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1 Introduction 

This study of transit passengers being left behind when subway trains are too crowded to 
board was undertaken as part of the Massachusetts Department of Transportation 
(MassDOT) Research Program. This program is funded with Federal Highway 
Administration (FHWA) State Planning and Research (SPR) funds.  

The Massachusetts Bay Transportation Authority (MBTA) uses performance measures to 
monitor its service and measure improvement. Measures that track the customer experience 
instead of the performance of the vehicles are being developed. Crowding is a challenge on 
buses and trains in the MBTA system, and overcrowded vehicles lead to passengers being 
left behind when vehicles are too full to board. Automated passenger counters provide an 
indication of levels of crowding on buses, but there is currently no way to measure people 
left behind on subway platforms. Passenger wait times for subway and light rail services are 
reported using estimated travel demand data from the Origin-Destination-Transfer inference 
model. These measures assume that passengers are able to get on the first available train, 
leaving left-behind passengers uncounted. Data on passengers being left behind on station 
platforms when trains are too crowded to board would improve both the customer-oriented 
performance measures and measures of capacity needed to meet demand. This project 
focuses on measuring passengers left-behind on the MBTA’s subway system. 

The primary objective of this project was the following: 

Develop a method to measure the occurrence of passengers being left behind at a station 
when a train is too full to board. 

There are two types of approaches for addressing this problem. First, measurements can be 
made from direct observations of passengers. Second, the occurrence of left-behinds can be 
inferred by demand patterns and vehicle capacities in order to estimate the locations and 
times that overcrowding is likely to lead to left-behinds. The proposed research activities in 
this project will seek to address both, leading to two secondary objectives that support the 
first: 

1. Identify the quality of measurements that can be made using different technologies 
for observing passengers. Specifically, the technologies of interest for this study were 
automated passenger counts using existing surveillance video feeds and detection of 
media access control (MAC) addresses of wireless devices in stations. 

2. Identify the potential to fuse observations with existing data sources to improve 
estimates of the occurrence of trains leaving behind passengers, the number of 
passengers being left behind, and experienced delays. 

The analysis and metrics developed through this study are intended to correspond with the 
reliability and passenger comfort standards in the MBTA Service Delivery Policy [1] to the 
fullest extent possible. The focus of this study is on addressing crowding and left-behinds on 
a rail system which regularly experiences problems with overcrowding during peak hours. 
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2 Research Methodology 

The research approach for this study consisted of three main parts: review of existing data 
and technologies, collection of data, and analysis to estimate the occurrence and number of 
left-behind passengers due to overcrowded trains. 

Section 2.1 presents a review of the literature related to crowding in transit systems and the 
indicators that are used across transit agencies and by the MBTA to measure the passenger 
experience. The relevant available data that MBTA currently collects is also summarized in 
this section. A review of technologies that are used for counting pedestrians is then presented 
in Section 2.2. 

Sections 2.3 through 2.6 describe the methods for collecting data. This starts with analyzing 
existing data sources to identify the locations and times of day that passengers are most likely 
to experience being left behind. Then, the details for manual data collection, automated video 
counts, and device detection are described. 

Finally, Section 2.7 presents the modeling methods that are used to make the most accurate 
estimates of the occurrence of trains leaving behind passengers and the number of passengers 
that are left behind. 

2.1 Review of Available Data and Models 

This review is organized in two parts. First, a brief review of the literature and existing 
methods related to monitoring and managing crowding on transit is presented. Then a 
description is presented of the data that the MBTA has available, which can be categorized as 
either direct observations or inferences that are based on modelling and manipulation of the 
raw data. 

2.1.1 Crowding on Public Transportation Systems 

Crowding and the MBTA Service Delivery Policy 

Crowding is a major issue for transit systems all over the world, including trains operated by 
the MBTA in the Boston region. The 2017 MBTA Service Delivery Policy (SDP) establishes 
quantifiable standards for service planning and accessibility [1]. The SDP presents passenger 
comfort standards as part of a specific effort to track passenger-centric measures that reflect 
the experience of system customers. Two types of standards are related to crowding on the 
system: passenger comfort is affected by the space available to each passenger within 
vehicles, and reliability (in terms of passenger wait time) is affected by passengers’ ability to 
board vehicles that arrive. When vehicles are too crowded, passenger comfort is 
compromised and the likelihood of a passenger being left behind at a stop or station 
increases. 
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For rapid transit rail service, all lines are run on short headways, and reliability is measured 
as the percentage of passengers who wait for less than or equal to the scheduled headway. 
Quantifying reliability by this definition requires information about passenger arrivals to 
stations in addition to vehicle departures. Passengers expect trains to run frequently, so they 
tend to arrive at stations at a constant rate. If passengers are always able to board the next 
train, the reliability of the system can then be estimated as the percentage of total time during 
which elapsed time since the previous departure is less than the scheduled headway. In the 
case of crowding that causes some passengers to be left behind, the wait time that passengers 
experience may exceed the headway between trains, which would diminish reliability 
performance. According to Table 10 in the 2017 SDP, the reliability for rapid transit in 2016 
was reported as 89%, but since it does not account for left-behind passengers, it over-
estimates the true value. 

Due to the limited data available for estimating crowding on rapid transit, the SDP does not 
specify a specific metric for rail comfort. With currently available data, the SDP refers to 
development of a provisional metric that compares station entries to the capacity of trains 
passing through each station. This would make use of data in the Rail Flow database 
(described in Section 2.1.3). Plans to procure vehicles with automatic passenger counters 
(APC) would provide direct measurement of vehicle occupancy that would allow for 
calculation of a passenger comfort metric similar to that of buses, but this equipment is not 
yet available. 

Literature on Crowding 

The Transit Capacity and Quality of Service Manual (TCQSM) [2] establishes some 
guidelines for measuring the quality of service of transit services, including availability, 
comfort, and convenience. Crowding affects some aspects of availability and all elements of 
comfort and convenience associated with the quality of service framework for fixed-route 
transit presented in the TCQSM: 

Indicators of Availability 

• Frequency – Crowding can cause vehicles to operate more slowly or passengers to 
be left behind at stations and stops, the consequence of which is an effective 
reduction in service frequency for users, which represents a limitation on the 
availability of transit service compared to an uncrowded system. 

• Service Span – The hours of service in a day are not typically affected by crowding. 
An exception could be if crowding on the last run of the night prevents some people 
from being able to use the system during its hours of operation. 

• Access – The design of physical infrastructure to allow access to all users, including 
passengers who may use wheeled mobility devices, is a requisite for accessible 
transit. Crowding can undermine this accessibility by blocking pathways or 
preventing a passenger from boarding a specific vehicle.  

Indicators of Comfort and Convenience 
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• Passenger Load – Crowding is a direct reflection of high passenger loads, and there 
is a demonstrated relationship between crowding and passengers’ perception of time. 
More crowded vehicles increase the likelihood of passengers having to stand or 
squeeze into the compartments with other passengers. This deteriorates the quality of 
the passenger experience, and evidence shows that they perceive waiting and travel 
times in crowded conditions to be more onerous than in uncrowded conditions. 

• Reliability – Crowding contributes to diminished reliability in terms of on-time 
performance and maintaining consistent headways, because boarding and alighting 
are delayed when there are many people in vehicles and at stations. A further 
consequence for reliability is that left-behind passengers essentially experience an 
extra headway of waiting time if they are unable to board the first vehicle that arrives. 

• Travel Time – In addition to increasing the perception of travel time, actual travel 
times are also increased by crowding for the same reasons that crowding diminishes 
reliability. Vehicles operate more slowly, especially because of delays associated with 
boarding and alighting. Furthermore, passengers that are left behind experience 
longer total travel times due to the additional time they must wait to board a vehicle. 

There are a number of ways that transit agencies seek to monitor and mitigate the effects of 
crowding in public transportation systems. From a monitoring perspective, several methods 
have been used to estimate the level of crowding on transit systems. Most focus on 
measuring the density of passengers, which is an objective measure of crowding [3, 4]. 
However, there are also subjective measures that are associated with the level of discomfort 
that have to do with passenger perceptions [5-7]. 

A number of studies have investigated the effect that crowding has on passenger perceptions 
and choices. Efforts to quantify the value that users put on crowding in terms of value of time 
or willingness to pay to avoid it is currently a very active research area [8-12]. Other studies 
have sought to determine the effect that crowding has on passengers’ travel decisions. For 
example, evidence from Seoul, South Korea, suggests that crowding has an effect on path 
choice in networks that are large and connected enough to offer multiple paths between 
origin-destination pairs [13]. 

Most of the literature on crowding in transit systems focuses on the problem of passengers 
squeezing into vehicles or onto platforms from the perspective of passenger discomfort. To a 
limited extent research has addressed actions that a transit agency can take in response to 
information about crowding. Crowding also has demonstrated effects on operating speed, 
waiting time, and travel time reliability which in turn have effects on transit operations and 
the demand patterns on bus and rail systems [14]. A recent effort has been made to link 
transit crowding to decisions regarding time-dependent fares, service frequency, or 
investment in higher-capacity vehicles by accounting for the implicit cost that users 
experience by spending time standing in crowded vehicles compared to sitting comfortably 
[15]. This research provides some guidance for making decisions regarding demand 
management or increasing the frequency and size of vehicles. It does not provide any insight 
regarding reliability of operations or the effect of uneven headways. 
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Although crowding is known to be a major problem in transit systems throughout the world, 
very little attention has been given to the problem of passengers being left behind when 
vehicles are too full to board. This is in part because planning methods provide guidance for 
designing systems so that capacity is not exceeded [16]. In many real systems, overcrowding 
is a result of operations that have already maximized the length of trainsets and the frequency 
of train service, given physical limitations of platforms, tracks, and signal systems. As a 
result, knowledge of crowding costs may be useful for planning purposes and cost-benefit 
analysis [17-19].  

Recent research aimed at estimating left-behinds has developed algorithms for systems with 
tap-in and tap-out smartcards, which are used in systems with multiple fare zones [20]. To 
date, a reliable method has not been developed to estimate or detect left-behind passengers in 
systems with only smartcard entry data, as is the case for the MBTA, as well as transit 
systems in Chicago and New York City. Some related research has sought to develop 
methods to infer passenger origin-destination patterns from entry-only data [21-24], but these 
methods have been developed with the primary objective of estimating passenger travel 
patterns and in-vehicle crowding rather than quantifying the occurrence of passenger left-
behinds. 

A related body of research investigates algorithms for tracking pedestrian movements within 
transit stations. The primary goal of these studies is to track individuals in order to 
understand how passengers move through entry points, ticketing areas, fare gates, and 
platforms. Based on level of service measures, methods have been developed to improve the 
planning process for the design of rail stations [25]. Related models have been developed to 
make use of multiple data sources to estimate origin-destination flows of passengers within a 
train station [26]. A number of studies have developed image processing tools to track 
pedestrians in video footage [27-30]. Many of these tools are limited to camera angles that 
are mounted high enough to view pedestrian activity from above and that have an 
unobstructed view of the areas where pedestrians move [31, 32]. While some methods can 
detect general density of passengers, tools that can reliably track pedestrians in order to 
directly observe left-behinds have not yet been developed. 

2.1.2 Available Raw Data 

The primary focus of this study is to investigate left-behinds on MBTA’s rail system. There 
are three main sources of raw data related to passenger and vehicle movements in the MBTA 
system. 

Automatic Fare Collection (AFC) 

Automatic fare collection data is collected from the fare collection system at station fare 
gates and on-board buses and light rail vehicles. The AFC records are associated with events 
in which Charlie Cards are used to load value, pay a fare, or validate a pass. The data is 
partitioned by month and year, and includes records of Charlie Card transactions from 
individual fare cards as well as passes. Relevant AFC data that could potentially be useful for 
assessing crowding are: 
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• Unique identifier of the device that records the AFC event 
• The station location of the device (e.g., fare gate, firebox, or ticket vending machine) 

that recorded the event 
• The timestamp of the event 
• Card/ticket serial number from the AFC system 
• Type of transaction (e.g., top-up, validation, or fare deduction) 

From this raw data, counts of passengers entering transit stations can be tracked over time 
based on the transactions’ times and locations. The dataset includes good coverage of 
passengers entering fare gate-controlled stations on the red, orange, and blue lines. However, 
passengers are able to board inbound green line trains without necessarily validating a ticket, 
so some passengers are able to enter the system and make transfers without being counted. 

The MBTA’s rapid transit fare system charges a single fare for entry to the system, and 
passengers do not tap out when they leave the system. As a result, AFC records only account 
for station and vehicle entry, and there are no direct observations of exits. 

Automatic Passenger Counter (APC) 

Automatic passenger counters (APC) are devices that count the number of passengers 
boarding and alighting each vehicle. APC devices are not in widespread deployment on 
MBTA rail vehicles, so this is not a data source that can be reliably used for assessing 
crowding in the system. 

Train Tracking (TTR) 

The train-tracking system records the position of heavy rail vehicles as they move from track 
circuit to track circuit through the system. The analogous data for tracking bus positions on 
the network are reported through the Automatic Vehicle Location (AVL) systems. Since 
much of the heavy rail operations are in tunnels, track circuits are used to identify train 
locations. There is typically one track circuit associated with each station, and a few circuits 
between consecutive stations. The relevant TTR data for this study are: 

• The timestamp of the train-tracking record 
• Numeric code for heavy rail line 
• Letter code for heavy rail line 
• Numeric code identifying a trainset 
• Latitude associated with track circuit 
• Longitude associated with track circuit 
• Unique identification number for track circuit 
• The direction of train traffic on the track circuit 
• The location type of the track circuit 
• Name of station associated with the track circuit 

The AVL data provides detailed data about vehicle movements in the system that can be 
compared against passenger data from the AFC data. From the AVL data, it is possible to 
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piece together the progression of an individual vehicle along a line. It is also possible to look 
at the headways of departures from a specific station. 

2.1.3 Models and Inferred Data 

The raw data collected and logged by the MBTA contains extensive (although not complete) 
information about passenger entrances to rail stations and boarding buses at bus stops. It also 
contains comprehensive records of vehicle movements. By itself, this data is sufficient to 
count passenger entries and track performance of transit vehicles for schedule or headway 
adherence. In order to assess crowding, additional processing of the data is necessary to link 
records and infer travel patterns. 

