

Morrissey Boulevard Commission Meeting #6

Boston Collegiate Charter School & Virtual via Zoom

September 25, 2024

Meeting Notes and Procedures

Notification of recording

- This virtual public meeting will be recorded. The Massachusetts Department of Transportation may choose to retain and distribute the video, still images, audio, and/or chat transcript.
- By continuing attendance with this virtual public meeting, you are consenting to participate in a recorded ۲ event.
- All recordings and chat transcript will be considered a public record. ۲
- If you are not comfortable being recorded, please turn off your camera, keep your microphone muted, and ۲ refrain from chatting in the transcript box. Otherwise, you may choose to excuse yourself from the meeting.

Important notes

- Your microphone and webcam are automatically disabled upon entering the meeting.
- The meeting will be open to questions and answers at the end of the presentation.

All questions and comments are welcomed and appreciated, however we do request that you refrain from any disrespectful comments.

Zoom Controls

Drop down menu to check microphone and speakers

• Ask a question and share comments

 If you are unable to access the internet or are having technical problems, please call into the meeting at 312-626-6799, Webinar ID: 858 6067 6091

1-888-799-9666

Closed captioning automatically generated by Zoom

If you have trouble with the meeting technology during the presentation, please call:

Agenda

- Call to Order \bullet
- Introduction of Commission Members \bullet
- **Presentation on Study** lacksquare
 - Review of Previous Feedback
 - Updates on Short-Term Improvements and Relevant Efforts •
 - Corridor Layouts
 - Alternatives Analysis
- **Commission Discussion** \bullet
- **Public Comment**
- Next Steps \bullet

Commission Introductions

University of Massachusetts Building Authority

*Please note the responsibilities of the Boston Planning & Development Agency have moved to the City of Boston Planning Department as of July 1, 2024

Commission Goals

Improve mobility for pedestrians, transit users, cyclists, and motorists

Strengthen **climate resiliency** in the Dorchester section of the City of Boston and along Morrissey Boulevard in the city

Develop a comprehensive plan and **design concept alternatives** for the Morrissey Boulevard corridor

Identify **short-term investments** to improve mobility for pedestrians, transit users, cyclists, and motorists along the Morrissey Boulevard corridor

The charge of the Morrissey Boulevard Commission is to evaluate and recommend transportation and infrastructure improvements

The study team's support role is limited to presenting relevant background information and developing and evaluating transportation resiliency improvements

This presentation includes content outside the scope of the Morrissey **Boulevard Commission**

This additional content is intended to provide regional context for the corridor and facilitate broader public discussion and input

Presentation on Study

Review of Feedback Received

Summary of Feedback Received

Updates on short-term improvements and relevant projects

Concerns about reduced roadway capacity

Need for improved active transportation / access

Environmental considerations noise, pollution, visual barriers

U-Turns at Bianculli Boulevard

Upcoming Topics

Updates on Short-Term Improvements and Relevant Projects

Initial Alternatives Analysis

Environmental considerations

Final Analysis, Draft Findings and Recommendations

Final Report approval and submission

Updates on Short-Term Improvements and Relevant Efforts

City of Boston Update

JFK/UMass Station Area Access Plan

- This project will develop a **concrete plan and** \bullet comprehensive vision for improvements around the **MBTA JFK/UMass Station**
- Develop near-term and long-term plans \bullet
- In coordination with MBTA on Station Redesign and Columbia Road Action Plan
- Consideration of improvements to Mount Vernon Street

What's Next?

- In-Person Public Open House on **October 9th** \bullet
- Virtual Public Meeting on **October 16th** \bullet
- Finalize Plan by End of Year lacksquare
- Want to learn more? Visit the Project Website

JFK/UMass Station Area Access Plan QR Code

State Agency Update

MassDOT Updates

- K Circle/Columbia Road I-93 \bullet Interchange
 - Survey and traffic data collection underway
 - MassDOT Highway Division is • targeting Winter of 2024/2025 to present the operational deficiencies and earlystage concepts

Beades Bridge Replacement •

Project is in the preliminary concept design phase

DCR Updates

- **Resurfacing of Morrissey Boulevard** ulletservice road from Old Colony Avenue to Bianculli Boulevard (completed Summer 2024)
- Sidewalk restoration and wheelchair ramp reconstruction from former Boston Globe to Malibu Beach (Summer – Fall 2024)
- **Preble Circle pedestrian accessibility** ulletimprovements at Old Colony Avenue / Columbia Road (Fall 2024)
- **Invasive Species Management**: In August \bullet 2024, DCR removed invasive plant species from Pleasure Bay, Wollaston Beach, and the Neponset Greenway

