	4-68
4.6-4	Model Input Parameters at Permitted Capacity	4-68
4.6-5	Process Design for Seasonal Limit of 8 mg/L TN	4-70
4.6-6	Process Design for Annual Average of 8 mg/L TN	4-72
4.6-7	Process Design for Seasonal Limit of 5 mg/L TN	4-74
4.6-8	Process Design for Annual Average of 5 mg/L TN	4-76
4.6-9	Plant Flow and Effluent Limit Summary	4-77
4.6-10	Nitrogen Removal Process Summary for Chicopee WWTF	4-77
4.6-11	Required Modifications Summary for Chicopee WWTF	4-78

4.6-11Required Modifications Summary for Chicopee W w IF4-784.6-12Cost Summary for Nitrogen Removal at Chicopee WWTF4-78

List of Tables (continued)

Table No.

Page No.

EASTHAMPTON

4.7-1	Easthampton WWTF Monthly Averages 2004-2006	4-82
4.7-2	Select Monthly Permit Limits	4-84
4.7-3	Existing Primary Effluent Parameters	4-85
4.7-4	Model Input Parameters at Permitted Capacity	4-85
4.7-5	Results for Seasonal Limit of 8 mg/L TN	4-87
4.7-6	Results for Annual Average Limit of 8 mg/L TN	4-89
4.7-7	Results for Seasonal Limit of 5 mg/L TN	4-90
4.7-8	Results for Annual Average Limit of 5 mg/L TN	4-91
4.7-9	Plant Flow and Effluent Limit Summary	4-93
4.7-10	Nitrogen Removal Process Summary for	
	Easthampton WWTF	4-93
4.7-11	Required Modifications Summary for	
	Easthampton WWTF	4-94
4.7-12	Cost Summary for Nitrogen Removal at	
	Easthampton WWTF	4-94
	SOUTH HADLEY	
4.8-1	South Hadley WWTF Monthly Averages 2004-2006	4-98
4.8-2	Select Monthly Permit Limits	4-100
4.8-3	Existing Primary Effluent Parameters	4-101
4.8-4	Model Input Parameters at Permitted Capacity	4-101
4.8-5	Results for Seasonal Limit of 8 mg/L TN	4-103
4.8-6	Results for Annual Average Limit of 8 mg/L TN	4-105
4.8-7	Results for Seasonal Limit of 5 mg/L TN	4-107
4.8-8	Results for Annual Average Limit of 8 mg/L TN	4-108
4.8-9	Plant Flow and Effluent Limit Summary	4-109
4.8-10	Nitrogen Removal Process Summary for	
	South Hadley WWTF	4-110
4.8-11	Required Modifications Summary for South Hadley WWTF	4-110
4.8-12	Cost Summary for Nitrogen Removal at	
	South Hadley WWTF	4-111
	CHICOPEE	
5.1-1	Chicopee River POTWs	5-1
	PALMER	
5.2-1	Palmer WPCF Monthly Averages 2003-2006	5-5
5.2-2	Select Monthly Permit Limits	5-6

List of Tables (continued)

Table No.

Page No.

5.2-3	Existing Influent Parameters	5-7
5.2-4	Model Input Parameters at Permitted Capacity	5-7
5.2-5	Results for Seasonal Limit of 8 mg/L TN	5-9
5.2-6	Results for Annual Average Limit of 8 mg/L TN	5-11
5.2-7	Results for Seasonal Limit of 5 mg/L TN	5-13
5.2-8	Results for Annual Average Limit of 5 mg/L TN	5-15
5.2-9	Plant Flow and Effluent Limit Summary	5-16
5.2-10	Nitrogen Removal Process Summary for Palmer WPCF	5-16
5.2-11	Required Modifications Summary for Palmer WPCF	5-17
5.2-12	Cost Summary for Nitrogen Removal at Palmer WPCF	5-18

WARE

5.3-1	Ware WWTF Monthly Averages 2003-2006	5-21
5.3-2	Select Monthly Permit Limits	5-22
5.3-3	Existing Influent Parameters	5-23
5.3-4	Model Input Parameters at Permitted Capacity	5-23
5.3-5	Results for Seasonal Limit of 8 mg/L TN	5-25
5.3-6	Modeling Results for Annual Average Limit of 8 mg/L TN	5-26
5.3-7	Results for Seasonal Limit of 5 mg/L TN	5-28
5.3-8	Biowin Model for Annual Average TN Limit of 5 mg/L	5-29
5.3-9	Plant Flow and Effluent Limit Summary	5-30
5.3-10	Nitrogen Removal Process Summary for Ware WWTF	5-30
5.3-11	Required Modifications Summary for Ware WWTF	5-31
5.3-12	Cost Summary for Nitrogen Removal at Ware WWTF	5-31