Origin-Destination-Transfer Model (ODX) 

A model to link trip records and infer origin-destination and transfer patterns in the system 
has been developed to populate a database of ODX records. Inference models based on 
farecard data have been improved over the years. The most recent advances make use of 
dynamic programming to minimize generalized disutility for travelers, accounting for path-
specific waiting time, in-vehicle time, and transfers [33]. The model identifies records from 
AFC that can be linked to infer transfers or return trip patterns. For example, a passenger 
using a Charlie Card to enter a rail station and later board a bus near a different rail station 
can be assumed to have used the rail system and then transferred to the bus. Another 
passenger who enters one rail station in the morning and enters a different rail station in the 
afternoon may be completing a round-trip commute, so the destination of the morning and 
afternoon trips can be inferred by linking the two trips. Through this method, the model 
infers values for 97% of trip origins, 75% of trip destinations, and 92% of transfers. 

The ODX model is structured in three levels: 

1. Ride – One ride; boarding and alighting one vehicle 

2. Stage – One fare card tap; this could be a single ride, boarding a bus and riding to a 
destination stop to alight. This could also be a station entry that is followed by a ride 
on a train and then a gateless transfer to another train 

3. Journey – One trip from origin to destination; this may consist of one or more rides 
and stages. For example, a multi-stage journey could include a first stage consisting 
of a ride on a bus and then a second stage consisting of entry to a rail station. The 
stages are each recorded by a separate tap (on the bus and at the fare gate), but a 
transfer from one mode or route to another may be required to complete a trip. 

The ODX records are based on the raw data from AFC and AVL, but the dataset contains 
information related to journeys by inferring the destination and transfer locations and times 
associated with each origin. The relevant data from the ODX records are: 

• Serial number of card, or arbitrary assigned number for cash transactions 
• Location of the stop or station where fare transaction was recorded 
• Timestamp of fare transaction 
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• The sequence of the journey for a specific card 
• Sequence of the stage within the journey 
• Total number of stages within the journey 
• Recorded or inferred journey origin location 
• Inferred journey destination location 
• Timestamp when the stage starts, based on vehicle’s departure time from origin stop 
• Timestamp when the stage ends, based on vehicle’s arrival at destination stop 
• The route of the vehicle trip or the route of the station where the fare card was tapped 
• The direction of the vehicle trip 
• Code indicating if the origin was inferred, or the reason it was not inferred 
• Code indicating if the destination was inferred, or the reason it was not inferred 
• Code indicating if a transfer was inferred, or the reason it was not inferred 
• The given or inferred origin of a ride, usually a bus stop or station platform 
• The time at which the vehicle departed from the ride’s origin 
• The inferred destination of a ride, usually a bus stop or station platform 
• The time at which the vehicle arrived at this ride’s destination 

The ODX data provides a comprehensive and useful view of travel patterns in the MBTA 
system. Although it appears at a glance to provide the same information as records from a 
tap-in and tap-out AFC would provide, it is important to be mindful of the assumptions on 
which inferences are based. Notably, for this study, inferred stages are based on the 
assumption that passengers are always able to board the next arriving vehicle. Therefore, 
destination times provide an optimistic estimate, assuming that crowding did not prevent a 
passenger from boarding the next arriving vehicle. 

Rail Flow 

The Rail Flow tool provides processed and aggregated data based on the ODX records. This 
data includes estimates of passenger boardings and alightings at stations for 15 minute 
increments. In this way, the ODX model provides valuable data for estimating the level of 
crowding in the system. The tool shows the variability of passenger flows between stations 
and provides an indication of locations and times that are likely to be experiencing the 
greatest crowding. However, Rail Flow does not provide an indication of left-behind 
passengers, because the ODX data is built on the assumption that passengers are not left 
behind. 

Perhaps a subsampling of stage data could be extracted to consider only multi-stage journeys 
in which the start time of the second stage can be used to work backward to estimate when 
the previous stage likely ended. Comparing the estimate of stage end time to the passage of 
vehicles may provide a rough estimate of whether or not a passenger was left behind. This 
would not provide a comprehensive measure of the left-behinds problem. 

2.1.4 Models and Inferred Data 

Stations throughout the MBTA are equipped with surveillance cameras for security purposes. 
The placement of cameras has been designed to provide coverage for security purposes, and 
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the view angles are not necessarily optimized for counting passengers on platforms. 
Variations in station architecture (e.g., side platforms vs. island platforms, columned stations 
with low station ceilings vs. open vaulted ceilings) create many different contexts for video 
observation. A challenge is that columns and curvature in the station limit how much of the 
platform, where passengers may be walking or waiting, is visible in a singleframe. The 
extensive placement of cameras, especially in recently renovated stations, provides multiple 
vantage points to observe platform crowding and vehicle boarding. Figure 2.1 shows 
examples of two surveillance feeds from the same station: one with an unobstructed view of 
the platform, and the other with the platform view blocked by many columns.  

    
Figure 2.1: Two surveillance camera views in Maverick Station (Blue Line) showing a) 
an unobstructed platform view, and b) a platform view obstructed by many columns. 

2.2 Review of Technologies 

There are a number of technologies that can be used to observe pedestrians and pedestrian 
movements in an area. Two broad categories of technologies are considered: video 
technologies that use image processing to directly observe and track people, and device 
detection technologies that register the unique device address associated with Bluetooth, Wi-
Fi, or cellular signals. Additional technologies for simple pedestrian counting exist, but they 
are of limited value for assessing the problem of left-behind passengers. 

2.2.1 Video Analysis Technologies 

Pedestrian counting and tracking technologies have been developed outside the field of 
public transportation. Applications range from counting pedestrians on sidewalks and street 
crossings to tracking pedestrian movements in shopping areas. In recent years, there have 
been a number of commercial video image processing tools developed in order to analyze 
pedestrian trajectories in stores and shopping centers in order to study shopping psychology 
and improve marketing practices. Examples include Placemeter and ShopperTrak. 

Several types of algorithms exist for identifying and tracking pedestrians: 

a) b) 
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• Pedestrian Counting – Counting the number of people in a single frame returns the 
number of people in a given area. This can be used as a measure of crowding but does 
not give any indication of where people are going, and the total count only provides 
an indication of how long people have been waiting in an aggregate way if counts are 
compared across many frames. 

• Pedestrian Trajectory Tracing – If an identified person is tracked from one frame 
to the next in a video feed, the movement of the person can be used to construct a 
trajectory of the person’s movement in the field of view. This allows for counting of 
directional flows and also tracing the locations where people spend time. In the 
context of retail applications, this has been developed to study customer behavior. For 
transit stations, efforts to track pedestrians have been used to monitor passenger flows 
through station areas, but there is potential to watch passengers on a station platform 
from the time they arrive to the time that they are able to board a train. 

• Pedestrian Re-Identification – It is common for a person’s trajectory to traverse the 
fields of view of multiple cameras in the course of passing through a station or 
platform area. In order to construct a complete trajectory, pedestrians must be re-
identified when they leave one camera view and enter another. In the case that the 
fields of view overlap, algorithms have been developed to stitch together trajectories 
based on re-identification at a common position and time. This process relies on 
highly reliable trajectory tracing capabilities as described above. 

• Person Identification/Facial Recognition – A far more complicated problem than 
the tracking tasks listed above is to link the identity of a person in a video feed to 
another person in a feed at a different time and location. For example, if a person 
enters a station at ground level and then later appears on a station platform without 
full observation of the path in between, then identifying features of the person must 
be recorded and re-identified. The most sophisticated image processing tools seek to 
identify a person’s identity based on facial recognition methods. With perfect 
reliability, this would allow for identification of passengers not only within different 
parts of the same station but also at different stations in the network. The challenge is 
that surveillance feeds are often not at sufficient resolution for facial recognition 
algorithms to work effectively. Furthermore, there are complexities in the station 
environment due to occluded sight lines, shadows, obscure angles of view, and many 
situations in which passengers do not face directly toward cameras. Such a system to 
recognize specific individuals is unlikely to work unless an extensive network of 
cameras are specifically placed to view passengers’ faces at key locations throughout 
the system. 

A recent comparison of algorithms for pedestrian detection from surveillance feeds reveals 
that there can be very different outcomes from different methods in terms of accuracy, 
depending on the context of data collection. The specific study by Kurilkin and Ivanov [34] 
compares four algorithms for measuring people flow: Aggregate Channel Feature (ACF) 
Caltech, ACF INRIA, Viola-Jones, and Histogram of Oriented Gradients (HOG). The ACF 
methods attempt to identify a person’s entire body in the frame; the Viola-Jones method 
focuses on identifying faces; and the HOG method identifies clusters of moving objects. A 
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visualization of the different identified objects is shown in Figure 2.2. The accuracy of the 
methods varies with the ACF producing pedestrian counts within about 5%, the Viola-Jones 
method undercounts by about 80% because of challenges related to identifying faces, and the 
HOG method overcounts by as much as 80% because of multiple groupings identified among 
large crowds of people. 

 
1. ACF (Caltech) 

 
2. ACF (INRIA) 

 
3. Viola-Jones 
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4. HOG 

Figure 2.2 Detection results from four methods [34] 

A number of studies have used image processing to track pedestrian movements in transit 
stations. Researchers have noted some of the unique challenges of applications in transit 
stations associated with obscured fields of view, awkward sight angles, and large crowds 
[30]. Efforts to implement video counting systems have achieved accuracy rates for counting 
pedestrian flows that exceed 90% in several instances [28, 35]. It is less clear how well such 
algorithms will work for continuing to track waiting passengers, especially with the goal of 
identifying which passengers are being left behind and which may be waiting for a different 
train or moving toward an exit. 

Digital Image Processing for Object Detection 

The detection of objects in surveillance videos is an invaluable tool for passenger counting 
and has numerous applications. For example, object detection can be used for passenger 
counting or tracking, crowding recognition, hazardous object recognition and safety 
evaluation of autonomous technologies that use object detection to avoid conflicts. Computer 
vision aims to deuplcate human vision in order to electronically perceive, understand, and 
store information regarding one or multiple images [36]. There are various techniques to 
detect objects in images using computers. 

Recent methods for detecting objects use feature-based techniques, rather than segmentation 
of a moving foreground from a static background that was used in the past. Then, the 
detected features are extracted and subjected to a classification stage, typically using either 
boosted classifiers or Support Vector Machine (SVM) methods [37, 38]. SVM is one of the 
most popular methods used in object detection algorithms, especially passenger counting, 
because it offers a method to estimate a hyperplane that splits feature vectors extracted from 
pedestrian and negative samples [37], differentiating pedestrians from other unwanted 
features. Boosting aims to use a sequence of algorithms to convert weak learners to strong 
learners [39]. The main idea of the boosted classifiers is weighing weak classifiers and 
combining them to form a strong hypothesis when training the algorithm to attain an accurate 
detection.  

Current methods for object detection take a classifier for an object and evaluate it at several 
locations and scales in a test image. This has been found to be time-consuming and created 
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numerous computational instabilities at large scales [40]. The most recent methods such as 
R-CNN use another method to decrease the region in which the classifier runs, the SVM. 
First, category-independent regions are proposed to generate potential bounding boxes. 
Second, the classifier runs and extracts fixed-length feature vectors for each of the proposed 
regions. Finally, the bounding boxes are refined by the elimination of duplicate detections 
and rescoring the boxes based on other objects on the scene using SVMs [41]. The bounding 
box is a rectangular box located around the detections in order to represent their detection 
[42, 43]. Object detection datasets are images with tags used to classify different categories 
[44, 45]. The technique that is used in this project is bounding boxes prediction. 

You Only Look Once (YOLO) 

You Only Look Once (YOLO) software uses a different method than the above-mentioned 
techniques for object detection. It generates a single regression problem, straight from image 
pixels to bounding box coordinates and class probabilities [46]. YOLO uses a single 
convolutional network that simultaneously predicts multiple bounding boxes and class 
probabilities for these boxes [47]. The ability to train YOLO on images has the potential to 
directly optimize detection performance and increase bounding box probabilities [47]. 
Another advantage of YOLO is that, unlike other techniques such as SVMs, it sees the entire 
image globally instead of sections of the image. This feature enables YOLO to implicitly 
transform contextual information to the code about classes and their appearance and at the 
same time makes YOLO accurate, with less than half the number of errors compared to Fast 
R-CNN [47]. YOLO uses COCO which is a large-scale object detection, segmentation, and 
captioning dataset. The minimum bounding box restricted size is 13x13 tiles [46]. 

Additionally, YOLO can learn and detect generalizable representations of objects, 
outperforming other detection methods, including R-CNN. This makes YOLO useful for 
numerous applications, including real-time object detection, and it is less likely to break 
down when applied to new domains or fed unexpected inputs [46, 47]. 

2.2.2 Wireless Device Detection Technologies 

An alternative to tracking pedestrians visually is to track the devices that passengers typically 
carry with them, most notably mobile phones. Kurkcu and Ozbay [48] present a succinct 
review of existing and emerging technologies for pedestrian counting. A comparison table of 
technologies is reproduced in Table 2.1. 
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Table 2.1: Pedestrian Counting Technologies [48] 

 
 

There are a number of technologies for detecting electronic devices which can be used for 
passenger counting. The widespread standard is Bluetooth technology, which facilitates radio 
communications between smart devices. In order to be detected, a Bluetooth device must be 
set to discoverable, and this is reportedly between 5%–12% of potential Bluetooth devices 
[49]. The Bluetooth device detects the unique media access control (MAC) address for each 
device within range. The Bluetooth detector pings for devices over a period of time 
repeatedly, and a running list of detected devices is collected with time-stamps for the times 
that they were observed. By considering devices as a proxy for passengers, this data provides 
observations of the time that a passenger arrives in a station (based on the first observed 
timestamp) and the time that they leave a station (based on the last observed timestamp), 
which is critical for detecting whether that passenger was left behind. An additional benefit 
of tracking MAC addresses is that it does not change for the same device, so if the same 
MAC address is later observed at another station, it represents a direct observation of a 
passenger movement from one location to another. Some previous studies have sought to use 
Bluetooth data to estimate transit wait times [48] and origin-destination flows [50, 51].  

