

MASSACHUSETTS SAMPLE CURRICULUM MAP

Mathematics

Grade 8

June 2013

Massachusetts Department of Elementary and Secondary Education Sample Curriculum Map, Mathematics Grade 4 June 2013

Page 1 of 14

Introduction to the Sample Grade 8 Curriculum Map for Mathematics

The curriculum map on the following pages illustrates just **one** way to organize the grade 8 standards from the 2011 *Massachusetts Curriculum Framework for Mathematics,* which incorporates the *Common Core State Standards,* into a coherent yearlong learning sequence. The map is intentionally spare, made with the recognition that district staff will adapt it to suit their students and to include resources such as specific texts, assignments, assessments, or background materials for teachers.

The map includes two Grade 8 Model Curriculum Units, titled *Ratios and Rates* and *Analyzing* and *Solving Linear Equations and Pairs of Linear Simultaneous Equations* that integrates the grade 8 mathematics content standards and the standards for mathematical practices. The Grade 8 Model Curriculum Units included in this map were developed by the Massachusetts Department of Elementary and Secondary Education (ESE) with support from the United States Department of Education's Race to the Top grant. Titles of the Model Curriculum Units are included in the "Unit Column." This column also serves as a placeholder for the placement of additional units that may already exist or will be created locally. The culminating performance assessments that belong with the model units are listed in the "Assessment Column". The assessment column can be used to list additional local assessments including pre-assessments, performance tasks, district assessments, and teacher created unit assessments.

Primary resources used in creating this sample map were the *Massachusetts Curriculum Framework for Mathematics* (2011) and the *PARCC Model Content Frameworks for Mathematics* (November 2012). Additional materials that districts may want to use to inform alignment work are the WIDA standards for English language learners (2012) or the Massachusetts Department of Elementary and Secondary Education's *Resource Guide to Mathematics for Students with Disabilities* (in press, 2013).

The sample curriculum map is one of three developed as part of the Department's Race to the Top work. Based on the work of Heidi Hayes Jacobs and Associates, the collection includes sample maps for these grades and subject areas:

- Grade 2 English Language Arts and Literacy
- Grade 4 History and Social Science
- Grade 8 Mathematics

The general format of these curriculum maps may, of course, be used for other grades and subjects.

Massachusetts Department of Elementary and Secondary Education Sample Curriculum Map, Mathematics Grade 4 June 2013 Page 2 of 14

Overview of the Grade 8 Mathematics Standards

In grade 8, students extend their study of algebraic concepts which began in the earlier grades. Grade 8 students work with rational and irrational numbers, linear equations, functions, the Pythagorean Theorem, transformations, and bivariate data. Students compare functions to other functions. They learn to formulate and reason about expressions and equations, use functions to describe quantitative relationships, and apply the Pythagorean Theorem. A major emphasis is working with radicals, integers, and exponents.

In grade 8, instructional time should focus on three critical areas: (1) formulating and reasoning about expressions and equations, including modeling an association in bivariate data with a linear equation, and solving linear equations and systems of linear equations; (2) grasping the concept of a function and using functions to describe quantitative relationships; (3) analyzing two- and three-dimensional space and figures using distance, angle, similarity, and congruence, and understanding and applying the Pythagorean Theorem (MA Curriculum Framework for Mathematics, 2011).

Students will apply an understanding of proportional relationships with linear equations. Students engage in the content as mathematicians using problem solving strategies and reasoning skills. Students also engage in the application of literacy standards such as writing arguments and citing evidence. Students use the Standards of Mathematical Practice as they interact with the content.

Some of the standards may be revisited several times throughout the year although they are not restated in the map. The eight mathematical practices (MP) are integrated into the content throughout the year, whenever appropriate, so that students become accustomed to noticing and applying them to all their mathematical reasoning. Notes on the Standards for Mathematical Practice are included to identify examples throughout this map, though the instances are not exhaustive.

Academic Language in the Standards Addressed throughout the Year

The following words and phrases appear in the standards. Using this academic language with students strengthens their ability to master the content and to apply it in various settings.

rational numbers, irrational numbers, number line diagram, radicals, integer exponents, square root, equations, proportional relationships, linear equations, simultaneous linear equations, variables, equations, intersects, function, functional relationships, linear function, rate of change, algebraic expression, value of expression, quantitative, qualitative, table of values, Pythagorean Theorem, right triangle, volume, cylinder, , informal arguments, similar triangles, congruence, congruent figures, similarity, converse, table of values, linear, not linear, rotations, reflections, translations, dilations, informal argument, truncating, angle sum, exterior angle of triangles, parallel lines, transversal, angle-angle criterion for similarity of triangles, similar triangles, exterior angle-angle sum, coordinate system, cones, cylinders, spheres, formula, decimal expansion, number line diagram, scientific notation, slope, unit rate, , non-vertical line, coordinate plane, vertical axis, district points, derive the equation, transforming, infinitely, coefficients, rational number, decimal notation, representing algebraically, numerically, graphically; linear association, non-linear association, linear model, frequencies, relative frequencies, patterns of association, linear association, non-linear association, non-vertical line, model fit, physical model, scatter plots, clustering, outliers, intercept, frequencies, variables, origin, y-intercept.