ERVING

6.2-1	Erving WWTF Monthly Averages 2004-2006	6-4
6.2-2	Select Monthly Permit Limits	6-5
6.2-3	Plant Flow and Effluent Limit Summary	6-6

GREENFIELD

7.2-1 Greenfield WWTF Monthly Averages 2004-2006	7-5
7.2-2 Select Monthly Permit Limits	7-6
7.2-3 Existing Primary Effluent Parameters	7-7
7.2-4 Parameters at Permitted Capacity	7-7
7.2-5 Process Design for Seasonal Limit of 8 mg/L TN	7-9
7.2-6 Process Design for Annual Average Limit of 8 mg/L TN	7-11
7.2-7 Plant Flow and Effluent Limit Summary	7-12
7.2-8 Nitrogen Removal Process Summary for Greenfield WWTF	7-12

List of Tables (continued)

<u>Table No.</u>		Page No.
7.2-9	Required Modifications Summary for Greenfield WWTF	7-13
7.2-10	Cost Summary for Nitrogen Removal at Greenfield WWTF	7-13
	WESTFIELD	
8.2-1	Westfield WWTF Monthly Averages 2004-2006	8-5
8.2-2	Select Monthly Permit Limits	8-6
8.2-3	Existing Primary Effluent Parameters	8-7
8.2-4	Model Input Parameters at Permitted Capacity	8-7
8.2-5	Results for Seasonal Limit of 8 mg/L TN	8-9
8.2-6	Results for Annual Average Limit of 8 mg/L TN	8-11
8.2-7	Results for Seasonal Limit of 5 mg/L TN	8-13
8.2-8	Results for Annual Average Limit of 5 mg/L TN	8-14
8.2-9	Plant Flow and Effluent Limit Summary	8-15
8.2-10	Nitrogen Removal Process Summary for Westfield WWTF	8-16
8.2-11	Required Modifications Summary for Westfield WWTF	8-16
8.2-12	Cost Summary for Nitrogen Removal at Westfield WWTF	8-17
	NORTH ATTLEBOROUGH	
9.1-1	Ten Mile River POTWs	9-1
9.2-1	Design Flows and Loads	9-4
9.2-2	North Attleborough WWTF Monthly Averages 2004-2006	9-5
9.2-3	Select Monthly Permit Limits	9-6
9.2-4	Existing Influent Parameters	9-7
9.2-5	Model Input Parameters at Permitted Capacity	9-7
9.2-6	Results for Seasonal Limit of 8 mg/L TN	9-9
9.2-7	Results for Annual Average Limit of 8 mg/L TN	9-11
9.2-8	Results for Seasonal Limit of 5 mg/L TN	9-13
9.2-9	Results for Annual Average Limit of 5 mg/L TN	9-15
9.2-10	Plant Flow and Effluent Limit Summary	9-16
9.2-11	Nitrogen Removal Process Summary for	
	North Attleborough WWTF	9-16
9.2-12	Required Modifications Summary for	
	North Attleborough WWTF	9-17
9.2-13	Cost Summary for Nitrogen Removal at	
	North Attleborough WWTF	9-17

List of Tables (continued)

Table No.

Page No.