Bluetooth scanning is based on polling, and not on passive listening. This makes Bluetooth 
detection slow and leaves the chance for a device to avoid detection by ignoring a polling 
request. Any smartphone can be configured to be visible or not by other Bluetooth devices. 
Setting this option as “not visible” will make the smartphone undetectable by any other 
Bluetooth device or sensor. This relates to the major downside of Bluetooth detection, which 
is that the sampling rate is very low, as stated above. When collecting data to aggregate over 
long periods of time, this may not be a big problem because the aggregation of a low 
sampling rate can still yield a large data set. Hence, estimates of how many passengers were 
left behind due to crowding could not be reliably made for a specific date and time. For the 
problem of identifying left behind passengers, it would be useful to have a much richer data 
set. For this purpose, there has been recent development of sensors that use both Bluetooth 
and Wi-Fi signals to detect devices.  



16 

Some products even use cellular signal Wi-Fi detection to make use of a communications 
channel that allows devices to connect to a wireless local area network. This is a common 
communication for smart phones, tablets, and laptop computers that passengers often carry 
with them. Manufacturers claim that by using both Wi-Fi and Bluetooth signals, as many as 
95% of smartphone, tablets, hands free devices, and laptops are detected by their MAC 
address within the detection range. Detection of Wi-Fi enabled devices requires that Wi-Fi is 
on, and this is more likely to be the case in environments where people are used to using free 
Wi-Fi services. Nevertheless, more and more devices are left to scan for Wi-Fi signals at all 
times, so the detection rate is likely to be high, and certain to be higher than Bluetooth alone. 
A few challenges and complications are related to the use of wireless detection devices to 
identify passengers.  

• Scanning devices must be installed – Unlike surveillance systems that have cameras 
already installed in stations, new devices would have to be acquired. For a long-term 
solution, these devices would have to be wired into communications channels in order 
to log records in a database.  

• Scanner range – The range of detection systems varies greatly from outdoor to 
indoor settings. It is not clear what range the devices will have in underground 
stations, especially those that have many concrete columns and walls, which are 
likely to block signals. Therefore, depending on the architecture more than one device 
might need to be installed. 

• Electronic devices do not map one-to-one with passengers – The essence of the 
technology is that it detects electronic devices that are enabled with communications, 
typically included in smart phones, tablets, computers, etc. Many commuters carry 
multiple devices, so it is likely that some passengers will be double counted. 
Likewise, some commuters do not carry any device at all or may not be detected at 
all. There is a risk that data from these sources will oversample relatively wealthier 
socioeconomic groups and under sample others. This raises some potential concerns 
for equity and sampling rates which will need to be carefully considered as part of a 
data collection trial. 

There are a few manufacturers who produce scanners that detect Bluetooth and Wi-Fi 
signals: 

• Libelium1 – Products from Libelium include a high-powered scanner, called 
Meshlium, that is designed to collect the maximum number of MAC address signals 
using  a combination of Bluetooth and Wi-Fi signals. Their applications include 
indoor environments where the scanner is used to count and track pedestrian 
movements. 

• BlueMark Innovations2 – BlueMark produces a modular platform to detect, track 
and locate smartphones based on Wi-Fi and Bluetooth (Classic, Low Energy, 

                                                 
1 http://www.libelium.com/products/meshlium/smartphone-detection/ 
2 https://bluemark.io/products/ 

http://www.libelium.com/products/meshlium/smartphone-detection/
https://bluemark.io/products/
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iBeacon, Eddystone) technology. The product provides a data dashboard for viewing 
metrics such as counting unique visitors and detecting specific users. The 
manufacturer claims to have a 25-meter range in an indoor location with pillars. The 
platform also offers ports for 3G/4G detection. 

• SMATS3 – A highly portable product called TrafficTab and mountable product 
called the TrafficBox provide Bluetooth and Wi-Fi detection capabilities in a portable 
case that can be easily mounted for temporary data collection. A more permanent 
product called TrafficXHub connects with a constant power supply for an extended 
scanning range and long term data collection. 

• TrafficCast4 – A high-quality Bluetooth detector called BlueTOAD Spectra is 
designed to detect both discoverable and non-discoverable Bluetooth signals. The 
manufacturer claims that sampling rates are competitive with or even exceed Wi-Fi 
detection. The product was developed as a roadside detector, so it can be wired into a 
traffic control cabinet. For experimental purposes the device can be run on batteries, 
but it requires cellular coverage in order to communicate the data. 

After comparing the strengths and weaknesses of the various products available on the 
market, the project team recommended the purchase of four (4) SMATS TrafficBox units for 
the purposes of this project. This recommendation was based on consideration of the types of 
signals detected, the strength of the antennas, the portability of the device, the rugged 
housing for outdoor and dusty environments, and the price. 

2.2.3 Other Pedestrian Counters 

Other forms of pedestrian counters use either radar or infrared technology to count the 
passage of pedestrians past a location. The simplest of such counters simply count the 
number of times that an infrared beam across a corridor is broken as an undirected count of 
pedestrians. This is a technology that has long been employed to count customers entering a 
store, for example. A slightly more sophisticated implementation with two beams closely 
spaced in series allows for inference of pedestrian direction, because the order in which the 
beams are disrupted indicates the direction of movement. Infrared technologies are limited by 
the fact that observations are based only on disruption of a signal, so the technology works 
best in low traffic environments in which people pass individually through a corridor to be 
counted. In crowds, large groups of people may disrupt the signal continuously leading to 
large undercounting errors. 

Radar technologies have been developed to track individual pedestrians (as well as cyclists 
and motor vehicles) simultaneously within a field of view. When mounted high above the 
traffic stream, radar systems are capable of tracking the trajectories of individual pedestrians 
moving toward and away from the radar. Some devices are also able to record lateral 
position. 

                                                 
3 http://www.smatstraffic.com/products/ 
4 http://www.trafficcast.com/spectra/index.html 

http://www.smatstraffic.com/products/
http://www.trafficcast.com/spectra/index.html
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Although there are some benefits to using pedestrian counters in transit stations, the 
applicability for measuring crowding and left behinds are limited by the fact that specific 
individuals cannot typically be identified and tracked throughout their path in a station. There 
may be some cases where the installation of passenger counters could provide measures of 
station exits and transfer movements that could be used to supplement inferred destinations 
and transfers in the ODX model. For tracking left-behinds, these data sources provide only 
indirect observations that would rely on extensive data fusion and inference to be of value. 
For this reason, this study will focus on the potential benefits of video and device detection 
technologies. 

2.3 Identification of Locations and Times for Evaluation 

The purpose of this project is to test different methods for detecting and measuring 
passengers being left behind when trains are too full to board. In order to make a detailed 
data collection plan, it was first necessary to identify locations and times of day that would 
be suitable for observation. 

First, the project team focused attention on the Orange and Blue lines, because the MBTA 
operates service on a single line without branches; see Figure 2.3. The challenge with 
branching lines (such as the Red line or Green line) is that it is not always clear whether a 
person who does not board a train is left behind due to crowding or is waiting to travel to a 
destination on a different branch. Furthermore, the station layout can contribute to ambiguous 
passenger behaviors such as the case at JFK/UMass (Red Line) in which there are two 
different platforms that passengers can choose for inbound trains. These complexities make it 
difficult to separate the problem of left behind passengers from other types of passenger 
movements. 
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Figure 2.3: MBTA Rapid Transit Network Map (Source: MBTA) 

Second, the team identified stations and times of day that most commonly experience 
crowding conditions that cause passengers to be left behind. Specifically, passengers are 
most likely to be left behind on a platform when many passengers are waiting to board trains 
that are already fully loaded when they enter the station. Using Rail Flow data (which is an 
aggregation of ODX records) and train schedules, the average occupancy of trains at each 
station and time of day can be compared in order to identify the most likely points where 
passengers would have difficulty boarding. By conducting an analysis of passenger flows 
boarding and alighting trains at each station, an estimate of passenger loads on trains and 
demand for boarding was used to identify candidate stations for conducting detailed data 
collection in the field. 
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2.3.1 Crowding Analysis 

A crowding analysis is a necessary step in the methodology applied to identify the times and 
stations where crowding is observed and left-behinds have a higher probability of occurring. 
The data used in this part of the analysis have been extracted from the Rail Flow database in 
the MBTA Research and Analytics Platform. Each 15-minute count of boardings and 
alightings represents an aggregated average of estimated passenger boarding and alighting 
counts across all days in the Winter 2017 quarter. 

Cumulative counts of the numbers of passengers boarding and passengers alighting have 
been created with respect to stations along the direction of train travel. For a 15-minute time 
period, 𝐵𝐵(𝑛𝑛, 𝑡𝑡) is the count of all of the passengers that are assumed to board trains in the 
direction of interest at stations preceding and including station 𝑛𝑛 by time 𝑡𝑡. Similarly, the 
cumulative number of passengers alighting, 𝐴𝐴(𝑛𝑛, 𝑡𝑡), is the count of all passengers that are 
assumed to have exited trains traveling in the direction of interest at stations preceding and 
including station 𝑛𝑛 by time 𝑡𝑡. 

It should always be true that 𝐴𝐴(𝑛𝑛, 𝑡𝑡) ≤ 𝐵𝐵(𝑛𝑛, 𝑡𝑡), because passengers can only alight a train 
after boarding it. The difference between the cumulative boardings, 𝐵𝐵(𝑛𝑛, 𝑡𝑡), and alightings, 
𝐴𝐴(𝑛𝑛, 𝑡𝑡), provides an estimation of the passenger flow, 𝑄𝑄(𝑛𝑛, 𝑡𝑡), between adjacent stations 
during each 15-minute time period. 

 𝑄𝑄(𝑛𝑛, 𝑡𝑡) = 𝐵𝐵(𝑛𝑛, 𝑡𝑡) − 𝐴𝐴(𝑛𝑛, 𝑡𝑡) (1) 

This calculation is approximate, because cumulative counts are calculated for a single 15-
minute time period, and real trains take more than 15 minutes to traverse the length of a line. 
Moreover, to calculate the crowding on trains, the passenger flow per time period should be 
converted to a passenger occupancy, 𝑂𝑂(𝑛𝑛, 𝑡𝑡) (passengers/train), which is calculated by 
multiplying the passenger flow by the scheduled headway of trains, ℎ(𝑡𝑡) (minutes), at time 𝑡𝑡; 
see Table 2.2. 

 𝑂𝑂(𝑛𝑛, 𝑡𝑡) = 𝑄𝑄(𝑛𝑛) ℎ(𝑡𝑡)
15

 (2) 

In this equation, the headway is divided by 15 minutes to account for the fact that the 
passenger flow is per 15-minute time period. This measure is an approximation of the 
number of passengers onboard each train and is based on the assumption that real headways 
are uniform and that passengers are always able to board the next arriving train. In reality, 
variations and headways may lead to increased crowding after longer headways, increasing 
the likelihood that some passengers will be left behind.  

The 2017 MBTA Service Delivery Policy (SDP) [1] provides guidelines for reliability and 
vehicle loads. In the 2010 MBTA SDP, the maximum vehicle load was explicitly defined as 
245% of seating capacity in the peak hours and 143% of seating capacity in other hours. The 
2017 SDP notes that accurately monitoring the passenger occupancy of heavy rail transit is 
not yet feasible on the MBTA system. Nevertheless, the guidelines from Table B2 in the 
2017 SDP are used to identify general crowding levels, recognizing that each Blue Line and 
Orange Line train are six cars long as shown in Table 2.3. 
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Table 2.2: Scheduled Headways for Weekday Service 
Time Period (approximate) Orange Line Blue Line 
First Train 5:16am 5:16am 
AM Peak (6:30am – 9:00am) 6 min 5 min 
Midday (9:00am – 3:30pm) 9 min 9 min 
PM Peak (3:30pm – 6:30pm) 6 min 5 min 
Evening (6:30pm – 8:00pm) 10 min 9 min 
Late Night (8:00pm – Close) 10 min 9 min 
Last Train 12:30am 1:00am 

Table 2.3: Vehicle Load Limits for MBTA Heavy Rail Trains [1] 
Time Period Orange Line Blue Line 
 Seats Passengers Seats Passengers 
Early AM/AM Peak 
(Start – 9:00am) 

348 846 210 516 

Midday Base 
(9:00am – 1:30pm) 

348 498 210 300 

Midday School/PM Peak 
(1:30pm – 6:30pm) 

348 846 210 516 

Evening/Weekends 
(6:30pm – Close) 

348 498 210 300 

 

Tracking the average number of passengers onboard trains provides one indicator for the 
likelihood of passengers being left behind, because full trains leave little room for additional 
passengers to board. During the most crowded times of the day, it is also useful to look at the 
numbers of passengers boarding and alighting trains at each station. Passengers are most 
likely to be left behind at stations where trains arrive with high occupancy, few passengers 
alight, and many passengers wait to board.  

2.3.2 Station Geometry and Camera Views 

In addition to identifying stations with the greatest likelihood of passengers being left behind 
by crowded trains, the stations selected for detailed analysis should also have characteristics 
that are amenable to successful testing of video surveillance counting methods. There are a 
variety of station layouts and architectures that contribute complicating factors to the analysis 
of left-behind passengers, and the goal of this study is to identify the potential for different 
detection methods under the best possible conditions. 

Ideal conditions for the proposed analysis are: 

1. Dedicated Platform for Line and Direction of Interest – In this case, all passengers 
on a platform are waiting for the same train, so any passenger that does not board can 
be counted as being left behind. In the case of an island platform, observed 
passengers may be waiting for trains arriving on either track. 

2. High Quality Camera Views – Surveillance cameras vary in age, quality, and 
placement throughout the MBTA system. Newer cameras have higher definition 
video feeds. The quality of the view is also affected by lighting conditions, especially 
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at above-ground stations where sunlight and shadows can affect the clarity of the 
images. 

3. Platform Coverage of Camera Views – The surveillance systems are designed to 
provide views of the entire platform area for security purposes. In some stations, the 
locations of columns obfuscate the views, requiring more cameras to provide this 
coverage. 

Surveillance camera views were considered from five stations on the Orange Line (Back 
Bay, Chinatown, North Station, Sullivan Square, and Wellington) and two stations on the 
Blue Line (State and Maverick). Ultimately, Sullivan Square and North Station were selected 
for more detailed analysis because these stations satisfy all three of the requirements listed 
above. 

Sullivan Square is an above ground station that is located under I-93 and parallel to the tracks 
serving the Haverhill, Newburyport, and Rockport commuter rail lines. The station features 
heavy concrete construction and the platforms are open to the outdoors. The station serves 
only the Orange Line. The platform shown in Figure 2.4 serves southbound (inbound) trains 
on the right track. Although northbound trains use the left track and often open doors onto 
the same platform, the primary platform for northbound passengers is located in the left side 
of the view. Sullivan Square is an important transfer station with many passengers 
transferring to the Orange Line from bus routes serving surrounding neighborhoods. 