MATHEMATICS – GRADE 8			
MONTHS	CONTENT	STANDARDS	
August/September	Radicals and Irrational Numbers	8.NS.1, 2	
(3 weeks)		8.EE.2	
		8.G.9	
		MP 1, 2, 6, 7, 8	
September - October	Exponents and Scientific Notation	8.EE.1, 3, 4	
(3 weeks)		MP 6, 7, 8	
October-November	Congruence and Similarity	8.G.1, 2, 3, 4, 5,	
(4 weeks)		MP 2, 4, 5, 6, 7	
November-December	Functional Relationships	8.F.1, 2, 5	
(4 weeks)		MP 2, 4, 6, 8	
January-February	Linear Relationships	8.EE 5,6	
(4 weeks)		8.F.3, 4	
		8.SP.3	
		MP 1, 2, 4, 6, 7, 8	
February-April	Linear Equations & Simultaneous Equations	8.EE.7, 8	
(8 weeks)		MP 4, 6, 7, 8	
April/May		8.G.6	
(3 weeks)	Pythagorean Theorem	8.G.7	
		8.G.8	
		MP 1, 2, 3, 4	
May/June	Statistics	8.SP. 1, 2, 4	
(3 weeks)		MP 1, 2, 3, 4, 6, 8	

Yearlong Grade 8 Mathematics Curriculum Map at a Glance

Massachusetts Department of Elementary and Secondary Education Sample Curriculum Map, Mathematics Grade 4 June 2013

TIME	MATHEMATICS STANDARDS	STANDARDS FOR MATHEMATICAL PRACTICE		ASSESSMENTS
August/ September (3 weeks)	Rational and Irrational Numbers8.NS.1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.8.NS.2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the 	MP1 Make sense of problems and preserve in solving them. MP2 Reason abstractly and quantitatively. MP6 Attend to precision. MP7 Look for and make use of structure. MP8 Look for and express regularity in repeated reasoning.		Pre-test Formative Assessments Summative Assessment
TIME	MATHEMATICS STANDARDS	STANDARDS FOR MATHEMATICAL PRACTICE	CURRICULUM UNIT	ASSESSMENTS

Massachusetts Department of Elementary and Secondary Education Sample Curriculum Map, Mathematics Grade 4 June 2013

September -	Exponents and Scientific Notation		
October			
(3 weeks)	8.EE.1 Know and apply the properties of	MP6 Attend to precision	
	integer exponents to generate equivalent	MP7 Look for and make use	
	numerical expressions.	of structure.	
	8.EE.3 Use numbers expressed in the form of		
	a single digit times an integer power of 10 to	MP8 Look for and express	
	estimate very large or very small quantities,	regularity in repeated	
	and to express how many times as much one is	reasoning.	
	than the other.		
	8.EE. 4 Perform operations with numbers expressed in scientific notation, including		
	problems where both decimal and scientific		
	notation are used. Use scientific notation and		
	choose units of appropriate size for		
	measurements of very large or very small		
	quantities (e.g., use millimeters per year for		
	seafloor spreading). Interpret scientific		
	notation that has been generated by technology.		
	technology.		
		P	

TIME	MATHEMATICS STANDARDS	STANDARDS FOR MATHEMATICAL PRACTICE		ASSESSMENTS
October-	Congruence and Similarity			
November				
(4 weeks)	8.G.1 Verify experimentally the properties of rotations, reflections, and translations:	MP4 Model with mathematics	07	
	a. Lines are taken to lines, and line segmentsto line segments of the same length.b. Angles are taken to angles of the same	MP5 Use appropriate tools strategically		
	measure. c. Parallel lines are taken to parallel lines.	MP6 Attend to precision	5	
	 8.G.2 Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them. 8.G.3 Describe the effects of dilations, 			
	translations, rotations, and reflections on two- dimensional figures using coordinates.8.G.4 Understand that a two-dimensional			
	figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.			
	8.G.5 Use informal arguments to establish			

	facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.		65	
November-	Functional Relationships			
December	8.F.1 Understand that a function is a rule that	MP2 Reason abstractly and		
(4 weeks)	assigns to each input exactly one output. The	quantitatively.		
	graph of a function is the set of ordered pairs			
	consisting of an input and the corresponding	MP4 Model with		
	output.	mathematics.		
	8.F.2 Compare properties of two functions	MP6 Attend to precision.		
	each represented in a different way			
	(algebraically, graphically, numerically in	MP8 Look for and express		
	tables, or by verbal descriptions).	regularity in repeated		
	8.F.5 Describe qualitatively the functional	reasoning.		
	relationship between two quantities by			
	analyzing a graph. Sketch a graph that exhibits			
	the qualitative features of a function that has			
	been described verbally.			