ATTLEBORO

9.3-1	Design Flows and Loads	9-20
9.3-2	Attleboro WWTF Monthly Averages 2004-2006	9-21
9.3-3	Select Monthly Permit Limits	9-22
9.3-4	Existing Influent Parameters	9-23
9.3-5	Model Input Parameters at Permitted Capacity	9-23
9.3-6	Results for Seasonal Limit of 8 mg/L TN	9-26
9.3-7	Results for Annual Average Limit of 8 mg/L TN	9-28
9.3-8	Results for Seasonal Limit of 5 mg/L TN	9-29
9.3-9	Results for Annual Average Limit of 5 mg/L TN	9-31
9.3-10	Plant Flow and Effluent Limit Summary	9-32
9.3-11	Nitrogen Removal Process Summary for Attleboro WWTF	9-32
9.3-12	Required Modifications Summary for Attleboro WWTF	9-33
9.3-13	Cost Summary for Nitrogen Removal at Attleboro WWTF	9-33
10.2-1	Flows and Permit Summary	10-3
10.2-2	Nitrogen Removal Process Summary	10-6
10.2-3	Facility Modification and Cost Summary	10-8
10.2-4	Annual Mass Loading Summary	10-14
10.2-5	Cost Summary	10-18
	List of Figures	
Figure		On or After
<u>No.</u>		Page No.:
ES-1	Watersheds and POTWs	ES-1
1.1-1	Permitted Flows for POTWs in Blackstone Watershed	1-1

1.1-2Permitted Flows for POTWs in Connecticut Watershed and the
Chicopee, Millers, Deerfield and Westfield Subwatersheds1-11.1-3Permitted Flows for POTWs in Ten Mile Watershed......1-1

BLACKSTONE RIVER WATERSHED

3.1-1	Permitted Flows for POTWs in Blackstone Watershed	3-1
	UPPER BLACKSTONE	
3.2-1	Process Flow Schematic - Existing Facility	3-3
3.2-2	Nitrogen Removal Process - Seasonal Limit of 8 mg/L	3-9
3.2-3	Upper Blackstone Site Plan	3-9

TABLE OF CONTENTS

(continued)

Figure <u>No.</u>		On or After Page No.:
3.2-4	Nitrogen Removal Processes - Annual Average	
	Limit of 8 mg/L	3-11
3.2-5	Nitrogen Removal Processes – Seasonal Limit of 5 mg/L	3-13
3.2-6	Upper Blackstone Site Plan	3-13
3.2-7	Nitrogen Removal Processes - Annual Average	
	Limit of 5 mg/L	3-15
	GRAFTON	
3.3-1	Process Flow Schematic - Existing Facility	3-20
3.3-2	Nitrogen Removal Process - Seasonal Limit of 8 mg/L	3-25
3.3-3	Grafton Site Plan	3-25
3.3-4	Nitrogen Removal Processes - Annual Average	
	Limit of 8 mg/L	3-27
3.3-5	Nitrogen Removal Processes – Seasonal Limit of 5 mg/L	3-29
3.3-6	Nitrogen Removal Processes - Annual Average	
	Limit of 5 mg/L	3-31
	NORTHBRIDGE	
3.4-1	Process Flow Schematic - Existing Facility	3-36
3.4-2	Nitrogen Removal Process - Seasonal Limit of 8 mg/L	3-41
3.4-3	Northbridge Site Plan	3-41
3.4-4	Nitrogen Removal Processes - Annual Average	
	Limit of 8 mg/L	3-42
3.4-5	Nitrogen Removal Processes – Seasonal Limit of 5 mg/L	3-43
3.4-6	Northbridge Site Plan	3-43
3.4-7	Nitrogen Removal Processes - Annual Average	
	Limit of 5 mg/L	3-45
	DOUGLAS	
3.5-1	Process Flow Schematic – Existing Facility	3-49
3.5-2	Nitrogen Removal Process - Seasonal Limit of 8 mg/L	3-54
3.5-3	Douglas Site Plan	3-54
3.5-4	Nitrogen Removal Processes - Annual Average	
	Limit of 8 mg/L	3-55
3.5-5	Nitrogen Removal Processes – Seasonal Limit of 5 mg/L	3-56
3.5-6	Nitrogen Removal Processes – Annual	
	Average Limit of 5 mg/L	3-58