 
Figure 2.4: Sullivan Square, Southbound Orange Line Platform 

North Station is an underground station that serves both the Orange Line and the Green Line. 
Northbound Orange Line trains have a dedicated side platform, visible on the left side of 
Figure 2.5. The open atrium design adds some complexity to the analysis in that passengers 
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traveling on other lines or directions are in the same space, and their devices may be detected 
by equipment placed to detect northbound Orange Line passengers. The surveillance views 
provide good dedicated coverage of the northbound platform, which is the platform of 
interest for evening peak travelers. 

 
Figure 2.5: North Station, Northbound Orange Line Platform 

2.4 Collection of Direct Observations 

Detailed data collection was conducted for two stations on two dates: Sullivan Square for 
southbound Orange Line trains in the AM peak (6:30 – 9:30am) and North Station for 
northbound Orange Line trains in the PM peak (3:30 – 6:30pm), with the selected dates 
midweek days during non-holiday weeks (Wednesday, November 15, 2017, and Wednesday, 
January 31, 2018). In both cases, manual observations on the platform were collected to 
establish a ground truth against which to compare alternative methods for measuring and 
estimating passengers being left behind by crowded trains. In each case, three observers 
worked simultaneously on the station platform to record observations. 

2.4.1 Train Door Opening and Closing Times 

Although train-tracking records (TTR) report the times that each train enters the track circuit 
associated with a station, there is no automated record of the precise times that doors open 
and close. Since passengers can only board and alight trains while the doors are open, 
recording these times manually is important for identifying when passengers board trains, 
when they are left behind, the precise dwell time in the station, and the precise headway 
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between trains. Each of the three observers recorded the times of doors opening and closing. 
The average of these observations is considered the true value. 

2.4.2 Number of Passengers Left Behind 

Each observer counted the number of passengers left behind on the station platforms after the 
train doors closed. In order to avoid double-counting, each observer was responsible for 
observing passengers in a two-car segment of the train (front, middle, and back). Some 
judgement was necessary in determining which passengers to count, because some 
passengers linger on the platform after alighting the train and some choose to wait for a later 
train even when there is clearly space available to board. The goal of the left-behind 
passenger count is to measure the number of left-behind passengers within ±2 passengers of 
the true number.  

2.4.3 Number of Passengers Waiting on Platform 

In addition to counting the number of passengers left behind by crowded trains, it is 
important to get an accurate count of the number of passengers waiting to board each arriving 
train. Given the large number of commuters using the heavy rail system during commuting 
hours, it is not possible to accurately count this total number of passengers in person. 

Surveillance video feeds of escalators, stairs, and elevators used to access the platform of 
interest were used to manually count the number of passengers entering and exiting the 
platform offline. Specifically, an open-source software tool was used to track passenger 
movements by logging keystrokes to the video timestamp during playback. A student data 
logger conducted the counts by watching the surveillance video playback of each entry and 
exit point from the platform and logging the entry and exit of each individual passenger. The 
resulting data log records the time (to the nearest second) that each passenger entered and 
exited the platform. Since the platforms of interest serve only one train line in one direction, 
all entering passengers are assumed to wait to board the next train, and all exiting passengers 
are assumed to have alighted the previous train. Combining these counts with the direct 
observations of the number of passengers left behind each time the doors close provides an 
accurate estimate of the number of passengers that were successfully able to board each train. 

2.5 Automated Video Counting 

In order to evaluate the accuracy and feasibility of counting passengers on station platforms 
using surveillance video feeds, an automated pedestrian identification algorithm was 
calibrated and used to compare against the direct passenger counts in stations. The method 
for conducting automated video counts involved three main steps: 1) identification of camera 
feeds for analysis, 2) calibration of algorithm parameters, and 3) smoothing of the raw data 
feed into a time series of estimated passenger counts. For this analysis, the YOLO algorithm 
(as described in Section 2.2.1) was used. This is an open source software tool that is freely 
available. 



25 

2.5.1 Identification of Surveillance Camera Feeds for Analysis 

The automated passenger counting algorithm uses pattern recognition to identify passengers 
in each frame of surveillance video. In order to maximize the accuracy of the automated 
video counts, camera views that provide a clear and unobstructed view of the platform were 
selected. The selected video views for automated passenger counts on platforms should have 
the following characteristics: 

• Clear view of platform edge and train doors 

• High enough viewing angle to see individual people 

• Minimal occlusion of view from columns or other objects 

• Lighting that reveals features of the station and objects 

• High resolution and clear focus 

The suitable video feeds for Sullivan Square and North Station were selected from samples 
of each surveillance feed; see  

Figure 2.66 and Figure 2.77, respectively.  

   
Figure 2.6: Selected surveillance camera views of Sullivan Square southbound platform 

   
Figure 2.7: Selected surveillance camera views of North Station northbound platform 

2.5.2 Calibration of Parameters 

The YOLO algorithm uses pattern recognition to identify objects in an image. A threshold 
for certainty can be calibrated to adjust the number of identified objects in a specific frame. If 
the threshold is set too high, the algorithm will fail to recognize some objects that do not 
adequately match the training dataset. If the threshold is set too low, the algorithm will 
falsely identify objects that are not really present. In order to identify the optimal threshold, 
14 camera views were analyzed. Each frame was run separately for threshold values ranging 
from 6% to 25% to determine the optimal threshold value in relation to a manual count of 
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passengers visible in the frame. The optimal threshold across all camera views is 7%, which 
minimizes the mean squared error between YOLO and manual counts as shown in Table 2.4. 
Figure 2.8 shows the identified objects at each threshold level for the same frame from a 
camera in North Station. 

Table 2.4: Count Errors for YOLO Thresholds 
Threshold Mean Error Mean Squared Error 

25% 6.82 62.0 
20% 5.82 43.7 
15% 4.59 28.5 
10% 3.06 14.1 
9% 2.23 8.0 
8% 1.35 4.6 
7% 0.12 1.2 
6% -1.53 6.8 

 
Figure 2.8: Passenger counts at various thresholds using YOLO  

2.5.3 Processing of Raw Video Counts 

The YOLO algorithm processes each frame of surveillance video as an isolated image.The 
raw video feeds for the time period of interest are available in .ASF format at 30 frames per 
second (fps). Since passengers do not move very quickly around platform areas, the raw 
video is downsampled to 1 fps in order to reduce file sizes and computation time, but each of 
these frames maintains the original image resolution. The reduced video file is also converted 
to .MP4 format using a Matlab script in order to be compatible with the YOLO software. 
YOLO processes each frame in less than one second, so this method is fast enough that it 
could be implemented in real-time. 

The output from YOLO is a text file that lists for each frame the objects detected (e.g., 
person, handbag, train, etc.) and the bounding box for the object within the image. A time 
series count of passengers on the platform is simply the sum of the counts of the number of 
“person” objects identified in the corresponding frames from each sampled video feed. 
Figure 2.9a shows the raw passenger counts on the platform at North Station for the time 

25% 20% 15% 

10% 9% 7% 
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period from 5:30 – 6:00pm on November 15, 2017. Although there are noisy fluctuations, 
there is a clear pattern of increasing passenger counts until door opening times (shown in 
green). A surge of passenger counts while doors are open (between green and red) represents 
the passengers alighting the train and exiting the platform. Passenger counts typically drop 
off dramatically following the door closing time (shown in red), except in cases that 
passengers are left behind. For example, the third train arrives after a long headway and 
shows roughly nine passengers left behind. 

 
a) Raw (unsmoothed) time series 

 
b) Smoothed time series 
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Figure 2.9: Raw and smoothed passenger counts from video at North Station (5:00 – 
6:30pm), November 15, 2017 

To facilitate analysis of the automatic passenger counts from the surveillance videos, it is 
useful to work with a smoothed time series of passenger counts. Using a smoothing window 
of ±10 seconds, the smoothed series appears as in Figure 2.9b. This smoothed time series is 
more suitable for a local search to identify the minimum passenger count following each door 
closing time. This represents the count of left-behind passengers identified through 
automated video counts. 

2.6 Wireless Device Detection 

Wireless device detection tools detect the unique MAC addresses of the wireless devices that 
people carry rather than counting or tracking the individual passengers themselves. The 
devices regularly ping Bluetooth, Wi-Fi, or cellular network signals (depending on the 
specific device used) to detect the presence of wireless devices such as mobile phones, 
tablets, and laptop computers within range of the antenna. A common application in the 
transportation domain is to use wireless device detectors to measure travel times between 
points in a network by identifying and then reidentifying devices at different locations and 
calculating the travel time or speed of travel between observations. 

For the application of counting passengers and measuring waiting times in a transit station, 
the goal is to analyze the records of pinged MAC addresses to identify when devices are first 
and last identified within a station environment. The duration from the first to last 
observation is a measure of the time that device was present in the station, and the timing of 
the last observation relative to train departures can be used to assign each device to a 
departing train. If the devices are assumed to be a proxy for passengers, then the times that 
devices spend waiting for each departing train may be interpreted as a proxy measure for the 
times that passengers wait for departing trains. The feasibility of this method depends on the 
detection range of the tool and the reliability of detecting individual devices. 

For the purposes of this project, four SMATS TrafficBox devices were procured to test the 
feasibility of using Bluetooth and Wi-Fi device detection to measure passenger waiting times 
and the occurrence of passengers being left behind by crowded trains. A comparison with 
other products is presented in Section 2.2.2. 

Each TrafficBox contains five key components as illustrated in Figure 2.100: 

1. Control Board – The control board connects all of the other components and records 
observations to an internal memory card for later download. The memory card has a 
16GB capacity, suitable for 2 million MAC records. The control board can be 
connected with an Ethernet connection for real-time transmission of data. 

2. Battery Pack – A 5V, 20Ah battery pack can power the unit for roughly 20-24 hours. 
The unit can also be plugged in for extended operation. 
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3. GPS Antenna – A GPS antenna is used to synchronize the system clock prior to data 
collection. Once the clock is synchronized, the GPS connection is no longer 
necessary, so this does not pose a problem for use in underground stations. 

4. Bluetooth Antenna – An omnidirectional Bluetooth antenna detects Bluetooth MAC 
addresses in three modes: classic discovery mode, low-energy discovery mode, and 
classic paired mode. 

5. Wi-Fi Antenna – An omnidirectional Wi-Fi antenna detects Wi-Fi MAC addresses. 

Each TrafficBox can be mounted to a pole or conduit with mounting brackets, which enables 
them to be placed in many potential locations within each transit station. Each box can also 
be padlocked to discourage tampering. 

 

Figure 2.10: Components of the SMATS TrafficBox wireless device detector 

2.6.1 Detection Range 

To determine placement of the TrafficBox devices within Sullivan Square and North Station, 
it was first necessary to determine the detection range. The manufacturer advertises a 
detection range of up to 500m in an unobstructed field of view. For this study, it was 
necessary to measure the detection range of the devices from various locations within the 
stations so that the units could be placed at locations that would provide the most complete 
coverage for the platform of interest. The detection range was measured using the unit’s 
range test mode to detect a known target device (an Apple iPhone 6) by MAC address. 

Sullivan Square Detection Range 

The detection range for the TrafficBox unit was measured from three locations within the 
Sullivan Square station: the south end of the platform, the middle of the platform, and the 
north end of the platform. The target device was detected only on the same platform within 
half a platform length of the unit. The target device was not detected on the other station 
platform or in the station lobby. The limited detection range is likely attributable to the heavy 
concrete construction of the station which blocks signals that are not within the line of sight. 
Figure 2.11 shows the selected placement of the devices at Sullivan Square. The devices 
were mounted near the ceiling to scan over passengers’ heads. 

Battery Pack 

GPS Antenna to 
synchronize clock 

Control Board 

Bluetooth Antenna 

Wi-Fi Antenna 
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North Station Detection Range 

The detection range for the TrafficBox unit was measured from four locations within North 
Station: the south end of the platform, 1/3 of the platform length from the south end, 1/3 of 
the platform length from the north end, and at the north end of the platform. At each location, 
the unit was able to detect the target device anywhere within the station, including the 
opposite platform, the upper Green Line platform, and the ticketing mezzanine. The target 
device was not detected at street level, which is good because this would add an additional 
challenge to filter out people walking by on the street above the station. It is likely that the 
station’s open design and many metal surfaces increase reflections of signals that allow 
devices to be detected from anywhere in the station. Figure 2.12 shows the selected 
placement of the devices at North Station. The devices were mounted on overhead light 
fixtures directly over the platform. 

 
Figure 2.11: Placement of wireless device detectors at Sullivan Square 

 
Figure 2.12: Placement of wireless device detectors at North Station 

2.6.2 Processing Raw Data 

The raw data recorded by each TrafficBox unit are three data fields: timestamp, MAC 
address, and detection type (Bluetooth or Wi-Fi). The unit records observed MAC addresses 
as frequently as every second, although a wireless device may not transmit a detectable 
signal for several seconds or even minutes at a time. Each of the units recorded hundreds of 
thousands of observations during the day of data collection. These observations must be 
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processed and filtered to identify the useful observations that are most likely associated with 
travelers on the line and direction of interest. The data is filtered in the following steps: 

1. Observations are extracted for the peak period. From the raw data log, observations 
are extracted for the 3-hour time period corresponding to the manual counts and the 
surveillance video observations (6:30 – 9:30am at Sullivan Square, 3:30 – 6:30pm at 
North Station). 

2. Records are sorted by MAC address and then by timestamp so that the time of the 
first and last observation are identified. The difference between these two times is the 
duration of observation. 

3. Records are filtered to remove transient observations (less than 5 seconds duration) 
and stationary devices (greater than 960 seconds duration). The first category 
removes devices that are not observed for long enough to plausibly be a waiting 
passenger; e.g., passing traffic. The second category removes devices that linger 
longer than any passenger; e.g., Wi-Fi routers or devices belonging to transit 
employees. 

4. Records with the last observations from 120 seconds before doors closing to the time 
of doors closing are associated with a particular train departure. Since the average 
device is pinged about once per minute (and sometimes longer) this time range 
associates records with the most likely train departure. 