TIME	MATHEMATICS STANDARDS	STANDARDS FOR MATHEMATICAL PRACTICE		ASSESSMENTS
January-	Linear Relationships			
February	8.EE.5 Graph proportional relationships,	MP1 Make sense of problems	Model Curriculum	Model Curriculum Unit
(4 weeks)	interpreting the unit rate as the slope of the	and persevere in solving	Unit: Connecting	includes: Curriculum
(4 WEEK3)	graph. Compare two different proportional	them.	Proportions, Lines	Embedded
	relationships represented in different ways.		and Linear Equations	Performance
	For example, compare a distance-time graph	MP2 Reason abstractly and		Assessment- Summer
	to a distance-time equation to determine	quantitatively		Work- Comparing Jobs
	which of two moving objects has greater			
	speed.	MP4 Model with		Formative Assessment
		mathematics.		
	8.EE.6 Use similar triangles to explain why the			Summative
	slope m is the same between any two distinct	MP6 Attend to precision.		Assessment
	points on a non-vertical line in the coordinate			
	plane; derive the equation y = mx for a line	MP7 Look for and make use		
	through the origin and the equation y = mx + b	of structure.		
	for a line intercepting the vertical axis at b.			
		MP8 Look for and express		
	8.F.3 Interpret the equation y = mx + b as	regularity in repeated		
	defining a linear function whose graph is a	reasoning.		
	straight line; give examples of functions that			
	are not linear. For example, the function A = s2			
	giving the area of a square as a function of its			
	side length is not linear because its graph			
	contains the points (1, 1), (2, 4) and (3, 9),			
	which are not on a straight line.			
	8.F.4 Construct a function to model a linear			
	relationship between two quantities.			
	Determine the rate of change and initial value			
	of the function from a description of a			
	relationship or from two (x, y) values, including			

Massachusetts Department of Elementary and Secondary Education Sample Curriculum Map, Mathematics Grade 4 June 2013 14

reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

8.SP.3 Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.

TIME	MATHEMATICS STANDARDS	STANDARDS FOR MATHEMATICAL PRACTICE	CURRICULUM UNIT	ASSESSMENTS
February- April (8 weeks)	 Linear Equations and Simultaneous Equations 8.EE.7 Solve linear equations in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers). b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms. 8.EE.8 Analyze and solve pairs of simultaneous linear equations. a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously. b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pairs of points, determine whether the line through the first pairs of points, determine whether the line through the first pairs of points, determine whether the line through the first pairs of points, determine whether the line through the first pairs of points. 	PRACTICEMP1 Make sense of problems and persevere in solving them.MP2 Reason abstractly and quantitatively.MP3 Construct viable arguments and critique the reasoning of othersMP4 Model with mathematics.MP6 Attend to precision.MP7 Look for and make use of structure.MP8 Look for and express regularity in repeated reasoning.	Model Curriculum Unit: Analyzing and Solving Linear Equations and Pairs of Linear Simultaneous Equations	Model Curriculum Unit: Curriculum Embedded Performance Assessment- <i>Powering Up Patriot</i> <i>School</i> Formative Assessment Summative Assessment
	of points, determine whether the line through the first pair of points intersects the line through the second pair.			

June 2013

Page 12 of

TIME	MATHEMATICS STANDARDS	STANDARDS FOR MATHEMATICAL PRACTICE	CURRICULUM UNIT	ASSESSMENTS
April/May	Pythagorean Theorem			
(3 weeks)	8.G.6 Explain a proof of the Pythagorean Theorem and its converse.	MP1 Make sense of problems and persevere in solving them.		
	8.G.7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three	MP2 Reason abstractly and quantitatively.		
	dimensions.	MP3 Construct viable		
	8.G.8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	arguments and critique the reasoning of others.		
		MP4 Model with mathematics.		
May/June	Statistics			
(3 weeks)	8.SP.1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative	MP1 Make sense of problems and persevere in solving them.		
	association, linear association, and nonlinear association.	MP2 Reason abstractly and quantitatively		
	8.SP 2 Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear	MP4 Model with mathematics.		
	association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	MP6 Attend to precision.		
		MP8 Look for and		

Massachusetts Department of Elementary and Secondary Education Sample Curriculum Map, Mathematics Grade 4 14 June 2013

8.SP.4 Understand that patterns of association can also	express regularity in	
be seen in bivariate categorical data by displaying	repeated reasoning.	
frequencies and relative frequencies in a two-way		
table. Construct and interpret a two-way table		
summarizing data on two categorical variables		
collected from the same subjects. Use relative		
frequencies calculated for rows or columns to describe		
possible association between the two variables.		

Reference:

MASSACHUSETTS CURRICULUM FRAMEWORK FOR MATHEMATICS Grades Pre-Kindergarten to 12 Incorporating the Common Core State Standards for Mathematics, March 2011