State Agency Update

DCR Updates

- 2024-2025 construction of Morrissey • **Boulevard Pump Station to prevent flooding** on Morrissey Boulevard from Conley Street and McKone Street to Market Place
- Existing drainage outfall with tide gate at 818 Morrissey Boulevard closes during high tides to prevent coastal flooding
- Emergency pumping is required to prevent ulletroadway flooding during significant rain events at high tides
- **In 2024**, MassDOT to construct pump station utilities with Neponset Greenway from Conley Street to Freeport Street
- In 2025, DCR to complete construction and operate pump station

Pump Station Locus

Corridor Layouts

Corridor Layouts Overview

- Potential options presented for five locations along the corridor:
 - **Neponset Circle** Modified DCR Design
 - **Freeport Street** (2)
 - Modified DCR Design
 - Quadrant Roadway
 - **Bianculli Boulevard** DCR Design
 - First Street (2)
 - Signalized Control
 - Service Roads
 - **Preble Street** Signalized Control
- Coastal resiliency options also evaluated ullet
 - Tide gate, no tide gate, or hybrid options
- Based on feedback, corridor layouts were developed

Concerns about reduced roadway capacity

U-Turns at Bianculli Boulevard

Environmental considerations

Improved active transportation / access

Neponset Circle

North of Neponset Circle to Victory Road

Victory Road to Freeport Street (Modified DCR Design)

Victory Road to Freeport Street (Quadrant Roadway)

North of Freeport Street to South of Bianculli Boulevard

Bianculli Boulevard to South of Kosciuszko Circle

Bianculli Boulevard - Detailed

First Street – Signalized Control

First Street – Service Roads

North of Kosciuszko Circle to Preble Circle

Initial Alternatives Analysis

Evaluation Criteria Review

Commission Goals

Improve mobility	Strengthen climate	Develop a comprehensive plan
	resiliency	design concept alternative

Evaluation Criteria

Note: For the purpose of analysis, all intersection options presented to date are included in the initial alternatives analysis

Identify **short-term investments**

Constructability

Evaluation Criteria Components

Each of the alternatives was evaluated for its potential benefits and impacts in the following areas:

Corridor Mobility

- Delay Intersection Level of Service
- Delay Total Vehicle Hours of Delay
- Queueing
- Vehicle Access
- Transit Access
- Pedestrian Crossing Comfort
- Pedestrian Gaps
- Bicycle Crossing Stress
- Potential Safety Effects

Resiliency & Ecology

- Effects on Environmental Resources
- **Impervious Surface**

- Placemaking/Open Space
- **Visual Effects**
- **Consistency with Plans**
- **Recreational Access**
- Shade Trees

- **Construction Cost**
- Constructability
- Maintenance Concerns

Placemaking

Disruptions to Neighborhoods

Initial Alternatives Analysis – Neponset Circle

Corridor Mobility Criteria	Modified DCR Design
Delay – Intersection Level of Service	
Delay - Total Vehicle Hours of Delay	
Queueing	×
Vehicle Access	
Transit Access	
Pedestrian Crossing Comfort	
Pedestrian Gaps	
Bicycle Crossing Stress	
Potential Safety Effects	

Compared to existing infrastructure, the Neponset Circle alternative (the Modified DCR Design) reduces vehicular weaving, provides additional pedestrian and bicycle connections, and improves accessibility and safety

Initial Alternatives Analysis – Neponset Circle

Resiliency and Ecology Criteria	Modified DCR Design
Effects on Environmental Resources	
Impervious Surface	
Placemaking Criteria	Modified DCR Design
Placemaking/Open Space	
Visual Effects	
Consistency with Plans	
Disruption to Neighborhoods	
Recreational Access	

Compared to existing infrastructure, the **Neponset Circle alternative** (the Modified DCR Design) is estimated to have environmental benefits, increase placemaking opportunities, and positive visual effects

Initial Alternatives Analysis – Neponset Circle

Constructability Criteria	Modified DCR Design
Construction Cost	
Constructability	
Maintenance Concerns	
Environmental Permits/Complexity	

Compared to existing infrastructure, the **Neponset Circle alternative** (the Modified DCR Design) is estimated to have high constructability, with some cost, maintenance, and/or permitting considerations

Initial Alternatives Analysis – Freeport Street

Corridor Mobility Criteria	Modified DCR Design	Quadrant Roadway	Victory Road Full Intersection	Co infra alterr
Delay – Intersection Level of Service				hav c
Delay - Total Vehicle Hours of Delay				m comf
Queueing				Ier
Vehicle Access				
Transit Access				
Pedestrian Crossing Comfort				
Pedestrian Gaps				
Bicycle Crossing Stress				
Potential Safety Effects				

ompared to existing structure, each of the natives is estimated to /e mobility benefits overall, with some oderate pedestrian fort based on crossing ngth, signaling, and infrastructure