From this process, a set of MAC addresses serving as a proxy measure for passengers is 
identified for each departing train. The timestamp of first observation provides an indication 
of when the device arrived to the station platform, and how long it waited. If a device is first 
observed before the prior train’s doors close, it appears to have been left behind. 

2.7 Modeling Left-Behind Passengers 

Direct observations from automated video counts and filtered wireless device detection 
provide quantitative measures of the number of passengers (or devices) observed on a station 
platform after a train’s doors close. However, the automated measurement processes are 
known to be associated with noise and are likely to undercount true values. If the automated 
measurements from video and wireless device detection provide an indication of left-behinds, 
it would be appropriate to develop a model to estimate relevant metrics based on the 
observed data. 

The focus of this study is to measure passengers that are left behind due to crowded trains. A 
model that predicts the probability that a passenger waiting to board a train is left behind on 
the platform and the total number of left-behind passengers would provide a useful measure 
for tracking system performance. A logistic regression modeling approach for making these 
estimates is presented in Section 2.7.1. 

A second measure of interest is the service reliability, as defined in the 2017 MBTA Service 
Delivery Policy: the percentage of passengers waiting less than a published headway to board 
a train. This measure is currently estimated based on reported headways, assuming that each 
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passenger is able to board the next arriving train. A method to account for the additional 
waiting time experienced by left-behind passengers is presented in Section 2.7.2. 

2.7.1 Model for Likelihood of Passenger Being Left Behind 

Each passenger waiting on a platform to board a train is either able to board the train or is left 
behind. These two discrete outcomes allow the system to be formulated as a binary logistic 
model in which the probability that a passenger is left behind is estimated as a function of 
observed explanatory variables. Mathematically, this is the same as a logit model, commonly 
used to model passenger mode choice in the transportation domain. In the context of left-
behind passengers, a logistic regression uses maximum likelihood estimation to fit 
parameters of a model to predict the probability that a passenger is left behind based on some 
combination of the observed factors. 

From the manual observations, the number of passengers waiting on the platform for each 
departing train is known, as well as the number of these passengers that are left behind. For 
estimation of the logistic regression, each passenger is represented as a separate observation, 
and all passengers waiting for the same departing train are associated with the same set of 
explanatory variables. Over the course of a 3-hour rush period, there are typically about 30 
trains serving Sullivan Square and North Station, serving 1,500 to 3,000 passengers per 
period, and leaving behind well over 100 passengers. Logistic regression models are 
generally expected to give stable estimates when the data set for fitting includes at least 10 
observations for each outcome. Structuring the model in terms of individual passengers is 
consistent with these guidelines. 

The logistic function defines the probability that a passenger is left behind by 

 𝑃𝑃(𝒙𝒙) = 1
1+𝑒𝑒−(𝛽𝛽0+𝜷𝜷𝒙𝒙) (3) 

where 𝒙𝒙 is a vector of explanatory variables, 𝜷𝜷 is a vector of estimated coefficients for the 
explanatory variables, and 𝛽𝛽0 is an estimated constant. The estimation of the model may be 
understood as identifying the values of 𝛽𝛽0 and 𝜷𝜷 that best fit 

 𝑦𝑦 = �1 𝛽𝛽0 + 𝜷𝜷𝒙𝒙 + 𝜀𝜀 > 0
0 else

 (4) 

where 𝑦𝑦 = 1 corresponds to a passenger being left behind and 𝑦𝑦 = 0 corresponds to a 
passenger successfully boarding. The underlying assumption in this formulation is that the 
likelihood of being left behind can be expressed in terms of a linear combination of 
explanatory variables and a random error term, 𝜀𝜀, which is logistically distributed. 

The explanatory variables that are considered in this study are as follows: 

1. Train-tracking records (TTR) 
• Dwell Time 
• Headway 

2. Video count of passengers on platform following doors closing 
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3. Wireless device detection estimate of devices on platform following doors closing 

These explanatory variables can all be monitored automatically, without manual 
observations. In the case of dwell time, an extra modeling step is needed to convert TTR 
reported times that trains enter and exit track circuits. This is done by fitting a simple 
regression model to estimate dwell time based on the duration of time that the train occupies 
the station track circuit. 

Formulations of the logistic regression with various combinations of the explanatory 
variables are compared to identify which variables have statistically significant explanatory 
power and which model provides the best fit to the data. The model estimation process for 
train-tracking and video data is conducted with observations from November 2017, and these 
models are validated with observations from January 2018. Observations from wireless 
device detection are only available from January 2018, so the models are estimated to 
identify the potential benefit of that data source. 

2.7.2 Distribution of Experienced Waiting Times 

A second measure of interest is the distribution of experienced waiting times that passengers 
experience for a specific line and direction of travel. From the direct manual counts, a 
cumulative count of passengers arriving onto the platform and of passengers boarding trains 
provides a time series count of the number of passengers on the platform. If passengers are 
assumed to board trains in the same order that they enter the platform, the system follows a 
first-in-first-out (FIFO) queue discipline. Although it certainly is not true that passengers 
follow FIFO order in all cases, this assumption allows the cumulative count curves to be 
converted to estimated waiting times for each individual passenger. The FIFO assumption 
yields the minimum possible experienced waiting times that are consistent with the numbers 
of passengers left behind by each train. This distribution implies a percentage of passengers 
that wait less than the published headway for a train departure. 

The models presented in Section 2.7.1 provide the estimated probability that a passenger is 
left behind each time train doors close. If a constant arrival rate is assumed over the course of 
the rush period, the door closing times and probability of passengers being left behind can be 
used to estimate the cumulative boardings onto trains over time. Under the same FIFO 
assumptions described above, the distribution of experienced waiting times can be estimated 
based on train-tracking and video counts. 

Finally, data from wireless device detection that is filtered as described in Section 2.6.2 
provides observations of durations of time that devices are present in the station area. No 
further modeling is necessary to characterize the distribution of these times, if they are 
considered to be representative proxies of passenger presence. 
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3 Results 

3.1 Estimated Crowding by Location and Time 

The following subsections show inferred vehicle crowding, boarding, and alighting counts 
for the Blue and Orange lines in order to identify the specific locations for more detailed data 
collection and investigation. The results for the Orange Line are presented here. The results 
for the Blue Line are presented in Appendix A. 

The average number of passengers boarding and alighting at each station during each 15-
minute period during Winter 2017 are used to calculate average passenger loads as described 
in equations (1) and (2). The resulting passenger occupancy estimates, 𝑂𝑂(𝑛𝑛, 𝑡𝑡), can be plotted 
across the stations for an average weekday to show where trains are consistently the most 
crowded. The red areas in Figure 3.1 show the locations and times that Orange Line trains are 
consistently the most crowded. Not surprisingly, these are inbound trains during the AM 
peak and outbound trains during the PM peak. 

The most severe crowding on the Orange Line appears to be from 8:15 – 8:30am for 
southbound trains and 5:15 – 5:30pm for northbound trains. The values of 𝐵𝐵(𝑛𝑛, 𝑡𝑡), 𝐴𝐴(𝑛𝑛, 𝑡𝑡), 
and 𝑂𝑂(𝑛𝑛, 𝑡𝑡) are shown in Figure 3.2 for southbound trains in the morning. Inbound trains 
experience large boarding loads at Oak Grove, Malden Center, Wellington, and Sullivan 
Square, before entering the center of Boston. Sullivan Square appears to be particularly prone 
to crowding conditions that lead to left-behind passengers in that trains arrive to the station 
with high passenger loads, there are very few passengers alighting (so additional space is not 
opening up), and there are many passengers wishing to board. Figure 3.3 shows similar data 
for northbound trains in the evening. Outbound trains fill with passengers at Back Bay, 
Downtown Crossing, and State Street on their way north. North Station is the last stop within 
central Boston and there is a relatively high volume of passengers seeking to board fully 
loaded trains. 

3.2 Data Collection 

Detailed data collection was conducted at Sullivan Square and at North Station for the 
Orange Line on two weekdays. Table 3.1 summarizes the data collection schedule. 

Table 3.1: Data Collection Schedule for Orange Line Trains 
 Wednesday, November 15, 2017 Wednesday, January 31, 2018 
Locations and Times Sullivan Square (south): 6:30 – 9:30am 

North Station (north): 3:30 – 6:30pm 
Sullivan Square (south): 6:30 – 9:30am 

North Station (north): 3:30 – 6:30pm 
Manual Counts ● ● 
Surveillance Video ● ● 
Wireless Device Detection  ● 
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Southbound Trains 

 

Northbound Trains 

 

 

 

 

 

Stop Name
1. Oak Grove
2. Malden Center
3. Wellington
4. Assembly
5. Sullivan Square
6. Community College
7. North Station
8. Haymarket
9. State Street
10. Downtown Crossing
11. Chinatown
12. Tufts Medical Center
13. Back Bay
14. Massachusetts Ave.
15. Ruggles
16. Roxbury Crossing
17. Jackson Square
18. Stony Brook
19. Green Street
20. Forest Hills
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Figure 3.1: Inferred Passenger Occupancy for Orange Line Trains, Winter 2017 
(Source: ODX Data from MBTA Research Database) 
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Figure 3.2: Passenger movements for southbound Orange Line, 8:15 – 8:30am (Source: 

ODX Data from MBTA Research Database) 
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Figure 3.3: Passenger movements for northbound Orange Line, 5:15 – 5:30pm (Source: 

ODX Data from MBTA Research Database) 

3.2.1 Direct Observations 

Direct observations were collected of doors opening and closing, passengers left behind on 
the platform, and the passengers entering and exiting the platform. Table 6.1 through Table 
6.4 in Appendix B present the raw counts for the four direct observation events: Sullivan 
Square and North Station in November 2017 and January 2018. Trains are numbered in order 
of arrival to the station during the time period of interest. The door opening and closing times 
are based on the directly observed times. Passengers waiting on the platform is the sum the 
passengers left behind by the previous train and the number of passengers that entered the 
platform since the previous train’s doors closed. The number of left-behind passengers are 
reported for each of the three observed locations and the platform total. 

Time series of the number of passengers on the platform are shown in Figure 3.4 through 
Figure 3.7. The sawtooth pattern in each figure shows the growing number of passengers on 
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the platform as time elapses since the previous train. The sudden drops correspond to the 
times when doors close. When no passengers are left behind, the platform count drops to 
zero. When passengers are left behind, the time series drops to that number of left-behind 
passengers (shown in red in the figures). 

 
Figure 3.4: Time series of passengers on platform from manual counts, Sullivan Square, 
November 15, 2017 

 
Figure 3.5: Time series of passengers on platform from manual counts, North Station, 
November 15, 2017 

0

50

100

150

200

250

300

6:30:00 7:00:00 7:30:00 8:00:00 8:30:00 9:00:00 9:30:00

Nu
m

be
r o

f p
as

se
ng

er
s o

n 
pl

at
fo

rm
 

Time (hh:mm:ss) 

0

50

100

150

200

250

300

15:30:00 16:00:00 16:30:00 17:00:00 17:30:00 18:00:00 18:30:00

Nu
m

be
r o

f p
as

se
ng

er
s o

n 
pl

at
fo

rm
 

Time (hh:mm:ss) 



40 

 
Figure 3.6: Time series of passengers on platform from manual counts, Sullivan Square, 
January 31, 2018 

 
Figure 3.7: Time series of passengers on platform from manual counts, North Station, 
January 31, 2018 

The pattern of passenger arrivals to the platform appear to be independent of the departure 
times of trains. This makes sense since the Orange Line operates on a short headway without 
a specific schedule of departures. At Sullivan Square, the arrivals tend to be more clustered, 
because many passengers are transferring from buses. In all cases, there is a clear pattern that 
longer headways correspond to greater accumulations of waiting passengers and increased 
likelihood of passengers being left behind. 
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An analysis of the time that each passenger waits on the platform is performed based on the 
assumption that passengers board trains in the order that they enter the platform (see Section 
2.7.2). Figure 3.8 through Figure 3.11 show the cumulative distributions of waiting times in 
each of the four observation periods (blue curve). This is compared to the distribution of 
waiting times that would be experienced if no passenger were left behind (red curve). In each 
case, the reliability standard specified in the 2017 MBTA Service Delivery Policy is for 90% 
of passengers to wait less than the 6 minute (360 second) published headway. When left-
behind passengers are accounted for, the waiting times that they actually experience are 
longer than if every passenger is able to board the next departing train. As a result, the 
reliability measure is lower when passengers are recognized as being left behind. It should be 
noted that the reliability standard is a systemwide measure across locations and times of day, 
so low reliability at Sullivan Square and North Station during peak hours does not imply that 
the whole system is underperforming to the same extent. 

The direct observations of passenger counts, left-behind passengers, and waiting times is 
summarized in Table 3.2. In all cases, passengers were observed being left behind by some 
crowded trains, and accounting for these left-behind passengers has implications for the 
measures of reliability (i.e., percent of passengers waiting less than a scheduled headway) 
and the average experienced waiting time. 

 
Figure 3.8: Cumulative distribution of passenger waiting times at Sullivan Square, 
November 15, 2017 
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Figure 3.9: Cumulative distribution of passenger waiting times at North Station, 
November 15, 2017 

 
Figure 3.10: Cumulative distribution of passenger waiting times at Sullivan Square, 
January 31, 2018 
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Figure 3.11: Cumulative distribution of passenger waiting times at North Station, 
January 31, 2018 
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Table 3.2: Summary of Left-Behind Passengers and Waiting Times Observed 
 Wednesday, November 15, 2017 Wednesday, January 31, 2018 
 Sullivan Square North Station Sullivan Square North Station 
# of Trains 29 29 27 30 
# of Trains Leaving Passengers 8 9 9 11 
# of Passengers 2,681 1,503 3,064 2,202 
# of Passengers Left Behind 351 198 198 120 
Reliability (not including LB) 86.6% 77.2% 96.0% 78.7% 
Reliability (including LB) 75.3% 74.6% 91.2% 81.3% 
Average Wait Time, sec (not including 
LB) 

183 237 164 216 

Average Wait Time, sec (including LB) 232 253 189 231 
 

According to the MBTA Performance Dashboard, November 15, 2017, and January 31, 2018 
had good system performance. The overall subway reliability is reported as 88% and 87% on 
these dates, respectively. It is not surprising that rush hour conditions at especially crowded 
stations appear to perform worse than the systemwide average. 