Figure <u>No.</u>		On or After <u>Page No.:</u>
	UPTON	
3.6-1	Process Flow Schematic – Existing Facility	3-62
3.6-2	Nitrogen Removal Processes - Seasonal Limit of 8 mg/L	3-67
3.6-3	Upton Site Plan	3-68
3.6-4	Nitrogen Removal Processes – Annual Average	
	Limit of 8 mg/L	3-69
3.6-5	Nitrogen Removal Processes – Seasonal Limit of 5 mg/L	3-71
3.6-6	Nitrogen Removal Processes – Annual Average	
	Limit of 5 mg/L	3-72
	UXBRIDGE	
3.7-1	Process Flow Schematic - Existing Facility	3-77
3.7-2	Nitrogen Removal Processes - Seasonal Limit of 8 mg/L	3-82
3.7-3	Uxbridge Site Plan	3-82
3.7-4	Nitrogen Removal Processes - Annual Average	
	Limit of 8 mg/L	3-84
3.7-5	Uxbridge Site Plan	3-84
3.7-6	Nitrogen Removal Processes – Seasonal Limit of 5 mg/L	3-86
3.7-7	Uxbridge Site Plan	3-86
3.7-8	Nitrogen Removal Processes - Annual Average	
	Limit of 5 mg/L	3-88
	HOPEDALE	
3.8-1	Process Flow Schematic – Existing Facility	3-93
3.8-2	Nitrogen Removal Processes - Seasonal Limit of 8 mg/L	3-97
3.8-3	Hopedale Site Plan	3-97
3.8-4	Nitrogen Removal Processes – Annual Average	
	Limit of 8 mg/L	3-99
3.8-5	Hopedale Site Plan	3-99
3.8-6	Nitrogen Removal Processes – Seasonal Limit of 5 mg/L	3-101
3.8-7	Nitrogen Removal Processes – Annual Average	
	Limit of 5 mg/L	3-103
	CONNECTICUT RIVER WATERSHED	
4.1-1	Permitted Flows for POTWs in Connecticut Watershed	4-1
	SPRINGFIELD (BONDI ISLAND)	
4.2-1	Process Flow Schematic – Existing Facility	4-4
4.2-2	Biowin Model for Seasonal TN Limit of 8 mg/L	4-10
	C	

Figure No		On or After Page No :
<u>110.</u>		<u>1 ugo 110</u>
4.2-3	Springfield Site Plan	4-10
4.2-4	Biowin Model for Annual Average TN Limit of 8 mg/L	4-11
4.2-5	Springfield Site Plan	4-11
4.2-6	Biowin Model for Seasonal TN Limit of 5 mg/L	4-13
4.2-7	Springfield Site Plan	4-13
4.2-8	Biowin Model for Annual Average TN Limit of 5 mg/L	4-14
4.2-9	Springfield Site Plan	4-14
	AMHERST	
4.3-1	Process Flow Schematic – Existing Facility	4-20
4.3-2	Nitrogen Removal Process - Seasonal Limit of 8 mg/L	4-25
4.3-3	Amherst Site Plan	4-26
4.3-4	Nitrogen Removal Processes - Annual Average	
	Limit of 8 mg/L	4-27
4.3-5	Amherst Site Plan	4-27
4.3-6	Nitrogen Removal Processes – Seasonal Limit of 5 mg/L	4-29
4.3-7	Nitrogen Removal Processes - Annual Average	
	Limit of 5 mg/L	4-31
	NORTHHAMPTON	
4.4-1	Process Flow Schematic – Existing Facility	4-36
4.4-2	Nitrogen Removal Process - Seasonal Limit of 8 mg/L	4-41
4.4-3	Northampton Site Plan	4-41
4.4-4	Biowin Model for Annual Average TN Limit of 8 mg/L	4-43
4.4-5	Northampton Site Plan	4-43
4.4-6	Biowin Model for Seasonal TN Limit of 5 mg/L	4-45
4.4-7	Northampton Site Plan	4-45
4.4-8	Biowin Model for Annual Average TN Limit of 5 mg/L	4-46
	HOLYOKE	
4.5-1	Process Flow Schematic – Existing Facility	4-53
4.5-2	Holyoke Site Plan	4-54
	CHICOPEE	
4.6-1	Process Flow Schematic – Existing Facility	4-62
4.6-2	Process Schematic for Seasonal TN Limit of 8 mg/L	4-68
4.6-3	Chicopee Site Plan	4-68

