MASSACHUSETTS LOW-FLOW STATISTICS AT GAGED AND UNGAGED SITES

Massachusetts Water Resources Commission Meeting May 9, 202 Gardner Bent

U.S. Geological Survey New England Water Science Center

Low-Flow Statistics

- Used to determine wastewater discharges
- Used in MassDEP water-supply permits
- Used in Massachusetts Drought Management Plan
- 20+ years of additional streamflow data since Low-Flow Study by Ries and Friesz (2001)
- Updated and new GIS coverages available to test as explanatory variables
- No low-flow statistics exist for southeastern Massachusetts and Cape Cod

Objectives

- Update selected streamflow statistics at selected USGS streamgages
- Analyses potential long-term trends in the annual 7day low-flow at selected USGS streamgages
- Compute basin, land-use, and climatic characteristics for those selected USGS streamgages
- Develop regional regression equations for those selected streamflow statistics at ungaged sites
- Investigate and test potential methods for estimating these selected streamflow statistics for southeastern Massachusetts and Cape Cod

Streamgages Regulated vs. Un-Regulated

- Statistics done for all unregulated and regulated streamgages in southern New England
- Regional regression equations will use "unregulated" gages
- Unregulated gages (i.e. little to no regulation) are based:
 - previous low-flow studies
 - water-use data
 - wastewater discharge data
 - Gages II information
 - local knowledge

Southern New England Streamgages

- About 300 streamgages
 - both regulated and little to no regulation) with 8+ years of record
- Streamgages with little to no regulation:
 - 169 with 8+ yrs of record
 - 149 with 10+ yrs of record
 - 94 with 20+ yrs of record
 - 75 with 30+ yrs of record

Of the 149 streamgages with 10+ yrs of record (52 – MA, 40 – CT, 26 – RI, 7 – southern NH, 4 – southern VT, and 15 eastern NY)

Low-Flow Trends

- Use set periods like national studies (last 30, 50, 70, and 90 years)
- Independence, Short-term persistence, Long-term persistence (methods follow Dudley and others, 2018)

Low-Flow Trends

Clear decreasing or increasing trends are not apparent spatially or overtime Provisional Data

Data Science for a changing work

n = 2 study sites

Low-Flow Trends

Annual mean 7-day minimum flows for the four sites in MA with statistically significant trends in the 70-year record.

Discharge (ft³/s)

PRIEST BROOK NEAR WINCHENDON, MA

MA Streamflow Statistics Equations

Annual flow durations (10)

- 50-percent
- 60-percent
- 70-percent
- 75-percent
- 80-percent
- 85-percent
- 90-percent
- 95-percent
- 98-percent
- 99-percent

Frequency (5)

- 7Q2
- 7Q10
- Median of the annual minima (7-day LF)
- 30Q2
- 30Q10

Monthly 50- and 90-percentile (8)

- June
- July
- August
- September

Aquatic Base Flow (median of the monthly means) (3)

- February
- June
- August

Harmonic Mean (1)

Analyses through water year and climatic year 2022

FLOW DURATION CURVE - EXAMPLE

Figure 6. Flow-duration curves at the streamgages Adamsville Brook at Adamsville, R.I. (01106000), and Beaver River near Usquepaug, R.I. (01117468).

LOW-FLOW FREQUENCY CURVE - EXAMPLE

Basin, Land-Use, Geology, and Climatic Characteristics

- Used common characteristics from other recent regional regression equations in the northeastern U.S.
- <u>Basin Characteristics</u>
 - Drainage area
 - Mean basin slope
 - Min., max, and mean basin elevation
 - Stream length
 - Drainage density
 - Basin X and Y centroid and outlet
 - Basin shape
 - Etc.
- Land-Use
 - National Land-Cover Dataset of 2016 (wetlands, water bodies, forest, urban, etc.)
- <u>Geology</u>
 - New surficial materials coverage for MA (1:24,000)
- <u>Climatic</u>
 - PRISM dataset for 1981-2010 (annual and monthly)

STREAMFLOW VARIABILITY INDEX (SVI)

$$SVI\sqrt{\frac{\sum_{i=5,5}^{95} \left(\log_{10}(D_i) - \overline{\log_{10}(D)}\right)^2}{18}}$$
 (1)

- is the streamflow-variability index,
 - is the *i*th percent duration streamflow (*i*=5, 10, 15, ...95), and
- is the mean of the base 10 logarithms of the 19 streamflow values at 5-percent class intervals from 5 to 95 percent on the flow-duration curve of the daily mean flow.
- SVI is a pseudo estimation of contributions of groundwater discharge and surface storage
- SVI used in some recent USGS low-flow studies

SVI AT PARTIAL-RECORD STATIONS

- Related the SVI from the 5-95th flow durations to the lower half of the flow duration curve from the 50-95th percentiles
- Koltun and Whitehead (2012) and Martin and Arihood (2010) related the estimated 7Q10 at low-partial record sies to the SVI in Ohio and Kentucky, respectively
- Ries and Friesz (2001) estimated flow-durations for the 50-95th for over 100 low-flow partial-record stations
- Bent and others (2013) estimated flow durations for the 50-95th for over 50 low-flow partial-record stations in Rhode Island and nearby in CT and MA
- Thus, this allowed the inclusion of another 150+ sites in developing an SVI map for southern New England

Provisional Data

DETERMINING SVI AT PARTIAL-RECORD STATIONS

Relation of SVI's computed using flow-durations from the 5-95 percent to the 50-95 percent 1.20 SVI using flow-durations from the 5-95 1.00 0.80 0.60 0.9857x^{0.6582} V $R^2 = 0.9583$ 0.40 0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 0.00 SVI using flow-duration from the 50-95 percent