One point that is worth noting is that January 31, 2018, was an especially cold day with 
morning temperatures well below freezing. Since the station platform at Sullivan Square is 
above ground and exposed to wind, passengers have an incentive to wait in the lobby area 
until the train is arriving before descending the stairs to board the train. Since counts of 
passengers entering the platform were conducted based on stairwell flows, it is possible that 
some of the waiting time at Sullivan Square was not accounted for on January 31. This would 
explain the higher reliability and lower average waiting times compared to November 15. 
This effect would not impact the counts of left-behind passengers, because passengers expect 
to be able to board a train once they are on the platform. Nevertheless, the cold conditions 
may have had some effect on changing passengers’ behaviors and encouraging more people 
to attempt crowding onto full trains rather than waiting. 

3.2.2 Automated Video Counts 

The automated video processing algorithm was used to analyze the relevant surveillance 
video feeds with views of the platforms, as described in Section 2.5.3. Figure 3.12 shows the 
time series of passenger counts at North Station from November 15, 2017. The blue line 
represents manual counts of passengers on the platform, which is considered the ground 
truth. The green line is the smoothed time series from the three surveillance feeds used to 
monitor the northbound Orange Line platform at North Station. 

The automated passenger counting algorithm clearly undercounts the total number of 
passengers on the platform. The reason for this large discrepancy is that the algorithm can 
only identify people in the foreground of the images, when each person is large enough for 
the algorithm to identify. Therefore, the three camera views do not actually provide complete 
coverage of the platform for automated counting purposes. Furthermore, when conditions get 
very crowded, it becomes more difficult to identify separate bodies within the large mass of 
people. Even for a human, it is difficult to accurately count passengers in the crowded 
distance parts of the platform, as in Figure 3.13. 
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Figure 3.12: Automated passenger counts from surveillance video at North Station, 
November 15, 2017 

 
Figure 3.13: Example camera frame showing identified passengers at North Station 

The problem of undercounting aside, it is clear that the automated counts generate a pattern 
that is representative of the total number of passengers on the platform. Using regression, the 
smoothed time series can be linearly transformed into a scaled time series (shown in orange), 
which minimizes the squared error compared with the manually counted time series. For the 
case of North Station, the following regression model with 𝑅𝑅2 = 0.74 converts the smoothed 
datapoints into a scaled estimate of the number of passengers on the platform: 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = −1.07 + 7.81𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡ℎ𝑆𝑆𝑆𝑆(𝑡𝑡) (5) 

Using this scaling method, the data from November 15, 2017, was used to compare estimated 
counts of left-behind passengers in the peak periods with the directly observed values. This 
provides a measure of the accuracy of automated video counts. The total number of left-
behind passengers at Sullivan Square and North Station are presented in Table 3.3, where the 
mean absolute error (MAE) and root mean squared error (RMSE) are calculated by 
comparing the number of passengers left behind each time the train doors close. 
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Table 3.3: Accuracy of Video Counts of Left-Behind Passengers, November 15, 2017 
 Sullivan Square, 6:30 – 9:30am North Station, 3:30 – 6:30pm 
 Total Left-

Behinds 
MAE RMSE Total Left-

Behinds 
MAE RMSE 

Manual Observation 351   198   
Unscaled (Smoothed) Video Count 103 11.8 28.2 73 6.8 16.7 
Scaled Video Count 582 12.7 15.0 336 9.2 11.9 
 

The automated video counts do not accurately reflect the true number left-behind passengers. 
The unscaled video count undercounts passengers for the same reason that the smoothed time 
series lies well below the manual count of passengers on the platform; i.e., the countable area 
in the surveillance videos does not cover the entire platform. The scaled videos, on the other 
hand, substantially overcount left-behinds, because the scaling factor that matches the 
manually counted time series most closely tends to over-inflate the counts when there are few 
passengers on the platform. As a direct measurement method, automated video counting, at 
least as implemented with YOLO, is not satisfactory. However, Figure 3.12 shows a clear 
relationship between the video counts and the number of passengers being left behind on 
station platforms. Therefore, there is a potential to use the video feed as an explanatory 
variable in a logistic regression model. 

3.2.3 Wireless Device Detection 

The wireless device detection units were mounted in Sullivan Square and North Station after 
regular rail operations were completed shortly after midnight on Tuesday, January 30, 2018. 
The placement was as described in Section 2.6. The devices were left running to log all MAC 
addresses in the station at the highest temporal resolution, as often as 1 Hz. When the devices 
were later taken down and returned to the lab, the records showed that MAC addresses were 
logged for about 20 hours, which is shorter than expected (perhaps due to the effect of cold 
temperatures on battery life) but long enough to cover both the morning and evening peak 
periods. In total, over 1.4 million observations were collectively logged by the four units. A 
summary of the observations is presented in Table 3.4.  

Table 3.4: Combined Bluetooth and Wi-Fi Observations, January 31, 2018 
 Sullivan Square, 6:30 – 9:30am North Station, 3:30 – 6:30pm 
Data Box 3 Box 4 Box 1 Box 2 
Total Number of Observations (~20 hours) 187,732 439,294 306,156 553,673 
Observations During Peak (3 hours) 55,628 115,719 79,239 128,425 
Unique MAC Addresses in Peak 16,396 12,431 
Filtered MAC Addresses 3,963 8,406 
 

From the initial data log, the filtering process to keep records for unique MAC addresses 
resulted in 3,963 records for Sullivan Square and 8,406 records for North Station. These are 
the records associated with observed durations of greater than 5 seconds, less than 960 
seconds, and within 120 seconds of a departing train. The greater number of observations at 
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North Station is attributable to the greater number of total passengers using the Green and 
Orange lines that service the station. 

By extracting the observations associated with trains traveling in the direction of interest, the 
first observation times are used to create a cumulative arrival count to the platform, and the 
last observation times are used to create a cumulative boarding count onto trains. From these 
cumulative count curves, the time series of the number of devices on the platform of interest 
are tracked. The time series for North Station is shown in Figure 3.14, compared with the 
manual count of passengers on the platform. 

 
Figure 3.14: Wireless device counts from North Station, January 31, 2018 
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appear to be correlated with the observed number of left-behind passengers. This makes 
wireless device detection unsuitable as a tool for directly counting the number of passengers 
left behind by crowded vehicles. 

An alternative way to view the wireless device detection data is to plot the cumulative 
distribution of the observed durations and compare it against the cumulative distribution of 
waiting times estimated from the manual counts, as shown in Figure 3.15. If wireless devices 
are considered to be a proxy for the passengers who carry them, they make a poor indicator 
of experienced waiting time. This discrepancy is likely due in large part to the fact that 
devices are not logged every second that they are in the station, even though this is 
theoretically possible. The data shows that devices are pinged on random intervals averaging 
about once per minute, but ranging from a few seconds to more than two minutes. This 
variability leads to latency in which a device may be in the station for one or two minutes 
before it is first detected and it may linger for one or two minutes after it is last detected. The 
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steep slope associated with wireless devices for low waiting times is associated with a 
relatively large number of observations. Since peak hour headways on the Orange Line are 6 
minutes on average, losing a couple of minutes at the beginning and end of observation can 
contribute substantial errors and lead to undercounting the waiting time. 

 
Figure 3.15: Comparison of distribution of waiting times measured by wireless devices 
and manual observation, North Station, January 31, 2018 

The data suggest that latency associated with wireless device detection is too large to use 
Bluetooth and Wi-Fi detection to track passengers during their relatively short waits within a 
transit station. The technology is likely better suited to origin-destination matching and travel 
time measures, which is beyond the scope of this study. 

3.3 Estimation of Models 

The comparison of manual observations of left-behind passengers and automated video 
counts revealed inaccuracies in the magnitudes of direct counts. However, the patterns 
revealed through automated counts of surveillance videos shows promising potential to 
predict the occurrence of passengers being left behind with the use of modeling techniques. 
First, a simple model is fitted to estimate train door opening and closing times from train-
tracking records. Then these train-tracking data are used along with video counts to fit 
logistic regression models in order to estimate the probability of passengers being left behind 
by crowded trains. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 60 120 180 240 300 360 420 480 540 600

Cu
m

ul
at

ive
 P

er
ce

nt
ile

 

Waiting Time per Passenger (sec) 

Cumulative Percentile Series2Manual Count Wireless Device Count 



49 

3.3.1 Door Opening and Closing Times 

The directly observed door opening and closing times were also compared with the reported 
TTR times in order to determine how accurately the door times can be estimated without 
manual observations.  

First, a comparison of the precise door closing times and the reported TTR times are shown 
for Sullivan Square and North Station in Table 3.5. The door closing time of train 𝑖𝑖 is 
denoted 𝐷𝐷𝐷𝐷(𝑖𝑖) and the track circuit departure time is denoted 𝑇𝑇𝑇𝑇𝑅𝑅𝑑𝑑(𝑖𝑖). This relatively stable 
relationship allows the TTR departure times to be used to estimate the precise time that doors 
close and the headway between trains. Headway is a potentially important predictor of left-
behind passengers during peak periods. 

Table 3.5: Comparison of Door Closing Times and TTR Departure Times, 
November 15, 2017 
 Sullivan Square, 6:30 – 9:30am North Station 3:30 – 6:30pm 
Number of Observations 29 29 
Average Duration 𝑻𝑻𝑻𝑻𝑹𝑹𝒅𝒅(𝒊𝒊) − 𝑫𝑫𝑫𝑫(𝒊𝒊) (sec) 17.5 13.3 
St. Dev. of 𝑻𝑻𝑻𝑻𝑹𝑹𝒅𝒅(𝒊𝒊) −𝑫𝑫𝑫𝑫(𝒊𝒊) (sec) 2.2 3.6 
 

Second, dwell time between doors opening and closing may be estimated from the difference 
between TTR arrival and departure times using linear regression. The regression results for 
Sullivan Square and North Station are shown graphically in Figure 3.16 and Figure 3.17, 
respectively. The dwell time is also a potentially important predictor of left-behind 
passengers, because longer dwell times are associated with greater crowding on trains.  

 
Figure 3.16: Regression of Dwell Time and Track Circuit Data for Sullivan Square, 
November 15, 2017 
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Figure 3.17: Regression of Dwell Time and Track Circuit Data for North Station, 
November 15, 2017 

These robust relationships allow headways and dwell times to be estimated from TTR data 
which are automatically tracked rather than requiring manual observations which are costly 
to conduct over long periods of time. 

3.3.2 Models of Likelihood of Passenger Left-Behinds 

Following the logistic regression modeling structure presented in Section 2.7.1, the 
observations from November 15, 2017 were used to estimate the parameters of logistic 
regression models with various combinations of explanatory variables. The goal of the model 
is to support accurate prediction of the number of passengers that are left behind by crowded 
trains using data sources that can be collected and processed automatically without requiring 
additional manual counts. 

Initially, three models were estimated, making use of only TTR data (Model 1), only video 
counts (Model 2), and then both TTR and video together (Model 3). A summary of the 
estimated model coefficients and fit statistics is presented in   
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Table 3.6 for Sullivan Square and Table 3.7 for North Station. The negative constant 
indicates that, all else being equal, passengers are less likely to be left behind than to board a 
train. Negative coefficients imply that increasing the explanatory variable’s value decreases 
the likelihood of being left behind, whereas a positive coefficient implies increased 
likelihood of a passenger being left behind. 
 
The log likelihood is a measure of how well the estimated probability of a passenger being 
left behind matches the observations. The null log likelihood is associated with no model at 
all (every data point is assigned a 50% chance of being left behind), and values closer to zero 
indicate a better fit. The 𝜌𝜌2 value is a related measure of model fit, with values closer to 1 
indicating a better model. 
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Table 3.6: Logistic Regression Model Parameters for Sullivan Square, November 2017 
Parameter Model 1 Model 2 Model 3 
 Value p-stat Value p-stat Value p-stat 
Constant for Left-Behind -9.5 0.00 -2.7 0.00 -10.4 0.00 
Dwell Time (sec) -0.015 0.00   -0.016 0.00 
Headway (sec) 0.019 0.00   0.022 0.00 
Video Count   0.118 0.00 -0.057 0.01 
Null Log Likelihood, 𝑳𝑳𝑳𝑳𝟎𝟎 -2197  -2197  -2197  
Model Log Likelihood, 𝑳𝑳𝑳𝑳 -803  -1058  -800  
𝝆𝝆𝟐𝟐 0.634  0.518  0.636  

Table 3.7: Logistic Regression Model Parameters for North Station, November 2017 
Parameter Model 1 Model 2 Model 3 
 Value p-stat Value p-stat Value p-stat 
Constant for Left-Behind -10.5 0.00 -4.2 0.00 -10.0 0.00 
Dwell Time (sec) 0.100 0.00   0.091 0.00 
Headway (sec) -0.001 0.08   -0.003 0.00 
Video Count   0.370 0.00 0.291 0.00 
Null Log Likelihood, 𝑳𝑳𝑳𝑳𝟎𝟎 -1639  -1639  -1639  
Model Log Likelihood, 𝑳𝑳𝑳𝑳 -550  -533  -494  
𝝆𝝆𝟐𝟐 0.662  0.675  0.699  
 

In order to compare two models, a likelihood ratio statistic is used to determine whether the 
improvement of one model is statistically significant compared to another. The likelihood 
ratio test statistic is calculated by comparing the log likelihood of the restricted model (with 
fewer explanatory variables) to the log likelihood of the unrestricted model (with more 
explanatory variables): 

 𝐷𝐷 = 2(𝐿𝐿𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑢𝑢𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑒𝑒𝑑𝑑 − 𝐿𝐿𝐿𝐿𝑢𝑢𝑒𝑒𝑢𝑢𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑒𝑒𝑑𝑑) (6) 

Comparing Model 1 (restricted) to Model 3 (unrestricted), there is one additional variable in 
Model 3, indicating 1 degree of freedom. To reject the null hypothesis at the 0.05 
significance level with 1 degree of freedom, 𝐷𝐷 > 3.84. For both Sullivan Square (𝐷𝐷 = 7.2) 
and North Station (𝐷𝐷 = 113.7), Model 3 is a statistically significant improvement over 
Model 1, meaning that that video counts add explanatory power to the model. There is a 
greater improvement from the video at North Station. The model parameters at Sullivan 
Square raise some question about correlation among the explanatory variables, because it 
does not make intuitive sense for the video count to have negative coefficient. This implies 
that greater video counts lead to a lower probability of passengers being counted as left 
behind. 