Figure <u>No.</u>		On or After Page No.:
4.6-4	Plant Flow Schematic for Annual Average	
	TN Limit of 8 mg/L	4-70
4.6-5	Chicopee Site Plan	4-70
4.6-6	Process Schematic for Seasonal TN Limit of 5 mg/L	4-72
4.6-7	Plant Flow Schematic for Annual Average	
	TN Limit of 5 mg/L	4-74
	EASTHAMPTON	
4.7-1	Process Flow Schematic – Existing Facility	4-79
4.7-2	Biowin Model for Seasonal TN Limit of 8 mg/L	4-85
4.7-3	Easthampton Site Plan	4-85
4.7-4	Biowin Model for Annual Average TN Limit of 8 mg/L	4-87
4.7-5	Biowin Model for Seasonal TN Limit of 5 mg/L	4-88
4.7-6	Easthampton Site Plan	4-89
4.7-7	Biowin Model for Annual Average TN Limit of 5 mg/L	4-90
	SOUTH HADLEY	
4.8-1	Process Flow Schematic – Existing Facility	4-95
4.8-2	Biowin Model for Seasonal TN Limit of 8 mg/L	4-101
4.8-3	South Hadley Site Plan	4-101
4.8-4	Biowin Model for Annual Average TN Limit of 8 mg/L	4-103
4.8-5	South Hadley Site Plan	4-103
4.8-6	Biowin Model for Seasonal TN Limit of 5 mg/L	4-105
4.8-7	Biowin Model for Annual Average TN Limit of 5 mg/L	4-106
4.8-8	South Hadley Site Plan	4-107
	CHICOPEE	
5.1-1	Permiited Flows for POTWs in Chicopee Sub Watershed	5-1
	PALMER	
5.2-1	Process Flow Schematic - Existing Facility	5-3
5.2-2	Biowin Model for Seasonal TN Limit of 8 mg/L	5-8
5.2-3	Palmer Site Plan	5-8
5.2-4	Biowin Model for Annual Average TN Limit of 8 mg/L	5-10
5.2-5	Palmer Site Plan	5-10
5.2-6	Biowin Model for Seasonal TN Limit of 8 mg/L	5-11
5.2-7	Biowin Model for Annual Average TN Limit of 5 mg/L	5-13

Figure <u>No.</u>		On or After Page No.:
	WARE	
5.3-1	Process Flow Schematic - Existing Facility	5-20
5.3-2	Biowin Model for Annual Average TN Limit of 8 mg/L	5-24
5.3-3	Ware Site Plan	5-24
5.3-4	Biowin Model for Annual Average TN Limit of 8 mg/L	5-25
5.3-5	Biowin Model for Seasonal TN Limit of 5 mg/L	5-27
5.3-6	Ware Site Plan	5-27
5.3-7	Biowin Model for Annual Average TN Limit of 5 mg/L	5-28
	MILLERS RIVER	
6.1-1	Permitted Flows for POTWs in Millers Sub Watershed	6-1
6.2-1	Process Flow Schematic – Existing Facility	6-3
	DEERFIELD	
7.1-1	Permitted Flows for POTWs in Deerfield Sub Watershed	7-1
	GREENFIELD	
7.2-1	Process Flow Schematic – Existing Facility	7-3
7.2-2	Process Schematic for Seasonal TN Limit	7-8
7.2-3	Greenfield Site Plan	7-9
7.2-4	Process Schematic for Annual Average TN Limit	7-10
	WESTFIELD	
8.1-1	Permitted Flows for POTWs in Westfield Subwatershed	8-1
8.2-1	Process Flow Schematic – Existing Facility	8-3
8.2-2	Biowin Model for Seasonal TN Limit of 8 mg/L	8-8
8.2-3	Westfield Site Plan	8-8
8.2-4	Biowin Model for Annual Average TN Limit of 8 mg/L	8-10
8.2-5	Biowin Model for Seasonal TN Limit of 5 mg/L	8-12
8.2-6	Biowin Model for Annual Average TN Limit of 5 mg/L	8-13

(continued)

List of Figures (continued)

Figure <u>No.</u>		On or After <u>Page No.:</u>
	NORTH ATTLEBOROUGH	
9.1-1	Permitted Flows for POTWs in Ten Mile Watershed	9-1
9.2-1	Process Flow Schematic - Existing Facility	9-3
9.2-2	Nitrogen Removal Process - Seasonal Limit of 8 mg/L	9-8
9.2-3	North Attleborough Site Plan	9-9
9.2-4	Nitrogen Removal Processes - Annual Average	
	Limit of 8 mg/L	9-10
9.2-5	Nitrogen Removal Processes – Seasonal Limit of 5 mg/L	9-12
9.2-6	North Attleborough Site Plan	9-12
9.2-7	Nitrogen Removal Processes - Annual Average	
	Limit of 5 mg/L	9-14