Initial Alternatives Analysis – Freeport Street

Resiliency and Ecology Criteria	Modified DCR Design	Quadrant Roadway	Victory Road Full Intersection
Effects on Environmental Resources	0	0	\mathbf{e}
Impervious Surface			
Placemaking Criteria	Modified DCR Design	Quadrant Roadway	Victory Road Full Intersection
Placemaking/Open Space		$\mathbf{\Theta}$	
Visual Effects	Ó		
Consistency with Plans			
Disruption to Neighborhoods	\mathbf{x}	\mathbf{x}	×

Recreational Access

Shade Trees

Compared to existing infrastructure, each of the alternatives is estimated to provide high potential for impervious surface installation; the Victory Road Full Intersection is estimated to have the most placemaking benefits

Initial Alternatives Analysis – Freeport Street

Constructability Criteria	Modified DCR Design	Quadrant Roadway	Victory Road Full Intersection	ir a
Construction Cost			×	G
Constructability				
Maintenance Concerns				
Environmental Permits/Complexity				
Benefits		N	eutral	

Compared to existing nfrastructure, each of the Iternatives are estimated to have some constructability, maintenance, and/or permitting considerations

Initial Alternatives Analysis – Bianculli Boulevard

Corridor Mobility Criteria	DCR Design	Continuous Green Tee	Median U-Turn
Delay – Intersection Level of Service			
Delay - Total Vehicle Hours of Delay			
Queueing			
Vehicle Access		×	
Transit Access			
Pedestrian Crossing Comfort		×	
Pedestrian Gaps			
Bicycle Crossing Stress		×	
Potential Safety Effects			

Compared to existing infrastructure, the **DCR Design and the Median U-Turn** options are estimated to have the most corridor mobility benefits

Initial Alternatives Analysis – Bianculli Boulevard

Resiliency and Ecology Criteria	DCR Design	Continuous Green Tee	Median U-Turn	Cc infra
Effects on Environmental Resources			×	Des
Impervious Surface			\bigcirc	resi

Placemaking Criteria	DCR Design	Continuous Green Tee	Median U-Turn
Placemaking/Open Space			
Visual Effects			
Consistency with Plans			
Disruption to Neighborhoods	0	×	
Recreational Access			
Shade Trees			

ompared to existing astructure, the **DCR** sign is estimated to have the **most** liency benefits and placemaking opportunities

Initial Alternatives Analysis – Bianculli Boulevard

Constructability Criteria	DCR Design	Continuous Green Tee	Median U-Turn	
Construction Cost				
Constructability				а
Maintenance Concerns				а
Environmental Permits/Complexity				

Compared to existing infrastructure, the **DCR Design and the Continuous Green Tee** Iternatives are estimated to have high constructability, low nticipated maintenance concerns, and fewer expected permitting issues

Initial Alternatives Analysis – First Street

Corridor Mobility Criteria	Service Roads	Signalized Control	
Delay – Intersection Level of Service			а
Delay - Total Vehicle Hours of Delay			to
Queueing		×	
Vehicle Access	\mathbf{e}		
Transit Access			
Pedestrian Crossing Comfort			
Pedestrian Gaps			
Bicycle Crossing Stress			
Potential Safety Effects			

Compared to existing infrastructure, the Service Roads alternative is estimated have the most corridor mobility benefits

Initial Alternatives Analysis – First Street

Resiliency and Ecology Criteria	Service Roads	Signalized Control
Effects on Environmental Resources		
Impervious Surface		

Placemaking Criteria	Service Roads	Signalized Control
Placemaking/Open Space		
Visual Effects		
Consistency with Plans		
Disruption to Neighborhoods		
Recreational Access		
Shade Trees	8	

Control alternative is estimated to have the most placemaking opportunities

Compared to existing infrastructure, each of the alternatives is estimated to have some resilience benefits; the Signalized

Initial Alternatives Analysis – First Street

Constructability Criteria	Service Roads	Signalized Control
Construction Cost		
Constructability		
Maintenance Concerns		
Environmental Permits/Complexity	×	×

Compared to existing infrastructure, each of the alternatives are estimated to have some constructability, maintenance, and/or permitting considerations

Initial Alternatives Analysis – Preble Circle

Corridor Mobility Criteria	Modern Roundabout	Signalized Control
Delay – Intersection Level of Service	×	
Delay - Total Vehicle Hours of Delay		
Queueing		
Vehicle Access		
Transit Access		
Pedestrian Crossing Comfort		
Pedestrian Gaps		
Bicycle Crossing Stress		
Potential Safety Effects		

Compared to existing infrastructure, **Signalized Control** is estimated to have **less** delay and queuing

Initial Alternatives Analysis – Preble Circle

Resiliency and Ecology Criteria	Modern Roundabout	Signalized Control
Effects on Environmental Resources		
Impervious Surface		×

Placemaking Criteria	Modern Roundabout	Signalized Control
Placemaking/Open Space		
Visual Effects		
Consistency with Plans		
Disruption to Neighborhoods		×
Recreational Access		
Shade Trees		