The data collection on November 15, 2017, did not include wireless device detection, so a 
full comparison of model specifications could not be completed with the initial dataset. In 
order to evaluate the potential explanatory power of the wireless device counts, Models 1 and 
3 were estimated again with the January 31, 2018 data and compared with two additional 
model specifications: using TTR and wireless device data (Model 4), and using all data 
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sources (Model 5). The results are compared for North Station in Table 3.8. The coefficient 
for wireless device counts is not statistically significant at the 0.05 level. 

Table 3.8: Logistic Regression Model Parameters for North Station, January 2018 
Parameter Model 1 Model 3 Model 4 Model 5 
 Value p-stat Value p-stat Value p-stat Value p-stat 
Constant for Left-Behind -9.5 0.00 -9.4 0.00 -9.4 0.00 -9.4 0.00 
Dwell Time (sec) 0.014 0.00 0.016 0.00 0.081 0.00 0.016 0.00 
Headway (sec) 0.005 0.59 0.001 0.77 0.000 0.90 0.000 0.98 
Video Count   0.043 0.68   -0.018 0.71 
Wireless Device Count     -0.092 0.06 -0.099 0.06 
Null Log Likelihood, 𝑳𝑳𝑳𝑳𝟎𝟎 -1549  -1549  -1549  -1549  
Model Log Likelihood, 𝑳𝑳𝑳𝑳 -406  -406  -404  -403  
𝝆𝝆𝟐𝟐 0.738  0.738  0.739  0.739  

3.4 Validation of Models of Left-Behind Passengers 

The validation test for the proposed models is used to estimate parameters from observations 
in November 2017 to predict the number of left-behind passengers from automated data 
sources in January 2018. The validation procedure is to make estimates using only dwell 
times and headways estimated from TTR data and video counts with scaling factors and 
regression results fitted with the November data. 

3.4.1 Estimation of the Number of Passengers Left Behind 

The logistic regression provides an estimate of the probability that passengers are left behind 
each time a train closes its doors. In order to translate this probability into a passenger count, 
an estimate of the number of passengers waiting on the platform is needed. For this purpose, 
the scaled video count of passengers on the platform is used as an estimate of the number of 
passengers waiting to board. Table 3.9 shows the validation results when the models were 
applied to the January 2018 data for North Station. 

As shown in Table 3.3, video counts do not provide accurate estimates of the total numbers 
of passengers left behind without some additional modeling. The unscaled video counts 
underestimate the total, while the scaled video counts overestimate the total. The logistic 
regression provides much better results. Although there are some discrepancies for specific 
train departures, the estimated numbers of passengers left behind are not significantly biased 
and the total number of passengers left behind during the rush hour is similar to the manually 
counted total. 

An important note about the two logistic regressions is the probability of a passenger being 
left behind is calculated using only the explanatory variables listed in Table 3.7. However, 
the estimated number of left-behind passengers is calculated by multiplying the probability 
by the scaled video count of passengers on the platform at the time the doors opened as 
estimated from the TTR data. Therefore, the estimated number of passengers left behind with 
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Model 1 and Model 3 rely only on TTR data that is currently being logged and supplemented 
by automated counts of passengers from existing surveillance video feeds. 
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Table 3.9: Validation of Estimated Left-Behind Passengers, North Station 
Train Manual Count Unscaled 

Video 
Scaled 
Video 

Model 1 Model 3 

 Probability Number Number Number Probability Number Probability Number 
1 6.5% 2 1 7 2.4% 2 0.6% 1 
2 0.0% 0 2 15 0.8% 0 0.7% 0 
3 0.0% 0 2 15 0.3% 0 0.3% 0 
4 0.0% 0 1 7 0.5% 0 0.2% 0 
5 0.0% 0 0 0 0.3% 0 0.2% 0 
6 0.0% 0 0 0 0.7% 0 0.5% 0 
7 0.0% 0 0 0 0.6% 0 0.4% 0 
8 0.0% 0 2 15 1.0% 1 0.8% 0 
9 0.0% 0 2 15 1.8% 1 1.2% 1 

10 0.0% 0 1 7 0.6% 0 0.4% 0 
11 15.2% 23 2 15 16.5% 29 5.2% 9 
12 0.0% 0 1 7 1.1% 1 1.0% 1 
13 0.0% 0 1 7 1.9% 1 1.1% 1 
14 0.0% 0 2 15 0.7% 0 0.7% 0 
15 14.4% 24 3 22 14.4% 21 6.7% 10 
16 5.8% 5 4 30 7.0% 8 7.7% 8 
17 14.6% 19 3 22 19.5% 29 10.9% 16 
18 10.6% 14 10 77 18.9% 25 52.2% 69 
19 8.7% 9 3 22 6.6% 4 6.3% 3 
20 2.4% 1 4 30 0.8% 1 1.6% 1 
21 3.5% 4 3 22 3.6% 3 3.0% 3 
22 3.0% 3 2 15 1.5% 2 1.1% 1 
23 0.0% 0 1 7 0.7% 0 0.7% 0 
24 0.0% 0 3 22 0.7% 0 1.1% 1 
25 0.0% 0 3 22 0.9% 1 0.8% 1 
26 2.7% 2 2 15 2.6% 1 2.1% 1 
27 6.7% 7 2 15 2.7% 3 1.4% 1 
28 3.6% 2 3 22 0.5% 0 0.7% 1 
29 3.6% 2 1 7 0.6% 0 0.4% 0 
30 2.7% 3 2 15 2.0% 2 1.0% 1 

Total  120 66 490  134  130 
MAE   3.5 12.9  1.9  3.9 

RMSE   6.5 17.6  3.3  10.8 
 

3.4.2 Estimation of the Occurrence of Left-Behinds 

Another way to evaluate the performance of the methods is to consider whether or not trains 
that leave behind passengers can be distinguished from trains that allow all passengers to 
board. Through the course of data collection and analysis, it appeared that passengers being 
left behind because of overcrowding can only be reliably observed within approximately ±2 
passengers. The reason being that sometimes people choose not to board a train for reasons 
other than crowding and one or two passengers left on the platform did not appear to be 
consistent with problematic crowding conditions. 
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If a train is defined to be leaving behind passengers when more than 2 passengers are 
observed or estimated to be left behind, the results presented in Table 3.9 can be reinterpreted 
to evaluate each method by three measures: 

• Correct Identification Rate – The percent of trains that are correctly classified as 
leaving behind passengers or not leaving behind passengers, as compared to the 
manual count. This value should be as close to 1 as possible. 

• Detection Rate – The percent of departing trains that were observed to leave behind 
passengers that are also flagged as such by the estimation method. This value should 
be as close to 1 as possible. 

• False Alarm Rate – The percent of departing trains that are estimated to leave behind 
passengers but have not, according to manual observations. This value should be as 
close to 0 as possible. 

A comparison of the rates of detection are compared in Table 3.10 for the 30 trains that 
departed North Station between 3:30pm and 6:30pm on January 31, 2018. Unscaled and 
scaled video counts are poor estimators for the occurrence of left-behind passengers because 
the unscaled counts are consistently too low for detection and the scaled counts are high 
enough to trigger too many false alarms. The modeled estimates both perform well, never 
falsely identifying a train as leaving behind passengers when it did not, and correctly 
detecting most occurrences of passengers being left behind. Like the count estimates above, 
both Model 1 and Model 3 rely on the scaled video counts to estimate the number of 
passengers waiting on the platform when the train doors open, so a fusion of TTR records 
and automated video counts appears to provide the most reliable measure. 

Table 3.10: Validation of Estimated Occurrence of Left-Behinds, North Station 
 Manual 

Count 
Unscaled 

Video 
Scaled Video Model 1 Model 3 

Total Departing Trains 30 30 30 30 30 
Trains Leaving Behind Passengers 8 3 27 6 5 
Correct Identification Rate  0.77 0.37 0.93 0.90 
Detection Rate  0.25 1.00 0.75 0.62 
False Alarm Rate  0.33 0.70 0.00 0.00 

3.4.3 Distribution of Experienced Waiting Times 

A third application of the model results is to consider the distribution of waiting times 
implied by the modeled probabilities that passengers are being left behind by each departing 
train. As shown in Sections 2.7.2 and 3.2.1, the distribution of waiting times can be estimated 
by assuming that passengers board trains in the order that they arrive onto the platform. The 
simplest arrival assumption is to suppose that passengers arrive at a constant rate over the 
rush period. Then the probability of passengers being left behind, as estimated by the logistic 
regression, can be attributed to each departing train to estimate the durations of time that each 
passenger waits on the platform. By this process a cumulative distribution of waiting times 
can be estimated using probabilities from Model 1 and compared to the observed distribution 
as shown in Figure 3.18. 
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Figure 3.18: Modeled and Observed Distribution of Passenger Wait Time, North 
Station, January 31, 2018 

The modeled distribution of waiting times closely approximates the observed distribution. 
This suggests that the estimated probabilities of passengers being left behind by each 
departing train are consistent with the overall passenger experience. From Figure 3.11, 
roughly 82% of passengers would be assumed to experience less than a published headway if 
left-behind passengers were not considered. The observed value appears to be 79%, and the 
modeled value is 77%. There is not a large difference in this case, because January 31, 2018, 
was characterized by generally smooth operations without many passengers being left 
behind. 
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4 Conclusions 

4.1 Tracking Left-Behind Passengers and Long Waits 

This study has investigated the potential for measuring the occurrence of passengers being 
left behind when rapid transit trains are too crowded to board. Following a preliminary study 
of crowding conditions on the MBTA’s Orange Line and Blue Line, the data collection and 
analysis activities focused specifically on southbound Orange Line trains at Sullivan Square 
in the morning peak and northbound Orange Line trains at North Station in the afternoon 
peak.  

Data was collected on typical weekday peak periods and showed that overcrowding is a 
common problem, even on days without unusual disruptions to service. In four detailed data 
collection experiments (two mornings at Sullivan Square and two evenings at North Station), 
over 100 passengers were left behind in each case. This tendency for overcrowding to lead to 
passengers being left behind on station platforms is a sign that the system is operating very 
near capacity. It is apparent from the manual counts of passengers on station platforms that 
even small fluctuations in headways lead to overcrowded trains that result in left-behind 
passengers. 

Counting the number of left-behind passengers and identifying when trains are leaving 
behind passengers are important for maintaining accurate performance metrics that reflect the 
actual customer experience. For example, the MBTA’s Service Delivery Policy sets 
reliability goals for the percentage of customers that experience waiting times less than a 
published headway. Without accounting for left-behind passengers, the reliability metric is 
based on the false assumption that all passengers are able to board the next arriving train. 
Based on observed platform counts in this study, accounting for left-behind passengers 
would lower the reliability metric by 3 to 11 percentage points (Section 3.2.1). The 
passengers who are left behind are almost always able to board the subsequent train, with the 
exception of passengers traveling with strollers or suitcases, who were sometimes observed 
to wait for multiple trains before finding space to board. 

This study specifically investigated the potential for measuring the number of passengers 
being left behind on station platforms using existing logged data sources and two potential 
data collection methods: automated passenger counting using surveillance video feeds, and 
wireless device detection. Although none of the data sources provided adequate predictive 
capability in isolation, the development of models to fuse data sources demonstrated good 
results for predicting the number of passengers left behind, identifying which specific trains 
leave passengers behind, and the distribution of experienced waiting times. Specifically, 
models that fused train-tracking records (TTR) with automated passenger counts from 
surveillance videos offered promising performance. 
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4.2 Strengths and Challenges of Using Surveillance Video 

The analysis of automated passenger counting in surveillance video feeds was based on an 
implementation of a fast, open-source algorithm called You Only Look Once (YOLO). This 
algorithm was implemented with existing training sets that identify people as well as other 
objects. The performance is fast enough that frames from surveillance video feeds could 
potentially be analyzed in real time. Therefore, the results of the analysis based on YOLO 
provide a proof of concept that could be further improved. 

The direct observations of passenger counts from the video feeds are associated with errors. 
The challenges of automated video detection most notably include: 

1. Detection range is a small part of the whole platform – Since the algorithm uses 
pattern recognition methods to identify people, passengers are only identified in the 
foreground of surveillance video feeds where the whole body appears clearly and 
distinctly. Although the surveillance cameras are position to provide security views of 
the whole platform, only passengers in a subset of the area can be monitored. 

2. Crowds make individuals difficult to distinguish – Clusters of people are difficult for 
the algorithm to break apart into individuals, because bodies are obscured from 
recognition. This causes undercounting of passengers in especially crowded 
conditions or in distant parts of the field of view. 

3. Many camera angles are blocked or obscured – The positioning of several cameras 
leave parts of the platform area blocked from view by columns. Camera angles that 
are too low or too high also restrict the area over which the algorithm can reliably 
detect passengers. 

These challenges result in systematic undercounting of the true number of passengers on the 
platform at any time. If the parts of the platform area that are observed are assumed to be a 
representative sample of all passengers waiting, then the automated counts still have some 
useful explanatory power. Although a simple rescaling of automated counts did not yield 
accurate estimates of the numbers of passengers left behind by crowded vehicles, the time 
series showed a clear relationship to the observed number of passengers on the platform 
(Section 3.2.2). 

The accuracy of left-behind predictions was substantially improved by fusing video count 
data with train-tracking records in a logistic regression model to estimate the probability and 
number of passengers left behind. The logistic regression models fitted to November 2017 
data and used to predict January 2018 left-behind counts exhibited good prediction 
capability: 

• The total number of passengers estimated to be left behind during a rush period was 
estimated within 10% of the observed value. 

• Departing trains were correctly identified as having left behind or not having left 
behind passengers more than 90% of the time. 
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• The reliability measure (percent of passengers waiting less than a published 
headway) was estimated within 2 percentage points of the observed value. 

4.3 Strengths and Challenges of Using Wireless Device Detection 

The use of wireless device detection did not perform as well as hoped for the application of 
measuring passenger waiting times in stations and estimating the number of passengers left 
behind. A challenge with the wireless detection method is that the data are noisy and not as 
reliable as video counts. There are several reasons for these challenges: 

• Wireless device detection logs MAC addresses from devices rather than people – An 
inherent assumption in using this technology is that devices are a proxy for the 
passengers that carry them, but many wireless devices are built into the infrastructure 
and can be observed independently of the number of passengers using a station. Some 
passengers carry no device, while others may carry multiple wireless devices. 