Science for a changing world

Provisional Data

SVI MAP

MA STREAMGAGES PLUS THOSE 25 MILES OUTSIDE STATE BORDER (81 GAGES)

81 streamgages: 39 Massachusetts 18 Connecticut 6 New Hampshire 5 New York 9 Rhode Island 4 Vermont

Provisional Data

REGRESSION ANALYSES

- Best subsets
- Stepwise regression
- Evaluating
 - Adjusted R-squared, p-values, residual std errors, and plots of residuals
- Weighted-multiple-linear REGression (WREG)
 - Weighting using record length
 - Plots of observed vs. predicted

```
*** Linear Model ***
Call: lm(formula = log.95fd ~ log.darea + log.SVI, data = POR.FD.REGRESS
Residuals:
             10 Median
     Min
                             3Q
                                   Max
 -0.8332 -0.1978 0.001687 0.1844 0.6944
Coefficients:
              Value Std. Error t value Pr(>|t|)
(Intercept) -2.2140 0.2468 -8.9725
                                         0.0000
  log.darea 1.2566 0.0529
                               23.7444
                                         0.0000
    log.SVI -2.6280
                     0.7545 -3.4830
                                         0.0008
Residual standard error: 0.286 on 78 degrees of freedom
Duttple R-Squared: 0.8887
                              Adjusted R-squared: 0.8858
```

Provisional Device ple R-Squared: 0.8887 Adjusted R-squared: 0.8858 F-statistic: 311.3 on 2 and 78 degrees of freedom, the p-value is 0

EXAMPLE EVALUATIONS OF REGRESSION ANALYSIS PLOTS

WEIGHTED-MULTIPLE-LINEAR <u>REG</u>RESSION (WREG) RESULTS

Flow Duration	SW drainage area (mi²)	SSURGO hydrologic soil types A and B (%)	Streamflow variability index (SVI) (unitless)	Intercept	Adj. R ²	RMSE (%)
50	1.0090	0.1306		-0.1688	0.9846	17.85
60	1.0248	0.1345		-0.3352	0.9808	20.35
70	1.0612	0.1424		-0.5718	0.9716	26.11
75	1.0668		-1.4915	-0.9663	0.9675	31.70
80	1.0957		-1.8698	-1.2460	0.9602	37.78
85	1.1285		-2.2595	-1.5491	0.9479	46.03
90	1.1685		-2.7577	-1.9153	0.9345	56.20
95	1.2276		-3.4435	-2.4195	0.9078	75.45
98	1.2923		-4.1659	-2.9471	0.8721	103.33
99	1.3474		-4.7437	-3.3388	0.8462	130.70

Provisional Data

Predicted versus Observed Streamflows

Streamflow Data – SE Mass and Cape Cod

- 18 sites with sufficient streamflow data for determining flow statistics
 - 4 long-term streamgages (LTG) with > 10 yrs. of record
 - 3 short-term streamgages (STG) with <10 yrs. Of record
 - 11 partial-record stations (PRS) with miscellaneous QMs

Estimating Streamflow Data at STG and PRS – SE Mass and Cape Cod

- Correlations >0.80 between miscellaneous QMs at PRS and concurrent daily mean discharges at the LTG
- Correlations mainly >0.80 between concurrent daily mean discharges at STG and LTG
- MOVE.1 relation used to estimate long-term flow statistics at STG and PRS

GW Contributing Areas – SE Mass and Cape Cod

- Groundwater contributing area determined using GW models:
 - Plymouth-Carver-Kingston-Duxbury (Masterson and others, 2009)
 - Mid-Cape (LeBlanc and others, 2019)
 - Lower Cape (Masterson, 2004)

Basin Characteristics – SE Mass and Cape Cod

- Groundwater contributing area
- Maximum, minimum, and mean water-table elevations
- Mean water-table slope
- Mean aquifer saturated thickness
- Mean aquifer horizontal hydraulic conductivity
- Mean aquifer transmissivity
- Basin, land-use, geologic, and climatic characteristics tested in other part of state

Provisional Data

Regression Analyses – SE Mass and Cape Cod

- Groundwater contributing area
- Storage (water bodies + wetlands)
- 2-variable equations which includes GW contributing area and strorage in all equations

Weighted-multiple-linear REGression (WREG) results – SE Mass and Cape Cod

Flow Duration	GW contributing area (mi²)	Storage (water bodies + wetlands) NLCD16 (%)	Intercept	Adj. R ²	RMSE (%)
50	0.8088	-0.2140	0.6652	0.8488	33.65
60	0.7985	-0.2852	0.6952	0.8215	36.92
70	0.7669	-0.3742	0.7703	0.7885	39.53
75	0.7830	-0.4406	0.7961	0.7797	40.69
80	0.7771	-0.5167	0.8590	0.7636	41.53
85	0.7924	-0.6112	0.9042	0.7389	44.46
90	0.8058	-0.7522	1.0083	0.7094	46.60
95	0.8434	-0.9102	1.0805	0.6713	51.57
98	0.8800	-1.0160	1.0875	0.6460	56.88
99	0.8478	-1.0728	1.1261	0.5970	61.95

science for a changing we

Predicted versus Observed Streamflows – SE Mass and Cape Cod

Products

- USGS Scientific Investigation Report
- USGS Data Releases
- USGS StreamStats

Thanks to Viki Zoltay, Kate Bentsen, and Julie Butler who provided input throughout the project <u>USGS Team:</u> Liz Ahearn, Alex Butcher, Carl Carlson, Jenn Fair, Nina Labrie, Caroline Mazo, Tim McCobb, and Luke Sturtevant

8.98

15.58

0.05

0.48

0.80

2.18

5.20

9.75

19.00

29.00

