

Commonwealth of Massachusetts

Executive Office of Energy and Environmental Affairs

> Massachusetts Environmental Policy Act MEPA Climate Resiliency Policy May 6, 2022

TABLE OF CONTENTS

- Background
- Key Data: New Projects Filed 10/1/21 3/31/22
- MEPA Climate Resiliency Policy: Options

BACKGROUND: Chronology

- 2008: Global Warming Solutions Act adds requirement to consider climate change in Section 61 of MEPA
- 2010: MEPA Greenhouse Gas (GHG) Emissions Policy released
- 2014: Draft MEPA Climate Adaptation and Resiliency Policy issued for comment but not finalized
- 2016: Executive Order 569 requires state planning for climate change
- 2018: Statewide Integrated Hazard Mitigation and Climate Adaptation (SHMCAP) released
- Feb. 2021: MEPA Interim Protocol on Climate Adaptation and Resiliency issued for comment
- Apr. 2021: Climate Resilience Design Standards Tool released
- Oct. 1, 2021: Effective date of MEPA Interim Protocol on Climate Adaptation and Resiliency

BACKGROUND: Resilience Design Tool Outputs

Table 3.3. Recommended Return Periods Provided by the beta Tool for the Sea Level Rise & Storm Surge Climate Parameter

SEA LEVEL RISE & STORM SURGE	Criticality ¹	Exposure Service Life ¹	Buildings/Facilities	Infrastructure				
				Transportation	Dams & Flood Control	Utilities	Solid/Haz. Waste	
			Return Period (% AEP)					
	High	51-100 years	500-yr (0.2%)	1000-yr (0.1%)	500-yr (0.2%)	500-yr (0.2%)	1000-yr (0.1%)	
	Medium	51-100 years	200-yr (0.5%)					
	Low	51-100 years	100-yr (1%)					
	High	11-50 years	200-yr (0.5%)	500-yr (0.2%)	200-yr (0.5%)	200-yr (0.5%)	500-yr (0.2%)	
	Medium	11-50 years	100-yr (1%)	200-yr (0.5%)	100-yr (1%)	100-yr (1%)	200-yr (0.5%)	
	Low	11-50 years	50-yr (2%)	100-yr (1%)	50-yr (2%)	50-yr (2%)	100-yr (1%)	
	High	10 years or less	100-yr (1%)					
	Medium	10 years or less	50-yr (2%)					
	Low	10 years or less	20-yr (5%)					

1. Criticality and Exposure Service Life are not outputs, but the relationship informs the recommended return period from the beta Tool.

BACKGROUND: Resilience Design Tool Outputs

Table 3.11. Recommended Return Periods Provided by the beta Tool for the Extreme Precipitation Climate Parameter

EXTREME PRECIPITATION	Criticality	Useful Life	BUILDINGS/ FACILITIES	INFRASTRUCTURE				
				Transportation	Flood Control	Utilities	Solid/Haz. Waste	
			Return Period (Annual Probability)	Return Period (Annual Probability)	Return Period (Annual Probability)	Return Period (Annual Probability)	Return Period (Annual Probability)	
	High	51-100 years	100-yr (1%)	100-yr (1%)	500-yr (0.2%)	100-yr (1%)	100-yr (1%)	
	Medium	51-100 years	50-yr (2%)	50-yr (2%)	100-yr (1%)	50-yr (2%)	50-yr (2%)	
	Low	51-100 years	25-yr (4%)	25-yr (4%)	50-yr (2%)	25-yr (4%)	25-yr (4%)	
	High	11-50 years	50-yr (2%)	50-yr (2%)	100-yr (1%)	50-yr (2%)	50-yr (2%)	
	Medium	11-50 years	25-yr (4%)	25-yr (4%)	50-yr (2%)	25-yr (4%)	25-yr (4%)	
	Low	11-50 years	10-yr (10%)	10-yr (10%)	25-yr (4%)	10-yr (10%)	10-yr (10%)	
	High	10 years or less	25-yr (4%)	25-yr (4%)	50-yr (2%)	25-yr (4%)	25-yr (4%)	
	Medium	10 years or less	10-yr (10%)	10-yr (10%)	25-yr (4%)	10-yr (10%)	10-yr (10%)	
	Low	10 years or less	5-yr (20%)	5-yr (20%)	10-yr (10%)	5-yr (20%)	5-yr (20%)	