Compared to existing infrastructure, Modern Roundabout is estimated to have less impervious surface and increased placemaking opportunities

Initial Alternatives Analysis – Preble Circle

Constructability Criteria	Modern Roundabout	Signalized Control	Cor
Construction Cost			Mod estim
Constructability			C
Maintenance Concerns	×		
Environmental Permits/Complexity			
Benefits		Neutral	

mpared to existing infrastructure, ern Roundabout is lated to have fewer onstructability concerns

Initial Alternatives Analysis – Resilience Options

Corridor Mobility Criteria	Tide Gate	No Tide Gate	Hybrid	C in
Delay – Intersection Level of Service				t est
Delay - Total Vehicle Hours of Delay	0			
Queueing				
Vehicle Access				
Transit Access				
Pedestrian Crossing Comfort	Ö	Ö	ē	
Pedestrian Gaps				
Bicycle Crossing Stress	0			
Potential Safety Effects				

compared to existing frastructure, each of the alternatives are timated to have some corridor mobility considerations

Initial Alternatives Analysis – Resilience Options

Resiliency and Ecology Criteria	Tide Gate	No Tide Gate	Hybrid
Effects on Environmental Resources	\mathbf{x}		
Impervious Surface			

Placemaking Criteria	Tide Gate	No Tide Gate	Hybrid
Placemaking/Open Space			
Visual Effects		×	×
Consistency with Plans			
Disruption to Neighborhoods			
Recreational Access		×	×
Shade Trees			

Compared to existing infrastructure, the No Tide Gate is estimated to have the **most** resiliency benefits; the Tide Gate alternative is estimated to have the most placemaking opportunities

Initial Alternatives Analysis – Resilience Options

Constructability Criteria	Tide Gate	No Tide Gate	Hybrid
Construction Cost			
Constructability			
Maintenance Concerns			
Environmental Permits/Complexity			

Compared to existing infrastructure, the No Tide **Gate** alternative is estimated to have **fewer** constructability concerns

Alternatives Analysis Next Steps

- **SYNCHRO** used initially to test individual intersection alternatives to identify operational constraints or "fatal flaws"
- Corridor layouts were finalized to conduct initial analysis
- VISSIM is being used to model sub-areas of the corridor based on the results of the SYNCHRO testing
 - Includes vehicular, bicycle, pedestrian, and transit movements

Based on feedback, the analysis will be completed and may be refined, and draft findings and recommendations will be developed

Transportation Simulation Process

Initially assess how the alternatives impact vehicular movement and identify issues (or "fatal flaws")

Then incorporate bicyclists, pedestrians, and transit users, and identify "fatal flaws"

Alternatives with limited to no "fatal flaws" advanced for additional analysis

No-Build Modeling Example at Bianculli Boulevard

Build Modeling Example at Bianculli Boulevard

Commission Discussion

Commission Discussion

General comments or questions on the initial Alternatives Analysis?

Public Comment

Share Your Questions and Comments: Hybrid Meeting Process

- In-Person and Virtual moderators will work together to ensure that lacksquareattendees in both spaces can share their questions and comments
- Moderators will take a few comments at a time in one space and then \bullet switch throughout the public comment period
- If multiple people ask the same question, moderators will inform the \bullet audience how many asked and answer the question once

Please be advised that all Q&A and comments are subject to disclosure for public records, therefore use these functions for project-related business only

Share Your Questions and Comments: In-Person Attendees

• Use Microphone provided and please line up three (3) at a time to allow for virtual audience to participate

Please state your name before your question or comment

 $\, \bullet \, \text{Please}$ share only 1 question or comment at a time, limited to 2minutes, to allow others to participate

Please be advised that all Q&A and comments are subject to disclosure for public records

Share Your Questions and Comments: Virtual Attendees

- Submit your questions and comments using the Q&A button
- "Raise your hand" to be unmuted for verbal questions to raise your hand)

Please state your name before your question

- Please share only **1** question or comment at a time, limited to **2** minutes, to allow others to participate
- To ask a question via phone, dial *9 and the moderator will call out the last digits of your phone number and unmute your audio when it is your turn

Please be advised that all Q&A and comments are subject to disclosure for public records, therefore use these functions for project-related business only

Next Steps

Updates on Short-Term Improvements and Relevant Projects

Draft Alternatives Analysis

Environmental considerations

Draft Findings and Recommendations

Final Report approval and submission

How to Reach Us

Submit written comments to:

Attention: Office of Transportation Planning 10 Park Plaza, Suite 4150 Boston, MA 02116

Submit email comments to:

planning@dot.state.ma.us

For project information, visit the study web site at:

https://www.mass.gov/k-circle-morrissey-study or QR Code:

Study Website QR Code

Thank Your