• Devices cannot be specifically located – Any MAC address that is observed within 
the antenna’s range is logged as being present. In theory, the signal strength could be 
used to estimate the distance of a device from the antenna, but this requires specific 
knowledge about the type of device being observed and is further complicated by 
reflected signals in the station environment. In practice there is no way to know if a 
device is right beside the detection unit or on the other side of the station. 

• Only discoverable devices can be observed – The antenna can only detect signals 
from devices that are set to discoverable Bluetooth mode or that are actively 
searching for a Wi-Fi connection. Many people leave their phones with one or both of 
these settings working, but not every wireless device will be detected. 

Some of the challenges associated with the wireless device data can be addressed through the 
filtering process described in Section 2.6.2. Specifically, devices that appear to be permanent 
fixtures or passing by very briefly can easily be filtered out for having too long or too short a 
duration of observation. 

The primary challenge with wireless device detection is that the sampling rate is random, 
highly variable, and relatively low on average. The average MAC address was observed 
approximately once per minute, even though the device detection unit was capable of logging 
MAC addresses every second. Furthermore, most devices are not logged at a regular 60 
second interval but could be observed several times in the course of a few seconds and then 
not again until a couple of minutes later. These characteristics contribute to latency in which 
devices may be present in the station but not observed. 

The problem in this case is that latency contributes significant errors to the time between a 
device entering the station platform and is first observed, as well as the time a device is last 
observed and when it leaves the platform. Since these errors are likely on the order to 1 to 2 
minutes, and the average passenger is waiting approximately 4 minutes for a train, the 
observed duration of MAC addresses provides a poor measure of the waiting times that 
passengers experience. 
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The sampling rates were high in the sense that the units were able to detect thousands of 
unique MAC addresses within each peak period, so it is likely that MAC addresses at 
different locations could be matched to sample origin-destination travel times, which would 
also be less affected by latency. 

4.4 Future Directions 

There are a number of ways that the methods and finding of this study could be improved 
and extended. In the area of image processing to count passengers, the YOLO algorithm that 
was employed in this study provided a simple implementation to test the concept. A number 
of steps could be taken to improve the accuracy of video counts and extend the feasibility to 
more challenging station environments: 

1. Compare the algorithm with other fast and accurate video detection algorithms – 
There are other image processing algorithms that can quickly analyze video footage 
to identify patterns. This is a quickly evolving field, so new tools, including open-
source algorithms, have become available since the video analysis was conducted for 
this project. Alternative algorithms would likely reduce the number of false negatives 
in passenger counts. 

2. Add tracking to link observations in consecutive frames – The algorithm 
implemented in this study analyzes each video frame independently, which introduces 
some noise in the raw data feed. Since passengers do not move very fast, a person 
identified in one frame provides information to the algorithm about where to look in 
the subsequent frame to reidentify the same person. This would be expected to 
improve the accuracy of the counts by reducing false positives. This functionality 
would also allow some tracking of movements, for example to confirm which train a 
specific individual boards. This would allow the model to be extended to branching 
lines in which passengers may be intentionally waiting to board a train that is headed 
for a specific branch. 

3. Train the algorithm to detect heads rather than whole bodies – The current algorithm 
uses pattern recognition to identify a person by their whole body. In crowds of 
people, the whole body is not visible, so counting heads may provide a more accurate 
object for identification. It is not clear how well this will work, but it is likely to 
improve the accuracy of counts in crowded conditions. 

A number of other opportunities exist to estimate system performance and crowding 
measures through data fusion. The inferred origin-destination-transfer (ODX) model has 
some known drawbacks given existing limitations of the fare card system, but ODX records 
may provide a useful data source as a modeling input. Future investments in MBTA 
infrastructure, including automated passengers counters on new trainsets and Automated Fare 
Collection 2.0, will provide insights about where and when passengers travel and where 
crowding is occurring. Although there are limitations to any single data source, the potential 
for improving performance metrics through data fusion and modeling continue to grow.  
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6 Appendices 

6.1 Appendix A: Blue Line Crowding Analysis 

A crowding analysis for the Blue Line was conducted in a similar manner as for the Orange 
Line. Figure 6.1 shows the resulting passenger occupancy estimates, 𝑂𝑂(𝑛𝑛, 𝑡𝑡), plotted across 
the stations for an average weekday to show where trains are consistently the most crowded. 
Trains grow increasingly crowded heading into central Boston in the AM peak, and the 
pattern reverses in the evening. 

The most severe crowding on the Blue Line appears to be from 8:30 – 8:45am for 
southbound trains and 5:15 – 5:30pm for northbound trains. The values of 𝐵𝐵(𝑛𝑛, 𝑡𝑡), 𝐴𝐴(𝑛𝑛, 𝑡𝑡), 
and 𝑂𝑂(𝑛𝑛, 𝑡𝑡) are shown in Figure 6.2 for southbound trains in the morning. Inbound trains 
experience large boarding loads at Wonderland and Maverick. The combined circumstances 
at Maverick of fully loaded trains, many passengers boarding, and few alighting all 
contribute to crowding conditions that could lead to passengers being left behind. Figure 6.3 
shows similar circumstances at State Street in the afternoon peak. 
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Southbound Trains 

 

Northbound Trains 

 

 

Figure 6.1: Inferred Passenger Occupancy for Blue Line Trains, Winter 2017 (Source: 
ODX Data from MBTA Research Database) 

Stop Name
1. Wonderland
2. Revere Beach
3. Beachmont
4. Suffolk Downs
5. Orient Heights
6. Wood Island
7. Airport
8. Maverick
9. Aquarium
10. State Street
11. Government Center
12. Bowdoin
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Figure 6.2: Passenger movements for southbound Blue Line, 8:30 – 8:45am (Source: 

ODX Data from MBTA Research Database) 
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Figure 6.3: Passenger movements for northbound Blue Line, 5:15 – 5:30pm (Source: 

ODX Data from MBTA Research Database) 
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6.2 Appendix B: Observations from Manual Counts 

Table 6.1: Direct Observations for Sullivan Square (SB): November 15, 2017 
Train Doors Open Doors Close Dwell Time 

(sec) 
Passengers 

Waiting 
Passengers Left Behind by Platform Location 
Front Middle Back Total 

1 6:36:33 6:36:53 20 25 0 0 0 0 
2 6:42:19 6:42:33 14 62 0 0 0 0 
3 6:45:50 6:46:07 17 23 0 0 0 0 
4 6:53:28 6:53:44 16 70 0 0 0 0 
5 6:57:11 6:57:29 18 40 0 0 0 0 
6 7:05:01 7:05:23 22 109 0 0 0 0 
7 7:11:22 7:11:50 28 36 0 0 0 0 
8 7:18:20 7:18:45 25 91 0 0 0 0 
9 7:25:09 7:25:36 27 101 0 0 1 1 

10 7:29:31 7:29:45 14 23 0 0 0 0 
11 7:35:37 7:36:03 26 51 1 1 0 2 
12 7:40:41 7:41:04 23 124 0 0 0 0 
13 7:45:57 7:47:16 79 61 0 0 0 0 
14 7:55:58 7:56:49 51 313 36 28 30 94 
15 8:04:02 8:04:45 43 190 39 33 12 84 
16 8:09:16 8:10:20 64 124 0 2 0 2 
17 8:12:36 8:12:50 14 27 0 0 0 0 
18 8:18:00 8:18:17 17 43 0 0 0 0 
19 8:21:43 8:22:18 35 109 0 0 0 0 
20 8:28:54 8:29:38 44 113 1 4 11 16 
21 8:34:09 8:34:39 30 97 0 0 0 0 
22 8:42:48 8:43:38 50 295 46 42 28 116 
23 8:49:39 8:50:11 32 94 11 13 12 36 
24 8:55:12 8:55:38 26 123 0 0 0 0 
25 9:00:15 9:00:31 16 49 0 0 0 0 
26 9:04:13 9:04:30 17 56 0 0 0 0 
27 9:10:59 9:11:38 39 73 0 0 0 0 
28 9:18:06 9:18:18 12 37 0 0 0 0 
29 9:24:42 9:26:58 136 122 0 0 0 0 
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Table 6.2: Direct Observations for North Station (NB): November 15, 2017 
Train Doors Open Doors Close Dwell Time 

(sec) 
Passengers 

Waiting 
Passengers Left Behind by Platform Location 
Front Middle Back Total 

1 15:35:04 15:35:41 37 36 4 0 0 4 
2 15:44:11 15:44:39 28 58 0 0 0 0 
3 15:52:39 15:53:05 26 31 0 0 0 0 
4 15:55:38 15:55:54 17 9 0 0 0 0 
5 15:58:56 15:59:20 24 4 0 0 0 0 
6 16:02:21 16:02:36 15 20 0 0 0 0 
7 16:05:42 16:05:56 14 11 0 0 0 0 
8 16:11:27 16:11:53 26 57 0 0 0 0 
9 16:20:35 16:21:11 36 60 2 0 0 2 

10 16:26:42 16:27:10 28 26 0 0 0 0 
11 16:34:46 16:35:30 44 77 3 0 0 3 
12 16:40:21 16:40:50 29 34 0 0 0 0 
13 16:44:47 16:45:30 43 27 0 0 0 0 
14 16:49:48 16:50:15 27 41 0 0 0 0 
15 16:57:50 16:58:39 49 71 0 0 0 0 
16 17:06:57 17:08:00 63 78 12 4 1 17 
17 17:11:29 17:12:01 32 101 3 0 0 3 
18 17:26:33 17:27:38 65 250 38 23 25 86 
19 17:30:08 17:31:00 52 84 23 12 14 49 
20 17:33:04 17:33:39 35 10 0 0 0 0 
21 17:40:28 17:41:28 60 92 12 4 1 17 
22 17:44:06 17:44:40 34 26 0 0 0 0 
23 17:46:29 17:46:45 16 9 0 0 0 0 
24 17:51:47 17:52:17 30 48 0 0 0 0 
25 17:56:43 17:57:09 26 35 0 0 0 0 
26 18:06:19 18:07:04 45 89 7 7 1 15 
27 18:11:16 18:11:41 25 25 0 0 0 0 
28 18:19:37 18:20:22 45 70 1 1 0 2 
29 18:23:24 18:23:41 17 24 0 0 0 0 
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Table 6.3: Direct Observations for Sullivan Square (SB): January 31, 2018 
Train Doors Open Doors Close Dwell Time 

(sec) 
Passengers 

Waiting 
Passengers Left Behind by Platform Location 
Front Middle Back Total 

1 6:47:09 6:47:37 28 97 0 0 0 0 
2 6:54:08 6:54:24 16 77 0 0 0 0 
3 7:00:05 7:00:31 26 60 0 0 0 0 
4 7:04:03 7:04:15 12 31 0 0 0 0 
5 7:12:46 7:13:07 21 110 0 0 0 0 
6 7:19:32 7:20:01 29 145 0 0 0 0 
7 7:26:25 7:26:39 14 44 0 0 0 0 
8 7:30:20 7:30:35 15 32 0 0 0 0 
9 7:36:01 7:36:19 18 106 0 0 0 0 

10 7:41:31 7:41:51 20 108 0 1 0 1 
11 7:48:12 7:48:45 33 219 0 3 4 7 
12 7:54:03 7:54:48 45 107 0 0 0 0 
13 7:58:23 7:58:45 22 75 0 0 0 0 
14 8:02:29 8:02:51 22 120 0 0 0 0 
15 8:07:03 8:07:22 19 90 0 0 0 0 
16 8:14:52 8:16:36 104 185 22 22 21 65 
17 8:21:30 8:22:09 39 218 0 2 12 14 
18 8:29:38 8:30:21 43 144 24 23 29 76 
19 8:34:10 8:36:25 135 255 3 3 5 11 
20 8:41:19 8:42:41 82 162 1 0 1 2 
21 8:48:30 8:49:58 88 101 7 3 0 10 
22 8:56:49 8:57:36 47 162 0 7 5 12 
23 9:02:51 9:03:07 16 73 0 0 0 0 
24 9:07:08 9:07:25 17 26 0 0 0 0 
25 9:12:57 9:13:20 23 153 0 0 0 0 
26 9:19:32 9:19:47 15 59 0 0 0 0 
27 9:25:21 9:25:37 16 105 0 0 0 0 
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Table 6.4: Direct Observations for North Station (NB): January 31, 2018 
Train Doors Open Doors Close Dwell Time 

(sec) 
Passengers 

Waiting 
Passengers Left Behind by Platform Location 
Front Middle Back Total 

1 15:32:57 15:33:35 38 31 2 0 0 2 
2 15:39:07 15:39:32 25 42 0 0 0 0 
3 15:43:47 15:44:01 14 38 0 0 0 0 
4 15:54:50 15:55:13 23 60 0 0 0 0 
5 15:57:24 15:57:37 13 25 0 0 0 0 
6 16:00:04 16:00:25 21 28 0 0 0 0 
7 16:03:08 16:03:28 20 29 0 0 0 0 
8 16:09:12 16:09:39 27 63 0 0 0 0 
9 16:16:09 16:16:42 33 67 0 0 0 0 

10 16:20:41 16:21:01 20 27 0 0 0 0 
11 16:31:58 16:32:57 59 151 18 1 4 23 
12 16:35:56 16:36:23 27 56 0 0 0 0 
13 16:41:28 16:42:01 33 103 0 0 0 0 
14 16:45:32 16:45:54 22 55 0 0 0 0 
15 16:55:57 16:56:54 57 167 21 3 0 24 
16 17:02:42 17:03:29 47 86 3 2 0 5 
17 17:12:02 17:13:02 60 130 9 10 0 19 
18 17:20:13 17:21:12 59 132 3 6 5 14 
19 17:26:02 17:26:48 46 103 5 4 0 9 
20 17:30:11 17:30:35 24 41 1 0 0 1 
21 17:36:48 17:37:28 40 115 4 0 0 4 
22 17:43:13 17:43:44 31 99 3 0 0 3 
23 17:46:06 17:46:28 22 35 0 0 0 0 
24 17:49:34 17:49:56 22 60 0 0 0 0 
25 17:56:51 17:57:17 26 87 0 0 0 0 
26 18:01:51 18:02:27 36 75 0 2 0 2 
27 18:10:23 18:11:01 38 105 6 1 0 7 
28 18:14:18 18:14:36 18 55 0 2 0 2 
29 18:19:49 18:20:11 22 55 0 2 0 2 
30 18:28:46 18:29:21 35 113 3 0 0 3 
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