MEPA Project Data (Oct. 1, 2021 to Mar. 31, 2022)

	2021	2022	TOTAL
Infrastructure	18	17	35
Building / Facility	28	16	44
Natural Resources	2	5	7
TOTAL	48	38	86

86 new projects

14 mandatory EIRs

3 discretionary EIRs (*Note*: 15 new projects filed near EJ populations 1/1/22 – 3/31/22)

86 New Projects Subject to Interim Protocol

Top projects in each category

- Infrastructure
 - Transportation (15)
 - Energy Generation (5)
 - Coastal Structures (6)
 - Water and Wastewater (6)
- Building/Facility
 - Commercial (17)
 - Residential (12)
- Natural Resources
 - Ecological Restoration and Resiliency (4)
 - Coastal Nourishment, Dredging & Land Transfer

Return Period: Sea Level Rise & Storm Surge

Return Period: Extreme Precipitation

Natrual Resource projects do not receive return periods. Two projects missing FEMA Zones.

Extreme Heat: Percentile

EJ Communities

Characteristics of 55 (out of 86) new projects near EJ populations:

High Exposure Rating:

FEMA Zone	Sea Level Rise	Urban Flooding	Riverine Flooding	Extreme Heat
V Zone	6	3	3	3
A Zone	6	13	12	20
X Zone	1	18	15	28
TOTAL	13	34	30	52

Key Observations from Project Filings

• Many projects outside coastal areas and 100-year floodplain are ranked "High" risk for extreme precipitation/flooding.

• Asset risk ratings (and associated "return period" recommendations) are inconsistent due to user inputs regarding useful life and criticality.

• Very few MEPA filings contain quantitative analyses (e.g., H&H modeling) to demonstrate resiliency to future climate conditions.

Other Related Resiliency Initiatives

- MA Climate Resilience Design Guidelines Tool
 - As of April 25, 2022: availability of numeric design parameters (projected flood elevation for sea level rise, rainfall volumes for precipitation)
- M.G.L. Chapter 91
 - Potential requirement to consider future sea level rise for construction in areas within c. 91 jurisdiction
- Wetlands / Water Quality Certifications
 - Potential requirements for new buildings in V-zone and A-zone (Moderate and Minimal Wave Action Zones, or MoWA/MiWA)
 - Potential new requirements for stormwater design

Key Components Under Consideration

- 1. Continue to require standard output report from MA Resilience Design Tool and discussion of climate resiliency in ENF/EENF.
- 2. For <u>EIR-level</u> projects, require further analysis to address recommendations from MA Resilience Design Tool for applicable project components, including:
 - Elevation of buildings and structures
 - Stormwater sizing
 - Off-site flood impacts
 - >Other applicable quantitative metrics

**This requirement would potentially apply to projects requiring EIRs under 301 CMR 11.06(7) (near environmental justice (EJ) populations).

- 3. Create standard useful life and criticality measures by project type so that return period recommendations are consistent.
 - E.g., long-lived buildings should prepare for medium to high return period recommendation for 2070.
- 4. EIR should address legal mandates (building code, wetlands, local regulation), but also consider recommendations from MA Resilience Design Tool. Address flexible adaptation strategies if cannot fully meet recommendations.
- Proponents would be given discretion to determine specific methodology/modeling to support analysis.

Key Questions

- Is it reasonable to require <u>quantitative</u> analysis (e.g., H&H modeling) of project components during MEPA review? Will project design be advanced enough to provide the analysis?
- Should analysis requirement be limited to certain <u>project types</u> (new construction, "critical" infrastructure), or <u>project location</u> (100- and 500- year flood plain / V and A zones)?
- 3. Should analysis be required for all EIRs <u>near EJ populations</u>?
- 4. Should MEPA prescribe <u>specific methodologies</u> for conducting analysis?