ATTLEBORO

9.3-1	Process Flow Schematic – Existing Facility	9-19
9.3-2	Nitrogen Removal Processes - Seasonal Limit of 8 mg/L	9-25
9.3-3	Attleboro Site Plan	9-25
9.3-4	Nitrogen Removal Processes – Annual Average	
	Limit of 8 mg/L	9-27
9.3-5	Attleboro Site Plan	9-27
9.3-6	Nitrogen Removal Processes – Seasonal Limit of 5 mg/L	9-29
9.3-7	Attleboro Site Plan	9-29
9.3-8	Nitrogen Removal Processes – Annual Average	
	Limit of 5 mg/L	9-30
9.3-9	Attleboro Site Plan	9-31
	SUMMARY	
10.2-1	Permitted Flows for POTWs in Blackstone Watershed	10-2

10.2-1	Permitted Flows for POTWs in Blackstone Watershed	10-2
10.2-2	Permitted Flows for POTWs in the Connecticut Watershed, and the	
	Chicopee, Millers, Deerfield and Westfield Subwatersheds	10-2
10.2-3	Permitted Flows for POTWs in Ten Mile Watershed	10-2

Appendices

A.	Information Request Forms
----	---------------------------

- B. Site Visit Interviews
- C. Cost Data

ACKNOWLEDGEMENTS

We would like to recognize the following individuals whose assistance was invaluable in the development of this report.

- Rick Dunn of MassDEP
- Bryant Firmin of MassDEP
- The Representatives of the 21 POTWs that participated in this study.

PROJECT FUNDING

This project has been financed by Funds from the Massachusetts Department of Environmental Protection (the Department). The contents do not necessarily reflect the views and policies of the Department, nor does the mention of trade names or commercial products constitute endorsement or recommendation for use.

GLOSSARY OF COMMON ACRONYMS

BAF	Biological Aerated Filters
BFP	Belt Filter Press
BOD	Biochemical Oxygen Demand
CaCO ₃	Calcium Carbonate
CBOD	Carbonaceous BOD
COD	Chemical Oxygen Demand
CSO	Combined Sewer Overflows
DAF	Dissolved Air Flotation
DO	Dissolved Oxygen
ENR	Engineering News Record
EPA	Environmental Protection Agency
EQ	Equalization
F. Coli.	Fecal Coliform
Fna	Fraction of Influent TKN which is Ammonia
FRP	Fiberglass Reinforced Plastic
Ft	Feet
GBT	Gravity Belt Thickener
gpd	Gallons per Day
gpd/ft ²	Gallons per Day per Square Foot
HRT	Hydraulic Retention Time
IFAS	Integrated Fixed Film Activated Sludge
I/I	Infiltration/Inflow
kwh	Kilowatt-Hour
lb	Pound
lbs/d	Pounds per Day
MassDEP	Massachusetts Department of Environmental Protection
MG	Million Gallons
mgd	Million Gallons per Day
mg/L	Milligrams per Liter
mL	Milliliters
MLE	Modified Ludzack-Ettinger
MLSS	Mixed Liquor Suspended Solids
MLVSS	Mixed Liquor Volatile Suspended Solids
mmol/L	Millimoles per Liter
NH3	Ammonia
NH4	Ammonium
NO2	Nitrite
NO3	Nitrate
NPDES	National Pollutant Discharge Elimination System
O&M	Operations and Maintenance
PACl	Polyaluminum Chloride

GLOSSARY OF COMMON ACRONYMS (continued)

POTW	Publicly Owned Treatment Works
PS	Pump Station
QA	Quality Assurance
QA/QC	Quality Assurance/Quality Control
RAS	Return Activated Sludge
SBR	Sequencing Batch Reactor
SCADA	Supervisory Control and Data Acquisition
SRT	Solids Retention Time
SVI	Sludge Volume Index
TKN	Total Kjeldahl Nitrogen
TN	Total Nitrogen
TP	Total Phosphorous
TSS	Total Suspended Solids
TVSS	Total Volatile Suspended Solids
UBWPAD	Upper Blackstone Water Pollution Abatement District
UV	Ultraviolet
VFD	Variable Frequency Drive
WAS	Waste Activated Sludge
WERF	Water Environment Research Foundation
WPCF	Water Pollution Control Facility
WWTF	Wastewater Treatment Facility
WWTP	Wastewater Treatment Plant